This commit is contained in:
J. Duke 2017-07-05 20:03:08 +02:00
commit 89495909c8
204 changed files with 6709 additions and 2748 deletions

View File

@ -275,3 +275,4 @@ ea2f7981236f3812436958748ab3d26e80a35130 jdk9-b28
36e9bc875325813ac9c44ac0c617a463091fa9f5 jdk9-b30 36e9bc875325813ac9c44ac0c617a463091fa9f5 jdk9-b30
69a84c16d9c28e0e3d504b9c8766c24bafcd58f6 jdk9-b31 69a84c16d9c28e0e3d504b9c8766c24bafcd58f6 jdk9-b31
7e3512dae8e020d44399c0f1c579ff1fe3090ed6 jdk9-b32 7e3512dae8e020d44399c0f1c579ff1fe3090ed6 jdk9-b32
e4ba01b726e263953ae129be37c94de6ed145b1d jdk9-b33

View File

@ -435,3 +435,4 @@ deb29e92f68ace2808a36ecfa18c7d61dcb645bb jdk9-b29
5c722dffbc0f34eb8d903dca7b261e52248fa17e jdk9-b30 5c722dffbc0f34eb8d903dca7b261e52248fa17e jdk9-b30
9f7d155d28e519f3e4645dc21cf185c25f3176ed jdk9-b31 9f7d155d28e519f3e4645dc21cf185c25f3176ed jdk9-b31
af46576a8d7cb4003028b8ee8bf408cfe227315b jdk9-b32 af46576a8d7cb4003028b8ee8bf408cfe227315b jdk9-b32
9b3f5e4f33725f7c1d9b8e523133fe8383a54d9f jdk9-b33

View File

@ -32,12 +32,10 @@ import sun.jvm.hotspot.types.*;
import sun.jvm.hotspot.utilities.*; import sun.jvm.hotspot.utilities.*;
public class CodeCache { public class CodeCache {
private static AddressField heapField; private static GrowableArray<CodeHeap> heapArray;
private static AddressField scavengeRootNMethodsField; private static AddressField scavengeRootNMethodsField;
private static VirtualConstructor virtualConstructor; private static VirtualConstructor virtualConstructor;
private CodeHeap heap;
static { static {
VM.registerVMInitializedObserver(new Observer() { VM.registerVMInitializedObserver(new Observer() {
public void update(Observable o, Object data) { public void update(Observable o, Object data) {
@ -49,7 +47,10 @@ public class CodeCache {
private static synchronized void initialize(TypeDataBase db) { private static synchronized void initialize(TypeDataBase db) {
Type type = db.lookupType("CodeCache"); Type type = db.lookupType("CodeCache");
heapField = type.getAddressField("_heap"); // Get array of CodeHeaps
AddressField heapsField = type.getAddressField("_heaps");
heapArray = GrowableArray.create(heapsField.getValue(), new StaticBaseConstructor<CodeHeap>(CodeHeap.class));
scavengeRootNMethodsField = type.getAddressField("_scavenge_root_nmethods"); scavengeRootNMethodsField = type.getAddressField("_scavenge_root_nmethods");
virtualConstructor = new VirtualConstructor(db); virtualConstructor = new VirtualConstructor(db);
@ -67,16 +68,17 @@ public class CodeCache {
} }
} }
public CodeCache() {
heap = (CodeHeap) VMObjectFactory.newObject(CodeHeap.class, heapField.getValue());
}
public NMethod scavengeRootMethods() { public NMethod scavengeRootMethods() {
return (NMethod) VMObjectFactory.newObject(NMethod.class, scavengeRootNMethodsField.getValue()); return (NMethod) VMObjectFactory.newObject(NMethod.class, scavengeRootNMethodsField.getValue());
} }
public boolean contains(Address p) { public boolean contains(Address p) {
return getHeap().contains(p); for (int i = 0; i < heapArray.length(); ++i) {
if (heapArray.at(i).contains(p)) {
return true;
}
}
return false;
} }
/** When VM.getVM().isDebugging() returns true, this behaves like /** When VM.getVM().isDebugging() returns true, this behaves like
@ -97,14 +99,24 @@ public class CodeCache {
public CodeBlob findBlobUnsafe(Address start) { public CodeBlob findBlobUnsafe(Address start) {
CodeBlob result = null; CodeBlob result = null;
CodeHeap containing_heap = null;
for (int i = 0; i < heapArray.length(); ++i) {
if (heapArray.at(i).contains(start)) {
containing_heap = heapArray.at(i);
break;
}
}
if (containing_heap == null) {
return null;
}
try { try {
result = (CodeBlob) virtualConstructor.instantiateWrapperFor(getHeap().findStart(start)); result = (CodeBlob) virtualConstructor.instantiateWrapperFor(containing_heap.findStart(start));
} }
catch (WrongTypeException wte) { catch (WrongTypeException wte) {
Address cbAddr = null; Address cbAddr = null;
try { try {
cbAddr = getHeap().findStart(start); cbAddr = containing_heap.findStart(start);
} }
catch (Exception findEx) { catch (Exception findEx) {
findEx.printStackTrace(); findEx.printStackTrace();
@ -167,31 +179,32 @@ public class CodeCache {
} }
public void iterate(CodeCacheVisitor visitor) { public void iterate(CodeCacheVisitor visitor) {
CodeHeap heap = getHeap(); visitor.prologue(lowBound(), highBound());
Address ptr = heap.begin();
Address end = heap.end();
visitor.prologue(ptr, end);
CodeBlob lastBlob = null; CodeBlob lastBlob = null;
while (ptr != null && ptr.lessThan(end)) {
try { for (int i = 0; i < heapArray.length(); ++i) {
// Use findStart to get a pointer inside blob other findBlob asserts CodeHeap current_heap = heapArray.at(i);
CodeBlob blob = findBlobUnsafe(heap.findStart(ptr)); Address ptr = current_heap.begin();
if (blob != null) { while (ptr != null && ptr.lessThan(current_heap.end())) {
visitor.visit(blob); try {
if (blob == lastBlob) { // Use findStart to get a pointer inside blob other findBlob asserts
throw new InternalError("saw same blob twice"); CodeBlob blob = findBlobUnsafe(current_heap.findStart(ptr));
if (blob != null) {
visitor.visit(blob);
if (blob == lastBlob) {
throw new InternalError("saw same blob twice");
}
lastBlob = blob;
} }
lastBlob = blob; } catch (RuntimeException e) {
e.printStackTrace();
} }
} catch (RuntimeException e) { Address next = current_heap.nextBlock(ptr);
e.printStackTrace(); if (next != null && next.lessThan(ptr)) {
throw new InternalError("pointer moved backwards");
}
ptr = next;
} }
Address next = heap.nextBlock(ptr);
if (next != null && next.lessThan(ptr)) {
throw new InternalError("pointer moved backwards");
}
ptr = next;
} }
visitor.epilogue(); visitor.epilogue();
} }
@ -200,7 +213,23 @@ public class CodeCache {
// Internals only below this point // Internals only below this point
// //
private CodeHeap getHeap() { private Address lowBound() {
return heap; Address low = heapArray.at(0).begin();
for (int i = 1; i < heapArray.length(); ++i) {
if (heapArray.at(i).begin().lessThan(low)) {
low = heapArray.at(i).begin();
}
}
return low;
}
private Address highBound() {
Address high = heapArray.at(0).end();
for (int i = 1; i < heapArray.length(); ++i) {
if (heapArray.at(i).end().greaterThan(high)) {
high = heapArray.at(i).end();
}
}
return high;
} }
} }

View File

@ -0,0 +1,40 @@
package sun.jvm.hotspot.gc_implementation.g1;
import java.util.Observable;
import java.util.Observer;
import sun.jvm.hotspot.debugger.Address;
import sun.jvm.hotspot.runtime.VM;
import sun.jvm.hotspot.runtime.VMObject;
import sun.jvm.hotspot.types.CIntegerField;
import sun.jvm.hotspot.types.Type;
import sun.jvm.hotspot.types.TypeDataBase;
public class G1Allocator extends VMObject {
//size_t _summary_bytes_used;
static private CIntegerField summaryBytesUsedField;
static {
VM.registerVMInitializedObserver(new Observer() {
public void update(Observable o, Object data) {
initialize(VM.getVM().getTypeDataBase());
}
});
}
static private synchronized void initialize(TypeDataBase db) {
Type type = db.lookupType("G1Allocator");
summaryBytesUsedField = type.getCIntegerField("_summary_bytes_used");
}
public long getSummaryBytes() {
return summaryBytesUsedField.getValue(addr);
}
public G1Allocator(Address addr) {
super(addr);
}
}

View File

@ -36,7 +36,6 @@ import sun.jvm.hotspot.memory.SpaceClosure;
import sun.jvm.hotspot.runtime.VM; import sun.jvm.hotspot.runtime.VM;
import sun.jvm.hotspot.runtime.VMObjectFactory; import sun.jvm.hotspot.runtime.VMObjectFactory;
import sun.jvm.hotspot.types.AddressField; import sun.jvm.hotspot.types.AddressField;
import sun.jvm.hotspot.types.CIntegerField;
import sun.jvm.hotspot.types.Type; import sun.jvm.hotspot.types.Type;
import sun.jvm.hotspot.types.TypeDataBase; import sun.jvm.hotspot.types.TypeDataBase;
@ -47,8 +46,8 @@ public class G1CollectedHeap extends SharedHeap {
static private long hrmFieldOffset; static private long hrmFieldOffset;
// MemRegion _g1_reserved; // MemRegion _g1_reserved;
static private long g1ReservedFieldOffset; static private long g1ReservedFieldOffset;
// size_t _summary_bytes_used; // G1Allocator* _allocator
static private CIntegerField summaryBytesUsedField; static private AddressField g1Allocator;
// G1MonitoringSupport* _g1mm; // G1MonitoringSupport* _g1mm;
static private AddressField g1mmField; static private AddressField g1mmField;
// HeapRegionSet _old_set; // HeapRegionSet _old_set;
@ -68,7 +67,7 @@ public class G1CollectedHeap extends SharedHeap {
Type type = db.lookupType("G1CollectedHeap"); Type type = db.lookupType("G1CollectedHeap");
hrmFieldOffset = type.getField("_hrm").getOffset(); hrmFieldOffset = type.getField("_hrm").getOffset();
summaryBytesUsedField = type.getCIntegerField("_summary_bytes_used"); g1Allocator = type.getAddressField("_allocator");
g1mmField = type.getAddressField("_g1mm"); g1mmField = type.getAddressField("_g1mm");
oldSetFieldOffset = type.getField("_old_set").getOffset(); oldSetFieldOffset = type.getField("_old_set").getOffset();
humongousSetFieldOffset = type.getField("_humongous_set").getOffset(); humongousSetFieldOffset = type.getField("_humongous_set").getOffset();
@ -79,7 +78,7 @@ public class G1CollectedHeap extends SharedHeap {
} }
public long used() { public long used() {
return summaryBytesUsedField.getValue(addr); return allocator().getSummaryBytes();
} }
public long n_regions() { public long n_regions() {
@ -97,6 +96,11 @@ public class G1CollectedHeap extends SharedHeap {
return (G1MonitoringSupport) VMObjectFactory.newObject(G1MonitoringSupport.class, g1mmAddr); return (G1MonitoringSupport) VMObjectFactory.newObject(G1MonitoringSupport.class, g1mmAddr);
} }
public G1Allocator allocator() {
Address g1AllocatorAddr = g1Allocator.getValue(addr);
return (G1Allocator) VMObjectFactory.newObject(G1Allocator.class, g1AllocatorAddr);
}
public HeapRegionSetBase oldSet() { public HeapRegionSetBase oldSet() {
Address oldSetAddr = addr.addOffsetTo(oldSetFieldOffset); Address oldSetAddr = addr.addOffsetTo(oldSetFieldOffset);
return (HeapRegionSetBase) VMObjectFactory.newObject(HeapRegionSetBase.class, return (HeapRegionSetBase) VMObjectFactory.newObject(HeapRegionSetBase.class,

View File

@ -234,10 +234,10 @@ JVM_OBJ_FILES = $(Obj_Files)
vm_version.o: $(filter-out vm_version.o,$(JVM_OBJ_FILES)) vm_version.o: $(filter-out vm_version.o,$(JVM_OBJ_FILES))
mapfile : $(MAPFILE) vm.def mapfile : $(MAPFILE) vm.def mapfile_ext
rm -f $@ rm -f $@
awk '{ if ($$0 ~ "INSERT VTABLE SYMBOLS HERE") \ awk '{ if ($$0 ~ "INSERT VTABLE SYMBOLS HERE") \
{ system ("cat vm.def"); } \ { system ("cat mapfile_ext"); system ("cat vm.def"); } \
else \ else \
{ print $$0 } \ { print $$0 } \
}' > $@ < $(MAPFILE) }' > $@ < $(MAPFILE)
@ -249,6 +249,13 @@ mapfile_reorder : mapfile $(REORDERFILE)
vm.def: $(Res_Files) $(Obj_Files) vm.def: $(Res_Files) $(Obj_Files)
sh $(GAMMADIR)/make/bsd/makefiles/build_vm_def.sh *.o > $@ sh $(GAMMADIR)/make/bsd/makefiles/build_vm_def.sh *.o > $@
mapfile_ext:
rm -f $@
touch $@
if [ -f $(HS_ALT_MAKE)/bsd/makefiles/mapfile-ext ]; then \
cat $(HS_ALT_MAKE)/bsd/makefiles/mapfile-ext > $@; \
fi
STATIC_CXX = false STATIC_CXX = false
ifeq ($(LINK_INTO),AOUT) ifeq ($(LINK_INTO),AOUT)
@ -265,6 +272,8 @@ else
LFLAGS_VM += -Xlinker -rpath -Xlinker @loader_path/. LFLAGS_VM += -Xlinker -rpath -Xlinker @loader_path/.
LFLAGS_VM += -Xlinker -rpath -Xlinker @loader_path/.. LFLAGS_VM += -Xlinker -rpath -Xlinker @loader_path/..
LFLAGS_VM += -Xlinker -install_name -Xlinker @rpath/$(@F) LFLAGS_VM += -Xlinker -install_name -Xlinker @rpath/$(@F)
else
LFLAGS_VM += -Wl,-z,defs
endif endif
# JVM is statically linked with libgcc[_s] and libstdc++; this is needed to # JVM is statically linked with libgcc[_s] and libstdc++; this is needed to

View File

@ -21,6 +21,9 @@
# questions. # questions.
# #
# #
include $(GAMMADIR)/make/altsrc.make
ifeq ($(INCLUDE_JVMTI), false) ifeq ($(INCLUDE_JVMTI), false)
CXXFLAGS += -DINCLUDE_JVMTI=0 CXXFLAGS += -DINCLUDE_JVMTI=0
CFLAGS += -DINCLUDE_JVMTI=0 CFLAGS += -DINCLUDE_JVMTI=0
@ -78,12 +81,12 @@ ifeq ($(INCLUDE_ALL_GCS), false)
CXXFLAGS += -DINCLUDE_ALL_GCS=0 CXXFLAGS += -DINCLUDE_ALL_GCS=0
CFLAGS += -DINCLUDE_ALL_GCS=0 CFLAGS += -DINCLUDE_ALL_GCS=0
gc_impl := $(GAMMADIR)/src/share/vm/gc_implementation gc_impl := $(HS_COMMON_SRC)/share/vm/gc_implementation
gc_exclude := \ gc_impl_alt := $(HS_ALT_SRC)/share/vm/gc_implementation
$(notdir $(wildcard $(gc_impl)/concurrentMarkSweep/*.cpp)) \ gc_subdirs := concurrentMarkSweep g1 parallelScavenge parNew
$(notdir $(wildcard $(gc_impl)/g1/*.cpp)) \ gc_exclude := $(foreach gc,$(gc_subdirs), \
$(notdir $(wildcard $(gc_impl)/parallelScavenge/*.cpp)) \ $(notdir $(wildcard $(gc_impl)/$(gc)/*.cpp)) \
$(notdir $(wildcard $(gc_impl)/parNew/*.cpp)) $(notdir $(wildcard $(gc_impl_alt)/$(gc)/*.cpp)))
Src_Files_EXCLUDE += $(gc_exclude) Src_Files_EXCLUDE += $(gc_exclude)
# Exclude everything in $(gc_impl)/shared except the files listed # Exclude everything in $(gc_impl)/shared except the files listed

View File

@ -1,388 +0,0 @@
#
# Copyright (c) 2006, 2013, Oracle and/or its affiliates. All rights reserved.
# DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
#
# This code is free software; you can redistribute it and/or modify it
# under the terms of the GNU General Public License version 2 only, as
# published by the Free Software Foundation.
#
# This code is distributed in the hope that it will be useful, but WITHOUT
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
# FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
# version 2 for more details (a copy is included in the LICENSE file that
# accompanied this code).
#
# You should have received a copy of the GNU General Public License version
# 2 along with this work; if not, write to the Free Software Foundation,
# Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
#
# Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
# or visit www.oracle.com if you need additional information or have any
# questions.
#
#
# Properties for jprt
# All build result bundles are full jdks.
jprt.need.sibling.build=false
# At submit time, the release supplied will be in jprt.submit.release
# and will be one of the official release names defined in jprt.
# jprt supports property value expansion using ${property.name} syntax.
# This tells jprt what default release we want to build
jprt.hotspot.default.release=jdk9
jprt.tools.default.release=${jprt.submit.option.release?${jprt.submit.option.release}:${jprt.hotspot.default.release}}
# Disable syncing the source after builds and tests are done.
jprt.sync.push=false
# Note: we want both embedded releases and regular releases to build and test
# all platforms so that regressions are not introduced (eg. change to
# common code by SE breaks PPC/ARM; change to common code by SE-E breaks
# sparc etc.
# Define the Solaris platforms we want for the various releases
jprt.my.solaris.sparcv9.jdk9=solaris_sparcv9_5.11
jprt.my.solaris.sparcv9=${jprt.my.solaris.sparcv9.${jprt.tools.default.release}}
jprt.my.solaris.x64.jdk9=solaris_x64_5.11
jprt.my.solaris.x64=${jprt.my.solaris.x64.${jprt.tools.default.release}}
jprt.my.linux.i586.jdk9=linux_i586_2.6
jprt.my.linux.i586=${jprt.my.linux.i586.${jprt.tools.default.release}}
jprt.my.linux.x64.jdk9=linux_x64_2.6
jprt.my.linux.x64=${jprt.my.linux.x64.${jprt.tools.default.release}}
jprt.my.linux.ppc.jdk9=linux_ppc_2.6
jprt.my.linux.ppc=${jprt.my.linux.ppc.${jprt.tools.default.release}}
jprt.my.linux.ppcv2.jdk9=linux_ppcv2_2.6
jprt.my.linux.ppcv2=${jprt.my.linux.ppcv2.${jprt.tools.default.release}}
jprt.my.linux.armvfpsflt.jdk9=linux_armvfpsflt_2.6
jprt.my.linux.armvfpsflt=${jprt.my.linux.armvfpsflt.${jprt.tools.default.release}}
jprt.my.linux.armvfphflt.jdk9=linux_armvfphflt_2.6
jprt.my.linux.armvfphflt=${jprt.my.linux.armvfphflt.${jprt.tools.default.release}}
# The ARM GP vfp-sflt build is not currently supported
#jprt.my.linux.armvs.jdk9=linux_armvs_2.6
#jprt.my.linux.armvs=${jprt.my.linux.armvs.${jprt.tools.default.release}}
jprt.my.linux.armvh.jdk9=linux_armvh_2.6
jprt.my.linux.armvh=${jprt.my.linux.armvh.${jprt.tools.default.release}}
jprt.my.linux.armsflt.jdk9=linux_armsflt_2.6
jprt.my.linux.armsflt=${jprt.my.linux.armsflt.${jprt.tools.default.release}}
jprt.my.macosx.x64.jdk9=macosx_x64_10.7
jprt.my.macosx.x64=${jprt.my.macosx.x64.${jprt.tools.default.release}}
jprt.my.windows.i586.jdk9=windows_i586_6.1
jprt.my.windows.i586=${jprt.my.windows.i586.${jprt.tools.default.release}}
jprt.my.windows.x64.jdk9=windows_x64_6.1
jprt.my.windows.x64=${jprt.my.windows.x64.${jprt.tools.default.release}}
# Standard list of jprt build targets for this source tree
jprt.build.targets.standard= \
${jprt.my.solaris.sparcv9}-{product|fastdebug}, \
${jprt.my.solaris.x64}-{product|fastdebug}, \
${jprt.my.linux.i586}-{product|fastdebug}, \
${jprt.my.linux.x64}-{product|fastdebug}, \
${jprt.my.macosx.x64}-{product|fastdebug}, \
${jprt.my.windows.i586}-{product|fastdebug}, \
${jprt.my.windows.x64}-{product|fastdebug}, \
${jprt.my.linux.armvh}-{product|fastdebug}
jprt.build.targets.open= \
${jprt.my.solaris.x64}-{debugOpen}, \
${jprt.my.linux.x64}-{productOpen}
jprt.build.targets.embedded= \
${jprt.my.linux.i586}-{productEmb|fastdebugEmb}, \
${jprt.my.linux.ppc}-{productEmb|fastdebugEmb}, \
${jprt.my.linux.ppcv2}-{productEmb|fastdebugEmb}, \
${jprt.my.linux.armvfpsflt}-{productEmb|fastdebugEmb}, \
${jprt.my.linux.armvfphflt}-{productEmb|fastdebugEmb}, \
${jprt.my.linux.armsflt}-{productEmb|fastdebugEmb}
jprt.build.targets.all=${jprt.build.targets.standard}, \
${jprt.build.targets.embedded}, ${jprt.build.targets.open}
jprt.build.targets.jdk9=${jprt.build.targets.all}
jprt.build.targets=${jprt.build.targets.${jprt.tools.default.release}}
# Subset lists of test targets for this source tree
jprt.my.solaris.sparcv9.test.targets= \
${jprt.my.solaris.sparcv9}-{product|fastdebug}-c2-jvm98, \
${jprt.my.solaris.sparcv9}-{product|fastdebug}-c2-jvm98_nontiered, \
${jprt.my.solaris.sparcv9}-{product|fastdebug}-c2-scimark, \
${jprt.my.solaris.sparcv9}-product-c2-runThese8, \
${jprt.my.solaris.sparcv9}-{product|fastdebug}-c2-GCBasher_SerialGC, \
${jprt.my.solaris.sparcv9}-{product|fastdebug}-c2-GCBasher_ParallelGC, \
${jprt.my.solaris.sparcv9}-{product|fastdebug}-c2-GCBasher_ParNewGC, \
${jprt.my.solaris.sparcv9}-{product|fastdebug}-c2-GCBasher_CMS, \
${jprt.my.solaris.sparcv9}-{product|fastdebug}-c2-GCBasher_G1, \
${jprt.my.solaris.sparcv9}-{product|fastdebug}-c2-GCBasher_ParOldGC, \
${jprt.my.solaris.sparcv9}-{product|fastdebug}-c2-GCOld_SerialGC, \
${jprt.my.solaris.sparcv9}-{product|fastdebug}-c2-GCOld_ParallelGC, \
${jprt.my.solaris.sparcv9}-{product|fastdebug}-c2-GCOld_ParNewGC, \
${jprt.my.solaris.sparcv9}-{product|fastdebug}-c2-GCOld_CMS, \
${jprt.my.solaris.sparcv9}-{product|fastdebug}-c2-GCOld_G1, \
${jprt.my.solaris.sparcv9}-{product|fastdebug}-c2-GCOld_ParOldGC, \
${jprt.my.solaris.sparcv9}-{product|fastdebug}-c2-jbb_default_nontiered, \
${jprt.my.solaris.sparcv9}-{product|fastdebug}-c2-jbb_SerialGC, \
${jprt.my.solaris.sparcv9}-{product|fastdebug}-c2-jbb_ParallelGC, \
${jprt.my.solaris.sparcv9}-{product|fastdebug}-c2-jbb_CMS, \
${jprt.my.solaris.sparcv9}-{product|fastdebug}-c2-jbb_G1, \
${jprt.my.solaris.sparcv9}-{product|fastdebug}-c2-jbb_ParOldGC
jprt.my.solaris.x64.test.targets= \
${jprt.my.solaris.x64}-{product|fastdebug}-c2-jvm98, \
${jprt.my.solaris.x64}-{product|fastdebug}-c2-jvm98_nontiered, \
${jprt.my.solaris.x64}-{product|fastdebug}-c2-scimark, \
${jprt.my.solaris.x64}-product-c2-runThese8, \
${jprt.my.solaris.x64}-product-c2-runThese8_Xcomp_lang, \
${jprt.my.solaris.x64}-product-c2-runThese8_Xcomp_vm, \
${jprt.my.solaris.x64}-{product|fastdebug}-c2-GCBasher_SerialGC, \
${jprt.my.solaris.x64}-{product|fastdebug}-c2-GCBasher_ParallelGC, \
${jprt.my.solaris.x64}-{product|fastdebug}-c2-GCBasher_ParNewGC, \
${jprt.my.solaris.x64}-{product|fastdebug}-c2-GCBasher_CMS, \
${jprt.my.solaris.x64}-{product|fastdebug}-c2-GCBasher_G1, \
${jprt.my.solaris.x64}-{product|fastdebug}-c2-GCBasher_ParOldGC, \
${jprt.my.solaris.x64}-{product|fastdebug}-c2-GCOld_SerialGC, \
${jprt.my.solaris.x64}-{product|fastdebug}-c2-GCOld_ParallelGC, \
${jprt.my.solaris.x64}-{product|fastdebug}-c2-GCOld_ParNewGC, \
${jprt.my.solaris.x64}-{product|fastdebug}-c2-GCOld_CMS, \
${jprt.my.solaris.x64}-{product|fastdebug}-c2-GCOld_G1, \
${jprt.my.solaris.x64}-{product|fastdebug}-c2-GCOld_ParOldGC, \
${jprt.my.solaris.x64}-{product|fastdebug}-c2-jbb_default_nontiered, \
${jprt.my.solaris.x64}-{product|fastdebug}-c2-jbb_SerialGC, \
${jprt.my.solaris.x64}-{product|fastdebug}-c2-jbb_ParallelGC, \
${jprt.my.solaris.x64}-{product|fastdebug}-c2-GCOld_CMS, \
${jprt.my.solaris.x64}-{product|fastdebug}-c2-GCOld_G1, \
${jprt.my.solaris.x64}-{product|fastdebug}-c2-GCOld_ParOldGC
jprt.my.linux.i586.test.targets = \
${jprt.my.linux.i586}-{product|fastdebug}-{c1|c2}-jvm98, \
${jprt.my.linux.i586}-{product|fastdebug}-c2-jvm98_nontiered, \
${jprt.my.linux.i586}-{product|fastdebug}-{c1|c2}-scimark, \
${jprt.my.linux.i586}-product-c1-runThese8_Xcomp_lang, \
${jprt.my.linux.i586}-product-c1-runThese8_Xcomp_vm, \
${jprt.my.linux.i586}-fastdebug-c1-runThese8_Xshare, \
${jprt.my.linux.i586}-fastdebug-c2-runThese8_Xcomp_lang, \
${jprt.my.linux.i586}-fastdebug-c2-runThese8_Xcomp_vm, \
${jprt.my.linux.i586}-{product|fastdebug}-{c1|c2}-GCBasher_SerialGC, \
${jprt.my.linux.i586}-{product|fastdebug}-{c1|c2}-GCBasher_ParallelGC, \
${jprt.my.linux.i586}-{product|fastdebug}-{c1|c2}-GCBasher_ParNewGC, \
${jprt.my.linux.i586}-{product|fastdebug}-{c1|c2}-GCBasher_CMS, \
${jprt.my.linux.i586}-{product|fastdebug}-{c1|c2}-GCBasher_G1, \
${jprt.my.linux.i586}-{product|fastdebug}-{c1|c2}-GCBasher_ParOldGC, \
${jprt.my.linux.i586}-product-{c1|c2}-GCOld_SerialGC, \
${jprt.my.linux.i586}-product-{c1|c2}-GCOld_ParallelGC, \
${jprt.my.linux.i586}-product-{c1|c2}-GCOld_ParNewGC, \
${jprt.my.linux.i586}-product-{c1|c2}-GCOld_CMS, \
${jprt.my.linux.i586}-product-{c1|c2}-GCOld_G1, \
${jprt.my.linux.i586}-product-{c1|c2}-GCOld_ParOldGC, \
${jprt.my.linux.i586}-{product|fastdebug}-c1-jbb_SerialGC, \
${jprt.my.linux.i586}-{product|fastdebug}-c2-jbb_default_nontiered, \
${jprt.my.linux.i586}-{product|fastdebug}-c1-jbb_ParallelGC, \
${jprt.my.linux.i586}-{product|fastdebug}-c1-jbb_CMS, \
${jprt.my.linux.i586}-{product|fastdebug}-c1-jbb_G1, \
${jprt.my.linux.i586}-{product|fastdebug}-c1-jbb_ParOldGC
jprt.my.linux.x64.test.targets = \
${jprt.my.linux.x64}-{product|fastdebug}-c2-jvm98, \
${jprt.my.linux.x64}-{product|fastdebug}-c2-jvm98_nontiered, \
${jprt.my.linux.x64}-{product|fastdebug}-c2-scimark, \
${jprt.my.linux.x64}-{product|fastdebug}-c2-GCBasher_SerialGC, \
${jprt.my.linux.x64}-{product|fastdebug}-c2-GCBasher_ParallelGC, \
${jprt.my.linux.x64}-{product|fastdebug}-c2-GCBasher_ParNewGC, \
${jprt.my.linux.x64}-{product|fastdebug}-c2-GCBasher_CMS, \
${jprt.my.linux.x64}-{product|fastdebug}-c2-GCBasher_G1, \
${jprt.my.linux.x64}-{product|fastdebug}-c2-GCBasher_ParOldGC, \
${jprt.my.linux.x64}-{product|fastdebug}-c2-GCOld_SerialGC, \
${jprt.my.linux.x64}-{product|fastdebug}-c2-GCOld_ParallelGC, \
${jprt.my.linux.x64}-{product|fastdebug}-c2-GCOld_ParNewGC, \
${jprt.my.linux.x64}-{product|fastdebug}-c2-GCOld_CMS, \
${jprt.my.linux.x64}-{product|fastdebug}-c2-GCOld_G1, \
${jprt.my.linux.x64}-{product|fastdebug}-c2-GCOld_ParOldGC, \
${jprt.my.linux.x64}-{product|fastdebug}-c2-jbb_default_nontiered, \
${jprt.my.linux.x64}-{product|fastdebug}-c2-jbb_ParallelGC, \
${jprt.my.linux.x64}-{product|fastdebug}-c2-jbb_G1, \
${jprt.my.linux.x64}-{product|fastdebug}-c2-jbb_ParOldGC
jprt.my.macosx.x64.test.targets = \
${jprt.my.macosx.x64}-{product|fastdebug}-c2-jvm98, \
${jprt.my.macosx.x64}-{product|fastdebug}-c2-jvm98_nontiered, \
${jprt.my.macosx.x64}-{product|fastdebug}-c2-scimark, \
${jprt.my.macosx.x64}-{product|fastdebug}-c2-GCBasher_SerialGC, \
${jprt.my.macosx.x64}-{product|fastdebug}-c2-GCBasher_ParallelGC, \
${jprt.my.macosx.x64}-{product|fastdebug}-c2-GCBasher_ParNewGC, \
${jprt.my.macosx.x64}-{product|fastdebug}-c2-GCBasher_CMS, \
${jprt.my.macosx.x64}-{product|fastdebug}-c2-GCBasher_G1, \
${jprt.my.macosx.x64}-{product|fastdebug}-c2-GCBasher_ParOldGC, \
${jprt.my.macosx.x64}-{product|fastdebug}-c2-GCOld_SerialGC, \
${jprt.my.macosx.x64}-{product|fastdebug}-c2-GCOld_ParallelGC, \
${jprt.my.macosx.x64}-{product|fastdebug}-c2-GCOld_ParNewGC, \
${jprt.my.macosx.x64}-{product|fastdebug}-c2-GCOld_CMS, \
${jprt.my.macosx.x64}-{product|fastdebug}-c2-GCOld_G1, \
${jprt.my.macosx.x64}-{product|fastdebug}-c2-GCOld_ParOldGC, \
${jprt.my.macosx.x64}-{product|fastdebug}-c2-jbb_default_nontiered, \
${jprt.my.macosx.x64}-{product|fastdebug}-c2-jbb_ParallelGC, \
${jprt.my.macosx.x64}-{product|fastdebug}-c2-jbb_G1, \
${jprt.my.macosx.x64}-{product|fastdebug}-c2-jbb_ParOldGC
jprt.my.windows.i586.test.targets = \
${jprt.my.windows.i586}-{product|fastdebug}-{c1|c2}-jvm98, \
${jprt.my.windows.i586}-{product|fastdebug}-c2-jvm98_nontiered, \
${jprt.my.windows.i586}-{product|fastdebug}-{c1|c2}-scimark, \
${jprt.my.windows.i586}-product-{c1|c2}-runThese8, \
${jprt.my.windows.i586}-product-{c1|c2}-runThese8_Xcomp_lang, \
${jprt.my.windows.i586}-product-{c1|c2}-runThese8_Xcomp_vm, \
${jprt.my.windows.i586}-fastdebug-c1-runThese8_Xshare, \
${jprt.my.windows.i586}-{product|fastdebug}-{c1|c2}-GCBasher_SerialGC, \
${jprt.my.windows.i586}-{product|fastdebug}-{c1|c2}-GCBasher_ParallelGC, \
${jprt.my.windows.i586}-{product|fastdebug}-{c1|c2}-GCBasher_ParNewGC, \
${jprt.my.windows.i586}-{product|fastdebug}-{c1|c2}-GCBasher_CMS, \
${jprt.my.windows.i586}-{product|fastdebug}-{c1|c2}-GCBasher_G1, \
${jprt.my.windows.i586}-{product|fastdebug}-{c1|c2}-GCBasher_ParOldGC, \
${jprt.my.windows.i586}-product-{c1|c2}-GCOld_SerialGC, \
${jprt.my.windows.i586}-product-{c1|c2}-GCOld_ParallelGC, \
${jprt.my.windows.i586}-product-{c1|c2}-GCOld_ParNewGC, \
${jprt.my.windows.i586}-product-{c1|c2}-GCOld_CMS, \
${jprt.my.windows.i586}-product-{c1|c2}-GCOld_G1, \
${jprt.my.windows.i586}-product-{c1|c2}-GCOld_ParOldGC, \
${jprt.my.windows.i586}-{product|fastdebug}-{c1|c2}-jbb_default, \
${jprt.my.windows.i586}-{product|fastdebug}-c2-jbb_default_nontiered, \
${jprt.my.windows.i586}-product-{c1|c2}-jbb_ParallelGC, \
${jprt.my.windows.i586}-product-{c1|c2}-jbb_CMS, \
${jprt.my.windows.i586}-product-{c1|c2}-jbb_G1, \
${jprt.my.windows.i586}-product-{c1|c2}-jbb_ParOldGC
jprt.my.windows.x64.test.targets = \
${jprt.my.windows.x64}-{product|fastdebug}-c2-jvm98, \
${jprt.my.windows.x64}-{product|fastdebug}-c2-jvm98_nontiered, \
${jprt.my.windows.x64}-{product|fastdebug}-c2-scimark, \
${jprt.my.windows.x64}-product-c2-runThese8, \
${jprt.my.windows.x64}-product-c2-runThese8_Xcomp_lang, \
${jprt.my.windows.x64}-product-c2-runThese8_Xcomp_vm, \
${jprt.my.windows.x64}-{product|fastdebug}-c2-GCBasher_SerialGC, \
${jprt.my.windows.x64}-{product|fastdebug}-c2-GCBasher_ParallelGC, \
${jprt.my.windows.x64}-{product|fastdebug}-c2-GCBasher_ParNewGC, \
${jprt.my.windows.x64}-{product|fastdebug}-c2-GCBasher_CMS, \
${jprt.my.windows.x64}-{product|fastdebug}-c2-GCBasher_G1, \
${jprt.my.windows.x64}-{product|fastdebug}-c2-GCBasher_ParOldGC, \
${jprt.my.windows.x64}-{product|fastdebug}-c2-GCOld_SerialGC, \
${jprt.my.windows.x64}-{product|fastdebug}-c2-GCOld_ParallelGC, \
${jprt.my.windows.x64}-{product|fastdebug}-c2-GCOld_ParNewGC, \
${jprt.my.windows.x64}-{product|fastdebug}-c2-GCOld_CMS, \
${jprt.my.windows.x64}-{product|fastdebug}-c2-GCOld_G1, \
${jprt.my.windows.x64}-{product|fastdebug}-c2-GCOld_ParOldGC, \
${jprt.my.windows.x64}-{product|fastdebug}-c2-jbb_default, \
${jprt.my.windows.x64}-{product|fastdebug}-c2-jbb_default_nontiered, \
${jprt.my.windows.x64}-product-c2-jbb_CMS, \
${jprt.my.windows.x64}-product-c2-jbb_ParallelGC, \
${jprt.my.windows.x64}-product-c2-jbb_G1, \
${jprt.my.windows.x64}-product-c2-jbb_ParOldGC
# Some basic "smoke" tests for OpenJDK builds
jprt.test.targets.open = \
${jprt.my.solaris.x64}-{productOpen|fastdebugOpen}-c2-jvm98, \
${jprt.my.linux.x64}-{productOpen|fastdebugOpen}-c2-jvm98
# Testing for actual embedded builds is different to standard
jprt.my.linux.i586.test.targets.embedded = \
linux_i586_2.6-product-c1-scimark
# The complete list of test targets for jprt
# Note: no PPC or ARM tests at this stage
jprt.test.targets.standard = \
${jprt.my.linux.i586.test.targets.embedded}, \
${jprt.my.solaris.sparcv9.test.targets}, \
${jprt.my.solaris.x64.test.targets}, \
${jprt.my.linux.i586.test.targets}, \
${jprt.my.linux.x64.test.targets}, \
${jprt.my.macosx.x64.test.targets}, \
${jprt.my.windows.i586.test.targets}, \
${jprt.my.windows.x64.test.targets}, \
${jprt.test.targets.open}
jprt.test.targets.embedded= \
${jprt.my.linux.i586.test.targets.embedded}, \
${jprt.my.solaris.sparcv9.test.targets}, \
${jprt.my.solaris.x64.test.targets}, \
${jprt.my.linux.x64.test.targets}, \
${jprt.my.windows.i586.test.targets}, \
${jprt.my.windows.x64.test.targets}
jprt.test.targets.jdk9=${jprt.test.targets.standard}
jprt.test.targets=${jprt.test.targets.${jprt.tools.default.release}}
# The default test/Makefile targets that should be run
#jprt.make.rule.test.targets=*-product-*-packtest
jprt.make.rule.test.targets.standard.client = \
${jprt.my.linux.i586}-*-c1-clienttest, \
${jprt.my.windows.i586}-*-c1-clienttest
jprt.make.rule.test.targets.standard.server = \
${jprt.my.solaris.sparcv9}-*-c2-servertest, \
${jprt.my.solaris.x64}-*-c2-servertest, \
${jprt.my.linux.i586}-*-c2-servertest, \
${jprt.my.linux.x64}-*-c2-servertest, \
${jprt.my.macosx.x64}-*-c2-servertest, \
${jprt.my.windows.i586}-*-c2-servertest, \
${jprt.my.windows.x64}-*-c2-servertest
jprt.make.rule.test.targets.standard.internalvmtests = \
${jprt.my.solaris.sparcv9}-fastdebug-c2-internalvmtests, \
${jprt.my.solaris.x64}-fastdebug-c2-internalvmtests, \
${jprt.my.linux.i586}-fastdebug-c2-internalvmtests, \
${jprt.my.linux.x64}-fastdebug-c2-internalvmtests, \
${jprt.my.macosx.x64}-fastdebug-c2-internalvmtests, \
${jprt.my.windows.i586}-fastdebug-c2-internalvmtests, \
${jprt.my.windows.x64}-fastdebug-c2-internalvmtests
jprt.make.rule.test.targets.standard.reg.group = \
${jprt.my.solaris.sparcv9}-fastdebug-c2-GROUP, \
${jprt.my.solaris.x64}-fastdebug-c2-GROUP, \
${jprt.my.linux.i586}-fastdebug-c2-GROUP, \
${jprt.my.linux.x64}-fastdebug-c2-GROUP, \
${jprt.my.macosx.x64}-fastdebug-c2-GROUP, \
${jprt.my.windows.i586}-fastdebug-c2-GROUP, \
${jprt.my.windows.x64}-fastdebug-c2-GROUP, \
${jprt.my.linux.i586}-fastdebug-c1-GROUP, \
${jprt.my.windows.i586}-fastdebug-c1-GROUP
jprt.make.rule.test.targets.standard = \
${jprt.make.rule.test.targets.standard.client}, \
${jprt.make.rule.test.targets.standard.server}, \
${jprt.make.rule.test.targets.standard.internalvmtests}, \
${jprt.make.rule.test.targets.standard.reg.group:GROUP=hotspot_wbapitest}, \
${jprt.make.rule.test.targets.standard.reg.group:GROUP=hotspot_compiler}, \
${jprt.make.rule.test.targets.standard.reg.group:GROUP=hotspot_gc}, \
${jprt.make.rule.test.targets.standard.reg.group:GROUP=hotspot_runtime}, \
${jprt.make.rule.test.targets.standard.reg.group:GROUP=hotspot_runtime_closed}, \
${jprt.make.rule.test.targets.standard.reg.group:GROUP=hotspot_serviceability}
jprt.make.rule.test.targets.embedded = \
${jprt.make.rule.test.targets.standard.client}
jprt.make.rule.test.targets.jdk9=${jprt.make.rule.test.targets.standard}
jprt.make.rule.test.targets=${jprt.make.rule.test.targets.${jprt.tools.default.release}}
# 7155453: Work-around to prevent popups on OSX from blocking test completion
# but the work-around is added to all platforms to be consistent
jprt.jbb.options=-Djava.awt.headless=true

View File

@ -227,10 +227,10 @@ JVM_OBJ_FILES = $(Obj_Files)
vm_version.o: $(filter-out vm_version.o,$(JVM_OBJ_FILES)) vm_version.o: $(filter-out vm_version.o,$(JVM_OBJ_FILES))
mapfile : $(MAPFILE) vm.def mapfile : $(MAPFILE) vm.def mapfile_ext
rm -f $@ rm -f $@
awk '{ if ($$0 ~ "INSERT VTABLE SYMBOLS HERE") \ awk '{ if ($$0 ~ "INSERT VTABLE SYMBOLS HERE") \
{ system ("cat vm.def"); } \ { system ("cat mapfile_ext"); system ("cat vm.def"); } \
else \ else \
{ print $$0 } \ { print $$0 } \
}' > $@ < $(MAPFILE) }' > $@ < $(MAPFILE)
@ -242,6 +242,13 @@ mapfile_reorder : mapfile $(REORDERFILE)
vm.def: $(Res_Files) $(Obj_Files) vm.def: $(Res_Files) $(Obj_Files)
sh $(GAMMADIR)/make/linux/makefiles/build_vm_def.sh *.o > $@ sh $(GAMMADIR)/make/linux/makefiles/build_vm_def.sh *.o > $@
mapfile_ext:
rm -f $@
touch $@
if [ -f $(HS_ALT_MAKE)/linux/makefiles/mapfile-ext ]; then \
cat $(HS_ALT_MAKE)/linux/makefiles/mapfile-ext > $@; \
fi
ifeq ($(JVM_VARIANT_ZEROSHARK), true) ifeq ($(JVM_VARIANT_ZEROSHARK), true)
STATIC_CXX = false STATIC_CXX = false
else else
@ -261,6 +268,7 @@ else
LIBJVM_MAPFILE$(LDNOMAP) = mapfile_reorder LIBJVM_MAPFILE$(LDNOMAP) = mapfile_reorder
LFLAGS_VM$(LDNOMAP) += $(MAPFLAG:FILENAME=$(LIBJVM_MAPFILE)) LFLAGS_VM$(LDNOMAP) += $(MAPFLAG:FILENAME=$(LIBJVM_MAPFILE))
LFLAGS_VM += $(SONAMEFLAG:SONAME=$(LIBJVM)) LFLAGS_VM += $(SONAMEFLAG:SONAME=$(LIBJVM))
LFLAGS_VM += -Wl,-z,defs
# JVM is statically linked with libgcc[_s] and libstdc++; this is needed to # JVM is statically linked with libgcc[_s] and libstdc++; this is needed to
# get around library dependency and compatibility issues. Must use gcc not # get around library dependency and compatibility issues. Must use gcc not

View File

@ -258,6 +258,8 @@ flags.make: $(BUILDTREE_MAKE) ../shared_dirs.lst
echo && echo "ZIP_DEBUGINFO_FILES = $(ZIP_DEBUGINFO_FILES)"; \ echo && echo "ZIP_DEBUGINFO_FILES = $(ZIP_DEBUGINFO_FILES)"; \
[ -n "$(ZIPEXE)" ] && \ [ -n "$(ZIPEXE)" ] && \
echo && echo "ZIPEXE = $(ZIPEXE)"; \ echo && echo "ZIPEXE = $(ZIPEXE)"; \
[ -n "$(HS_ALT_MAKE)" ] && \
echo && echo "HS_ALT_MAKE = $(HS_ALT_MAKE)"; \
[ -n "$(HOTSPOT_EXTRA_SYSDEFS)" ] && \ [ -n "$(HOTSPOT_EXTRA_SYSDEFS)" ] && \
echo && \ echo && \
echo "HOTSPOT_EXTRA_SYSDEFS\$$(HOTSPOT_EXTRA_SYSDEFS) = $(HOTSPOT_EXTRA_SYSDEFS)" && \ echo "HOTSPOT_EXTRA_SYSDEFS\$$(HOTSPOT_EXTRA_SYSDEFS) = $(HOTSPOT_EXTRA_SYSDEFS)" && \

View File

@ -29,7 +29,7 @@
SUNWprivate_1.1 { SUNWprivate_1.1 {
global: global:
# Dtrace support # Dtrace support
__1cJCodeCacheF_heap_; __1cJCodeCacheG_heaps_;
__1cIUniverseO_collectedHeap_; __1cIUniverseO_collectedHeap_;
__1cGMethodG__vtbl_; __1cGMethodG__vtbl_;
__1cHnmethodG__vtbl_; __1cHnmethodG__vtbl_;

