This commit is contained in:
Bengt Rutisson 2013-02-08 10:08:40 +01:00
commit 8cf98587f7
10 changed files with 221 additions and 178 deletions

View File

@ -467,7 +467,7 @@ public class ObjectHeap {
liveRegions.add(tlab.start());
liveRegions.add(tlab.start());
liveRegions.add(tlab.top());
liveRegions.add(tlab.end());
liveRegions.add(tlab.hardEnd());
}
}
}

View File

@ -27,6 +27,7 @@ package sun.jvm.hotspot.runtime;
import java.io.*;
import java.util.*;
import sun.jvm.hotspot.debugger.*;
import sun.jvm.hotspot.oops.*;
import sun.jvm.hotspot.types.*;
/** <P> ThreadLocalAllocBuffer: a descriptor for thread-local storage
@ -62,9 +63,22 @@ public class ThreadLocalAllocBuffer extends VMObject {
super(addr);
}
public Address start() { return startField.getValue(addr); }
public Address end() { return endField.getValue(addr); }
public Address top() { return topField.getValue(addr); }
public Address start() { return startField.getValue(addr); }
public Address end() { return endField.getValue(addr); }
public Address top() { return topField.getValue(addr); }
public Address hardEnd() { return end().addOffsetTo(alignmentReserve()); }
private long alignmentReserve() {
return Oop.alignObjectSize(endReserve());
}
private long endReserve() {
long minFillerArraySize = Array.baseOffsetInBytes(BasicType.T_INT);
long reserveForAllocationPrefetch = VM.getVM().getReserveForAllocationPrefetch();
long heapWordSize = VM.getVM().getHeapWordSize();
return Math.max(minFillerArraySize, reserveForAllocationPrefetch * heapWordSize);
}
/** Support for iteration over heap -- not sure how this will
interact with GC in reflective system, but necessary for the

View File

@ -114,6 +114,7 @@ public class VM {
private int invalidOSREntryBCI;
private ReversePtrs revPtrs;
private VMRegImpl vmregImpl;
private int reserveForAllocationPrefetch;
// System.getProperties from debuggee VM
private Properties sysProps;
@ -293,6 +294,10 @@ public class VM {
vmRelease = CStringUtilities.getString(releaseAddr);
Address vmInternalInfoAddr = vmVersion.getAddressField("_s_internal_vm_info_string").getValue();
vmInternalInfo = CStringUtilities.getString(vmInternalInfoAddr);
CIntegerType intType = (CIntegerType) db.lookupType("int");
CIntegerField reserveForAllocationPrefetchField = vmVersion.getCIntegerField("_reserve_for_allocation_prefetch");
reserveForAllocationPrefetch = (int)reserveForAllocationPrefetchField.getCInteger(intType);
} catch (Exception exp) {
throw new RuntimeException("can't determine target's VM version : " + exp.getMessage());
}
@ -778,6 +783,10 @@ public class VM {
return vmInternalInfo;
}
public int getReserveForAllocationPrefetch() {
return reserveForAllocationPrefetch;
}
public boolean isSharingEnabled() {
if (sharingEnabled == null) {
Flag flag = getCommandLineFlag("UseSharedSpaces");

