This commit is contained in:
Jesper Wilhelmsson 2016-03-09 14:18:12 +01:00
commit 90586a424c
382 changed files with 12312 additions and 4569 deletions

View File

@ -350,3 +350,4 @@ f9bcdce2df26678c3fe468130b535c0342c69b89 jdk-9+99
db483b34fa7148d257a429acddbde9c13687dcae jdk-9+105
6c644cca3f3fc2763e2ff7d669849a75d34543ba jdk-9+106
1c076468bf7dad5b8f2ee5dcf66e2279caa3e208 jdk-9+107
257b579d813201682931d6b42f0445ffe5b4210d jdk-9+108

View File

@ -350,3 +350,4 @@ c4d72a1620835b5d657b7b6792c2879367d0154f jdk-9+101
be58b02c11f90b88c67e4d0e2cb5e4cf2d9b3c57 jdk-9+105
54575d8783b3a39a2d710c28cda675d44261f9d9 jdk-9+106
4d65eba233a8730f913734a6804910b842d2cb54 jdk-9+107
c7be2a78c31b3b6132f2f5e9e4b3d3bb1c20245c jdk-9+108

View File

@ -311,6 +311,16 @@ var getJibProfilesProfiles = function (input, common) {
labels: [ "open" ]
},
"linux-x86-open": {
target_os: mainProfiles["linux-x86"].target_os,
target_cpu: mainProfiles["linux-x86"].target_cpu,
dependencies: mainProfiles["linux-x86"].dependencies,
configure_args: concat(mainProfiles["linux-x86"].configure_args,
"--enable-openjdk-only"),
make_args: mainProfiles["linux-x86"].make_args,
labels: [ "open" ]
},
"solaris-x64-open": {
target_os: mainProfiles["solaris-x64"].target_os,
target_cpu: mainProfiles["solaris-x64"].target_cpu,
@ -319,6 +329,16 @@ var getJibProfilesProfiles = function (input, common) {
"--enable-openjdk-only"),
make_args: mainProfiles["solaris-x64"].make_args,
labels: [ "open" ]
},
"windows-x86-open": {
target_os: mainProfiles["windows-x86"].target_os,
target_cpu: mainProfiles["windows-x86"].target_cpu,
dependencies: mainProfiles["windows-x86"].dependencies,
configure_args: concat(mainProfiles["windows-x86"].configure_args,
"--enable-openjdk-only"),
make_args: mainProfiles["windows-x86"].make_args,
labels: [ "open" ]
}
};
profiles = concatObjects(profiles, jprtOpenProfiles);

View File

@ -350,3 +350,4 @@ e385e95e6101711d5c63e7b1a827e99b6ec7a1cc jdk-9+104
64006ae915b3aa85ac7e6fac679024d2da7fe526 jdk-9+105
8ec4f97943fe56f93e4621f622b56b7144c0181a jdk-9+106
49202432b69445164a42be7cbdf74ed5fce98157 jdk-9+107
84f2862a25eb3232ff36c376b4e2bf2a83dfced3 jdk-9+108

View File

@ -510,3 +510,4 @@ c5f55130b1b69510d9a6f4a3105b58e21cd7ffe1 jdk-9+103
266fa9bb5297bf02cb2a7b038b10a109817d2b48 jdk-9+105
7232de4c17c37f60aecec4f3191090bd3d41d334 jdk-9+106
c5146d4da417f76edfc43097d2e2ced042a65b4e jdk-9+107
934f6793f5f7dca44f69b4559d525fa64b31840d jdk-9+108

View File

@ -48,6 +48,7 @@ BUILD_HOTSPOT_JTREG_NATIVE_SRC := \
$(HOTSPOT_TOPDIR)/test/runtime/SameObject \
$(HOTSPOT_TOPDIR)/test/compiler/floatingpoint/ \
$(HOTSPOT_TOPDIR)/test/compiler/calls \
$(HOTSPOT_TOPDIR)/test/compiler/native \
#
# Add conditional directories here when needed.

File diff suppressed because it is too large Load Diff

View File

@ -74,7 +74,7 @@ void CodeInstaller::pd_patch_MetaspaceConstant(int pc_offset, Handle constant, T
void CodeInstaller::pd_patch_DataSectionReference(int pc_offset, int data_offset, TRAPS) {
address pc = _instructions->start() + pc_offset;
NativeInstruction* inst = nativeInstruction_at(pc);
if (inst->is_adr_aligned()) {
if (inst->is_adr_aligned() || inst->is_ldr_literal()) {
address dest = _constants->start() + data_offset;
_instructions->relocate(pc, section_word_Relocation::spec((address) dest, CodeBuffer::SECT_CONSTS));
TRACE_jvmci_3("relocating at " PTR_FORMAT " (+%d) with destination at %d", p2i(pc), pc_offset, data_offset);

View File

@ -4481,225 +4481,126 @@ void MacroAssembler::string_compare(Register str1, Register str2,
BLOCK_COMMENT("} string_compare");
}
// Compare Strings or char/byte arrays.
void MacroAssembler::string_equals(Register str1, Register str2,
Register cnt, Register result,
Register tmp1) {
Label SAME_CHARS, DONE, SHORT_LOOP, SHORT_STRING,
NEXT_WORD;
// is_string is true iff this is a string comparison.
const Register tmp2 = rscratch1;
assert_different_registers(str1, str2, cnt, result, tmp1, tmp2, rscratch2);
// For Strings we're passed the address of the first characters in a1
// and a2 and the length in cnt1.
BLOCK_COMMENT("string_equals {");
// For byte and char arrays we're passed the arrays themselves and we
// have to extract length fields and do null checks here.
// Start by assuming that the strings are not equal.
mov(result, zr);
// elem_size is the element size in bytes: either 1 or 2.
// A very short string
cmpw(cnt, 4);
br(Assembler::LT, SHORT_STRING);
// There are two implementations. For arrays >= 8 bytes, all
// comparisons (including the final one, which may overlap) are
// performed 8 bytes at a time. For arrays < 8 bytes, we compare a
// halfword, then a short, and then a byte.
// Check if the strings start at the same location.
cmp(str1, str2);
br(Assembler::EQ, SAME_CHARS);
void MacroAssembler::arrays_equals(Register a1, Register a2,
Register result, Register cnt1,
int elem_size, bool is_string)
{
Label SAME, DONE, SHORT, NEXT_WORD, ONE;
Register tmp1 = rscratch1;
Register tmp2 = rscratch2;
Register cnt2 = tmp2; // cnt2 only used in array length compare
int elem_per_word = wordSize/elem_size;
int log_elem_size = exact_log2(elem_size);
int length_offset = arrayOopDesc::length_offset_in_bytes();
int base_offset
= arrayOopDesc::base_offset_in_bytes(elem_size == 2 ? T_CHAR : T_BYTE);
// Compare longwords
{
subw(cnt, cnt, 4); // The last longword is a special case
assert(elem_size == 1 || elem_size == 2, "must be char or byte");
assert_different_registers(a1, a2, result, cnt1, rscratch1, rscratch2);
// Move both string pointers to the last longword of their
// strings, negate the remaining count, and convert it to bytes.
lea(str1, Address(str1, cnt, Address::uxtw(1)));
lea(str2, Address(str2, cnt, Address::uxtw(1)));
sub(cnt, zr, cnt, LSL, 1);
BLOCK_COMMENT(is_string ? "string_equals {" : "array_equals {");
// Loop, loading longwords and comparing them into rscratch2.
bind(NEXT_WORD);
ldr(tmp1, Address(str1, cnt));
ldr(tmp2, Address(str2, cnt));
adds(cnt, cnt, wordSize);
eor(rscratch2, tmp1, tmp2);
cbnz(rscratch2, DONE);
br(Assembler::LT, NEXT_WORD);
mov(result, false);
// Last longword. In the case where length == 4 we compare the
// same longword twice, but that's still faster than another
// conditional branch.
if (!is_string) {
// if (a==a2)
// return true;
eor(rscratch1, a1, a2);
cbz(rscratch1, SAME);
// if (a==null || a2==null)
// return false;
cbz(a1, DONE);
cbz(a2, DONE);
// if (a1.length != a2.length)
// return false;
ldrw(cnt1, Address(a1, length_offset));
ldrw(cnt2, Address(a2, length_offset));
eorw(tmp1, cnt1, cnt2);
cbnzw(tmp1, DONE);
ldr(tmp1, Address(str1));
ldr(tmp2, Address(str2));
eor(rscratch2, tmp1, tmp2);
cbz(rscratch2, SAME_CHARS);
b(DONE);
lea(a1, Address(a1, base_offset));
lea(a2, Address(a2, base_offset));
}
bind(SHORT_STRING);
// Is the length zero?
cbz(cnt, SAME_CHARS);
bind(SHORT_LOOP);
load_unsigned_short(tmp1, Address(post(str1, 2)));
load_unsigned_short(tmp2, Address(post(str2, 2)));
subw(tmp1, tmp1, tmp2);
// Check for short strings, i.e. smaller than wordSize.
subs(cnt1, cnt1, elem_per_word);
br(Assembler::LT, SHORT);
// Main 8 byte comparison loop.
bind(NEXT_WORD); {
ldr(tmp1, Address(post(a1, wordSize)));
ldr(tmp2, Address(post(a2, wordSize)));
subs(cnt1, cnt1, elem_per_word);
eor(tmp1, tmp1, tmp2);
cbnz(tmp1, DONE);
} br(GT, NEXT_WORD);
// Last longword. In the case where length == 4 we compare the
// same longword twice, but that's still faster than another
// conditional branch.
// cnt1 could be 0, -1, -2, -3, -4 for chars; -4 only happens when
// length == 4.
if (log_elem_size > 0)
lsl(cnt1, cnt1, log_elem_size);
ldr(tmp1, Address(a1, cnt1));
ldr(tmp2, Address(a2, cnt1));
eor(tmp1, tmp1, tmp2);
cbnz(tmp1, DONE);
sub(cnt, cnt, 1);
cbnz(cnt, SHORT_LOOP);
b(SAME);
// Strings are equal.
bind(SAME_CHARS);
bind(SHORT);
Label TAIL03, TAIL01;
tbz(cnt1, 2 - log_elem_size, TAIL03); // 0-7 bytes left.
{
ldrw(tmp1, Address(post(a1, 4)));
ldrw(tmp2, Address(post(a2, 4)));
eorw(tmp1, tmp1, tmp2);
cbnzw(tmp1, DONE);
}
bind(TAIL03);
tbz(cnt1, 1 - log_elem_size, TAIL01); // 0-3 bytes left.
{
ldrh(tmp1, Address(post(a1, 2)));
ldrh(tmp2, Address(post(a2, 2)));
eorw(tmp1, tmp1, tmp2);
cbnzw(tmp1, DONE);
}
bind(TAIL01);
if (elem_size == 1) { // Only needed when comparing byte arrays.
tbz(cnt1, 0, SAME); // 0-1 bytes left.
{
ldrb(tmp1, a1);
ldrb(tmp2, a2);
eorw(tmp1, tmp1, tmp2);
cbnzw(tmp1, DONE);
}
}
// Arrays are equal.
bind(SAME);
mov(result, true);
// That's it
// That's it.
bind(DONE);
BLOCK_COMMENT("} string_equals");
BLOCK_COMMENT(is_string ? "} string_equals" : "} array_equals");
}
void MacroAssembler::byte_arrays_equals(Register ary1, Register ary2,
Register result, Register tmp1)
{
Register cnt1 = rscratch1;
Register cnt2 = rscratch2;
Register tmp2 = rscratch2;
Label SAME, DIFFER, NEXT, TAIL07, TAIL03, TAIL01;
int length_offset = arrayOopDesc::length_offset_in_bytes();
int base_offset = arrayOopDesc::base_offset_in_bytes(T_BYTE);
BLOCK_COMMENT("byte_arrays_equals {");
// different until proven equal
mov(result, false);
// same array?
cmp(ary1, ary2);
br(Assembler::EQ, SAME);
// ne if either null
cbz(ary1, DIFFER);
cbz(ary2, DIFFER);
// lengths ne?
ldrw(cnt1, Address(ary1, length_offset));
ldrw(cnt2, Address(ary2, length_offset));
cmp(cnt1, cnt2);
br(Assembler::NE, DIFFER);
lea(ary1, Address(ary1, base_offset));
lea(ary2, Address(ary2, base_offset));
subs(cnt1, cnt1, 8);
br(LT, TAIL07);
BIND(NEXT);
ldr(tmp1, Address(post(ary1, 8)));
ldr(tmp2, Address(post(ary2, 8)));
subs(cnt1, cnt1, 8);
eor(tmp1, tmp1, tmp2);
cbnz(tmp1, DIFFER);
br(GE, NEXT);
BIND(TAIL07); // 0-7 bytes left, cnt1 = #bytes left - 4
tst(cnt1, 0b100);
br(EQ, TAIL03);
ldrw(tmp1, Address(post(ary1, 4)));
ldrw(tmp2, Address(post(ary2, 4)));
cmp(tmp1, tmp2);
br(NE, DIFFER);
BIND(TAIL03); // 0-3 bytes left, cnt1 = #bytes left - 4
tst(cnt1, 0b10);
br(EQ, TAIL01);
ldrh(tmp1, Address(post(ary1, 2)));
ldrh(tmp2, Address(post(ary2, 2)));
cmp(tmp1, tmp2);
br(NE, DIFFER);
BIND(TAIL01); // 0-1 byte left
tst(cnt1, 0b01);
br(EQ, SAME);
ldrb(tmp1, ary1);
ldrb(tmp2, ary2);
cmp(tmp1, tmp2);
br(NE, DIFFER);
BIND(SAME);
mov(result, true);
BIND(DIFFER); // result already set
BLOCK_COMMENT("} byte_arrays_equals");
}
// Compare char[] arrays aligned to 4 bytes
void MacroAssembler::char_arrays_equals(Register ary1, Register ary2,
Register result, Register tmp1)
{
Register cnt1 = rscratch1;
Register cnt2 = rscratch2;
Register tmp2 = rscratch2;
Label SAME, DIFFER, NEXT, TAIL03, TAIL01;
int length_offset = arrayOopDesc::length_offset_in_bytes();
int base_offset = arrayOopDesc::base_offset_in_bytes(T_CHAR);
BLOCK_COMMENT("char_arrays_equals {");
// different until proven equal
mov(result, false);
// same array?
cmp(ary1, ary2);
br(Assembler::EQ, SAME);
// ne if either null
cbz(ary1, DIFFER);
cbz(ary2, DIFFER);
// lengths ne?
ldrw(cnt1, Address(ary1, length_offset));
ldrw(cnt2, Address(ary2, length_offset));
cmp(cnt1, cnt2);
br(Assembler::NE, DIFFER);
lea(ary1, Address(ary1, base_offset));
lea(ary2, Address(ary2, base_offset));
subs(cnt1, cnt1, 4);
br(LT, TAIL03);
BIND(NEXT);
ldr(tmp1, Address(post(ary1, 8)));
ldr(tmp2, Address(post(ary2, 8)));
subs(cnt1, cnt1, 4);
eor(tmp1, tmp1, tmp2);
cbnz(tmp1, DIFFER);
br(GE, NEXT);
BIND(TAIL03); // 0-3 chars left, cnt1 = #chars left - 4
tst(cnt1, 0b10);
br(EQ, TAIL01);
ldrw(tmp1, Address(post(ary1, 4)));
ldrw(tmp2, Address(post(ary2, 4)));
cmp(tmp1, tmp2);
br(NE, DIFFER);
BIND(TAIL01); // 0-1 chars left
tst(cnt1, 0b01);
br(EQ, SAME);
ldrh(tmp1, ary1);
ldrh(tmp2, ary2);
cmp(tmp1, tmp2);
br(NE, DIFFER);
BIND(SAME);
mov(result, true);
BIND(DIFFER); // result already set
BLOCK_COMMENT("} char_arrays_equals");
}
// encode char[] to byte[] in ISO_8859_1
void MacroAssembler::encode_iso_array(Register src, Register dst,
Register len, Register result,

View File

@ -1186,13 +1186,11 @@ public:
void string_compare(Register str1, Register str2,
Register cnt1, Register cnt2, Register result,
Register tmp1);
void string_equals(Register str1, Register str2,
Register cnt, Register result,
Register tmp1);
void char_arrays_equals(Register ary1, Register ary2,
Register result, Register tmp1);
void byte_arrays_equals(Register ary1, Register ary2,
Register result, Register tmp1);
void arrays_equals(Register a1, Register a2,
Register result, Register cnt1,
int elem_size, bool is_string);
void encode_iso_array(Register src, Register dst,
Register len, Register result,
FloatRegister Vtmp1, FloatRegister Vtmp2,

View File

@ -105,13 +105,20 @@ class NativeInstruction VALUE_OBJ_CLASS_SPEC {
inline friend NativeInstruction* nativeInstruction_at(address address);
static bool is_adrp_at(address instr);
static bool is_ldr_literal_at(address instr);
bool is_ldr_literal() {
return is_ldr_literal_at(addr_at(0));
}
static bool is_ldrw_to_zr(address instr);
static bool is_call_at(address instr) {
const uint32_t insn = (*(uint32_t*)instr);
return (insn >> 26) == 0b100101;
}
bool is_call() {
return is_call_at(addr_at(0));
}