View File

@ -29,7 +29,7 @@
SUNWprivate_1.1 { SUNWprivate_1.1 {
global: global:
# Dtrace support # Dtrace support
__1cJCodeCacheF_heap_; __1cJCodeCacheG_heaps_;
__1cIUniverseO_collectedHeap_; __1cIUniverseO_collectedHeap_;
__1cGMethodG__vtbl_; __1cGMethodG__vtbl_;
__1cHnmethodG__vtbl_; __1cHnmethodG__vtbl_;

View File

@ -29,7 +29,7 @@
SUNWprivate_1.1 { SUNWprivate_1.1 {
global: global:
# Dtrace support # Dtrace support
__1cJCodeCacheF_heap_; __1cJCodeCacheG_heaps_;
__1cIUniverseO_collectedHeap_; __1cIUniverseO_collectedHeap_;
__1cGMethodG__vtbl_; __1cGMethodG__vtbl_;
__1cHnmethodG__vtbl_; __1cHnmethodG__vtbl_;

View File

@ -130,7 +130,7 @@ ifeq ($(shell expr $(COMPILER_REV_NUMERIC) \>= 505), 1)
# Not sure what the 'designed for' comment is referring too above. # Not sure what the 'designed for' comment is referring too above.
# The order may not be too significant anymore, but I have placed this # The order may not be too significant anymore, but I have placed this
# older libm before libCrun, just to make sure it's found and used first. # older libm before libCrun, just to make sure it's found and used first.
LIBS += -lsocket -lsched -ldl $(LIBM) -lCrun -lthread -ldoor -lc -ldemangle LIBS += -lsocket -lsched -ldl $(LIBM) -lCrun -lthread -ldoor -lc -ldemangle -lnsl
else else
ifeq ($(COMPILER_REV_NUMERIC), 502) ifeq ($(COMPILER_REV_NUMERIC), 502)
# SC6.1 has it's own libm.so: specifying anything else provokes a name conflict. # SC6.1 has it's own libm.so: specifying anything else provokes a name conflict.
@ -249,11 +249,12 @@ JVM_OBJ_FILES = $(Obj_Files) $(DTRACE_OBJS)
vm_version.o: $(filter-out vm_version.o,$(JVM_OBJ_FILES)) vm_version.o: $(filter-out vm_version.o,$(JVM_OBJ_FILES))
mapfile : $(MAPFILE) $(MAPFILE_DTRACE_OPT) vm.def mapfile : $(MAPFILE) $(MAPFILE_DTRACE_OPT) vm.def mapfile_ext
rm -f $@ rm -f $@
cat $(MAPFILE) $(MAPFILE_DTRACE_OPT) \ cat $(MAPFILE) $(MAPFILE_DTRACE_OPT) \
| $(NAWK) '{ \ | $(NAWK) '{ \
if ($$0 ~ "INSERT VTABLE SYMBOLS HERE") { \ if ($$0 ~ "INSERT VTABLE SYMBOLS HERE") { \
system ("cat mapfile_ext"); \
system ("cat vm.def"); \ system ("cat vm.def"); \
} else { \ } else { \
print $$0; \ print $$0; \
@ -267,6 +268,13 @@ mapfile_extended : mapfile $(MAPFILE_DTRACE_OPT)
vm.def: $(Obj_Files) vm.def: $(Obj_Files)
sh $(GAMMADIR)/make/solaris/makefiles/build_vm_def.sh *.o > $@ sh $(GAMMADIR)/make/solaris/makefiles/build_vm_def.sh *.o > $@
mapfile_ext:
rm -f $@
touch $@
if [ -f $(HS_ALT_MAKE)/solaris/makefiles/mapfile-ext ]; then \
cat $(HS_ALT_MAKE)/solaris/makefiles/mapfile-ext > $@; \
fi
ifeq ($(LINK_INTO),AOUT) ifeq ($(LINK_INTO),AOUT)
LIBJVM.o = LIBJVM.o =
LIBJVM_MAPFILE = LIBJVM_MAPFILE =
@ -276,6 +284,7 @@ else
LIBJVM_MAPFILE$(LDNOMAP) = mapfile_extended LIBJVM_MAPFILE$(LDNOMAP) = mapfile_extended
LFLAGS_VM$(LDNOMAP) += $(MAPFLAG:FILENAME=$(LIBJVM_MAPFILE)) LFLAGS_VM$(LDNOMAP) += $(MAPFLAG:FILENAME=$(LIBJVM_MAPFILE))
LFLAGS_VM += $(SONAMEFLAG:SONAME=$(LIBJVM)) LFLAGS_VM += $(SONAMEFLAG:SONAME=$(LIBJVM))
LFLAGS_VM += -Wl,-z,defs
ifndef USE_GCC ifndef USE_GCC
LIBS_VM = $(LIBS) LIBS_VM = $(LIBS)
else else

View File

@ -79,6 +79,9 @@ define_pd_global(bool, OptoScheduling, false);
define_pd_global(intx, InitialCodeCacheSize, 2048*K); // Integral multiple of CodeCacheExpansionSize define_pd_global(intx, InitialCodeCacheSize, 2048*K); // Integral multiple of CodeCacheExpansionSize
define_pd_global(intx, ReservedCodeCacheSize, 256*M); define_pd_global(intx, ReservedCodeCacheSize, 256*M);
define_pd_global(intx, NonProfiledCodeHeapSize, 125*M);
define_pd_global(intx, ProfiledCodeHeapSize, 126*M);
define_pd_global(intx, NonMethodCodeHeapSize, 5*M );
define_pd_global(intx, CodeCacheExpansionSize, 64*K); define_pd_global(intx, CodeCacheExpansionSize, 64*K);
// Ergonomics related flags // Ergonomics related flags

View File

@ -308,3 +308,10 @@ intptr_t *frame::initial_deoptimization_info() {
// unused... but returns fp() to minimize changes introduced by 7087445 // unused... but returns fp() to minimize changes introduced by 7087445
return fp(); return fp();
} }
#ifndef PRODUCT
// This is a generic constructor which is only used by pns() in debug.cpp.
frame::frame(void* sp, void* fp, void* pc) : _sp((intptr_t*)sp), _unextended_sp((intptr_t*)sp) {
find_codeblob_and_set_pc_and_deopt_state((address)pc); // also sets _fp and adjusts _unextended_sp
}
#endif

View File

@ -47,6 +47,9 @@ define_pd_global(bool, ProfileInterpreter, false);
define_pd_global(intx, FreqInlineSize, 325 ); define_pd_global(intx, FreqInlineSize, 325 );
define_pd_global(bool, ResizeTLAB, true ); define_pd_global(bool, ResizeTLAB, true );
define_pd_global(intx, ReservedCodeCacheSize, 32*M ); define_pd_global(intx, ReservedCodeCacheSize, 32*M );
define_pd_global(intx, NonProfiledCodeHeapSize, 13*M );
define_pd_global(intx, ProfiledCodeHeapSize, 14*M );
define_pd_global(intx, NonMethodCodeHeapSize, 5*M );
define_pd_global(intx, CodeCacheExpansionSize, 32*K ); define_pd_global(intx, CodeCacheExpansionSize, 32*K );
define_pd_global(uintx, CodeCacheMinBlockLength, 1); define_pd_global(uintx, CodeCacheMinBlockLength, 1);
define_pd_global(uintx, CodeCacheMinimumUseSpace, 400*K); define_pd_global(uintx, CodeCacheMinimumUseSpace, 400*K);

View File

@ -74,6 +74,9 @@ define_pd_global(bool, OptoScheduling, true);
// InitialCodeCacheSize derived from specjbb2000 run. // InitialCodeCacheSize derived from specjbb2000 run.
define_pd_global(intx, InitialCodeCacheSize, 2048*K); // Integral multiple of CodeCacheExpansionSize define_pd_global(intx, InitialCodeCacheSize, 2048*K); // Integral multiple of CodeCacheExpansionSize
define_pd_global(intx, ReservedCodeCacheSize, 48*M); define_pd_global(intx, ReservedCodeCacheSize, 48*M);
define_pd_global(intx, NonProfiledCodeHeapSize, 21*M);
define_pd_global(intx, ProfiledCodeHeapSize, 22*M);
define_pd_global(intx, NonMethodCodeHeapSize, 5*M );
define_pd_global(intx, CodeCacheExpansionSize, 64*K); define_pd_global(intx, CodeCacheExpansionSize, 64*K);
// Ergonomics related flags // Ergonomics related flags
@ -82,6 +85,9 @@ define_pd_global(uint64_t,MaxRAM, 128ULL*G);
// InitialCodeCacheSize derived from specjbb2000 run. // InitialCodeCacheSize derived from specjbb2000 run.
define_pd_global(intx, InitialCodeCacheSize, 1536*K); // Integral multiple of CodeCacheExpansionSize define_pd_global(intx, InitialCodeCacheSize, 1536*K); // Integral multiple of CodeCacheExpansionSize
define_pd_global(intx, ReservedCodeCacheSize, 32*M); define_pd_global(intx, ReservedCodeCacheSize, 32*M);
define_pd_global(intx, NonProfiledCodeHeapSize, 13*M);
define_pd_global(intx, ProfiledCodeHeapSize, 14*M);
define_pd_global(intx, NonMethodCodeHeapSize, 5*M );
define_pd_global(intx, CodeCacheExpansionSize, 32*K); define_pd_global(intx, CodeCacheExpansionSize, 32*K);
// Ergonomics related flags // Ergonomics related flags
define_pd_global(uint64_t,MaxRAM, 4ULL*G); define_pd_global(uint64_t,MaxRAM, 4ULL*G);

View File

@ -343,7 +343,7 @@ bool frame::safe_for_sender(JavaThread *thread) {
// constructors // constructors
// Construct an unpatchable, deficient frame // Construct an unpatchable, deficient frame
frame::frame(intptr_t* sp, unpatchable_t, address pc, CodeBlob* cb) { void frame::init(intptr_t* sp, address pc, CodeBlob* cb) {
#ifdef _LP64 #ifdef _LP64
assert( (((intptr_t)sp & (wordSize-1)) == 0), "frame constructor passed an invalid sp"); assert( (((intptr_t)sp & (wordSize-1)) == 0), "frame constructor passed an invalid sp");
#endif #endif
@ -365,6 +365,10 @@ frame::frame(intptr_t* sp, unpatchable_t, address pc, CodeBlob* cb) {
#endif // ASSERT #endif // ASSERT
} }
frame::frame(intptr_t* sp, unpatchable_t, address pc, CodeBlob* cb) {
init(sp, pc, cb);
}
frame::frame(intptr_t* sp, intptr_t* younger_sp, bool younger_frame_is_interpreted) : frame::frame(intptr_t* sp, intptr_t* younger_sp, bool younger_frame_is_interpreted) :
_sp(sp), _sp(sp),
_younger_sp(younger_sp), _younger_sp(younger_sp),
@ -419,6 +423,13 @@ frame::frame(intptr_t* sp, intptr_t* younger_sp, bool younger_frame_is_interpret
} }
} }
#ifndef PRODUCT
// This is a generic constructor which is only used by pns() in debug.cpp.
frame::frame(void* sp, void* fp, void* pc) {
init((intptr_t*)sp, (address)pc, NULL);
}
#endif
bool frame::is_interpreted_frame() const { bool frame::is_interpreted_frame() const {
return Interpreter::contains(pc()); return Interpreter::contains(pc());
} }

View File

@ -163,6 +163,8 @@
enum unpatchable_t { unpatchable }; enum unpatchable_t { unpatchable };
frame(intptr_t* sp, unpatchable_t, address pc = NULL, CodeBlob* cb = NULL); frame(intptr_t* sp, unpatchable_t, address pc = NULL, CodeBlob* cb = NULL);
void init(intptr_t* sp, address pc, CodeBlob* cb);
// Walk from sp outward looking for old_sp, and return old_sp's predecessor // Walk from sp outward looking for old_sp, and return old_sp's predecessor
// (i.e. return the sp from the frame where old_sp is the fp). // (i.e. return the sp from the frame where old_sp is the fp).
// Register windows are assumed to be flushed for the stack in question. // Register windows are assumed to be flushed for the stack in question.

View File

@ -1128,51 +1128,82 @@ int SharedRuntime::c_calling_convention(const BasicType *sig_bt,
// Hoist any int/ptr/long's in the first 6 to int regs. // Hoist any int/ptr/long's in the first 6 to int regs.
// Hoist any flt/dbl's in the first 16 dbl regs. // Hoist any flt/dbl's in the first 16 dbl regs.
int j = 0; // Count of actual args, not HALVES int j = 0; // Count of actual args, not HALVES
for( int i=0; i<total_args_passed; i++, j++ ) { VMRegPair param_array_reg; // location of the argument in the parameter array
switch( sig_bt[i] ) { for (int i = 0; i < total_args_passed; i++, j++) {
param_array_reg.set_bad();
switch (sig_bt[i]) {
case T_BOOLEAN: case T_BOOLEAN:
case T_BYTE: case T_BYTE:
case T_CHAR: case T_CHAR:
case T_INT: case T_INT:
case T_SHORT: case T_SHORT:
regs[i].set1( int_stk_helper( j ) ); break; regs[i].set1(int_stk_helper(j));
break;
case T_LONG: case T_LONG:
assert( sig_bt[i+1] == T_VOID, "expecting half" ); assert(sig_bt[i+1] == T_VOID, "expecting half");
case T_ADDRESS: // raw pointers, like current thread, for VM calls case T_ADDRESS: // raw pointers, like current thread, for VM calls
case T_ARRAY: case T_ARRAY:
case T_OBJECT: case T_OBJECT:
case T_METADATA: case T_METADATA:
regs[i].set2( int_stk_helper( j ) ); regs[i].set2(int_stk_helper(j));
break; break;
case T_FLOAT: case T_FLOAT:
if ( j < 16 ) { // Per SPARC Compliance Definition 2.4.1, page 3P-12 available here
// V9ism: floats go in ODD registers // http://www.sparc.org/wp-content/uploads/2014/01/SCD.2.4.1.pdf.gz
regs[i].set1(as_FloatRegister(1 + (j<<1))->as_VMReg()); //
} else { // "When a callee prototype exists, and does not indicate variable arguments,
// V9ism: floats go in ODD stack slot // floating-point values assigned to locations %sp+BIAS+128 through %sp+BIAS+248
regs[i].set1(VMRegImpl::stack2reg(1 + (j<<1))); // will be promoted to floating-point registers"
//
// By "promoted" it means that the argument is located in two places, an unused
// spill slot in the "parameter array" (starts at %sp+BIAS+128), and a live
// float register. In most cases, there are 6 or fewer arguments of any type,
// and the standard parameter array slots (%sp+BIAS+128 to %sp+BIAS+176 exclusive)
// serve as shadow slots. Per the spec floating point registers %d6 to %d16
// require slots beyond that (up to %sp+BIAS+248).
//
{
// V9ism: floats go in ODD registers and stack slots
int float_index = 1 + (j << 1);
param_array_reg.set1(VMRegImpl::stack2reg(float_index));
if (j < 16) {
regs[i].set1(as_FloatRegister(float_index)->as_VMReg());
} else {
regs[i] = param_array_reg;
}
} }
break; break;
case T_DOUBLE: case T_DOUBLE:
assert( sig_bt[i+1] == T_VOID, "expecting half" ); {
if ( j < 16 ) { assert(sig_bt[i + 1] == T_VOID, "expecting half");
// V9ism: doubles go in EVEN/ODD regs // V9ism: doubles go in EVEN/ODD regs and stack slots
regs[i].set2(as_FloatRegister(j<<1)->as_VMReg()); int double_index = (j << 1);
} else { param_array_reg.set2(VMRegImpl::stack2reg(double_index));
// V9ism: doubles go in EVEN/ODD stack slots if (j < 16) {
regs[i].set2(VMRegImpl::stack2reg(j<<1)); regs[i].set2(as_FloatRegister(double_index)->as_VMReg());
} else {
// V9ism: doubles go in EVEN/ODD stack slots
regs[i] = param_array_reg;
}
} }
break; break;
case T_VOID: regs[i].set_bad(); j--; break; // Do not count HALVES case T_VOID:
regs[i].set_bad();
j--;
break; // Do not count HALVES
default: default:
ShouldNotReachHere(); ShouldNotReachHere();
} }
if (regs[i].first()->is_stack()) { // Keep track of the deepest parameter array slot.
int off = regs[i].first()->reg2stack(); if (!param_array_reg.first()->is_valid()) {
param_array_reg = regs[i];
}
if (param_array_reg.first()->is_stack()) {
int off = param_array_reg.first()->reg2stack();
if (off > max_stack_slots) max_stack_slots = off; if (off > max_stack_slots) max_stack_slots = off;
} }
if (regs[i].second()->is_stack()) { if (param_array_reg.second()->is_stack()) {
int off = regs[i].second()->reg2stack(); int off = param_array_reg.second()->reg2stack();
if (off > max_stack_slots) max_stack_slots = off; if (off > max_stack_slots) max_stack_slots = off;
} }
} }
@ -1180,8 +1211,8 @@ int SharedRuntime::c_calling_convention(const BasicType *sig_bt,
#else // _LP64 #else // _LP64
// V8 convention: first 6 things in O-regs, rest on stack. // V8 convention: first 6 things in O-regs, rest on stack.
// Alignment is willy-nilly. // Alignment is willy-nilly.
for( int i=0; i<total_args_passed; i++ ) { for (int i = 0; i < total_args_passed; i++) {
switch( sig_bt[i] ) { switch (sig_bt[i]) {
case T_ADDRESS: // raw pointers, like current thread, for VM calls case T_ADDRESS: // raw pointers, like current thread, for VM calls
case T_ARRAY: case T_ARRAY:
case T_BOOLEAN: case T_BOOLEAN:
@ -1192,23 +1223,23 @@ int SharedRuntime::c_calling_convention(const BasicType *sig_bt,
case T_OBJECT: case T_OBJECT:
case T_METADATA: case T_METADATA:
case T_SHORT: case T_SHORT:
regs[i].set1( int_stk_helper( i ) ); regs[i].set1(int_stk_helper(i));
break; break;
case T_DOUBLE: case T_DOUBLE:
case T_LONG: case T_LONG:
assert( sig_bt[i+1] == T_VOID, "expecting half" ); assert(sig_bt[i + 1] == T_VOID, "expecting half");
regs[i].set_pair( int_stk_helper( i+1 ), int_stk_helper( i ) ); regs[i].set_pair(int_stk_helper(i + 1), int_stk_helper(i));
break; break;
case T_VOID: regs[i].set_bad(); break; case T_VOID: regs[i].set_bad(); break;
default: default:
ShouldNotReachHere(); ShouldNotReachHere();
} }
if (regs[i].first()->is_stack()) { if (regs[i].first()->is_stack()) {
int off = regs[i].first()->reg2stack(); int off = regs[i].first()->reg2stack();
if (off > max_stack_slots) max_stack_slots = off; if (off > max_stack_slots) max_stack_slots = off;
} }
if (regs[i].second()->is_stack()) { if (regs[i].second()->is_stack()) {
int off = regs[i].second()->reg2stack(); int off = regs[i].second()->reg2stack();
if (off > max_stack_slots) max_stack_slots = off; if (off > max_stack_slots) max_stack_slots = off;
} }
} }
@ -1357,11 +1388,10 @@ static void object_move(MacroAssembler* masm,
const Register rOop = src.first()->as_Register(); const Register rOop = src.first()->as_Register();
const Register rHandle = L5; const Register rHandle = L5;
int oop_slot = rOop->input_number() * VMRegImpl::slots_per_word + oop_handle_offset; int oop_slot = rOop->input_number() * VMRegImpl::slots_per_word + oop_handle_offset;
int offset = oop_slot*VMRegImpl::stack_slot_size; int offset = oop_slot * VMRegImpl::stack_slot_size;
Label skip;
__ st_ptr(rOop, SP, offset + STACK_BIAS); __ st_ptr(rOop, SP, offset + STACK_BIAS);
if (is_receiver) { if (is_receiver) {
*receiver_offset = oop_slot * VMRegImpl::stack_slot_size; *receiver_offset = offset;
} }
map->set_oop(VMRegImpl::stack2reg(oop_slot)); map->set_oop(VMRegImpl::stack2reg(oop_slot));
__ add(SP, offset + STACK_BIAS, rHandle); __ add(SP, offset + STACK_BIAS, rHandle);

View File

@ -1989,7 +1989,7 @@ void Matcher::pd_implicit_null_fixup(MachNode *node, uint idx) {
// to implement the UseStrictFP mode. // to implement the UseStrictFP mode.
const bool Matcher::strict_fp_requires_explicit_rounding = false; const bool Matcher::strict_fp_requires_explicit_rounding = false;
// Are floats conerted to double when stored to stack during deoptimization? // Are floats converted to double when stored to stack during deoptimization?
// Sparc does not handle callee-save floats. // Sparc does not handle callee-save floats.
bool Matcher::float_in_double() { return false; } bool Matcher::float_in_double() { return false; }
@ -3218,7 +3218,7 @@ enc_class enc_Array_Equals(o0RegP ary1, o1RegP ary2, g3RegP tmp1, notemp_iRegI r
// are owned by the CALLEE. Holes should not be nessecary in the // are owned by the CALLEE. Holes should not be nessecary in the
// incoming area, as the Java calling convention is completely under // incoming area, as the Java calling convention is completely under
// the control of the AD file. Doubles can be sorted and packed to // the control of the AD file. Doubles can be sorted and packed to
// avoid holes. Holes in the outgoing arguments may be nessecary for // avoid holes. Holes in the outgoing arguments may be necessary for
// varargs C calling conventions. // varargs C calling conventions.
// Note 3: Region 0-3 is even aligned, with pad2 as needed. Region 3-5 is // Note 3: Region 0-3 is even aligned, with pad2 as needed. Region 3-5 is
// even aligned with pad0 as needed. // even aligned with pad0 as needed.
@ -3284,7 +3284,7 @@ frame %{
%} %}
// Body of function which returns an OptoRegs array locating // Body of function which returns an OptoRegs array locating
// arguments either in registers or in stack slots for callin // arguments either in registers or in stack slots for calling
// C. // C.
c_calling_convention %{ c_calling_convention %{
// This is obviously always outgoing // This is obviously always outgoing

View File

@ -47,6 +47,9 @@ define_pd_global(intx, FreqInlineSize, 325 );
define_pd_global(intx, NewSizeThreadIncrease, 4*K ); define_pd_global(intx, NewSizeThreadIncrease, 4*K );
define_pd_global(intx, InitialCodeCacheSize, 160*K); define_pd_global(intx, InitialCodeCacheSize, 160*K);
define_pd_global(intx, ReservedCodeCacheSize, 32*M ); define_pd_global(intx, ReservedCodeCacheSize, 32*M );
define_pd_global(intx, NonProfiledCodeHeapSize, 13*M );
define_pd_global(intx, ProfiledCodeHeapSize, 14*M );
define_pd_global(intx, NonMethodCodeHeapSize, 5*M );
define_pd_global(bool, ProfileInterpreter, false); define_pd_global(bool, ProfileInterpreter, false);
define_pd_global(intx, CodeCacheExpansionSize, 32*K ); define_pd_global(intx, CodeCacheExpansionSize, 32*K );
define_pd_global(uintx, CodeCacheMinBlockLength, 1); define_pd_global(uintx, CodeCacheMinBlockLength, 1);

View File

@ -84,6 +84,9 @@ define_pd_global(bool, OptoScheduling, false);
define_pd_global(bool, OptoBundling, false); define_pd_global(bool, OptoBundling, false);
define_pd_global(intx, ReservedCodeCacheSize, 48*M); define_pd_global(intx, ReservedCodeCacheSize, 48*M);
define_pd_global(intx, NonProfiledCodeHeapSize, 21*M);
define_pd_global(intx, ProfiledCodeHeapSize, 22*M);
define_pd_global(intx, NonMethodCodeHeapSize, 5*M );
define_pd_global(uintx, CodeCacheMinBlockLength, 4); define_pd_global(uintx, CodeCacheMinBlockLength, 4);
define_pd_global(uintx, CodeCacheMinimumUseSpace, 400*K); define_pd_global(uintx, CodeCacheMinimumUseSpace, 400*K);

View File

@ -715,3 +715,10 @@ intptr_t* frame::real_fp() const {
assert(! is_compiled_frame(), "unknown compiled frame size"); assert(! is_compiled_frame(), "unknown compiled frame size");
return fp(); return fp();
} }
#ifndef PRODUCT
// This is a generic constructor which is only used by pns() in debug.cpp.
frame::frame(void* sp, void* fp, void* pc) {
init((intptr_t*)sp, (intptr_t*)fp, (address)pc);
}
#endif

View File

@ -187,6 +187,8 @@
frame(intptr_t* sp, intptr_t* fp); frame(intptr_t* sp, intptr_t* fp);
void init(intptr_t* sp, intptr_t* fp, address pc);
// accessors for the instance variables // accessors for the instance variables
// Note: not necessarily the real 'frame pointer' (see real_fp) // Note: not necessarily the real 'frame pointer' (see real_fp)
intptr_t* fp() const { return _fp; } intptr_t* fp() const { return _fp; }

View File

@ -41,7 +41,7 @@ inline frame::frame() {
_deopt_state = unknown; _deopt_state = unknown;
} }
inline frame::frame(intptr_t* sp, intptr_t* fp, address pc) { inline void frame::init(intptr_t* sp, intptr_t* fp, address pc) {
_sp = sp; _sp = sp;
_unextended_sp = sp; _unextended_sp = sp;
_fp = fp; _fp = fp;
@ -59,6 +59,10 @@ inline frame::frame(intptr_t* sp, intptr_t* fp, address pc) {
} }
} }
inline frame::frame(intptr_t* sp, intptr_t* fp, address pc) {
init(sp, fp, pc);
}
inline frame::frame(intptr_t* sp, intptr_t* unextended_sp, intptr_t* fp, address pc) { inline frame::frame(intptr_t* sp, intptr_t* unextended_sp, intptr_t* fp, address pc) {
_sp = sp; _sp = sp;
_unextended_sp = unextended_sp; _unextended_sp = unextended_sp;

View File

@ -438,3 +438,10 @@ intptr_t *frame::initial_deoptimization_info() {
// unused... but returns fp() to minimize changes introduced by 7087445 // unused... but returns fp() to minimize changes introduced by 7087445
return fp(); return fp();
} }
#ifndef PRODUCT
// This is a generic constructor which is only used by pns() in debug.cpp.
frame::frame(void* sp, void* fp, void* pc) {
Unimplemented();
}
#endif

View File

@ -53,6 +53,9 @@ define_pd_global(uintx, NewRatio, 12 );
define_pd_global(intx, NewSizeThreadIncrease, 4*K ); define_pd_global(intx, NewSizeThreadIncrease, 4*K );
define_pd_global(intx, InitialCodeCacheSize, 160*K); define_pd_global(intx, InitialCodeCacheSize, 160*K);
define_pd_global(intx, ReservedCodeCacheSize, 32*M ); define_pd_global(intx, ReservedCodeCacheSize, 32*M );
define_pd_global(intx, NonProfiledCodeHeapSize, 13*M );
define_pd_global(intx, ProfiledCodeHeapSize, 14*M );
define_pd_global(intx, NonMethodCodeHeapSize, 5*M );
define_pd_global(bool, ProfileInterpreter, false); define_pd_global(bool, ProfileInterpreter, false);
define_pd_global(intx, CodeCacheExpansionSize, 32*K ); define_pd_global(intx, CodeCacheExpansionSize, 32*K );
define_pd_global(uintx, CodeCacheMinBlockLength, 1 ); define_pd_global(uintx, CodeCacheMinBlockLength, 1 );

View File

@ -67,7 +67,7 @@
* we link this program with -z nodefs . * we link this program with -z nodefs .
* *
* But for 'debug1' and 'fastdebug1' we still have to provide * But for 'debug1' and 'fastdebug1' we still have to provide
* a particular workaround for the following symbols bellow. * a particular workaround for the following symbols below.
* It will be good to find out a generic way in the future. * It will be good to find out a generic way in the future.
*/ */
@ -87,21 +87,24 @@ StubQueue* AbstractInterpreter::_code = NULL;
#endif /* ASSERT */ #endif /* ASSERT */
#endif /* COMPILER1 */ #endif /* COMPILER1 */
#define GEN_OFFS(Type,Name) \ #define GEN_OFFS_NAME(Type,Name,OutputType) \
switch(gen_variant) { \ switch(gen_variant) { \
case GEN_OFFSET: \ case GEN_OFFSET: \
printf("#define OFFSET_%-33s %ld\n", \ printf("#define OFFSET_%-33s %ld\n", \
#Type #Name, offset_of(Type, Name)); \ #OutputType #Name, offset_of(Type, Name)); \
break; \ break; \
case GEN_INDEX: \ case GEN_INDEX: \
printf("#define IDX_OFFSET_%-33s %d\n", \ printf("#define IDX_OFFSET_%-33s %d\n", \
#Type #Name, index++); \ #OutputType #Name, index++); \
break; \ break; \
case GEN_TABLE: \ case GEN_TABLE: \
printf("\tOFFSET_%s,\n", #Type #Name); \ printf("\tOFFSET_%s,\n", #OutputType #Name); \
break; \ break; \
} }
#define GEN_OFFS(Type,Name) \
GEN_OFFS_NAME(Type,Name,Type)
#define GEN_SIZE(Type) \ #define GEN_SIZE(Type) \
switch(gen_variant) { \ switch(gen_variant) { \
case GEN_OFFSET: \ case GEN_OFFSET: \
@ -246,6 +249,11 @@ int generateJvmOffsets(GEN_variant gen_variant) {
GEN_OFFS(VirtualSpace, _high); GEN_OFFS(VirtualSpace, _high);
printf("\n"); printf("\n");
/* We need to use different names here because of the template parameter */
GEN_OFFS_NAME(GrowableArray<CodeHeap*>, _data, GrowableArray_CodeHeap);
GEN_OFFS_NAME(GrowableArray<CodeHeap*>, _len, GrowableArray_CodeHeap);
printf("\n");
GEN_OFFS(CodeBlob, _name); GEN_OFFS(CodeBlob, _name);
GEN_OFFS(CodeBlob, _header_size); GEN_OFFS(CodeBlob, _header_size);
GEN_OFFS(CodeBlob, _content_offset); GEN_OFFS(CodeBlob, _content_offset);

View File

@ -43,7 +43,9 @@
extern pointer __JvmOffsets; extern pointer __JvmOffsets;
extern pointer __1cJCodeCacheF_heap_; /* GrowableArray<CodeHeaps*>* */
extern pointer __1cJCodeCacheG_heaps_;
extern pointer __1cIUniverseO_collectedHeap_; extern pointer __1cIUniverseO_collectedHeap_;
extern pointer __1cHnmethodG__vtbl_; extern pointer __1cHnmethodG__vtbl_;
@ -95,8 +97,8 @@ dtrace:helper:ustack:
/!init_done && !this->done/ /!init_done && !this->done/
{ {
MARK_LINE; MARK_LINE;
init_done = 1;
copyin_offset(POINTER_SIZE);
copyin_offset(COMPILER); copyin_offset(COMPILER);
copyin_offset(OFFSET_CollectedHeap_reserved); copyin_offset(OFFSET_CollectedHeap_reserved);
copyin_offset(OFFSET_MemRegion_start); copyin_offset(OFFSET_MemRegion_start);
@ -122,6 +124,9 @@ dtrace:helper:ustack:
copyin_offset(OFFSET_CodeHeap_segmap); copyin_offset(OFFSET_CodeHeap_segmap);
copyin_offset(OFFSET_CodeHeap_log2_segment_size); copyin_offset(OFFSET_CodeHeap_log2_segment_size);
copyin_offset(OFFSET_GrowableArray_CodeHeap_data);
copyin_offset(OFFSET_GrowableArray_CodeHeap_len);
copyin_offset(OFFSET_VirtualSpace_low); copyin_offset(OFFSET_VirtualSpace_low);
copyin_offset(OFFSET_VirtualSpace_high); copyin_offset(OFFSET_VirtualSpace_high);
@ -152,26 +157,14 @@ dtrace:helper:ustack:
#error "Don't know architecture" #error "Don't know architecture"
#endif #endif
this->CodeCache_heap_address = copyin_ptr(&``__1cJCodeCacheF_heap_); /* Read address of GrowableArray<CodeHeaps*> */
this->code_heaps_address = copyin_ptr(&``__1cJCodeCacheG_heaps_);
/* Reading volatile values */ /* Read address of _data array field in GrowableArray */
this->CodeCache_low = copyin_ptr(this->CodeCache_heap_address + this->code_heaps_array_address = copyin_ptr(this->code_heaps_address + OFFSET_GrowableArray_CodeHeap_data);
OFFSET_CodeHeap_memory + OFFSET_VirtualSpace_low); this->number_of_heaps = copyin_uint32(this->code_heaps_address + OFFSET_GrowableArray_CodeHeap_len);
this->CodeCache_high = copyin_ptr(this->CodeCache_heap_address +
OFFSET_CodeHeap_memory + OFFSET_VirtualSpace_high);
this->CodeCache_segmap_low = copyin_ptr(this->CodeCache_heap_address +
OFFSET_CodeHeap_segmap + OFFSET_VirtualSpace_low);
this->CodeCache_segmap_high = copyin_ptr(this->CodeCache_heap_address +
OFFSET_CodeHeap_segmap + OFFSET_VirtualSpace_high);
this->CodeHeap_log2_segment_size = copyin_uint32(
this->CodeCache_heap_address + OFFSET_CodeHeap_log2_segment_size);
this->Method_vtbl = (pointer) &``__1cNMethodG__vtbl_;
this->Method_vtbl = (pointer) &``__1cGMethodG__vtbl_;
/* /*
* Get Java heap bounds * Get Java heap bounds
*/ */
@ -187,21 +180,152 @@ dtrace:helper:ustack:
this->heap_end = this->heap_start + this->heap_size; this->heap_end = this->heap_start + this->heap_size;
} }
/*
* IMPORTANT: At the moment the ustack helper supports up to 5 code heaps in
* the code cache. If more code heaps are added the following probes have to
* be extended. This is done by simply adding a probe to get the heap bounds
* and another probe to set the code heap address of the newly created heap.
*/
/*
* ----- BEGIN: Get bounds of code heaps -----
*/
dtrace:helper:ustack: dtrace:helper:ustack:
/!this->done && /init_done < 1 && this->number_of_heaps >= 1 && !this->done/
this->CodeCache_low <= this->pc && this->pc < this->CodeCache_high/ {
MARK_LINE;
/* CodeHeap 1 */
init_done = 1;
this->code_heap1_address = copyin_ptr(this->code_heaps_array_address);
this->code_heap1_low = copyin_ptr(this->code_heap1_address +
OFFSET_CodeHeap_memory + OFFSET_VirtualSpace_low);
this->code_heap1_high = copyin_ptr(this->code_heap1_address +
OFFSET_CodeHeap_memory + OFFSET_VirtualSpace_high);
}
dtrace:helper:ustack:
/init_done < 2 && this->number_of_heaps >= 2 && !this->done/
{
MARK_LINE;
/* CodeHeap 2 */
init_done = 2;
this->code_heaps_array_address = this->code_heaps_array_address + POINTER_SIZE;
this->code_heap2_address = copyin_ptr(this->code_heaps_array_address);
this->code_heap2_low = copyin_ptr(this->code_heap2_address +
OFFSET_CodeHeap_memory + OFFSET_VirtualSpace_low);
this->code_heap2_high = copyin_ptr(this->code_heap2_address +
OFFSET_CodeHeap_memory + OFFSET_VirtualSpace_high);
}
dtrace:helper:ustack:
/init_done < 3 && this->number_of_heaps >= 3 && !this->done/
{
/* CodeHeap 3 */
init_done = 3;
this->code_heaps_array_address = this->code_heaps_array_address + POINTER_SIZE;
this->code_heap3_address = copyin_ptr(this->code_heaps_array_address);
this->code_heap3_low = copyin_ptr(this->code_heap3_address +
OFFSET_CodeHeap_memory + OFFSET_VirtualSpace_low);
this->code_heap3_high = copyin_ptr(this->code_heap3_address +
OFFSET_CodeHeap_memory + OFFSET_VirtualSpace_high);
}
dtrace:helper:ustack:
/init_done < 4 && this->number_of_heaps >= 4 && !this->done/
{
/* CodeHeap 4 */
init_done = 4;
this->code_heaps_array_address = this->code_heaps_array_address + POINTER_SIZE;
this->code_heap4_address = copyin_ptr(this->code_heaps_array_address);
this->code_heap4_low = copyin_ptr(this->code_heap4_address +
OFFSET_CodeHeap_memory + OFFSET_VirtualSpace_low);
this->code_heap4_high = copyin_ptr(this->code_heap4_address +
OFFSET_CodeHeap_memory + OFFSET_VirtualSpace_high);
}
dtrace:helper:ustack:
/init_done < 5 && this->number_of_heaps >= 5 && !this->done/
{
/* CodeHeap 5 */
init_done = 5;
this->code_heaps_array_address = this->code_heaps_array_address + POINTER_SIZE;
this->code_heap5_address = copyin_ptr(this->code_heaps_array_address);
this->code_heap5_low = copyin_ptr(this->code_heap5_address +
OFFSET_CodeHeap_memory + OFFSET_VirtualSpace_low);
this->code_heap5_high = copyin_ptr(this->code_heap5_address +
OFFSET_CodeHeap_memory + OFFSET_VirtualSpace_high);
}
/*
* ----- END: Get bounds of code heaps -----
*/
/*
* ----- BEGIN: Get address of the code heap pc points to -----
*/
dtrace:helper:ustack:
/!this->done && this->number_of_heaps >= 1 && this->code_heap1_low <= this->pc && this->pc < this->code_heap1_high/
{ {
MARK_LINE; MARK_LINE;
this->codecache = 1; this->codecache = 1;
this->code_heap_address = this->code_heap1_address;
}
dtrace:helper:ustack:
/!this->done && this->number_of_heaps >= 2 && this->code_heap2_low <= this->pc && this->pc < this->code_heap2_high/
{
MARK_LINE;
this->codecache = 1;
this->code_heap_address = this->code_heap2_address;
}
dtrace:helper:ustack:
/!this->done && this->number_of_heaps >= 3 && this->code_heap3_low <= this->pc && this->pc < this->code_heap3_high/
{
MARK_LINE;
this->codecache = 1;
this->code_heap_address = this->code_heap3_address;
}
dtrace:helper:ustack:
/!this->done && this->number_of_heaps >= 4 && this->code_heap4_low <= this->pc && this->pc < this->code_heap4_high/
{
MARK_LINE;
this->codecache = 1;
this->code_heap_address = this->code_heap4_address;
}
dtrace:helper:ustack:
/!this->done && this->number_of_heaps >= 5 && this->code_heap5_low <= this->pc && this->pc < this->code_heap5_high/
{
MARK_LINE;
this->codecache = 1;
this->code_heap_address = this->code_heap5_address;
}
/*
* ----- END: Get address of the code heap pc points to -----
*/
dtrace:helper:ustack:
/!this->done && this->codecache/
{
MARK_LINE;
/*
* Get code heap configuration
*/
this->code_heap_low = copyin_ptr(this->code_heap_address +
OFFSET_CodeHeap_memory + OFFSET_VirtualSpace_low);
this->code_heap_segmap_low = copyin_ptr(this->code_heap_address +
OFFSET_CodeHeap_segmap + OFFSET_VirtualSpace_low);
this->code_heap_log2_segment_size = copyin_uint32(
this->code_heap_address + OFFSET_CodeHeap_log2_segment_size);
/* /*
* Find start. * Find start
*/ */
this->segment = (this->pc - this->CodeCache_low) >> this->segment = (this->pc - this->code_heap_low) >>
this->CodeHeap_log2_segment_size; this->code_heap_log2_segment_size;
this->block = this->CodeCache_segmap_low; this->block = this->code_heap_segmap_low;
this->tag = copyin_uchar(this->block + this->segment); this->tag = copyin_uchar(this->block + this->segment);
"second";
} }
dtrace:helper:ustack: dtrace:helper:ustack:
@ -256,8 +380,8 @@ dtrace:helper:ustack:
/!this->done && this->codecache/ /!this->done && this->codecache/
{ {
MARK_LINE; MARK_LINE;
this->block = this->CodeCache_low + this->block = this->code_heap_low +
(this->segment << this->CodeHeap_log2_segment_size); (this->segment << this->code_heap_log2_segment_size);
this->used = copyin_uint32(this->block + OFFSET_HeapBlockHeader_used); this->used = copyin_uint32(this->block + OFFSET_HeapBlockHeader_used);
} }

View File

@ -150,16 +150,18 @@ struct jvm_agent {
uint64_t Use_Compressed_Oops_address; uint64_t Use_Compressed_Oops_address;
uint64_t Universe_narrow_oop_base_address; uint64_t Universe_narrow_oop_base_address;
uint64_t Universe_narrow_oop_shift_address; uint64_t Universe_narrow_oop_shift_address;
uint64_t CodeCache_heap_address; uint64_t CodeCache_heaps_address;
/* Volatiles */ /* Volatiles */
uint8_t Use_Compressed_Oops; uint8_t Use_Compressed_Oops;
uint64_t Universe_narrow_oop_base; uint64_t Universe_narrow_oop_base;
uint32_t Universe_narrow_oop_shift; uint32_t Universe_narrow_oop_shift;
uint64_t CodeCache_low; // Code cache heaps
uint64_t CodeCache_high; int32_t Number_of_heaps;
uint64_t CodeCache_segmap_low; uint64_t* Heap_low;
uint64_t CodeCache_segmap_high; uint64_t* Heap_high;
uint64_t* Heap_segmap_low;
uint64_t* Heap_segmap_high;
int32_t SIZE_CodeCache_log2_segment; int32_t SIZE_CodeCache_log2_segment;
@ -278,8 +280,9 @@ static int parse_vmstructs(jvm_agent_t* J) {
} }
if (vmp->typeName[0] == 'C' && strcmp("CodeCache", vmp->typeName) == 0) { if (vmp->typeName[0] == 'C' && strcmp("CodeCache", vmp->typeName) == 0) {
if (strcmp("_heap", vmp->fieldName) == 0) { /* Read _heaps field of type GrowableArray<CodeHeaps*>* */
err = read_pointer(J, vmp->address, &J->CodeCache_heap_address); if (strcmp("_heaps", vmp->fieldName) == 0) {
err = read_pointer(J, vmp->address, &J->CodeCache_heaps_address);
} }
} else if (vmp->typeName[0] == 'U' && strcmp("Universe", vmp->typeName) == 0) { } else if (vmp->typeName[0] == 'U' && strcmp("Universe", vmp->typeName) == 0) {
if (strcmp("_narrow_oop._base", vmp->fieldName) == 0) { if (strcmp("_narrow_oop._base", vmp->fieldName) == 0) {
@ -318,7 +321,9 @@ static int find_symbol(jvm_agent_t* J, const char *name, uint64_t* valuep) {
} }
static int read_volatiles(jvm_agent_t* J) { static int read_volatiles(jvm_agent_t* J) {
uint64_t ptr; int i;
uint64_t array_data;
uint64_t code_heap_address;
int err; int err;
err = find_symbol(J, "UseCompressedOops", &J->Use_Compressed_Oops_address); err = find_symbol(J, "UseCompressedOops", &J->Use_Compressed_Oops_address);
@ -334,20 +339,43 @@ static int read_volatiles(jvm_agent_t* J) {
err = ps_pread(J->P, J->Universe_narrow_oop_shift_address, &J->Universe_narrow_oop_shift, sizeof(uint32_t)); err = ps_pread(J->P, J->Universe_narrow_oop_shift_address, &J->Universe_narrow_oop_shift, sizeof(uint32_t));
CHECK_FAIL(err); CHECK_FAIL(err);
err = read_pointer(J, J->CodeCache_heap_address + OFFSET_CodeHeap_memory + /* CodeCache_heaps_address points to GrowableArray<CodeHeaps*>, read _data field
OFFSET_VirtualSpace_low, &J->CodeCache_low); pointing to the first entry of type CodeCache* in the array */
CHECK_FAIL(err); err = read_pointer(J, J->CodeCache_heaps_address + OFFSET_GrowableArray_CodeHeap_data, &array_data);
err = read_pointer(J, J->CodeCache_heap_address + OFFSET_CodeHeap_memory + /* Read _len field containing the number of code heaps */
OFFSET_VirtualSpace_high, &J->CodeCache_high); err = ps_pread(J->P, J->CodeCache_heaps_address + OFFSET_GrowableArray_CodeHeap_len,
CHECK_FAIL(err); &J->Number_of_heaps, sizeof(J->Number_of_heaps));
err = read_pointer(J, J->CodeCache_heap_address + OFFSET_CodeHeap_segmap +
OFFSET_VirtualSpace_low, &J->CodeCache_segmap_low);
CHECK_FAIL(err);
err = read_pointer(J, J->CodeCache_heap_address + OFFSET_CodeHeap_segmap +
OFFSET_VirtualSpace_high, &J->CodeCache_segmap_high);
CHECK_FAIL(err);
err = ps_pread(J->P, J->CodeCache_heap_address + OFFSET_CodeHeap_log2_segment_size, /* Allocate memory for heap configurations */
J->Heap_low = (jvm_agent_t*)calloc(J->Number_of_heaps, sizeof(uint64_t));
J->Heap_high = (jvm_agent_t*)calloc(J->Number_of_heaps, sizeof(uint64_t));
J->Heap_segmap_low = (jvm_agent_t*)calloc(J->Number_of_heaps, sizeof(uint64_t));
J->Heap_segmap_high = (jvm_agent_t*)calloc(J->Number_of_heaps, sizeof(uint64_t));
/* Read code heap configurations */
for (i = 0; i < J->Number_of_heaps; ++i) {
/* Read address of heap */
err = read_pointer(J, array_data, &code_heap_address);
CHECK_FAIL(err);
err = read_pointer(J, code_heap_address + OFFSET_CodeHeap_memory +
OFFSET_VirtualSpace_low, &J->Heap_low[i]);
CHECK_FAIL(err);
err = read_pointer(J, code_heap_address + OFFSET_CodeHeap_memory +
OFFSET_VirtualSpace_high, &J->Heap_high[i]);
CHECK_FAIL(err);
err = read_pointer(J, code_heap_address + OFFSET_CodeHeap_segmap +
OFFSET_VirtualSpace_low, &J->Heap_segmap_low[i]);
CHECK_FAIL(err);
err = read_pointer(J, code_heap_address + OFFSET_CodeHeap_segmap +
OFFSET_VirtualSpace_high, &J->Heap_segmap_high[i]);
CHECK_FAIL(err);
/* Increment pointer to next entry */
array_data = array_data + POINTER_SIZE;
}
err = ps_pread(J->P, code_heap_address + OFFSET_CodeHeap_log2_segment_size,
&J->SIZE_CodeCache_log2_segment, sizeof(J->SIZE_CodeCache_log2_segment)); &J->SIZE_CodeCache_log2_segment, sizeof(J->SIZE_CodeCache_log2_segment));
CHECK_FAIL(err); CHECK_FAIL(err);
@ -357,46 +385,57 @@ static int read_volatiles(jvm_agent_t* J) {
return err; return err;
} }
static int codeheap_contains(int heap_num, jvm_agent_t* J, uint64_t ptr) {
return (J->Heap_low[heap_num] <= ptr && ptr < J->Heap_high[heap_num]);
}
static int codecache_contains(jvm_agent_t* J, uint64_t ptr) { static int codecache_contains(jvm_agent_t* J, uint64_t ptr) {
/* make sure the code cache is up to date */ int i;
return (J->CodeCache_low <= ptr && ptr < J->CodeCache_high); for (i = 0; i < J->Number_of_heaps; ++i) {
if (codeheap_contains(i, J, ptr)) {
return 1;
}
}
return 0;
} }
static uint64_t segment_for(jvm_agent_t* J, uint64_t p) { static uint64_t segment_for(int heap_num, jvm_agent_t* J, uint64_t p) {
return (p - J->CodeCache_low) >> J->SIZE_CodeCache_log2_segment; return (p - J->Heap_low[heap_num]) >> J->SIZE_CodeCache_log2_segment;
} }
static uint64_t block_at(jvm_agent_t* J, int i) { static uint64_t block_at(int heap_num, jvm_agent_t* J, int i) {
return J->CodeCache_low + (i << J->SIZE_CodeCache_log2_segment); return J->Heap_low[heap_num] + (i << J->SIZE_CodeCache_log2_segment);
} }
static int find_start(jvm_agent_t* J, uint64_t ptr, uint64_t *startp) { static int find_start(jvm_agent_t* J, uint64_t ptr, uint64_t *startp) {
int err; int err;
int i;
*startp = 0; for (i = 0; i < J->Number_of_heaps; ++i) {
if (J->CodeCache_low <= ptr && ptr < J->CodeCache_high) { *startp = 0;
int32_t used; if (codeheap_contains(i, J, ptr)) {
uint64_t segment = segment_for(J, ptr); int32_t used;
uint64_t block = J->CodeCache_segmap_low; uint64_t segment = segment_for(i, J, ptr);
uint8_t tag; uint64_t block = J->Heap_segmap_low[i];
err = ps_pread(J->P, block + segment, &tag, sizeof(tag)); uint8_t tag;
CHECK_FAIL(err);
if (tag == 0xff)
return PS_OK;
while (tag > 0) {
err = ps_pread(J->P, block + segment, &tag, sizeof(tag)); err = ps_pread(J->P, block + segment, &tag, sizeof(tag));
CHECK_FAIL(err); CHECK_FAIL(err);
segment -= tag; if (tag == 0xff)
} return PS_OK;
block = block_at(J, segment); while (tag > 0) {
err = ps_pread(J->P, block + OFFSET_HeapBlockHeader_used, &used, sizeof(used)); err = ps_pread(J->P, block + segment, &tag, sizeof(tag));
CHECK_FAIL(err); CHECK_FAIL(err);
if (used) { segment -= tag;
*startp = block + SIZE_HeapBlockHeader; }
block = block_at(i, J, segment);
err = ps_pread(J->P, block + OFFSET_HeapBlockHeader_used, &used, sizeof(used));
CHECK_FAIL(err);
if (used) {
*startp = block + SIZE_HeapBlockHeader;
}
} }
return PS_OK;
} }
return PS_OK;
fail: fail:
return -1; return -1;