View File

@ -571,19 +571,14 @@ ConcurrentMark::ConcurrentMark(G1CollectedHeap* g1h, ReservedSpace heap_rs) :
_sleep_factor = 0.0;
_marking_task_overhead = 1.0;
} else {
if (ConcGCThreads > 0) {
// notice that ConcGCThreads overwrites G1MarkingOverheadPercent
if (!FLAG_IS_DEFAULT(ConcGCThreads) && ConcGCThreads > 0) {
// Note: ConcGCThreads has precedence over G1MarkingOverheadPercent
// if both are set
_parallel_marking_threads = (uint) ConcGCThreads;
_max_parallel_marking_threads = _parallel_marking_threads;
_sleep_factor = 0.0;
_marking_task_overhead = 1.0;
} else if (G1MarkingOverheadPercent > 0) {
// we will calculate the number of parallel marking threads
// based on a target overhead with respect to the soft real-time
// goal
// We will calculate the number of parallel marking threads based
// on a target overhead with respect to the soft real-time goal
double marking_overhead = (double) G1MarkingOverheadPercent / 100.0;
double overall_cm_overhead =
(double) MaxGCPauseMillis * marking_overhead /
@ -596,17 +591,22 @@ ConcurrentMark::ConcurrentMark(G1CollectedHeap* g1h, ReservedSpace heap_rs) :
double sleep_factor =
(1.0 - marking_task_overhead) / marking_task_overhead;
_parallel_marking_threads = (uint) marking_thread_num;
_max_parallel_marking_threads = _parallel_marking_threads;
FLAG_SET_ERGO(uintx, ConcGCThreads, (uint) marking_thread_num);
_sleep_factor = sleep_factor;
_marking_task_overhead = marking_task_overhead;
} else {
_parallel_marking_threads = scale_parallel_threads((uint)ParallelGCThreads);
_max_parallel_marking_threads = _parallel_marking_threads;
// Calculate the number of parallel marking threads by scaling
// the number of parallel GC threads.
uint marking_thread_num = scale_parallel_threads((uint) ParallelGCThreads);
FLAG_SET_ERGO(uintx, ConcGCThreads, marking_thread_num);
_sleep_factor = 0.0;
_marking_task_overhead = 1.0;
}
assert(ConcGCThreads > 0, "Should have been set");
_parallel_marking_threads = (uint) ConcGCThreads;
_max_parallel_marking_threads = _parallel_marking_threads;
if (parallel_marking_threads() > 1) {
_cleanup_task_overhead = 1.0;
} else {
@ -1190,7 +1190,7 @@ void ConcurrentMark::scanRootRegions() {
uint active_workers = MAX2(1U, parallel_marking_threads());
CMRootRegionScanTask task(this);
if (parallel_marking_threads() > 0) {
if (use_parallel_marking_threads()) {
_parallel_workers->set_active_workers((int) active_workers);
_parallel_workers->run_task(&task);
} else {
@ -1226,7 +1226,7 @@ void ConcurrentMark::markFromRoots() {
set_phase(active_workers, true /* concurrent */);
CMConcurrentMarkingTask markingTask(this, cmThread());
if (parallel_marking_threads() > 0) {
if (use_parallel_marking_threads()) {
_parallel_workers->set_active_workers((int)active_workers);
// Don't set _n_par_threads because it affects MT in proceess_strong_roots()
// and the decisions on that MT processing is made elsewhere.
@ -2167,7 +2167,8 @@ void ConcurrentMark::completeCleanup() {
assert(tmp_free_list.is_empty(), "post-condition");
}
// Support closures for reference procssing in G1
// Supporting Object and Oop closures for reference discovery
// and processing in during marking
bool G1CMIsAliveClosure::do_object_b(oop obj) {
HeapWord* addr = (HeapWord*)obj;
@ -2175,73 +2176,26 @@ bool G1CMIsAliveClosure::do_object_b(oop obj) {
(!_g1->is_in_g1_reserved(addr) || !_g1->is_obj_ill(obj));
}
class G1CMKeepAliveClosure: public ExtendedOopClosure {
G1CollectedHeap* _g1;
ConcurrentMark* _cm;
public:
G1CMKeepAliveClosure(G1CollectedHeap* g1, ConcurrentMark* cm) :
_g1(g1), _cm(cm) {
assert(Thread::current()->is_VM_thread(), "otherwise fix worker id");
}
// 'Keep Alive' oop closure used by both serial parallel reference processing.
// Uses the CMTask associated with a worker thread (for serial reference
// processing the CMTask for worker 0 is used) to preserve (mark) and
// trace referent objects.
//
// Using the CMTask and embedded local queues avoids having the worker
// threads operating on the global mark stack. This reduces the risk
// of overflowing the stack - which we would rather avoid at this late
// state. Also using the tasks' local queues removes the potential
// of the workers interfering with each other that could occur if
// operating on the global stack.
virtual void do_oop(narrowOop* p) { do_oop_work(p); }
