5100935: No way to access the 64-bit integer multiplication of 64-bit CPUs efficiently

Add methods multiplyFull() and multiplyHigh() to Math and StrictMath.

Reviewed-by: darcy
This commit is contained in:
Brian Burkhalter 2016-05-20 14:41:41 -07:00
parent fdd3cf2c16
commit 8c58aff49d
3 changed files with 188 additions and 1 deletions

View File

@ -1059,6 +1059,53 @@ public final class Math {
return (int)value;
}
/**
* Returns the exact mathematical product of the arguments.
*
* @param x the first value
* @param y the second value
* @return the result
*/
public static long multiplyFull(int x, int y) {
return (long)x * (long)y;
}
/**
* Returns as a {@code long} the most significant 64 bits of the 128-bit
* product of two 64-bit factors.
*
* @param x the first value
* @param y the second value
* @return the result
*/
public static long multiplyHigh(long x, long y) {
if (x < 0 || y < 0) {
// Use technique from section 8-2 of Henry S. Warren, Jr.,
// Hacker's Delight (2nd ed.) (Addison Wesley, 2013), 173-174.
long x1 = x >> 32;
long x2 = x & 0xFFFFFFFFL;
long y1 = y >> 32;
long y2 = y & 0xFFFFFFFFL;
long z2 = x2 * y2;
long t = x1 * y2 + (z2 >>> 32);
long z1 = t & 0xFFFFFFFFL;
long z0 = t >> 32;
z1 += x2 * y1;
return x1 * y1 + z0 + (z1 >> 32);
} else {
// Use Karatsuba technique with two base 2^32 digits.
long x1 = x >>> 32;
long y1 = y >>> 32;
long x2 = x & 0xFFFFFFFFL;
long y2 = y & 0xFFFFFFFFL;
long A = x1 * y1;
long B = x2 * y2;
long C = (x1 + x2) * (y1 + y2);
long K = C - A - B;
return (((B >>> 32) + K) >>> 32) + A;
}
}
/**
* Returns the largest (closest to positive infinity)
* {@code int} value that is less than or equal to the algebraic quotient.

View File

@ -1,5 +1,5 @@
/*
* Copyright (c) 1999, 2015, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 1999, 2016, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -831,6 +831,33 @@ public final class StrictMath {
return Math.toIntExact(value);
}
/**
* Returns the exact mathematical product of the arguments.
*
* @param x the first value
* @param y the second value
* @return the result
* @see Math#multiplyFull(long,long)
* @since 1.9
*/
public static long multiplyFull(int x, int y) {
return Math.multiplyFull(x, y);
}
/**
* Returns as a {@code long} the most significant 64 bits of the 128-bit
* product of two 64-bit factors.
*
* @param x the first value
* @param y the second value
* @return the result
* @see Math#multiplyHigh(long,long)
* @since 1.9
*/
public static long multiplyHigh(long x, long y) {
return Math.multiplyHigh(x, y);
}
/**
* Returns the largest (closest to positive infinity)
* {@code int} value that is less than or equal to the algebraic quotient.

View File

@ -0,0 +1,113 @@
/*
* Copyright (c) 2016, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
/*
* @test
* @library /lib/testlibrary/
* @build jdk.testlibrary.*
* @run main MultiplicationTests
* @bug 5100935
* @summary Tests for multiplication methods (use -Dseed=X to set PRNG seed)
* @key randomness
*/
import java.math.BigInteger;
import jdk.testlibrary.RandomFactory;
public class MultiplicationTests {
private MultiplicationTests(){}
// Number of random products to test.
private static final int COUNT = 1 << 16;
// Initialize shared random number generator
private static java.util.Random rnd = RandomFactory.getRandom();
// Calculate high 64 bits of 128 product using BigInteger.
private static long multiplyHighBigInt(long x, long y) {
return BigInteger.valueOf(x).multiply(BigInteger.valueOf(y))
.shiftRight(64).longValue();
}
// Check Math.multiplyHigh(x,y) against multiplyHighBigInt(x,y)
private static boolean check(long x, long y) {
long p1 = multiplyHighBigInt(x, y);
long p2 = Math.multiplyHigh(x, y);
if (p1 != p2) {
System.err.printf("Error - x:%d y:%d p1:%d p2:%d\n", x, y, p1, p2);
return false;
} else {
return true;
}
}
private static int testMultiplyHigh() {
int failures = 0;
// check some boundary cases
long[][] v = new long[][]{
{0L, 0L},
{-1L, 0L},
{0L, -1L},
{1L, 0L},
{0L, 1L},
{-1L, -1L},
{-1L, 1L},
{1L, -1L},
{1L, 1L},
{Long.MAX_VALUE, Long.MAX_VALUE},
{Long.MAX_VALUE, -Long.MAX_VALUE},
{-Long.MAX_VALUE, Long.MAX_VALUE},
{Long.MAX_VALUE, Long.MIN_VALUE},
{Long.MIN_VALUE, Long.MAX_VALUE},
{Long.MIN_VALUE, Long.MIN_VALUE}
};
for (long[] xy : v) {
if(!check(xy[0], xy[1])) {
failures++;
}
}
// check some random values
for (int i = 0; i < COUNT; i++) {
if (!check(rnd.nextLong(), rnd.nextLong())) {
failures++;
}
}
return failures;
}
public static void main(String argv[]) {
int failures = testMultiplyHigh();
if (failures > 0) {
System.err.println("Multiplication testing encountered "
+ failures + " failures.");
throw new RuntimeException();
} else {
System.out.println("MultiplicationTests succeeded");
}
}
}