View File

@ -82,21 +82,24 @@ StubQueue* AbstractInterpreter::_code = NULL;
#endif /* ASSERT */ #endif /* ASSERT */
#endif /* COMPILER1 */ #endif /* COMPILER1 */
#define GEN_OFFS(Type,Name) \ #define GEN_OFFS_NAME(Type,Name,OutputType) \
switch(gen_variant) { \ switch(gen_variant) { \
case GEN_OFFSET: \ case GEN_OFFSET: \
printf("#define OFFSET_%-33s %d\n", \ printf("#define OFFSET_%-33s %d\n", \
#Type #Name, offset_of(Type, Name)); \ #OutputType #Name, offset_of(Type, Name)); \
break; \ break; \
case GEN_INDEX: \ case GEN_INDEX: \
printf("#define IDX_OFFSET_%-33s %d\n", \ printf("#define IDX_OFFSET_%-33s %d\n", \
#Type #Name, index++); \ #OutputType #Name, index++); \
break; \ break; \
case GEN_TABLE: \ case GEN_TABLE: \
printf("\tOFFSET_%s,\n", #Type #Name); \ printf("\tOFFSET_%s,\n", #OutputType #Name); \
break; \ break; \
} }
#define GEN_OFFS(Type,Name) \
GEN_OFFS_NAME(Type,Name,Type)
#define GEN_SIZE(Type) \ #define GEN_SIZE(Type) \
switch(gen_variant) { \ switch(gen_variant) { \
case GEN_OFFSET: \ case GEN_OFFSET: \
@ -241,6 +244,11 @@ int generateJvmOffsets(GEN_variant gen_variant) {
GEN_OFFS(VirtualSpace, _high); GEN_OFFS(VirtualSpace, _high);
printf("\n"); printf("\n");
/* We need to use different names here because of the template parameter */
GEN_OFFS_NAME(GrowableArray<CodeHeap*>, _data, GrowableArray_CodeHeap);
GEN_OFFS_NAME(GrowableArray<CodeHeap*>, _len, GrowableArray_CodeHeap);
printf("\n");
GEN_OFFS(CodeBlob, _name); GEN_OFFS(CodeBlob, _name);
GEN_OFFS(CodeBlob, _header_size); GEN_OFFS(CodeBlob, _header_size);
GEN_OFFS(CodeBlob, _content_offset); GEN_OFFS(CodeBlob, _content_offset);

View File

@ -43,7 +43,9 @@
extern pointer __JvmOffsets; extern pointer __JvmOffsets;
extern pointer __1cJCodeCacheF_heap_; /* GrowableArray<CodeHeaps*>* */
extern pointer __1cJCodeCacheG_heaps_;
extern pointer __1cIUniverseO_collectedHeap_; extern pointer __1cIUniverseO_collectedHeap_;
extern pointer __1cHnmethodG__vtbl_; extern pointer __1cHnmethodG__vtbl_;
@ -95,8 +97,8 @@ dtrace:helper:ustack:
/!init_done && !this->done/ /!init_done && !this->done/
{ {
MARK_LINE; MARK_LINE;
init_done = 1;
copyin_offset(POINTER_SIZE);
copyin_offset(COMPILER); copyin_offset(COMPILER);
copyin_offset(OFFSET_CollectedHeap_reserved); copyin_offset(OFFSET_CollectedHeap_reserved);
copyin_offset(OFFSET_MemRegion_start); copyin_offset(OFFSET_MemRegion_start);
@ -122,6 +124,9 @@ dtrace:helper:ustack:
copyin_offset(OFFSET_CodeHeap_segmap); copyin_offset(OFFSET_CodeHeap_segmap);
copyin_offset(OFFSET_CodeHeap_log2_segment_size); copyin_offset(OFFSET_CodeHeap_log2_segment_size);
copyin_offset(OFFSET_GrowableArray_CodeHeap_data);
copyin_offset(OFFSET_GrowableArray_CodeHeap_len);
copyin_offset(OFFSET_VirtualSpace_low); copyin_offset(OFFSET_VirtualSpace_low);
copyin_offset(OFFSET_VirtualSpace_high); copyin_offset(OFFSET_VirtualSpace_high);
@ -152,24 +157,13 @@ dtrace:helper:ustack:
#error "Don't know architecture" #error "Don't know architecture"
#endif #endif
this->CodeCache_heap_address = copyin_ptr(&``__1cJCodeCacheF_heap_); /* Read address of GrowableArray<CodeHeaps*> */
this->code_heaps_address = copyin_ptr(&``__1cJCodeCacheG_heaps_);
/* Read address of _data array field in GrowableArray */
this->code_heaps_array_address = copyin_ptr(this->code_heaps_address + OFFSET_GrowableArray_CodeHeap_data);
this->number_of_heaps = copyin_uint32(this->code_heaps_address + OFFSET_GrowableArray_CodeHeap_len);
this->CodeCache_low = copyin_ptr(this->CodeCache_heap_address + this->Method_vtbl = (pointer) &``__1cGMethodG__vtbl_;
OFFSET_CodeHeap_memory + OFFSET_VirtualSpace_low);
this->CodeCache_high = copyin_ptr(this->CodeCache_heap_address +
OFFSET_CodeHeap_memory + OFFSET_VirtualSpace_high);
this->CodeCache_segmap_low = copyin_ptr(this->CodeCache_heap_address +
OFFSET_CodeHeap_segmap + OFFSET_VirtualSpace_low);
this->CodeCache_segmap_high = copyin_ptr(this->CodeCache_heap_address +
OFFSET_CodeHeap_segmap + OFFSET_VirtualSpace_high);
this->CodeHeap_log2_segment_size = copyin_uint32(
this->CodeCache_heap_address + OFFSET_CodeHeap_log2_segment_size);
this->Method_vtbl = (pointer) &``__1cGMethodG__vtbl_;
/* /*
* Get Java heap bounds * Get Java heap bounds
@ -186,21 +180,152 @@ dtrace:helper:ustack:
this->heap_end = this->heap_start + this->heap_size; this->heap_end = this->heap_start + this->heap_size;
} }
/*
* IMPORTANT: At the moment the ustack helper supports up to 5 code heaps in
* the code cache. If more code heaps are added the following probes have to
* be extended. This is done by simply adding a probe to get the heap bounds
* and another probe to set the code heap address of the newly created heap.
*/
/*
* ----- BEGIN: Get bounds of code heaps -----
*/
dtrace:helper:ustack: dtrace:helper:ustack:
/!this->done && /init_done < 1 && this->number_of_heaps >= 1 && !this->done/
this->CodeCache_low <= this->pc && this->pc < this->CodeCache_high/ {
MARK_LINE;
/* CodeHeap 1 */
init_done = 1;
this->code_heap1_address = copyin_ptr(this->code_heaps_array_address);
this->code_heap1_low = copyin_ptr(this->code_heap1_address +
OFFSET_CodeHeap_memory + OFFSET_VirtualSpace_low);
this->code_heap1_high = copyin_ptr(this->code_heap1_address +
OFFSET_CodeHeap_memory + OFFSET_VirtualSpace_high);
}
dtrace:helper:ustack:
/init_done < 2 && this->number_of_heaps >= 2 && !this->done/
{
MARK_LINE;
/* CodeHeap 2 */
init_done = 2;
this->code_heaps_array_address = this->code_heaps_array_address + POINTER_SIZE;
this->code_heap2_address = copyin_ptr(this->code_heaps_array_address);
this->code_heap2_low = copyin_ptr(this->code_heap2_address +
OFFSET_CodeHeap_memory + OFFSET_VirtualSpace_low);
this->code_heap2_high = copyin_ptr(this->code_heap2_address +
OFFSET_CodeHeap_memory + OFFSET_VirtualSpace_high);
}
dtrace:helper:ustack:
/init_done < 3 && this->number_of_heaps >= 3 && !this->done/
{
/* CodeHeap 3 */
init_done = 3;
this->code_heaps_array_address = this->code_heaps_array_address + POINTER_SIZE;
this->code_heap3_address = copyin_ptr(this->code_heaps_array_address);
this->code_heap3_low = copyin_ptr(this->code_heap3_address +
OFFSET_CodeHeap_memory + OFFSET_VirtualSpace_low);
this->code_heap3_high = copyin_ptr(this->code_heap3_address +
OFFSET_CodeHeap_memory + OFFSET_VirtualSpace_high);
}
dtrace:helper:ustack:
/init_done < 4 && this->number_of_heaps >= 4 && !this->done/
{
/* CodeHeap 4 */
init_done = 4;
this->code_heaps_array_address = this->code_heaps_array_address + POINTER_SIZE;
this->code_heap4_address = copyin_ptr(this->code_heaps_array_address);
this->code_heap4_low = copyin_ptr(this->code_heap4_address +
OFFSET_CodeHeap_memory + OFFSET_VirtualSpace_low);
this->code_heap4_high = copyin_ptr(this->code_heap4_address +
OFFSET_CodeHeap_memory + OFFSET_VirtualSpace_high);
}
dtrace:helper:ustack:
/init_done < 5 && this->number_of_heaps >= 5 && !this->done/
{
/* CodeHeap 5 */
init_done = 5;
this->code_heaps_array_address = this->code_heaps_array_address + POINTER_SIZE;
this->code_heap5_address = copyin_ptr(this->code_heaps_array_address);
this->code_heap5_low = copyin_ptr(this->code_heap5_address +
OFFSET_CodeHeap_memory + OFFSET_VirtualSpace_low);
this->code_heap5_high = copyin_ptr(this->code_heap5_address +
OFFSET_CodeHeap_memory + OFFSET_VirtualSpace_high);
}
/*
* ----- END: Get bounds of code heaps -----
*/
/*
* ----- BEGIN: Get address of the code heap pc points to -----
*/
dtrace:helper:ustack:
/!this->done && this->number_of_heaps >= 1 && this->code_heap1_low <= this->pc && this->pc < this->code_heap1_high/
{ {
MARK_LINE; MARK_LINE;
this->codecache = 1; this->codecache = 1;
this->code_heap_address = this->code_heap1_address;
}
dtrace:helper:ustack:
/!this->done && this->number_of_heaps >= 2 && this->code_heap2_low <= this->pc && this->pc < this->code_heap2_high/
{
MARK_LINE;
this->codecache = 1;
this->code_heap_address = this->code_heap2_address;
}
dtrace:helper:ustack:
/!this->done && this->number_of_heaps >= 3 && this->code_heap3_low <= this->pc && this->pc < this->code_heap3_high/
{
MARK_LINE;
this->codecache = 1;
this->code_heap_address = this->code_heap3_address;
}
dtrace:helper:ustack:
/!this->done && this->number_of_heaps >= 4 && this->code_heap4_low <= this->pc && this->pc < this->code_heap4_high/
{
MARK_LINE;
this->codecache = 1;
this->code_heap_address = this->code_heap4_address;
}
dtrace:helper:ustack:
/!this->done && this->number_of_heaps >= 5 && this->code_heap5_low <= this->pc && this->pc < this->code_heap5_high/
{
MARK_LINE;
this->codecache = 1;
this->code_heap_address = this->code_heap5_address;
}
/*
* ----- END: Get address of the code heap pc points to -----
*/
dtrace:helper:ustack:
/!this->done && this->codecache/
{
MARK_LINE;
/*
* Get code heap configuration
*/
this->code_heap_low = copyin_ptr(this->code_heap_address +
OFFSET_CodeHeap_memory + OFFSET_VirtualSpace_low);
this->code_heap_segmap_low = copyin_ptr(this->code_heap_address +
OFFSET_CodeHeap_segmap + OFFSET_VirtualSpace_low);
this->code_heap_log2_segment_size = copyin_uint32(
this->code_heap_address + OFFSET_CodeHeap_log2_segment_size);
/* /*
* Find start. * Find start
*/ */
this->segment = (this->pc - this->CodeCache_low) >> this->segment = (this->pc - this->code_heap_low) >>
this->CodeHeap_log2_segment_size; this->code_heap_log2_segment_size;
this->block = this->CodeCache_segmap_low; this->block = this->code_heap_segmap_low;
this->tag = copyin_uchar(this->block + this->segment); this->tag = copyin_uchar(this->block + this->segment);
"second";
} }
dtrace:helper:ustack: dtrace:helper:ustack:
@ -255,8 +380,8 @@ dtrace:helper:ustack:
/!this->done && this->codecache/ /!this->done && this->codecache/
{ {
MARK_LINE; MARK_LINE;
this->block = this->CodeCache_low + this->block = this->code_heap_low +
(this->segment << this->CodeHeap_log2_segment_size); (this->segment << this->code_heap_log2_segment_size);
this->used = copyin_uint32(this->block + OFFSET_HeapBlockHeader_used); this->used = copyin_uint32(this->block + OFFSET_HeapBlockHeader_used);
} }

View File

@ -150,16 +150,18 @@ struct jvm_agent {
uint64_t Use_Compressed_Oops_address; uint64_t Use_Compressed_Oops_address;
uint64_t Universe_narrow_oop_base_address; uint64_t Universe_narrow_oop_base_address;
uint64_t Universe_narrow_oop_shift_address; uint64_t Universe_narrow_oop_shift_address;
uint64_t CodeCache_heap_address; uint64_t CodeCache_heaps_address;
/* Volatiles */ /* Volatiles */
uint8_t Use_Compressed_Oops; uint8_t Use_Compressed_Oops;
uint64_t Universe_narrow_oop_base; uint64_t Universe_narrow_oop_base;
uint32_t Universe_narrow_oop_shift; uint32_t Universe_narrow_oop_shift;
uint64_t CodeCache_low; // Code cache heaps
uint64_t CodeCache_high; int32_t Number_of_heaps;
uint64_t CodeCache_segmap_low; uint64_t* Heap_low;
uint64_t CodeCache_segmap_high; uint64_t* Heap_high;
uint64_t* Heap_segmap_low;
uint64_t* Heap_segmap_high;
int32_t SIZE_CodeCache_log2_segment; int32_t SIZE_CodeCache_log2_segment;
@ -278,8 +280,9 @@ static int parse_vmstructs(jvm_agent_t* J) {
} }
if (vmp->typeName[0] == 'C' && strcmp("CodeCache", vmp->typeName) == 0) { if (vmp->typeName[0] == 'C' && strcmp("CodeCache", vmp->typeName) == 0) {
if (strcmp("_heap", vmp->fieldName) == 0) { /* Read _heaps field of type GrowableArray<CodeHeaps*>* */
err = read_pointer(J, vmp->address, &J->CodeCache_heap_address); if (strcmp("_heaps", vmp->fieldName) == 0) {
err = read_pointer(J, vmp->address, &J->CodeCache_heaps_address);
} }
} else if (vmp->typeName[0] == 'U' && strcmp("Universe", vmp->typeName) == 0) { } else if (vmp->typeName[0] == 'U' && strcmp("Universe", vmp->typeName) == 0) {
if (strcmp("_narrow_oop._base", vmp->fieldName) == 0) { if (strcmp("_narrow_oop._base", vmp->fieldName) == 0) {
@ -318,7 +321,9 @@ static int find_symbol(jvm_agent_t* J, const char *name, uint64_t* valuep) {
} }
static int read_volatiles(jvm_agent_t* J) { static int read_volatiles(jvm_agent_t* J) {
uint64_t ptr; int i;
uint64_t array_data;
uint64_t code_heap_address;
int err; int err;
err = find_symbol(J, "UseCompressedOops", &J->Use_Compressed_Oops_address); err = find_symbol(J, "UseCompressedOops", &J->Use_Compressed_Oops_address);
@ -334,20 +339,43 @@ static int read_volatiles(jvm_agent_t* J) {
err = ps_pread(J->P, J->Universe_narrow_oop_shift_address, &J->Universe_narrow_oop_shift, sizeof(uint32_t)); err = ps_pread(J->P, J->Universe_narrow_oop_shift_address, &J->Universe_narrow_oop_shift, sizeof(uint32_t));
CHECK_FAIL(err); CHECK_FAIL(err);
err = read_pointer(J, J->CodeCache_heap_address + OFFSET_CodeHeap_memory + /* CodeCache_heaps_address points to GrowableArray<CodeHeaps*>, read _data field
OFFSET_VirtualSpace_low, &J->CodeCache_low); pointing to the first entry of type CodeCache* in the array */
CHECK_FAIL(err); err = read_pointer(J, J->CodeCache_heaps_address + OFFSET_GrowableArray_CodeHeap_data, &array_data);
err = read_pointer(J, J->CodeCache_heap_address + OFFSET_CodeHeap_memory + /* Read _len field containing the number of code heaps */
OFFSET_VirtualSpace_high, &J->CodeCache_high); err = ps_pread(J->P, J->CodeCache_heaps_address + OFFSET_GrowableArray_CodeHeap_len,
CHECK_FAIL(err); &J->Number_of_heaps, sizeof(J->Number_of_heaps));
err = read_pointer(J, J->CodeCache_heap_address + OFFSET_CodeHeap_segmap +
OFFSET_VirtualSpace_low, &J->CodeCache_segmap_low);
CHECK_FAIL(err);
err = read_pointer(J, J->CodeCache_heap_address + OFFSET_CodeHeap_segmap +
OFFSET_VirtualSpace_high, &J->CodeCache_segmap_high);
CHECK_FAIL(err);
err = ps_pread(J->P, J->CodeCache_heap_address + OFFSET_CodeHeap_log2_segment_size, /* Allocate memory for heap configurations */
J->Heap_low = (jvm_agent_t*)calloc(J->Number_of_heaps, sizeof(uint64_t));
J->Heap_high = (jvm_agent_t*)calloc(J->Number_of_heaps, sizeof(uint64_t));
J->Heap_segmap_low = (jvm_agent_t*)calloc(J->Number_of_heaps, sizeof(uint64_t));
J->Heap_segmap_high = (jvm_agent_t*)calloc(J->Number_of_heaps, sizeof(uint64_t));
/* Read code heap configurations */
for (i = 0; i < J->Number_of_heaps; ++i) {
/* Read address of heap */
err = read_pointer(J, array_data, &code_heap_address);
CHECK_FAIL(err);
err = read_pointer(J, code_heap_address + OFFSET_CodeHeap_memory +
OFFSET_VirtualSpace_low, &J->Heap_low[i]);
CHECK_FAIL(err);
err = read_pointer(J, code_heap_address + OFFSET_CodeHeap_memory +
OFFSET_VirtualSpace_high, &J->Heap_high[i]);
CHECK_FAIL(err);
err = read_pointer(J, code_heap_address + OFFSET_CodeHeap_segmap +
OFFSET_VirtualSpace_low, &J->Heap_segmap_low[i]);
CHECK_FAIL(err);
err = read_pointer(J, code_heap_address + OFFSET_CodeHeap_segmap +
OFFSET_VirtualSpace_high, &J->Heap_segmap_high[i]);
CHECK_FAIL(err);
/* Increment pointer to next entry */
array_data = array_data + POINTER_SIZE;
}
err = ps_pread(J->P, code_heap_address + OFFSET_CodeHeap_log2_segment_size,
&J->SIZE_CodeCache_log2_segment, sizeof(J->SIZE_CodeCache_log2_segment)); &J->SIZE_CodeCache_log2_segment, sizeof(J->SIZE_CodeCache_log2_segment));
CHECK_FAIL(err); CHECK_FAIL(err);
@ -357,46 +385,57 @@ static int read_volatiles(jvm_agent_t* J) {
return err; return err;
} }
static int codeheap_contains(int heap_num, jvm_agent_t* J, uint64_t ptr) {
return (J->Heap_low[heap_num] <= ptr && ptr < J->Heap_high[heap_num]);
}
static int codecache_contains(jvm_agent_t* J, uint64_t ptr) { static int codecache_contains(jvm_agent_t* J, uint64_t ptr) {
/* make sure the code cache is up to date */ int i;
return (J->CodeCache_low <= ptr && ptr < J->CodeCache_high); for (i = 0; i < J->Number_of_heaps; ++i) {
if (codeheap_contains(i, J, ptr)) {
return 1;
}
}
return 0;
} }
static uint64_t segment_for(jvm_agent_t* J, uint64_t p) { static uint64_t segment_for(int heap_num, jvm_agent_t* J, uint64_t p) {
return (p - J->CodeCache_low) >> J->SIZE_CodeCache_log2_segment; return (p - J->Heap_low[heap_num]) >> J->SIZE_CodeCache_log2_segment;
} }
static uint64_t block_at(jvm_agent_t* J, int i) { static uint64_t block_at(int heap_num, jvm_agent_t* J, int i) {
return J->CodeCache_low + (i << J->SIZE_CodeCache_log2_segment); return J->Heap_low[heap_num] + (i << J->SIZE_CodeCache_log2_segment);
} }
static int find_start(jvm_agent_t* J, uint64_t ptr, uint64_t *startp) { static int find_start(jvm_agent_t* J, uint64_t ptr, uint64_t *startp) {
int err; int err;
int i;
*startp = 0; for (i = 0; i < J->Number_of_heaps; ++i) {
if (J->CodeCache_low <= ptr && ptr < J->CodeCache_high) { *startp = 0;
int32_t used; if (codeheap_contains(i, J, ptr)) {
uint64_t segment = segment_for(J, ptr); int32_t used;
uint64_t block = J->CodeCache_segmap_low; uint64_t segment = segment_for(i, J, ptr);
uint8_t tag; uint64_t block = J->Heap_segmap_low[i];
err = ps_pread(J->P, block + segment, &tag, sizeof(tag)); uint8_t tag;
CHECK_FAIL(err);
if (tag == 0xff)
return PS_OK;
while (tag > 0) {
err = ps_pread(J->P, block + segment, &tag, sizeof(tag)); err = ps_pread(J->P, block + segment, &tag, sizeof(tag));
CHECK_FAIL(err); CHECK_FAIL(err);
segment -= tag; if (tag == 0xff)
} return PS_OK;
block = block_at(J, segment); while (tag > 0) {
err = ps_pread(J->P, block + OFFSET_HeapBlockHeader_used, &used, sizeof(used)); err = ps_pread(J->P, block + segment, &tag, sizeof(tag));
CHECK_FAIL(err); CHECK_FAIL(err);
if (used) { segment -= tag;
*startp = block + SIZE_HeapBlockHeader; }
block = block_at(i, J, segment);
err = ps_pread(J->P, block + OFFSET_HeapBlockHeader_used, &used, sizeof(used));
CHECK_FAIL(err);
if (used) {
*startp = block + SIZE_HeapBlockHeader;
}
} }
return PS_OK;
} }
return PS_OK;
fail: fail:
return -1; return -1;

View File

@ -3129,8 +3129,7 @@ bool os::Solaris::setup_large_pages(caddr_t start, size_t bytes, size_t align) {
return true; return true;
} }
char* os::reserve_memory_special(size_t size, size_t alignment, char* addr, char* os::reserve_memory_special(size_t size, size_t alignment, char* addr, bool exec) {
bool exec) {
fatal("os::reserve_memory_special should not be called on Solaris."); fatal("os::reserve_memory_special should not be called on Solaris.");
return NULL; return NULL;
} }

View File

@ -265,7 +265,7 @@ frame os::current_frame() {
CAST_FROM_FN_PTR(address, os::current_frame)); CAST_FROM_FN_PTR(address, os::current_frame));
if (os::is_first_C_frame(&myframe)) { if (os::is_first_C_frame(&myframe)) {
// stack is not walkable // stack is not walkable
return frame(NULL, NULL, NULL); return frame(NULL, NULL, false);
} else { } else {
return os::get_sender_for_C_frame(&myframe); return os::get_sender_for_C_frame(&myframe);
} }

View File

@ -327,7 +327,7 @@ void Canonicalizer::do_ShiftOp (ShiftOp* x) {
if (t2->is_constant()) { if (t2->is_constant()) {
switch (t2->tag()) { switch (t2->tag()) {
case intTag : if (t2->as_IntConstant()->value() == 0) set_canonical(x->x()); return; case intTag : if (t2->as_IntConstant()->value() == 0) set_canonical(x->x()); return;
case longTag : if (t2->as_IntConstant()->value() == 0) set_canonical(x->x()); return; case longTag : if (t2->as_LongConstant()->value() == (jlong)0) set_canonical(x->x()); return;
default : ShouldNotReachHere(); default : ShouldNotReachHere();
} }
} }
@ -808,28 +808,41 @@ void Canonicalizer::do_ExceptionObject(ExceptionObject* x) {}
static bool match_index_and_scale(Instruction* instr, static bool match_index_and_scale(Instruction* instr,
Instruction** index, Instruction** index,
int* log2_scale, int* log2_scale) {
Instruction** instr_to_unpin) { // Skip conversion ops. This works only on 32bit because of the implicit l2i that the
*instr_to_unpin = NULL; // unsafe performs.
#ifndef _LP64
// Skip conversion ops
Convert* convert = instr->as_Convert(); Convert* convert = instr->as_Convert();
if (convert != NULL) { if (convert != NULL && convert->op() == Bytecodes::_i2l) {
assert(convert->value()->type() == intType, "invalid input type");
instr = convert->value(); instr = convert->value();
} }
#endif
ShiftOp* shift = instr->as_ShiftOp(); ShiftOp* shift = instr->as_ShiftOp();
if (shift != NULL) { if (shift != NULL) {
if (shift->is_pinned()) { if (shift->op() == Bytecodes::_lshl) {
*instr_to_unpin = shift; assert(shift->x()->type() == longType, "invalid input type");
} else {
#ifndef _LP64
if (shift->op() == Bytecodes::_ishl) {
assert(shift->x()->type() == intType, "invalid input type");
} else {
return false;
}
#else
return false;
#endif
} }
// Constant shift value? // Constant shift value?
Constant* con = shift->y()->as_Constant(); Constant* con = shift->y()->as_Constant();
if (con == NULL) return false; if (con == NULL) return false;
// Well-known type and value? // Well-known type and value?
IntConstant* val = con->type()->as_IntConstant(); IntConstant* val = con->type()->as_IntConstant();
if (val == NULL) return false; assert(val != NULL, "Should be an int constant");
if (shift->x()->type() != intType) return false;
*index = shift->x(); *index = shift->x();
int tmp_scale = val->value(); int tmp_scale = val->value();
if (tmp_scale >= 0 && tmp_scale < 4) { if (tmp_scale >= 0 && tmp_scale < 4) {
@ -842,31 +855,42 @@ static bool match_index_and_scale(Instruction* instr,
ArithmeticOp* arith = instr->as_ArithmeticOp(); ArithmeticOp* arith = instr->as_ArithmeticOp();
if (arith != NULL) { if (arith != NULL) {
if (arith->is_pinned()) { // See if either arg is a known constant
*instr_to_unpin = arith; Constant* con = arith->x()->as_Constant();
if (con != NULL) {
*index = arith->y();
} else {
con = arith->y()->as_Constant();
if (con == NULL) return false;
*index = arith->x();
} }
long const_value;
// Check for integer multiply // Check for integer multiply
if (arith->op() == Bytecodes::_imul) { if (arith->op() == Bytecodes::_lmul) {
// See if either arg is a known constant assert((*index)->type() == longType, "invalid input type");
Constant* con = arith->x()->as_Constant(); LongConstant* val = con->type()->as_LongConstant();
if (con != NULL) { assert(val != NULL, "expecting a long constant");
*index = arith->y(); const_value = val->value();
} else {
#ifndef _LP64
if (arith->op() == Bytecodes::_imul) {
assert((*index)->type() == intType, "invalid input type");
IntConstant* val = con->type()->as_IntConstant();
assert(val != NULL, "expecting an int constant");
const_value = val->value();
} else { } else {
con = arith->y()->as_Constant(); return false;
if (con == NULL) return false;
*index = arith->x();
}
if ((*index)->type() != intType) return false;
// Well-known type and value?
IntConstant* val = con->type()->as_IntConstant();
if (val == NULL) return false;
switch (val->value()) {
case 1: *log2_scale = 0; return true;
case 2: *log2_scale = 1; return true;
case 4: *log2_scale = 2; return true;
case 8: *log2_scale = 3; return true;
default: return false;
} }
#else
return false;
#endif
}
switch (const_value) {
case 1: *log2_scale = 0; return true;
case 2: *log2_scale = 1; return true;
case 4: *log2_scale = 2; return true;
case 8: *log2_scale = 3; return true;
default: return false;
} }
} }
@ -879,29 +903,37 @@ static bool match(UnsafeRawOp* x,
Instruction** base, Instruction** base,
Instruction** index, Instruction** index,
int* log2_scale) { int* log2_scale) {
Instruction* instr_to_unpin = NULL;
ArithmeticOp* root = x->base()->as_ArithmeticOp(); ArithmeticOp* root = x->base()->as_ArithmeticOp();
if (root == NULL) return false; if (root == NULL) return false;
// Limit ourselves to addition for now // Limit ourselves to addition for now
if (root->op() != Bytecodes::_ladd) return false; if (root->op() != Bytecodes::_ladd) return false;
bool match_found = false;
// Try to find shift or scale op // Try to find shift or scale op
if (match_index_and_scale(root->y(), index, log2_scale, &instr_to_unpin)) { if (match_index_and_scale(root->y(), index, log2_scale)) {
*base = root->x(); *base = root->x();
} else if (match_index_and_scale(root->x(), index, log2_scale, &instr_to_unpin)) { match_found = true;
} else if (match_index_and_scale(root->x(), index, log2_scale)) {
*base = root->y(); *base = root->y();
} else if (root->y()->as_Convert() != NULL) { match_found = true;
} else if (NOT_LP64(root->y()->as_Convert() != NULL) LP64_ONLY(false)) {
// Skipping i2l works only on 32bit because of the implicit l2i that the unsafe performs.
// 64bit needs a real sign-extending conversion.
Convert* convert = root->y()->as_Convert(); Convert* convert = root->y()->as_Convert();
if (convert->op() == Bytecodes::_i2l && convert->value()->type() == intType) { if (convert->op() == Bytecodes::_i2l) {
assert(convert->value()->type() == intType, "should be an int");
// pick base and index, setting scale at 1 // pick base and index, setting scale at 1
*base = root->x(); *base = root->x();
*index = convert->value(); *index = convert->value();
*log2_scale = 0; *log2_scale = 0;
} else { match_found = true;
return false;
} }
} else { }
// doesn't match any expected sequences // The default solution
return false; if (!match_found) {
*base = root->x();
*index = root->y();
*log2_scale = 0;
} }
// If the value is pinned then it will be always be computed so // If the value is pinned then it will be always be computed so

View File

@ -76,6 +76,11 @@ void Compiler::initialize() {
} }
} }
int Compiler::code_buffer_size() {
assert(SegmentedCodeCache, "Should be only used with a segmented code cache");
return Compilation::desired_max_code_buffer_size() + Compilation::desired_max_constant_size();
}
BufferBlob* Compiler::init_buffer_blob() { BufferBlob* Compiler::init_buffer_blob() {
// Allocate buffer blob once at startup since allocation for each // Allocate buffer blob once at startup since allocation for each
// compilation seems to be too expensive (at least on Intel win32). // compilation seems to be too expensive (at least on Intel win32).

View File

@ -54,6 +54,9 @@ class Compiler: public AbstractCompiler {
// Print compilation timers and statistics // Print compilation timers and statistics
virtual void print_timers(); virtual void print_timers();
// Size of the code buffer
static int code_buffer_size();
}; };
#endif // SHARE_VM_C1_C1_COMPILER_HPP #endif // SHARE_VM_C1_C1_COMPILER_HPP

View File

@ -2045,6 +2045,8 @@ void LIRGenerator::do_RoundFP(RoundFP* x) {
} }
} }
// Here UnsafeGetRaw may have x->base() and x->index() be int or long
// on both 64 and 32 bits. Expecting x->base() to be always long on 64bit.
void LIRGenerator::do_UnsafeGetRaw(UnsafeGetRaw* x) { void LIRGenerator::do_UnsafeGetRaw(UnsafeGetRaw* x) {
LIRItem base(x->base(), this); LIRItem base(x->base(), this);
LIRItem idx(this); LIRItem idx(this);
@ -2059,50 +2061,73 @@ void LIRGenerator::do_UnsafeGetRaw(UnsafeGetRaw* x) {
int log2_scale = 0; int log2_scale = 0;
if (x->has_index()) { if (x->has_index()) {
assert(x->index()->type()->tag() == intTag, "should not find non-int index");
log2_scale = x->log2_scale(); log2_scale = x->log2_scale();
} }
assert(!x->has_index() || idx.value() == x->index(), "should match"); assert(!x->has_index() || idx.value() == x->index(), "should match");
LIR_Opr base_op = base.result(); LIR_Opr base_op = base.result();
LIR_Opr index_op = idx.result();
#ifndef _LP64 #ifndef _LP64
if (x->base()->type()->tag() == longTag) { if (x->base()->type()->tag() == longTag) {
base_op = new_register(T_INT); base_op = new_register(T_INT);
__ convert(Bytecodes::_l2i, base.result(), base_op); __ convert(Bytecodes::_l2i, base.result(), base_op);
} else {
assert(x->base()->type()->tag() == intTag, "must be");
} }
if (x->has_index()) {
if (x->index()->type()->tag() == longTag) {
LIR_Opr long_index_op = index_op;
if (x->index()->type()->is_constant()) {
long_index_op = new_register(T_LONG);
__ move(index_op, long_index_op);
}
index_op = new_register(T_INT);
__ convert(Bytecodes::_l2i, long_index_op, index_op);
} else {
assert(x->index()->type()->tag() == intTag, "must be");
}
}
// At this point base and index should be all ints.
assert(base_op->type() == T_INT && !base_op->is_constant(), "base should be an non-constant int");
assert(!x->has_index() || index_op->type() == T_INT, "index should be an int");
#else
if (x->has_index()) {
if (x->index()->type()->tag() == intTag) {
if (!x->index()->type()->is_constant()) {
index_op = new_register(T_LONG);
__ convert(Bytecodes::_i2l, idx.result(), index_op);
}
} else {
assert(x->index()->type()->tag() == longTag, "must be");
if (x->index()->type()->is_constant()) {
index_op = new_register(T_LONG);
__ move(idx.result(), index_op);
}
}
}
// At this point base is a long non-constant
// Index is a long register or a int constant.
// We allow the constant to stay an int because that would allow us a more compact encoding by
// embedding an immediate offset in the address expression. If we have a long constant, we have to
// move it into a register first.
assert(base_op->type() == T_LONG && !base_op->is_constant(), "base must be a long non-constant");
assert(!x->has_index() || (index_op->type() == T_INT && index_op->is_constant()) ||
(index_op->type() == T_LONG && !index_op->is_constant()), "unexpected index type");
#endif #endif
BasicType dst_type = x->basic_type(); BasicType dst_type = x->basic_type();
LIR_Opr index_op = idx.result();
LIR_Address* addr; LIR_Address* addr;
if (index_op->is_constant()) { if (index_op->is_constant()) {
assert(log2_scale == 0, "must not have a scale"); assert(log2_scale == 0, "must not have a scale");
assert(index_op->type() == T_INT, "only int constants supported");
addr = new LIR_Address(base_op, index_op->as_jint(), dst_type); addr = new LIR_Address(base_op, index_op->as_jint(), dst_type);
} else { } else {
#ifdef X86 #ifdef X86
#ifdef _LP64
if (!index_op->is_illegal() && index_op->type() == T_INT) {
LIR_Opr tmp = new_pointer_register();
__ convert(Bytecodes::_i2l, index_op, tmp);
index_op = tmp;
}
#endif
addr = new LIR_Address(base_op, index_op, LIR_Address::Scale(log2_scale), 0, dst_type); addr = new LIR_Address(base_op, index_op, LIR_Address::Scale(log2_scale), 0, dst_type);
#elif defined(ARM) #elif defined(ARM)
addr = generate_address(base_op, index_op, log2_scale, 0, dst_type); addr = generate_address(base_op, index_op, log2_scale, 0, dst_type);
#else #else
if (index_op->is_illegal() || log2_scale == 0) { if (index_op->is_illegal() || log2_scale == 0) {
#ifdef _LP64
if (!index_op->is_illegal() && index_op->type() == T_INT) {
LIR_Opr tmp = new_pointer_register();
__ convert(Bytecodes::_i2l, index_op, tmp);
index_op = tmp;
}
#endif
addr = new LIR_Address(base_op, index_op, dst_type); addr = new LIR_Address(base_op, index_op, dst_type);
} else { } else {
LIR_Opr tmp = new_pointer_register(); LIR_Opr tmp = new_pointer_register();
@ -2129,7 +2154,6 @@ void LIRGenerator::do_UnsafePutRaw(UnsafePutRaw* x) {
BasicType type = x->basic_type(); BasicType type = x->basic_type();
if (x->has_index()) { if (x->has_index()) {
assert(x->index()->type()->tag() == intTag, "should not find non-int index");
log2_scale = x->log2_scale(); log2_scale = x->log2_scale();
} }
@ -2152,38 +2176,39 @@ void LIRGenerator::do_UnsafePutRaw(UnsafePutRaw* x) {
set_no_result(x); set_no_result(x);
LIR_Opr base_op = base.result(); LIR_Opr base_op = base.result();
LIR_Opr index_op = idx.result();
#ifndef _LP64 #ifndef _LP64
if (x->base()->type()->tag() == longTag) { if (x->base()->type()->tag() == longTag) {
base_op = new_register(T_INT); base_op = new_register(T_INT);
__ convert(Bytecodes::_l2i, base.result(), base_op); __ convert(Bytecodes::_l2i, base.result(), base_op);
} else {
assert(x->base()->type()->tag() == intTag, "must be");
} }
if (x->has_index()) {
if (x->index()->type()->tag() == longTag) {
index_op = new_register(T_INT);
__ convert(Bytecodes::_l2i, idx.result(), index_op);
}
}
// At this point base and index should be all ints and not constants
assert(base_op->type() == T_INT && !base_op->is_constant(), "base should be an non-constant int");
assert(!x->has_index() || (index_op->type() == T_INT && !index_op->is_constant()), "index should be an non-constant int");
#else
if (x->has_index()) {
if (x->index()->type()->tag() == intTag) {
index_op = new_register(T_LONG);
__ convert(Bytecodes::_i2l, idx.result(), index_op);
}
}
// At this point base and index are long and non-constant
assert(base_op->type() == T_LONG && !base_op->is_constant(), "base must be a non-constant long");
assert(!x->has_index() || (index_op->type() == T_LONG && !index_op->is_constant()), "index must be a non-constant long");
#endif #endif
LIR_Opr index_op = idx.result();
if (log2_scale != 0) { if (log2_scale != 0) {
// temporary fix (platform dependent code without shift on Intel would be better) // temporary fix (platform dependent code without shift on Intel would be better)
index_op = new_pointer_register(); // TODO: ARM also allows embedded shift in the address
#ifdef _LP64
if(idx.result()->type() == T_INT) {
__ convert(Bytecodes::_i2l, idx.result(), index_op);
} else {
#endif
// TODO: ARM also allows embedded shift in the address
__ move(idx.result(), index_op);
#ifdef _LP64
}
#endif
__ shift_left(index_op, log2_scale, index_op); __ shift_left(index_op, log2_scale, index_op);
} }
#ifdef _LP64
else if(!index_op->is_illegal() && index_op->type() == T_INT) {
LIR_Opr tmp = new_pointer_register();
__ convert(Bytecodes::_i2l, index_op, tmp);
index_op = tmp;
}
#endif
LIR_Address* addr = new LIR_Address(base_op, index_op, x->basic_type()); LIR_Address* addr = new LIR_Address(base_op, index_op, x->basic_type());
__ move(value.result(), addr); __ move(value.result(), addr);

View File

@ -287,9 +287,6 @@
develop(bool, InstallMethods, true, \ develop(bool, InstallMethods, true, \
"Install methods at the end of successful compilations") \ "Install methods at the end of successful compilations") \
\ \
product(intx, CompilationRepeat, 0, \
"Number of times to recompile method before returning result") \
\
develop(intx, NMethodSizeLimit, (64*K)*wordSize, \ develop(intx, NMethodSizeLimit, (64*K)*wordSize, \
"Maximum size of a compiled method.") \ "Maximum size of a compiled method.") \
\ \

View File

@ -34,6 +34,7 @@
#include "ci/ciUtilities.hpp" #include "ci/ciUtilities.hpp"
#include "classfile/systemDictionary.hpp" #include "classfile/systemDictionary.hpp"
#include "classfile/vmSymbols.hpp" #include "classfile/vmSymbols.hpp"
#include "code/codeCache.hpp"
#include "code/scopeDesc.hpp" #include "code/scopeDesc.hpp"
#include "compiler/compileBroker.hpp" #include "compiler/compileBroker.hpp"
#include "compiler/compileLog.hpp" #include "compiler/compileLog.hpp"
@ -1085,7 +1086,7 @@ void ciEnv::register_method(ciMethod* target,
} else { } else {
// The CodeCache is full. Print out warning and disable compilation. // The CodeCache is full. Print out warning and disable compilation.
record_failure("code cache is full"); record_failure("code cache is full");
CompileBroker::handle_full_code_cache(); CompileBroker::handle_full_code_cache(CodeCache::get_code_blob_type(comp_level));
} }
} }

View File

@ -1694,8 +1694,6 @@ void ClassVerifier::verify_exception_handler_table(u4 code_length, char* code_da
constantPoolHandle cp (THREAD, _method->constants()); constantPoolHandle cp (THREAD, _method->constants());
for(int i = 0; i < exlength; i++) { for(int i = 0; i < exlength; i++) {
//reacquire the table in case a GC happened
ExceptionTable exhandlers(_method());
u2 start_pc = exhandlers.start_pc(i); u2 start_pc = exhandlers.start_pc(i);
u2 end_pc = exhandlers.end_pc(i); u2 end_pc = exhandlers.end_pc(i);
u2 handler_pc = exhandlers.handler_pc(i); u2 handler_pc = exhandlers.handler_pc(i);
@ -1803,8 +1801,6 @@ void ClassVerifier::verify_exception_handler_targets(u2 bci, bool this_uninit, S
ExceptionTable exhandlers(_method()); ExceptionTable exhandlers(_method());
int exlength = exhandlers.length(); int exlength = exhandlers.length();
for(int i = 0; i < exlength; i++) { for(int i = 0; i < exlength; i++) {
//reacquire the table in case a GC happened
ExceptionTable exhandlers(_method());
u2 start_pc = exhandlers.start_pc(i); u2 start_pc = exhandlers.start_pc(i);
u2 end_pc = exhandlers.end_pc(i); u2 end_pc = exhandlers.end_pc(i);
u2 handler_pc = exhandlers.handler_pc(i); u2 handler_pc = exhandlers.handler_pc(i);