virtual void do_oop( oop* p) { do_oop_work(p); }
template <class T> void do_oop_work(T* p) {
oop obj = oopDesc::load_decode_heap_oop(p);
HeapWord* addr = (HeapWord*)obj;
if (_cm->verbose_high()) {
gclog_or_tty->print_cr("\t[0] we're looking at location "
"*"PTR_FORMAT" = "PTR_FORMAT,
p, (void*) obj);
}
if (_g1->is_in_g1_reserved(addr) && _g1->is_obj_ill(obj)) {
_cm->mark_and_count(obj);
_cm->mark_stack_push(obj);
}
}
};
class G1CMDrainMarkingStackClosure: public VoidClosure {
ConcurrentMark* _cm;
CMMarkStack* _markStack;
G1CMKeepAliveClosure* _oopClosure;
public:
G1CMDrainMarkingStackClosure(ConcurrentMark* cm, CMMarkStack* markStack,
G1CMKeepAliveClosure* oopClosure) :
_cm(cm),
_markStack(markStack),
_oopClosure(oopClosure) { }
void do_void() {
_markStack->drain(_oopClosure, _cm->nextMarkBitMap(), false);
}
};
// 'Keep Alive' closure used by parallel reference processing.
// An instance of this closure is used in the parallel reference processing
// code rather than an instance of G1CMKeepAliveClosure. We could have used
// the G1CMKeepAliveClosure as it is MT-safe. Also reference objects are
// placed on to discovered ref lists once so we can mark and push with no
// need to check whether the object has already been marked. Using the
// G1CMKeepAliveClosure would mean, however, having all the worker threads
// operating on the global mark stack. This means that an individual
// worker would be doing lock-free pushes while it processes its own
// discovered ref list followed by drain call. If the discovered ref lists
// are unbalanced then this could cause interference with the other
// workers. Using a CMTask (and its embedded local data structures)
// avoids that potential interference.
class G1CMParKeepAliveAndDrainClosure: public OopClosure {
class G1CMKeepAliveAndDrainClosure: public OopClosure {
ConcurrentMark* _cm;
CMTask* _task;
int _ref_counter_limit;
int _ref_counter;
public:
G1CMParKeepAliveAndDrainClosure(ConcurrentMark* cm, CMTask* task) :
_cm(cm), _task(task),
_ref_counter_limit(G1RefProcDrainInterval) {
G1CMKeepAliveAndDrainClosure(ConcurrentMark* cm, CMTask* task) :
_cm(cm), _task(task), _ref_counter_limit(G1RefProcDrainInterval) {
assert(_ref_counter_limit > 0, "sanity");
_ref_counter = _ref_counter_limit;
}
@ -2262,18 +2216,22 @@ class G1CMParKeepAliveAndDrainClosure: public OopClosure {
_ref_counter--;
if (_ref_counter == 0) {
// We have dealt with _ref_counter_limit references, pushing them and objects
// reachable from them on to the local stack (and possibly the global stack).
// Call do_marking_step() to process these entries. We call the routine in a
// loop, which we'll exit if there's nothing more to do (i.e. we're done
// with the entries that we've pushed as a result of the deal_with_reference
// calls above) or we overflow.
// Note: CMTask::do_marking_step() can set the CMTask::has_aborted() flag
// while there may still be some work to do. (See the comment at the
// beginning of CMTask::do_marking_step() for those conditions - one of which
// is reaching the specified time target.) It is only when
// CMTask::do_marking_step() returns without setting the has_aborted() flag
// that the marking has completed.
// We have dealt with _ref_counter_limit references, pushing them
// and objects reachable from them on to the local stack (and
// possibly the global stack). Call CMTask::do_marking_step() to
// process these entries.
//
// We call CMTask::do_marking_step() in a loop, which we'll exit if
// there's nothing more to do (i.e. we're done with the entries that
// were pushed as a result of the CMTask::deal_with_reference() calls
// above) or we overflow.
//
// Note: CMTask::do_marking_step() can set the CMTask::has_aborted()
// flag while there may still be some work to do. (See the comment at
// the beginning of CMTask::do_marking_step() for those conditions -
// one of which is reaching the specified time target.) It is only
// when CMTask::do_marking_step() returns without setting the
// has_aborted() flag that the marking step has completed.
do {
double mark_step_duration_ms = G1ConcMarkStepDurationMillis;
_task->do_marking_step(mark_step_duration_ms,
@ -2290,36 +2248,59 @@ class G1CMParKeepAliveAndDrainClosure: public OopClosure {
}
};
class G1CMParDrainMarkingStackClosure: public VoidClosure {
// 'Drain' oop closure used by both serial and parallel reference processing.