View File

@ -163,30 +163,20 @@ class StubGenerator: public StubCodeGenerator {
sp_after_call_off = -26,
d15_off = -26,
d14_off = -25,
d13_off = -24,
d12_off = -23,
d11_off = -22,
d10_off = -21,
d9_off = -20,
d8_off = -19,
r28_off = -18,
r27_off = -17,
r26_off = -16,
r25_off = -15,
r24_off = -14,
r23_off = -13,
r22_off = -12,
r21_off = -11,
r20_off = -10,
r19_off = -9,
call_wrapper_off = -8,
result_off = -7,
result_type_off = -6,
method_off = -5,
entry_point_off = -4,
parameters_off = -3,
parameter_size_off = -2,
thread_off = -1,
fp_f = 0,
@ -208,30 +198,20 @@ class StubGenerator: public StubCodeGenerator {
const Address result_type (rfp, result_type_off * wordSize);
const Address method (rfp, method_off * wordSize);
const Address entry_point (rfp, entry_point_off * wordSize);
const Address parameters (rfp, parameters_off * wordSize);
const Address parameter_size(rfp, parameter_size_off * wordSize);
const Address thread (rfp, thread_off * wordSize);
const Address d15_save (rfp, d15_off * wordSize);
const Address d14_save (rfp, d14_off * wordSize);
const Address d13_save (rfp, d13_off * wordSize);
const Address d12_save (rfp, d12_off * wordSize);
const Address d11_save (rfp, d11_off * wordSize);
const Address d10_save (rfp, d10_off * wordSize);
const Address d9_save (rfp, d9_off * wordSize);
const Address d8_save (rfp, d8_off * wordSize);
const Address r28_save (rfp, r28_off * wordSize);
const Address r27_save (rfp, r27_off * wordSize);
const Address r26_save (rfp, r26_off * wordSize);
const Address r25_save (rfp, r25_off * wordSize);
const Address r24_save (rfp, r24_off * wordSize);
const Address r23_save (rfp, r23_off * wordSize);
const Address r22_save (rfp, r22_off * wordSize);
const Address r21_save (rfp, r21_off * wordSize);
const Address r20_save (rfp, r20_off * wordSize);
const Address r19_save (rfp, r19_off * wordSize);
// stub code
@ -254,31 +234,20 @@ class StubGenerator: public StubCodeGenerator {
// rthread because we want to sanity check rthread later
__ str(c_rarg7, thread);
__ strw(c_rarg6, parameter_size);
__ str(c_rarg5, parameters);
__ str(c_rarg4, entry_point);
__ str(c_rarg3, method);
__ str(c_rarg2, result_type);
__ str(c_rarg1, result);
__ str(c_rarg0, call_wrapper);
__ str(r19, r19_save);
__ str(r20, r20_save);
__ str(r21, r21_save);
__ str(r22, r22_save);
__ str(r23, r23_save);
__ str(r24, r24_save);
__ str(r25, r25_save);
__ str(r26, r26_save);
__ str(r27, r27_save);
__ str(r28, r28_save);
__ stp(c_rarg4, c_rarg5, entry_point);
__ stp(c_rarg2, c_rarg3, result_type);
__ stp(c_rarg0, c_rarg1, call_wrapper);
__ strd(v8, d8_save);
__ strd(v9, d9_save);
__ strd(v10, d10_save);
__ strd(v11, d11_save);
__ strd(v12, d12_save);
__ strd(v13, d13_save);
__ strd(v14, d14_save);
__ strd(v15, d15_save);
__ stp(r20, r19, r20_save);
__ stp(r22, r21, r22_save);
__ stp(r24, r23, r24_save);
__ stp(r26, r25, r26_save);
__ stp(r28, r27, r28_save);
__ stpd(v9, v8, d9_save);
__ stpd(v11, v10, d11_save);
__ stpd(v13, v12, d13_save);
__ stpd(v15, v14, d15_save);
// install Java thread in global register now we have saved
// whatever value it held
@ -385,33 +354,22 @@ class StubGenerator: public StubCodeGenerator {
#endif
// restore callee-save registers
__ ldrd(v15, d15_save);
__ ldrd(v14, d14_save);
__ ldrd(v13, d13_save);
__ ldrd(v12, d12_save);
__ ldrd(v11, d11_save);
__ ldrd(v10, d10_save);
__ ldrd(v9, d9_save);
__ ldrd(v8, d8_save);
__ ldpd(v15, v14, d15_save);
__ ldpd(v13, v12, d13_save);
__ ldpd(v11, v10, d11_save);
__ ldpd(v9, v8, d9_save);
__ ldr(r28, r28_save);
__ ldr(r27, r27_save);
__ ldr(r26, r26_save);
__ ldr(r25, r25_save);
__ ldr(r24, r24_save);
__ ldr(r23, r23_save);
__ ldr(r22, r22_save);
__ ldr(r21, r21_save);
__ ldr(r20, r20_save);
__ ldr(r19, r19_save);
__ ldr(c_rarg0, call_wrapper);
__ ldr(c_rarg1, result);
__ ldp(r28, r27, r28_save);
__ ldp(r26, r25, r26_save);
__ ldp(r24, r23, r24_save);
__ ldp(r22, r21, r22_save);
__ ldp(r20, r19, r20_save);
__ ldp(c_rarg0, c_rarg1, call_wrapper);
__ ldrw(c_rarg2, result_type);
__ ldr(c_rarg3, method);
__ ldr(c_rarg4, entry_point);
__ ldr(c_rarg5, parameters);
__ ldr(c_rarg6, parameter_size);
__ ldr(c_rarg7, thread);
__ ldp(c_rarg4, c_rarg5, entry_point);
__ ldp(c_rarg6, c_rarg7, parameter_size);
#ifndef PRODUCT
// tell the simulator we are about to end Java execution
@ -666,7 +624,7 @@ class StubGenerator: public StubCodeGenerator {
// count - element count
// tmp - scratch register
//
// Destroy no registers!
// Destroy no registers except rscratch1 and rscratch2
//
void gen_write_ref_array_pre_barrier(Register addr, Register count, bool dest_uninitialized) {
BarrierSet* bs = Universe::heap()->barrier_set();
@ -674,12 +632,13 @@ class StubGenerator: public StubCodeGenerator {
case BarrierSet::G1SATBCTLogging:
// With G1, don't generate the call if we statically know that the target in uninitialized
if (!dest_uninitialized) {
__ push(RegSet::range(r0, r29), sp); // integer registers except lr & sp
__ push_call_clobbered_registers();
if (count == c_rarg0) {
if (addr == c_rarg1) {
// exactly backwards!!
__ stp(c_rarg0, c_rarg1, __ pre(sp, -2 * wordSize));
__ ldp(c_rarg1, c_rarg0, __ post(sp, -2 * wordSize));
__ mov(rscratch1, c_rarg0);
__ mov(c_rarg0, c_rarg1);
__ mov(c_rarg1, rscratch1);
} else {
__ mov(c_rarg1, count);
__ mov(c_rarg0, addr);
@ -689,7 +648,7 @@ class StubGenerator: public StubCodeGenerator {
__ mov(c_rarg1, count);
}
__ call_VM_leaf(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_pre), 2);
__ pop(RegSet::range(r0, r29), sp); // integer registers except lr & sp }
__ pop_call_clobbered_registers();
break;
case BarrierSet::CardTableForRS:
case BarrierSet::CardTableExtension:
@ -719,7 +678,7 @@ class StubGenerator: public StubCodeGenerator {
case BarrierSet::G1SATBCTLogging:
{
__ push(RegSet::range(r0, r29), sp); // integer registers except lr & sp
__ push_call_clobbered_registers();
// must compute element count unless barrier set interface is changed (other platforms supply count)
assert_different_registers(start, end, scratch);
__ lea(scratch, Address(end, BytesPerHeapOop));
@ -728,7 +687,7 @@ class StubGenerator: public StubCodeGenerator {
__ mov(c_rarg0, start);
__ mov(c_rarg1, scratch);
__ call_VM_leaf(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_post), 2);
__ pop(RegSet::range(r0, r29), sp); // integer registers except lr & sp }
__ pop_call_clobbered_registers();
}
break;
case BarrierSet::CardTableForRS:
@ -1394,10 +1353,10 @@ class StubGenerator: public StubCodeGenerator {
// no-overlap entry point used by generate_conjoint_long_oop_copy().
//
address generate_disjoint_oop_copy(bool aligned, address *entry,
const char *name, bool dest_uninitialized = false) {
const char *name, bool dest_uninitialized) {
const bool is_oop = true;
const size_t size = UseCompressedOops ? sizeof (jint) : sizeof (jlong);
return generate_disjoint_copy(size, aligned, is_oop, entry, name);
return generate_disjoint_copy(size, aligned, is_oop, entry, name, dest_uninitialized);
}
// Arguments:
@ -1412,10 +1371,11 @@ class StubGenerator: public StubCodeGenerator {
//
address generate_conjoint_oop_copy(bool aligned,
address nooverlap_target, address *entry,
const char *name, bool dest_uninitialized = false) {
const char *name, bool dest_uninitialized) {
const bool is_oop = true;
const size_t size = UseCompressedOops ? sizeof (jint) : sizeof (jlong);
return generate_conjoint_copy(size, aligned, is_oop, nooverlap_target, entry, name);
return generate_conjoint_copy(size, aligned, is_oop, nooverlap_target, entry,
name, dest_uninitialized);
}
@ -1522,6 +1482,8 @@ class StubGenerator: public StubCodeGenerator {
}
#endif //ASSERT
gen_write_ref_array_pre_barrier(to, count, dest_uninitialized);
// save the original count
__ mov(count_save, count);
@ -1988,9 +1950,11 @@ class StubGenerator: public StubCodeGenerator {
bool aligned = !UseCompressedOops;
StubRoutines::_arrayof_oop_disjoint_arraycopy
= generate_disjoint_oop_copy(aligned, &entry, "arrayof_oop_disjoint_arraycopy");
= generate_disjoint_oop_copy(aligned, &entry, "arrayof_oop_disjoint_arraycopy",
/*dest_uninitialized*/false);
StubRoutines::_arrayof_oop_arraycopy
= generate_conjoint_oop_copy(aligned, entry, &entry_oop_arraycopy, "arrayof_oop_arraycopy");
= generate_conjoint_oop_copy(aligned, entry, &entry_oop_arraycopy, "arrayof_oop_arraycopy",
/*dest_uninitialized*/false);
// Aligned versions without pre-barriers
StubRoutines::_arrayof_oop_disjoint_arraycopy_uninit
= generate_disjoint_oop_copy(aligned, &entry, "arrayof_oop_disjoint_arraycopy_uninit",

View File

@ -1,6 +1,6 @@
/*
* Copyright (c) 2002, 2016, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2012, 2015 SAP SE. All rights reserved.
* Copyright (c) 2012, 2016 SAP SE. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -74,8 +74,7 @@ define_pd_global(size_t, CMSYoungGenPerWorker, 16*M); // Default max size of CM
define_pd_global(uintx, TypeProfileLevel, 111);
// No performance work done here yet.
define_pd_global(bool, CompactStrings, false);
define_pd_global(bool, CompactStrings, true);
// Platform dependent flag handling: flags only defined on this platform.
#define ARCH_FLAGS(develop, product, diagnostic, experimental, notproduct, range, constraint) \