View File

@ -229,14 +229,11 @@ BufferBlob* BufferBlob::create(const char* name, CodeBuffer* cb) {
return blob; return blob;
} }
void* BufferBlob::operator new(size_t s, unsigned size, bool is_critical) throw() { void* BufferBlob::operator new(size_t s, unsigned size, bool is_critical) throw() {
void* p = CodeCache::allocate(size, is_critical); return CodeCache::allocate(size, CodeBlobType::NonMethod, is_critical);
return p;
} }
void BufferBlob::free(BufferBlob *blob) {
void BufferBlob::free( BufferBlob *blob ) {
ThreadInVMfromUnknown __tiv; // get to VM state in case we block on CodeCache_lock ThreadInVMfromUnknown __tiv; // get to VM state in case we block on CodeCache_lock
blob->flush(); blob->flush();
{ {
@ -299,7 +296,6 @@ MethodHandlesAdapterBlob* MethodHandlesAdapterBlob::create(int buffer_size) {
return blob; return blob;
} }
//---------------------------------------------------------------------------------------------------- //----------------------------------------------------------------------------------------------------
// Implementation of RuntimeStub // Implementation of RuntimeStub
@ -340,14 +336,14 @@ RuntimeStub* RuntimeStub::new_runtime_stub(const char* stub_name,
void* RuntimeStub::operator new(size_t s, unsigned size) throw() { void* RuntimeStub::operator new(size_t s, unsigned size) throw() {
void* p = CodeCache::allocate(size, true); void* p = CodeCache::allocate(size, CodeBlobType::NonMethod, true);
if (!p) fatal("Initial size of CodeCache is too small"); if (!p) fatal("Initial size of CodeCache is too small");
return p; return p;
} }
// operator new shared by all singletons: // operator new shared by all singletons:
void* SingletonBlob::operator new(size_t s, unsigned size) throw() { void* SingletonBlob::operator new(size_t s, unsigned size) throw() {
void* p = CodeCache::allocate(size, true); void* p = CodeCache::allocate(size, CodeBlobType::NonMethod, true);
if (!p) fatal("Initial size of CodeCache is too small"); if (!p) fatal("Initial size of CodeCache is too small");
return p; return p;
} }

View File

@ -30,6 +30,18 @@
#include "runtime/frame.hpp" #include "runtime/frame.hpp"
#include "runtime/handles.hpp" #include "runtime/handles.hpp"
// CodeBlob Types
// Used in the CodeCache to assign CodeBlobs to different CodeHeaps
struct CodeBlobType {
enum {
MethodNonProfiled = 0, // Execution level 1 and 4 (non-profiled) nmethods (including native nmethods)
MethodProfiled = 1, // Execution level 2 and 3 (profiled) nmethods
NonMethod = 2, // Non-methods like Buffers, Adapters and Runtime Stubs
All = 3, // All types (No code cache segmentation)
NumTypes = 4 // Number of CodeBlobTypes
};
};
// CodeBlob - superclass for all entries in the CodeCache. // CodeBlob - superclass for all entries in the CodeCache.
// //
// Suptypes are: // Suptypes are:
@ -385,9 +397,6 @@ class DeoptimizationBlob: public SingletonBlob {
return (pc == unpack_pc || (pc + frame::pc_return_offset) == unpack_pc); return (pc == unpack_pc || (pc + frame::pc_return_offset) == unpack_pc);
} }
// GC for args // GC for args
void preserve_callee_argument_oops(frame fr, const RegisterMap *reg_map, OopClosure* f) { /* Nothing to do */ } void preserve_callee_argument_oops(frame fr, const RegisterMap *reg_map, OopClosure* f) { /* Nothing to do */ }

File diff suppressed because it is too large Load Diff

View File

@ -26,105 +26,117 @@
#define SHARE_VM_CODE_CODECACHE_HPP #define SHARE_VM_CODE_CODECACHE_HPP
#include "code/codeBlob.hpp" #include "code/codeBlob.hpp"
#include "code/nmethod.hpp"
#include "memory/allocation.hpp" #include "memory/allocation.hpp"
#include "memory/heap.hpp" #include "memory/heap.hpp"
#include "oops/instanceKlass.hpp" #include "oops/instanceKlass.hpp"
#include "oops/oopsHierarchy.hpp" #include "oops/oopsHierarchy.hpp"
#include "runtime/mutexLocker.hpp"
// The CodeCache implements the code cache for various pieces of generated // The CodeCache implements the code cache for various pieces of generated
// code, e.g., compiled java methods, runtime stubs, transition frames, etc. // code, e.g., compiled java methods, runtime stubs, transition frames, etc.
// The entries in the CodeCache are all CodeBlob's. // The entries in the CodeCache are all CodeBlob's.
// Implementation: // -- Implementation --
// - Each CodeBlob occupies one chunk of memory. // The CodeCache consists of one or more CodeHeaps, each of which contains
// - Like the offset table in oldspace the zone has at table for // CodeBlobs of a specific CodeBlobType. Currently heaps for the following
// locating a method given a addess of an instruction. // types are available:
// - Non-methods: Non-methods like Buffers, Adapters and Runtime Stubs
// - Profiled nmethods: nmethods that are profiled, i.e., those
// executed at level 2 or 3
// - Non-Profiled nmethods: nmethods that are not profiled, i.e., those
// executed at level 1 or 4 and native methods
// - All: Used for code of all types if code cache segmentation is disabled.
//
// In the rare case of the non-method code heap getting full, non-method code
// will be stored in the non-profiled code heap as a fallback solution.
//
// Depending on the availability of compilers and TieredCompilation there
// may be fewer heaps. The size of the code heaps depends on the values of
// ReservedCodeCacheSize, NonProfiledCodeHeapSize and ProfiledCodeHeapSize
// (see CodeCache::heap_available(..) and CodeCache::initialize_heaps(..)
// for details).
//
// Code cache segmentation is controlled by the flag SegmentedCodeCache.
// If turned off, all code types are stored in a single code heap. By default
// code cache segmentation is turned on if TieredCompilation is enabled and
// ReservedCodeCacheSize >= 240 MB.
//
// All methods of the CodeCache accepting a CodeBlobType only apply to
// CodeBlobs of the given type. For example, iteration over the
// CodeBlobs of a specific type can be done by using CodeCache::first_blob(..)
// and CodeCache::next_blob(..) and providing the corresponding CodeBlobType.
//
// IMPORTANT: If you add new CodeHeaps to the code cache or change the
// existing ones, make sure to adapt the dtrace scripts (jhelper.d) for
// Solaris and BSD.
class OopClosure; class OopClosure;
class DepChange; class DepChange;
class CodeCache : AllStatic { class CodeCache : AllStatic {
friend class VMStructs; friend class VMStructs;
friend class NMethodIterator;
private: private:
// CodeHeap is malloc()'ed at startup and never deleted during shutdown, // CodeHeaps of the cache
// so that the generated assembly code is always there when it's needed. static GrowableArray<CodeHeap*>* _heaps;
// This may cause memory leak, but is necessary, for now. See 4423824,
// 4422213 or 4436291 for details. static address _low_bound; // Lower bound of CodeHeap addresses
static CodeHeap * _heap; static address _high_bound; // Upper bound of CodeHeap addresses
static int _number_of_blobs; static int _number_of_blobs; // Total number of CodeBlobs in the cache
static int _number_of_adapters; static int _number_of_adapters; // Total number of Adapters in the cache
static int _number_of_nmethods; static int _number_of_nmethods; // Total number of nmethods in the cache
static int _number_of_nmethods_with_dependencies; static int _number_of_nmethods_with_dependencies; // Total number of nmethods with dependencies
static bool _needs_cache_clean; static bool _needs_cache_clean; // True if inline caches of the nmethods needs to be flushed
static nmethod* _scavenge_root_nmethods; // linked via nm->scavenge_root_link() static nmethod* _scavenge_root_nmethods; // linked via nm->scavenge_root_link()
static int _codemem_full_count; // Number of times a CodeHeap in the cache was full
static void mark_scavenge_root_nmethods() PRODUCT_RETURN; static void mark_scavenge_root_nmethods() PRODUCT_RETURN;
static void verify_perm_nmethods(CodeBlobClosure* f_or_null) PRODUCT_RETURN; static void verify_perm_nmethods(CodeBlobClosure* f_or_null) PRODUCT_RETURN;
static int _codemem_full_count; // CodeHeap management
static size_t bytes_allocated_in_freelist() { return _heap->allocated_in_freelist(); } static void initialize_heaps(); // Initializes the CodeHeaps
static int allocated_segments() { return _heap->allocated_segments(); } // Creates a new heap with the given name and size, containing CodeBlobs of the given type
static size_t freelist_length() { return _heap->freelist_length(); } static void add_heap(ReservedSpace rs, const char* name, size_t size_initial, int code_blob_type);
static CodeHeap* get_code_heap(CodeBlob* cb); // Returns the CodeHeap for the given CodeBlob
static CodeHeap* get_code_heap(int code_blob_type); // Returns the CodeHeap for the given CodeBlobType
static bool heap_available(int code_blob_type); // Returns true if a CodeHeap for the given CodeBlobType is available
static ReservedCodeSpace reserve_heap_memory(size_t size); // Reserves one continuous chunk of memory for the CodeHeaps
// Iteration
static CodeBlob* first_blob(CodeHeap* heap); // Returns the first CodeBlob on the given CodeHeap
static CodeBlob* first_blob(int code_blob_type); // Returns the first CodeBlob of the given type
static CodeBlob* next_blob(CodeHeap* heap, CodeBlob* cb); // Returns the first alive CodeBlob on the given CodeHeap
static CodeBlob* next_blob(CodeBlob* cb); // Returns the next CodeBlob of the given type succeeding the given CodeBlob
static size_t bytes_allocated_in_freelists();
static int allocated_segments();
static size_t freelists_length();
public: public:
// Initialization // Initialization
static void initialize(); static void initialize();
static void report_codemem_full();
// Allocation/administration // Allocation/administration
static CodeBlob* allocate(int size, bool is_critical = false); // allocates a new CodeBlob static CodeBlob* allocate(int size, int code_blob_type, bool is_critical = false); // allocates a new CodeBlob
static void commit(CodeBlob* cb); // called when the allocated CodeBlob has been filled static void commit(CodeBlob* cb); // called when the allocated CodeBlob has been filled
static int alignment_unit(); // guaranteed alignment of all CodeBlobs static int alignment_unit(); // guaranteed alignment of all CodeBlobs
static int alignment_offset(); // guaranteed offset of first CodeBlob byte within alignment unit (i.e., allocation header) static int alignment_offset(); // guaranteed offset of first CodeBlob byte within alignment unit (i.e., allocation header)
static void free(CodeBlob* cb); // frees a CodeBlob static void free(CodeBlob* cb); // frees a CodeBlob
static bool contains(void *p); // returns whether p is included static bool contains(void *p); // returns whether p is included
static void blobs_do(void f(CodeBlob* cb)); // iterates over all CodeBlobs static void blobs_do(void f(CodeBlob* cb)); // iterates over all CodeBlobs
static void blobs_do(CodeBlobClosure* f); // iterates over all CodeBlobs static void blobs_do(CodeBlobClosure* f); // iterates over all CodeBlobs
static void nmethods_do(void f(nmethod* nm)); // iterates over all nmethods static void nmethods_do(void f(nmethod* nm)); // iterates over all nmethods
static void alive_nmethods_do(void f(nmethod* nm)); // iterates over all alive nmethods static void alive_nmethods_do(void f(nmethod* nm)); // iterates over all alive nmethods
// Lookup // Lookup
static CodeBlob* find_blob(void* start); static CodeBlob* find_blob(void* start); // Returns the CodeBlob containing the given address
static nmethod* find_nmethod(void* start); static CodeBlob* find_blob_unsafe(void* start); // Same as find_blob but does not fail if looking up a zombie method
static nmethod* find_nmethod(void* start); // Returns the nmethod containing the given address
// Lookup that does not fail if you lookup a zombie method (if you call this, be sure to know static int nof_blobs() { return _number_of_blobs; } // Returns the total number of CodeBlobs in the cache
// what you are doing) static int nof_adapters() { return _number_of_adapters; } // Returns the total number of Adapters in the cache
static CodeBlob* find_blob_unsafe(void* start) { static int nof_nmethods() { return _number_of_nmethods; } // Returns the total number of nmethods in the cache
// NMT can walk the stack before code cache is created
if (_heap == NULL) return NULL;
CodeBlob* result = (CodeBlob*)_heap->find_start(start);
// this assert is too strong because the heap code will return the
// heapblock containing start. That block can often be larger than
// the codeBlob itself. If you look up an address that is within
// the heapblock but not in the codeBlob you will assert.
//
// Most things will not lookup such bad addresses. However
// AsyncGetCallTrace can see intermediate frames and get that kind
// of invalid address and so can a developer using hsfind.
//
// The more correct answer is to return NULL if blob_contains() returns
// false.
// assert(result == NULL || result->blob_contains((address)start), "found wrong CodeBlob");
if (result != NULL && !result->blob_contains((address)start)) {
result = NULL;
}
return result;
}
// Iteration
static CodeBlob* first();
static CodeBlob* next (CodeBlob* cb);
static CodeBlob* alive(CodeBlob *cb);
static nmethod* alive_nmethod(CodeBlob *cb);
static nmethod* first_nmethod();
static nmethod* next_nmethod (CodeBlob* cb);
static int nof_blobs() { return _number_of_blobs; }
static int nof_adapters() { return _number_of_adapters; }
static int nof_nmethods() { return _number_of_nmethods; }
// GC support // GC support
static void gc_epilogue(); static void gc_epilogue();
@ -137,7 +149,7 @@ class CodeCache : AllStatic {
static void asserted_non_scavengable_nmethods_do(CodeBlobClosure* f = NULL) PRODUCT_RETURN; static void asserted_non_scavengable_nmethods_do(CodeBlobClosure* f = NULL) PRODUCT_RETURN;
static void scavenge_root_nmethods_do(CodeBlobClosure* f); static void scavenge_root_nmethods_do(CodeBlobClosure* f);
static nmethod* scavenge_root_nmethods() { return _scavenge_root_nmethods; } static nmethod* scavenge_root_nmethods() { return _scavenge_root_nmethods; }
static void set_scavenge_root_nmethods(nmethod* nm) { _scavenge_root_nmethods = nm; } static void set_scavenge_root_nmethods(nmethod* nm) { _scavenge_root_nmethods = nm; }
static void add_scavenge_root_nmethod(nmethod* nm); static void add_scavenge_root_nmethod(nmethod* nm);
static void drop_scavenge_root_nmethod(nmethod* nm); static void drop_scavenge_root_nmethod(nmethod* nm);
@ -151,27 +163,47 @@ class CodeCache : AllStatic {
static void print_trace(const char* event, CodeBlob* cb, int size = 0) PRODUCT_RETURN; static void print_trace(const char* event, CodeBlob* cb, int size = 0) PRODUCT_RETURN;
static void print_summary(outputStream* st, bool detailed = true); // Prints a summary of the code cache usage static void print_summary(outputStream* st, bool detailed = true); // Prints a summary of the code cache usage
static void log_state(outputStream* st); static void log_state(outputStream* st);
static const char* get_code_heap_name(int code_blob_type) { return (heap_available(code_blob_type) ? get_code_heap(code_blob_type)->name() : "Unused"); }
static void report_codemem_full(int code_blob_type, bool print);
// Dcmd (Diagnostic commands) // Dcmd (Diagnostic commands)
static void print_codelist(outputStream* st); static void print_codelist(outputStream* st);
static void print_layout(outputStream* st); static void print_layout(outputStream* st);
// The full limits of the codeCache // The full limits of the codeCache
static address low_bound() { return (address) _heap->low_boundary(); } static address low_bound() { return _low_bound; }
static address high_bound() { return (address) _heap->high_boundary(); } static address high_bound() { return _high_bound; }
static address high() { return (address) _heap->high(); }
// Profiling // Profiling
static address first_address(); // first address used for CodeBlobs static size_t capacity(int code_blob_type) { return heap_available(code_blob_type) ? get_code_heap(code_blob_type)->capacity() : 0; }
static address last_address(); // last address used for CodeBlobs static size_t capacity();
static size_t capacity() { return _heap->capacity(); } static size_t unallocated_capacity(int code_blob_type) { return heap_available(code_blob_type) ? get_code_heap(code_blob_type)->unallocated_capacity() : 0; }
static size_t max_capacity() { return _heap->max_capacity(); } static size_t unallocated_capacity();
static size_t unallocated_capacity() { return _heap->unallocated_capacity(); } static size_t max_capacity(int code_blob_type) { return heap_available(code_blob_type) ? get_code_heap(code_blob_type)->max_capacity() : 0; }
static double reverse_free_ratio(); static size_t max_capacity();
static bool needs_cache_clean() { return _needs_cache_clean; } static bool is_full(int* code_blob_type);
static void set_needs_cache_clean(bool v) { _needs_cache_clean = v; } static double reverse_free_ratio(int code_blob_type);
static void clear_inline_caches(); // clear all inline caches
static bool needs_cache_clean() { return _needs_cache_clean; }
static void set_needs_cache_clean(bool v) { _needs_cache_clean = v; }
static void clear_inline_caches(); // clear all inline caches
// Returns the CodeBlobType for nmethods of the given compilation level
static int get_code_blob_type(int comp_level) {
if (comp_level == CompLevel_none ||
comp_level == CompLevel_simple ||
comp_level == CompLevel_full_optimization) {
// Non profiled methods
return CodeBlobType::MethodNonProfiled;
} else if (comp_level == CompLevel_limited_profile ||
comp_level == CompLevel_full_profile) {
// Profiled methods
return CodeBlobType::MethodProfiled;
}
ShouldNotReachHere();
return 0;
}
static void verify_clean_inline_caches(); static void verify_clean_inline_caches();
static void verify_icholder_relocations(); static void verify_icholder_relocations();
@ -187,10 +219,87 @@ class CodeCache : AllStatic {
static void make_marked_nmethods_zombies(); static void make_marked_nmethods_zombies();
static void make_marked_nmethods_not_entrant(); static void make_marked_nmethods_not_entrant();
// tells how many nmethods have dependencies // tells how many nmethods have dependencies
static int number_of_nmethods_with_dependencies(); static int number_of_nmethods_with_dependencies();
static int get_codemem_full_count() { return _codemem_full_count; } static int get_codemem_full_count() { return _codemem_full_count; }
}; };
// Iterator to iterate over nmethods in the CodeCache.
class NMethodIterator : public StackObj {
private:
CodeBlob* _code_blob; // Current CodeBlob
int _code_blob_type; // Refers to current CodeHeap
public:
NMethodIterator() {
initialize(NULL); // Set to NULL, initialized by first call to next()
}
NMethodIterator(nmethod* nm) {
initialize(nm);
}
// Advance iterator to next nmethod
bool next() {
assert_locked_or_safepoint(CodeCache_lock);
assert(_code_blob_type < CodeBlobType::NumTypes, "end reached");
bool result = next_nmethod();
while (!result && (_code_blob_type < CodeBlobType::MethodProfiled)) {
// Advance to next code heap if segmented code cache
_code_blob_type++;
result = next_nmethod();
}
return result;
}
// Advance iterator to next alive nmethod
bool next_alive() {
bool result = next();
while(result && !_code_blob->is_alive()) {
result = next();
}
return result;
}
bool end() const { return _code_blob == NULL; }
nmethod* method() const { return (nmethod*)_code_blob; }
private:
// Initialize iterator to given nmethod
void initialize(nmethod* nm) {
_code_blob = (CodeBlob*)nm;
if (!SegmentedCodeCache) {
// Iterate over all CodeBlobs
_code_blob_type = CodeBlobType::All;
} else if (nm != NULL) {
_code_blob_type = CodeCache::get_code_blob_type(nm->comp_level());
} else {
// Only iterate over method code heaps, starting with non-profiled
_code_blob_type = CodeBlobType::MethodNonProfiled;
}
}
// Advance iterator to the next nmethod in the current code heap
bool next_nmethod() {
// Get first method CodeBlob
if (_code_blob == NULL) {
_code_blob = CodeCache::first_blob(_code_blob_type);
if (_code_blob == NULL) {
return false;
} else if (_code_blob->is_nmethod()) {
return true;
}
}
// Search for next method CodeBlob
_code_blob = CodeCache::next_blob(_code_blob);
while (_code_blob != NULL && !_code_blob->is_nmethod()) {
_code_blob = CodeCache::next_blob(_code_blob);
}
return _code_blob != NULL;
}
};
#endif // SHARE_VM_CODE_CODECACHE_HPP #endif // SHARE_VM_CODE_CODECACHE_HPP

View File

@ -500,7 +500,7 @@ nmethod* nmethod::new_native_nmethod(methodHandle method,
CodeOffsets offsets; CodeOffsets offsets;
offsets.set_value(CodeOffsets::Verified_Entry, vep_offset); offsets.set_value(CodeOffsets::Verified_Entry, vep_offset);
offsets.set_value(CodeOffsets::Frame_Complete, frame_complete); offsets.set_value(CodeOffsets::Frame_Complete, frame_complete);
nm = new (native_nmethod_size) nmethod(method(), native_nmethod_size, nm = new (native_nmethod_size, CompLevel_none) nmethod(method(), native_nmethod_size,
compile_id, &offsets, compile_id, &offsets,
code_buffer, frame_size, code_buffer, frame_size,
basic_lock_owner_sp_offset, basic_lock_owner_sp_offset,
@ -538,7 +538,7 @@ nmethod* nmethod::new_dtrace_nmethod(methodHandle method,
offsets.set_value(CodeOffsets::Dtrace_trap, trap_offset); offsets.set_value(CodeOffsets::Dtrace_trap, trap_offset);
offsets.set_value(CodeOffsets::Frame_Complete, frame_complete); offsets.set_value(CodeOffsets::Frame_Complete, frame_complete);
nm = new (nmethod_size) nmethod(method(), nmethod_size, nm = new (nmethod_size, CompLevel_none) nmethod(method(), nmethod_size,
&offsets, code_buffer, frame_size); &offsets, code_buffer, frame_size);
NOT_PRODUCT(if (nm != NULL) nmethod_stats.note_nmethod(nm)); NOT_PRODUCT(if (nm != NULL) nmethod_stats.note_nmethod(nm));
@ -586,7 +586,7 @@ nmethod* nmethod::new_nmethod(methodHandle method,
+ round_to(nul_chk_table->size_in_bytes(), oopSize) + round_to(nul_chk_table->size_in_bytes(), oopSize)
+ round_to(debug_info->data_size() , oopSize); + round_to(debug_info->data_size() , oopSize);
nm = new (nmethod_size) nm = new (nmethod_size, comp_level)
nmethod(method(), nmethod_size, compile_id, entry_bci, offsets, nmethod(method(), nmethod_size, compile_id, entry_bci, offsets,
orig_pc_offset, debug_info, dependencies, code_buffer, frame_size, orig_pc_offset, debug_info, dependencies, code_buffer, frame_size,
oop_maps, oop_maps,
@ -803,9 +803,11 @@ nmethod::nmethod(
} }
#endif // def HAVE_DTRACE_H #endif // def HAVE_DTRACE_H
void* nmethod::operator new(size_t size, int nmethod_size) throw() { void* nmethod::operator new(size_t size, int nmethod_size, int comp_level) throw () {
// Not critical, may return null if there is too little continuous memory // With a SegmentedCodeCache, nmethods are allocated on separate heaps and therefore do not share memory
return CodeCache::allocate(nmethod_size); // with critical CodeBlobs. We define the allocation as critical to make sure all code heap memory is used.
bool is_critical = SegmentedCodeCache;
return CodeCache::allocate(nmethod_size, CodeCache::get_code_blob_type(comp_level), is_critical);
} }
nmethod::nmethod( nmethod::nmethod(
@ -1530,7 +1532,7 @@ void nmethod::flush() {
Events::log(JavaThread::current(), "flushing nmethod " INTPTR_FORMAT, this); Events::log(JavaThread::current(), "flushing nmethod " INTPTR_FORMAT, this);
if (PrintMethodFlushing) { if (PrintMethodFlushing) {
tty->print_cr("*flushing nmethod %3d/" INTPTR_FORMAT ". Live blobs:" UINT32_FORMAT "/Free CodeCache:" SIZE_FORMAT "Kb", tty->print_cr("*flushing nmethod %3d/" INTPTR_FORMAT ". Live blobs:" UINT32_FORMAT "/Free CodeCache:" SIZE_FORMAT "Kb",
_compile_id, this, CodeCache::nof_blobs(), CodeCache::unallocated_capacity()/1024); _compile_id, this, CodeCache::nof_blobs(), CodeCache::unallocated_capacity(CodeCache::get_code_blob_type(_comp_level))/1024);
} }
// We need to deallocate any ExceptionCache data. // We need to deallocate any ExceptionCache data.
@ -1557,7 +1559,6 @@ void nmethod::flush() {
CodeCache::free(this); CodeCache::free(this);
} }
// //
// Notify all classes this nmethod is dependent on that it is no // Notify all classes this nmethod is dependent on that it is no
// longer dependent. This should only be called in two situations. // longer dependent. This should only be called in two situations.
@ -2418,15 +2419,18 @@ void nmethod::check_all_dependencies(DepChange& changes) {
// Turn off dependency tracing while actually testing dependencies. // Turn off dependency tracing while actually testing dependencies.
NOT_PRODUCT( FlagSetting fs(TraceDependencies, false) ); NOT_PRODUCT( FlagSetting fs(TraceDependencies, false) );
typedef ResourceHashtable<DependencySignature, int, &DependencySignature::hash, typedef ResourceHashtable<DependencySignature, int, &DependencySignature::hash,
&DependencySignature::equals, 11027> DepTable; &DependencySignature::equals, 11027> DepTable;
DepTable* table = new DepTable(); DepTable* table = new DepTable();
// Iterate over live nmethods and check dependencies of all nmethods that are not // Iterate over live nmethods and check dependencies of all nmethods that are not
// marked for deoptimization. A particular dependency is only checked once. // marked for deoptimization. A particular dependency is only checked once.
for(nmethod* nm = CodeCache::alive_nmethod(CodeCache::first()); nm != NULL; nm = CodeCache::alive_nmethod(CodeCache::next(nm))) { NMethodIterator iter;
if (!nm->is_marked_for_deoptimization()) { while(iter.next()) {
nmethod* nm = iter.method();
// Only notify for live nmethods
if (nm->is_alive() && !nm->is_marked_for_deoptimization()) {
for (Dependencies::DepStream deps(nm); deps.next(); ) { for (Dependencies::DepStream deps(nm); deps.next(); ) {
// Construct abstraction of a dependency. // Construct abstraction of a dependency.
DependencySignature* current_sig = new DependencySignature(deps); DependencySignature* current_sig = new DependencySignature(deps);

View File

@ -288,7 +288,7 @@ class nmethod : public CodeBlob {
int comp_level); int comp_level);
// helper methods // helper methods
void* operator new(size_t size, int nmethod_size) throw(); void* operator new(size_t size, int nmethod_size, int comp_level) throw();
const char* reloc_string_for(u_char* begin, u_char* end); const char* reloc_string_for(u_char* begin, u_char* end);
// Returns true if this thread changed the state of the nmethod or // Returns true if this thread changed the state of the nmethod or

View File

@ -63,7 +63,7 @@ void* VtableStub::operator new(size_t size, int code_size) throw() {
// If changing the name, update the other file accordingly. // If changing the name, update the other file accordingly.
BufferBlob* blob = BufferBlob::create("vtable chunks", bytes); BufferBlob* blob = BufferBlob::create("vtable chunks", bytes);
if (blob == NULL) { if (blob == NULL) {
CompileBroker::handle_full_code_cache(); CompileBroker::handle_full_code_cache(CodeBlobType::NonMethod);
return NULL; return NULL;
} }
_chunk = blob->content_begin(); _chunk = blob->content_begin();

View File

@ -783,18 +783,22 @@ CompileQueue* CompileBroker::compile_queue(int comp_level) {
void CompileBroker::print_compile_queues(outputStream* st) { void CompileBroker::print_compile_queues(outputStream* st) {
_c1_compile_queue->print(st); MutexLocker locker(MethodCompileQueue_lock);
_c2_compile_queue->print(st); if (_c1_compile_queue != NULL) {
_c1_compile_queue->print(st);
}
if (_c2_compile_queue != NULL) {
_c2_compile_queue->print(st);
}
} }
void CompileQueue::print(outputStream* st) { void CompileQueue::print(outputStream* st) {
assert_locked_or_safepoint(lock()); assert(lock()->owned_by_self(), "must own lock");
st->print_cr("Contents of %s", name()); st->print_cr("Contents of %s", name());
st->print_cr("----------------------------"); st->print_cr("----------------------------");
CompileTask* task = _first; CompileTask* task = _first;
if (task == NULL) { if (task == NULL) {
st->print_cr("Empty");; st->print_cr("Empty");
} else { } else {
while (task != NULL) { while (task != NULL) {
task->print_compilation(st, NULL, true, true); task->print_compilation(st, NULL, true, true);
@ -1206,6 +1210,12 @@ void CompileBroker::compile_method_base(methodHandle method,
return; return;
} }
if (TieredCompilation) {
// Tiered policy requires MethodCounters to exist before adding a method to
// the queue. Create if we don't have them yet.
method->get_method_counters(thread);
}
// Outputs from the following MutexLocker block: // Outputs from the following MutexLocker block:
CompileTask* task = NULL; CompileTask* task = NULL;
bool blocking = false; bool blocking = false;
@ -1747,9 +1757,11 @@ void CompileBroker::compiler_thread_loop() {
// We need this HandleMark to avoid leaking VM handles. // We need this HandleMark to avoid leaking VM handles.
HandleMark hm(thread); HandleMark hm(thread);
if (CodeCache::unallocated_capacity() < CodeCacheMinimumFreeSpace) { // Check if the CodeCache is full
// the code cache is really full int code_blob_type = 0;
handle_full_code_cache(); if (CodeCache::is_full(&code_blob_type)) {
// The CodeHeap for code_blob_type is really full
handle_full_code_cache(code_blob_type);
} }
CompileTask* task = queue->get(); CompileTask* task = queue->get();
@ -1777,22 +1789,6 @@ void CompileBroker::compiler_thread_loop() {
if (method()->number_of_breakpoints() == 0) { if (method()->number_of_breakpoints() == 0) {
// Compile the method. // Compile the method.
if ((UseCompiler || AlwaysCompileLoopMethods) && CompileBroker::should_compile_new_jobs()) { if ((UseCompiler || AlwaysCompileLoopMethods) && CompileBroker::should_compile_new_jobs()) {
#ifdef COMPILER1
// Allow repeating compilations for the purpose of benchmarking
// compile speed. This is not useful for customers.
if (CompilationRepeat != 0) {
int compile_count = CompilationRepeat;
while (compile_count > 0) {
invoke_compiler_on_method(task);
nmethod* nm = method->code();
if (nm != NULL) {
nm->make_zombie();
method->clear_code();
}
compile_count--;
}
}
#endif /* COMPILER1 */
invoke_compiler_on_method(task); invoke_compiler_on_method(task);
} else { } else {
// After compilation is disabled, remove remaining methods from queue // After compilation is disabled, remove remaining methods from queue
@ -2079,7 +2075,7 @@ void CompileBroker::invoke_compiler_on_method(CompileTask* task) {
* The CodeCache is full. Print out warning and disable compilation * The CodeCache is full. Print out warning and disable compilation
* or try code cache cleaning so compilation can continue later. * or try code cache cleaning so compilation can continue later.
*/ */
void CompileBroker::handle_full_code_cache() { void CompileBroker::handle_full_code_cache(int code_blob_type) {
UseInterpreter = true; UseInterpreter = true;
if (UseCompiler || AlwaysCompileLoopMethods ) { if (UseCompiler || AlwaysCompileLoopMethods ) {
if (xtty != NULL) { if (xtty != NULL) {
@ -2096,8 +2092,6 @@ void CompileBroker::handle_full_code_cache() {
xtty->end_elem(); xtty->end_elem();
} }
CodeCache::report_codemem_full();
#ifndef PRODUCT #ifndef PRODUCT
if (CompileTheWorld || ExitOnFullCodeCache) { if (CompileTheWorld || ExitOnFullCodeCache) {
codecache_print(/* detailed= */ true); codecache_print(/* detailed= */ true);
@ -2119,12 +2113,7 @@ void CompileBroker::handle_full_code_cache() {
disable_compilation_forever(); disable_compilation_forever();
} }
// Print warning only once CodeCache::report_codemem_full(code_blob_type, should_print_compiler_warning());
if (should_print_compiler_warning()) {
warning("CodeCache is full. Compiler has been disabled.");
warning("Try increasing the code cache size using -XX:ReservedCodeCacheSize=");
codecache_print(/* detailed= */ true);
}
} }
} }

View File

@ -434,7 +434,7 @@ class CompileBroker: AllStatic {
static bool is_compilation_disabled_forever() { static bool is_compilation_disabled_forever() {
return _should_compile_new_jobs == shutdown_compilaton; return _should_compile_new_jobs == shutdown_compilaton;
} }
static void handle_full_code_cache(); static void handle_full_code_cache(int code_blob_type);
// Ensures that warning is only printed once. // Ensures that warning is only printed once.
static bool should_print_compiler_warning() { static bool should_print_compiler_warning() {
jint old = Atomic::cmpxchg(1, &_print_compilation_warning, 0); jint old = Atomic::cmpxchg(1, &_print_compilation_warning, 0);

View File

@ -4167,7 +4167,7 @@ class Par_ConcMarkingClosure: public MetadataAwareOopClosure {
// been published), so we do not need to check for // been published), so we do not need to check for
// uninitialized objects before pushing here. // uninitialized objects before pushing here.
void Par_ConcMarkingClosure::do_oop(oop obj) { void Par_ConcMarkingClosure::do_oop(oop obj) {
assert(obj->is_oop_or_null(true), "expected an oop or NULL"); assert(obj->is_oop_or_null(true), err_msg("Expected an oop or NULL at " PTR_FORMAT, p2i(obj)));
HeapWord* addr = (HeapWord*)obj; HeapWord* addr = (HeapWord*)obj;
// Check if oop points into the CMS generation // Check if oop points into the CMS generation
// and is not marked // and is not marked
@ -7226,7 +7226,7 @@ void SurvivorSpacePrecleanClosure::do_yield_work() {
// isMarked() query is "safe". // isMarked() query is "safe".
bool ScanMarkedObjectsAgainClosure::do_object_bm(oop p, MemRegion mr) { bool ScanMarkedObjectsAgainClosure::do_object_bm(oop p, MemRegion mr) {
// Ignore mark word because we are running concurrent with mutators // Ignore mark word because we are running concurrent with mutators
assert(p->is_oop_or_null(true), "expected an oop or null"); assert(p->is_oop_or_null(true), err_msg("Expected an oop or NULL at " PTR_FORMAT, p2i(p)));
HeapWord* addr = (HeapWord*)p; HeapWord* addr = (HeapWord*)p;
assert(_span.contains(addr), "we are scanning the CMS generation"); assert(_span.contains(addr), "we are scanning the CMS generation");
bool is_obj_array = false; bool is_obj_array = false;
@ -7666,7 +7666,7 @@ void PushAndMarkVerifyClosure::handle_stack_overflow(HeapWord* lost) {
} }
void PushAndMarkVerifyClosure::do_oop(oop obj) { void PushAndMarkVerifyClosure::do_oop(oop obj) {
assert(obj->is_oop_or_null(), "expected an oop or NULL"); assert(obj->is_oop_or_null(), err_msg("Expected an oop or NULL at " PTR_FORMAT, p2i(obj)));
HeapWord* addr = (HeapWord*)obj; HeapWord* addr = (HeapWord*)obj;
if (_span.contains(addr) && !_verification_bm->isMarked(addr)) { if (_span.contains(addr) && !_verification_bm->isMarked(addr)) {
// Oop lies in _span and isn't yet grey or black // Oop lies in _span and isn't yet grey or black
@ -7764,7 +7764,7 @@ void Par_PushOrMarkClosure::handle_stack_overflow(HeapWord* lost) {
void PushOrMarkClosure::do_oop(oop obj) { void PushOrMarkClosure::do_oop(oop obj) {
// Ignore mark word because we are running concurrent with mutators. // Ignore mark word because we are running concurrent with mutators.
assert(obj->is_oop_or_null(true), "expected an oop or NULL"); assert(obj->is_oop_or_null(true), err_msg("Expected an oop or NULL at " PTR_FORMAT, p2i(obj)));
HeapWord* addr = (HeapWord*)obj; HeapWord* addr = (HeapWord*)obj;
if (_span.contains(addr) && !_bitMap->isMarked(addr)) { if (_span.contains(addr) && !_bitMap->isMarked(addr)) {
// Oop lies in _span and isn't yet grey or black // Oop lies in _span and isn't yet grey or black
@ -7802,7 +7802,7 @@ void PushOrMarkClosure::do_oop(narrowOop* p) { PushOrMarkClosure::do_oop_work(p)
void Par_PushOrMarkClosure::do_oop(oop obj) { void Par_PushOrMarkClosure::do_oop(oop obj) {
// Ignore mark word because we are running concurrent with mutators. // Ignore mark word because we are running concurrent with mutators.
assert(obj->is_oop_or_null(true), "expected an oop or NULL"); assert(obj->is_oop_or_null(true), err_msg("Expected an oop or NULL at " PTR_FORMAT, p2i(obj)));
HeapWord* addr = (HeapWord*)obj; HeapWord* addr = (HeapWord*)obj;
if (_whole_span.contains(addr) && !_bit_map->isMarked(addr)) { if (_whole_span.contains(addr) && !_bit_map->isMarked(addr)) {
// Oop lies in _span and isn't yet grey or black // Oop lies in _span and isn't yet grey or black
@ -7879,7 +7879,7 @@ void PushAndMarkClosure::do_oop(oop obj) {
// path and may be at the end of the global overflow list (so // path and may be at the end of the global overflow list (so
// the mark word may be NULL). // the mark word may be NULL).
assert(obj->is_oop_or_null(true /* ignore mark word */), assert(obj->is_oop_or_null(true /* ignore mark word */),
"expected an oop or NULL"); err_msg("Expected an oop or NULL at " PTR_FORMAT, p2i(obj)));
HeapWord* addr = (HeapWord*)obj; HeapWord* addr = (HeapWord*)obj;
// Check if oop points into the CMS generation // Check if oop points into the CMS generation
// and is not marked // and is not marked
@ -7959,7 +7959,7 @@ void Par_PushAndMarkClosure::do_oop(oop obj) {
// the debugger, is_oop_or_null(false) may subsequently start // the debugger, is_oop_or_null(false) may subsequently start
// to hold. // to hold.
assert(obj->is_oop_or_null(true), assert(obj->is_oop_or_null(true),
"expected an oop or NULL"); err_msg("Expected an oop or NULL at " PTR_FORMAT, p2i(obj)));
HeapWord* addr = (HeapWord*)obj; HeapWord* addr = (HeapWord*)obj;
// Check if oop points into the CMS generation // Check if oop points into the CMS generation
// and is not marked // and is not marked

View File

@ -73,7 +73,7 @@ class PromotedObject VALUE_OBJ_CLASS_SPEC {
} else { } else {
res = (PromotedObject*)(_next & next_mask); res = (PromotedObject*)(_next & next_mask);
} }
assert(oop(res)->is_oop_or_null(true /* ignore mark word */), "Not an oop?"); assert(oop(res)->is_oop_or_null(true /* ignore mark word */), err_msg("Expected an oop or NULL at " PTR_FORMAT, p2i(oop(res))));
return res; return res;
} }
inline void setNext(PromotedObject* x) { inline void setNext(PromotedObject* x) {

View File

@ -107,7 +107,7 @@ void CollectionSetChooser::verify() {
HeapRegion *curr = regions_at(index++); HeapRegion *curr = regions_at(index++);
guarantee(curr != NULL, "Regions in _regions array cannot be NULL"); guarantee(curr != NULL, "Regions in _regions array cannot be NULL");
guarantee(!curr->is_young(), "should not be young!"); guarantee(!curr->is_young(), "should not be young!");
guarantee(!curr->isHumongous(), "should not be humongous!"); guarantee(!curr->is_humongous(), "should not be humongous!");
if (prev != NULL) { if (prev != NULL) {
guarantee(order_regions(prev, curr) != 1, guarantee(order_regions(prev, curr) != 1,
err_msg("GC eff prev: %1.4f GC eff curr: %1.4f", err_msg("GC eff prev: %1.4f GC eff curr: %1.4f",
@ -149,7 +149,7 @@ void CollectionSetChooser::sort_regions() {
void CollectionSetChooser::add_region(HeapRegion* hr) { void CollectionSetChooser::add_region(HeapRegion* hr) {
assert(!hr->isHumongous(), assert(!hr->is_humongous(),
"Humongous regions shouldn't be added to the collection set"); "Humongous regions shouldn't be added to the collection set");
assert(!hr->is_young(), "should not be young!"); assert(!hr->is_young(), "should not be young!");
_regions.append(hr); _regions.append(hr);

View File

@ -109,7 +109,7 @@ public:
bool should_add(HeapRegion* hr) { bool should_add(HeapRegion* hr) {
assert(hr->is_marked(), "pre-condition"); assert(hr->is_marked(), "pre-condition");
assert(!hr->is_young(), "should never consider young regions"); assert(!hr->is_young(), "should never consider young regions");
return !hr->isHumongous() && return !hr->is_humongous() &&
hr->live_bytes() < _region_live_threshold_bytes; hr->live_bytes() < _region_live_threshold_bytes;
} }