// Uses the CMTask associated with a given worker thread (for serial
// reference processing the CMtask for worker 0 is used). Calls the
// do_marking_step routine, with an unbelievably large timeout value,
// to drain the marking data structures of the remaining entries
// added by the 'keep alive' oop closure above.
class G1CMDrainMarkingStackClosure: public VoidClosure {
ConcurrentMark* _cm;
CMTask* _task;
CMTask* _task;
bool _do_stealing;
bool _do_termination;
public:
G1CMParDrainMarkingStackClosure(ConcurrentMark* cm, CMTask* task) :
_cm(cm), _task(task) { }
G1CMDrainMarkingStackClosure(ConcurrentMark* cm, CMTask* task, bool is_par) :
_cm(cm), _task(task) {
assert(is_par || _task->worker_id() == 0,
"Only task for worker 0 should be used if ref processing is single threaded");
// We only allow stealing and only enter the termination protocol
// in CMTask::do_marking_step() if this closure is being instantiated
// for parallel reference processing.
_do_stealing = _do_termination = is_par;
}
void do_void() {
do {
if (_cm->verbose_high()) {
gclog_or_tty->print_cr("\t[%u] Drain: Calling do marking_step",
_task->worker_id());
gclog_or_tty->print_cr("\t[%u] Drain: Calling do_marking_step - "
"stealing: %s, termination: %s",
_task->worker_id(),
BOOL_TO_STR(_do_stealing),
BOOL_TO_STR(_do_termination));
}
// We call CMTask::do_marking_step() to completely drain the local and
// global marking stacks. The routine is called in a loop, which we'll
// exit if there's nothing more to do (i.e. we'completely drained the
// entries that were pushed as a result of applying the
// G1CMParKeepAliveAndDrainClosure to the entries on the discovered ref
// lists above) or we overflow the global marking stack.
// Note: CMTask::do_marking_step() can set the CMTask::has_aborted() flag
// while there may still be some work to do. (See the comment at the
// beginning of CMTask::do_marking_step() for those conditions - one of which
// is reaching the specified time target.) It is only when
// CMTask::do_marking_step() returns without setting the has_aborted() flag
// that the marking has completed.
// We call CMTask::do_marking_step() to completely drain the local
// and global marking stacks of entries pushed by the 'keep alive'
// oop closure (an instance of G1CMKeepAliveAndDrainClosure above).
//
// CMTask::do_marking_step() is called in a loop, which we'll exit
// if there's nothing more to do (i.e. we'completely drained the
// entries that were pushed as a a result of applying the 'keep alive'
// closure to the entries on the discovered ref lists) or we overflow
// the global marking stack.
//
// Note: CMTask::do_marking_step() can set the CMTask::has_aborted()
// flag while there may still be some work to do. (See the comment at
// the beginning of CMTask::do_marking_step() for those conditions -
// one of which is reaching the specified time target.) It is only
// when CMTask::do_marking_step() returns without setting the
// has_aborted() flag that the marking step has completed.
_task->do_marking_step(1000000000.0 /* something very large */,
true /* do_stealing */,
true /* do_termination */);
_do_stealing,
_do_termination);
} while (_task->has_aborted() && !_cm->has_overflown());
}
};
@ -2352,19 +2333,23 @@ class G1CMRefProcTaskProxy: public AbstractGangTask {
ProcessTask& _proc_task;
G1CollectedHeap* _g1h;
ConcurrentMark* _cm;
bool _processing_is_mt;
public:
G1CMRefProcTaskProxy(ProcessTask& proc_task,
G1CollectedHeap* g1h,
ConcurrentMark* cm) :
AbstractGangTask("Process reference objects in parallel"),
_proc_task(proc_task), _g1h(g1h), _cm(cm) { }
_proc_task(proc_task), _g1h(g1h), _cm(cm) {
ReferenceProcessor* rp = _g1h->ref_processor_cm();
_processing_is_mt = rp->processing_is_mt();
}
virtual void work(uint worker_id) {
CMTask* marking_task = _cm->task(worker_id);
G1CMIsAliveClosure g1_is_alive(_g1h);
G1CMParKeepAliveAndDrainClosure g1_par_keep_alive(_cm, marking_task);
G1CMParDrainMarkingStackClosure g1_par_drain(_cm, marking_task);
G1CMKeepAliveAndDrainClosure g1_par_keep_alive(_cm, marking_task);
G1CMDrainMarkingStackClosure g1_par_drain(_cm, marking_task, _processing_is_mt);
_proc_task.work(worker_id, g1_is_alive, g1_par_keep_alive, g1_par_drain);
}
@ -2372,6 +2357,7 @@ public:
void G1CMRefProcTaskExecutor::execute(ProcessTask& proc_task) {