View File

@ -45,6 +45,9 @@
#include "gc/g1/g1SATBCardTableModRefBS.hpp"
#include "gc/g1/heapRegion.hpp"
#endif // INCLUDE_ALL_GCS
#ifdef COMPILER2
#include "opto/intrinsicnode.hpp"
#endif
#ifdef PRODUCT
#define BLOCK_COMMENT(str) // nothing
@ -3168,6 +3171,553 @@ void MacroAssembler::clear_memory_doubleword(Register base_ptr, Register cnt_dwo
/////////////////////////////////////////// String intrinsics ////////////////////////////////////////////
#ifdef COMPILER2
// Intrinsics for CompactStrings
// Compress char[] to byte[] by compressing 16 bytes at once.
void MacroAssembler::string_compress_16(Register src, Register dst, Register cnt,
Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5,
Label& Lfailure) {
const Register tmp0 = R0;
assert_different_registers(src, dst, cnt, tmp0, tmp1, tmp2, tmp3, tmp4, tmp5);
Label Lloop, Lslow;
// Check if cnt >= 8 (= 16 bytes)
lis(tmp1, 0xFF); // tmp1 = 0x00FF00FF00FF00FF
srwi_(tmp2, cnt, 3);
beq(CCR0, Lslow);
ori(tmp1, tmp1, 0xFF);
rldimi(tmp1, tmp1, 32, 0);
mtctr(tmp2);
// 2x unrolled loop
bind(Lloop);
ld(tmp2, 0, src); // _0_1_2_3 (Big Endian)
ld(tmp4, 8, src); // _4_5_6_7
orr(tmp0, tmp2, tmp4);
rldicl(tmp3, tmp2, 6*8, 64-24); // _____1_2
rldimi(tmp2, tmp2, 2*8, 2*8); // _0_2_3_3
rldicl(tmp5, tmp4, 6*8, 64-24); // _____5_6
rldimi(tmp4, tmp4, 2*8, 2*8); // _4_6_7_7
andc_(tmp0, tmp0, tmp1);
bne(CCR0, Lfailure); // Not latin1.
addi(src, src, 16);
rlwimi(tmp3, tmp2, 0*8, 24, 31);// _____1_3
srdi(tmp2, tmp2, 3*8); // ____0_2_
rlwimi(tmp5, tmp4, 0*8, 24, 31);// _____5_7
srdi(tmp4, tmp4, 3*8); // ____4_6_
orr(tmp2, tmp2, tmp3); // ____0123
orr(tmp4, tmp4, tmp5); // ____4567
stw(tmp2, 0, dst);
stw(tmp4, 4, dst);
addi(dst, dst, 8);
bdnz(Lloop);
bind(Lslow); // Fallback to slow version
}
// Compress char[] to byte[]. cnt must be positive int.
void MacroAssembler::string_compress(Register src, Register dst, Register cnt, Register tmp, Label& Lfailure) {
Label Lloop;
mtctr(cnt);
bind(Lloop);
lhz(tmp, 0, src);
cmplwi(CCR0, tmp, 0xff);
bgt(CCR0, Lfailure); // Not latin1.
addi(src, src, 2);
stb(tmp, 0, dst);
addi(dst, dst, 1);
bdnz(Lloop);
}
// Inflate byte[] to char[] by inflating 16 bytes at once.
void MacroAssembler::string_inflate_16(Register src, Register dst, Register cnt,
Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5) {
const Register tmp0 = R0;
assert_different_registers(src, dst, cnt, tmp0, tmp1, tmp2, tmp3, tmp4, tmp5);
Label Lloop, Lslow;
// Check if cnt >= 8
srwi_(tmp2, cnt, 3);
beq(CCR0, Lslow);
lis(tmp1, 0xFF); // tmp1 = 0x00FF00FF
ori(tmp1, tmp1, 0xFF);
mtctr(tmp2);
// 2x unrolled loop
bind(Lloop);
lwz(tmp2, 0, src); // ____0123 (Big Endian)
lwz(tmp4, 4, src); // ____4567
addi(src, src, 8);
rldicl(tmp3, tmp2, 7*8, 64-8); // _______2
rlwimi(tmp2, tmp2, 3*8, 16, 23);// ____0113
rldicl(tmp5, tmp4, 7*8, 64-8); // _______6
rlwimi(tmp4, tmp4, 3*8, 16, 23);// ____4557
andc(tmp0, tmp2, tmp1); // ____0_1_
rlwimi(tmp2, tmp3, 2*8, 0, 23); // _____2_3
andc(tmp3, tmp4, tmp1); // ____4_5_
rlwimi(tmp4, tmp5, 2*8, 0, 23); // _____6_7
rldimi(tmp2, tmp0, 3*8, 0*8); // _0_1_2_3
rldimi(tmp4, tmp3, 3*8, 0*8); // _4_5_6_7
std(tmp2, 0, dst);
std(tmp4, 8, dst);
addi(dst, dst, 16);
bdnz(Lloop);
bind(Lslow); // Fallback to slow version
}
// Inflate byte[] to char[]. cnt must be positive int.
void MacroAssembler::string_inflate(Register src, Register dst, Register cnt, Register tmp) {
Label Lloop;
mtctr(cnt);
bind(Lloop);
lbz(tmp, 0, src);
addi(src, src, 1);
sth(tmp, 0, dst);
addi(dst, dst, 2);
bdnz(Lloop);
}
void MacroAssembler::string_compare(Register str1, Register str2,
Register cnt1, Register cnt2,
Register tmp1, Register result, int ae) {
const Register tmp0 = R0,
diff = tmp1;
assert_different_registers(str1, str2, cnt1, cnt2, tmp0, tmp1, result);
Label Ldone, Lslow, Lloop, Lreturn_diff;
// Note: Making use of the fact that compareTo(a, b) == -compareTo(b, a)
// we interchange str1 and str2 in the UL case and negate the result.
// Like this, str1 is always latin1 encoded, except for the UU case.
// In addition, we need 0 (or sign which is 0) extend.
if (ae == StrIntrinsicNode::UU) {
srwi(cnt1, cnt1, 1);
} else {
clrldi(cnt1, cnt1, 32);
}
if (ae != StrIntrinsicNode::LL) {
srwi(cnt2, cnt2, 1);
} else {
clrldi(cnt2, cnt2, 32);
}
// See if the lengths are different, and calculate min in cnt1.
// Save diff in case we need it for a tie-breaker.
subf_(diff, cnt2, cnt1); // diff = cnt1 - cnt2
// if (diff > 0) { cnt1 = cnt2; }
if (VM_Version::has_isel()) {
isel(cnt1, CCR0, Assembler::greater, /*invert*/ false, cnt2);
} else {
Label Lskip;
blt(CCR0, Lskip);
mr(cnt1, cnt2);
bind(Lskip);
}
// Rename registers
Register chr1 = result;
Register chr2 = tmp0;
// Compare multiple characters in fast loop (only implemented for same encoding).
int stride1 = 8, stride2 = 8;
if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
int log2_chars_per_iter = (ae == StrIntrinsicNode::LL) ? 3 : 2;
Label Lfastloop, Lskipfast;
srwi_(tmp0, cnt1, log2_chars_per_iter);
beq(CCR0, Lskipfast);
rldicl(cnt2, cnt1, 0, 64 - log2_chars_per_iter); // Remaining characters.
li(cnt1, 1 << log2_chars_per_iter); // Initialize for failure case: Rescan characters from current iteration.
mtctr(tmp0);
bind(Lfastloop);
ld(chr1, 0, str1);
ld(chr2, 0, str2);
cmpd(CCR0, chr1, chr2);
bne(CCR0, Lslow);
addi(str1, str1, stride1);
addi(str2, str2, stride2);
bdnz(Lfastloop);
mr(cnt1, cnt2); // Remaining characters.
bind(Lskipfast);
}
// Loop which searches the first difference character by character.
cmpwi(CCR0, cnt1, 0);
beq(CCR0, Lreturn_diff);
bind(Lslow);
mtctr(cnt1);
switch (ae) {
case StrIntrinsicNode::LL: stride1 = 1; stride2 = 1; break;
case StrIntrinsicNode::UL: // fallthru (see comment above)
case StrIntrinsicNode::LU: stride1 = 1; stride2 = 2; break;
case StrIntrinsicNode::UU: stride1 = 2; stride2 = 2; break;
default: ShouldNotReachHere(); break;
}
bind(Lloop);
if (stride1 == 1) { lbz(chr1, 0, str1); } else { lhz(chr1, 0, str1); }
if (stride2 == 1) { lbz(chr2, 0, str2); } else { lhz(chr2, 0, str2); }
subf_(result, chr2, chr1); // result = chr1 - chr2
bne(CCR0, Ldone);
addi(str1, str1, stride1);
addi(str2, str2, stride2);
bdnz(Lloop);
// If strings are equal up to min length, return the length difference.
bind(Lreturn_diff);
mr(result, diff);
// Otherwise, return the difference between the first mismatched chars.
bind(Ldone);
if (ae == StrIntrinsicNode::UL) {
neg(result, result); // Negate result (see note above).
}
}
void MacroAssembler::array_equals(bool is_array_equ, Register ary1, Register ary2,
Register limit, Register tmp1, Register result, bool is_byte) {
const Register tmp0 = R0;
assert_different_registers(ary1, ary2, limit, tmp0, tmp1, result);
Label Ldone, Lskiploop, Lloop, Lfastloop, Lskipfast;
bool limit_needs_shift = false;
if (is_array_equ) {
const int length_offset = arrayOopDesc::length_offset_in_bytes();
const int base_offset = arrayOopDesc::base_offset_in_bytes(is_byte ? T_BYTE : T_CHAR);
// Return true if the same array.
cmpd(CCR0, ary1, ary2);
beq(CCR0, Lskiploop);
// Return false if one of them is NULL.
cmpdi(CCR0, ary1, 0);
cmpdi(CCR1, ary2, 0);
li(result, 0);
cror(CCR0, Assembler::equal, CCR1, Assembler::equal);
beq(CCR0, Ldone);
// Load the lengths of arrays.
lwz(limit, length_offset, ary1);
lwz(tmp0, length_offset, ary2);
// Return false if the two arrays are not equal length.
cmpw(CCR0, limit, tmp0);
bne(CCR0, Ldone);
// Load array addresses.
addi(ary1, ary1, base_offset);
addi(ary2, ary2, base_offset);
} else {
limit_needs_shift = !is_byte;
li(result, 0); // Assume not equal.
}
// Rename registers
Register chr1 = tmp0;
Register chr2 = tmp1;
// Compare 8 bytes per iteration in fast loop.
const int log2_chars_per_iter = is_byte ? 3 : 2;
srwi_(tmp0, limit, log2_chars_per_iter + (limit_needs_shift ? 1 : 0));
beq(CCR0, Lskipfast);
mtctr(tmp0);
bind(Lfastloop);
ld(chr1, 0, ary1);
ld(chr2, 0, ary2);
addi(ary1, ary1, 8);
addi(ary2, ary2, 8);
cmpd(CCR0, chr1, chr2);
bne(CCR0, Ldone);
bdnz(Lfastloop);
bind(Lskipfast);
rldicl_(limit, limit, limit_needs_shift ? 64 - 1 : 0, 64 - log2_chars_per_iter); // Remaining characters.
beq(CCR0, Lskiploop);
mtctr(limit);
// Character by character.
bind(Lloop);
if (is_byte) {
lbz(chr1, 0, ary1);
lbz(chr2, 0, ary2);
addi(ary1, ary1, 1);
addi(ary2, ary2, 1);
} else {
lhz(chr1, 0, ary1);
lhz(chr2, 0, ary2);
addi(ary1, ary1, 2);
addi(ary2, ary2, 2);
}
cmpw(CCR0, chr1, chr2);
bne(CCR0, Ldone);
bdnz(Lloop);
bind(Lskiploop);
li(result, 1); // All characters are equal.
bind(Ldone);
}
void MacroAssembler::string_indexof(Register result, Register haystack, Register haycnt,
Register needle, ciTypeArray* needle_values, Register needlecnt, int needlecntval,
Register tmp1, Register tmp2, Register tmp3, Register tmp4, int ae) {
// Ensure 0<needlecnt<=haycnt in ideal graph as prerequisite!
Label L_TooShort, L_Found, L_NotFound, L_End;
Register last_addr = haycnt, // Kill haycnt at the beginning.
addr = tmp1,
n_start = tmp2,
ch1 = tmp3,
ch2 = R0;
assert(ae != StrIntrinsicNode::LU, "Invalid encoding");
const int h_csize = (ae == StrIntrinsicNode::LL) ? 1 : 2;
const int n_csize = (ae == StrIntrinsicNode::UU) ? 2 : 1;
// **************************************************************************************************
// Prepare for main loop: optimized for needle count >=2, bail out otherwise.
// **************************************************************************************************
// Compute last haystack addr to use if no match gets found.
clrldi(haycnt, haycnt, 32); // Ensure positive int is valid as 64 bit value.
addi(addr, haystack, -h_csize); // Accesses use pre-increment.
if (needlecntval == 0) { // variable needlecnt
cmpwi(CCR6, needlecnt, 2);
clrldi(needlecnt, needlecnt, 32); // Ensure positive int is valid as 64 bit value.
blt(CCR6, L_TooShort); // Variable needlecnt: handle short needle separately.
}
if (n_csize == 2) { lwz(n_start, 0, needle); } else { lhz(n_start, 0, needle); } // Load first 2 characters of needle.
if (needlecntval == 0) { // variable needlecnt
subf(ch1, needlecnt, haycnt); // Last character index to compare is haycnt-needlecnt.
addi(needlecnt, needlecnt, -2); // Rest of needle.
} else { // constant needlecnt
guarantee(needlecntval != 1, "IndexOf with single-character needle must be handled separately");
assert((needlecntval & 0x7fff) == needlecntval, "wrong immediate");
addi(ch1, haycnt, -needlecntval); // Last character index to compare is haycnt-needlecnt.
if (needlecntval > 3) { li(needlecnt, needlecntval - 2); } // Rest of needle.
}
if (h_csize == 2) { slwi(ch1, ch1, 1); } // Scale to number of bytes.
if (ae ==StrIntrinsicNode::UL) {
srwi(tmp4, n_start, 1*8); // ___0
rlwimi(n_start, tmp4, 2*8, 0, 23); // _0_1
}
add(last_addr, haystack, ch1); // Point to last address to compare (haystack+2*(haycnt-needlecnt)).
// Main Loop (now we have at least 2 characters).
Label L_OuterLoop, L_InnerLoop, L_FinalCheck, L_Comp1, L_Comp2;
bind(L_OuterLoop); // Search for 1st 2 characters.
Register addr_diff = tmp4;
subf(addr_diff, addr, last_addr); // Difference between already checked address and last address to check.
addi(addr, addr, h_csize); // This is the new address we want to use for comparing.
srdi_(ch2, addr_diff, h_csize);
beq(CCR0, L_FinalCheck); // 2 characters left?
mtctr(ch2); // num of characters / 2
bind(L_InnerLoop); // Main work horse (2x unrolled search loop)
if (h_csize == 2) { // Load 2 characters of haystack (ignore alignment).
lwz(ch1, 0, addr);
lwz(ch2, 2, addr);
} else {
lhz(ch1, 0, addr);
lhz(ch2, 1, addr);
}
cmpw(CCR0, ch1, n_start); // Compare 2 characters (1 would be sufficient but try to reduce branches to CompLoop).
cmpw(CCR1, ch2, n_start);
beq(CCR0, L_Comp1); // Did we find the needle start?
beq(CCR1, L_Comp2);
addi(addr, addr, 2 * h_csize);
bdnz(L_InnerLoop);
bind(L_FinalCheck);
andi_(addr_diff, addr_diff, h_csize); // Remaining characters not covered by InnerLoop: (num of characters) & 1.
beq(CCR0, L_NotFound);
if (h_csize == 2) { lwz(ch1, 0, addr); } else { lhz(ch1, 0, addr); } // One position left at which we have to compare.
cmpw(CCR1, ch1, n_start);
beq(CCR1, L_Comp1);
bind(L_NotFound);
li(result, -1); // not found
b(L_End);
// **************************************************************************************************
// Special Case: unfortunately, the variable needle case can be called with needlecnt<2
// **************************************************************************************************
if (needlecntval == 0) { // We have to handle these cases separately.
Label L_OneCharLoop;
bind(L_TooShort);
mtctr(haycnt);
if (n_csize == 2) { lhz(n_start, 0, needle); } else { lbz(n_start, 0, needle); } // First character of needle
bind(L_OneCharLoop);
if (h_csize == 2) { lhzu(ch1, 2, addr); } else { lbzu(ch1, 1, addr); }
cmpw(CCR1, ch1, n_start);
beq(CCR1, L_Found); // Did we find the one character needle?
bdnz(L_OneCharLoop);
li(result, -1); // Not found.
b(L_End);
}
// **************************************************************************************************
// Regular Case Part II: compare rest of needle (first 2 characters have been compared already)
// **************************************************************************************************
// Compare the rest
bind(L_Comp2);
addi(addr, addr, h_csize); // First comparison has failed, 2nd one hit.
bind(L_Comp1); // Addr points to possible needle start.
if (needlecntval != 2) { // Const needlecnt==2?
if (needlecntval != 3) {
if (needlecntval == 0) { beq(CCR6, L_Found); } // Variable needlecnt==2?
Register n_ind = tmp4,
h_ind = n_ind;
li(n_ind, 2 * n_csize); // First 2 characters are already compared, use index 2.
mtctr(needlecnt); // Decremented by 2, still > 0.
Label L_CompLoop;
bind(L_CompLoop);
if (ae ==StrIntrinsicNode::UL) {
h_ind = ch1;
sldi(h_ind, n_ind, 1);
}
if (n_csize == 2) { lhzx(ch2, needle, n_ind); } else { lbzx(ch2, needle, n_ind); }
if (h_csize == 2) { lhzx(ch1, addr, h_ind); } else { lbzx(ch1, addr, h_ind); }
cmpw(CCR1, ch1, ch2);
bne(CCR1, L_OuterLoop);
addi(n_ind, n_ind, n_csize);
bdnz(L_CompLoop);
} else { // No loop required if there's only one needle character left.
if (n_csize == 2) { lhz(ch2, 2 * 2, needle); } else { lbz(ch2, 2 * 1, needle); }
if (h_csize == 2) { lhz(ch1, 2 * 2, addr); } else { lbz(ch1, 2 * 1, addr); }
cmpw(CCR1, ch1, ch2);
bne(CCR1, L_OuterLoop);
}
}
// Return index ...
bind(L_Found);
subf(result, haystack, addr); // relative to haystack, ...
if (h_csize == 2) { srdi(result, result, 1); } // in characters.
bind(L_End);
} // string_indexof
void MacroAssembler::string_indexof_char(Register result, Register haystack, Register haycnt,
Register needle, jchar needleChar, Register tmp1, Register tmp2, bool is_byte) {
assert_different_registers(haystack, haycnt, needle, tmp1, tmp2);
Label L_InnerLoop, L_FinalCheck, L_Found1, L_Found2, L_NotFound, L_End;
Register addr = tmp1,
ch1 = tmp2,
ch2 = R0;
const int h_csize = is_byte ? 1 : 2;
//4:
srwi_(tmp2, haycnt, 1); // Shift right by exact_log2(UNROLL_FACTOR).
mr(addr, haystack);
beq(CCR0, L_FinalCheck);
mtctr(tmp2); // Move to count register.
//8:
bind(L_InnerLoop); // Main work horse (2x unrolled search loop).
if (!is_byte) {
lhz(ch1, 0, addr);
lhz(ch2, 2, addr);
} else {
lbz(ch1, 0, addr);
lbz(ch2, 1, addr);
}
(needle != R0) ? cmpw(CCR0, ch1, needle) : cmplwi(CCR0, ch1, (unsigned int)needleChar);
(needle != R0) ? cmpw(CCR1, ch2, needle) : cmplwi(CCR1, ch2, (unsigned int)needleChar);
beq(CCR0, L_Found1); // Did we find the needle?
beq(CCR1, L_Found2);
addi(addr, addr, 2 * h_csize);
bdnz(L_InnerLoop);
//16:
bind(L_FinalCheck);
andi_(R0, haycnt, 1);
beq(CCR0, L_NotFound);
if (!is_byte) { lhz(ch1, 0, addr); } else { lbz(ch1, 0, addr); } // One position left at which we have to compare.
(needle != R0) ? cmpw(CCR1, ch1, needle) : cmplwi(CCR1, ch1, (unsigned int)needleChar);
beq(CCR1, L_Found1);
//21:
bind(L_NotFound);
li(result, -1); // Not found.
b(L_End);
bind(L_Found2);
addi(addr, addr, h_csize);
//24:
bind(L_Found1); // Return index ...
subf(result, haystack, addr); // relative to haystack, ...
if (!is_byte) { srdi(result, result, 1); } // in characters.
bind(L_End);
} // string_indexof_char
void MacroAssembler::has_negatives(Register src, Register cnt, Register result,
Register tmp1, Register tmp2) {
const Register tmp0 = R0;
assert_different_registers(src, result, cnt, tmp0, tmp1, tmp2);
Label Lfastloop, Lslow, Lloop, Lnoneg, Ldone;
// Check if cnt >= 8 (= 16 bytes)
lis(tmp1, (int)(short)0x8080); // tmp1 = 0x8080808080808080
srwi_(tmp2, cnt, 4);
li(result, 1); // Assume there's a negative byte.
beq(CCR0, Lslow);
ori(tmp1, tmp1, 0x8080);
rldimi(tmp1, tmp1, 32, 0);
mtctr(tmp2);
// 2x unrolled loop
bind(Lfastloop);
ld(tmp2, 0, src);
ld(tmp0, 8, src);
orr(tmp0, tmp2, tmp0);
and_(tmp0, tmp0, tmp1);
bne(CCR0, Ldone); // Found negative byte.
addi(src, src, 16);
bdnz(Lfastloop);
bind(Lslow); // Fallback to slow version
rldicl_(tmp0, cnt, 0, 64-4);
beq(CCR0, Lnoneg);
mtctr(tmp0);
bind(Lloop);
lbz(tmp0, 0, src);
addi(src, src, 1);
andi_(tmp0, tmp0, 0x80);
bne(CCR0, Ldone); // Found negative byte.
bdnz(Lloop);
bind(Lnoneg);
li(result, 0);
bind(Ldone);
}
// Intrinsics for non-CompactStrings
// Search for a single jchar in an jchar[].
//
// Assumes that result differs from all other registers.
@ -3613,6 +4163,8 @@ void MacroAssembler::char_arrays_equalsImm(Register str1_reg, Register str2_reg,
bind(Ldone_false);
}
#endif // Compiler2
// Helpers for Intrinsic Emitters
//
// Revert the byte order of a 32bit value in a register

View File

@ -1,6 +1,6 @@
/*
* Copyright (c) 2002, 2015, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2012, 2015 SAP SE. All rights reserved.
* Copyright (c) 2002, 2016, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2012, 2016 SAP SE. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -679,6 +679,39 @@ class MacroAssembler: public Assembler {
void clear_memory_doubleword(Register base_ptr, Register cnt_dwords, Register tmp = R0);
#ifdef COMPILER2
// Intrinsics for CompactStrings
// Compress char[] to byte[] by compressing 16 bytes at once.
void string_compress_16(Register src, Register dst, Register cnt,
Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5,
Label& Lfailure);
// Compress char[] to byte[]. cnt must be positive int.
void string_compress(Register src, Register dst, Register cnt, Register tmp, Label& Lfailure);
// Inflate byte[] to char[] by inflating 16 bytes at once.
void string_inflate_16(Register src, Register dst, Register cnt,
Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5);
// Inflate byte[] to char[]. cnt must be positive int.
void string_inflate(Register src, Register dst, Register cnt, Register tmp);
void string_compare(Register str1, Register str2, Register cnt1, Register cnt2,
Register tmp1, Register result, int ae);
void array_equals(bool is_array_equ, Register ary1, Register ary2,
Register limit, Register tmp1, Register result, bool is_byte);
void string_indexof(Register result, Register haystack, Register haycnt,
Register needle, ciTypeArray* needle_values, Register needlecnt, int needlecntval,
Register tmp1, Register tmp2, Register tmp3, Register tmp4, int ae);
void string_indexof_char(Register result, Register haystack, Register haycnt,
Register needle, jchar needleChar, Register tmp1, Register tmp2, bool is_byte);
void has_negatives(Register src, Register cnt, Register result, Register tmp1, Register tmp2);
// Intrinsics for non-CompactStrings
// Needle of length 1.
void string_indexof_1(Register result, Register haystack, Register haycnt,
Register needle, jchar needleChar,
@ -694,6 +727,7 @@ class MacroAssembler: public Assembler {
Register tmp5_reg);
void char_arrays_equalsImm(Register str1_reg, Register str2_reg, int cntval, Register result_reg,
Register tmp1_reg, Register tmp2_reg);
#endif
// Emitters for BigInteger.multiplyToLen intrinsic.
inline void multiply64(Register dest_hi, Register dest_lo,