View File

@ -910,7 +910,7 @@ bool ConcurrentMark::nextMarkBitmapIsClear() {
class NoteStartOfMarkHRClosure: public HeapRegionClosure { class NoteStartOfMarkHRClosure: public HeapRegionClosure {
public: public:
bool doHeapRegion(HeapRegion* r) { bool doHeapRegion(HeapRegion* r) {
if (!r->continuesHumongous()) { if (!r->is_continues_humongous()) {
r->note_start_of_marking(); r->note_start_of_marking();
} }
return false; return false;
@ -1288,6 +1288,22 @@ void ConcurrentMark::markFromRoots() {
print_stats(); print_stats();
} }
// Helper class to get rid of some boilerplate code.
class G1CMTraceTime : public GCTraceTime {
static bool doit_and_prepend(bool doit) {
if (doit) {
gclog_or_tty->put(' ');
}
return doit;
}
public:
G1CMTraceTime(const char* title, bool doit)
: GCTraceTime(title, doit_and_prepend(doit), false, G1CollectedHeap::heap()->gc_timer_cm(),
G1CollectedHeap::heap()->concurrent_mark()->concurrent_gc_id()) {
}
};
void ConcurrentMark::checkpointRootsFinal(bool clear_all_soft_refs) { void ConcurrentMark::checkpointRootsFinal(bool clear_all_soft_refs) {
// world is stopped at this checkpoint // world is stopped at this checkpoint
assert(SafepointSynchronize::is_at_safepoint(), assert(SafepointSynchronize::is_at_safepoint(),
@ -1341,9 +1357,13 @@ void ConcurrentMark::checkpointRootsFinal(bool clear_all_soft_refs) {
// marking due to overflowing the global mark stack. // marking due to overflowing the global mark stack.
reset_marking_state(); reset_marking_state();
} else { } else {
// Aggregate the per-task counting data that we have accumulated {
// while marking. G1CMTraceTime trace("GC aggregate-data", G1Log::finer());
aggregate_count_data();
// Aggregate the per-task counting data that we have accumulated
// while marking.
aggregate_count_data();
}
SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set(); SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
// We're done with marking. // We're done with marking.
@ -1398,10 +1418,10 @@ protected:
// to 1 the bits on the region bitmap that correspond to its // to 1 the bits on the region bitmap that correspond to its
// associated "continues humongous" regions. // associated "continues humongous" regions.
void set_bit_for_region(HeapRegion* hr) { void set_bit_for_region(HeapRegion* hr) {
assert(!hr->continuesHumongous(), "should have filtered those out"); assert(!hr->is_continues_humongous(), "should have filtered those out");
BitMap::idx_t index = (BitMap::idx_t) hr->hrm_index(); BitMap::idx_t index = (BitMap::idx_t) hr->hrm_index();
if (!hr->startsHumongous()) { if (!hr->is_starts_humongous()) {
// Normal (non-humongous) case: just set the bit. // Normal (non-humongous) case: just set the bit.
_region_bm->par_at_put(index, true); _region_bm->par_at_put(index, true);
} else { } else {
@ -1434,7 +1454,7 @@ public:
bool doHeapRegion(HeapRegion* hr) { bool doHeapRegion(HeapRegion* hr) {
if (hr->continuesHumongous()) { if (hr->is_continues_humongous()) {
// We will ignore these here and process them when their // We will ignore these here and process them when their
// associated "starts humongous" region is processed (see // associated "starts humongous" region is processed (see
// set_bit_for_heap_region()). Note that we cannot rely on their // set_bit_for_heap_region()). Note that we cannot rely on their
@ -1556,7 +1576,7 @@ public:
int failures() const { return _failures; } int failures() const { return _failures; }
bool doHeapRegion(HeapRegion* hr) { bool doHeapRegion(HeapRegion* hr) {
if (hr->continuesHumongous()) { if (hr->is_continues_humongous()) {
// We will ignore these here and process them when their // We will ignore these here and process them when their
// associated "starts humongous" region is processed (see // associated "starts humongous" region is processed (see
// set_bit_for_heap_region()). Note that we cannot rely on their // set_bit_for_heap_region()). Note that we cannot rely on their
@ -1731,7 +1751,7 @@ class FinalCountDataUpdateClosure: public CMCountDataClosureBase {
bool doHeapRegion(HeapRegion* hr) { bool doHeapRegion(HeapRegion* hr) {
if (hr->continuesHumongous()) { if (hr->is_continues_humongous()) {
// We will ignore these here and process them when their // We will ignore these here and process them when their
// associated "starts humongous" region is processed (see // associated "starts humongous" region is processed (see
// set_bit_for_heap_region()). Note that we cannot rely on their // set_bit_for_heap_region()). Note that we cannot rely on their
@ -1861,7 +1881,7 @@ public:
const HeapRegionSetCount& humongous_regions_removed() { return _humongous_regions_removed; } const HeapRegionSetCount& humongous_regions_removed() { return _humongous_regions_removed; }
bool doHeapRegion(HeapRegion *hr) { bool doHeapRegion(HeapRegion *hr) {
if (hr->continuesHumongous()) { if (hr->is_continues_humongous()) {
return false; return false;
} }
// We use a claim value of zero here because all regions // We use a claim value of zero here because all regions
@ -1875,8 +1895,8 @@ public:
if (hr->used() > 0 && hr->max_live_bytes() == 0 && !hr->is_young()) { if (hr->used() > 0 && hr->max_live_bytes() == 0 && !hr->is_young()) {
_freed_bytes += hr->used(); _freed_bytes += hr->used();
hr->set_containing_set(NULL); hr->set_containing_set(NULL);
if (hr->isHumongous()) { if (hr->is_humongous()) {
assert(hr->startsHumongous(), "we should only see starts humongous"); assert(hr->is_starts_humongous(), "we should only see starts humongous");
_humongous_regions_removed.increment(1u, hr->capacity()); _humongous_regions_removed.increment(1u, hr->capacity());
_g1->free_humongous_region(hr, _local_cleanup_list, true); _g1->free_humongous_region(hr, _local_cleanup_list, true);
} else { } else {
@ -2466,22 +2486,6 @@ void ConcurrentMark::weakRefsWorkParallelPart(BoolObjectClosure* is_alive, bool
G1CollectedHeap::heap()->parallel_cleaning(is_alive, true, true, purged_classes); G1CollectedHeap::heap()->parallel_cleaning(is_alive, true, true, purged_classes);
} }
// Helper class to get rid of some boilerplate code.
class G1RemarkGCTraceTime : public GCTraceTime {
static bool doit_and_prepend(bool doit) {
if (doit) {
gclog_or_tty->put(' ');
}
return doit;
}
public:
G1RemarkGCTraceTime(const char* title, bool doit)
: GCTraceTime(title, doit_and_prepend(doit), false, G1CollectedHeap::heap()->gc_timer_cm(),
G1CollectedHeap::heap()->concurrent_mark()->concurrent_gc_id()) {
}
};
void ConcurrentMark::weakRefsWork(bool clear_all_soft_refs) { void ConcurrentMark::weakRefsWork(bool clear_all_soft_refs) {
if (has_overflown()) { if (has_overflown()) {
// Skip processing the discovered references if we have // Skip processing the discovered references if we have
@ -2504,10 +2508,7 @@ void ConcurrentMark::weakRefsWork(bool clear_all_soft_refs) {
// Inner scope to exclude the cleaning of the string and symbol // Inner scope to exclude the cleaning of the string and symbol
// tables from the displayed time. // tables from the displayed time.
{ {
if (G1Log::finer()) { G1CMTraceTime t("GC ref-proc", G1Log::finer());
gclog_or_tty->put(' ');
}
GCTraceTime t("GC ref-proc", G1Log::finer(), false, g1h->gc_timer_cm(), concurrent_gc_id());
ReferenceProcessor* rp = g1h->ref_processor_cm(); ReferenceProcessor* rp = g1h->ref_processor_cm();
@ -2598,24 +2599,24 @@ void ConcurrentMark::weakRefsWork(bool clear_all_soft_refs) {
// Unload Klasses, String, Symbols, Code Cache, etc. // Unload Klasses, String, Symbols, Code Cache, etc.
{ {
G1RemarkGCTraceTime trace("Unloading", G1Log::finer()); G1CMTraceTime trace("Unloading", G1Log::finer());
if (ClassUnloadingWithConcurrentMark) { if (ClassUnloadingWithConcurrentMark) {
bool purged_classes; bool purged_classes;
{ {
G1RemarkGCTraceTime trace("System Dictionary Unloading", G1Log::finest()); G1CMTraceTime trace("System Dictionary Unloading", G1Log::finest());
purged_classes = SystemDictionary::do_unloading(&g1_is_alive); purged_classes = SystemDictionary::do_unloading(&g1_is_alive);
} }
{ {
G1RemarkGCTraceTime trace("Parallel Unloading", G1Log::finest()); G1CMTraceTime trace("Parallel Unloading", G1Log::finest());
weakRefsWorkParallelPart(&g1_is_alive, purged_classes); weakRefsWorkParallelPart(&g1_is_alive, purged_classes);
} }
} }
if (G1StringDedup::is_enabled()) { if (G1StringDedup::is_enabled()) {
G1RemarkGCTraceTime trace("String Deduplication Unlink", G1Log::finest()); G1CMTraceTime trace("String Deduplication Unlink", G1Log::finest());
G1StringDedup::unlink(&g1_is_alive); G1StringDedup::unlink(&g1_is_alive);
} }
} }
@ -2719,7 +2720,7 @@ void ConcurrentMark::checkpointRootsFinalWork() {
HandleMark hm; HandleMark hm;
G1CollectedHeap* g1h = G1CollectedHeap::heap(); G1CollectedHeap* g1h = G1CollectedHeap::heap();
G1RemarkGCTraceTime trace("Finalize Marking", G1Log::finer()); G1CMTraceTime trace("Finalize Marking", G1Log::finer());
g1h->ensure_parsability(false); g1h->ensure_parsability(false);
@ -3191,7 +3192,7 @@ class AggregateCountDataHRClosure: public HeapRegionClosure {
_cm_card_bm(cm_card_bm), _max_worker_id(max_worker_id) { } _cm_card_bm(cm_card_bm), _max_worker_id(max_worker_id) { }
bool doHeapRegion(HeapRegion* hr) { bool doHeapRegion(HeapRegion* hr) {
if (hr->continuesHumongous()) { if (hr->is_continues_humongous()) {
// We will ignore these here and process them when their // We will ignore these here and process them when their
// associated "starts humongous" region is processed. // associated "starts humongous" region is processed.
// Note that we cannot rely on their associated // Note that we cannot rely on their associated
@ -3334,6 +3335,7 @@ void ConcurrentMark::aggregate_count_data() {
} else { } else {
g1_par_agg_task.work(0); g1_par_agg_task.work(0);
} }
_g1h->allocation_context_stats().update_at_remark();
} }
// Clear the per-worker arrays used to store the per-region counting data // Clear the per-worker arrays used to store the per-region counting data
@ -3562,7 +3564,7 @@ G1CMOopClosure::G1CMOopClosure(G1CollectedHeap* g1h,
void CMTask::setup_for_region(HeapRegion* hr) { void CMTask::setup_for_region(HeapRegion* hr) {
assert(hr != NULL, assert(hr != NULL,
"claim_region() should have filtered out NULL regions"); "claim_region() should have filtered out NULL regions");
assert(!hr->continuesHumongous(), assert(!hr->is_continues_humongous(),
"claim_region() should have filtered out continues humongous regions"); "claim_region() should have filtered out continues humongous regions");
if (_cm->verbose_low()) { if (_cm->verbose_low()) {
@ -4287,7 +4289,7 @@ void CMTask::do_marking_step(double time_target_ms,
HR_FORMAT_PARAMS(_curr_region)); HR_FORMAT_PARAMS(_curr_region));
} }
assert(!_curr_region->isHumongous() || mr.start() == _curr_region->bottom(), assert(!_curr_region->is_humongous() || mr.start() == _curr_region->bottom(),
"humongous regions should go around loop once only"); "humongous regions should go around loop once only");
// Some special cases: // Some special cases:
@ -4301,7 +4303,7 @@ void CMTask::do_marking_step(double time_target_ms,
if (mr.is_empty()) { if (mr.is_empty()) {
giveup_current_region(); giveup_current_region();
regular_clock_call(); regular_clock_call();
} else if (_curr_region->isHumongous() && mr.start() == _curr_region->bottom()) { } else if (_curr_region->is_humongous() && mr.start() == _curr_region->bottom()) {
if (_nextMarkBitMap->isMarked(mr.start())) { if (_nextMarkBitMap->isMarked(mr.start())) {
// The object is marked - apply the closure // The object is marked - apply the closure
BitMap::idx_t offset = _nextMarkBitMap->heapWordToOffset(mr.start()); BitMap::idx_t offset = _nextMarkBitMap->heapWordToOffset(mr.start());
@ -4748,7 +4750,7 @@ bool G1PrintRegionLivenessInfoClosure::doHeapRegion(HeapRegion* r) {
size_t remset_bytes = r->rem_set()->mem_size(); size_t remset_bytes = r->rem_set()->mem_size();
size_t strong_code_roots_bytes = r->rem_set()->strong_code_roots_mem_size(); size_t strong_code_roots_bytes = r->rem_set()->strong_code_roots_mem_size();
if (r->startsHumongous()) { if (r->is_starts_humongous()) {
assert(_hum_used_bytes == 0 && _hum_capacity_bytes == 0 && assert(_hum_used_bytes == 0 && _hum_capacity_bytes == 0 &&
_hum_prev_live_bytes == 0 && _hum_next_live_bytes == 0, _hum_prev_live_bytes == 0 && _hum_next_live_bytes == 0,
"they should have been zeroed after the last time we used them"); "they should have been zeroed after the last time we used them");
@ -4760,7 +4762,7 @@ bool G1PrintRegionLivenessInfoClosure::doHeapRegion(HeapRegion* r) {
get_hum_bytes(&used_bytes, &capacity_bytes, get_hum_bytes(&used_bytes, &capacity_bytes,
&prev_live_bytes, &next_live_bytes); &prev_live_bytes, &next_live_bytes);
end = bottom + HeapRegion::GrainWords; end = bottom + HeapRegion::GrainWords;
} else if (r->continuesHumongous()) { } else if (r->is_continues_humongous()) {
get_hum_bytes(&used_bytes, &capacity_bytes, get_hum_bytes(&used_bytes, &capacity_bytes,
&prev_live_bytes, &next_live_bytes); &prev_live_bytes, &next_live_bytes);
assert(end == bottom + HeapRegion::GrainWords, "invariant"); assert(end == bottom + HeapRegion::GrainWords, "invariant");

View File

@ -88,7 +88,7 @@ inline void ConcurrentMark::count_region(MemRegion mr, HeapRegion* hr,
size_t region_size_bytes = mr.byte_size(); size_t region_size_bytes = mr.byte_size();
uint index = hr->hrm_index(); uint index = hr->hrm_index();
assert(!hr->continuesHumongous(), "should not be HC region"); assert(!hr->is_continues_humongous(), "should not be HC region");
assert(hr == g1h->heap_region_containing(start), "sanity"); assert(hr == g1h->heap_region_containing(start), "sanity");
assert(hr == g1h->heap_region_containing(mr.last()), "sanity"); assert(hr == g1h->heap_region_containing(mr.last()), "sanity");
assert(marked_bytes_array != NULL, "pre-condition"); assert(marked_bytes_array != NULL, "pre-condition");
@ -277,7 +277,7 @@ inline void CMTask::deal_with_reference(oop obj) {
++_refs_reached; ++_refs_reached;
HeapWord* objAddr = (HeapWord*) obj; HeapWord* objAddr = (HeapWord*) obj;
assert(obj->is_oop_or_null(true /* ignore mark word */), "Error"); assert(obj->is_oop_or_null(true /* ignore mark word */), err_msg("Expected an oop or NULL at " PTR_FORMAT, p2i(obj)));
if (_g1h->is_in_g1_reserved(objAddr)) { if (_g1h->is_in_g1_reserved(objAddr)) {
assert(obj != NULL, "null check is implicit"); assert(obj != NULL, "null check is implicit");
if (!_nextMarkBitMap->isMarked(objAddr)) { if (!_nextMarkBitMap->isMarked(objAddr)) {
@ -366,7 +366,7 @@ inline void ConcurrentMark::grayRoot(oop obj, size_t word_size,
assert(hr != NULL, "sanity"); assert(hr != NULL, "sanity");
// Given that we're looking for a region that contains an object // Given that we're looking for a region that contains an object
// header it's impossible to get back a HC region. // header it's impossible to get back a HC region.
assert(!hr->continuesHumongous(), "sanity"); assert(!hr->is_continues_humongous(), "sanity");
// We cannot assert that word_size == obj->size() given that obj // We cannot assert that word_size == obj->size() given that obj
// might not be in a consistent state (another thread might be in // might not be in a consistent state (another thread might be in

View File

@ -129,8 +129,7 @@ HeapWord* G1AllocRegion::new_alloc_region_and_allocate(size_t word_size,
// Note that we first perform the allocation and then we store the // Note that we first perform the allocation and then we store the
// region in _alloc_region. This is the reason why an active region // region in _alloc_region. This is the reason why an active region
// can never be empty. // can never be empty.
_alloc_region = new_alloc_region; update_alloc_region(new_alloc_region);
_count += 1;
trace("region allocation successful"); trace("region allocation successful");
return result; return result;
} else { } else {
@ -172,6 +171,19 @@ void G1AllocRegion::set(HeapRegion* alloc_region) {
trace("set"); trace("set");
} }
void G1AllocRegion::update_alloc_region(HeapRegion* alloc_region) {
trace("update");
// We explicitly check that the region is not empty to make sure we
// maintain the "the alloc region cannot be empty" invariant.
assert(alloc_region != NULL && !alloc_region->is_empty(),
ar_ext_msg(this, "pre-condition"));
_alloc_region = alloc_region;
_alloc_region->set_allocation_context(allocation_context());
_count += 1;
trace("updated");
}
HeapRegion* G1AllocRegion::release() { HeapRegion* G1AllocRegion::release() {
trace("releasing"); trace("releasing");
HeapRegion* alloc_region = _alloc_region; HeapRegion* alloc_region = _alloc_region;
@ -225,5 +237,70 @@ void G1AllocRegion::trace(const char* str, size_t word_size, HeapWord* result) {
G1AllocRegion::G1AllocRegion(const char* name, G1AllocRegion::G1AllocRegion(const char* name,
bool bot_updates) bool bot_updates)
: _name(name), _bot_updates(bot_updates), : _name(name), _bot_updates(bot_updates),
_alloc_region(NULL), _count(0), _used_bytes_before(0) { } _alloc_region(NULL), _count(0), _used_bytes_before(0),
_allocation_context(AllocationContext::system()) { }
HeapRegion* MutatorAllocRegion::allocate_new_region(size_t word_size,
bool force) {
return _g1h->new_mutator_alloc_region(word_size, force);
}
void MutatorAllocRegion::retire_region(HeapRegion* alloc_region,
size_t allocated_bytes) {
_g1h->retire_mutator_alloc_region(alloc_region, allocated_bytes);
}
HeapRegion* SurvivorGCAllocRegion::allocate_new_region(size_t word_size,
bool force) {
assert(!force, "not supported for GC alloc regions");
return _g1h->new_gc_alloc_region(word_size, count(), GCAllocForSurvived);
}
void SurvivorGCAllocRegion::retire_region(HeapRegion* alloc_region,
size_t allocated_bytes) {
_g1h->retire_gc_alloc_region(alloc_region, allocated_bytes,
GCAllocForSurvived);
}
HeapRegion* OldGCAllocRegion::allocate_new_region(size_t word_size,
bool force) {
assert(!force, "not supported for GC alloc regions");
return _g1h->new_gc_alloc_region(word_size, count(), GCAllocForTenured);
}
void OldGCAllocRegion::retire_region(HeapRegion* alloc_region,
size_t allocated_bytes) {
_g1h->retire_gc_alloc_region(alloc_region, allocated_bytes,
GCAllocForTenured);
}
HeapRegion* OldGCAllocRegion::release() {
HeapRegion* cur = get();
if (cur != NULL) {
// Determine how far we are from the next card boundary. If it is smaller than
// the minimum object size we can allocate into, expand into the next card.
HeapWord* top = cur->top();
HeapWord* aligned_top = (HeapWord*)align_ptr_up(top, G1BlockOffsetSharedArray::N_bytes);
size_t to_allocate_words = pointer_delta(aligned_top, top, HeapWordSize);
if (to_allocate_words != 0) {
// We are not at a card boundary. Fill up, possibly into the next, taking the
// end of the region and the minimum object size into account.
to_allocate_words = MIN2(pointer_delta(cur->end(), cur->top(), HeapWordSize),
MAX2(to_allocate_words, G1CollectedHeap::min_fill_size()));
// Skip allocation if there is not enough space to allocate even the smallest
// possible object. In this case this region will not be retained, so the
// original problem cannot occur.
if (to_allocate_words >= G1CollectedHeap::min_fill_size()) {
HeapWord* dummy = attempt_allocation(to_allocate_words, true /* bot_updates */);
CollectedHeap::fill_with_object(dummy, to_allocate_words);
}
}
}
return G1AllocRegion::release();
}

View File

@ -57,6 +57,9 @@ private:
// correct use of init() and release()). // correct use of init() and release()).
HeapRegion* volatile _alloc_region; HeapRegion* volatile _alloc_region;
// Allocation context associated with this alloc region.
AllocationContext_t _allocation_context;
// It keeps track of the distinct number of regions that are used // It keeps track of the distinct number of regions that are used
// for allocation in the active interval of this object, i.e., // for allocation in the active interval of this object, i.e.,
// between a call to init() and a call to release(). The count // between a call to init() and a call to release(). The count
@ -110,6 +113,10 @@ private:
// else can allocate out of it. // else can allocate out of it.
void retire(bool fill_up); void retire(bool fill_up);
// After a region is allocated by alloc_new_region, this
// method is used to set it as the active alloc_region
void update_alloc_region(HeapRegion* alloc_region);
// Allocate a new active region and use it to perform a word_size // Allocate a new active region and use it to perform a word_size
// allocation. The force parameter will be passed on to // allocation. The force parameter will be passed on to
// G1CollectedHeap::allocate_new_alloc_region() and tells it to try // G1CollectedHeap::allocate_new_alloc_region() and tells it to try
@ -137,6 +144,9 @@ public:
return (hr == _dummy_region) ? NULL : hr; return (hr == _dummy_region) ? NULL : hr;
} }
void set_allocation_context(AllocationContext_t context) { _allocation_context = context; }
AllocationContext_t allocation_context() { return _allocation_context; }
uint count() { return _count; } uint count() { return _count; }
// The following two are the building blocks for the allocation method. // The following two are the building blocks for the allocation method.
@ -182,6 +192,40 @@ public:
#endif // G1_ALLOC_REGION_TRACING #endif // G1_ALLOC_REGION_TRACING
}; };
class MutatorAllocRegion : public G1AllocRegion {
protected:
virtual HeapRegion* allocate_new_region(size_t word_size, bool force);
virtual void retire_region(HeapRegion* alloc_region, size_t allocated_bytes);
public:
MutatorAllocRegion()
: G1AllocRegion("Mutator Alloc Region", false /* bot_updates */) { }
};
class SurvivorGCAllocRegion : public G1AllocRegion {
protected:
virtual HeapRegion* allocate_new_region(size_t word_size, bool force);
virtual void retire_region(HeapRegion* alloc_region, size_t allocated_bytes);
public:
SurvivorGCAllocRegion()
: G1AllocRegion("Survivor GC Alloc Region", false /* bot_updates */) { }
};
class OldGCAllocRegion : public G1AllocRegion {
protected:
virtual HeapRegion* allocate_new_region(size_t word_size, bool force);
virtual void retire_region(HeapRegion* alloc_region, size_t allocated_bytes);
public:
OldGCAllocRegion()
: G1AllocRegion("Old GC Alloc Region", true /* bot_updates */) { }
// This specialization of release() makes sure that the last card that has
// been allocated into has been completely filled by a dummy object. This
// avoids races when remembered set scanning wants to update the BOT of the
// last card in the retained old gc alloc region, and allocation threads
// allocating into that card at the same time.
virtual HeapRegion* release();
};
class ar_ext_msg : public err_msg { class ar_ext_msg : public err_msg {
public: public:
ar_ext_msg(G1AllocRegion* alloc_region, const char *message) : err_msg("%s", "") { ar_ext_msg(G1AllocRegion* alloc_region, const char *message) : err_msg("%s", "") {

View File

@ -0,0 +1,52 @@
/*
* Copyright (c) 2014, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef SHARE_VM_GC_IMPLEMENTATION_G1_G1ALLOCATIONCONTEXT_HPP
#define SHARE_VM_GC_IMPLEMENTATION_G1_G1ALLOCATIONCONTEXT_HPP
#include "memory/allocation.hpp"
typedef unsigned char AllocationContext_t;
class AllocationContext : AllStatic {
public:
// Currently used context
static AllocationContext_t current() {
return 0;
}
// System wide default context
static AllocationContext_t system() {
return 0;
}
};
class AllocationContextStats: public StackObj {
public:
inline void clear() { }
inline void update(bool full_gc) { }
inline void update_at_remark() { }
inline bool available() { return false; }
};
#endif // SHARE_VM_GC_IMPLEMENTATION_G1_G1ALLOCATIONCONTEXT_HPP

View File

@ -0,0 +1,155 @@
/*
* Copyright (c) 2014, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "gc_implementation/g1/g1Allocator.hpp"
#include "gc_implementation/g1/g1CollectedHeap.hpp"
#include "gc_implementation/g1/g1CollectorPolicy.hpp"
#include "gc_implementation/g1/heapRegion.inline.hpp"
#include "gc_implementation/g1/heapRegionSet.inline.hpp"
void G1DefaultAllocator::init_mutator_alloc_region() {
assert(_mutator_alloc_region.get() == NULL, "pre-condition");
_mutator_alloc_region.init();
}
void G1DefaultAllocator::release_mutator_alloc_region() {
_mutator_alloc_region.release();
assert(_mutator_alloc_region.get() == NULL, "post-condition");
}
void G1Allocator::reuse_retained_old_region(EvacuationInfo& evacuation_info,
OldGCAllocRegion* old,
HeapRegion** retained_old) {
HeapRegion* retained_region = *retained_old;
*retained_old = NULL;
// We will discard the current GC alloc region if:
// a) it's in the collection set (it can happen!),
// b) it's already full (no point in using it),
// c) it's empty (this means that it was emptied during
// a cleanup and it should be on the free list now), or
// d) it's humongous (this means that it was emptied
// during a cleanup and was added to the free list, but
// has been subsequently used to allocate a humongous
// object that may be less than the region size).
if (retained_region != NULL &&
!retained_region->in_collection_set() &&
!(retained_region->top() == retained_region->end()) &&
!retained_region->is_empty() &&
!retained_region->is_humongous()) {
retained_region->record_top_and_timestamp();
// The retained region was added to the old region set when it was
// retired. We have to remove it now, since we don't allow regions
// we allocate to in the region sets. We'll re-add it later, when
// it's retired again.
_g1h->_old_set.remove(retained_region);
bool during_im = _g1h->g1_policy()->during_initial_mark_pause();
retained_region->note_start_of_copying(during_im);
old->set(retained_region);
_g1h->_hr_printer.reuse(retained_region);
evacuation_info.set_alloc_regions_used_before(retained_region->used());
}
}
void G1DefaultAllocator::init_gc_alloc_regions(EvacuationInfo& evacuation_info) {
assert_at_safepoint(true /* should_be_vm_thread */);
_survivor_gc_alloc_region.init();
_old_gc_alloc_region.init();
reuse_retained_old_region(evacuation_info,
&_old_gc_alloc_region,
&_retained_old_gc_alloc_region);
}
void G1DefaultAllocator::release_gc_alloc_regions(uint no_of_gc_workers, EvacuationInfo& evacuation_info) {
AllocationContext_t context = AllocationContext::current();
evacuation_info.set_allocation_regions(survivor_gc_alloc_region(context)->count() +
old_gc_alloc_region(context)->count());
survivor_gc_alloc_region(context)->release();
// If we have an old GC alloc region to release, we'll save it in
// _retained_old_gc_alloc_region. If we don't
// _retained_old_gc_alloc_region will become NULL. This is what we
// want either way so no reason to check explicitly for either
// condition.
_retained_old_gc_alloc_region = old_gc_alloc_region(context)->release();
if (ResizePLAB) {
_g1h->_survivor_plab_stats.adjust_desired_plab_sz(no_of_gc_workers);
_g1h->_old_plab_stats.adjust_desired_plab_sz(no_of_gc_workers);
}
}
void G1DefaultAllocator::abandon_gc_alloc_regions() {
assert(survivor_gc_alloc_region(AllocationContext::current())->get() == NULL, "pre-condition");
assert(old_gc_alloc_region(AllocationContext::current())->get() == NULL, "pre-condition");
_retained_old_gc_alloc_region = NULL;
}
G1ParGCAllocBuffer::G1ParGCAllocBuffer(size_t gclab_word_size) :
ParGCAllocBuffer(gclab_word_size), _retired(true) { }
HeapWord* G1ParGCAllocator::allocate_slow(GCAllocPurpose purpose, size_t word_sz, AllocationContext_t context) {
HeapWord* obj = NULL;
size_t gclab_word_size = _g1h->desired_plab_sz(purpose);
if (word_sz * 100 < gclab_word_size * ParallelGCBufferWastePct) {
G1ParGCAllocBuffer* alloc_buf = alloc_buffer(purpose, context);
add_to_alloc_buffer_waste(alloc_buf->words_remaining());
alloc_buf->retire(false /* end_of_gc */, false /* retain */);
HeapWord* buf = _g1h->par_allocate_during_gc(purpose, gclab_word_size, context);
if (buf == NULL) {
return NULL; // Let caller handle allocation failure.
}
// Otherwise.
alloc_buf->set_word_size(gclab_word_size);
alloc_buf->set_buf(buf);
obj = alloc_buf->allocate(word_sz);
assert(obj != NULL, "buffer was definitely big enough...");
} else {
obj = _g1h->par_allocate_during_gc(purpose, word_sz, context);
}
return obj;
}
G1DefaultParGCAllocator::G1DefaultParGCAllocator(G1CollectedHeap* g1h) :
G1ParGCAllocator(g1h),
_surviving_alloc_buffer(g1h->desired_plab_sz(GCAllocForSurvived)),
_tenured_alloc_buffer(g1h->desired_plab_sz(GCAllocForTenured)) {
_alloc_buffers[GCAllocForSurvived] = &_surviving_alloc_buffer;
_alloc_buffers[GCAllocForTenured] = &_tenured_alloc_buffer;
}
void G1DefaultParGCAllocator::retire_alloc_buffers() {
for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
size_t waste = _alloc_buffers[ap]->words_remaining();
add_to_alloc_buffer_waste(waste);
_alloc_buffers[ap]->flush_stats_and_retire(_g1h->stats_for_purpose((GCAllocPurpose)ap),
true /* end_of_gc */,
false /* retain */);
}
}

View File

@ -0,0 +1,242 @@
/*
* Copyright (c) 2014, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef SHARE_VM_GC_IMPLEMENTATION_G1_G1ALLOCATOR_HPP
#define SHARE_VM_GC_IMPLEMENTATION_G1_G1ALLOCATOR_HPP
#include "gc_implementation/g1/g1AllocationContext.hpp"
#include "gc_implementation/g1/g1AllocRegion.hpp"
#include "gc_implementation/shared/parGCAllocBuffer.hpp"
enum GCAllocPurpose {
GCAllocForTenured,
GCAllocForSurvived,
GCAllocPurposeCount
};
// Base class for G1 allocators.
class G1Allocator : public CHeapObj<mtGC> {
friend class VMStructs;
protected:
G1CollectedHeap* _g1h;
// Outside of GC pauses, the number of bytes used in all regions other
// than the current allocation region.
size_t _summary_bytes_used;
public:
G1Allocator(G1CollectedHeap* heap) :
_g1h(heap), _summary_bytes_used(0) { }
static G1Allocator* create_allocator(G1CollectedHeap* g1h);
virtual void init_mutator_alloc_region() = 0;
virtual void release_mutator_alloc_region() = 0;
virtual void init_gc_alloc_regions(EvacuationInfo& evacuation_info) = 0;
virtual void release_gc_alloc_regions(uint no_of_gc_workers, EvacuationInfo& evacuation_info) = 0;
virtual void abandon_gc_alloc_regions() = 0;
virtual MutatorAllocRegion* mutator_alloc_region(AllocationContext_t context) = 0;
virtual SurvivorGCAllocRegion* survivor_gc_alloc_region(AllocationContext_t context) = 0;
virtual OldGCAllocRegion* old_gc_alloc_region(AllocationContext_t context) = 0;
virtual size_t used() = 0;
virtual bool is_retained_old_region(HeapRegion* hr) = 0;
void reuse_retained_old_region(EvacuationInfo& evacuation_info,
OldGCAllocRegion* old,
HeapRegion** retained);
size_t used_unlocked() const {
return _summary_bytes_used;
}
void increase_used(size_t bytes) {
_summary_bytes_used += bytes;
}
void decrease_used(size_t bytes) {
assert(_summary_bytes_used >= bytes,
err_msg("invariant: _summary_bytes_used: "SIZE_FORMAT" should be >= bytes: "SIZE_FORMAT,
_summary_bytes_used, bytes));
_summary_bytes_used -= bytes;
}
void set_used(size_t bytes) {
_summary_bytes_used = bytes;
}
virtual HeapRegion* new_heap_region(uint hrs_index,
G1BlockOffsetSharedArray* sharedOffsetArray,
MemRegion mr) {
return new HeapRegion(hrs_index, sharedOffsetArray, mr);
}
};
// The default allocator for G1.
class G1DefaultAllocator : public G1Allocator {
protected:
// Alloc region used to satisfy mutator allocation requests.
MutatorAllocRegion _mutator_alloc_region;
// Alloc region used to satisfy allocation requests by the GC for
// survivor objects.
SurvivorGCAllocRegion _survivor_gc_alloc_region;
// Alloc region used to satisfy allocation requests by the GC for
// old objects.
OldGCAllocRegion _old_gc_alloc_region;
HeapRegion* _retained_old_gc_alloc_region;
public:
G1DefaultAllocator(G1CollectedHeap* heap) : G1Allocator(heap), _retained_old_gc_alloc_region(NULL) { }
virtual void init_mutator_alloc_region();
virtual void release_mutator_alloc_region();
virtual void init_gc_alloc_regions(EvacuationInfo& evacuation_info);
virtual void release_gc_alloc_regions(uint no_of_gc_workers, EvacuationInfo& evacuation_info);
virtual void abandon_gc_alloc_regions();
virtual bool is_retained_old_region(HeapRegion* hr) {
return _retained_old_gc_alloc_region == hr;
}
virtual MutatorAllocRegion* mutator_alloc_region(AllocationContext_t context) {
return &_mutator_alloc_region;
}
virtual SurvivorGCAllocRegion* survivor_gc_alloc_region(AllocationContext_t context) {
return &_survivor_gc_alloc_region;
}
virtual OldGCAllocRegion* old_gc_alloc_region(AllocationContext_t context) {
return &_old_gc_alloc_region;
}
virtual size_t used() {
assert(Heap_lock->owner() != NULL,
"Should be owned on this thread's behalf.");
size_t result = _summary_bytes_used;
// Read only once in case it is set to NULL concurrently
HeapRegion* hr = mutator_alloc_region(AllocationContext::current())->get();
if (hr != NULL) {
result += hr->used();
}
return result;
}
};
class G1ParGCAllocBuffer: public ParGCAllocBuffer {
private:
bool _retired;
public:
G1ParGCAllocBuffer(size_t gclab_word_size);
virtual ~G1ParGCAllocBuffer() {
guarantee(_retired, "Allocation buffer has not been retired");
}
virtual void set_buf(HeapWord* buf) {
ParGCAllocBuffer::set_buf(buf);
_retired = false;
}
virtual void retire(bool end_of_gc, bool retain) {
if (_retired) {
return;
}
ParGCAllocBuffer::retire(end_of_gc, retain);
_retired = true;
}
};
class G1ParGCAllocator : public CHeapObj<mtGC> {
friend class G1ParScanThreadState;
protected:
G1CollectedHeap* _g1h;
size_t _alloc_buffer_waste;
size_t _undo_waste;
void add_to_alloc_buffer_waste(size_t waste) { _alloc_buffer_waste += waste; }
void add_to_undo_waste(size_t waste) { _undo_waste += waste; }
HeapWord* allocate_slow(GCAllocPurpose purpose, size_t word_sz, AllocationContext_t context);
virtual void retire_alloc_buffers() = 0;
virtual G1ParGCAllocBuffer* alloc_buffer(GCAllocPurpose purpose, AllocationContext_t context) = 0;
public:
G1ParGCAllocator(G1CollectedHeap* g1h) :
_g1h(g1h), _alloc_buffer_waste(0), _undo_waste(0) {
}
static G1ParGCAllocator* create_allocator(G1CollectedHeap* g1h);
size_t alloc_buffer_waste() { return _alloc_buffer_waste; }
size_t undo_waste() {return _undo_waste; }
HeapWord* allocate(GCAllocPurpose purpose, size_t word_sz, AllocationContext_t context) {
HeapWord* obj = NULL;
if (purpose == GCAllocForSurvived) {
obj = alloc_buffer(purpose, context)->allocate_aligned(word_sz, SurvivorAlignmentInBytes);
} else {
obj = alloc_buffer(purpose, context)->allocate(word_sz);
}
if (obj != NULL) {
return obj;
}
return allocate_slow(purpose, word_sz, context);
}
void undo_allocation(GCAllocPurpose purpose, HeapWord* obj, size_t word_sz, AllocationContext_t context) {
if (alloc_buffer(purpose, context)->contains(obj)) {
assert(alloc_buffer(purpose, context)->contains(obj + word_sz - 1),
"should contain whole object");
alloc_buffer(purpose, context)->undo_allocation(obj, word_sz);
} else {
CollectedHeap::fill_with_object(obj, word_sz);
add_to_undo_waste(word_sz);
}
}
};
class G1DefaultParGCAllocator : public G1ParGCAllocator {
G1ParGCAllocBuffer _surviving_alloc_buffer;
G1ParGCAllocBuffer _tenured_alloc_buffer;
G1ParGCAllocBuffer* _alloc_buffers[GCAllocPurposeCount];
public:
G1DefaultParGCAllocator(G1CollectedHeap* g1h);
virtual G1ParGCAllocBuffer* alloc_buffer(GCAllocPurpose purpose, AllocationContext_t context) {
return _alloc_buffers[purpose];
}
virtual void retire_alloc_buffers() ;
};
#endif // SHARE_VM_GC_IMPLEMENTATION_G1_G1ALLOCATOR_HPP

View File

@ -0,0 +1,35 @@
/*
* Copyright (c) 2014, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "gc_implementation/g1/g1Allocator.hpp"
#include "gc_implementation/g1/g1CollectedHeap.hpp"
G1Allocator* G1Allocator::create_allocator(G1CollectedHeap* g1h) {
return new G1DefaultAllocator(g1h);
}
G1ParGCAllocator* G1ParGCAllocator::create_allocator(G1CollectedHeap* g1h) {
return new G1DefaultParGCAllocator(g1h);
}