assert(_workers != NULL, "Need parallel worker threads.");
assert(_g1h->ref_processor_cm()->processing_is_mt(), "processing is not MT");
G1CMRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _cm);
@ -2399,6 +2385,7 @@ public:
void G1CMRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
assert(_workers != NULL, "Need parallel worker threads.");
assert(_g1h->ref_processor_cm()->processing_is_mt(), "processing is not MT");
G1CMRefEnqueueTaskProxy enq_task_proxy(enq_task);
@ -2429,59 +2416,58 @@ void ConcurrentMark::weakRefsWork(bool clear_all_soft_refs) {
// See the comment in G1CollectedHeap::ref_processing_init()
// about how reference processing currently works in G1.
// Process weak references.
// Set the soft reference policy
rp->setup_policy(clear_all_soft_refs);
assert(_markStack.isEmpty(), "mark stack should be empty");
G1CMKeepAliveClosure g1_keep_alive(g1h, this);
G1CMDrainMarkingStackClosure
g1_drain_mark_stack(this, &_markStack, &g1_keep_alive);
// Non-MT instances 'Keep Alive' and 'Complete GC' oop closures.
G1CMKeepAliveAndDrainClosure g1_keep_alive(this, task(0));
G1CMDrainMarkingStackClosure g1_drain_mark_stack(this, task(0), false);
// We need at least one active thread. If reference processing is
// not multi-threaded we use the current (ConcurrentMarkThread) thread,
// otherwise we use the work gang from the G1CollectedHeap and we
// utilize all the worker threads we can.
uint active_workers = (rp->processing_is_mt() && g1h->workers() != NULL
? g1h->workers()->active_workers()
: 1U);
// We use the work gang from the G1CollectedHeap and we utilize all
// the worker threads.
uint active_workers = g1h->workers() ? g1h->workers()->active_workers() : 1U;
active_workers = MAX2(MIN2(active_workers, _max_worker_id), 1U);
G1CMRefProcTaskExecutor par_task_executor(g1h, this,
g1h->workers(), active_workers);
if (rp->processing_is_mt()) {
// Set the degree of MT here. If the discovery is done MT, there
// may have been a different number of threads doing the discovery
// and a different number of discovered lists may have Ref objects.
// That is OK as long as the Reference lists are balanced (see
// balance_all_queues() and balance_queues()).
rp->set_active_mt_degree(active_workers);
AbstractRefProcTaskExecutor* executor = (rp->processing_is_mt()
? &par_task_executor
: NULL);
rp->process_discovered_references(&g1_is_alive,
// Set the degree of MT processing here. If the discovery was done MT,
// the number of threads involved during discovery could differ from
// the number of active workers. This is OK as long as the discovered
// Reference lists are balanced (see balance_all_queues() and balance_queues()).
rp->set_active_mt_degree(active_workers);
// Process the weak references.
rp->process_discovered_references(&g1_is_alive,
&g1_keep_alive,
&g1_drain_mark_stack,
&par_task_executor);
executor);
// The work routines of the parallel keep_alive and drain_marking_stack
// will set the has_overflown flag if we overflow the global marking
// stack.
} else {
rp->process_discovered_references(&g1_is_alive,
&g1_keep_alive,
&g1_drain_mark_stack,
NULL);
}
// The do_oop work routines of the keep_alive and drain_marking_stack
// oop closures will set the has_overflown flag if we overflow the
// global marking stack.
assert(_markStack.overflow() || _markStack.isEmpty(),
"mark stack should be empty (unless it overflowed)");
if (_markStack.overflow()) {
// Should have been done already when we tried to push an
// This should have been done already when we tried to push an
// entry on to the global mark stack. But let's do it again.
set_has_overflown();
}
if (rp->processing_is_mt()) {
assert(rp->num_q() == active_workers, "why not");
rp->enqueue_discovered_references(&par_task_executor);
} else {
rp->enqueue_discovered_references();
}
assert(rp->num_q() == active_workers, "why not");
rp->enqueue_discovered_references(executor);
rp->verify_no_references_recorded();
assert(!rp->discovery_enabled(), "Post condition");
@ -3242,7 +3228,9 @@ void ConcurrentMark::print_summary_info() {
}
void ConcurrentMark::print_worker_threads_on(outputStream* st) const {
_parallel_workers->print_worker_threads_on(st);
if (use_parallel_marking_threads()) {
_parallel_workers->print_worker_threads_on(st);
}
}
// We take a break if someone is trying to stop the world.