View File

@ -1,6 +1,6 @@
//
// Copyright (c) 2011, 2016, Oracle and/or its affiliates. All rights reserved.
// Copyright (c) 2012, 2015 SAP SE. All rights reserved.
// Copyright (c) 2012, 2016 SAP SE. All rights reserved.
// DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
//
// This code is free software; you can redistribute it and/or modify it
@ -2024,13 +2024,13 @@ const bool Matcher::match_rule_supported(int opcode) {
return (UsePopCountInstruction && VM_Version::has_popcntw());
case Op_StrComp:
return SpecialStringCompareTo && !CompactStrings;
return SpecialStringCompareTo;
case Op_StrEquals:
return SpecialStringEquals && !CompactStrings;
return SpecialStringEquals;
case Op_StrIndexOf:
return SpecialStringIndexOf && !CompactStrings;
return SpecialStringIndexOf;
case Op_StrIndexOfChar:
return SpecialStringIndexOf && !CompactStrings;
return SpecialStringIndexOf;
}
return true; // Per default match rules are supported.
@ -11022,6 +11022,584 @@ instruct inlineCallClearArray(rarg1RegL cnt, rarg2RegP base, Universe dummy, reg
ins_pipe(pipe_class_default);
%}
instruct string_compareL(rarg1RegP str1, rarg2RegP str2, rarg3RegI cnt1, rarg4RegI cnt2, iRegIdst result,
iRegIdst tmp, regCTR ctr, flagsRegCR0 cr0) %{
predicate(((StrCompNode*)n)->encoding() == StrIntrinsicNode::LL);
match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
effect(TEMP_DEF result, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL ctr, KILL cr0, TEMP tmp);
ins_cost(300);
format %{ "String Compare byte[] $str1,$cnt1,$str2,$cnt2 -> $result \t// KILL $tmp" %}
ins_encode %{
// TODO: PPC port $archOpcode(ppc64Opcode_compound);
__ string_compare($str1$$Register, $str2$$Register,
$cnt1$$Register, $cnt2$$Register,
$tmp$$Register,
$result$$Register, StrIntrinsicNode::LL);
%}
ins_pipe(pipe_class_default);
%}
instruct string_compareU(rarg1RegP str1, rarg2RegP str2, rarg3RegI cnt1, rarg4RegI cnt2, iRegIdst result,
iRegIdst tmp, regCTR ctr, flagsRegCR0 cr0) %{
predicate(((StrCompNode*)n)->encoding() == StrIntrinsicNode::UU);
match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
effect(TEMP_DEF result, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL ctr, KILL cr0, TEMP tmp);
ins_cost(300);
format %{ "String Compare char[] $str1,$cnt1,$str2,$cnt2 -> $result \t// KILL $tmp" %}
ins_encode %{
// TODO: PPC port $archOpcode(ppc64Opcode_compound);
__ string_compare($str1$$Register, $str2$$Register,
$cnt1$$Register, $cnt2$$Register,
$tmp$$Register,
$result$$Register, StrIntrinsicNode::UU);
%}
ins_pipe(pipe_class_default);
%}
instruct string_compareLU(rarg1RegP str1, rarg2RegP str2, rarg3RegI cnt1, rarg4RegI cnt2, iRegIdst result,
iRegIdst tmp, regCTR ctr, flagsRegCR0 cr0) %{
predicate(((StrCompNode*)n)->encoding() == StrIntrinsicNode::LU);
match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
effect(TEMP_DEF result, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL ctr, KILL cr0, TEMP tmp);
ins_cost(300);
format %{ "String Compare byte[] $str1,$cnt1,$str2,$cnt2 -> $result \t// KILL $tmp" %}
ins_encode %{
// TODO: PPC port $archOpcode(ppc64Opcode_compound);
__ string_compare($str1$$Register, $str2$$Register,
$cnt1$$Register, $cnt2$$Register,
$tmp$$Register,
$result$$Register, StrIntrinsicNode::LU);
%}
ins_pipe(pipe_class_default);
%}
instruct string_compareUL(rarg1RegP str1, rarg2RegP str2, rarg3RegI cnt1, rarg4RegI cnt2, iRegIdst result,
iRegIdst tmp, regCTR ctr, flagsRegCR0 cr0) %{
predicate(((StrCompNode*)n)->encoding() == StrIntrinsicNode::UL);
match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
effect(TEMP_DEF result, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL ctr, KILL cr0, TEMP tmp);
ins_cost(300);
format %{ "String Compare byte[] $str1,$cnt1,$str2,$cnt2 -> $result \t// KILL $tmp" %}
ins_encode %{
// TODO: PPC port $archOpcode(ppc64Opcode_compound);
__ string_compare($str2$$Register, $str1$$Register,
$cnt2$$Register, $cnt1$$Register,
$tmp$$Register,
$result$$Register, StrIntrinsicNode::UL);
%}
ins_pipe(pipe_class_default);
%}
instruct string_equalsL(rarg1RegP str1, rarg2RegP str2, rarg3RegI cnt, iRegIdst result,
iRegIdst tmp, regCTR ctr, flagsRegCR0 cr0) %{
predicate(((StrEqualsNode*)n)->encoding() == StrIntrinsicNode::LL);
match(Set result (StrEquals (Binary str1 str2) cnt));
effect(TEMP_DEF result, USE_KILL str1, USE_KILL str2, USE_KILL cnt, TEMP tmp, KILL ctr, KILL cr0);
ins_cost(300);
format %{ "String Equals byte[] $str1,$str2,$cnt -> $result \t// KILL $tmp" %}
ins_encode %{
// TODO: PPC port $archOpcode(ppc64Opcode_compound);
__ array_equals(false, $str1$$Register, $str2$$Register,
$cnt$$Register, $tmp$$Register,
$result$$Register, true /* byte */);
%}
ins_pipe(pipe_class_default);
%}
instruct string_equalsU(rarg1RegP str1, rarg2RegP str2, rarg3RegI cnt, iRegIdst result,
iRegIdst tmp, regCTR ctr, flagsRegCR0 cr0) %{
predicate(((StrEqualsNode*)n)->encoding() == StrIntrinsicNode::UU);
match(Set result (StrEquals (Binary str1 str2) cnt));
effect(TEMP_DEF result, USE_KILL str1, USE_KILL str2, USE_KILL cnt, TEMP tmp, KILL ctr, KILL cr0);
ins_cost(300);
format %{ "String Equals char[] $str1,$str2,$cnt -> $result \t// KILL $tmp" %}
ins_encode %{
// TODO: PPC port $archOpcode(ppc64Opcode_compound);
__ array_equals(false, $str1$$Register, $str2$$Register,
$cnt$$Register, $tmp$$Register,
$result$$Register, false /* byte */);
%}
ins_pipe(pipe_class_default);
%}
instruct array_equalsB(rarg1RegP ary1, rarg2RegP ary2, iRegIdst result,
iRegIdst tmp1, iRegIdst tmp2, regCTR ctr, flagsRegCR0 cr0, flagsRegCR0 cr1) %{
predicate(((AryEqNode*)n)->encoding() == StrIntrinsicNode::LL);
match(Set result (AryEq ary1 ary2));
effect(TEMP_DEF result, USE_KILL ary1, USE_KILL ary2, TEMP tmp1, TEMP tmp2, KILL ctr, KILL cr0, KILL cr1);
ins_cost(300);
format %{ "Array Equals $ary1,$ary2 -> $result \t// KILL $tmp1,$tmp2" %}
ins_encode %{
// TODO: PPC port $archOpcode(ppc64Opcode_compound);
__ array_equals(true, $ary1$$Register, $ary2$$Register,
$tmp1$$Register, $tmp2$$Register,
$result$$Register, true /* byte */);
%}
ins_pipe(pipe_class_default);
%}
instruct array_equalsC(rarg1RegP ary1, rarg2RegP ary2, iRegIdst result,
iRegIdst tmp1, iRegIdst tmp2, regCTR ctr, flagsRegCR0 cr0, flagsRegCR0 cr1) %{
predicate(((AryEqNode*)n)->encoding() == StrIntrinsicNode::UU);
match(Set result (AryEq ary1 ary2));
effect(TEMP_DEF result, USE_KILL ary1, USE_KILL ary2, TEMP tmp1, TEMP tmp2, KILL ctr, KILL cr0, KILL cr1);
ins_cost(300);
format %{ "Array Equals $ary1,$ary2 -> $result \t// KILL $tmp1,$tmp2" %}
ins_encode %{
// TODO: PPC port $archOpcode(ppc64Opcode_compound);
__ array_equals(true, $ary1$$Register, $ary2$$Register,
$tmp1$$Register, $tmp2$$Register,
$result$$Register, false /* byte */);
%}
ins_pipe(pipe_class_default);
%}
instruct indexOf_imm1_char_U(iRegIdst result, iRegPsrc haystack, iRegIsrc haycnt,
immP needleImm, immL offsetImm, immI_1 needlecntImm,
iRegIdst tmp1, iRegIdst tmp2,
flagsRegCR0 cr0, flagsRegCR1 cr1, regCTR ctr) %{
match(Set result (StrIndexOf (Binary haystack haycnt) (Binary (AddP needleImm offsetImm) needlecntImm)));
effect(TEMP tmp1, TEMP tmp2, KILL cr0, KILL cr1, KILL ctr);
// Required for EA: check if it is still a type_array.
predicate(((StrIndexOfNode*)n)->encoding() == StrIntrinsicNode::UU);
ins_cost(150);
format %{ "String IndexOf CSCL1 $haystack[0..$haycnt], $needleImm+$offsetImm[0..$needlecntImm]"
"-> $result \t// KILL $haycnt, $tmp1, $tmp2, $cr0, $cr1" %}
ins_encode %{
// TODO: PPC port $archOpcode(ppc64Opcode_compound);
immPOper *needleOper = (immPOper *)$needleImm;
const TypeOopPtr *t = needleOper->type()->isa_oopptr();
ciTypeArray* needle_values = t->const_oop()->as_type_array(); // Pointer to live char *
jchar chr;
#ifdef VM_LITTLE_ENDIAN
chr = (((jchar)(unsigned char)needle_values->element_value(1).as_byte()) << 8) |
((jchar)(unsigned char)needle_values->element_value(0).as_byte());
#else
chr = (((jchar)(unsigned char)needle_values->element_value(0).as_byte()) << 8) |
((jchar)(unsigned char)needle_values->element_value(1).as_byte());
#endif
__ string_indexof_char($result$$Register,
$haystack$$Register, $haycnt$$Register,
R0, chr,
$tmp1$$Register, $tmp2$$Register, false /*is_byte*/);
%}
ins_pipe(pipe_class_compare);
%}
instruct indexOf_imm1_char_L(iRegIdst result, iRegPsrc haystack, iRegIsrc haycnt,
immP needleImm, immL offsetImm, immI_1 needlecntImm,
iRegIdst tmp1, iRegIdst tmp2,
flagsRegCR0 cr0, flagsRegCR1 cr1, regCTR ctr) %{
match(Set result (StrIndexOf (Binary haystack haycnt) (Binary (AddP needleImm offsetImm) needlecntImm)));
effect(TEMP tmp1, TEMP tmp2, KILL cr0, KILL cr1, KILL ctr);
// Required for EA: check if it is still a type_array.
predicate(((StrIndexOfNode*)n)->encoding() == StrIntrinsicNode::LL);
ins_cost(150);
format %{ "String IndexOf CSCL1 $haystack[0..$haycnt], $needleImm+$offsetImm[0..$needlecntImm]"
"-> $result \t// KILL $haycnt, $tmp1, $tmp2, $cr0, $cr1" %}
ins_encode %{
// TODO: PPC port $archOpcode(ppc64Opcode_compound);
immPOper *needleOper = (immPOper *)$needleImm;
const TypeOopPtr *t = needleOper->type()->isa_oopptr();
ciTypeArray* needle_values = t->const_oop()->as_type_array(); // Pointer to live char *
jchar chr = (jchar)needle_values->element_value(0).as_byte();
__ string_indexof_char($result$$Register,
$haystack$$Register, $haycnt$$Register,
R0, chr,
$tmp1$$Register, $tmp2$$Register, true /*is_byte*/);
%}
ins_pipe(pipe_class_compare);
%}
instruct indexOf_imm1_char_UL(iRegIdst result, iRegPsrc haystack, iRegIsrc haycnt,
immP needleImm, immL offsetImm, immI_1 needlecntImm,
iRegIdst tmp1, iRegIdst tmp2,
flagsRegCR0 cr0, flagsRegCR1 cr1, regCTR ctr) %{
match(Set result (StrIndexOf (Binary haystack haycnt) (Binary (AddP needleImm offsetImm) needlecntImm)));
effect(TEMP tmp1, TEMP tmp2, KILL cr0, KILL cr1, KILL ctr);
// Required for EA: check if it is still a type_array.
predicate(((StrIndexOfNode*)n)->encoding() == StrIntrinsicNode::UL);
ins_cost(150);
format %{ "String IndexOf CSCL1 $haystack[0..$haycnt], $needleImm+$offsetImm[0..$needlecntImm]"
"-> $result \t// KILL $haycnt, $tmp1, $tmp2, $cr0, $cr1" %}
ins_encode %{
// TODO: PPC port $archOpcode(ppc64Opcode_compound);
immPOper *needleOper = (immPOper *)$needleImm;
const TypeOopPtr *t = needleOper->type()->isa_oopptr();
ciTypeArray* needle_values = t->const_oop()->as_type_array(); // Pointer to live char *
jchar chr = (jchar)needle_values->element_value(0).as_byte();
__ string_indexof_char($result$$Register,
$haystack$$Register, $haycnt$$Register,
R0, chr,
$tmp1$$Register, $tmp2$$Register, false /*is_byte*/);
%}
ins_pipe(pipe_class_compare);
%}
instruct indexOf_imm1_U(iRegIdst result, iRegPsrc haystack, iRegIsrc haycnt,
rscratch2RegP needle, immI_1 needlecntImm,
iRegIdst tmp1, iRegIdst tmp2,
flagsRegCR0 cr0, flagsRegCR1 cr1, regCTR ctr) %{
match(Set result (StrIndexOf (Binary haystack haycnt) (Binary needle needlecntImm)));
effect(USE_KILL needle, TEMP tmp1, TEMP tmp2, KILL cr0, KILL cr1, KILL ctr);
// Required for EA: check if it is still a type_array.
predicate(((StrIndexOfNode*)n)->encoding() == StrIntrinsicNode::UU &&
n->in(3)->in(1)->bottom_type()->is_aryptr()->const_oop() &&
n->in(3)->in(1)->bottom_type()->is_aryptr()->const_oop()->is_type_array());
ins_cost(180);
format %{ "String IndexOf SCL1 $haystack[0..$haycnt], $needle[0..$needlecntImm]"
" -> $result \t// KILL $haycnt, $needle, $tmp1, $tmp2, $cr0, $cr1" %}
ins_encode %{
// TODO: PPC port $archOpcode(ppc64Opcode_compound);
Node *ndl = in(operand_index($needle)); // The node that defines needle.
ciTypeArray* needle_values = ndl->bottom_type()->is_aryptr()->const_oop()->as_type_array();
guarantee(needle_values, "sanity");
jchar chr;
#ifdef VM_LITTLE_ENDIAN
chr = (((jchar)(unsigned char)needle_values->element_value(1).as_byte()) << 8) |
((jchar)(unsigned char)needle_values->element_value(0).as_byte());
#else
chr = (((jchar)(unsigned char)needle_values->element_value(0).as_byte()) << 8) |
((jchar)(unsigned char)needle_values->element_value(1).as_byte());
#endif
__ string_indexof_char($result$$Register,
$haystack$$Register, $haycnt$$Register,
R0, chr,
$tmp1$$Register, $tmp2$$Register, false /*is_byte*/);
%}
ins_pipe(pipe_class_compare);
%}
instruct indexOf_imm1_L(iRegIdst result, iRegPsrc haystack, iRegIsrc haycnt,
rscratch2RegP needle, immI_1 needlecntImm,
iRegIdst tmp1, iRegIdst tmp2,
flagsRegCR0 cr0, flagsRegCR1 cr1, regCTR ctr) %{
match(Set result (StrIndexOf (Binary haystack haycnt) (Binary needle needlecntImm)));
effect(USE_KILL needle, TEMP tmp1, TEMP tmp2, KILL cr0, KILL cr1, KILL ctr);
// Required for EA: check if it is still a type_array.
predicate(((StrIndexOfNode*)n)->encoding() == StrIntrinsicNode::LL &&
n->in(3)->in(1)->bottom_type()->is_aryptr()->const_oop() &&
n->in(3)->in(1)->bottom_type()->is_aryptr()->const_oop()->is_type_array());
ins_cost(180);
format %{ "String IndexOf SCL1 $haystack[0..$haycnt], $needle[0..$needlecntImm]"
" -> $result \t// KILL $haycnt, $needle, $tmp1, $tmp2, $cr0, $cr1" %}
ins_encode %{
// TODO: PPC port $archOpcode(ppc64Opcode_compound);
Node *ndl = in(operand_index($needle)); // The node that defines needle.
ciTypeArray* needle_values = ndl->bottom_type()->is_aryptr()->const_oop()->as_type_array();
guarantee(needle_values, "sanity");
jchar chr = (jchar)needle_values->element_value(0).as_byte();
__ string_indexof_char($result$$Register,
$haystack$$Register, $haycnt$$Register,
R0, chr,
$tmp1$$Register, $tmp2$$Register, true /*is_byte*/);
%}
ins_pipe(pipe_class_compare);
%}
instruct indexOf_imm1_UL(iRegIdst result, iRegPsrc haystack, iRegIsrc haycnt,
rscratch2RegP needle, immI_1 needlecntImm,
iRegIdst tmp1, iRegIdst tmp2,
flagsRegCR0 cr0, flagsRegCR1 cr1, regCTR ctr) %{
match(Set result (StrIndexOf (Binary haystack haycnt) (Binary needle needlecntImm)));
effect(USE_KILL needle, TEMP tmp1, TEMP tmp2, KILL cr0, KILL cr1, KILL ctr);
// Required for EA: check if it is still a type_array.
predicate(((StrIndexOfNode*)n)->encoding() == StrIntrinsicNode::UL &&
n->in(3)->in(1)->bottom_type()->is_aryptr()->const_oop() &&
n->in(3)->in(1)->bottom_type()->is_aryptr()->const_oop()->is_type_array());
ins_cost(180);
format %{ "String IndexOf SCL1 $haystack[0..$haycnt], $needle[0..$needlecntImm]"
" -> $result \t// KILL $haycnt, $needle, $tmp1, $tmp2, $cr0, $cr1" %}
ins_encode %{
// TODO: PPC port $archOpcode(ppc64Opcode_compound);
Node *ndl = in(operand_index($needle)); // The node that defines needle.
ciTypeArray* needle_values = ndl->bottom_type()->is_aryptr()->const_oop()->as_type_array();
guarantee(needle_values, "sanity");
jchar chr = (jchar)needle_values->element_value(0).as_byte();
__ string_indexof_char($result$$Register,
$haystack$$Register, $haycnt$$Register,
R0, chr,
$tmp1$$Register, $tmp2$$Register, false /*is_byte*/);
%}
ins_pipe(pipe_class_compare);
%}
instruct indexOfChar_U(iRegIdst result, iRegPsrc haystack, iRegIsrc haycnt,
iRegIsrc ch, iRegIdst tmp1, iRegIdst tmp2,
flagsRegCR0 cr0, flagsRegCR1 cr1, regCTR ctr) %{
match(Set result (StrIndexOfChar (Binary haystack haycnt) ch));
effect(TEMP tmp1, TEMP tmp2, KILL cr0, KILL cr1, KILL ctr);
predicate(CompactStrings);
ins_cost(180);
format %{ "String IndexOfChar $haystack[0..$haycnt], $ch"
" -> $result \t// KILL $haycnt, $tmp1, $tmp2, $cr0, $cr1" %}
ins_encode %{
// TODO: PPC port $archOpcode(ppc64Opcode_compound);
__ string_indexof_char($result$$Register,
$haystack$$Register, $haycnt$$Register,
$ch$$Register, 0 /* this is not used if the character is already in a register */,
$tmp1$$Register, $tmp2$$Register, false /*is_byte*/);
%}
ins_pipe(pipe_class_compare);
%}
instruct indexOf_imm_U(iRegIdst result, iRegPsrc haystack, rscratch1RegI haycnt,
iRegPsrc needle, uimmI15 needlecntImm,
iRegIdst tmp1, iRegIdst tmp2, iRegIdst tmp3, iRegIdst tmp4, iRegIdst tmp5,
flagsRegCR0 cr0, flagsRegCR1 cr1, flagsRegCR6 cr6, regCTR ctr) %{
match(Set result (StrIndexOf (Binary haystack haycnt) (Binary needle needlecntImm)));
effect(USE_KILL haycnt, /* better: TDEF haycnt, */ TEMP_DEF result,
TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, TEMP tmp5, KILL cr0, KILL cr1, KILL cr6, KILL ctr);
// Required for EA: check if it is still a type_array.
predicate(((StrIndexOfNode*)n)->encoding() == StrIntrinsicNode::UU &&
n->in(3)->in(1)->bottom_type()->is_aryptr()->const_oop() &&
n->in(3)->in(1)->bottom_type()->is_aryptr()->const_oop()->is_type_array());
ins_cost(250);
format %{ "String IndexOf SCL $haystack[0..$haycnt], $needle[0..$needlecntImm]"
" -> $result \t// KILL $haycnt, $tmp1, $tmp2, $tmp3, $tmp4, $tmp5, $cr0, $cr1" %}
ins_encode %{
// TODO: PPC port $archOpcode(ppc64Opcode_compound);
Node *ndl = in(operand_index($needle)); // The node that defines needle.
ciTypeArray* needle_values = ndl->bottom_type()->is_aryptr()->const_oop()->as_type_array();
__ string_indexof($result$$Register,
$haystack$$Register, $haycnt$$Register,
$needle$$Register, needle_values, $tmp5$$Register, $needlecntImm$$constant,
$tmp1$$Register, $tmp2$$Register, $tmp3$$Register, $tmp4$$Register, StrIntrinsicNode::UU);
%}
ins_pipe(pipe_class_compare);
%}
instruct indexOf_imm_L(iRegIdst result, iRegPsrc haystack, rscratch1RegI haycnt,
iRegPsrc needle, uimmI15 needlecntImm,
iRegIdst tmp1, iRegIdst tmp2, iRegIdst tmp3, iRegIdst tmp4, iRegIdst tmp5,
flagsRegCR0 cr0, flagsRegCR1 cr1, flagsRegCR6 cr6, regCTR ctr) %{
match(Set result (StrIndexOf (Binary haystack haycnt) (Binary needle needlecntImm)));
effect(USE_KILL haycnt, /* better: TDEF haycnt, */ TEMP_DEF result,
TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, TEMP tmp5, KILL cr0, KILL cr1, KILL cr6, KILL ctr);
// Required for EA: check if it is still a type_array.
predicate(((StrIndexOfNode*)n)->encoding() == StrIntrinsicNode::LL &&
n->in(3)->in(1)->bottom_type()->is_aryptr()->const_oop() &&
n->in(3)->in(1)->bottom_type()->is_aryptr()->const_oop()->is_type_array());
ins_cost(250);
format %{ "String IndexOf SCL $haystack[0..$haycnt], $needle[0..$needlecntImm]"
" -> $result \t// KILL $haycnt, $tmp1, $tmp2, $tmp3, $tmp4, $tmp5, $cr0, $cr1" %}
ins_encode %{
// TODO: PPC port $archOpcode(ppc64Opcode_compound);
Node *ndl = in(operand_index($needle)); // The node that defines needle.
ciTypeArray* needle_values = ndl->bottom_type()->is_aryptr()->const_oop()->as_type_array();
__ string_indexof($result$$Register,
$haystack$$Register, $haycnt$$Register,
$needle$$Register, needle_values, $tmp5$$Register, $needlecntImm$$constant,
$tmp1$$Register, $tmp2$$Register, $tmp3$$Register, $tmp4$$Register, StrIntrinsicNode::LL);
%}
ins_pipe(pipe_class_compare);
%}
instruct indexOf_imm_UL(iRegIdst result, iRegPsrc haystack, rscratch1RegI haycnt,
iRegPsrc needle, uimmI15 needlecntImm,
iRegIdst tmp1, iRegIdst tmp2, iRegIdst tmp3, iRegIdst tmp4, iRegIdst tmp5,
flagsRegCR0 cr0, flagsRegCR1 cr1, flagsRegCR6 cr6, regCTR ctr) %{
match(Set result (StrIndexOf (Binary haystack haycnt) (Binary needle needlecntImm)));
effect(USE_KILL haycnt, /* better: TDEF haycnt, */ TEMP_DEF result,
TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, TEMP tmp5, KILL cr0, KILL cr1, KILL cr6, KILL ctr);
// Required for EA: check if it is still a type_array.
predicate(((StrIndexOfNode*)n)->encoding() == StrIntrinsicNode::UL &&
n->in(3)->in(1)->bottom_type()->is_aryptr()->const_oop() &&
n->in(3)->in(1)->bottom_type()->is_aryptr()->const_oop()->is_type_array());
ins_cost(250);
format %{ "String IndexOf SCL $haystack[0..$haycnt], $needle[0..$needlecntImm]"
" -> $result \t// KILL $haycnt, $tmp1, $tmp2, $tmp3, $tmp4, $tmp5, $cr0, $cr1" %}
ins_encode %{
// TODO: PPC port $archOpcode(ppc64Opcode_compound);
Node *ndl = in(operand_index($needle)); // The node that defines needle.
ciTypeArray* needle_values = ndl->bottom_type()->is_aryptr()->const_oop()->as_type_array();
__ string_indexof($result$$Register,
$haystack$$Register, $haycnt$$Register,
$needle$$Register, needle_values, $tmp5$$Register, $needlecntImm$$constant,
$tmp1$$Register, $tmp2$$Register, $tmp3$$Register, $tmp4$$Register, StrIntrinsicNode::UL);
%}
ins_pipe(pipe_class_compare);
%}
instruct indexOf_U(iRegIdst result, iRegPsrc haystack, rscratch1RegI haycnt, iRegPsrc needle, rscratch2RegI needlecnt,
iRegLdst tmp1, iRegLdst tmp2, iRegLdst tmp3, iRegLdst tmp4,
flagsRegCR0 cr0, flagsRegCR1 cr1, flagsRegCR6 cr6, regCTR ctr) %{
match(Set result (StrIndexOf (Binary haystack haycnt) (Binary needle needlecnt)));
effect(USE_KILL haycnt, USE_KILL needlecnt, /*better: TDEF haycnt, TDEF needlecnt,*/
TEMP_DEF result,
TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, KILL cr0, KILL cr1, KILL cr6, KILL ctr);
predicate(((StrIndexOfNode*)n)->encoding() == StrIntrinsicNode::UU);
ins_cost(300);
format %{ "String IndexOf $haystack[0..$haycnt], $needle[0..$needlecnt]"
" -> $result \t// KILL $haycnt, $needlecnt, $tmp1, $tmp2, $tmp3, $tmp4, $cr0, $cr1" %}
ins_encode %{
// TODO: PPC port $archOpcode(ppc64Opcode_compound);
__ string_indexof($result$$Register,
$haystack$$Register, $haycnt$$Register,
$needle$$Register, NULL, $needlecnt$$Register, 0, // needlecnt not constant.
$tmp1$$Register, $tmp2$$Register, $tmp3$$Register, $tmp4$$Register, StrIntrinsicNode::UU);
%}
ins_pipe(pipe_class_compare);
%}
instruct indexOf_L(iRegIdst result, iRegPsrc haystack, rscratch1RegI haycnt, iRegPsrc needle, rscratch2RegI needlecnt,
iRegLdst tmp1, iRegLdst tmp2, iRegLdst tmp3, iRegLdst tmp4,
flagsRegCR0 cr0, flagsRegCR1 cr1, flagsRegCR6 cr6, regCTR ctr) %{
match(Set result (StrIndexOf (Binary haystack haycnt) (Binary needle needlecnt)));
effect(USE_KILL haycnt, USE_KILL needlecnt, /*better: TDEF haycnt, TDEF needlecnt,*/
TEMP_DEF result,
TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, KILL cr0, KILL cr1, KILL cr6, KILL ctr);
predicate(((StrIndexOfNode*)n)->encoding() == StrIntrinsicNode::LL);
ins_cost(300);
format %{ "String IndexOf $haystack[0..$haycnt], $needle[0..$needlecnt]"
" -> $result \t// KILL $haycnt, $needlecnt, $tmp1, $tmp2, $tmp3, $tmp4, $cr0, $cr1" %}
ins_encode %{
// TODO: PPC port $archOpcode(ppc64Opcode_compound);
__ string_indexof($result$$Register,
$haystack$$Register, $haycnt$$Register,
$needle$$Register, NULL, $needlecnt$$Register, 0, // needlecnt not constant.
$tmp1$$Register, $tmp2$$Register, $tmp3$$Register, $tmp4$$Register, StrIntrinsicNode::LL);
%}
ins_pipe(pipe_class_compare);
%}
instruct indexOf_UL(iRegIdst result, iRegPsrc haystack, rscratch1RegI haycnt, iRegPsrc needle, rscratch2RegI needlecnt,
iRegLdst tmp1, iRegLdst tmp2, iRegLdst tmp3, iRegLdst tmp4,
flagsRegCR0 cr0, flagsRegCR1 cr1, flagsRegCR6 cr6, regCTR ctr) %{
match(Set result (StrIndexOf (Binary haystack haycnt) (Binary needle needlecnt)));
effect(USE_KILL haycnt, USE_KILL needlecnt, /*better: TDEF haycnt, TDEF needlecnt,*/
TEMP_DEF result,
TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, KILL cr0, KILL cr1, KILL cr6, KILL ctr);
predicate(((StrIndexOfNode*)n)->encoding() == StrIntrinsicNode::UL);
ins_cost(300);
format %{ "String IndexOf $haystack[0..$haycnt], $needle[0..$needlecnt]"
" -> $result \t// KILL $haycnt, $needlecnt, $tmp1, $tmp2, $tmp3, $tmp4, $cr0, $cr1" %}
ins_encode %{
// TODO: PPC port $archOpcode(ppc64Opcode_compound);
__ string_indexof($result$$Register,
$haystack$$Register, $haycnt$$Register,
$needle$$Register, NULL, $needlecnt$$Register, 0, // needlecnt not constant.
$tmp1$$Register, $tmp2$$Register, $tmp3$$Register, $tmp4$$Register, StrIntrinsicNode::UL);
%}
ins_pipe(pipe_class_compare);
%}
// char[] to byte[] compression
instruct string_compress(rarg1RegP src, rarg2RegP dst, iRegIsrc len, iRegIdst result, iRegLdst tmp1,
iRegLdst tmp2, iRegLdst tmp3, iRegLdst tmp4, iRegLdst tmp5, regCTR ctr, flagsRegCR0 cr0) %{
match(Set result (StrCompressedCopy src (Binary dst len)));
effect(TEMP_DEF result, TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, TEMP tmp5,
USE_KILL src, USE_KILL dst, KILL ctr, KILL cr0);
ins_cost(300);
format %{ "String Compress $src,$dst,$len -> $result \t// KILL $tmp1, $tmp2, $tmp3, $tmp4, $tmp5" %}
ins_encode %{
// TODO: PPC port $archOpcode(ppc64Opcode_compound);
Label Lskip, Ldone;
__ li($result$$Register, 0);
__ string_compress_16($src$$Register, $dst$$Register, $len$$Register, $tmp1$$Register,
$tmp2$$Register, $tmp3$$Register, $tmp4$$Register, $tmp5$$Register, Ldone);
__ rldicl_($tmp1$$Register, $len$$Register, 0, 64-3); // Remaining characters.
__ beq(CCR0, Lskip);
__ string_compress($src$$Register, $dst$$Register, $tmp1$$Register, $tmp2$$Register, Ldone);
__ bind(Lskip);
__ mr($result$$Register, $len$$Register);
__ bind(Ldone);
%}
ins_pipe(pipe_class_default);
%}
// byte[] to char[] inflation
instruct string_inflate(Universe dummy, rarg1RegP src, rarg2RegP dst, iRegIsrc len, iRegLdst tmp1,
iRegLdst tmp2, iRegLdst tmp3, iRegLdst tmp4, iRegLdst tmp5, regCTR ctr, flagsRegCR0 cr0) %{
match(Set dummy (StrInflatedCopy src (Binary dst len)));
effect(TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, TEMP tmp5, USE_KILL src, USE_KILL dst, KILL ctr, KILL cr0);
ins_cost(300);
format %{ "String Inflate $src,$dst,$len \t// KILL $tmp1, $tmp2, $tmp3, $tmp4, $tmp5" %}
ins_encode %{
// TODO: PPC port $archOpcode(ppc64Opcode_compound);
Label Ldone;
__ string_inflate_16($src$$Register, $dst$$Register, $len$$Register, $tmp1$$Register,
$tmp2$$Register, $tmp3$$Register, $tmp4$$Register, $tmp5$$Register);
__ rldicl_($tmp1$$Register, $len$$Register, 0, 64-3); // Remaining characters.
__ beq(CCR0, Ldone);
__ string_inflate($src$$Register, $dst$$Register, $tmp1$$Register, $tmp2$$Register);
__ bind(Ldone);
%}
ins_pipe(pipe_class_default);
%}
// StringCoding.java intrinsics
instruct has_negatives(rarg1RegP ary1, iRegIsrc len, iRegIdst result, iRegLdst tmp1, iRegLdst tmp2,
regCTR ctr, flagsRegCR0 cr0)
%{
match(Set result (HasNegatives ary1 len));
effect(TEMP_DEF result, USE_KILL ary1, TEMP tmp1, TEMP tmp2, KILL ctr, KILL cr0);
ins_cost(300);
format %{ "has negatives byte[] $ary1,$len -> $result \t// KILL $tmp1, $tmp2" %}
ins_encode %{
// TODO: PPC port $archOpcode(ppc64Opcode_compound);
__ has_negatives($ary1$$Register, $len$$Register, $result$$Register,
$tmp1$$Register, $tmp2$$Register);
%}
ins_pipe(pipe_class_default);
%}
// encode char[] to byte[] in ISO_8859_1
instruct encode_iso_array(rarg1RegP src, rarg2RegP dst, iRegIsrc len, iRegIdst result, iRegLdst tmp1,
iRegLdst tmp2, iRegLdst tmp3, iRegLdst tmp4, iRegLdst tmp5, regCTR ctr, flagsRegCR0 cr0) %{
match(Set result (EncodeISOArray src (Binary dst len)));
effect(TEMP_DEF result, TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, TEMP tmp5,
USE_KILL src, USE_KILL dst, KILL ctr, KILL cr0);
ins_cost(300);
format %{ "Encode array $src,$dst,$len -> $result \t// KILL $tmp1, $tmp2, $tmp3, $tmp4, $tmp5" %}
ins_encode %{
// TODO: PPC port $archOpcode(ppc64Opcode_compound);
Label Lslow, Lfailure1, Lfailure2, Ldone;
__ string_compress_16($src$$Register, $dst$$Register, $len$$Register, $tmp1$$Register,
$tmp2$$Register, $tmp3$$Register, $tmp4$$Register, $tmp5$$Register, Lfailure1);
__ rldicl_($result$$Register, $len$$Register, 0, 64-3); // Remaining characters.
__ beq(CCR0, Ldone);
__ bind(Lslow);
__ string_compress($src$$Register, $dst$$Register, $result$$Register, $tmp2$$Register, Lfailure2);
__ li($result$$Register, 0);
__ b(Ldone);
__ bind(Lfailure1);
__ mr($result$$Register, $len$$Register);
__ mfctr($tmp1$$Register);
__ rldimi_($result$$Register, $tmp1$$Register, 3, 0); // Remaining characters.
__ beq(CCR0, Ldone);
__ b(Lslow);
__ bind(Lfailure2);
__ mfctr($result$$Register); // Remaining characters.
__ bind(Ldone);
__ subf($result$$Register, $result$$Register, $len$$Register);
%}
ins_pipe(pipe_class_default);
%}
// String_IndexOf for needle of length 1.
//
// Match needle into immediate operands: no loadConP node needed. Saves one
@ -11060,11 +11638,11 @@ instruct string_indexOf_imm1_char(iRegIdst result, iRegPsrc haystack, iRegIsrc h
if (java_lang_String::has_coder_field()) {
// New compact strings byte array strings
#ifdef VM_LITTLE_ENDIAN
chr = (((jchar)needle_values->element_value(1).as_byte()) << 8) |
(jchar)needle_values->element_value(0).as_byte();
chr = (((jchar)(unsigned char)needle_values->element_value(1).as_byte()) << 8) |
((jchar)(unsigned char)needle_values->element_value(0).as_byte());
#else
chr = (((jchar)needle_values->element_value(0).as_byte()) << 8) |
(jchar)needle_values->element_value(1).as_byte();
chr = (((jchar)(unsigned char)needle_values->element_value(0).as_byte()) << 8) |
((jchar)(unsigned char)needle_values->element_value(1).as_byte());
#endif
} else {
// Old char array strings
@ -11115,11 +11693,11 @@ instruct string_indexOf_imm1(iRegIdst result, iRegPsrc haystack, iRegIsrc haycnt
if (java_lang_String::has_coder_field()) {
// New compact strings byte array strings
#ifdef VM_LITTLE_ENDIAN
chr = (((jchar)needle_values->element_value(1).as_byte()) << 8) |
(jchar)needle_values->element_value(0).as_byte();
chr = (((jchar)(unsigned char)needle_values->element_value(1).as_byte()) << 8) |
((jchar)(unsigned char)needle_values->element_value(0).as_byte());
#else
chr = (((jchar)needle_values->element_value(0).as_byte()) << 8) |
(jchar)needle_values->element_value(1).as_byte();
chr = (((jchar)(unsigned char)needle_values->element_value(0).as_byte()) << 8) |
((jchar)(unsigned char)needle_values->element_value(1).as_byte());
#endif
} else {
// Old char array strings
@ -11321,6 +11899,20 @@ instruct minI_reg_reg_Ex(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
%}
%}
instruct minI_reg_reg_isel(iRegIdst dst, iRegIsrc src1, iRegIsrc src2, flagsRegCR0 cr0) %{
match(Set dst (MinI src1 src2));
effect(KILL cr0);
predicate(VM_Version::has_isel());
ins_cost(DEFAULT_COST*2);
ins_encode %{
// TODO: PPC port $archOpcode(ppc64Opcode_compound);
__ cmpw(CCR0, $src1$$Register, $src2$$Register);
__ isel($dst$$Register, CCR0, Assembler::less, /*invert*/false, $src1$$Register, $src2$$Register);
%}
ins_pipe(pipe_class_default);
%}
instruct maxI_reg_reg_Ex(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
match(Set dst (MaxI src1 src2));
ins_cost(DEFAULT_COST*6);
@ -11341,6 +11933,20 @@ instruct maxI_reg_reg_Ex(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
%}
%}
instruct maxI_reg_reg_isel(iRegIdst dst, iRegIsrc src1, iRegIsrc src2, flagsRegCR0 cr0) %{
match(Set dst (MaxI src1 src2));
effect(KILL cr0);
predicate(VM_Version::has_isel());
ins_cost(DEFAULT_COST*2);
ins_encode %{
// TODO: PPC port $archOpcode(ppc64Opcode_compound);
__ cmpw(CCR0, $src1$$Register, $src2$$Register);
__ isel($dst$$Register, CCR0, Assembler::greater, /*invert*/false, $src1$$Register, $src2$$Register);
%}
ins_pipe(pipe_class_default);
%}
//---------- Population Count Instructions ------------------------------------
// Popcnt for Power7.