View File

@ -469,7 +469,7 @@ bool G1CollectedHeap::is_in_partial_collection(const void* p) {
// can move in an incremental collection. // can move in an incremental collection.
bool G1CollectedHeap::is_scavengable(const void* p) { bool G1CollectedHeap::is_scavengable(const void* p) {
HeapRegion* hr = heap_region_containing(p); HeapRegion* hr = heap_region_containing(p);
return !hr->isHumongous(); return !hr->is_humongous();
} }
void G1CollectedHeap::check_ct_logs_at_safepoint() { void G1CollectedHeap::check_ct_logs_at_safepoint() {
@ -560,7 +560,7 @@ G1CollectedHeap::new_region_try_secondary_free_list(bool is_old) {
} }
HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool is_old, bool do_expand) { HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool is_old, bool do_expand) {
assert(!isHumongous(word_size) || word_size <= HeapRegion::GrainWords, assert(!is_humongous(word_size) || word_size <= HeapRegion::GrainWords,
"the only time we use this to allocate a humongous region is " "the only time we use this to allocate a humongous region is "
"when we are allocating a single humongous region"); "when we are allocating a single humongous region");
@ -615,9 +615,10 @@ HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool is_old, bool do_e
HeapWord* HeapWord*
G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first, G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
uint num_regions, uint num_regions,
size_t word_size) { size_t word_size,
AllocationContext_t context) {
assert(first != G1_NO_HRM_INDEX, "pre-condition"); assert(first != G1_NO_HRM_INDEX, "pre-condition");
assert(isHumongous(word_size), "word_size should be humongous"); assert(is_humongous(word_size), "word_size should be humongous");
assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition"); assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
// Index of last region in the series + 1. // Index of last region in the series + 1.
@ -666,14 +667,15 @@ G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
// will also update the BOT covering all the regions to reflect // will also update the BOT covering all the regions to reflect
// that there is a single object that starts at the bottom of the // that there is a single object that starts at the bottom of the
// first region. // first region.
first_hr->set_startsHumongous(new_top, new_end); first_hr->set_starts_humongous(new_top, new_end);
first_hr->set_allocation_context(context);
// Then, if there are any, we will set up the "continues // Then, if there are any, we will set up the "continues
// humongous" regions. // humongous" regions.
HeapRegion* hr = NULL; HeapRegion* hr = NULL;
for (uint i = first + 1; i < last; ++i) { for (uint i = first + 1; i < last; ++i) {
hr = region_at(i); hr = region_at(i);
hr->set_continuesHumongous(first_hr); hr->set_continues_humongous(first_hr);
hr->set_allocation_context(context);
} }
// If we have "continues humongous" regions (hr != NULL), then the // If we have "continues humongous" regions (hr != NULL), then the
// end of the last one should match new_end. // end of the last one should match new_end.
@ -711,7 +713,7 @@ G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
// G1. For example, the code that looks for a consecutive number // G1. For example, the code that looks for a consecutive number
// of empty regions will consider them empty and try to // of empty regions will consider them empty and try to
// re-allocate them. We can extend is_empty() to also include // re-allocate them. We can extend is_empty() to also include
// !continuesHumongous(), but it is easier to just update the top // !is_continues_humongous(), but it is easier to just update the top
// fields here. The way we set top for all regions (i.e., top == // fields here. The way we set top for all regions (i.e., top ==
// end for all regions but the last one, top == new_top for the // end for all regions but the last one, top == new_top for the
// last one) is actually used when we will free up the humongous // last one) is actually used when we will free up the humongous
@ -740,7 +742,7 @@ G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
check_bitmaps("Humongous Region Allocation", first_hr); check_bitmaps("Humongous Region Allocation", first_hr);
assert(first_hr->used() == word_size * HeapWordSize, "invariant"); assert(first_hr->used() == word_size * HeapWordSize, "invariant");
_summary_bytes_used += first_hr->used(); _allocator->increase_used(first_hr->used());
_humongous_set.add(first_hr); _humongous_set.add(first_hr);
return new_obj; return new_obj;
@ -749,7 +751,7 @@ G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
// If could fit into free regions w/o expansion, try. // If could fit into free regions w/o expansion, try.
// Otherwise, if can expand, do so. // Otherwise, if can expand, do so.
// Otherwise, if using ex regions might help, try with ex given back. // Otherwise, if using ex regions might help, try with ex given back.
HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size) { HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size, AllocationContext_t context) {
assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */); assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
verify_region_sets_optional(); verify_region_sets_optional();
@ -818,7 +820,8 @@ HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size) {
HeapWord* result = NULL; HeapWord* result = NULL;
if (first != G1_NO_HRM_INDEX) { if (first != G1_NO_HRM_INDEX) {
result = humongous_obj_allocate_initialize_regions(first, obj_regions, word_size); result = humongous_obj_allocate_initialize_regions(first, obj_regions,
word_size, context);
assert(result != NULL, "it should always return a valid result"); assert(result != NULL, "it should always return a valid result");
// A successful humongous object allocation changes the used space // A successful humongous object allocation changes the used space
@ -834,7 +837,7 @@ HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size) {
HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) { HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
assert_heap_not_locked_and_not_at_safepoint(); assert_heap_not_locked_and_not_at_safepoint();
assert(!isHumongous(word_size), "we do not allow humongous TLABs"); assert(!is_humongous(word_size), "we do not allow humongous TLABs");
unsigned int dummy_gc_count_before; unsigned int dummy_gc_count_before;
int dummy_gclocker_retry_count = 0; int dummy_gclocker_retry_count = 0;
@ -851,7 +854,7 @@ G1CollectedHeap::mem_allocate(size_t word_size,
unsigned int gc_count_before; unsigned int gc_count_before;
HeapWord* result = NULL; HeapWord* result = NULL;
if (!isHumongous(word_size)) { if (!is_humongous(word_size)) {
result = attempt_allocation(word_size, &gc_count_before, &gclocker_retry_count); result = attempt_allocation(word_size, &gc_count_before, &gclocker_retry_count);
} else { } else {
result = attempt_allocation_humongous(word_size, &gc_count_before, &gclocker_retry_count); result = attempt_allocation_humongous(word_size, &gc_count_before, &gclocker_retry_count);
@ -862,6 +865,8 @@ G1CollectedHeap::mem_allocate(size_t word_size,
// Create the garbage collection operation... // Create the garbage collection operation...
VM_G1CollectForAllocation op(gc_count_before, word_size); VM_G1CollectForAllocation op(gc_count_before, word_size);
op.set_allocation_context(AllocationContext::current());
// ...and get the VM thread to execute it. // ...and get the VM thread to execute it.
VMThread::execute(&op); VMThread::execute(&op);
@ -870,7 +875,7 @@ G1CollectedHeap::mem_allocate(size_t word_size,
// if it is NULL. If the allocation attempt failed immediately // if it is NULL. If the allocation attempt failed immediately
// after a Full GC, it's unlikely we'll be able to allocate now. // after a Full GC, it's unlikely we'll be able to allocate now.
HeapWord* result = op.result(); HeapWord* result = op.result();
if (result != NULL && !isHumongous(word_size)) { if (result != NULL && !is_humongous(word_size)) {
// Allocations that take place on VM operations do not do any // Allocations that take place on VM operations do not do any
// card dirtying and we have to do it here. We only have to do // card dirtying and we have to do it here. We only have to do
// this for non-humongous allocations, though. // this for non-humongous allocations, though.
@ -897,12 +902,13 @@ G1CollectedHeap::mem_allocate(size_t word_size,
} }
HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size, HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
unsigned int *gc_count_before_ret, AllocationContext_t context,
int* gclocker_retry_count_ret) { unsigned int *gc_count_before_ret,
int* gclocker_retry_count_ret) {
// Make sure you read the note in attempt_allocation_humongous(). // Make sure you read the note in attempt_allocation_humongous().
assert_heap_not_locked_and_not_at_safepoint(); assert_heap_not_locked_and_not_at_safepoint();
assert(!isHumongous(word_size), "attempt_allocation_slow() should not " assert(!is_humongous(word_size), "attempt_allocation_slow() should not "
"be called for humongous allocation requests"); "be called for humongous allocation requests");
// We should only get here after the first-level allocation attempt // We should only get here after the first-level allocation attempt
@ -919,23 +925,22 @@ HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
{ {
MutexLockerEx x(Heap_lock); MutexLockerEx x(Heap_lock);
result = _allocator->mutator_alloc_region(context)->attempt_allocation_locked(word_size,
result = _mutator_alloc_region.attempt_allocation_locked(word_size, false /* bot_updates */);
false /* bot_updates */);
if (result != NULL) { if (result != NULL) {
return result; return result;
} }
// If we reach here, attempt_allocation_locked() above failed to // If we reach here, attempt_allocation_locked() above failed to
// allocate a new region. So the mutator alloc region should be NULL. // allocate a new region. So the mutator alloc region should be NULL.
assert(_mutator_alloc_region.get() == NULL, "only way to get here"); assert(_allocator->mutator_alloc_region(context)->get() == NULL, "only way to get here");
if (GC_locker::is_active_and_needs_gc()) { if (GC_locker::is_active_and_needs_gc()) {
if (g1_policy()->can_expand_young_list()) { if (g1_policy()->can_expand_young_list()) {
// No need for an ergo verbose message here, // No need for an ergo verbose message here,
// can_expand_young_list() does this when it returns true. // can_expand_young_list() does this when it returns true.
result = _mutator_alloc_region.attempt_allocation_force(word_size, result = _allocator->mutator_alloc_region(context)->attempt_allocation_force(word_size,
false /* bot_updates */); false /* bot_updates */);
if (result != NULL) { if (result != NULL) {
return result; return result;
} }
@ -995,8 +1000,8 @@ HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
// first attempt (without holding the Heap_lock) here and the // first attempt (without holding the Heap_lock) here and the
// follow-on attempt will be at the start of the next loop // follow-on attempt will be at the start of the next loop
// iteration (after taking the Heap_lock). // iteration (after taking the Heap_lock).
result = _mutator_alloc_region.attempt_allocation(word_size, result = _allocator->mutator_alloc_region(context)->attempt_allocation(word_size,
false /* bot_updates */); false /* bot_updates */);
if (result != NULL) { if (result != NULL) {
return result; return result;
} }
@ -1014,8 +1019,8 @@ HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
} }
HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size, HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
unsigned int * gc_count_before_ret, unsigned int * gc_count_before_ret,
int* gclocker_retry_count_ret) { int* gclocker_retry_count_ret) {
// The structure of this method has a lot of similarities to // The structure of this method has a lot of similarities to
// attempt_allocation_slow(). The reason these two were not merged // attempt_allocation_slow(). The reason these two were not merged
// into a single one is that such a method would require several "if // into a single one is that such a method would require several "if
@ -1028,7 +1033,7 @@ HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
// much as possible. // much as possible.
assert_heap_not_locked_and_not_at_safepoint(); assert_heap_not_locked_and_not_at_safepoint();
assert(isHumongous(word_size), "attempt_allocation_humongous() " assert(is_humongous(word_size), "attempt_allocation_humongous() "
"should only be called for humongous allocations"); "should only be called for humongous allocations");
// Humongous objects can exhaust the heap quickly, so we should check if we // Humongous objects can exhaust the heap quickly, so we should check if we
@ -1056,7 +1061,7 @@ HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
// Given that humongous objects are not allocated in young // Given that humongous objects are not allocated in young
// regions, we'll first try to do the allocation without doing a // regions, we'll first try to do the allocation without doing a
// collection hoping that there's enough space in the heap. // collection hoping that there's enough space in the heap.
result = humongous_obj_allocate(word_size); result = humongous_obj_allocate(word_size, AllocationContext::current());
if (result != NULL) { if (result != NULL) {
return result; return result;
} }
@ -1132,17 +1137,18 @@ HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
} }
HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size, HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
bool expect_null_mutator_alloc_region) { AllocationContext_t context,
bool expect_null_mutator_alloc_region) {
assert_at_safepoint(true /* should_be_vm_thread */); assert_at_safepoint(true /* should_be_vm_thread */);
assert(_mutator_alloc_region.get() == NULL || assert(_allocator->mutator_alloc_region(context)->get() == NULL ||
!expect_null_mutator_alloc_region, !expect_null_mutator_alloc_region,
"the current alloc region was unexpectedly found to be non-NULL"); "the current alloc region was unexpectedly found to be non-NULL");
if (!isHumongous(word_size)) { if (!is_humongous(word_size)) {
return _mutator_alloc_region.attempt_allocation_locked(word_size, return _allocator->mutator_alloc_region(context)->attempt_allocation_locked(word_size,
false /* bot_updates */); false /* bot_updates */);
} else { } else {
HeapWord* result = humongous_obj_allocate(word_size); HeapWord* result = humongous_obj_allocate(word_size, context);
if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) { if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
g1_policy()->set_initiate_conc_mark_if_possible(); g1_policy()->set_initiate_conc_mark_if_possible();
} }
@ -1162,7 +1168,7 @@ public:
bool doHeapRegion(HeapRegion* r) { bool doHeapRegion(HeapRegion* r) {
HeapRegionRemSet* hrrs = r->rem_set(); HeapRegionRemSet* hrrs = r->rem_set();
if (r->continuesHumongous()) { if (r->is_continues_humongous()) {
// We'll assert that the strong code root list and RSet is empty // We'll assert that the strong code root list and RSet is empty
assert(hrrs->strong_code_roots_list_length() == 0, "sanity"); assert(hrrs->strong_code_roots_list_length() == 0, "sanity");
assert(hrrs->occupied() == 0, "RSet should be empty"); assert(hrrs->occupied() == 0, "RSet should be empty");
@ -1199,7 +1205,7 @@ public:
{ } { }
bool doHeapRegion(HeapRegion* r) { bool doHeapRegion(HeapRegion* r) {
if (!r->continuesHumongous()) { if (!r->is_continues_humongous()) {
_cl.set_from(r); _cl.set_from(r);
r->oop_iterate(&_cl); r->oop_iterate(&_cl);
} }
@ -1231,14 +1237,14 @@ public:
assert(!hr->is_young(), "not expecting to find young regions"); assert(!hr->is_young(), "not expecting to find young regions");
if (hr->is_free()) { if (hr->is_free()) {
// We only generate output for non-empty regions. // We only generate output for non-empty regions.
} else if (hr->startsHumongous()) { } else if (hr->is_starts_humongous()) {
if (hr->region_num() == 1) { if (hr->region_num() == 1) {
// single humongous region // single humongous region
_hr_printer->post_compaction(hr, G1HRPrinter::SingleHumongous); _hr_printer->post_compaction(hr, G1HRPrinter::SingleHumongous);
} else { } else {
_hr_printer->post_compaction(hr, G1HRPrinter::StartsHumongous); _hr_printer->post_compaction(hr, G1HRPrinter::StartsHumongous);
} }
} else if (hr->continuesHumongous()) { } else if (hr->is_continues_humongous()) {
_hr_printer->post_compaction(hr, G1HRPrinter::ContinuesHumongous); _hr_printer->post_compaction(hr, G1HRPrinter::ContinuesHumongous);
} else if (hr->is_old()) { } else if (hr->is_old()) {
_hr_printer->post_compaction(hr, G1HRPrinter::Old); _hr_printer->post_compaction(hr, G1HRPrinter::Old);
@ -1342,8 +1348,8 @@ bool G1CollectedHeap::do_collection(bool explicit_gc,
concurrent_mark()->abort(); concurrent_mark()->abort();
// Make sure we'll choose a new allocation region afterwards. // Make sure we'll choose a new allocation region afterwards.
release_mutator_alloc_region(); _allocator->release_mutator_alloc_region();
abandon_gc_alloc_regions(); _allocator->abandon_gc_alloc_regions();
g1_rem_set()->cleanupHRRS(); g1_rem_set()->cleanupHRRS();
// We should call this after we retire any currently active alloc // We should call this after we retire any currently active alloc
@ -1515,7 +1521,7 @@ bool G1CollectedHeap::do_collection(bool explicit_gc,
clear_cset_fast_test(); clear_cset_fast_test();
init_mutator_alloc_region(); _allocator->init_mutator_alloc_region();
double end = os::elapsedTime(); double end = os::elapsedTime();
g1_policy()->record_full_collection_end(); g1_policy()->record_full_collection_end();
@ -1651,6 +1657,7 @@ resize_if_necessary_after_full_collection(size_t word_size) {
HeapWord* HeapWord*
G1CollectedHeap::satisfy_failed_allocation(size_t word_size, G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
AllocationContext_t context,
bool* succeeded) { bool* succeeded) {
assert_at_safepoint(true /* should_be_vm_thread */); assert_at_safepoint(true /* should_be_vm_thread */);
@ -1658,7 +1665,8 @@ G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
// Let's attempt the allocation first. // Let's attempt the allocation first.
HeapWord* result = HeapWord* result =
attempt_allocation_at_safepoint(word_size, attempt_allocation_at_safepoint(word_size,
false /* expect_null_mutator_alloc_region */); context,
false /* expect_null_mutator_alloc_region */);
if (result != NULL) { if (result != NULL) {
assert(*succeeded, "sanity"); assert(*succeeded, "sanity");
return result; return result;
@ -1668,7 +1676,7 @@ G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
// incremental pauses. Therefore, at least for now, we'll favor // incremental pauses. Therefore, at least for now, we'll favor
// expansion over collection. (This might change in the future if we can // expansion over collection. (This might change in the future if we can
// do something smarter than full collection to satisfy a failed alloc.) // do something smarter than full collection to satisfy a failed alloc.)
result = expand_and_allocate(word_size); result = expand_and_allocate(word_size, context);
if (result != NULL) { if (result != NULL) {
assert(*succeeded, "sanity"); assert(*succeeded, "sanity");
return result; return result;
@ -1685,7 +1693,8 @@ G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
// Retry the allocation // Retry the allocation
result = attempt_allocation_at_safepoint(word_size, result = attempt_allocation_at_safepoint(word_size,
true /* expect_null_mutator_alloc_region */); context,
true /* expect_null_mutator_alloc_region */);
if (result != NULL) { if (result != NULL) {
assert(*succeeded, "sanity"); assert(*succeeded, "sanity");
return result; return result;
@ -1702,7 +1711,8 @@ G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
// Retry the allocation once more // Retry the allocation once more
result = attempt_allocation_at_safepoint(word_size, result = attempt_allocation_at_safepoint(word_size,
true /* expect_null_mutator_alloc_region */); context,
true /* expect_null_mutator_alloc_region */);
if (result != NULL) { if (result != NULL) {
assert(*succeeded, "sanity"); assert(*succeeded, "sanity");
return result; return result;
@ -1724,7 +1734,7 @@ G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
// successful, perform the allocation and return the address of the // successful, perform the allocation and return the address of the
// allocated block, or else "NULL". // allocated block, or else "NULL".
HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size) { HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size, AllocationContext_t context) {
assert_at_safepoint(true /* should_be_vm_thread */); assert_at_safepoint(true /* should_be_vm_thread */);
verify_region_sets_optional(); verify_region_sets_optional();
@ -1739,7 +1749,8 @@ HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size) {
_hrm.verify_optional(); _hrm.verify_optional();
verify_region_sets_optional(); verify_region_sets_optional();
return attempt_allocation_at_safepoint(word_size, return attempt_allocation_at_safepoint(word_size,
false /* expect_null_mutator_alloc_region */); context,
false /* expect_null_mutator_alloc_region */);
} }
return NULL; return NULL;
} }
@ -1816,7 +1827,7 @@ void G1CollectedHeap::shrink(size_t shrink_bytes) {
// We should only reach here at the end of a Full GC which means we // We should only reach here at the end of a Full GC which means we
// should not not be holding to any GC alloc regions. The method // should not not be holding to any GC alloc regions. The method
// below will make sure of that and do any remaining clean up. // below will make sure of that and do any remaining clean up.
abandon_gc_alloc_regions(); _allocator->abandon_gc_alloc_regions();
// Instead of tearing down / rebuilding the free lists here, we // Instead of tearing down / rebuilding the free lists here, we
// could instead use the remove_all_pending() method on free_list to // could instead use the remove_all_pending() method on free_list to
@ -1849,7 +1860,7 @@ G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
_bot_shared(NULL), _bot_shared(NULL),
_evac_failure_scan_stack(NULL), _evac_failure_scan_stack(NULL),
_mark_in_progress(false), _mark_in_progress(false),
_cg1r(NULL), _summary_bytes_used(0), _cg1r(NULL),
_g1mm(NULL), _g1mm(NULL),
_refine_cte_cl(NULL), _refine_cte_cl(NULL),
_full_collection(false), _full_collection(false),
@ -1861,7 +1872,6 @@ G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
_free_regions_coming(false), _free_regions_coming(false),
_young_list(new YoungList(this)), _young_list(new YoungList(this)),
_gc_time_stamp(0), _gc_time_stamp(0),
_retained_old_gc_alloc_region(NULL),
_survivor_plab_stats(YoungPLABSize, PLABWeight), _survivor_plab_stats(YoungPLABSize, PLABWeight),
_old_plab_stats(OldPLABSize, PLABWeight), _old_plab_stats(OldPLABSize, PLABWeight),
_expand_heap_after_alloc_failure(true), _expand_heap_after_alloc_failure(true),
@ -1884,6 +1894,7 @@ G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
vm_exit_during_initialization("Failed necessary allocation."); vm_exit_during_initialization("Failed necessary allocation.");
} }
_allocator = G1Allocator::create_allocator(_g1h);
_humongous_object_threshold_in_words = HeapRegion::GrainWords / 2; _humongous_object_threshold_in_words = HeapRegion::GrainWords / 2;
int n_queues = MAX2((int)ParallelGCThreads, 1); int n_queues = MAX2((int)ParallelGCThreads, 1);
@ -1960,15 +1971,10 @@ jint G1CollectedHeap::initialize() {
ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size, ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size,
heap_alignment); heap_alignment);
// It is important to do this in a way such that concurrent readers can't initialize_reserved_region((HeapWord*)heap_rs.base(), (HeapWord*)(heap_rs.base() + heap_rs.size()));
// temporarily think something is in the heap. (I've actually seen this
// happen in asserts: DLD.)
_reserved.set_word_size(0);
_reserved.set_start((HeapWord*)heap_rs.base());
_reserved.set_end((HeapWord*)(heap_rs.base() + heap_rs.size()));
// Create the gen rem set (and barrier set) for the entire reserved region. // Create the gen rem set (and barrier set) for the entire reserved region.
_rem_set = collector_policy()->create_rem_set(_reserved, 2); _rem_set = collector_policy()->create_rem_set(reserved_region(), 2);
set_barrier_set(rem_set()->bs()); set_barrier_set(rem_set()->bs());
if (!barrier_set()->is_a(BarrierSet::G1SATBCTLogging)) { if (!barrier_set()->is_a(BarrierSet::G1SATBCTLogging)) {
vm_exit_during_initialization("G1 requires a G1SATBLoggingCardTableModRefBS"); vm_exit_during_initialization("G1 requires a G1SATBLoggingCardTableModRefBS");
@ -2052,7 +2058,7 @@ jint G1CollectedHeap::initialize() {
FreeRegionList::set_unrealistically_long_length(max_regions() + 1); FreeRegionList::set_unrealistically_long_length(max_regions() + 1);
_bot_shared = new G1BlockOffsetSharedArray(_reserved, bot_storage); _bot_shared = new G1BlockOffsetSharedArray(reserved_region(), bot_storage);
_g1h = this; _g1h = this;
@ -2127,7 +2133,7 @@ jint G1CollectedHeap::initialize() {
dummy_region->set_top(dummy_region->end()); dummy_region->set_top(dummy_region->end());
G1AllocRegion::setup(this, dummy_region); G1AllocRegion::setup(this, dummy_region);
init_mutator_alloc_region(); _allocator->init_mutator_alloc_region();
// Do create of the monitoring and management support so that // Do create of the monitoring and management support so that
// values in the heap have been properly initialized. // values in the heap have been properly initialized.
@ -2237,14 +2243,14 @@ size_t G1CollectedHeap::capacity() const {
} }
void G1CollectedHeap::reset_gc_time_stamps(HeapRegion* hr) { void G1CollectedHeap::reset_gc_time_stamps(HeapRegion* hr) {
assert(!hr->continuesHumongous(), "pre-condition"); assert(!hr->is_continues_humongous(), "pre-condition");
hr->reset_gc_time_stamp(); hr->reset_gc_time_stamp();
if (hr->startsHumongous()) { if (hr->is_starts_humongous()) {
uint first_index = hr->hrm_index() + 1; uint first_index = hr->hrm_index() + 1;
uint last_index = hr->last_hc_index(); uint last_index = hr->last_hc_index();
for (uint i = first_index; i < last_index; i += 1) { for (uint i = first_index; i < last_index; i += 1) {
HeapRegion* chr = region_at(i); HeapRegion* chr = region_at(i);
assert(chr->continuesHumongous(), "sanity"); assert(chr->is_continues_humongous(), "sanity");
chr->reset_gc_time_stamp(); chr->reset_gc_time_stamp();
} }
} }
@ -2301,21 +2307,12 @@ void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl,
// Computes the sum of the storage used by the various regions. // Computes the sum of the storage used by the various regions.
size_t G1CollectedHeap::used() const { size_t G1CollectedHeap::used() const {
assert(Heap_lock->owner() != NULL, return _allocator->used();
"Should be owned on this thread's behalf.");
size_t result = _summary_bytes_used;
// Read only once in case it is set to NULL concurrently
HeapRegion* hr = _mutator_alloc_region.get();
if (hr != NULL)
result += hr->used();
return result;
} }
size_t G1CollectedHeap::used_unlocked() const { size_t G1CollectedHeap::used_unlocked() const {
size_t result = _summary_bytes_used; return _allocator->used_unlocked();
return result;
} }
class SumUsedClosure: public HeapRegionClosure { class SumUsedClosure: public HeapRegionClosure {
@ -2323,7 +2320,7 @@ class SumUsedClosure: public HeapRegionClosure {
public: public:
SumUsedClosure() : _used(0) {} SumUsedClosure() : _used(0) {}
bool doHeapRegion(HeapRegion* r) { bool doHeapRegion(HeapRegion* r) {
if (!r->continuesHumongous()) { if (!r->is_continues_humongous()) {
_used += r->used(); _used += r->used();
} }
return false; return false;
@ -2355,11 +2352,12 @@ void G1CollectedHeap::allocate_dummy_regions() {
// Let's fill up most of the region // Let's fill up most of the region
size_t word_size = HeapRegion::GrainWords - 1024; size_t word_size = HeapRegion::GrainWords - 1024;
// And as a result the region we'll allocate will be humongous. // And as a result the region we'll allocate will be humongous.
guarantee(isHumongous(word_size), "sanity"); guarantee(is_humongous(word_size), "sanity");
for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) { for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
// Let's use the existing mechanism for the allocation // Let's use the existing mechanism for the allocation
HeapWord* dummy_obj = humongous_obj_allocate(word_size); HeapWord* dummy_obj = humongous_obj_allocate(word_size,
AllocationContext::system());
if (dummy_obj != NULL) { if (dummy_obj != NULL) {
MemRegion mr(dummy_obj, word_size); MemRegion mr(dummy_obj, word_size);
CollectedHeap::fill_with_object(mr); CollectedHeap::fill_with_object(mr);
@ -2510,6 +2508,7 @@ void G1CollectedHeap::collect(GCCause::Cause cause) {
true, /* should_initiate_conc_mark */ true, /* should_initiate_conc_mark */
g1_policy()->max_pause_time_ms(), g1_policy()->max_pause_time_ms(),
cause); cause);
op.set_allocation_context(AllocationContext::current());
VMThread::execute(&op); VMThread::execute(&op);
if (!op.pause_succeeded()) { if (!op.pause_succeeded()) {
@ -2581,7 +2580,7 @@ class IterateOopClosureRegionClosure: public HeapRegionClosure {
public: public:
IterateOopClosureRegionClosure(ExtendedOopClosure* cl) : _cl(cl) {} IterateOopClosureRegionClosure(ExtendedOopClosure* cl) : _cl(cl) {}
bool doHeapRegion(HeapRegion* r) { bool doHeapRegion(HeapRegion* r) {
if (!r->continuesHumongous()) { if (!r->is_continues_humongous()) {
r->oop_iterate(_cl); r->oop_iterate(_cl);
} }
return false; return false;
@ -2600,7 +2599,7 @@ class IterateObjectClosureRegionClosure: public HeapRegionClosure {
public: public:
IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {} IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
bool doHeapRegion(HeapRegion* r) { bool doHeapRegion(HeapRegion* r) {
if (! r->continuesHumongous()) { if (!r->is_continues_humongous()) {
r->object_iterate(_cl); r->object_iterate(_cl);
} }
return false; return false;
@ -2682,11 +2681,11 @@ public:
r->claim_value(), _claim_value); r->claim_value(), _claim_value);
++_failures; ++_failures;
} }
if (!r->isHumongous()) { if (!r->is_humongous()) {
_sh_region = NULL; _sh_region = NULL;
} else if (r->startsHumongous()) { } else if (r->is_starts_humongous()) {
_sh_region = r; _sh_region = r;
} else if (r->continuesHumongous()) { } else if (r->is_continues_humongous()) {
if (r->humongous_start_region() != _sh_region) { if (r->humongous_start_region() != _sh_region) {
gclog_or_tty->print_cr("Region " HR_FORMAT ", " gclog_or_tty->print_cr("Region " HR_FORMAT ", "
"HS = "PTR_FORMAT", should be "PTR_FORMAT, "HS = "PTR_FORMAT", should be "PTR_FORMAT,
@ -2720,7 +2719,7 @@ public:
bool doHeapRegion(HeapRegion* hr) { bool doHeapRegion(HeapRegion* hr) {
assert(hr->in_collection_set(), "how?"); assert(hr->in_collection_set(), "how?");
assert(!hr->isHumongous(), "H-region in CSet"); assert(!hr->is_humongous(), "H-region in CSet");
if (hr->claim_value() != _claim_value) { if (hr->claim_value() != _claim_value) {
gclog_or_tty->print_cr("CSet Region " HR_FORMAT ", " gclog_or_tty->print_cr("CSet Region " HR_FORMAT ", "
"claim value = %d, should be %d", "claim value = %d, should be %d",
@ -2859,7 +2858,7 @@ void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r,
HeapRegion* G1CollectedHeap::next_compaction_region(const HeapRegion* from) const { HeapRegion* G1CollectedHeap::next_compaction_region(const HeapRegion* from) const {
HeapRegion* result = _hrm.next_region_in_heap(from); HeapRegion* result = _hrm.next_region_in_heap(from);
while (result != NULL && result->isHumongous()) { while (result != NULL && result->is_humongous()) {
result = _hrm.next_region_in_heap(result); result = _hrm.next_region_in_heap(result);
} }
return result; return result;
@ -2910,7 +2909,7 @@ size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
// since we can't allow tlabs to grow big enough to accommodate // since we can't allow tlabs to grow big enough to accommodate
// humongous objects. // humongous objects.
HeapRegion* hr = _mutator_alloc_region.get(); HeapRegion* hr = _allocator->mutator_alloc_region(AllocationContext::current())->get();
size_t max_tlab = max_tlab_size() * wordSize; size_t max_tlab = max_tlab_size() * wordSize;
if (hr == NULL) { if (hr == NULL) {
return max_tlab; return max_tlab;
@ -3219,7 +3218,7 @@ public:
} }
bool doHeapRegion(HeapRegion* r) { bool doHeapRegion(HeapRegion* r) {
if (!r->continuesHumongous()) { if (!r->is_continues_humongous()) {
bool failures = false; bool failures = false;
r->verify(_vo, &failures); r->verify(_vo, &failures);
if (failures) { if (failures) {
@ -3597,7 +3596,7 @@ void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
} }
} }
void G1CollectedHeap::gc_epilogue(bool full /* Ignored */) { void G1CollectedHeap::gc_epilogue(bool full) {
if (G1SummarizeRSetStats && if (G1SummarizeRSetStats &&
(G1SummarizeRSetStatsPeriod > 0) && (G1SummarizeRSetStatsPeriod > 0) &&
@ -3614,6 +3613,7 @@ void G1CollectedHeap::gc_epilogue(bool full /* Ignored */) {
// always_do_update_barrier = true; // always_do_update_barrier = true;
resize_all_tlabs(); resize_all_tlabs();
allocation_context_stats().update(full);
// We have just completed a GC. Update the soft reference // We have just completed a GC. Update the soft reference
// policy with the new heap occupancy // policy with the new heap occupancy
@ -3631,6 +3631,8 @@ HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
false, /* should_initiate_conc_mark */ false, /* should_initiate_conc_mark */
g1_policy()->max_pause_time_ms(), g1_policy()->max_pause_time_ms(),
gc_cause); gc_cause);
op.set_allocation_context(AllocationContext::current());
VMThread::execute(&op); VMThread::execute(&op);
HeapWord* result = op.result(); HeapWord* result = op.result();
@ -3676,7 +3678,7 @@ size_t G1CollectedHeap::cards_scanned() {
bool G1CollectedHeap::humongous_region_is_always_live(uint index) { bool G1CollectedHeap::humongous_region_is_always_live(uint index) {
HeapRegion* region = region_at(index); HeapRegion* region = region_at(index);
assert(region->startsHumongous(), "Must start a humongous object"); assert(region->is_starts_humongous(), "Must start a humongous object");
return oop(region->bottom())->is_objArray() || !region->rem_set()->is_empty(); return oop(region->bottom())->is_objArray() || !region->rem_set()->is_empty();
} }
@ -3689,7 +3691,7 @@ class RegisterHumongousWithInCSetFastTestClosure : public HeapRegionClosure {
} }
virtual bool doHeapRegion(HeapRegion* r) { virtual bool doHeapRegion(HeapRegion* r) {
if (!r->startsHumongous()) { if (!r->is_starts_humongous()) {
return false; return false;
} }
G1CollectedHeap* g1h = G1CollectedHeap::heap(); G1CollectedHeap* g1h = G1CollectedHeap::heap();
@ -3961,7 +3963,7 @@ G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
// Forget the current alloc region (we might even choose it to be part // Forget the current alloc region (we might even choose it to be part
// of the collection set!). // of the collection set!).
release_mutator_alloc_region(); _allocator->release_mutator_alloc_region();
// We should call this after we retire the mutator alloc // We should call this after we retire the mutator alloc
// region(s) so that all the ALLOC / RETIRE events are generated // region(s) so that all the ALLOC / RETIRE events are generated
@ -4044,7 +4046,7 @@ G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
setup_surviving_young_words(); setup_surviving_young_words();
// Initialize the GC alloc regions. // Initialize the GC alloc regions.
init_gc_alloc_regions(evacuation_info); _allocator->init_gc_alloc_regions(evacuation_info);
// Actually do the work... // Actually do the work...
evacuate_collection_set(evacuation_info); evacuate_collection_set(evacuation_info);
@ -4093,7 +4095,7 @@ G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
_young_list->reset_auxilary_lists(); _young_list->reset_auxilary_lists();
if (evacuation_failed()) { if (evacuation_failed()) {
_summary_bytes_used = recalculate_used(); _allocator->set_used(recalculate_used());
uint n_queues = MAX2((int)ParallelGCThreads, 1); uint n_queues = MAX2((int)ParallelGCThreads, 1);
for (uint i = 0; i < n_queues; i++) { for (uint i = 0; i < n_queues; i++) {
if (_evacuation_failed_info_array[i].has_failed()) { if (_evacuation_failed_info_array[i].has_failed()) {
@ -4103,7 +4105,7 @@ G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
} else { } else {
// The "used" of the the collection set have already been subtracted // The "used" of the the collection set have already been subtracted
// when they were freed. Add in the bytes evacuated. // when they were freed. Add in the bytes evacuated.
_summary_bytes_used += g1_policy()->bytes_copied_during_gc(); _allocator->increase_used(g1_policy()->bytes_copied_during_gc());
} }
if (g1_policy()->during_initial_mark_pause()) { if (g1_policy()->during_initial_mark_pause()) {
@ -4125,7 +4127,7 @@ G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty); g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
#endif // YOUNG_LIST_VERBOSE #endif // YOUNG_LIST_VERBOSE
init_mutator_alloc_region(); _allocator->init_mutator_alloc_region();
{ {
size_t expand_bytes = g1_policy()->expansion_amount(); size_t expand_bytes = g1_policy()->expansion_amount();
@ -4270,80 +4272,6 @@ size_t G1CollectedHeap::desired_plab_sz(GCAllocPurpose purpose)
return MIN2(_humongous_object_threshold_in_words, gclab_word_size); return MIN2(_humongous_object_threshold_in_words, gclab_word_size);
} }
void G1CollectedHeap::init_mutator_alloc_region() {
assert(_mutator_alloc_region.get() == NULL, "pre-condition");
_mutator_alloc_region.init();
}
void G1CollectedHeap::release_mutator_alloc_region() {
_mutator_alloc_region.release();
assert(_mutator_alloc_region.get() == NULL, "post-condition");
}
void G1CollectedHeap::use_retained_old_gc_alloc_region(EvacuationInfo& evacuation_info) {
HeapRegion* retained_region = _retained_old_gc_alloc_region;
_retained_old_gc_alloc_region = NULL;
// We will discard the current GC alloc region if:
// a) it's in the collection set (it can happen!),
// b) it's already full (no point in using it),
// c) it's empty (this means that it was emptied during
// a cleanup and it should be on the free list now), or
// d) it's humongous (this means that it was emptied
// during a cleanup and was added to the free list, but
// has been subsequently used to allocate a humongous
// object that may be less than the region size).
if (retained_region != NULL &&
!retained_region->in_collection_set() &&
!(retained_region->top() == retained_region->end()) &&
!retained_region->is_empty() &&
!retained_region->isHumongous()) {
retained_region->record_top_and_timestamp();
// The retained region was added to the old region set when it was
// retired. We have to remove it now, since we don't allow regions
// we allocate to in the region sets. We'll re-add it later, when
// it's retired again.
_old_set.remove(retained_region);
bool during_im = g1_policy()->during_initial_mark_pause();
retained_region->note_start_of_copying(during_im);
_old_gc_alloc_region.set(retained_region);
_hr_printer.reuse(retained_region);
evacuation_info.set_alloc_regions_used_before(retained_region->used());
}
}
void G1CollectedHeap::init_gc_alloc_regions(EvacuationInfo& evacuation_info) {
assert_at_safepoint(true /* should_be_vm_thread */);
_survivor_gc_alloc_region.init();
_old_gc_alloc_region.init();
use_retained_old_gc_alloc_region(evacuation_info);
}
void G1CollectedHeap::release_gc_alloc_regions(uint no_of_gc_workers, EvacuationInfo& evacuation_info) {
evacuation_info.set_allocation_regions(_survivor_gc_alloc_region.count() +
_old_gc_alloc_region.count());
_survivor_gc_alloc_region.release();
// If we have an old GC alloc region to release, we'll save it in
// _retained_old_gc_alloc_region. If we don't
// _retained_old_gc_alloc_region will become NULL. This is what we
// want either way so no reason to check explicitly for either
// condition.
_retained_old_gc_alloc_region = _old_gc_alloc_region.release();
if (ResizePLAB) {
_survivor_plab_stats.adjust_desired_plab_sz(no_of_gc_workers);
_old_plab_stats.adjust_desired_plab_sz(no_of_gc_workers);
}
}
void G1CollectedHeap::abandon_gc_alloc_regions() {
assert(_survivor_gc_alloc_region.get() == NULL, "pre-condition");
assert(_old_gc_alloc_region.get() == NULL, "pre-condition");
_retained_old_gc_alloc_region = NULL;
}
void G1CollectedHeap::init_for_evac_failure(OopsInHeapRegionClosure* cl) { void G1CollectedHeap::init_for_evac_failure(OopsInHeapRegionClosure* cl) {
_drain_in_progress = false; _drain_in_progress = false;
set_evac_failure_closure(cl); set_evac_failure_closure(cl);
@ -4484,25 +4412,26 @@ void G1CollectedHeap::preserve_mark_if_necessary(oop obj, markOop m) {
} }
HeapWord* G1CollectedHeap::par_allocate_during_gc(GCAllocPurpose purpose, HeapWord* G1CollectedHeap::par_allocate_during_gc(GCAllocPurpose purpose,
size_t word_size) { size_t word_size,
AllocationContext_t context) {
if (purpose == GCAllocForSurvived) { if (purpose == GCAllocForSurvived) {
HeapWord* result = survivor_attempt_allocation(word_size); HeapWord* result = survivor_attempt_allocation(word_size, context);
if (result != NULL) { if (result != NULL) {
return result; return result;
} else { } else {
// Let's try to allocate in the old gen in case we can fit the // Let's try to allocate in the old gen in case we can fit the
// object there. // object there.
return old_attempt_allocation(word_size); return old_attempt_allocation(word_size, context);
} }
} else { } else {
assert(purpose == GCAllocForTenured, "sanity"); assert(purpose == GCAllocForTenured, "sanity");
HeapWord* result = old_attempt_allocation(word_size); HeapWord* result = old_attempt_allocation(word_size, context);
if (result != NULL) { if (result != NULL) {
return result; return result;
} else { } else {
// Let's try to allocate in the survivors in case we can fit the // Let's try to allocate in the survivors in case we can fit the
// object there. // object there.
return survivor_attempt_allocation(word_size); return survivor_attempt_allocation(word_size, context);
} }
} }
@ -4511,9 +4440,6 @@ HeapWord* G1CollectedHeap::par_allocate_during_gc(GCAllocPurpose purpose,
return NULL; return NULL;
} }
G1ParGCAllocBuffer::G1ParGCAllocBuffer(size_t gclab_word_size) :
ParGCAllocBuffer(gclab_word_size), _retired(true) { }
void G1ParCopyHelper::mark_object(oop obj) { void G1ParCopyHelper::mark_object(oop obj) {
assert(!_g1->heap_region_containing(obj)->in_collection_set(), "should not mark objects in the CSet"); assert(!_g1->heap_region_containing(obj)->in_collection_set(), "should not mark objects in the CSet");
@ -5087,7 +5013,11 @@ private:
_num_entered_barrier(0) _num_entered_barrier(0)
{ {
nmethod::increase_unloading_clock(); nmethod::increase_unloading_clock();
_first_nmethod = CodeCache::alive_nmethod(CodeCache::first()); // Get first alive nmethod
NMethodIterator iter = NMethodIterator();
if(iter.next_alive()) {
_first_nmethod = iter.method();
}
_claimed_nmethod = (volatile nmethod*)_first_nmethod; _claimed_nmethod = (volatile nmethod*)_first_nmethod;
} }
@ -5130,27 +5060,26 @@ private:
void claim_nmethods(nmethod** claimed_nmethods, int *num_claimed_nmethods) { void claim_nmethods(nmethod** claimed_nmethods, int *num_claimed_nmethods) {
nmethod* first; nmethod* first;
nmethod* last; NMethodIterator last;
do { do {
*num_claimed_nmethods = 0; *num_claimed_nmethods = 0;
first = last = (nmethod*)_claimed_nmethod; first = (nmethod*)_claimed_nmethod;
last = NMethodIterator(first);
if (first != NULL) { if (first != NULL) {
for (int i = 0; i < MaxClaimNmethods; i++) {
last = CodeCache::alive_nmethod(CodeCache::next(last));
if (last == NULL) { for (int i = 0; i < MaxClaimNmethods; i++) {
if (!last.next_alive()) {
break; break;
} }
claimed_nmethods[i] = last.method();
claimed_nmethods[i] = last;
(*num_claimed_nmethods)++; (*num_claimed_nmethods)++;
} }
} }
} while ((nmethod*)Atomic::cmpxchg_ptr(last, &_claimed_nmethod, first) != first); } while ((nmethod*)Atomic::cmpxchg_ptr(last.method(), &_claimed_nmethod, first) != first);
} }
nmethod* claim_postponed_nmethod() { nmethod* claim_postponed_nmethod() {
@ -6008,7 +5937,7 @@ void G1CollectedHeap::evacuate_collection_set(EvacuationInfo& evacuation_info) {
} }
} }
release_gc_alloc_regions(n_workers, evacuation_info); _allocator->release_gc_alloc_regions(n_workers, evacuation_info);
g1_rem_set()->cleanup_after_oops_into_collection_set_do(); g1_rem_set()->cleanup_after_oops_into_collection_set_do();
// Reset and re-enable the hot card cache. // Reset and re-enable the hot card cache.
@ -6075,7 +6004,7 @@ void G1CollectedHeap::free_region(HeapRegion* hr,
void G1CollectedHeap::free_humongous_region(HeapRegion* hr, void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
FreeRegionList* free_list, FreeRegionList* free_list,
bool par) { bool par) {
assert(hr->startsHumongous(), "this is only for starts humongous regions"); assert(hr->is_starts_humongous(), "this is only for starts humongous regions");
assert(free_list != NULL, "pre-condition"); assert(free_list != NULL, "pre-condition");
size_t hr_capacity = hr->capacity(); size_t hr_capacity = hr->capacity();
@ -6088,7 +6017,7 @@ void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
uint i = hr->hrm_index() + 1; uint i = hr->hrm_index() + 1;
while (i < last_index) { while (i < last_index) {
HeapRegion* curr_hr = region_at(i); HeapRegion* curr_hr = region_at(i);
assert(curr_hr->continuesHumongous(), "invariant"); assert(curr_hr->is_continues_humongous(), "invariant");
curr_hr->clear_humongous(); curr_hr->clear_humongous();
free_region(curr_hr, free_list, par); free_region(curr_hr, free_list, par);
i += 1; i += 1;
@ -6114,10 +6043,7 @@ void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) {
} }
void G1CollectedHeap::decrement_summary_bytes(size_t bytes) { void G1CollectedHeap::decrement_summary_bytes(size_t bytes) {
assert(_summary_bytes_used >= bytes, _allocator->decrease_used(bytes);
err_msg("invariant: _summary_bytes_used: "SIZE_FORMAT" should be >= bytes: "SIZE_FORMAT,
_summary_bytes_used, bytes));
_summary_bytes_used -= bytes;
} }
class G1ParCleanupCTTask : public AbstractGangTask { class G1ParCleanupCTTask : public AbstractGangTask {
@ -6259,7 +6185,7 @@ public:
bool failures() { return _failures; } bool failures() { return _failures; }
virtual bool doHeapRegion(HeapRegion* hr) { virtual bool doHeapRegion(HeapRegion* hr) {
if (hr->continuesHumongous()) return false; if (hr->is_continues_humongous()) return false;
bool result = _g1h->verify_bitmaps(_caller, hr); bool result = _g1h->verify_bitmaps(_caller, hr);
if (!result) { if (!result) {
@ -6438,7 +6364,7 @@ class G1FreeHumongousRegionClosure : public HeapRegionClosure {
} }
virtual bool doHeapRegion(HeapRegion* r) { virtual bool doHeapRegion(HeapRegion* r) {
if (!r->startsHumongous()) { if (!r->is_starts_humongous()) {
return false; return false;
} }
@ -6484,7 +6410,7 @@ class G1FreeHumongousRegionClosure : public HeapRegionClosure {
if (G1TraceReclaimDeadHumongousObjectsAtYoungGC) { if (G1TraceReclaimDeadHumongousObjectsAtYoungGC) {
gclog_or_tty->print_cr("Live humongous %d region %d with remset "SIZE_FORMAT" code roots "SIZE_FORMAT" is marked %d live-other %d obj array %d", gclog_or_tty->print_cr("Live humongous %d region %d with remset "SIZE_FORMAT" code roots "SIZE_FORMAT" is marked %d live-other %d obj array %d",
r->isHumongous(), r->is_humongous(),
region_idx, region_idx,
r->rem_set()->occupied(), r->rem_set()->occupied(),
r->rem_set()->strong_code_roots_list_length(), r->rem_set()->strong_code_roots_list_length(),
@ -6503,7 +6429,7 @@ class G1FreeHumongousRegionClosure : public HeapRegionClosure {
if (G1TraceReclaimDeadHumongousObjectsAtYoungGC) { if (G1TraceReclaimDeadHumongousObjectsAtYoungGC) {
gclog_or_tty->print_cr("Reclaim humongous region %d start "PTR_FORMAT" region %d length "UINT32_FORMAT" with remset "SIZE_FORMAT" code roots "SIZE_FORMAT" is marked %d live-other %d obj array %d", gclog_or_tty->print_cr("Reclaim humongous region %d start "PTR_FORMAT" region %d length "UINT32_FORMAT" with remset "SIZE_FORMAT" code roots "SIZE_FORMAT" is marked %d live-other %d obj array %d",
r->isHumongous(), r->is_humongous(),
r->bottom(), r->bottom(),
region_idx, region_idx,
r->region_num(), r->region_num(),
@ -6693,7 +6619,7 @@ public:
// We ignore young regions, we'll empty the young list afterwards. // We ignore young regions, we'll empty the young list afterwards.
// We ignore humongous regions, we're not tearing down the // We ignore humongous regions, we're not tearing down the
// humongous regions set. // humongous regions set.
assert(r->is_free() || r->is_young() || r->isHumongous(), assert(r->is_free() || r->is_young() || r->is_humongous(),
"it cannot be another type"); "it cannot be another type");
} }
return false; return false;
@ -6738,18 +6664,19 @@ public:
} }
bool doHeapRegion(HeapRegion* r) { bool doHeapRegion(HeapRegion* r) {
if (r->continuesHumongous()) { if (r->is_continues_humongous()) {
return false; return false;
} }
if (r->is_empty()) { if (r->is_empty()) {
// Add free regions to the free list // Add free regions to the free list
r->set_free(); r->set_free();
r->set_allocation_context(AllocationContext::system());
_hrm->insert_into_free_list(r); _hrm->insert_into_free_list(r);
} else if (!_free_list_only) { } else if (!_free_list_only) {
assert(!r->is_young(), "we should not come across young regions"); assert(!r->is_young(), "we should not come across young regions");
if (r->isHumongous()) { if (r->is_humongous()) {
// We ignore humongous regions, we left the humongous set unchanged // We ignore humongous regions, we left the humongous set unchanged
} else { } else {
// Objects that were compacted would have ended up on regions // Objects that were compacted would have ended up on regions
@ -6781,12 +6708,12 @@ void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
heap_region_iterate(&cl); heap_region_iterate(&cl);
if (!free_list_only) { if (!free_list_only) {
_summary_bytes_used = cl.total_used(); _allocator->set_used(cl.total_used());
} }
assert(_summary_bytes_used == recalculate_used(), assert(_allocator->used_unlocked() == recalculate_used(),
err_msg("inconsistent _summary_bytes_used, " err_msg("inconsistent _allocator->used_unlocked(), "
"value: "SIZE_FORMAT" recalculated: "SIZE_FORMAT, "value: "SIZE_FORMAT" recalculated: "SIZE_FORMAT,
_summary_bytes_used, recalculate_used())); _allocator->used_unlocked(), recalculate_used()));
} }
void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) { void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
@ -6826,7 +6753,7 @@ void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
assert(alloc_region->is_eden(), "all mutator alloc regions should be eden"); assert(alloc_region->is_eden(), "all mutator alloc regions should be eden");
g1_policy()->add_region_to_incremental_cset_lhs(alloc_region); g1_policy()->add_region_to_incremental_cset_lhs(alloc_region);
_summary_bytes_used += allocated_bytes; _allocator->increase_used(allocated_bytes);
_hr_printer.retire(alloc_region); _hr_printer.retire(alloc_region);
// We update the eden sizes here, when the region is retired, // We update the eden sizes here, when the region is retired,
// instead of when it's allocated, since this is the point that its // instead of when it's allocated, since this is the point that its
@ -6834,11 +6761,6 @@ void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
g1mm()->update_eden_size(); g1mm()->update_eden_size();
} }
HeapRegion* MutatorAllocRegion::allocate_new_region(size_t word_size,
bool force) {
return _g1h->new_mutator_alloc_region(word_size, force);
}
void G1CollectedHeap::set_par_threads() { void G1CollectedHeap::set_par_threads() {
// Don't change the number of workers. Use the value previously set // Don't change the number of workers. Use the value previously set
// in the workgroup. // in the workgroup.
@ -6855,11 +6777,6 @@ void G1CollectedHeap::set_par_threads() {
set_par_threads(n_workers); set_par_threads(n_workers);
} }
void MutatorAllocRegion::retire_region(HeapRegion* alloc_region,
size_t allocated_bytes) {
_g1h->retire_mutator_alloc_region(alloc_region, allocated_bytes);
}
// Methods for the GC alloc regions // Methods for the GC alloc regions
HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size, HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size,
@ -6910,58 +6827,6 @@ void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
_hr_printer.retire(alloc_region); _hr_printer.retire(alloc_region);
} }
HeapRegion* SurvivorGCAllocRegion::allocate_new_region(size_t word_size,
bool force) {
assert(!force, "not supported for GC alloc regions");
return _g1h->new_gc_alloc_region(word_size, count(), GCAllocForSurvived);
}
void SurvivorGCAllocRegion::retire_region(HeapRegion* alloc_region,
size_t allocated_bytes) {
_g1h->retire_gc_alloc_region(alloc_region, allocated_bytes,
GCAllocForSurvived);
}
HeapRegion* OldGCAllocRegion::allocate_new_region(size_t word_size,
bool force) {
assert(!force, "not supported for GC alloc regions");
return _g1h->new_gc_alloc_region(word_size, count(), GCAllocForTenured);
}
void OldGCAllocRegion::retire_region(HeapRegion* alloc_region,
size_t allocated_bytes) {
_g1h->retire_gc_alloc_region(alloc_region, allocated_bytes,
GCAllocForTenured);
}
HeapRegion* OldGCAllocRegion::release() {
HeapRegion* cur = get();
if (cur != NULL) {
// Determine how far we are from the next card boundary. If it is smaller than
// the minimum object size we can allocate into, expand into the next card.
HeapWord* top = cur->top();
HeapWord* aligned_top = (HeapWord*)align_ptr_up(top, G1BlockOffsetSharedArray::N_bytes);
size_t to_allocate_words = pointer_delta(aligned_top, top, HeapWordSize);
if (to_allocate_words != 0) {
// We are not at a card boundary. Fill up, possibly into the next, taking the
// end of the region and the minimum object size into account.
to_allocate_words = MIN2(pointer_delta(cur->end(), cur->top(), HeapWordSize),
MAX2(to_allocate_words, G1CollectedHeap::min_fill_size()));
// Skip allocation if there is not enough space to allocate even the smallest
// possible object. In this case this region will not be retained, so the
// original problem cannot occur.
if (to_allocate_words >= G1CollectedHeap::min_fill_size()) {
HeapWord* dummy = attempt_allocation(to_allocate_words, true /* bot_updates */);
CollectedHeap::fill_with_object(dummy, to_allocate_words);
}
}
}
return G1AllocRegion::release();
}
// Heap region set verification // Heap region set verification
class VerifyRegionListsClosure : public HeapRegionClosure { class VerifyRegionListsClosure : public HeapRegionClosure {
@ -6982,13 +6847,13 @@ public:
_old_count(), _humongous_count(), _free_count(){ } _old_count(), _humongous_count(), _free_count(){ }
bool doHeapRegion(HeapRegion* hr) { bool doHeapRegion(HeapRegion* hr) {
if (hr->continuesHumongous()) { if (hr->is_continues_humongous()) {
return false; return false;
} }
if (hr->is_young()) { if (hr->is_young()) {
// TODO // TODO
} else if (hr->startsHumongous()) { } else if (hr->is_starts_humongous()) {
assert(hr->containing_set() == _humongous_set, err_msg("Heap region %u is starts humongous but not in humongous set.", hr->hrm_index())); assert(hr->containing_set() == _humongous_set, err_msg("Heap region %u is starts humongous but not in humongous set.", hr->hrm_index()));
_humongous_count.increment(1u, hr->capacity()); _humongous_count.increment(1u, hr->capacity());
} else if (hr->is_empty()) { } else if (hr->is_empty()) {
@ -7069,7 +6934,7 @@ class RegisterNMethodOopClosure: public OopClosure {
if (!oopDesc::is_null(heap_oop)) { if (!oopDesc::is_null(heap_oop)) {
oop obj = oopDesc::decode_heap_oop_not_null(heap_oop); oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
HeapRegion* hr = _g1h->heap_region_containing(obj); HeapRegion* hr = _g1h->heap_region_containing(obj);
assert(!hr->continuesHumongous(), assert(!hr->is_continues_humongous(),
err_msg("trying to add code root "PTR_FORMAT" in continuation of humongous region "HR_FORMAT err_msg("trying to add code root "PTR_FORMAT" in continuation of humongous region "HR_FORMAT
" starting at "HR_FORMAT, " starting at "HR_FORMAT,
_nm, HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()))); _nm, HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region())));
@ -7096,7 +6961,7 @@ class UnregisterNMethodOopClosure: public OopClosure {
if (!oopDesc::is_null(heap_oop)) { if (!oopDesc::is_null(heap_oop)) {
oop obj = oopDesc::decode_heap_oop_not_null(heap_oop); oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
HeapRegion* hr = _g1h->heap_region_containing(obj); HeapRegion* hr = _g1h->heap_region_containing(obj);
assert(!hr->continuesHumongous(), assert(!hr->is_continues_humongous(),
err_msg("trying to remove code root "PTR_FORMAT" in continuation of humongous region "HR_FORMAT err_msg("trying to remove code root "PTR_FORMAT" in continuation of humongous region "HR_FORMAT
" starting at "HR_FORMAT, " starting at "HR_FORMAT,
_nm, HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()))); _nm, HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region())));