View File

@ -371,8 +371,8 @@ class ConcurrentMark: public CHeapObj<mtGC> {
friend class CalcLiveObjectsClosure;
friend class G1CMRefProcTaskProxy;
friend class G1CMRefProcTaskExecutor;
friend class G1CMParKeepAliveAndDrainClosure;
friend class G1CMParDrainMarkingStackClosure;
friend class G1CMKeepAliveAndDrainClosure;
friend class G1CMDrainMarkingStackClosure;
protected:
ConcurrentMarkThread* _cmThread; // the thread doing the work
@ -499,17 +499,26 @@ protected:
}
// accessor methods
uint parallel_marking_threads() { return _parallel_marking_threads; }
uint max_parallel_marking_threads() { return _max_parallel_marking_threads;}
double sleep_factor() { return _sleep_factor; }
double marking_task_overhead() { return _marking_task_overhead;}
double cleanup_sleep_factor() { return _cleanup_sleep_factor; }
double cleanup_task_overhead() { return _cleanup_task_overhead;}
uint parallel_marking_threads() const { return _parallel_marking_threads; }
uint max_parallel_marking_threads() const { return _max_parallel_marking_threads;}
double sleep_factor() { return _sleep_factor; }
double marking_task_overhead() { return _marking_task_overhead;}
double cleanup_sleep_factor() { return _cleanup_sleep_factor; }
double cleanup_task_overhead() { return _cleanup_task_overhead;}
HeapWord* finger() { return _finger; }
bool concurrent() { return _concurrent; }
uint active_tasks() { return _active_tasks; }
ParallelTaskTerminator* terminator() { return &_terminator; }
bool use_parallel_marking_threads() const {
assert(parallel_marking_threads() <=
max_parallel_marking_threads(), "sanity");
assert((_parallel_workers == NULL && parallel_marking_threads() == 0) ||
parallel_marking_threads() > 0,
"parallel workers not set up correctly");
return _parallel_workers != NULL;
}
HeapWord* finger() { return _finger; }
bool concurrent() { return _concurrent; }
uint active_tasks() { return _active_tasks; }
ParallelTaskTerminator* terminator() { return &_terminator; }
// It claims the next available region to be scanned by a marking
// task/thread. It might return NULL if the next region is empty or

View File

@ -1,5 +1,5 @@
/*
* Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -236,6 +236,18 @@ void TwoGenerationCollectorPolicy::initialize_flags() {
if (NewSize + OldSize > MaxHeapSize) {
MaxHeapSize = NewSize + OldSize;
}
if (FLAG_IS_CMDLINE(OldSize) && FLAG_IS_DEFAULT(NewSize)) {
// NewRatio will be used later to set the young generation size so we use
// it to calculate how big the heap should be based on the requested OldSize
// and NewRatio.
assert(NewRatio > 0, "NewRatio should have been set up earlier");
size_t calculated_heapsize = (OldSize / NewRatio) * (NewRatio + 1);
calculated_heapsize = align_size_up(calculated_heapsize, max_alignment());
MaxHeapSize = calculated_heapsize;
InitialHeapSize = calculated_heapsize;
}
MaxHeapSize = align_size_up(MaxHeapSize, max_alignment());
always_do_update_barrier = UseConcMarkSweepGC;
@ -385,14 +397,15 @@ void GenCollectorPolicy::initialize_size_info() {
// keeping it simple also seems a worthwhile goal.
bool TwoGenerationCollectorPolicy::adjust_gen0_sizes(size_t* gen0_size_ptr,
size_t* gen1_size_ptr,
size_t heap_size,
size_t min_gen0_size) {
const size_t heap_size,
const size_t min_gen1_size) {
bool result = false;
if ((*gen1_size_ptr + *gen0_size_ptr) > heap_size) {
if (((*gen0_size_ptr + OldSize) > heap_size) &&
(heap_size - min_gen0_size) >= min_alignment()) {
// Adjust gen0 down to accomodate OldSize
*gen0_size_ptr = heap_size - min_gen0_size;
if ((heap_size < (*gen0_size_ptr + min_gen1_size)) &&
(heap_size >= min_gen1_size + min_alignment())) {
// Adjust gen0 down to accommodate min_gen1_size
*gen0_size_ptr = heap_size - min_gen1_size;
*gen0_size_ptr =
MAX2((uintx)align_size_down(*gen0_size_ptr, min_alignment()),
min_alignment());