View File

@ -2609,9 +2609,7 @@ class StubGenerator: public StubCodeGenerator {
* R5_ARG3 - int length (of buffer)
*
* scratch:
* R6_ARG4 - crc table address
* R7_ARG5 - tmp1
* R8_ARG6 - tmp2
* R2, R6-R12
*
* Ouput:
* R3_RET - int crc result
@ -2623,22 +2621,25 @@ class StubGenerator: public StubCodeGenerator {
address start = __ function_entry(); // Remember stub start address (is rtn value).
// arguments to kernel_crc32:
Register crc = R3_ARG1; // Current checksum, preset by caller or result from previous call.
Register data = R4_ARG2; // source byte array
Register dataLen = R5_ARG3; // #bytes to process
Register table = R6_ARG4; // crc table address
const Register crc = R3_ARG1; // Current checksum, preset by caller or result from previous call.
const Register data = R4_ARG2; // source byte array
const Register dataLen = R5_ARG3; // #bytes to process
const Register table = R6_ARG4; // crc table address
Register t0 = R9; // work reg for kernel* emitters
Register t1 = R10; // work reg for kernel* emitters
Register t2 = R11; // work reg for kernel* emitters
Register t3 = R12; // work reg for kernel* emitters
const Register t0 = R2;
const Register t1 = R7;
const Register t2 = R8;
const Register t3 = R9;
const Register tc0 = R10;
const Register tc1 = R11;
const Register tc2 = R12;
BLOCK_COMMENT("Stub body {");
assert_different_registers(crc, data, dataLen, table);
StubRoutines::ppc64::generate_load_crc_table_addr(_masm, table);
__ kernel_crc32_1byte(crc, data, dataLen, table, t0, t1, t2, t3);
__ kernel_crc32_1word(crc, data, dataLen, table, t0, t1, t2, t3, tc0, tc1, tc2, table);
BLOCK_COMMENT("return");
__ mr_if_needed(R3_RET, crc); // Updated crc is function result. No copying required (R3_ARG1 == R3_RET).