View File

@ -25,6 +25,8 @@
#ifndef SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP
#define SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP #define SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP
#include "gc_implementation/g1/g1AllocationContext.hpp"
#include "gc_implementation/g1/g1Allocator.hpp"
#include "gc_implementation/g1/concurrentMark.hpp" #include "gc_implementation/g1/concurrentMark.hpp"
#include "gc_implementation/g1/evacuationInfo.hpp" #include "gc_implementation/g1/evacuationInfo.hpp"
#include "gc_implementation/g1/g1AllocRegion.hpp" #include "gc_implementation/g1/g1AllocRegion.hpp"
@ -80,12 +82,6 @@ typedef GenericTaskQueueSet<RefToScanQueue, mtGC> RefToScanQueueSet;
typedef int RegionIdx_t; // needs to hold [ 0..max_regions() ) typedef int RegionIdx_t; // needs to hold [ 0..max_regions() )
typedef int CardIdx_t; // needs to hold [ 0..CardsPerRegion ) typedef int CardIdx_t; // needs to hold [ 0..CardsPerRegion )
enum GCAllocPurpose {
GCAllocForTenured,
GCAllocForSurvived,
GCAllocPurposeCount
};
class YoungList : public CHeapObj<mtGC> { class YoungList : public CHeapObj<mtGC> {
private: private:
G1CollectedHeap* _g1h; G1CollectedHeap* _g1h;
@ -158,40 +154,6 @@ public:
void print(); void print();
}; };
class MutatorAllocRegion : public G1AllocRegion {
protected:
virtual HeapRegion* allocate_new_region(size_t word_size, bool force);
virtual void retire_region(HeapRegion* alloc_region, size_t allocated_bytes);
public:
MutatorAllocRegion()
: G1AllocRegion("Mutator Alloc Region", false /* bot_updates */) { }
};
class SurvivorGCAllocRegion : public G1AllocRegion {
protected:
virtual HeapRegion* allocate_new_region(size_t word_size, bool force);
virtual void retire_region(HeapRegion* alloc_region, size_t allocated_bytes);
public:
SurvivorGCAllocRegion()
: G1AllocRegion("Survivor GC Alloc Region", false /* bot_updates */) { }
};
class OldGCAllocRegion : public G1AllocRegion {
protected:
virtual HeapRegion* allocate_new_region(size_t word_size, bool force);
virtual void retire_region(HeapRegion* alloc_region, size_t allocated_bytes);
public:
OldGCAllocRegion()
: G1AllocRegion("Old GC Alloc Region", true /* bot_updates */) { }
// This specialization of release() makes sure that the last card that has been
// allocated into has been completely filled by a dummy object.
// This avoids races when remembered set scanning wants to update the BOT of the
// last card in the retained old gc alloc region, and allocation threads
// allocating into that card at the same time.
virtual HeapRegion* release();
};
// The G1 STW is alive closure. // The G1 STW is alive closure.
// An instance is embedded into the G1CH and used as the // An instance is embedded into the G1CH and used as the
// (optional) _is_alive_non_header closure in the STW // (optional) _is_alive_non_header closure in the STW
@ -222,6 +184,9 @@ class G1CollectedHeap : public SharedHeap {
friend class MutatorAllocRegion; friend class MutatorAllocRegion;
friend class SurvivorGCAllocRegion; friend class SurvivorGCAllocRegion;
friend class OldGCAllocRegion; friend class OldGCAllocRegion;
friend class G1Allocator;
friend class G1DefaultAllocator;
friend class G1ResManAllocator;
// Closures used in implementation. // Closures used in implementation.
template <G1Barrier barrier, G1Mark do_mark_object> template <G1Barrier barrier, G1Mark do_mark_object>
@ -232,6 +197,8 @@ class G1CollectedHeap : public SharedHeap {
friend class G1ParScanClosureSuper; friend class G1ParScanClosureSuper;
friend class G1ParEvacuateFollowersClosure; friend class G1ParEvacuateFollowersClosure;
friend class G1ParTask; friend class G1ParTask;
friend class G1ParGCAllocator;
friend class G1DefaultParGCAllocator;
friend class G1FreeGarbageRegionClosure; friend class G1FreeGarbageRegionClosure;
friend class RefineCardTableEntryClosure; friend class RefineCardTableEntryClosure;
friend class G1PrepareCompactClosure; friend class G1PrepareCompactClosure;
@ -293,44 +260,18 @@ private:
// The sequence of all heap regions in the heap. // The sequence of all heap regions in the heap.
HeapRegionManager _hrm; HeapRegionManager _hrm;
// Alloc region used to satisfy mutator allocation requests. // Class that handles the different kinds of allocations.
MutatorAllocRegion _mutator_alloc_region; G1Allocator* _allocator;
// Alloc region used to satisfy allocation requests by the GC for // Statistics for each allocation context
// survivor objects. AllocationContextStats _allocation_context_stats;
SurvivorGCAllocRegion _survivor_gc_alloc_region;
// PLAB sizing policy for survivors. // PLAB sizing policy for survivors.
PLABStats _survivor_plab_stats; PLABStats _survivor_plab_stats;
// Alloc region used to satisfy allocation requests by the GC for
// old objects.
OldGCAllocRegion _old_gc_alloc_region;
// PLAB sizing policy for tenured objects. // PLAB sizing policy for tenured objects.
PLABStats _old_plab_stats; PLABStats _old_plab_stats;
PLABStats* stats_for_purpose(GCAllocPurpose purpose) {
PLABStats* stats = NULL;
switch (purpose) {
case GCAllocForSurvived:
stats = &_survivor_plab_stats;
break;
case GCAllocForTenured:
stats = &_old_plab_stats;
break;
default:
assert(false, "unrecognized GCAllocPurpose");
}
return stats;
}
// The last old region we allocated to during the last GC.
// Typically, it is not full so we should re-use it during the next GC.
HeapRegion* _retained_old_gc_alloc_region;
// It specifies whether we should attempt to expand the heap after a // It specifies whether we should attempt to expand the heap after a
// region allocation failure. If heap expansion fails we set this to // region allocation failure. If heap expansion fails we set this to
// false so that we don't re-attempt the heap expansion (it's likely // false so that we don't re-attempt the heap expansion (it's likely
@ -348,9 +289,6 @@ private:
// It initializes the GC alloc regions at the start of a GC. // It initializes the GC alloc regions at the start of a GC.
void init_gc_alloc_regions(EvacuationInfo& evacuation_info); void init_gc_alloc_regions(EvacuationInfo& evacuation_info);
// Setup the retained old gc alloc region as the currrent old gc alloc region.
void use_retained_old_gc_alloc_region(EvacuationInfo& evacuation_info);
// It releases the GC alloc regions at the end of a GC. // It releases the GC alloc regions at the end of a GC.
void release_gc_alloc_regions(uint no_of_gc_workers, EvacuationInfo& evacuation_info); void release_gc_alloc_regions(uint no_of_gc_workers, EvacuationInfo& evacuation_info);
@ -361,13 +299,6 @@ private:
// Helper for monitoring and management support. // Helper for monitoring and management support.
G1MonitoringSupport* _g1mm; G1MonitoringSupport* _g1mm;
// Determines PLAB size for a particular allocation purpose.
size_t desired_plab_sz(GCAllocPurpose purpose);
// Outside of GC pauses, the number of bytes used in all regions other
// than the current allocation region.
size_t _summary_bytes_used;
// Records whether the region at the given index is kept live by roots or // Records whether the region at the given index is kept live by roots or
// references from the young generation. // references from the young generation.
class HumongousIsLiveBiasedMappedArray : public G1BiasedMappedArray<bool> { class HumongousIsLiveBiasedMappedArray : public G1BiasedMappedArray<bool> {
@ -526,11 +457,12 @@ protected:
// humongous region. // humongous region.
HeapWord* humongous_obj_allocate_initialize_regions(uint first, HeapWord* humongous_obj_allocate_initialize_regions(uint first,
uint num_regions, uint num_regions,
size_t word_size); size_t word_size,
AllocationContext_t context);
// Attempt to allocate a humongous object of the given size. Return // Attempt to allocate a humongous object of the given size. Return
// NULL if unsuccessful. // NULL if unsuccessful.
HeapWord* humongous_obj_allocate(size_t word_size); HeapWord* humongous_obj_allocate(size_t word_size, AllocationContext_t context);
// The following two methods, allocate_new_tlab() and // The following two methods, allocate_new_tlab() and
// mem_allocate(), are the two main entry points from the runtime // mem_allocate(), are the two main entry points from the runtime
@ -586,6 +518,7 @@ protected:
// retry the allocation attempt, potentially scheduling a GC // retry the allocation attempt, potentially scheduling a GC
// pause. This should only be used for non-humongous allocations. // pause. This should only be used for non-humongous allocations.
HeapWord* attempt_allocation_slow(size_t word_size, HeapWord* attempt_allocation_slow(size_t word_size,
AllocationContext_t context,
unsigned int* gc_count_before_ret, unsigned int* gc_count_before_ret,
int* gclocker_retry_count_ret); int* gclocker_retry_count_ret);
@ -600,7 +533,8 @@ protected:
// specifies whether the mutator alloc region is expected to be NULL // specifies whether the mutator alloc region is expected to be NULL
// or not. // or not.
HeapWord* attempt_allocation_at_safepoint(size_t word_size, HeapWord* attempt_allocation_at_safepoint(size_t word_size,
bool expect_null_mutator_alloc_region); AllocationContext_t context,
bool expect_null_mutator_alloc_region);
// It dirties the cards that cover the block so that so that the post // It dirties the cards that cover the block so that so that the post
// write barrier never queues anything when updating objects on this // write barrier never queues anything when updating objects on this
@ -612,7 +546,9 @@ protected:
// allocation region, either by picking one or expanding the // allocation region, either by picking one or expanding the
// heap, and then allocate a block of the given size. The block // heap, and then allocate a block of the given size. The block
// may not be a humongous - it must fit into a single heap region. // may not be a humongous - it must fit into a single heap region.
HeapWord* par_allocate_during_gc(GCAllocPurpose purpose, size_t word_size); HeapWord* par_allocate_during_gc(GCAllocPurpose purpose,
size_t word_size,
AllocationContext_t context);
HeapWord* allocate_during_gc_slow(GCAllocPurpose purpose, HeapWord* allocate_during_gc_slow(GCAllocPurpose purpose,
HeapRegion* alloc_region, HeapRegion* alloc_region,
@ -624,10 +560,12 @@ protected:
void par_allocate_remaining_space(HeapRegion* r); void par_allocate_remaining_space(HeapRegion* r);
// Allocation attempt during GC for a survivor object / PLAB. // Allocation attempt during GC for a survivor object / PLAB.
inline HeapWord* survivor_attempt_allocation(size_t word_size); inline HeapWord* survivor_attempt_allocation(size_t word_size,
AllocationContext_t context);
// Allocation attempt during GC for an old object / PLAB. // Allocation attempt during GC for an old object / PLAB.
inline HeapWord* old_attempt_allocation(size_t word_size); inline HeapWord* old_attempt_allocation(size_t word_size,
AllocationContext_t context);
// These methods are the "callbacks" from the G1AllocRegion class. // These methods are the "callbacks" from the G1AllocRegion class.
@ -666,13 +604,15 @@ protected:
// Callback from VM_G1CollectForAllocation operation. // Callback from VM_G1CollectForAllocation operation.
// This function does everything necessary/possible to satisfy a // This function does everything necessary/possible to satisfy a
// failed allocation request (including collection, expansion, etc.) // failed allocation request (including collection, expansion, etc.)
HeapWord* satisfy_failed_allocation(size_t word_size, bool* succeeded); HeapWord* satisfy_failed_allocation(size_t word_size,
AllocationContext_t context,
bool* succeeded);
// Attempting to expand the heap sufficiently // Attempting to expand the heap sufficiently
// to support an allocation of the given "word_size". If // to support an allocation of the given "word_size". If
// successful, perform the allocation and return the address of the // successful, perform the allocation and return the address of the
// allocated block, or else "NULL". // allocated block, or else "NULL".
HeapWord* expand_and_allocate(size_t word_size); HeapWord* expand_and_allocate(size_t word_size, AllocationContext_t context);
// Process any reference objects discovered during // Process any reference objects discovered during
// an incremental evacuation pause. // an incremental evacuation pause.
@ -684,6 +624,10 @@ protected:
public: public:
G1Allocator* allocator() {
return _allocator;
}
G1MonitoringSupport* g1mm() { G1MonitoringSupport* g1mm() {
assert(_g1mm != NULL, "should have been initialized"); assert(_g1mm != NULL, "should have been initialized");
return _g1mm; return _g1mm;
@ -695,6 +639,29 @@ public:
// (Rounds up to a HeapRegion boundary.) // (Rounds up to a HeapRegion boundary.)
bool expand(size_t expand_bytes); bool expand(size_t expand_bytes);
// Returns the PLAB statistics given a purpose.
PLABStats* stats_for_purpose(GCAllocPurpose purpose) {
PLABStats* stats = NULL;
switch (purpose) {
case GCAllocForSurvived:
stats = &_survivor_plab_stats;
break;
case GCAllocForTenured:
stats = &_old_plab_stats;
break;
default:
assert(false, "unrecognized GCAllocPurpose");
}
return stats;
}
// Determines PLAB size for a particular allocation purpose.
size_t desired_plab_sz(GCAllocPurpose purpose);
inline AllocationContextStats& allocation_context_stats();
// Do anything common to GC's. // Do anything common to GC's.
virtual void gc_prologue(bool full); virtual void gc_prologue(bool full);
virtual void gc_epilogue(bool full); virtual void gc_epilogue(bool full);
@ -1272,7 +1239,7 @@ public:
// Determine whether the given region is one that we are using as an // Determine whether the given region is one that we are using as an
// old GC alloc region. // old GC alloc region.
bool is_old_gc_alloc_region(HeapRegion* hr) { bool is_old_gc_alloc_region(HeapRegion* hr) {
return hr == _retained_old_gc_alloc_region; return _allocator->is_retained_old_region(hr);
} }
// Perform a collection of the heap; intended for use in implementing // Perform a collection of the heap; intended for use in implementing
@ -1283,6 +1250,11 @@ public:
// The same as above but assume that the caller holds the Heap_lock. // The same as above but assume that the caller holds the Heap_lock.
void collect_locked(GCCause::Cause cause); void collect_locked(GCCause::Cause cause);
virtual void copy_allocation_context_stats(const jint* contexts,
jlong* totals,
jbyte* accuracy,
jint len);
// True iff an evacuation has failed in the most-recent collection. // True iff an evacuation has failed in the most-recent collection.
bool evacuation_failed() { return _evacuation_failed; } bool evacuation_failed() { return _evacuation_failed; }
@ -1540,7 +1512,7 @@ public:
virtual inline bool can_elide_initializing_store_barrier(oop new_obj); virtual inline bool can_elide_initializing_store_barrier(oop new_obj);
// Returns "true" iff the given word_size is "very large". // Returns "true" iff the given word_size is "very large".
static bool isHumongous(size_t word_size) { static bool is_humongous(size_t word_size) {
// Note this has to be strictly greater-than as the TLABs // Note this has to be strictly greater-than as the TLABs
// are capped at the humongous threshold and we want to // are capped at the humongous threshold and we want to
// ensure that we don't try to allocate a TLAB as // ensure that we don't try to allocate a TLAB as
@ -1747,28 +1719,4 @@ protected:
size_t _max_heap_capacity; size_t _max_heap_capacity;
}; };
class G1ParGCAllocBuffer: public ParGCAllocBuffer {
private:
bool _retired;
public:
G1ParGCAllocBuffer(size_t gclab_word_size);
virtual ~G1ParGCAllocBuffer() {
guarantee(_retired, "Allocation buffer has not been retired");
}
virtual void set_buf(HeapWord* buf) {
ParGCAllocBuffer::set_buf(buf);
_retired = false;
}
virtual void retire(bool end_of_gc, bool retain) {
if (_retired) {
return;
}
ParGCAllocBuffer::retire(end_of_gc, retain);
_retired = true;
}
};
#endif // SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP #endif // SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP

View File

@ -37,14 +37,18 @@
// Inline functions for G1CollectedHeap // Inline functions for G1CollectedHeap
inline AllocationContextStats& G1CollectedHeap::allocation_context_stats() {
return _allocation_context_stats;
}
// Return the region with the given index. It assumes the index is valid. // Return the region with the given index. It assumes the index is valid.
inline HeapRegion* G1CollectedHeap::region_at(uint index) const { return _hrm.at(index); } inline HeapRegion* G1CollectedHeap::region_at(uint index) const { return _hrm.at(index); }
inline uint G1CollectedHeap::addr_to_region(HeapWord* addr) const { inline uint G1CollectedHeap::addr_to_region(HeapWord* addr) const {
assert(is_in_reserved(addr), assert(is_in_reserved(addr),
err_msg("Cannot calculate region index for address "PTR_FORMAT" that is outside of the heap ["PTR_FORMAT", "PTR_FORMAT")", err_msg("Cannot calculate region index for address "PTR_FORMAT" that is outside of the heap ["PTR_FORMAT", "PTR_FORMAT")",
p2i(addr), p2i(_reserved.start()), p2i(_reserved.end()))); p2i(addr), p2i(reserved_region().start()), p2i(reserved_region().end())));
return (uint)(pointer_delta(addr, _reserved.start(), sizeof(uint8_t)) >> HeapRegion::LogOfHRGrainBytes); return (uint)(pointer_delta(addr, reserved_region().start(), sizeof(uint8_t)) >> HeapRegion::LogOfHRGrainBytes);
} }
inline HeapWord* G1CollectedHeap::bottom_addr_for_region(uint index) const { inline HeapWord* G1CollectedHeap::bottom_addr_for_region(uint index) const {
@ -63,7 +67,7 @@ inline HeapRegion* G1CollectedHeap::heap_region_containing_raw(const T addr) con
template <class T> template <class T>
inline HeapRegion* G1CollectedHeap::heap_region_containing(const T addr) const { inline HeapRegion* G1CollectedHeap::heap_region_containing(const T addr) const {
HeapRegion* hr = heap_region_containing_raw(addr); HeapRegion* hr = heap_region_containing_raw(addr);
if (hr->continuesHumongous()) { if (hr->is_continues_humongous()) {
return hr->humongous_start_region(); return hr->humongous_start_region();
} }
return hr; return hr;
@ -95,13 +99,15 @@ inline HeapWord* G1CollectedHeap::attempt_allocation(size_t word_size,
unsigned int* gc_count_before_ret, unsigned int* gc_count_before_ret,
int* gclocker_retry_count_ret) { int* gclocker_retry_count_ret) {
assert_heap_not_locked_and_not_at_safepoint(); assert_heap_not_locked_and_not_at_safepoint();
assert(!isHumongous(word_size), "attempt_allocation() should not " assert(!is_humongous(word_size), "attempt_allocation() should not "
"be called for humongous allocation requests"); "be called for humongous allocation requests");
HeapWord* result = _mutator_alloc_region.attempt_allocation(word_size, AllocationContext_t context = AllocationContext::current();
false /* bot_updates */); HeapWord* result = _allocator->mutator_alloc_region(context)->attempt_allocation(word_size,
false /* bot_updates */);
if (result == NULL) { if (result == NULL) {
result = attempt_allocation_slow(word_size, result = attempt_allocation_slow(word_size,
context,
gc_count_before_ret, gc_count_before_ret,
gclocker_retry_count_ret); gclocker_retry_count_ret);
} }
@ -112,17 +118,17 @@ inline HeapWord* G1CollectedHeap::attempt_allocation(size_t word_size,
return result; return result;
} }
inline HeapWord* G1CollectedHeap::survivor_attempt_allocation(size_t inline HeapWord* G1CollectedHeap::survivor_attempt_allocation(size_t word_size,
word_size) { AllocationContext_t context) {
assert(!isHumongous(word_size), assert(!is_humongous(word_size),
"we should not be seeing humongous-size allocations in this path"); "we should not be seeing humongous-size allocations in this path");
HeapWord* result = _survivor_gc_alloc_region.attempt_allocation(word_size, HeapWord* result = _allocator->survivor_gc_alloc_region(context)->attempt_allocation(word_size,
false /* bot_updates */); false /* bot_updates */);
if (result == NULL) { if (result == NULL) {
MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag); MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
result = _survivor_gc_alloc_region.attempt_allocation_locked(word_size, result = _allocator->survivor_gc_alloc_region(context)->attempt_allocation_locked(word_size,
false /* bot_updates */); false /* bot_updates */);
} }
if (result != NULL) { if (result != NULL) {
dirty_young_block(result, word_size); dirty_young_block(result, word_size);
@ -130,16 +136,17 @@ inline HeapWord* G1CollectedHeap::survivor_attempt_allocation(size_t
return result; return result;
} }
inline HeapWord* G1CollectedHeap::old_attempt_allocation(size_t word_size) { inline HeapWord* G1CollectedHeap::old_attempt_allocation(size_t word_size,
assert(!isHumongous(word_size), AllocationContext_t context) {
assert(!is_humongous(word_size),
"we should not be seeing humongous-size allocations in this path"); "we should not be seeing humongous-size allocations in this path");
HeapWord* result = _old_gc_alloc_region.attempt_allocation(word_size, HeapWord* result = _allocator->old_gc_alloc_region(context)->attempt_allocation(word_size,
true /* bot_updates */); true /* bot_updates */);
if (result == NULL) { if (result == NULL) {
MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag); MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
result = _old_gc_alloc_region.attempt_allocation_locked(word_size, result = _allocator->old_gc_alloc_region(context)->attempt_allocation_locked(word_size,
true /* bot_updates */); true /* bot_updates */);
} }
return result; return result;
} }
@ -159,7 +166,7 @@ G1CollectedHeap::dirty_young_block(HeapWord* start, size_t word_size) {
assert(word_size > 0, "pre-condition"); assert(word_size > 0, "pre-condition");
assert(containing_hr->is_in(start), "it should contain start"); assert(containing_hr->is_in(start), "it should contain start");
assert(containing_hr->is_young(), "it should be young"); assert(containing_hr->is_young(), "it should be young");
assert(!containing_hr->isHumongous(), "it should not be humongous"); assert(!containing_hr->is_humongous(), "it should not be humongous");
HeapWord* end = start + word_size; HeapWord* end = start + word_size;
assert(containing_hr->is_in(end - 1), "it should also contain end - 1"); assert(containing_hr->is_in(end - 1), "it should also contain end - 1");

View File

@ -0,0 +1,32 @@
/*
* Copyright (c) 2014, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "gc_implementation/g1/g1CollectedHeap.hpp"
void G1CollectedHeap::copy_allocation_context_stats(const jint* contexts,
jlong* totals,
jbyte* accuracy,
jint len) {
}

View File

@ -192,7 +192,7 @@ public:
bool during_initial_mark = _g1h->g1_policy()->during_initial_mark_pause(); bool during_initial_mark = _g1h->g1_policy()->during_initial_mark_pause();
bool during_conc_mark = _g1h->mark_in_progress(); bool during_conc_mark = _g1h->mark_in_progress();
assert(!hr->isHumongous(), "sanity"); assert(!hr->is_humongous(), "sanity");
assert(hr->in_collection_set(), "bad CS"); assert(hr->in_collection_set(), "bad CS");
if (hr->claimHeapRegion(HeapRegion::ParEvacFailureClaimValue)) { if (hr->claimHeapRegion(HeapRegion::ParEvacFailureClaimValue)) {

View File

@ -43,9 +43,7 @@ void G1HotCardCache::initialize(G1RegionToSpaceMapper* card_counts_storage) {
_hot_cache_idx = 0; _hot_cache_idx = 0;
// For refining the cards in the hot cache in parallel // For refining the cards in the hot cache in parallel
uint n_workers = (ParallelGCThreads > 0 ? _hot_cache_par_chunk_size = (ParallelGCThreads > 0 ? ClaimChunkSize : _hot_cache_size);
_g1h->workers()->total_workers() : 1);
_hot_cache_par_chunk_size = MAX2(1, _hot_cache_size / (int)n_workers);
_hot_cache_par_claimed_idx = 0; _hot_cache_par_claimed_idx = 0;
_card_counts.initialize(card_counts_storage); _card_counts.initialize(card_counts_storage);

View File

@ -70,6 +70,9 @@ class G1HotCardCache: public CHeapObj<mtGC> {
G1CardCounts _card_counts; G1CardCounts _card_counts;
// The number of cached cards a thread claims when flushing the cache
static const int ClaimChunkSize = 32;
bool default_use_cache() const { bool default_use_cache() const {
return (G1ConcRSLogCacheSize > 0); return (G1ConcRSLogCacheSize > 0);
} }

View File

@ -193,76 +193,6 @@ void G1MarkSweep::mark_sweep_phase1(bool& marked_for_unloading,
gc_tracer()->report_object_count_after_gc(&GenMarkSweep::is_alive); gc_tracer()->report_object_count_after_gc(&GenMarkSweep::is_alive);
} }
class G1PrepareCompactClosure: public HeapRegionClosure {
G1CollectedHeap* _g1h;
ModRefBarrierSet* _mrbs;
CompactPoint _cp;
HeapRegionSetCount _humongous_regions_removed;
bool is_cp_initialized() const {
return _cp.space != NULL;
}
void prepare_for_compaction(HeapRegion* hr, HeapWord* end) {
// If this is the first live region that we came across which we can compact,
// initialize the CompactPoint.
if (!is_cp_initialized()) {
_cp.space = hr;
_cp.threshold = hr->initialize_threshold();
}
hr->prepare_for_compaction(&_cp);
// Also clear the part of the card table that will be unused after
// compaction.
_mrbs->clear(MemRegion(hr->compaction_top(), end));
}
void free_humongous_region(HeapRegion* hr) {
HeapWord* end = hr->end();
FreeRegionList dummy_free_list("Dummy Free List for G1MarkSweep");
assert(hr->startsHumongous(),
"Only the start of a humongous region should be freed.");
hr->set_containing_set(NULL);
_humongous_regions_removed.increment(1u, hr->capacity());
_g1h->free_humongous_region(hr, &dummy_free_list, false /* par */);
prepare_for_compaction(hr, end);
dummy_free_list.remove_all();
}
public:
G1PrepareCompactClosure()
: _g1h(G1CollectedHeap::heap()),
_mrbs(_g1h->g1_barrier_set()),
_cp(NULL),
_humongous_regions_removed() { }
void update_sets() {
// We'll recalculate total used bytes and recreate the free list
// at the end of the GC, so no point in updating those values here.
HeapRegionSetCount empty_set;
_g1h->remove_from_old_sets(empty_set, _humongous_regions_removed);
}
bool doHeapRegion(HeapRegion* hr) {
if (hr->isHumongous()) {
if (hr->startsHumongous()) {
oop obj = oop(hr->bottom());
if (obj->is_gc_marked()) {
obj->forward_to(obj);
} else {
free_humongous_region(hr);
}
} else {
assert(hr->continuesHumongous(), "Invalid humongous.");
}
} else {
prepare_for_compaction(hr, hr->end());
}
return false;
}
};
void G1MarkSweep::mark_sweep_phase2() { void G1MarkSweep::mark_sweep_phase2() {
// Now all live objects are marked, compute the new object addresses. // Now all live objects are marked, compute the new object addresses.
@ -271,21 +201,17 @@ void G1MarkSweep::mark_sweep_phase2() {
// phase2, phase3 and phase4, but the ValidateMarkSweep live oops // phase2, phase3 and phase4, but the ValidateMarkSweep live oops
// tracking expects us to do so. See comment under phase4. // tracking expects us to do so. See comment under phase4.
G1CollectedHeap* g1h = G1CollectedHeap::heap();
GCTraceTime tm("phase 2", G1Log::fine() && Verbose, true, gc_timer(), gc_tracer()->gc_id()); GCTraceTime tm("phase 2", G1Log::fine() && Verbose, true, gc_timer(), gc_tracer()->gc_id());
GenMarkSweep::trace("2"); GenMarkSweep::trace("2");
G1PrepareCompactClosure blk; prepare_compaction();
g1h->heap_region_iterate(&blk);
blk.update_sets();
} }
class G1AdjustPointersClosure: public HeapRegionClosure { class G1AdjustPointersClosure: public HeapRegionClosure {
public: public:
bool doHeapRegion(HeapRegion* r) { bool doHeapRegion(HeapRegion* r) {
if (r->isHumongous()) { if (r->is_humongous()) {
if (r->startsHumongous()) { if (r->is_starts_humongous()) {
// We must adjust the pointers on the single H object. // We must adjust the pointers on the single H object.
oop obj = oop(r->bottom()); oop obj = oop(r->bottom());
// point all the oops to the new location // point all the oops to the new location
@ -340,8 +266,8 @@ public:
G1SpaceCompactClosure() {} G1SpaceCompactClosure() {}
bool doHeapRegion(HeapRegion* hr) { bool doHeapRegion(HeapRegion* hr) {
if (hr->isHumongous()) { if (hr->is_humongous()) {
if (hr->startsHumongous()) { if (hr->is_starts_humongous()) {
oop obj = oop(hr->bottom()); oop obj = oop(hr->bottom());
if (obj->is_gc_marked()) { if (obj->is_gc_marked()) {
obj->init_mark(); obj->init_mark();
@ -373,3 +299,68 @@ void G1MarkSweep::mark_sweep_phase4() {
g1h->heap_region_iterate(&blk); g1h->heap_region_iterate(&blk);
} }
void G1MarkSweep::prepare_compaction_work(G1PrepareCompactClosure* blk) {
G1CollectedHeap* g1h = G1CollectedHeap::heap();
g1h->heap_region_iterate(blk);
blk->update_sets();
}
void G1PrepareCompactClosure::free_humongous_region(HeapRegion* hr) {
HeapWord* end = hr->end();
FreeRegionList dummy_free_list("Dummy Free List for G1MarkSweep");
assert(hr->is_starts_humongous(),
"Only the start of a humongous region should be freed.");
hr->set_containing_set(NULL);
_humongous_regions_removed.increment(1u, hr->capacity());
_g1h->free_humongous_region(hr, &dummy_free_list, false /* par */);
prepare_for_compaction(hr, end);
dummy_free_list.remove_all();
}
void G1PrepareCompactClosure::prepare_for_compaction(HeapRegion* hr, HeapWord* end) {
// If this is the first live region that we came across which we can compact,
// initialize the CompactPoint.
if (!is_cp_initialized()) {
_cp.space = hr;
_cp.threshold = hr->initialize_threshold();
}
prepare_for_compaction_work(&_cp, hr, end);
}
void G1PrepareCompactClosure::prepare_for_compaction_work(CompactPoint* cp,
HeapRegion* hr,
HeapWord* end) {
hr->prepare_for_compaction(cp);
// Also clear the part of the card table that will be unused after
// compaction.
_mrbs->clear(MemRegion(hr->compaction_top(), end));
}
void G1PrepareCompactClosure::update_sets() {
// We'll recalculate total used bytes and recreate the free list
// at the end of the GC, so no point in updating those values here.
HeapRegionSetCount empty_set;
_g1h->remove_from_old_sets(empty_set, _humongous_regions_removed);
}
bool G1PrepareCompactClosure::doHeapRegion(HeapRegion* hr) {
if (hr->is_humongous()) {
if (hr->is_starts_humongous()) {
oop obj = oop(hr->bottom());
if (obj->is_gc_marked()) {
obj->forward_to(obj);
} else {
free_humongous_region(hr);
}
} else {
assert(hr->is_continues_humongous(), "Invalid humongous.");
}
} else {
prepare_for_compaction(hr, hr->end());
}
return false;
}

View File

@ -43,7 +43,7 @@ class ReferenceProcessor;
// compaction. // compaction.
// //
// Class unloading will only occur when a full gc is invoked. // Class unloading will only occur when a full gc is invoked.
class G1PrepareCompactClosure;
class G1MarkSweep : AllStatic { class G1MarkSweep : AllStatic {
friend class VM_G1MarkSweep; friend class VM_G1MarkSweep;
@ -70,6 +70,30 @@ class G1MarkSweep : AllStatic {
static void mark_sweep_phase4(); static void mark_sweep_phase4();
static void allocate_stacks(); static void allocate_stacks();
static void prepare_compaction();
static void prepare_compaction_work(G1PrepareCompactClosure* blk);
};
class G1PrepareCompactClosure : public HeapRegionClosure {
protected:
G1CollectedHeap* _g1h;
ModRefBarrierSet* _mrbs;
CompactPoint _cp;
HeapRegionSetCount _humongous_regions_removed;
virtual void prepare_for_compaction(HeapRegion* hr, HeapWord* end);
void prepare_for_compaction_work(CompactPoint* cp, HeapRegion* hr, HeapWord* end);
void free_humongous_region(HeapRegion* hr);
bool is_cp_initialized() const { return _cp.space != NULL; }
public:
G1PrepareCompactClosure() :
_g1h(G1CollectedHeap::heap()),
_mrbs(_g1h->g1_barrier_set()),
_humongous_regions_removed() { }
void update_sets();
bool doHeapRegion(HeapRegion* hr);
}; };
#endif // SHARE_VM_GC_IMPLEMENTATION_G1_G1MARKSWEEP_HPP #endif // SHARE_VM_GC_IMPLEMENTATION_G1_G1MARKSWEEP_HPP

View File

@ -0,0 +1,31 @@
/*
* Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "gc_implementation/g1/g1MarkSweep.hpp"
void G1MarkSweep::prepare_compaction() {
G1PrepareCompactClosure blk;
G1MarkSweep::prepare_compaction_work(&blk);
}

View File

@ -38,11 +38,8 @@ G1ParScanThreadState::G1ParScanThreadState(G1CollectedHeap* g1h, uint queue_num,
_g1_rem(g1h->g1_rem_set()), _g1_rem(g1h->g1_rem_set()),
_hash_seed(17), _queue_num(queue_num), _hash_seed(17), _queue_num(queue_num),
_term_attempts(0), _term_attempts(0),
_surviving_alloc_buffer(g1h->desired_plab_sz(GCAllocForSurvived)),
_tenured_alloc_buffer(g1h->desired_plab_sz(GCAllocForTenured)),
_age_table(false), _scanner(g1h, rp), _age_table(false), _scanner(g1h, rp),
_strong_roots_time(0), _term_time(0), _strong_roots_time(0), _term_time(0) {
_alloc_buffer_waste(0), _undo_waste(0) {
_scanner.set_par_scan_thread_state(this); _scanner.set_par_scan_thread_state(this);
// we allocate G1YoungSurvRateNumRegions plus one entries, since // we allocate G1YoungSurvRateNumRegions plus one entries, since
// we "sacrifice" entry 0 to keep track of surviving bytes for // we "sacrifice" entry 0 to keep track of surviving bytes for
@ -60,14 +57,14 @@ G1ParScanThreadState::G1ParScanThreadState(G1CollectedHeap* g1h, uint queue_num,
_surviving_young_words = _surviving_young_words_base + PADDING_ELEM_NUM; _surviving_young_words = _surviving_young_words_base + PADDING_ELEM_NUM;
memset(_surviving_young_words, 0, (size_t) real_length * sizeof(size_t)); memset(_surviving_young_words, 0, (size_t) real_length * sizeof(size_t));
_alloc_buffers[GCAllocForSurvived] = &_surviving_alloc_buffer; _g1_par_allocator = G1ParGCAllocator::create_allocator(_g1h);
_alloc_buffers[GCAllocForTenured] = &_tenured_alloc_buffer;
_start = os::elapsedTime(); _start = os::elapsedTime();
} }
G1ParScanThreadState::~G1ParScanThreadState() { G1ParScanThreadState::~G1ParScanThreadState() {
retire_alloc_buffers(); _g1_par_allocator->retire_alloc_buffers();
delete _g1_par_allocator;
FREE_C_HEAP_ARRAY(size_t, _surviving_young_words_base, mtGC); FREE_C_HEAP_ARRAY(size_t, _surviving_young_words_base, mtGC);
} }
@ -90,14 +87,16 @@ G1ParScanThreadState::print_termination_stats(int i,
const double elapsed_ms = elapsed_time() * 1000.0; const double elapsed_ms = elapsed_time() * 1000.0;
const double s_roots_ms = strong_roots_time() * 1000.0; const double s_roots_ms = strong_roots_time() * 1000.0;
const double term_ms = term_time() * 1000.0; const double term_ms = term_time() * 1000.0;
const size_t alloc_buffer_waste = _g1_par_allocator->alloc_buffer_waste();
const size_t undo_waste = _g1_par_allocator->undo_waste();
st->print_cr("%3d %9.2f %9.2f %6.2f " st->print_cr("%3d %9.2f %9.2f %6.2f "
"%9.2f %6.2f " SIZE_FORMAT_W(8) " " "%9.2f %6.2f " SIZE_FORMAT_W(8) " "
SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7), SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7),
i, elapsed_ms, s_roots_ms, s_roots_ms * 100 / elapsed_ms, i, elapsed_ms, s_roots_ms, s_roots_ms * 100 / elapsed_ms,
term_ms, term_ms * 100 / elapsed_ms, term_attempts(), term_ms, term_ms * 100 / elapsed_ms, term_attempts(),
(alloc_buffer_waste() + undo_waste()) * HeapWordSize / K, (alloc_buffer_waste + undo_waste) * HeapWordSize / K,
alloc_buffer_waste() * HeapWordSize / K, alloc_buffer_waste * HeapWordSize / K,
undo_waste() * HeapWordSize / K); undo_waste * HeapWordSize / K);
} }
#ifdef ASSERT #ifdef ASSERT
@ -164,12 +163,13 @@ oop G1ParScanThreadState::copy_to_survivor_space(oop const old) {
: m->age(); : m->age();
GCAllocPurpose alloc_purpose = g1p->evacuation_destination(from_region, age, GCAllocPurpose alloc_purpose = g1p->evacuation_destination(from_region, age,
word_sz); word_sz);
HeapWord* obj_ptr = allocate(alloc_purpose, word_sz); AllocationContext_t context = from_region->allocation_context();
HeapWord* obj_ptr = _g1_par_allocator->allocate(alloc_purpose, word_sz, context);
#ifndef PRODUCT #ifndef PRODUCT
// Should this evacuation fail? // Should this evacuation fail?
if (_g1h->evacuation_should_fail()) { if (_g1h->evacuation_should_fail()) {
if (obj_ptr != NULL) { if (obj_ptr != NULL) {
undo_allocation(alloc_purpose, obj_ptr, word_sz); _g1_par_allocator->undo_allocation(alloc_purpose, obj_ptr, word_sz, context);
obj_ptr = NULL; obj_ptr = NULL;
} }
} }
@ -246,66 +246,8 @@ oop G1ParScanThreadState::copy_to_survivor_space(oop const old) {
obj->oop_iterate_backwards(&_scanner); obj->oop_iterate_backwards(&_scanner);
} }
} else { } else {
undo_allocation(alloc_purpose, obj_ptr, word_sz); _g1_par_allocator->undo_allocation(alloc_purpose, obj_ptr, word_sz, context);
obj = forward_ptr; obj = forward_ptr;
} }
return obj; return obj;
} }
HeapWord* G1ParScanThreadState::allocate_slow(GCAllocPurpose purpose, size_t word_sz) {
HeapWord* obj = NULL;
size_t gclab_word_size = _g1h->desired_plab_sz(purpose);
if (word_sz * 100 < gclab_word_size * ParallelGCBufferWastePct) {
G1ParGCAllocBuffer* alloc_buf = alloc_buffer(purpose);
add_to_alloc_buffer_waste(alloc_buf->words_remaining());
alloc_buf->retire(false /* end_of_gc */, false /* retain */);
HeapWord* buf = _g1h->par_allocate_during_gc(purpose, gclab_word_size);
if (buf == NULL) {
return NULL; // Let caller handle allocation failure.
}
// Otherwise.
alloc_buf->set_word_size(gclab_word_size);
alloc_buf->set_buf(buf);
obj = alloc_buf->allocate(word_sz);
assert(obj != NULL, "buffer was definitely big enough...");
} else {
obj = _g1h->par_allocate_during_gc(purpose, word_sz);
}
return obj;
}
void G1ParScanThreadState::undo_allocation(GCAllocPurpose purpose, HeapWord* obj, size_t word_sz) {
if (alloc_buffer(purpose)->contains(obj)) {
assert(alloc_buffer(purpose)->contains(obj + word_sz - 1),
"should contain whole object");
alloc_buffer(purpose)->undo_allocation(obj, word_sz);
} else {
CollectedHeap::fill_with_object(obj, word_sz);
add_to_undo_waste(word_sz);
}
}
HeapWord* G1ParScanThreadState::allocate(GCAllocPurpose purpose, size_t word_sz) {
HeapWord* obj = NULL;
if (purpose == GCAllocForSurvived) {
obj = alloc_buffer(GCAllocForSurvived)->allocate_aligned(word_sz, SurvivorAlignmentInBytes);
} else {
obj = alloc_buffer(GCAllocForTenured)->allocate(word_sz);
}
if (obj != NULL) {
return obj;
}
return allocate_slow(purpose, word_sz);
}
void G1ParScanThreadState::retire_alloc_buffers() {
for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
size_t waste = _alloc_buffers[ap]->words_remaining();
add_to_alloc_buffer_waste(waste);
_alloc_buffers[ap]->flush_stats_and_retire(_g1h->stats_for_purpose((GCAllocPurpose)ap),
true /* end_of_gc */,
false /* retain */);
}
}

View File

@ -46,9 +46,8 @@ class G1ParScanThreadState : public StackObj {
G1SATBCardTableModRefBS* _ct_bs; G1SATBCardTableModRefBS* _ct_bs;
G1RemSet* _g1_rem; G1RemSet* _g1_rem;
G1ParGCAllocBuffer _surviving_alloc_buffer; G1ParGCAllocator* _g1_par_allocator;
G1ParGCAllocBuffer _tenured_alloc_buffer;
G1ParGCAllocBuffer* _alloc_buffers[GCAllocPurposeCount];
ageTable _age_table; ageTable _age_table;
G1ParScanClosure _scanner; G1ParScanClosure _scanner;
@ -78,7 +77,6 @@ class G1ParScanThreadState : public StackObj {
#define PADDING_ELEM_NUM (DEFAULT_CACHE_LINE_SIZE / sizeof(size_t)) #define PADDING_ELEM_NUM (DEFAULT_CACHE_LINE_SIZE / sizeof(size_t))
void add_to_alloc_buffer_waste(size_t waste) { _alloc_buffer_waste += waste; } void add_to_alloc_buffer_waste(size_t waste) { _alloc_buffer_waste += waste; }
void add_to_undo_waste(size_t waste) { _undo_waste += waste; } void add_to_undo_waste(size_t waste) { _undo_waste += waste; }
DirtyCardQueue& dirty_card_queue() { return _dcq; } DirtyCardQueue& dirty_card_queue() { return _dcq; }
@ -90,13 +88,6 @@ class G1ParScanThreadState : public StackObj {
ageTable* age_table() { return &_age_table; } ageTable* age_table() { return &_age_table; }
G1ParGCAllocBuffer* alloc_buffer(GCAllocPurpose purpose) {
return _alloc_buffers[purpose];
}
size_t alloc_buffer_waste() const { return _alloc_buffer_waste; }
size_t undo_waste() const { return _undo_waste; }
#ifdef ASSERT #ifdef ASSERT
bool queue_is_empty() const { return _refs->is_empty(); } bool queue_is_empty() const { return _refs->is_empty(); }
@ -110,7 +101,7 @@ class G1ParScanThreadState : public StackObj {
_refs->push(ref); _refs->push(ref);
} }
template <class T> void update_rs(HeapRegion* from, T* p, int tid) { template <class T> void update_rs(HeapRegion* from, T* p, uint tid) {
// If the new value of the field points to the same region or // If the new value of the field points to the same region or
// is the to-space, we don't need to include it in the Rset updates. // is the to-space, we don't need to include it in the Rset updates.
if (!from->is_in_reserved(oopDesc::load_decode_heap_oop(p)) && !from->is_survivor()) { if (!from->is_in_reserved(oopDesc::load_decode_heap_oop(p)) && !from->is_survivor()) {
@ -121,12 +112,6 @@ class G1ParScanThreadState : public StackObj {
} }
} }
} }
private:
inline HeapWord* allocate(GCAllocPurpose purpose, size_t word_sz);
inline HeapWord* allocate_slow(GCAllocPurpose purpose, size_t word_sz);
inline void undo_allocation(GCAllocPurpose purpose, HeapWord* obj, size_t word_sz);
public: public:
void set_evac_failure_closure(OopsInHeapRegionClosure* evac_failure_cl) { void set_evac_failure_closure(OopsInHeapRegionClosure* evac_failure_cl) {
@ -172,8 +157,6 @@ class G1ParScanThreadState : public StackObj {
} }
private: private:
void retire_alloc_buffers();
#define G1_PARTIAL_ARRAY_MASK 0x2 #define G1_PARTIAL_ARRAY_MASK 0x2
inline bool has_partial_array_mask(oop* ref) const { inline bool has_partial_array_mask(oop* ref) const {

View File

@ -413,7 +413,7 @@ public:
_ctbs(_g1h->g1_barrier_set()) {} _ctbs(_g1h->g1_barrier_set()) {}
bool doHeapRegion(HeapRegion* r) { bool doHeapRegion(HeapRegion* r) {
if (!r->continuesHumongous()) { if (!r->is_continues_humongous()) {
r->rem_set()->scrub(_ctbs, _region_bm, _card_bm); r->rem_set()->scrub(_ctbs, _region_bm, _card_bm);
} }
return false; return false;

View File

@ -119,7 +119,7 @@ public:
// Record, if necessary, the fact that *p (where "p" is in region "from", // Record, if necessary, the fact that *p (where "p" is in region "from",
// which is required to be non-NULL) has changed to a new non-NULL value. // which is required to be non-NULL) has changed to a new non-NULL value.
template <class T> void write_ref(HeapRegion* from, T* p); template <class T> void write_ref(HeapRegion* from, T* p);
template <class T> void par_write_ref(HeapRegion* from, T* p, int tid); template <class T> void par_write_ref(HeapRegion* from, T* p, uint tid);
// Requires "region_bm" and "card_bm" to be bitmaps with 1 bit per region // Requires "region_bm" and "card_bm" to be bitmaps with 1 bit per region
// or card, respectively, such that a region or card with a corresponding // or card, respectively, such that a region or card with a corresponding

View File

@ -44,7 +44,7 @@ inline void G1RemSet::write_ref(HeapRegion* from, T* p) {
} }
template <class T> template <class T>
inline void G1RemSet::par_write_ref(HeapRegion* from, T* p, int tid) { inline void G1RemSet::par_write_ref(HeapRegion* from, T* p, uint tid) {
oop obj = oopDesc::load_decode_heap_oop(p); oop obj = oopDesc::load_decode_heap_oop(p);
if (obj == NULL) { if (obj == NULL) {
return; return;

View File

@ -263,7 +263,7 @@ public:
current = &_free; current = &_free;
} else if (r->is_young()) { } else if (r->is_young()) {
current = &_young; current = &_young;
} else if (r->isHumongous()) { } else if (r->is_humongous()) {
current = &_humonguous; current = &_humonguous;
} else if (r->is_old()) { } else if (r->is_old()) {
current = &_old; current = &_old;