View File

@ -1,5 +1,5 @@
/*
* Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -322,7 +322,7 @@ class TwoGenerationCollectorPolicy : public GenCollectorPolicy {
// Returns true is gen0 sizes were adjusted
bool adjust_gen0_sizes(size_t* gen0_size_ptr, size_t* gen1_size_ptr,
size_t heap_size, size_t min_gen1_size);
const size_t heap_size, const size_t min_gen1_size);
};
class MarkSweepPolicy : public TwoGenerationCollectorPolicy {

View File

@ -1737,10 +1737,10 @@ void SpaceManager::get_initial_chunk_sizes(Metaspace::MetaspaceType type,
*class_chunk_word_size = ClassSmallChunk;
break;
}
assert(chunk_word_size != 0 && class_chunk_word_size != 0,
assert(*chunk_word_size != 0 && *class_chunk_word_size != 0,
err_msg("Initial chunks sizes bad: data " SIZE_FORMAT
" class " SIZE_FORMAT,
chunk_word_size, class_chunk_word_size));
*chunk_word_size, *class_chunk_word_size));
}
size_t SpaceManager::sum_free_in_chunks_in_use() const {
@ -2040,7 +2040,7 @@ SpaceManager::~SpaceManager() {
align_size_up(humongous_chunks->word_size(),
HumongousChunkGranularity),
err_msg("Humongous chunk size is wrong: word size " SIZE_FORMAT
" granularity " SIZE_FORMAT,
" granularity %d",
humongous_chunks->word_size(), HumongousChunkGranularity));
Metachunk* next_humongous_chunks = humongous_chunks->next();
chunk_manager->humongous_dictionary()->return_chunk(humongous_chunks);
@ -2264,7 +2264,8 @@ void SpaceManager::verify_allocation_total() {
}
MutexLockerEx cl(lock(), Mutex::_no_safepoint_check_flag);
assert(allocation_total() == sum_used_in_chunks_in_use(),
err_msg("allocation total is not consistent %d vs %d",
err_msg("allocation total is not consistent " SIZE_FORMAT
" vs " SIZE_FORMAT,
allocation_total(), sum_used_in_chunks_in_use()));
}
@ -2578,7 +2579,8 @@ void Metaspace::global_initialize() {
// argument passed in is at the top of the compressed space
void Metaspace::initialize_class_space(ReservedSpace rs) {
// The reserved space size may be bigger because of alignment, esp with UseLargePages
assert(rs.size() >= ClassMetaspaceSize, err_msg("%d != %d", rs.size(), ClassMetaspaceSize));
assert(rs.size() >= ClassMetaspaceSize,
err_msg(SIZE_FORMAT " != " UINTX_FORMAT, rs.size(), ClassMetaspaceSize));
_class_space_list = new VirtualSpaceList(rs);
}

View File

@ -1501,7 +1501,7 @@ JavaThread::JavaThread(bool is_attaching_via_jni) :
} else {
_jni_attach_state = _not_attaching_via_jni;
}
assert(_deferred_card_mark.is_empty(), "Default MemRegion ctor");
assert(deferred_card_mark().is_empty(), "Default MemRegion ctor");
_safepoint_visible = false;
}
@ -1897,9 +1897,16 @@ void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
JvmtiExport::cleanup_thread(this);
}
#if INCLUDE_ALL_GCS
// We must flush G1-related buffers before removing a thread from
// We must flush any deferred card marks before removing a thread from
// the list of active threads.
Universe::heap()->flush_deferred_store_barrier(this);
assert(deferred_card_mark().is_empty(), "Should have been flushed");
#if INCLUDE_ALL_GCS
// We must flush the G1-related buffers before removing a thread
// from the list of active threads. We must do this after any deferred
// card marks have been flushed (above) so that any entries that are
// added to the thread's dirty card queue as a result are not lost.
if (UseG1GC) {
flush_barrier_queues();
}

View File

@ -1162,6 +1162,7 @@ typedef BinaryTreeDictionary<Metablock, FreeList> MetablockTreeDictionary;
static_field(Abstract_VM_Version, _vm_major_version, int) \
static_field(Abstract_VM_Version, _vm_minor_version, int) \
static_field(Abstract_VM_Version, _vm_build_number, int) \
static_field(Abstract_VM_Version, _reserve_for_allocation_prefetch, int) \
\
static_field(JDK_Version, _current, JDK_Version) \
nonstatic_field(JDK_Version, _partially_initialized, bool) \