View File

@ -1,6 +1,6 @@
/*
* Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2012, 2015 SAP SE. All rights reserved.
* Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2012, 2016 SAP SE. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -53,7 +53,7 @@ void VM_Version::initialize() {
// If PowerArchitecturePPC64 hasn't been specified explicitly determine from features.
if (FLAG_IS_DEFAULT(PowerArchitecturePPC64)) {
if (VM_Version::has_tcheck() && VM_Version::has_lqarx()) {
if (VM_Version::has_lqarx()) {
FLAG_SET_ERGO(uintx, PowerArchitecturePPC64, 8);
} else if (VM_Version::has_popcntw()) {
FLAG_SET_ERGO(uintx, PowerArchitecturePPC64, 7);
@ -68,8 +68,7 @@ void VM_Version::initialize() {
bool PowerArchitecturePPC64_ok = false;
switch (PowerArchitecturePPC64) {
case 8: if (!VM_Version::has_tcheck() ) break;
if (!VM_Version::has_lqarx() ) break;
case 8: if (!VM_Version::has_lqarx() ) break;
case 7: if (!VM_Version::has_popcntw()) break;
case 6: if (!VM_Version::has_cmpb() ) break;
case 5: if (!VM_Version::has_popcntb()) break;
@ -80,7 +79,7 @@ void VM_Version::initialize() {
UINTX_FORMAT " on this machine", PowerArchitecturePPC64);
// Power 8: Configure Data Stream Control Register.
if (PowerArchitecturePPC64 >= 8) {
if (has_mfdscr()) {
config_dscr();
}
@ -112,7 +111,7 @@ void VM_Version::initialize() {
// Create and print feature-string.
char buf[(num_features+1) * 16]; // Max 16 chars per feature.
jio_snprintf(buf, sizeof(buf),
"ppc64%s%s%s%s%s%s%s%s%s%s%s%s",
"ppc64%s%s%s%s%s%s%s%s%s%s%s%s%s",
(has_fsqrt() ? " fsqrt" : ""),
(has_isel() ? " isel" : ""),
(has_lxarxeh() ? " lxarxeh" : ""),
@ -125,7 +124,8 @@ void VM_Version::initialize() {
(has_lqarx() ? " lqarx" : ""),
(has_vcipher() ? " vcipher" : ""),
(has_vpmsumb() ? " vpmsumb" : ""),
(has_tcheck() ? " tcheck" : "")
(has_tcheck() ? " tcheck" : ""),
(has_mfdscr() ? " mfdscr" : "")
// Make sure number of %s matches num_features!
);
_features_string = os::strdup(buf);
@ -610,6 +610,7 @@ void VM_Version::determine_features() {
a->vcipher(VR0, VR1, VR2); // code[10] -> vcipher
a->vpmsumb(VR0, VR1, VR2); // code[11] -> vpmsumb
a->tcheck(0); // code[12] -> tcheck
a->mfdscr(R0); // code[13] -> mfdscr
a->blr();
// Emit function to set one cache line to zero. Emit function descriptor and get pointer to it.
@ -657,6 +658,7 @@ void VM_Version::determine_features() {
if (code[feature_cntr++]) features |= vcipher_m;
if (code[feature_cntr++]) features |= vpmsumb_m;
if (code[feature_cntr++]) features |= tcheck_m;
if (code[feature_cntr++]) features |= mfdscr_m;
// Print the detection code.
if (PrintAssembly) {
@ -670,8 +672,6 @@ void VM_Version::determine_features() {
// Power 8: Configure Data Stream Control Register.
void VM_Version::config_dscr() {
assert(has_tcheck(), "Only execute on Power 8 or later!");
// 7 InstWords for each call (function descriptor + blr instruction).
const int code_size = (2+2*7)*BytesPerInstWord;

View File

@ -1,6 +1,6 @@
/*
* Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2012, 2015 SAP SE. All rights reserved.
* Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2012, 2016 SAP SE. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -45,6 +45,7 @@ protected:
vcipher,
vpmsumb,
tcheck,
mfdscr,
num_features // last entry to count features
};
enum Feature_Flag_Set {
@ -62,6 +63,7 @@ protected:
vcipher_m = (1 << vcipher),
vpmsumb_m = (1 << vpmsumb),
tcheck_m = (1 << tcheck ),
mfdscr_m = (1 << mfdscr ),
all_features_m = (unsigned long)-1
};
@ -94,6 +96,7 @@ public:
static bool has_vcipher() { return (_features & vcipher_m) != 0; }
static bool has_vpmsumb() { return (_features & vpmsumb_m) != 0; }
static bool has_tcheck() { return (_features & tcheck_m) != 0; }
static bool has_mfdscr() { return (_features & mfdscr_m) != 0; }
// Assembler testing
static void allow_all();

View File

@ -1349,9 +1349,12 @@ static void move32_64(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
}
} else if (dst.first()->is_stack()) {
// reg to stack
__ st_ptr(src.first()->as_Register(), SP, reg2offset(dst.first()) + STACK_BIAS);
// Some compilers (gcc) expect a clean 32 bit value on function entry
__ signx(src.first()->as_Register(), L5);
__ st_ptr(L5, SP, reg2offset(dst.first()) + STACK_BIAS);
} else {
__ mov(src.first()->as_Register(), dst.first()->as_Register());
// Some compilers (gcc) expect a clean 32 bit value on function entry
__ signx(src.first()->as_Register(), dst.first()->as_Register());
}
}