View File

@ -28,6 +28,7 @@
#include "gc_implementation/g1/g1CollectedHeap.inline.hpp" #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
#include "gc_implementation/g1/g1OopClosures.inline.hpp" #include "gc_implementation/g1/g1OopClosures.inline.hpp"
#include "gc_implementation/g1/heapRegion.inline.hpp" #include "gc_implementation/g1/heapRegion.inline.hpp"
#include "gc_implementation/g1/heapRegionBounds.inline.hpp"
#include "gc_implementation/g1/heapRegionRemSet.hpp" #include "gc_implementation/g1/heapRegionRemSet.hpp"
#include "gc_implementation/g1/heapRegionManager.inline.hpp" #include "gc_implementation/g1/heapRegionManager.inline.hpp"
#include "gc_implementation/shared/liveRange.hpp" #include "gc_implementation/shared/liveRange.hpp"
@ -138,32 +139,16 @@ void HeapRegionDCTOC::walk_mem_region(MemRegion mr,
} }
} }
// Minimum region size; we won't go lower than that.
// We might want to decrease this in the future, to deal with small
// heaps a bit more efficiently.
#define MIN_REGION_SIZE ( 1024 * 1024 )
// Maximum region size; we don't go higher than that. There's a good
// reason for having an upper bound. We don't want regions to get too
// large, otherwise cleanup's effectiveness would decrease as there
// will be fewer opportunities to find totally empty regions after
// marking.
#define MAX_REGION_SIZE ( 32 * 1024 * 1024 )
// The automatic region size calculation will try to have around this
// many regions in the heap (based on the min heap size).
#define TARGET_REGION_NUMBER 2048
size_t HeapRegion::max_region_size() { size_t HeapRegion::max_region_size() {
return (size_t)MAX_REGION_SIZE; return HeapRegionBounds::max_size();
} }
void HeapRegion::setup_heap_region_size(size_t initial_heap_size, size_t max_heap_size) { void HeapRegion::setup_heap_region_size(size_t initial_heap_size, size_t max_heap_size) {
uintx region_size = G1HeapRegionSize; uintx region_size = G1HeapRegionSize;
if (FLAG_IS_DEFAULT(G1HeapRegionSize)) { if (FLAG_IS_DEFAULT(G1HeapRegionSize)) {
size_t average_heap_size = (initial_heap_size + max_heap_size) / 2; size_t average_heap_size = (initial_heap_size + max_heap_size) / 2;
region_size = MAX2(average_heap_size / TARGET_REGION_NUMBER, region_size = MAX2(average_heap_size / HeapRegionBounds::target_number(),
(uintx) MIN_REGION_SIZE); (uintx) HeapRegionBounds::min_size());
} }
int region_size_log = log2_long((jlong) region_size); int region_size_log = log2_long((jlong) region_size);
@ -173,10 +158,10 @@ void HeapRegion::setup_heap_region_size(size_t initial_heap_size, size_t max_hea
region_size = ((uintx)1 << region_size_log); region_size = ((uintx)1 << region_size_log);
// Now make sure that we don't go over or under our limits. // Now make sure that we don't go over or under our limits.
if (region_size < MIN_REGION_SIZE) { if (region_size < HeapRegionBounds::min_size()) {
region_size = MIN_REGION_SIZE; region_size = HeapRegionBounds::min_size();
} else if (region_size > MAX_REGION_SIZE) { } else if (region_size > HeapRegionBounds::max_size()) {
region_size = MAX_REGION_SIZE; region_size = HeapRegionBounds::max_size();
} }
// And recalculate the log. // And recalculate the log.
@ -213,11 +198,12 @@ void HeapRegion::reset_after_compaction() {
void HeapRegion::hr_clear(bool par, bool clear_space, bool locked) { void HeapRegion::hr_clear(bool par, bool clear_space, bool locked) {
assert(_humongous_start_region == NULL, assert(_humongous_start_region == NULL,
"we should have already filtered out humongous regions"); "we should have already filtered out humongous regions");
assert(_end == _orig_end, assert(_end == orig_end(),
"we should have already filtered out humongous regions"); "we should have already filtered out humongous regions");
_in_collection_set = false; _in_collection_set = false;
set_allocation_context(AllocationContext::system());
set_young_index_in_cset(-1); set_young_index_in_cset(-1);
uninstall_surv_rate_group(); uninstall_surv_rate_group();
set_free(); set_free();
@ -264,9 +250,9 @@ void HeapRegion::calc_gc_efficiency() {
_gc_efficiency = (double) reclaimable_bytes() / region_elapsed_time_ms; _gc_efficiency = (double) reclaimable_bytes() / region_elapsed_time_ms;
} }
void HeapRegion::set_startsHumongous(HeapWord* new_top, HeapWord* new_end) { void HeapRegion::set_starts_humongous(HeapWord* new_top, HeapWord* new_end) {
assert(!isHumongous(), "sanity / pre-condition"); assert(!is_humongous(), "sanity / pre-condition");
assert(end() == _orig_end, assert(end() == orig_end(),
"Should be normal before the humongous object allocation"); "Should be normal before the humongous object allocation");
assert(top() == bottom(), "should be empty"); assert(top() == bottom(), "should be empty");
assert(bottom() <= new_top && new_top <= new_end, "pre-condition"); assert(bottom() <= new_top && new_top <= new_end, "pre-condition");
@ -278,30 +264,30 @@ void HeapRegion::set_startsHumongous(HeapWord* new_top, HeapWord* new_end) {
_offsets.set_for_starts_humongous(new_top); _offsets.set_for_starts_humongous(new_top);
} }
void HeapRegion::set_continuesHumongous(HeapRegion* first_hr) { void HeapRegion::set_continues_humongous(HeapRegion* first_hr) {
assert(!isHumongous(), "sanity / pre-condition"); assert(!is_humongous(), "sanity / pre-condition");
assert(end() == _orig_end, assert(end() == orig_end(),
"Should be normal before the humongous object allocation"); "Should be normal before the humongous object allocation");
assert(top() == bottom(), "should be empty"); assert(top() == bottom(), "should be empty");
assert(first_hr->startsHumongous(), "pre-condition"); assert(first_hr->is_starts_humongous(), "pre-condition");
_type.set_continues_humongous(); _type.set_continues_humongous();
_humongous_start_region = first_hr; _humongous_start_region = first_hr;
} }
void HeapRegion::clear_humongous() { void HeapRegion::clear_humongous() {
assert(isHumongous(), "pre-condition"); assert(is_humongous(), "pre-condition");
if (startsHumongous()) { if (is_starts_humongous()) {
assert(top() <= end(), "pre-condition"); assert(top() <= end(), "pre-condition");
set_end(_orig_end); set_end(orig_end());
if (top() > end()) { if (top() > end()) {
// at least one "continues humongous" region after it // at least one "continues humongous" region after it
set_top(end()); set_top(end());
} }
} else { } else {
// continues humongous // continues humongous
assert(end() == _orig_end, "sanity"); assert(end() == orig_end(), "sanity");
} }
assert(capacity() == HeapRegion::GrainBytes, "pre-condition"); assert(capacity() == HeapRegion::GrainBytes, "pre-condition");
@ -324,9 +310,10 @@ HeapRegion::HeapRegion(uint hrm_index,
MemRegion mr) : MemRegion mr) :
G1OffsetTableContigSpace(sharedOffsetArray, mr), G1OffsetTableContigSpace(sharedOffsetArray, mr),
_hrm_index(hrm_index), _hrm_index(hrm_index),
_allocation_context(AllocationContext::system()),
_humongous_start_region(NULL), _humongous_start_region(NULL),
_in_collection_set(false), _in_collection_set(false),
_next_in_special_set(NULL), _orig_end(NULL), _next_in_special_set(NULL),
_claimed(InitialClaimValue), _evacuation_failed(false), _claimed(InitialClaimValue), _evacuation_failed(false),
_prev_marked_bytes(0), _next_marked_bytes(0), _gc_efficiency(0.0), _prev_marked_bytes(0), _next_marked_bytes(0), _gc_efficiency(0.0),
_next_young_region(NULL), _next_young_region(NULL),
@ -349,10 +336,14 @@ void HeapRegion::initialize(MemRegion mr, bool clear_space, bool mangle_space) {
G1OffsetTableContigSpace::initialize(mr, clear_space, mangle_space); G1OffsetTableContigSpace::initialize(mr, clear_space, mangle_space);
_orig_end = mr.end();
hr_clear(false /*par*/, false /*clear_space*/); hr_clear(false /*par*/, false /*clear_space*/);
set_top(bottom()); set_top(bottom());
record_top_and_timestamp(); record_top_and_timestamp();
assert(mr.end() == orig_end(),
err_msg("Given region end address " PTR_FORMAT " should match exactly "
"bottom plus one region size, i.e. " PTR_FORMAT,
p2i(mr.end()), p2i(orig_end())));
} }
CompactibleSpace* HeapRegion::next_compaction_space() const { CompactibleSpace* HeapRegion::next_compaction_space() const {
@ -663,7 +654,7 @@ void HeapRegion::verify_strong_code_roots(VerifyOption vo, bool* failures) const
return; return;
} }
if (continuesHumongous()) { if (is_continues_humongous()) {
if (strong_code_roots_length > 0) { if (strong_code_roots_length > 0) {
gclog_or_tty->print_cr("region "HR_FORMAT" is a continuation of a humongous " gclog_or_tty->print_cr("region "HR_FORMAT" is a continuation of a humongous "
"region but has "SIZE_FORMAT" code root entries", "region but has "SIZE_FORMAT" code root entries",
@ -683,6 +674,8 @@ void HeapRegion::verify_strong_code_roots(VerifyOption vo, bool* failures) const
void HeapRegion::print() const { print_on(gclog_or_tty); } void HeapRegion::print() const { print_on(gclog_or_tty); }
void HeapRegion::print_on(outputStream* st) const { void HeapRegion::print_on(outputStream* st) const {
st->print("AC%4u", allocation_context());
st->print(" %2s", get_short_type_str()); st->print(" %2s", get_short_type_str());
if (in_collection_set()) if (in_collection_set())
st->print(" CS"); st->print(" CS");
@ -788,7 +781,7 @@ public:
HeapRegion* to = _g1h->heap_region_containing(obj); HeapRegion* to = _g1h->heap_region_containing(obj);
if (from != NULL && to != NULL && if (from != NULL && to != NULL &&
from != to && from != to &&
!to->isHumongous()) { !to->is_humongous()) {
jbyte cv_obj = *_bs->byte_for_const(_containing_obj); jbyte cv_obj = *_bs->byte_for_const(_containing_obj);
jbyte cv_field = *_bs->byte_for_const(p); jbyte cv_field = *_bs->byte_for_const(p);
const jbyte dirty = CardTableModRefBS::dirty_card_val(); const jbyte dirty = CardTableModRefBS::dirty_card_val();
@ -842,19 +835,19 @@ void HeapRegion::verify(VerifyOption vo,
HeapWord* p = bottom(); HeapWord* p = bottom();
HeapWord* prev_p = NULL; HeapWord* prev_p = NULL;
VerifyLiveClosure vl_cl(g1, vo); VerifyLiveClosure vl_cl(g1, vo);
bool is_humongous = isHumongous(); bool is_region_humongous = is_humongous();
size_t object_num = 0; size_t object_num = 0;
while (p < top()) { while (p < top()) {
oop obj = oop(p); oop obj = oop(p);
size_t obj_size = block_size(p); size_t obj_size = block_size(p);
object_num += 1; object_num += 1;
if (is_humongous != g1->isHumongous(obj_size) && if (is_region_humongous != g1->is_humongous(obj_size) &&
!g1->is_obj_dead(obj, this)) { // Dead objects may have bigger block_size since they span several objects. !g1->is_obj_dead(obj, this)) { // Dead objects may have bigger block_size since they span several objects.
gclog_or_tty->print_cr("obj "PTR_FORMAT" is of %shumongous size (" gclog_or_tty->print_cr("obj "PTR_FORMAT" is of %shumongous size ("
SIZE_FORMAT" words) in a %shumongous region", SIZE_FORMAT" words) in a %shumongous region",
p, g1->isHumongous(obj_size) ? "" : "non-", p, g1->is_humongous(obj_size) ? "" : "non-",
obj_size, is_humongous ? "" : "non-"); obj_size, is_region_humongous ? "" : "non-");
*failures = true; *failures = true;
return; return;
} }
@ -963,7 +956,7 @@ void HeapRegion::verify(VerifyOption vo,
} }
} }
if (is_humongous && object_num > 1) { if (is_region_humongous && object_num > 1) {
gclog_or_tty->print_cr("region ["PTR_FORMAT","PTR_FORMAT"] is humongous " gclog_or_tty->print_cr("region ["PTR_FORMAT","PTR_FORMAT"] is humongous "
"but has "SIZE_FORMAT", objects", "but has "SIZE_FORMAT", objects",
bottom(), end(), object_num); bottom(), end(), object_num);

View File

@ -25,6 +25,7 @@
#ifndef SHARE_VM_GC_IMPLEMENTATION_G1_HEAPREGION_HPP #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_HEAPREGION_HPP
#define SHARE_VM_GC_IMPLEMENTATION_G1_HEAPREGION_HPP #define SHARE_VM_GC_IMPLEMENTATION_G1_HEAPREGION_HPP
#include "gc_implementation/g1/g1AllocationContext.hpp"
#include "gc_implementation/g1/g1BlockOffsetTable.hpp" #include "gc_implementation/g1/g1BlockOffsetTable.hpp"
#include "gc_implementation/g1/g1_specialized_oop_closures.hpp" #include "gc_implementation/g1/g1_specialized_oop_closures.hpp"
#include "gc_implementation/g1/heapRegionType.hpp" #include "gc_implementation/g1/heapRegionType.hpp"
@ -222,13 +223,12 @@ class HeapRegion: public G1OffsetTableContigSpace {
// The index of this region in the heap region sequence. // The index of this region in the heap region sequence.
uint _hrm_index; uint _hrm_index;
AllocationContext_t _allocation_context;
HeapRegionType _type; HeapRegionType _type;
// For a humongous region, region in which it starts. // For a humongous region, region in which it starts.
HeapRegion* _humongous_start_region; HeapRegion* _humongous_start_region;
// For the start region of a humongous sequence, it's original end().
HeapWord* _orig_end;
// True iff the region is in current collection_set. // True iff the region is in current collection_set.
bool _in_collection_set; bool _in_collection_set;
@ -417,9 +417,9 @@ class HeapRegion: public G1OffsetTableContigSpace {
bool is_eden() const { return _type.is_eden(); } bool is_eden() const { return _type.is_eden(); }
bool is_survivor() const { return _type.is_survivor(); } bool is_survivor() const { return _type.is_survivor(); }
bool isHumongous() const { return _type.is_humongous(); } bool is_humongous() const { return _type.is_humongous(); }
bool startsHumongous() const { return _type.is_starts_humongous(); } bool is_starts_humongous() const { return _type.is_starts_humongous(); }
bool continuesHumongous() const { return _type.is_continues_humongous(); } bool is_continues_humongous() const { return _type.is_continues_humongous(); }
bool is_old() const { return _type.is_old(); } bool is_old() const { return _type.is_old(); }
@ -431,10 +431,10 @@ class HeapRegion: public G1OffsetTableContigSpace {
// Return the number of distinct regions that are covered by this region: // Return the number of distinct regions that are covered by this region:
// 1 if the region is not humongous, >= 1 if the region is humongous. // 1 if the region is not humongous, >= 1 if the region is humongous.
uint region_num() const { uint region_num() const {
if (!isHumongous()) { if (!is_humongous()) {
return 1U; return 1U;
} else { } else {
assert(startsHumongous(), "doesn't make sense on HC regions"); assert(is_starts_humongous(), "doesn't make sense on HC regions");
assert(capacity() % HeapRegion::GrainBytes == 0, "sanity"); assert(capacity() % HeapRegion::GrainBytes == 0, "sanity");
return (uint) (capacity() >> HeapRegion::LogOfHRGrainBytes); return (uint) (capacity() >> HeapRegion::LogOfHRGrainBytes);
} }
@ -443,7 +443,7 @@ class HeapRegion: public G1OffsetTableContigSpace {
// Return the index + 1 of the last HC regions that's associated // Return the index + 1 of the last HC regions that's associated
// with this HS region. // with this HS region.
uint last_hc_index() const { uint last_hc_index() const {
assert(startsHumongous(), "don't call this otherwise"); assert(is_starts_humongous(), "don't call this otherwise");
return hrm_index() + region_num(); return hrm_index() + region_num();
} }
@ -452,7 +452,7 @@ class HeapRegion: public G1OffsetTableContigSpace {
// their _end set up to be the end of the last continues region of the // their _end set up to be the end of the last continues region of the
// corresponding humongous object. // corresponding humongous object.
bool is_in_reserved_raw(const void* p) const { bool is_in_reserved_raw(const void* p) const {
return _bottom <= p && p < _orig_end; return _bottom <= p && p < orig_end();
} }
// Makes the current region be a "starts humongous" region, i.e., // Makes the current region be a "starts humongous" region, i.e.,
@ -478,12 +478,12 @@ class HeapRegion: public G1OffsetTableContigSpace {
// humongous regions can be calculated by just looking at the // humongous regions can be calculated by just looking at the
// "starts humongous" regions and by ignoring the "continues // "starts humongous" regions and by ignoring the "continues
// humongous" regions. // humongous" regions.
void set_startsHumongous(HeapWord* new_top, HeapWord* new_end); void set_starts_humongous(HeapWord* new_top, HeapWord* new_end);
// Makes the current region be a "continues humongous' // Makes the current region be a "continues humongous'
// region. first_hr is the "start humongous" region of the series // region. first_hr is the "start humongous" region of the series
// which this region will be part of. // which this region will be part of.
void set_continuesHumongous(HeapRegion* first_hr); void set_continues_humongous(HeapRegion* first_hr);
// Unsets the humongous-related fields on the region. // Unsets the humongous-related fields on the region.
void clear_humongous(); void clear_humongous();
@ -513,6 +513,14 @@ class HeapRegion: public G1OffsetTableContigSpace {
_next_in_special_set = r; _next_in_special_set = r;
} }
void set_allocation_context(AllocationContext_t context) {
_allocation_context = context;
}
AllocationContext_t allocation_context() const {
return _allocation_context;
}
// Methods used by the HeapRegionSetBase class and subclasses. // Methods used by the HeapRegionSetBase class and subclasses.
// Getter and setter for the next and prev fields used to link regions into // Getter and setter for the next and prev fields used to link regions into
@ -556,7 +564,8 @@ class HeapRegion: public G1OffsetTableContigSpace {
void set_next_dirty_cards_region(HeapRegion* hr) { _next_dirty_cards_region = hr; } void set_next_dirty_cards_region(HeapRegion* hr) { _next_dirty_cards_region = hr; }
bool is_on_dirty_cards_region_list() const { return get_next_dirty_cards_region() != NULL; } bool is_on_dirty_cards_region_list() const { return get_next_dirty_cards_region() != NULL; }
HeapWord* orig_end() const { return _orig_end; } // For the start region of a humongous sequence, it's original end().
HeapWord* orig_end() const { return _bottom + GrainWords; }
// Reset HR stuff to default values. // Reset HR stuff to default values.
void hr_clear(bool par, bool clear_space, bool locked = false); void hr_clear(bool par, bool clear_space, bool locked = false);
@ -603,7 +612,7 @@ class HeapRegion: public G1OffsetTableContigSpace {
bool is_marked() { return _prev_top_at_mark_start != bottom(); } bool is_marked() { return _prev_top_at_mark_start != bottom(); }
void reset_during_compaction() { void reset_during_compaction() {
assert(isHumongous() && startsHumongous(), assert(is_starts_humongous(),
"should only be called for starts humongous regions"); "should only be called for starts humongous regions");
zero_marked_bytes(); zero_marked_bytes();

View File

@ -0,0 +1,52 @@
/*
* Copyright (c) 2014, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef SHARE_VM_GC_IMPLEMENTATION_G1_HEAPREGIONBOUNDS_HPP
#define SHARE_VM_GC_IMPLEMENTATION_G1_HEAPREGIONBOUNDS_HPP
class HeapRegionBounds : public AllStatic {
private:
// Minimum region size; we won't go lower than that.
// We might want to decrease this in the future, to deal with small
// heaps a bit more efficiently.
static const size_t MIN_REGION_SIZE = 1024 * 1024;
// Maximum region size; we don't go higher than that. There's a good
// reason for having an upper bound. We don't want regions to get too
// large, otherwise cleanup's effectiveness would decrease as there
// will be fewer opportunities to find totally empty regions after
// marking.
static const size_t MAX_REGION_SIZE = 32 * 1024 * 1024;
// The automatic region size calculation will try to have around this
// many regions in the heap (based on the min heap size).
static const size_t TARGET_REGION_NUMBER = 2048;
public:
static inline size_t min_size();
static inline size_t max_size();
static inline size_t target_number();
};
#endif // SHARE_VM_GC_IMPLEMENTATION_G1_HEAPREGIONBOUNDS_HPP

View File

@ -0,0 +1,37 @@
/*
* Copyright (c) 2014, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "gc_implementation/g1/heapRegionBounds.hpp"
size_t HeapRegionBounds::min_size() {
return MIN_REGION_SIZE;
}
size_t HeapRegionBounds::max_size() {
return MAX_REGION_SIZE;
}
size_t HeapRegionBounds::target_number() {
return TARGET_REGION_NUMBER;
}

View File

@ -66,10 +66,11 @@ bool HeapRegionManager::is_free(HeapRegion* hr) const {
#endif #endif
HeapRegion* HeapRegionManager::new_heap_region(uint hrm_index) { HeapRegion* HeapRegionManager::new_heap_region(uint hrm_index) {
HeapWord* bottom = G1CollectedHeap::heap()->bottom_addr_for_region(hrm_index); G1CollectedHeap* g1h = G1CollectedHeap::heap();
HeapWord* bottom = g1h->bottom_addr_for_region(hrm_index);
MemRegion mr(bottom, bottom + HeapRegion::GrainWords); MemRegion mr(bottom, bottom + HeapRegion::GrainWords);
assert(reserved().contains(mr), "invariant"); assert(reserved().contains(mr), "invariant");
return new HeapRegion(hrm_index, G1CollectedHeap::heap()->bot_shared(), mr); return g1h->allocator()->new_heap_region(hrm_index, g1h->bot_shared(), mr);
} }
void HeapRegionManager::commit_regions(uint index, size_t num_regions) { void HeapRegionManager::commit_regions(uint index, size_t num_regions) {
@ -281,7 +282,7 @@ void HeapRegionManager::par_iterate(HeapRegionClosure* blk, uint worker_id, uint
// We'll ignore "continues humongous" regions (we'll process them // We'll ignore "continues humongous" regions (we'll process them
// when we come across their corresponding "start humongous" // when we come across their corresponding "start humongous"
// region) and regions already claimed. // region) and regions already claimed.
if (r->claim_value() == claim_value || r->continuesHumongous()) { if (r->claim_value() == claim_value || r->is_continues_humongous()) {
continue; continue;
} }
// OK, try to claim it // OK, try to claim it
@ -289,7 +290,7 @@ void HeapRegionManager::par_iterate(HeapRegionClosure* blk, uint worker_id, uint
continue; continue;
} }
// Success! // Success!
if (r->startsHumongous()) { if (r->is_starts_humongous()) {
// If the region is "starts humongous" we'll iterate over its // If the region is "starts humongous" we'll iterate over its
// "continues humongous" first; in fact we'll do them // "continues humongous" first; in fact we'll do them
// first. The order is important. In one case, calling the // first. The order is important. In one case, calling the
@ -301,7 +302,7 @@ void HeapRegionManager::par_iterate(HeapRegionClosure* blk, uint worker_id, uint
for (uint ch_index = index + 1; ch_index < index + r->region_num(); ch_index++) { for (uint ch_index = index + 1; ch_index < index + r->region_num(); ch_index++) {
HeapRegion* chr = _regions.get_by_index(ch_index); HeapRegion* chr = _regions.get_by_index(ch_index);
assert(chr->continuesHumongous(), "Must be humongous region"); assert(chr->is_continues_humongous(), "Must be humongous region");
assert(chr->humongous_start_region() == r, assert(chr->humongous_start_region() == r,
err_msg("Must work on humongous continuation of the original start region " err_msg("Must work on humongous continuation of the original start region "
PTR_FORMAT ", but is " PTR_FORMAT, p2i(r), p2i(chr))); PTR_FORMAT ", but is " PTR_FORMAT, p2i(r), p2i(chr)));
@ -311,7 +312,7 @@ void HeapRegionManager::par_iterate(HeapRegionClosure* blk, uint worker_id, uint
bool claim_result = chr->claimHeapRegion(claim_value); bool claim_result = chr->claimHeapRegion(claim_value);
// We should always be able to claim it; no one else should // We should always be able to claim it; no one else should
// be trying to claim this region. // be trying to claim this region.
guarantee(claim_result, "We should always be able to claim the continuesHumongous part of the humongous object"); guarantee(claim_result, "We should always be able to claim the is_continues_humongous part of the humongous object");
bool res2 = blk->doHeapRegion(chr); bool res2 = blk->doHeapRegion(chr);
if (res2) { if (res2) {
@ -322,7 +323,7 @@ void HeapRegionManager::par_iterate(HeapRegionClosure* blk, uint worker_id, uint
// does something with "continues humongous" regions // does something with "continues humongous" regions
// clears them). We might have to weaken it in the future, // clears them). We might have to weaken it in the future,
// but let's leave these two asserts here for extra safety. // but let's leave these two asserts here for extra safety.
assert(chr->continuesHumongous(), "should still be the case"); assert(chr->is_continues_humongous(), "should still be the case");
assert(chr->humongous_start_region() == r, "sanity"); assert(chr->humongous_start_region() == r, "sanity");
} }
} }
@ -424,7 +425,7 @@ void HeapRegionManager::verify() {
// this method may be called, we have only completed allocation of the regions, // this method may be called, we have only completed allocation of the regions,
// but not put into a region set. // but not put into a region set.
prev_committed = true; prev_committed = true;
if (hr->startsHumongous()) { if (hr->is_starts_humongous()) {
prev_end = hr->orig_end(); prev_end = hr->orig_end();
} else { } else {
prev_end = hr->end(); prev_end = hr->end();

View File

@ -419,7 +419,7 @@ void OtherRegionsTable::print_from_card_cache() {
FromCardCache::print(); FromCardCache::print();
} }
void OtherRegionsTable::add_reference(OopOrNarrowOopStar from, int tid) { void OtherRegionsTable::add_reference(OopOrNarrowOopStar from, uint tid) {
uint cur_hrm_ind = hr()->hrm_index(); uint cur_hrm_ind = hr()->hrm_index();
if (G1TraceHeapRegionRememberedSet) { if (G1TraceHeapRegionRememberedSet) {
@ -435,10 +435,10 @@ void OtherRegionsTable::add_reference(OopOrNarrowOopStar from, int tid) {
if (G1TraceHeapRegionRememberedSet) { if (G1TraceHeapRegionRememberedSet) {
gclog_or_tty->print_cr("Table for [" PTR_FORMAT "...): card %d (cache = %d)", gclog_or_tty->print_cr("Table for [" PTR_FORMAT "...): card %d (cache = %d)",
hr()->bottom(), from_card, hr()->bottom(), from_card,
FromCardCache::at((uint)tid, cur_hrm_ind)); FromCardCache::at(tid, cur_hrm_ind));
} }
if (FromCardCache::contains_or_replace((uint)tid, cur_hrm_ind, from_card)) { if (FromCardCache::contains_or_replace(tid, cur_hrm_ind, from_card)) {
if (G1TraceHeapRegionRememberedSet) { if (G1TraceHeapRegionRememberedSet) {
gclog_or_tty->print_cr(" from-card cache hit."); gclog_or_tty->print_cr(" from-card cache hit.");
} }
@ -493,7 +493,7 @@ void OtherRegionsTable::add_reference(OopOrNarrowOopStar from, int tid) {
return; return;
} else { } else {
if (G1TraceHeapRegionRememberedSet) { if (G1TraceHeapRegionRememberedSet) {
gclog_or_tty->print_cr(" [tid %d] sparse table entry " gclog_or_tty->print_cr(" [tid %u] sparse table entry "
"overflow(f: %d, t: %u)", "overflow(f: %d, t: %u)",
tid, from_hrm_ind, cur_hrm_ind); tid, from_hrm_ind, cur_hrm_ind);
} }

View File

@ -179,7 +179,7 @@ public:
// For now. Could "expand" some tables in the future, so that this made // For now. Could "expand" some tables in the future, so that this made
// sense. // sense.
void add_reference(OopOrNarrowOopStar from, int tid); void add_reference(OopOrNarrowOopStar from, uint tid);
// Removes any entries shown by the given bitmaps to contain only dead // Removes any entries shown by the given bitmaps to contain only dead
// objects. // objects.
@ -301,7 +301,7 @@ public:
} }
// Used in the parallel case. // Used in the parallel case.
void add_reference(OopOrNarrowOopStar from, int tid) { void add_reference(OopOrNarrowOopStar from, uint tid) {
_other_regions.add_reference(from, tid); _other_regions.add_reference(from, tid);
} }

View File

@ -41,7 +41,7 @@ void HeapRegionSetBase::fill_in_ext_msg(hrs_ext_msg* msg, const char* message) {
void HeapRegionSetBase::verify_region(HeapRegion* hr) { void HeapRegionSetBase::verify_region(HeapRegion* hr) {
assert(hr->containing_set() == this, err_msg("Inconsistent containing set for %u", hr->hrm_index())); assert(hr->containing_set() == this, err_msg("Inconsistent containing set for %u", hr->hrm_index()));
assert(!hr->is_young(), err_msg("Adding young region %u", hr->hrm_index())); // currently we don't use these sets for young regions assert(!hr->is_young(), err_msg("Adding young region %u", hr->hrm_index())); // currently we don't use these sets for young regions
assert(hr->isHumongous() == regions_humongous(), err_msg("Wrong humongous state for region %u and set %s", hr->hrm_index(), name())); assert(hr->is_humongous() == regions_humongous(), err_msg("Wrong humongous state for region %u and set %s", hr->hrm_index(), name()));
assert(hr->is_free() == regions_free(), err_msg("Wrong free state for region %u and set %s", hr->hrm_index(), name())); assert(hr->is_free() == regions_free(), err_msg("Wrong free state for region %u and set %s", hr->hrm_index(), name()));
assert(!hr->is_free() || hr->is_empty(), err_msg("Free region %u is not empty for set %s", hr->hrm_index(), name())); assert(!hr->is_free() || hr->is_empty(), err_msg("Free region %u is not empty for set %s", hr->hrm_index(), name()));
assert(!hr->is_empty() || hr->is_free(), err_msg("Empty region %u is not free for set %s", hr->hrm_index(), name())); assert(!hr->is_empty() || hr->is_free(), err_msg("Empty region %u is not free for set %s", hr->hrm_index(), name()));

View File

@ -30,8 +30,8 @@ bool HeapRegionType::is_valid(Tag tag) {
case FreeTag: case FreeTag:
case EdenTag: case EdenTag:
case SurvTag: case SurvTag:
case HumStartsTag: case StartsHumongousTag:
case HumContTag: case ContinuesHumongousTag:
case OldTag: case OldTag:
return true; return true;
} }
@ -41,12 +41,12 @@ bool HeapRegionType::is_valid(Tag tag) {
const char* HeapRegionType::get_str() const { const char* HeapRegionType::get_str() const {
hrt_assert_is_valid(_tag); hrt_assert_is_valid(_tag);
switch (_tag) { switch (_tag) {
case FreeTag: return "FREE"; case FreeTag: return "FREE";
case EdenTag: return "EDEN"; case EdenTag: return "EDEN";
case SurvTag: return "SURV"; case SurvTag: return "SURV";
case HumStartsTag: return "HUMS"; case StartsHumongousTag: return "HUMS";
case HumContTag: return "HUMC"; case ContinuesHumongousTag: return "HUMC";
case OldTag: return "OLD"; case OldTag: return "OLD";
} }
ShouldNotReachHere(); ShouldNotReachHere();
// keep some compilers happy // keep some compilers happy
@ -56,12 +56,12 @@ const char* HeapRegionType::get_str() const {
const char* HeapRegionType::get_short_str() const { const char* HeapRegionType::get_short_str() const {
hrt_assert_is_valid(_tag); hrt_assert_is_valid(_tag);
switch (_tag) { switch (_tag) {
case FreeTag: return "F"; case FreeTag: return "F";
case EdenTag: return "E"; case EdenTag: return "E";
case SurvTag: return "S"; case SurvTag: return "S";
case HumStartsTag: return "HS"; case StartsHumongousTag: return "HS";
case HumContTag: return "HC"; case ContinuesHumongousTag: return "HC";
case OldTag: return "O"; case OldTag: return "O";
} }
ShouldNotReachHere(); ShouldNotReachHere();
// keep some compilers happy // keep some compilers happy

View File

@ -49,22 +49,22 @@ private:
// 0001 1 [ 3] Survivor // 0001 1 [ 3] Survivor
// //
// 0010 0 Humongous Mask // 0010 0 Humongous Mask
// 0010 0 [ 4] Humongous Starts // 0010 0 [ 4] Starts Humongous
// 0010 1 [ 5] Humongous Continues // 0010 1 [ 5] Continues Humongous
// //
// 01000 [ 8] Old // 01000 [ 8] Old
typedef enum { typedef enum {
FreeTag = 0, FreeTag = 0,
YoungMask = 2, YoungMask = 2,
EdenTag = YoungMask, EdenTag = YoungMask,
SurvTag = YoungMask + 1, SurvTag = YoungMask + 1,
HumMask = 4, HumongousMask = 4,
HumStartsTag = HumMask, StartsHumongousTag = HumongousMask,
HumContTag = HumMask + 1, ContinuesHumongousTag = HumongousMask + 1,
OldTag = 8 OldTag = 8
} Tag; } Tag;
volatile Tag _tag; volatile Tag _tag;
@ -104,9 +104,9 @@ public:
bool is_eden() const { return get() == EdenTag; } bool is_eden() const { return get() == EdenTag; }
bool is_survivor() const { return get() == SurvTag; } bool is_survivor() const { return get() == SurvTag; }
bool is_humongous() const { return (get() & HumMask) != 0; } bool is_humongous() const { return (get() & HumongousMask) != 0; }
bool is_starts_humongous() const { return get() == HumStartsTag; } bool is_starts_humongous() const { return get() == StartsHumongousTag; }
bool is_continues_humongous() const { return get() == HumContTag; } bool is_continues_humongous() const { return get() == ContinuesHumongousTag; }
bool is_old() const { return get() == OldTag; } bool is_old() const { return get() == OldTag; }
@ -118,8 +118,8 @@ public:
void set_eden_pre_gc() { set_from(EdenTag, SurvTag); } void set_eden_pre_gc() { set_from(EdenTag, SurvTag); }
void set_survivor() { set_from(SurvTag, FreeTag); } void set_survivor() { set_from(SurvTag, FreeTag); }
void set_starts_humongous() { set_from(HumStartsTag, FreeTag); } void set_starts_humongous() { set_from(StartsHumongousTag, FreeTag); }
void set_continues_humongous() { set_from(HumContTag, FreeTag); } void set_continues_humongous() { set_from(ContinuesHumongousTag, FreeTag); }
void set_old() { set(OldTag); } void set_old() { set(OldTag); }

View File

@ -45,11 +45,13 @@
nonstatic_field(HeapRegionManager, _regions, G1HeapRegionTable) \ nonstatic_field(HeapRegionManager, _regions, G1HeapRegionTable) \
nonstatic_field(HeapRegionManager, _num_committed, uint) \ nonstatic_field(HeapRegionManager, _num_committed, uint) \
\ \
nonstatic_field(G1Allocator, _summary_bytes_used, size_t) \
\
nonstatic_field(G1CollectedHeap, _hrm, HeapRegionManager) \ nonstatic_field(G1CollectedHeap, _hrm, HeapRegionManager) \
nonstatic_field(G1CollectedHeap, _summary_bytes_used, size_t) \
nonstatic_field(G1CollectedHeap, _g1mm, G1MonitoringSupport*) \ nonstatic_field(G1CollectedHeap, _g1mm, G1MonitoringSupport*) \
nonstatic_field(G1CollectedHeap, _old_set, HeapRegionSetBase) \ nonstatic_field(G1CollectedHeap, _old_set, HeapRegionSetBase) \
nonstatic_field(G1CollectedHeap, _humongous_set, HeapRegionSetBase) \ nonstatic_field(G1CollectedHeap, _humongous_set, HeapRegionSetBase) \
nonstatic_field(G1CollectedHeap, _allocator, G1Allocator*) \
\ \
nonstatic_field(G1MonitoringSupport, _eden_committed, size_t) \ nonstatic_field(G1MonitoringSupport, _eden_committed, size_t) \
nonstatic_field(G1MonitoringSupport, _eden_used, size_t) \ nonstatic_field(G1MonitoringSupport, _eden_used, size_t) \
@ -72,14 +74,16 @@
\ \
declare_type(G1OffsetTableContigSpace, CompactibleSpace) \ declare_type(G1OffsetTableContigSpace, CompactibleSpace) \
declare_type(HeapRegion, G1OffsetTableContigSpace) \ declare_type(HeapRegion, G1OffsetTableContigSpace) \
declare_toplevel_type(HeapRegionManager) \ declare_toplevel_type(HeapRegionManager) \
declare_toplevel_type(HeapRegionSetBase) \ declare_toplevel_type(HeapRegionSetBase) \
declare_toplevel_type(HeapRegionSetCount) \ declare_toplevel_type(HeapRegionSetCount) \
declare_toplevel_type(G1MonitoringSupport) \ declare_toplevel_type(G1MonitoringSupport) \
declare_toplevel_type(G1Allocator) \
\ \
declare_toplevel_type(G1CollectedHeap*) \ declare_toplevel_type(G1CollectedHeap*) \
declare_toplevel_type(HeapRegion*) \ declare_toplevel_type(HeapRegion*) \
declare_toplevel_type(G1MonitoringSupport*) \ declare_toplevel_type(G1MonitoringSupport*) \
declare_toplevel_type(G1Allocator*) \
#endif // SHARE_VM_GC_IMPLEMENTATION_G1_VMSTRUCTS_G1_HPP #endif // SHARE_VM_GC_IMPLEMENTATION_G1_VMSTRUCTS_G1_HPP

View File

@ -45,7 +45,8 @@ VM_G1CollectForAllocation::VM_G1CollectForAllocation(
void VM_G1CollectForAllocation::doit() { void VM_G1CollectForAllocation::doit() {
G1CollectedHeap* g1h = G1CollectedHeap::heap(); G1CollectedHeap* g1h = G1CollectedHeap::heap();
GCCauseSetter x(g1h, _gc_cause); GCCauseSetter x(g1h, _gc_cause);
_result = g1h->satisfy_failed_allocation(_word_size, &_pause_succeeded);
_result = g1h->satisfy_failed_allocation(_word_size, allocation_context(), &_pause_succeeded);
assert(_result == NULL || _pause_succeeded, assert(_result == NULL || _pause_succeeded,
"if we get back a result, the pause should have succeeded"); "if we get back a result, the pause should have succeeded");
} }
@ -99,7 +100,7 @@ void VM_G1IncCollectionPause::doit() {
if (_word_size > 0) { if (_word_size > 0) {
// An allocation has been requested. So, try to do that first. // An allocation has been requested. So, try to do that first.
_result = g1h->attempt_allocation_at_safepoint(_word_size, _result = g1h->attempt_allocation_at_safepoint(_word_size, allocation_context(),
false /* expect_null_cur_alloc_region */); false /* expect_null_cur_alloc_region */);
if (_result != NULL) { if (_result != NULL) {
// If we can successfully allocate before we actually do the // If we can successfully allocate before we actually do the
@ -152,7 +153,7 @@ void VM_G1IncCollectionPause::doit() {
g1h->do_collection_pause_at_safepoint(_target_pause_time_ms); g1h->do_collection_pause_at_safepoint(_target_pause_time_ms);
if (_pause_succeeded && _word_size > 0) { if (_pause_succeeded && _word_size > 0) {
// An allocation had been requested. // An allocation had been requested.
_result = g1h->attempt_allocation_at_safepoint(_word_size, _result = g1h->attempt_allocation_at_safepoint(_word_size, allocation_context(),
true /* expect_null_cur_alloc_region */); true /* expect_null_cur_alloc_region */);
} else { } else {
assert(_result == NULL, "invariant"); assert(_result == NULL, "invariant");

View File

@ -25,6 +25,7 @@
#ifndef SHARE_VM_GC_IMPLEMENTATION_G1_VM_OPERATIONS_G1_HPP #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_VM_OPERATIONS_G1_HPP
#define SHARE_VM_GC_IMPLEMENTATION_G1_VM_OPERATIONS_G1_HPP #define SHARE_VM_GC_IMPLEMENTATION_G1_VM_OPERATIONS_G1_HPP
#include "gc_implementation/g1/g1AllocationContext.hpp"
#include "gc_implementation/shared/vmGCOperations.hpp" #include "gc_implementation/shared/vmGCOperations.hpp"
// VM_operations for the G1 collector. // VM_operations for the G1 collector.
@ -40,6 +41,7 @@ protected:
size_t _word_size; size_t _word_size;
HeapWord* _result; HeapWord* _result;
bool _pause_succeeded; bool _pause_succeeded;
AllocationContext_t _allocation_context;
public: public:
VM_G1OperationWithAllocRequest(unsigned int gc_count_before, VM_G1OperationWithAllocRequest(unsigned int gc_count_before,
@ -49,6 +51,8 @@ public:
_word_size(word_size), _result(NULL), _pause_succeeded(false) { } _word_size(word_size), _result(NULL), _pause_succeeded(false) { }
HeapWord* result() { return _result; } HeapWord* result() { return _result; }
bool pause_succeeded() { return _pause_succeeded; } bool pause_succeeded() { return _pause_succeeded; }
void set_allocation_context(AllocationContext_t context) { _allocation_context = context; }
AllocationContext_t allocation_context() { return _allocation_context; }
}; };
class VM_G1CollectFull: public VM_GC_Operation { class VM_G1CollectFull: public VM_GC_Operation {

View File

@ -288,7 +288,7 @@ void CardTableExtension::scavenge_contents_parallel(ObjectStartArray* start_arra
while (p < to) { while (p < to) {
Prefetch::write(p, interval); Prefetch::write(p, interval);
oop m = oop(p); oop m = oop(p);
assert(m->is_oop_or_null(), "check for header"); assert(m->is_oop_or_null(), err_msg("Expected an oop or NULL for header field at " PTR_FORMAT, p2i(m)));
m->push_contents(pm); m->push_contents(pm);
p += m->size(); p += m->size();
} }
@ -296,7 +296,7 @@ void CardTableExtension::scavenge_contents_parallel(ObjectStartArray* start_arra
} else { } else {
while (p < to) { while (p < to) {
oop m = oop(p); oop m = oop(p);
assert(m->is_oop_or_null(), "check for header"); assert(m->is_oop_or_null(), err_msg("Expected an oop or NULL for header field at " PTR_FORMAT, p2i(m)));
m->push_contents(pm); m->push_contents(pm);
p += m->size(); p += m->size();
} }

View File

@ -74,10 +74,9 @@ jint ParallelScavengeHeap::initialize() {
return JNI_ENOMEM; return JNI_ENOMEM;
} }
_reserved = MemRegion((HeapWord*)heap_rs.base(), initialize_reserved_region((HeapWord*)heap_rs.base(), (HeapWord*)(heap_rs.base() + heap_rs.size()));
(HeapWord*)(heap_rs.base() + heap_rs.size()));
CardTableExtension* const barrier_set = new CardTableExtension(_reserved, 3); CardTableExtension* const barrier_set = new CardTableExtension(reserved_region(), 3);
barrier_set->initialize(); barrier_set->initialize();
_barrier_set = barrier_set; _barrier_set = barrier_set;
oopDesc::set_bs(_barrier_set); oopDesc::set_bs(_barrier_set);

View File

@ -2882,7 +2882,7 @@ void PSParallelCompact::update_deferred_objects(ParCompactionManager* cm,
start_array->allocate_block(addr); start_array->allocate_block(addr);
} }
oop(addr)->update_contents(cm); oop(addr)->update_contents(cm);
assert(oop(addr)->is_oop_or_null(), "should be an oop now"); assert(oop(addr)->is_oop_or_null(), err_msg("Expected an oop or NULL at " PTR_FORMAT, p2i(oop(addr))));
} }
} }
} }
@ -3366,7 +3366,7 @@ MoveAndUpdateClosure::do_addr(HeapWord* addr, size_t words) {
oop moved_oop = (oop) destination(); oop moved_oop = (oop) destination();
moved_oop->update_contents(compaction_manager()); moved_oop->update_contents(compaction_manager());
assert(moved_oop->is_oop_or_null(), "Object should be whole at this point"); assert(moved_oop->is_oop_or_null(), err_msg("Expected an oop or NULL at " PTR_FORMAT, p2i(moved_oop)));
update_state(words); update_state(words);
assert(destination() == (HeapWord*)moved_oop + moved_oop->size(), "sanity"); assert(destination() == (HeapWord*)moved_oop + moved_oop->size(), "sanity");

View File

@ -582,6 +582,14 @@ void CollectedHeap::post_full_gc_dump(GCTimer* timer) {
} }
} }
void CollectedHeap::initialize_reserved_region(HeapWord *start, HeapWord *end) {
// It is important to do this in a way such that concurrent readers can't
// temporarily think something is in the heap. (Seen this happen in asserts.)
_reserved.set_word_size(0);
_reserved.set_start(start);
_reserved.set_end(end);
}
/////////////// Unit tests /////////////// /////////////// Unit tests ///////////////
#ifndef PRODUCT #ifndef PRODUCT

View File

@ -85,6 +85,7 @@ class CollectedHeap : public CHeapObj<mtInternal> {
friend class VMStructs; friend class VMStructs;
friend class IsGCActiveMark; // Block structured external access to _is_gc_active friend class IsGCActiveMark; // Block structured external access to _is_gc_active
private:
#ifdef ASSERT #ifdef ASSERT
static int _fire_out_of_memory_count; static int _fire_out_of_memory_count;
#endif #endif
@ -97,8 +98,9 @@ class CollectedHeap : public CHeapObj<mtInternal> {
// Used in support of ReduceInitialCardMarks; only consulted if COMPILER2 is being used // Used in support of ReduceInitialCardMarks; only consulted if COMPILER2 is being used
bool _defer_initial_card_mark; bool _defer_initial_card_mark;
protected:
MemRegion _reserved; MemRegion _reserved;
protected:
BarrierSet* _barrier_set; BarrierSet* _barrier_set;
bool _is_gc_active; bool _is_gc_active;
uint _n_par_threads; uint _n_par_threads;
@ -211,6 +213,7 @@ class CollectedHeap : public CHeapObj<mtInternal> {
// Stop any onging concurrent work and prepare for exit. // Stop any onging concurrent work and prepare for exit.
virtual void stop() {} virtual void stop() {}
void initialize_reserved_region(HeapWord *start, HeapWord *end);
MemRegion reserved_region() const { return _reserved; } MemRegion reserved_region() const { return _reserved; }
address base() const { return (address)reserved_region().start(); } address base() const { return (address)reserved_region().start(); }
@ -637,6 +640,15 @@ class CollectedHeap : public CHeapObj<mtInternal> {
// actual number may be germane. // actual number may be germane.
static bool use_parallel_gc_threads() { return ParallelGCThreads > 0; } static bool use_parallel_gc_threads() { return ParallelGCThreads > 0; }
// Copy the current allocation context statistics for the specified contexts.
// For each context in contexts, set the corresponding entries in the totals
// and accuracy arrays to the current values held by the statistics. Each
// array should be of length len.
virtual void copy_allocation_context_stats(const jint* contexts,
jlong* totals,
jbyte* accuracy,
jint len) { }
/////////////// Unit tests /////////////// /////////////// Unit tests ///////////////
NOT_PRODUCT(static void test_is_in();) NOT_PRODUCT(static void test_is_in();)

View File

@ -54,6 +54,9 @@ const char* GCCause::to_string(GCCause::Cause cause) {
case _wb_young_gc: case _wb_young_gc:
return "WhiteBox Initiated Young GC"; return "WhiteBox Initiated Young GC";
case _update_allocation_context_stats:
return "Update Allocation Context Stats";
case _no_gc: case _no_gc:
return "No GC"; return "No GC";

Some files were not shown because too many files have changed in this diff Show More