View File

@ -948,28 +948,28 @@ void emit_form3_mem_reg(CodeBuffer &cbuf, PhaseRegAlloc* ra, const MachNode* n,
}
#endif
uint instr;
instr = (Assembler::ldst_op << 30)
| (dst_enc << 25)
| (primary << 19)
| (src1_enc << 14);
uint instr = (Assembler::ldst_op << 30)
| (dst_enc << 25)
| (primary << 19)
| (src1_enc << 14);
uint index = src2_enc;
int disp = disp32;
if (src1_enc == R_SP_enc || src1_enc == R_FP_enc) {
disp += STACK_BIAS;
// Quick fix for JDK-8029668: check that stack offset fits, bailout if not
// Check that stack offset fits, load into O7 if not
if (!Assembler::is_simm13(disp)) {
ra->C->record_method_not_compilable("unable to handle large constant offsets");
return;
MacroAssembler _masm(&cbuf);
__ set(disp, O7);
if (index != R_G0_enc) {
__ add(O7, reg_to_register_object(index), O7);
}
index = R_O7_enc;
disp = 0;
}
}
// We should have a compiler bailout here rather than a guarantee.
// Better yet would be some mechanism to handle variable-size matches correctly.
guarantee(Assembler::is_simm13(disp), "Do not match large constant offsets" );
if( disp == 0 ) {
// use reg-reg form
// bit 13 is already zero
@ -983,7 +983,7 @@ void emit_form3_mem_reg(CodeBuffer &cbuf, PhaseRegAlloc* ra, const MachNode* n,
cbuf.insts()->emit_int32(instr);
#ifdef ASSERT
{
if (VerifyOops) {
MacroAssembler _masm(&cbuf);
if (is_verified_oop_base) {
__ verify_oop(reg_to_register_object(src1_enc));
@ -1342,7 +1342,7 @@ int MachEpilogNode::safepoint_offset() const {
// Figure out which register class each belongs in: rc_int, rc_float, rc_stack
enum RC { rc_bad, rc_int, rc_float, rc_stack };
static enum RC rc_class( OptoReg::Name reg ) {
if( !OptoReg::is_valid(reg) ) return rc_bad;
if (!OptoReg::is_valid(reg)) return rc_bad;
if (OptoReg::is_stack(reg)) return rc_stack;
VMReg r = OptoReg::as_VMReg(reg);
if (r->is_Register()) return rc_int;
@ -1350,66 +1350,79 @@ static enum RC rc_class( OptoReg::Name reg ) {
return rc_float;
}
static int impl_helper(const MachNode* mach, CodeBuffer* cbuf, PhaseRegAlloc* ra, bool do_size, bool is_load, int offset, int reg, int opcode, const char *op_str, int size, outputStream* st ) {
#ifndef PRODUCT
ATTRIBUTE_PRINTF(2, 3)
static void print_helper(outputStream* st, const char* format, ...) {
if (st->position() > 0) {
st->cr();
st->sp();
}
va_list ap;
va_start(ap, format);
st->vprint(format, ap);
va_end(ap);
}
#endif // !PRODUCT
static void impl_helper(const MachNode* mach, CodeBuffer* cbuf, PhaseRegAlloc* ra, bool is_load, int offset, int reg, int opcode, const char *op_str, outputStream* st) {
if (cbuf) {
emit_form3_mem_reg(*cbuf, ra, mach, opcode, -1, R_SP_enc, offset, 0, Matcher::_regEncode[reg]);
}
#ifndef PRODUCT
else if (!do_size) {
if (size != 0) st->print("\n\t");
if (is_load) st->print("%s [R_SP + #%d],R_%s\t! spill",op_str,offset,OptoReg::regname(reg));
else st->print("%s R_%s,[R_SP + #%d]\t! spill",op_str,OptoReg::regname(reg),offset);
else {
if (is_load) {
print_helper(st, "%s [R_SP + #%d],R_%s\t! spill", op_str, offset, OptoReg::regname(reg));
} else {
print_helper(st, "%s R_%s,[R_SP + #%d]\t! spill", op_str, OptoReg::regname(reg), offset);
}
}
#endif
return size+4;
}
static int impl_mov_helper( CodeBuffer *cbuf, bool do_size, int src, int dst, int op1, int op2, const char *op_str, int size, outputStream* st ) {
if( cbuf ) emit3( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst], op1, 0, op2, Matcher::_regEncode[src] );
static void impl_mov_helper(CodeBuffer *cbuf, int src, int dst, int op1, int op2, const char *op_str, outputStream* st) {
if (cbuf) {
emit3(*cbuf, Assembler::arith_op, Matcher::_regEncode[dst], op1, 0, op2, Matcher::_regEncode[src]);
}
#ifndef PRODUCT
else if( !do_size ) {
if( size != 0 ) st->print("\n\t");
st->print("%s R_%s,R_%s\t! spill",op_str,OptoReg::regname(src),OptoReg::regname(dst));
else {
print_helper(st, "%s R_%s,R_%s\t! spill", op_str, OptoReg::regname(src), OptoReg::regname(dst));
}
#endif
return size+4;
}
uint MachSpillCopyNode::implementation( CodeBuffer *cbuf,
PhaseRegAlloc *ra_,
bool do_size,
outputStream* st ) const {
static void mach_spill_copy_implementation_helper(const MachNode* mach,
CodeBuffer *cbuf,
PhaseRegAlloc *ra_,
outputStream* st) {
// Get registers to move
OptoReg::Name src_second = ra_->get_reg_second(in(1));
OptoReg::Name src_first = ra_->get_reg_first(in(1));
OptoReg::Name dst_second = ra_->get_reg_second(this );
OptoReg::Name dst_first = ra_->get_reg_first(this );
OptoReg::Name src_second = ra_->get_reg_second(mach->in(1));
OptoReg::Name src_first = ra_->get_reg_first(mach->in(1));
OptoReg::Name dst_second = ra_->get_reg_second(mach);
OptoReg::Name dst_first = ra_->get_reg_first(mach);
enum RC src_second_rc = rc_class(src_second);
enum RC src_first_rc = rc_class(src_first);
enum RC src_first_rc = rc_class(src_first);
enum RC dst_second_rc = rc_class(dst_second);
enum RC dst_first_rc = rc_class(dst_first);
enum RC dst_first_rc = rc_class(dst_first);
assert( OptoReg::is_valid(src_first) && OptoReg::is_valid(dst_first), "must move at least 1 register" );
assert(OptoReg::is_valid(src_first) && OptoReg::is_valid(dst_first), "must move at least 1 register");
// Generate spill code!
int size = 0;
if( src_first == dst_first && src_second == dst_second )
return size; // Self copy, no move
if (src_first == dst_first && src_second == dst_second) {
return; // Self copy, no move
}
// --------------------------------------
// Check for mem-mem move. Load into unused float registers and fall into
// the float-store case.
if( src_first_rc == rc_stack && dst_first_rc == rc_stack ) {
if (src_first_rc == rc_stack && dst_first_rc == rc_stack) {
int offset = ra_->reg2offset(src_first);
// Further check for aligned-adjacent pair, so we can use a double load
if( (src_first&1)==0 && src_first+1 == src_second ) {
if ((src_first&1) == 0 && src_first+1 == src_second) {
src_second = OptoReg::Name(R_F31_num);
src_second_rc = rc_float;
size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F30_num,Assembler::lddf_op3,"LDDF",size, st);
impl_helper(mach, cbuf, ra_, true, offset, R_F30_num, Assembler::lddf_op3, "LDDF", st);
} else {
size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F30_num,Assembler::ldf_op3 ,"LDF ",size, st);
impl_helper(mach, cbuf, ra_, true, offset, R_F30_num, Assembler::ldf_op3, "LDF ", st);
}
src_first = OptoReg::Name(R_F30_num);
src_first_rc = rc_float;
@ -1417,7 +1430,7 @@ uint MachSpillCopyNode::implementation( CodeBuffer *cbuf,
if( src_second_rc == rc_stack && dst_second_rc == rc_stack ) {
int offset = ra_->reg2offset(src_second);
size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F31_num,Assembler::ldf_op3,"LDF ",size, st);
impl_helper(mach, cbuf, ra_, true, offset, R_F31_num, Assembler::ldf_op3, "LDF ", st);
src_second = OptoReg::Name(R_F31_num);
src_second_rc = rc_float;
}
@ -1427,36 +1440,38 @@ uint MachSpillCopyNode::implementation( CodeBuffer *cbuf,
if (src_first_rc == rc_float && dst_first_rc == rc_int && UseVIS < 3) {
int offset = frame::register_save_words*wordSize;
if (cbuf) {
emit3_simm13( *cbuf, Assembler::arith_op, R_SP_enc, Assembler::sub_op3, R_SP_enc, 16 );
impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
impl_helper(this,cbuf,ra_,do_size,true ,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
emit3_simm13( *cbuf, Assembler::arith_op, R_SP_enc, Assembler::add_op3, R_SP_enc, 16 );
emit3_simm13(*cbuf, Assembler::arith_op, R_SP_enc, Assembler::sub_op3, R_SP_enc, 16);
impl_helper(mach, cbuf, ra_, false, offset, src_first, Assembler::stf_op3, "STF ", st);
impl_helper(mach, cbuf, ra_, true, offset, dst_first, Assembler::lduw_op3, "LDUW", st);
emit3_simm13(*cbuf, Assembler::arith_op, R_SP_enc, Assembler::add_op3, R_SP_enc, 16);
}
#ifndef PRODUCT
else if (!do_size) {
if (size != 0) st->print("\n\t");
st->print( "SUB R_SP,16,R_SP\n");
impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
impl_helper(this,cbuf,ra_,do_size,true ,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
st->print("\tADD R_SP,16,R_SP\n");
else {
print_helper(st, "SUB R_SP,16,R_SP");
impl_helper(mach, cbuf, ra_, false, offset, src_first, Assembler::stf_op3, "STF ", st);
impl_helper(mach, cbuf, ra_, true, offset, dst_first, Assembler::lduw_op3, "LDUW", st);
print_helper(st, "ADD R_SP,16,R_SP");
}
#endif
size += 16;
}
// Check for float->int copy on T4
if (src_first_rc == rc_float && dst_first_rc == rc_int && UseVIS >= 3) {
// Further check for aligned-adjacent pair, so we can use a double move
if ((src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second)
return impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mdtox_opf,"MOVDTOX",size, st);
size = impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mstouw_opf,"MOVSTOUW",size, st);
if ((src_first & 1) == 0 && src_first + 1 == src_second && (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
impl_mov_helper(cbuf, src_first, dst_first, Assembler::mftoi_op3, Assembler::mdtox_opf, "MOVDTOX", st);
return;
}
impl_mov_helper(cbuf, src_first, dst_first, Assembler::mftoi_op3, Assembler::mstouw_opf, "MOVSTOUW", st);
}
// Check for int->float copy on T4
if (src_first_rc == rc_int && dst_first_rc == rc_float && UseVIS >= 3) {
// Further check for aligned-adjacent pair, so we can use a double move
if ((src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second)
return impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mxtod_opf,"MOVXTOD",size, st);
size = impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mwtos_opf,"MOVWTOS",size, st);
if ((src_first & 1) == 0 && src_first + 1 == src_second && (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
impl_mov_helper(cbuf, src_first, dst_first, Assembler::mftoi_op3, Assembler::mxtod_opf, "MOVXTOD", st);
return;
}
impl_mov_helper(cbuf, src_first, dst_first, Assembler::mftoi_op3, Assembler::mwtos_opf, "MOVWTOS", st);
}
// --------------------------------------
@ -1466,10 +1481,10 @@ uint MachSpillCopyNode::implementation( CodeBuffer *cbuf,
// there. Misaligned sources only come from native-long-returns (handled
// special below).
#ifndef _LP64
if( src_first_rc == rc_int && // source is already big-endian
if (src_first_rc == rc_int && // source is already big-endian
src_second_rc != rc_bad && // 64-bit move
((dst_first&1)!=0 || dst_second != dst_first+1) ) { // misaligned dst
assert( (src_first&1)==0 && src_second == src_first+1, "source must be aligned" );
((dst_first & 1) != 0 || dst_second != dst_first + 1)) { // misaligned dst
assert((src_first & 1) == 0 && src_second == src_first + 1, "source must be aligned");
// Do the big-endian flop.
OptoReg::Name tmp = dst_first ; dst_first = dst_second ; dst_second = tmp ;
enum RC tmp_rc = dst_first_rc; dst_first_rc = dst_second_rc; dst_second_rc = tmp_rc;
@ -1478,30 +1493,28 @@ uint MachSpillCopyNode::implementation( CodeBuffer *cbuf,
// --------------------------------------
// Check for integer reg-reg copy
if( src_first_rc == rc_int && dst_first_rc == rc_int ) {
if (src_first_rc == rc_int && dst_first_rc == rc_int) {
#ifndef _LP64
if( src_first == R_O0_num && src_second == R_O1_num ) { // Check for the evil O0/O1 native long-return case
if (src_first == R_O0_num && src_second == R_O1_num) { // Check for the evil O0/O1 native long-return case
// Note: The _first and _second suffixes refer to the addresses of the the 2 halves of the 64-bit value
// as stored in memory. On a big-endian machine like SPARC, this means that the _second
// operand contains the least significant word of the 64-bit value and vice versa.
OptoReg::Name tmp = OptoReg::Name(R_O7_num);
assert( (dst_first&1)==0 && dst_second == dst_first+1, "return a native O0/O1 long to an aligned-adjacent 64-bit reg" );
assert((dst_first & 1) == 0 && dst_second == dst_first + 1, "return a native O0/O1 long to an aligned-adjacent 64-bit reg" );
// Shift O0 left in-place, zero-extend O1, then OR them into the dst
if( cbuf ) {
emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[tmp], Assembler::sllx_op3, Matcher::_regEncode[src_first], 0x1020 );
emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[src_second], Assembler::srl_op3, Matcher::_regEncode[src_second], 0x0000 );
emit3 ( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_first], Assembler:: or_op3, Matcher::_regEncode[tmp], 0, Matcher::_regEncode[src_second] );
if ( cbuf ) {
emit3_simm13(*cbuf, Assembler::arith_op, Matcher::_regEncode[tmp], Assembler::sllx_op3, Matcher::_regEncode[src_first], 0x1020);
emit3_simm13(*cbuf, Assembler::arith_op, Matcher::_regEncode[src_second], Assembler::srl_op3, Matcher::_regEncode[src_second], 0x0000);
emit3 (*cbuf, Assembler::arith_op, Matcher::_regEncode[dst_first], Assembler:: or_op3, Matcher::_regEncode[tmp], 0, Matcher::_regEncode[src_second]);
#ifndef PRODUCT
} else if( !do_size ) {
if( size != 0 ) st->print("\n\t");
st->print("SLLX R_%s,32,R_%s\t! Move O0-first to O7-high\n\t", OptoReg::regname(src_first), OptoReg::regname(tmp));
st->print("SRL R_%s, 0,R_%s\t! Zero-extend O1\n\t", OptoReg::regname(src_second), OptoReg::regname(src_second));
st->print("OR R_%s,R_%s,R_%s\t! spill",OptoReg::regname(tmp), OptoReg::regname(src_second), OptoReg::regname(dst_first));
} else {
print_helper(st, "SLLX R_%s,32,R_%s\t! Move O0-first to O7-high\n\t", OptoReg::regname(src_first), OptoReg::regname(tmp));
print_helper(st, "SRL R_%s, 0,R_%s\t! Zero-extend O1\n\t", OptoReg::regname(src_second), OptoReg::regname(src_second));
print_helper(st, "OR R_%s,R_%s,R_%s\t! spill",OptoReg::regname(tmp), OptoReg::regname(src_second), OptoReg::regname(dst_first));
#endif
}
return size+12;
}
else if( dst_first == R_I0_num && dst_second == R_I1_num ) {
return;
} else if (dst_first == R_I0_num && dst_second == R_I1_num) {
// returning a long value in I0/I1
// a SpillCopy must be able to target a return instruction's reg_class
// Note: The _first and _second suffixes refer to the addresses of the the 2 halves of the 64-bit value
@ -1511,27 +1524,25 @@ uint MachSpillCopyNode::implementation( CodeBuffer *cbuf,
if (src_first == dst_first) {
tdest = OptoReg::Name(R_O7_num);
size += 4;
}
if( cbuf ) {
assert( (src_first&1) == 0 && (src_first+1) == src_second, "return value was in an aligned-adjacent 64-bit reg");
if (cbuf) {
assert((src_first & 1) == 0 && (src_first + 1) == src_second, "return value was in an aligned-adjacent 64-bit reg");
// Shift value in upper 32-bits of src to lower 32-bits of I0; move lower 32-bits to I1
// ShrL_reg_imm6
emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[tdest], Assembler::srlx_op3, Matcher::_regEncode[src_second], 32 | 0x1000 );
emit3_simm13(*cbuf, Assembler::arith_op, Matcher::_regEncode[tdest], Assembler::srlx_op3, Matcher::_regEncode[src_second], 32 | 0x1000);
// ShrR_reg_imm6 src, 0, dst
emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_second], Assembler::srl_op3, Matcher::_regEncode[src_first], 0x0000 );
emit3_simm13(*cbuf, Assembler::arith_op, Matcher::_regEncode[dst_second], Assembler::srl_op3, Matcher::_regEncode[src_first], 0x0000);
if (tdest != dst_first) {
emit3 ( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_first], Assembler::or_op3, 0/*G0*/, 0/*op2*/, Matcher::_regEncode[tdest] );
emit3 (*cbuf, Assembler::arith_op, Matcher::_regEncode[dst_first], Assembler::or_op3, 0/*G0*/, 0/*op2*/, Matcher::_regEncode[tdest]);
}
}
#ifndef PRODUCT
else if( !do_size ) {
if( size != 0 ) st->print("\n\t"); // %%%%% !!!!!
st->print("SRLX R_%s,32,R_%s\t! Extract MSW\n\t",OptoReg::regname(src_second),OptoReg::regname(tdest));
st->print("SRL R_%s, 0,R_%s\t! Extract LSW\n\t",OptoReg::regname(src_first),OptoReg::regname(dst_second));
else {
print_helper(st, "SRLX R_%s,32,R_%s\t! Extract MSW\n\t",OptoReg::regname(src_second),OptoReg::regname(tdest));
print_helper(st, "SRL R_%s, 0,R_%s\t! Extract LSW\n\t",OptoReg::regname(src_first),OptoReg::regname(dst_second));
if (tdest != dst_first) {
st->print("MOV R_%s,R_%s\t! spill\n\t", OptoReg::regname(tdest), OptoReg::regname(dst_first));
print_helper(st, "MOV R_%s,R_%s\t! spill\n\t", OptoReg::regname(tdest), OptoReg::regname(dst_first));
}
}
#endif // PRODUCT
@ -1539,65 +1550,77 @@ uint MachSpillCopyNode::implementation( CodeBuffer *cbuf,
}
#endif // !_LP64
// Else normal reg-reg copy
assert( src_second != dst_first, "smashed second before evacuating it" );
size = impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::or_op3,0,"MOV ",size, st);
assert( (src_first&1) == 0 && (dst_first&1) == 0, "never move second-halves of int registers" );
assert(src_second != dst_first, "smashed second before evacuating it");
impl_mov_helper(cbuf, src_first, dst_first, Assembler::or_op3, 0, "MOV ", st);
assert((src_first & 1) == 0 && (dst_first & 1) == 0, "never move second-halves of int registers");
// This moves an aligned adjacent pair.
// See if we are done.
if( src_first+1 == src_second && dst_first+1 == dst_second )
return size;
if (src_first + 1 == src_second && dst_first + 1 == dst_second) {
return;
}
}
// Check for integer store
if( src_first_rc == rc_int && dst_first_rc == rc_stack ) {
if (src_first_rc == rc_int && dst_first_rc == rc_stack) {
int offset = ra_->reg2offset(dst_first);
// Further check for aligned-adjacent pair, so we can use a double store
if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
return impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stx_op3,"STX ",size, st);
size = impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stw_op3,"STW ",size, st);
if ((src_first & 1) == 0 && src_first + 1 == src_second && (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
impl_helper(mach, cbuf, ra_, false, offset, src_first, Assembler::stx_op3, "STX ", st);
return;
}
impl_helper(mach, cbuf, ra_, false, offset, src_first, Assembler::stw_op3, "STW ", st);
}
// Check for integer load
if( dst_first_rc == rc_int && src_first_rc == rc_stack ) {
if (dst_first_rc == rc_int && src_first_rc == rc_stack) {
int offset = ra_->reg2offset(src_first);
// Further check for aligned-adjacent pair, so we can use a double load
if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
return impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::ldx_op3 ,"LDX ",size, st);
size = impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
if ((src_first & 1) == 0 && src_first + 1 == src_second && (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
impl_helper(mach, cbuf, ra_, true, offset, dst_first, Assembler::ldx_op3, "LDX ", st);
return;
}
impl_helper(mach, cbuf, ra_, true, offset, dst_first, Assembler::lduw_op3, "LDUW", st);
}
// Check for float reg-reg copy
if( src_first_rc == rc_float && dst_first_rc == rc_float ) {
if (src_first_rc == rc_float && dst_first_rc == rc_float) {
// Further check for aligned-adjacent pair, so we can use a double move
if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
return impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::fpop1_op3,Assembler::fmovd_opf,"FMOVD",size, st);
size = impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::fpop1_op3,Assembler::fmovs_opf,"FMOVS",size, st);
if ((src_first & 1) == 0 && src_first + 1 == src_second && (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
impl_mov_helper(cbuf, src_first, dst_first, Assembler::fpop1_op3, Assembler::fmovd_opf, "FMOVD", st);
return;
}
impl_mov_helper(cbuf, src_first, dst_first, Assembler::fpop1_op3, Assembler::fmovs_opf, "FMOVS", st);
}
// Check for float store
if( src_first_rc == rc_float && dst_first_rc == rc_stack ) {
if (src_first_rc == rc_float && dst_first_rc == rc_stack) {
int offset = ra_->reg2offset(dst_first);
// Further check for aligned-adjacent pair, so we can use a double store
if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
return impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stdf_op3,"STDF",size, st);
size = impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
if ((src_first & 1) == 0 && src_first + 1 == src_second && (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
impl_helper(mach, cbuf, ra_, false, offset, src_first, Assembler::stdf_op3, "STDF", st);
return;
}
impl_helper(mach, cbuf, ra_, false, offset, src_first, Assembler::stf_op3, "STF ", st);
}
// Check for float load
if( dst_first_rc == rc_float && src_first_rc == rc_stack ) {
if (dst_first_rc == rc_float && src_first_rc == rc_stack) {
int offset = ra_->reg2offset(src_first);
// Further check for aligned-adjacent pair, so we can use a double load
if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
return impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::lddf_op3,"LDDF",size, st);
size = impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::ldf_op3 ,"LDF ",size, st);
if ((src_first & 1) == 0 && src_first + 1 == src_second && (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
impl_helper(mach, cbuf, ra_, true, offset, dst_first, Assembler::lddf_op3, "LDDF", st);
return;
}
impl_helper(mach, cbuf, ra_, true, offset, dst_first, Assembler::ldf_op3, "LDF ", st);
}
// --------------------------------------------------------------------
// Check for hi bits still needing moving. Only happens for misaligned
// arguments to native calls.
if( src_second == dst_second )
return size; // Self copy; no move
assert( src_second_rc != rc_bad && dst_second_rc != rc_bad, "src_second & dst_second cannot be Bad" );
if (src_second == dst_second) {
return; // Self copy; no move
}
assert(src_second_rc != rc_bad && dst_second_rc != rc_bad, "src_second & dst_second cannot be Bad");
#ifndef _LP64
// In the LP64 build, all registers can be moved as aligned/adjacent
@ -1609,52 +1632,57 @@ uint MachSpillCopyNode::implementation( CodeBuffer *cbuf,
// 32-bits of a 64-bit register, but are needed in low bits of another
// register (else it's a hi-bits-to-hi-bits copy which should have
// happened already as part of a 64-bit move)
if( src_second_rc == rc_int && dst_second_rc == rc_int ) {
assert( (src_second&1)==1, "its the evil O0/O1 native return case" );
assert( (dst_second&1)==0, "should have moved with 1 64-bit move" );
if (src_second_rc == rc_int && dst_second_rc == rc_int) {
assert((src_second & 1) == 1, "its the evil O0/O1 native return case");
assert((dst_second & 1) == 0, "should have moved with 1 64-bit move");
// Shift src_second down to dst_second's low bits.
if( cbuf ) {
emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_second], Assembler::srlx_op3, Matcher::_regEncode[src_second-1], 0x1020 );
if (cbuf) {
emit3_simm13(*cbuf, Assembler::arith_op, Matcher::_regEncode[dst_second], Assembler::srlx_op3, Matcher::_regEncode[src_second-1], 0x1020);
#ifndef PRODUCT
} else if( !do_size ) {
if( size != 0 ) st->print("\n\t");
st->print("SRLX R_%s,32,R_%s\t! spill: Move high bits down low",OptoReg::regname(src_second-1),OptoReg::regname(dst_second));
} else {
print_helper(st, "SRLX R_%s,32,R_%s\t! spill: Move high bits down low", OptoReg::regname(src_second - 1), OptoReg::regname(dst_second));
#endif
}
return size+4;
return;
}
// Check for high word integer store. Must down-shift the hi bits
// into a temp register, then fall into the case of storing int bits.
if( src_second_rc == rc_int && dst_second_rc == rc_stack && (src_second&1)==1 ) {
if (src_second_rc == rc_int && dst_second_rc == rc_stack && (src_second & 1) == 1) {
// Shift src_second down to dst_second's low bits.
if( cbuf ) {
emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[R_O7_num], Assembler::srlx_op3, Matcher::_regEncode[src_second-1], 0x1020 );
if (cbuf) {
emit3_simm13(*cbuf, Assembler::arith_op, Matcher::_regEncode[R_O7_num], Assembler::srlx_op3, Matcher::_regEncode[src_second-1], 0x1020);
#ifndef PRODUCT
} else if( !do_size ) {
if( size != 0 ) st->print("\n\t");
st->print("SRLX R_%s,32,R_%s\t! spill: Move high bits down low",OptoReg::regname(src_second-1),OptoReg::regname(R_O7_num));
} else {
print_helper(st, "SRLX R_%s,32,R_%s\t! spill: Move high bits down low", OptoReg::regname(src_second-1), OptoReg::regname(R_O7_num));
#endif
}
size+=4;
src_second = OptoReg::Name(R_O7_num); // Not R_O7H_num!
}
// Check for high word integer load
if( dst_second_rc == rc_int && src_second_rc == rc_stack )
return impl_helper(this,cbuf,ra_,do_size,true ,ra_->reg2offset(src_second),dst_second,Assembler::lduw_op3,"LDUW",size, st);
if (dst_second_rc == rc_int && src_second_rc == rc_stack)
return impl_helper(this, cbuf, ra_, true, ra_->reg2offset(src_second), dst_second, Assembler::lduw_op3, "LDUW", size, st);
// Check for high word integer store
if( src_second_rc == rc_int && dst_second_rc == rc_stack )
return impl_helper(this,cbuf,ra_,do_size,false,ra_->reg2offset(dst_second),src_second,Assembler::stw_op3 ,"STW ",size, st);
if (src_second_rc == rc_int && dst_second_rc == rc_stack)
return impl_helper(this, cbuf, ra_, false, ra_->reg2offset(dst_second), src_second, Assembler::stw_op3, "STW ", size, st);
// Check for high word float store
if( src_second_rc == rc_float && dst_second_rc == rc_stack )
return impl_helper(this,cbuf,ra_,do_size,false,ra_->reg2offset(dst_second),src_second,Assembler::stf_op3 ,"STF ",size, st);
if (src_second_rc == rc_float && dst_second_rc == rc_stack)
return impl_helper(this, cbuf, ra_, false, ra_->reg2offset(dst_second), src_second, Assembler::stf_op3, "STF ", size, st);
#endif // !_LP64
Unimplemented();
}
uint MachSpillCopyNode::implementation(CodeBuffer *cbuf,
PhaseRegAlloc *ra_,
bool do_size,
outputStream* st) const {
assert(!do_size, "not supported");
mach_spill_copy_implementation_helper(this, cbuf, ra_, st);
return 0;
}
@ -1669,19 +1697,19 @@ void MachSpillCopyNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
}
uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const {
return implementation( NULL, ra_, true, NULL );
return MachNode::size(ra_);
}
//=============================================================================
#ifndef PRODUCT
void MachNopNode::format( PhaseRegAlloc *, outputStream *st ) const {
void MachNopNode::format(PhaseRegAlloc *, outputStream *st) const {
st->print("NOP \t# %d bytes pad for loops and calls", 4 * _count);
}
#endif
void MachNopNode::emit(CodeBuffer &cbuf, PhaseRegAlloc * ) const {
void MachNopNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *) const {
MacroAssembler _masm(&cbuf);
for(int i = 0; i < _count; i += 1) {
for (int i = 0; i < _count; i += 1) {
__ nop();
}
}
@ -5197,7 +5225,6 @@ instruct stkI_to_regF(regF dst, stackSlotI src) %{
// No match rule to avoid chain rule match.
effect(DEF dst, USE src);
ins_cost(MEMORY_REF_COST);
size(4);
format %{ "LDF $src,$dst\t! stkI to regF" %}
opcode(Assembler::ldf_op3);
ins_encode(simple_form3_mem_reg(src, dst));
@ -5208,7 +5235,6 @@ instruct stkL_to_regD(regD dst, stackSlotL src) %{
// No match rule to avoid chain rule match.
effect(DEF dst, USE src);
ins_cost(MEMORY_REF_COST);
size(4);
format %{ "LDDF $src,$dst\t! stkL to regD" %}
opcode(Assembler::lddf_op3);
ins_encode(simple_form3_mem_reg(src, dst));
@ -5219,7 +5245,6 @@ instruct regF_to_stkI(stackSlotI dst, regF src) %{
// No match rule to avoid chain rule match.
effect(DEF dst, USE src);
ins_cost(MEMORY_REF_COST);
size(4);
format %{ "STF $src,$dst\t! regF to stkI" %}
opcode(Assembler::stf_op3);
ins_encode(simple_form3_mem_reg(dst, src));
@ -5230,7 +5255,6 @@ instruct regD_to_stkL(stackSlotL dst, regD src) %{
// No match rule to avoid chain rule match.
effect(DEF dst, USE src);
ins_cost(MEMORY_REF_COST);
size(4);
format %{ "STDF $src,$dst\t! regD to stkL" %}
opcode(Assembler::stdf_op3);
ins_encode(simple_form3_mem_reg(dst, src));
@ -5240,7 +5264,6 @@ instruct regD_to_stkL(stackSlotL dst, regD src) %{
instruct regI_to_stkLHi(stackSlotL dst, iRegI src) %{
effect(DEF dst, USE src);
ins_cost(MEMORY_REF_COST*2);
size(8);
format %{ "STW $src,$dst.hi\t! long\n\t"
"STW R_G0,$dst.lo" %}
opcode(Assembler::stw_op3);
@ -5252,7 +5275,6 @@ instruct regL_to_stkD(stackSlotD dst, iRegL src) %{
// No match rule to avoid chain rule match.
effect(DEF dst, USE src);
ins_cost(MEMORY_REF_COST);
size(4);
format %{ "STX $src,$dst\t! regL to stkD" %}
opcode(Assembler::stx_op3);
ins_encode(simple_form3_mem_reg( dst, src ) );
@ -5266,7 +5288,6 @@ instruct stkI_to_regI( iRegI dst, stackSlotI src ) %{
match(Set dst src);
ins_cost(MEMORY_REF_COST);
size(4);
format %{ "LDUW $src,$dst\t!stk" %}
opcode(Assembler::lduw_op3);
ins_encode(simple_form3_mem_reg( src, dst ) );
@ -5278,7 +5299,6 @@ instruct regI_to_stkI( stackSlotI dst, iRegI src ) %{
match(Set dst src);
ins_cost(MEMORY_REF_COST);
size(4);
format %{ "STW $src,$dst\t!stk" %}
opcode(Assembler::stw_op3);
ins_encode(simple_form3_mem_reg( dst, src ) );
@ -5290,7 +5310,6 @@ instruct stkL_to_regL( iRegL dst, stackSlotL src ) %{
match(Set dst src);
ins_cost(MEMORY_REF_COST);
size(4);
format %{ "LDX $src,$dst\t! long" %}
opcode(Assembler::ldx_op3);
ins_encode(simple_form3_mem_reg( src, dst ) );
@ -5302,7 +5321,6 @@ instruct regL_to_stkL(stackSlotL dst, iRegL src) %{
match(Set dst src);
ins_cost(MEMORY_REF_COST);
size(4);
format %{ "STX $src,$dst\t! long" %}
opcode(Assembler::stx_op3);
ins_encode(simple_form3_mem_reg( dst, src ) );
@ -5314,7 +5332,6 @@ instruct regL_to_stkL(stackSlotL dst, iRegL src) %{
instruct stkP_to_regP( iRegP dst, stackSlotP src ) %{
match(Set dst src);
ins_cost(MEMORY_REF_COST);
size(4);
format %{ "LDX $src,$dst\t!ptr" %}
opcode(Assembler::ldx_op3);
ins_encode(simple_form3_mem_reg( src, dst ) );
@ -5325,7 +5342,6 @@ instruct stkP_to_regP( iRegP dst, stackSlotP src ) %{
instruct regP_to_stkP(stackSlotP dst, iRegP src) %{
match(Set dst src);
ins_cost(MEMORY_REF_COST);
size(4);
format %{ "STX $src,$dst\t!ptr" %}
opcode(Assembler::stx_op3);
ins_encode(simple_form3_mem_reg( dst, src ) );
@ -5771,7 +5787,6 @@ instruct loadL_unaligned(iRegL dst, memory mem, o7RegI tmp) %{
match(Set dst (LoadL_unaligned mem));
effect(KILL tmp);
ins_cost(MEMORY_REF_COST*2+DEFAULT_COST);
size(16);
format %{ "LDUW $mem+4,R_O7\t! misaligned long\n"
"\tLDUW $mem ,$dst\n"
"\tSLLX #32, $dst, $dst\n"
@ -5786,7 +5801,6 @@ instruct loadRange(iRegI dst, memory mem) %{
match(Set dst (LoadRange mem));
ins_cost(MEMORY_REF_COST);
size(4);
format %{ "LDUW $mem,$dst\t! range" %}
opcode(Assembler::lduw_op3);
ins_encode(simple_form3_mem_reg( mem, dst ) );
@ -5797,7 +5811,6 @@ instruct loadRange(iRegI dst, memory mem) %{
instruct loadI_freg(regF dst, memory mem) %{
match(Set dst (LoadI mem));
ins_cost(MEMORY_REF_COST);
size(4);
format %{ "LDF $mem,$dst\t! for fitos/fitod" %}
opcode(Assembler::ldf_op3);
@ -5876,7 +5889,6 @@ instruct loadD(regD dst, memory mem) %{
match(Set dst (LoadD mem));
ins_cost(MEMORY_REF_COST);
size(4);
format %{ "LDDF $mem,$dst" %}
opcode(Assembler::lddf_op3);
ins_encode(simple_form3_mem_reg( mem, dst ) );
@ -5887,7 +5899,6 @@ instruct loadD(regD dst, memory mem) %{
instruct loadD_unaligned(regD_low dst, memory mem ) %{
match(Set dst (LoadD_unaligned mem));
ins_cost(MEMORY_REF_COST*2+DEFAULT_COST);
size(8);
format %{ "LDF $mem ,$dst.hi\t! misaligned double\n"
"\tLDF $mem+4,$dst.lo\t!" %}
opcode(Assembler::ldf_op3);
@ -5900,7 +5911,6 @@ instruct loadF(regF dst, memory mem) %{
match(Set dst (LoadF mem));
ins_cost(MEMORY_REF_COST);
size(4);
format %{ "LDF $mem,$dst" %}
opcode(Assembler::ldf_op3);
ins_encode(simple_form3_mem_reg( mem, dst ) );
@ -6119,7 +6129,6 @@ instruct prefetchAlloc( memory mem ) %{
predicate(AllocatePrefetchInstr == 0);
match( PrefetchAllocation mem );
ins_cost(MEMORY_REF_COST);
size(4);
format %{ "PREFETCH $mem,2\t! Prefetch allocation" %}
opcode(Assembler::prefetch_op3);
@ -6175,7 +6184,6 @@ instruct storeB(memory mem, iRegI src) %{
match(Set mem (StoreB mem src));
ins_cost(MEMORY_REF_COST);
size(4);
format %{ "STB $src,$mem\t! byte" %}
opcode(Assembler::stb_op3);
ins_encode(simple_form3_mem_reg( mem, src ) );
@ -6186,7 +6194,6 @@ instruct storeB0(memory mem, immI0 src) %{
match(Set mem (StoreB mem src));
ins_cost(MEMORY_REF_COST);
size(4);
format %{ "STB $src,$mem\t! byte" %}
opcode(Assembler::stb_op3);
ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
@ -6197,7 +6204,6 @@ instruct storeCM0(memory mem, immI0 src) %{
match(Set mem (StoreCM mem src));
ins_cost(MEMORY_REF_COST);
size(4);
format %{ "STB $src,$mem\t! CMS card-mark byte 0" %}
opcode(Assembler::stb_op3);
ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
@ -6209,7 +6215,6 @@ instruct storeC(memory mem, iRegI src) %{
match(Set mem (StoreC mem src));
ins_cost(MEMORY_REF_COST);
size(4);
format %{ "STH $src,$mem\t! short" %}
opcode(Assembler::sth_op3);
ins_encode(simple_form3_mem_reg( mem, src ) );
@ -6220,7 +6225,6 @@ instruct storeC0(memory mem, immI0 src) %{
match(Set mem (StoreC mem src));
ins_cost(MEMORY_REF_COST);
size(4);
format %{ "STH $src,$mem\t! short" %}
opcode(Assembler::sth_op3);
ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
@ -6232,7 +6236,6 @@ instruct storeI(memory mem, iRegI src) %{
match(Set mem (StoreI mem src));
ins_cost(MEMORY_REF_COST);
size(4);
format %{ "STW $src,$mem" %}
opcode(Assembler::stw_op3);
ins_encode(simple_form3_mem_reg( mem, src ) );
@ -6243,7 +6246,6 @@ instruct storeI(memory mem, iRegI src) %{
instruct storeL(memory mem, iRegL src) %{
match(Set mem (StoreL mem src));
ins_cost(MEMORY_REF_COST);
size(4);
format %{ "STX $src,$mem\t! long" %}
opcode(Assembler::stx_op3);
ins_encode(simple_form3_mem_reg( mem, src ) );
@ -6254,7 +6256,6 @@ instruct storeI0(memory mem, immI0 src) %{
match(Set mem (StoreI mem src));
ins_cost(MEMORY_REF_COST);
size(4);
format %{ "STW $src,$mem" %}
opcode(Assembler::stw_op3);
ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
@ -6265,7 +6266,6 @@ instruct storeL0(memory mem, immL0 src) %{
match(Set mem (StoreL mem src));
ins_cost(MEMORY_REF_COST);
size(4);
format %{ "STX $src,$mem" %}
opcode(Assembler::stx_op3);
ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
@ -6277,7 +6277,6 @@ instruct storeI_Freg(memory mem, regF src) %{
match(Set mem (StoreI mem src));
ins_cost(MEMORY_REF_COST);
size(4);
format %{ "STF $src,$mem\t! after fstoi/fdtoi" %}
opcode(Assembler::stf_op3);
ins_encode(simple_form3_mem_reg( mem, src ) );
@ -6288,7 +6287,6 @@ instruct storeI_Freg(memory mem, regF src) %{
instruct storeP(memory dst, sp_ptr_RegP src) %{
match(Set dst (StoreP dst src));
ins_cost(MEMORY_REF_COST);
size(4);
#ifndef _LP64
format %{ "STW $src,$dst\t! ptr" %}
@ -6304,7 +6302,6 @@ instruct storeP(memory dst, sp_ptr_RegP src) %{
instruct storeP0(memory dst, immP0 src) %{
match(Set dst (StoreP dst src));
ins_cost(MEMORY_REF_COST);
size(4);
#ifndef _LP64
format %{ "STW $src,$dst\t! ptr" %}
@ -6379,7 +6376,6 @@ instruct storeD( memory mem, regD src) %{
match(Set mem (StoreD mem src));
ins_cost(MEMORY_REF_COST);
size(4);
format %{ "STDF $src,$mem" %}
opcode(Assembler::stdf_op3);
ins_encode(simple_form3_mem_reg( mem, src ) );
@ -6390,7 +6386,6 @@ instruct storeD0( memory mem, immD0 src) %{
match(Set mem (StoreD mem src));
ins_cost(MEMORY_REF_COST);
size(4);
format %{ "STX $src,$mem" %}
opcode(Assembler::stx_op3);
ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
@ -6402,7 +6397,6 @@ instruct storeF( memory mem, regF src) %{
match(Set mem (StoreF mem src));
ins_cost(MEMORY_REF_COST);
size(4);
format %{ "STF $src,$mem" %}
opcode(Assembler::stf_op3);
ins_encode(simple_form3_mem_reg( mem, src ) );
@ -6413,7 +6407,6 @@ instruct storeF0( memory mem, immF0 src) %{
match(Set mem (StoreF mem src));
ins_cost(MEMORY_REF_COST);
size(4);
format %{ "STW $src,$mem\t! storeF0" %}
opcode(Assembler::stw_op3);
ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
@ -7068,7 +7061,6 @@ instruct loadPLocked(iRegP dst, memory mem) %{
ins_cost(MEMORY_REF_COST);
#ifndef _LP64
size(4);
format %{ "LDUW $mem,$dst\t! ptr" %}
opcode(Assembler::lduw_op3, 0, REGP_OP);
#else
@ -8138,7 +8130,6 @@ instruct MoveF2I_stack_reg(iRegI dst, stackSlotF src) %{
effect(DEF dst, USE src);
ins_cost(MEMORY_REF_COST);
size(4);
format %{ "LDUW $src,$dst\t! MoveF2I" %}
opcode(Assembler::lduw_op3);
ins_encode(simple_form3_mem_reg( src, dst ) );
@ -8150,7 +8141,6 @@ instruct MoveI2F_stack_reg(regF dst, stackSlotI src) %{
effect(DEF dst, USE src);
ins_cost(MEMORY_REF_COST);
size(4);
format %{ "LDF $src,$dst\t! MoveI2F" %}
opcode(Assembler::ldf_op3);
ins_encode(simple_form3_mem_reg(src, dst));
@ -8162,7 +8152,6 @@ instruct MoveD2L_stack_reg(iRegL dst, stackSlotD src) %{
effect(DEF dst, USE src);
ins_cost(MEMORY_REF_COST);
size(4);
format %{ "LDX $src,$dst\t! MoveD2L" %}
opcode(Assembler::ldx_op3);
ins_encode(simple_form3_mem_reg( src, dst ) );
@ -8174,7 +8163,6 @@ instruct MoveL2D_stack_reg(regD dst, stackSlotL src) %{
effect(DEF dst, USE src);
ins_cost(MEMORY_REF_COST);
size(4);
format %{ "LDDF $src,$dst\t! MoveL2D" %}
opcode(Assembler::lddf_op3);
ins_encode(simple_form3_mem_reg(src, dst));
@ -8186,7 +8174,6 @@ instruct MoveF2I_reg_stack(stackSlotI dst, regF src) %{
effect(DEF dst, USE src);
ins_cost(MEMORY_REF_COST);
size(4);
format %{ "STF $src,$dst\t! MoveF2I" %}
opcode(Assembler::stf_op3);
ins_encode(simple_form3_mem_reg(dst, src));
@ -8198,7 +8185,6 @@ instruct MoveI2F_reg_stack(stackSlotF dst, iRegI src) %{
effect(DEF dst, USE src);
ins_cost(MEMORY_REF_COST);
size(4);
format %{ "STW $src,$dst\t! MoveI2F" %}
opcode(Assembler::stw_op3);
ins_encode(simple_form3_mem_reg( dst, src ) );
@ -8210,7 +8196,6 @@ instruct MoveD2L_reg_stack(stackSlotL dst, regD src) %{
effect(DEF dst, USE src);
ins_cost(MEMORY_REF_COST);
size(4);
format %{ "STDF $src,$dst\t! MoveD2L" %}
opcode(Assembler::stdf_op3);
ins_encode(simple_form3_mem_reg(dst, src));
@ -8222,7 +8207,6 @@ instruct MoveL2D_reg_stack(stackSlotD dst, iRegL src) %{
effect(DEF dst, USE src);
ins_cost(MEMORY_REF_COST);
size(4);
format %{ "STX $src,$dst\t! MoveL2D" %}
opcode(Assembler::stx_op3);
ins_encode(simple_form3_mem_reg( dst, src ) );
@ -8427,7 +8411,6 @@ instruct convI2D_reg(regD_low dst, iRegI src) %{
instruct convI2D_mem(regD_low dst, memory mem) %{
match(Set dst (ConvI2D (LoadI mem)));
ins_cost(DEFAULT_COST + MEMORY_REF_COST);
size(8);
format %{ "LDF $mem,$dst\n\t"
"FITOD $dst,$dst" %}
opcode(Assembler::ldf_op3, Assembler::fitod_opf);
@ -8468,7 +8451,6 @@ instruct convI2F_reg(regF dst, iRegI src) %{
instruct convI2F_mem( regF dst, memory mem ) %{
match(Set dst (ConvI2F (LoadI mem)));
ins_cost(DEFAULT_COST + MEMORY_REF_COST);
size(8);
format %{ "LDF $mem,$dst\n\t"
"FITOS $dst,$dst" %}
opcode(Assembler::ldf_op3, Assembler::fitos_opf);

View File

@ -463,3 +463,37 @@ unsigned int VM_Version::calc_parallel_worker_threads() {
}
return result;
}
int VM_Version::parse_features(const char* implementation) {
int features = unknown_m;
// Convert to UPPER case before compare.
char* impl = os::strdup_check_oom(implementation);
for (int i = 0; impl[i] != 0; i++)
impl[i] = (char)toupper((uint)impl[i]);
if (strstr(impl, "SPARC64") != NULL) {
features |= sparc64_family_m;
} else if (strstr(impl, "SPARC-M") != NULL) {
// M-series SPARC is based on T-series.
features |= (M_family_m | T_family_m);
} else if (strstr(impl, "SPARC-T") != NULL) {
features |= T_family_m;
if (strstr(impl, "SPARC-T1") != NULL) {
features |= T1_model_m;
}
} else {
if (strstr(impl, "SPARC") == NULL) {
#ifndef PRODUCT
// kstat on Solaris 8 virtual machines (branded zones)
// returns "(unsupported)" implementation. Solaris 8 is not
// supported anymore, but include this check to be on the
// safe side.
warning("Can't parse CPU implementation = '%s', assume generic SPARC", impl);
#endif
}
}
os::free((void*)impl);
return features;
}

View File

@ -121,7 +121,7 @@ protected:
static bool is_T1_model(int features) { return is_T_family(features) && ((features & T1_model_m) != 0); }
static int maximum_niagara1_processor_count() { return 32; }
static int parse_features(const char* implementation);
public:
// Initialization
static void initialize();

View File

@ -161,13 +161,7 @@ address TemplateInterpreterGenerator::generate_exception_handler_common(
create_klass_exception),
rarg, rarg2);
} else {
// kind of lame ExternalAddress can't take NULL because
// external_word_Relocation will assert.
if (message != NULL) {
__ lea(rarg2, ExternalAddress((address)message));
} else {
__ movptr(rarg2, NULL_WORD);
}
__ lea(rarg2, ExternalAddress((address)message));
__ call_VM(rax,
CAST_FROM_FN_PTR(address, InterpreterRuntime::create_exception),
rarg, rarg2);

View File

@ -7236,6 +7236,7 @@ instruct storeLConditional( memory mem, eADXRegL oldval, eBCXRegL newval, eFlags
instruct compareAndSwapL( rRegI res, eSIRegP mem_ptr, eADXRegL oldval, eBCXRegL newval, eFlagsReg cr ) %{
predicate(VM_Version::supports_cx8());
match(Set res (CompareAndSwapL mem_ptr (Binary oldval newval)));
match(Set res (WeakCompareAndSwapL mem_ptr (Binary oldval newval)));
effect(KILL cr, KILL oldval);
format %{ "CMPXCHG8 [$mem_ptr],$newval\t# If EDX:EAX==[$mem_ptr] Then store $newval into [$mem_ptr]\n\t"
"MOV $res,0\n\t"
@ -7249,6 +7250,7 @@ instruct compareAndSwapL( rRegI res, eSIRegP mem_ptr, eADXRegL oldval, eBCXRegL
instruct compareAndSwapP( rRegI res, pRegP mem_ptr, eAXRegP oldval, eCXRegP newval, eFlagsReg cr) %{
match(Set res (CompareAndSwapP mem_ptr (Binary oldval newval)));
match(Set res (WeakCompareAndSwapP mem_ptr (Binary oldval newval)));
effect(KILL cr, KILL oldval);
format %{ "CMPXCHG [$mem_ptr],$newval\t# If EAX==[$mem_ptr] Then store $newval into [$mem_ptr]\n\t"
"MOV $res,0\n\t"
@ -7261,6 +7263,7 @@ instruct compareAndSwapP( rRegI res, pRegP mem_ptr, eAXRegP oldval, eCXRegP new
instruct compareAndSwapI( rRegI res, pRegP mem_ptr, eAXRegI oldval, eCXRegI newval, eFlagsReg cr) %{
match(Set res (CompareAndSwapI mem_ptr (Binary oldval newval)));
match(Set res (WeakCompareAndSwapI mem_ptr (Binary oldval newval)));
effect(KILL cr, KILL oldval);
format %{ "CMPXCHG [$mem_ptr],$newval\t# If EAX==[$mem_ptr] Then store $newval into [$mem_ptr]\n\t"
"MOV $res,0\n\t"
@ -7271,6 +7274,31 @@ instruct compareAndSwapI( rRegI res, pRegP mem_ptr, eAXRegI oldval, eCXRegI newv
ins_pipe( pipe_cmpxchg );
%}
instruct compareAndExchangeL( eSIRegP mem_ptr, eADXRegL oldval, eBCXRegL newval, eFlagsReg cr ) %{
predicate(VM_Version::supports_cx8());
match(Set oldval (CompareAndExchangeL mem_ptr (Binary oldval newval)));
effect(KILL cr);
format %{ "CMPXCHG8 [$mem_ptr],$newval\t# If EDX:EAX==[$mem_ptr] Then store $newval into [$mem_ptr]\n\t" %}
ins_encode( enc_cmpxchg8(mem_ptr) );
ins_pipe( pipe_cmpxchg );
%}
instruct compareAndExchangeP( pRegP mem_ptr, eAXRegP oldval, eCXRegP newval, eFlagsReg cr) %{
match(Set oldval (CompareAndExchangeP mem_ptr (Binary oldval newval)));
effect(KILL cr);
format %{ "CMPXCHG [$mem_ptr],$newval\t# If EAX==[$mem_ptr] Then store $newval into [$mem_ptr]\n\t" %}
ins_encode( enc_cmpxchg(mem_ptr) );
ins_pipe( pipe_cmpxchg );
%}
instruct compareAndExchangeI( pRegP mem_ptr, eAXRegI oldval, eCXRegI newval, eFlagsReg cr) %{
match(Set oldval (CompareAndExchangeI mem_ptr (Binary oldval newval)));
effect(KILL cr);
format %{ "CMPXCHG [$mem_ptr],$newval\t# If EAX==[$mem_ptr] Then store $newval into [$mem_ptr]\n\t" %}
ins_encode( enc_cmpxchg(mem_ptr) );
ins_pipe( pipe_cmpxchg );
%}
instruct xaddI_no_res( memory mem, Universe dummy, immI add, eFlagsReg cr) %{
predicate(n->as_LoadStore()->result_not_used());
match(Set dummy (GetAndAddI mem add));

View File

@ -7281,6 +7281,7 @@ instruct compareAndSwapP(rRegI res,
%{
predicate(VM_Version::supports_cx8());
match(Set res (CompareAndSwapP mem_ptr (Binary oldval newval)));
match(Set res (WeakCompareAndSwapP mem_ptr (Binary oldval newval)));
effect(KILL cr, KILL oldval);
format %{ "cmpxchgq $mem_ptr,$newval\t# "
@ -7305,6 +7306,7 @@ instruct compareAndSwapL(rRegI res,
%{
predicate(VM_Version::supports_cx8());
match(Set res (CompareAndSwapL mem_ptr (Binary oldval newval)));
match(Set res (WeakCompareAndSwapL mem_ptr (Binary oldval newval)));
effect(KILL cr, KILL oldval);
format %{ "cmpxchgq $mem_ptr,$newval\t# "
@ -7328,6 +7330,7 @@ instruct compareAndSwapI(rRegI res,
rFlagsReg cr)
%{
match(Set res (CompareAndSwapI mem_ptr (Binary oldval newval)));
match(Set res (WeakCompareAndSwapI mem_ptr (Binary oldval newval)));
effect(KILL cr, KILL oldval);
format %{ "cmpxchgl $mem_ptr,$newval\t# "
@ -7351,6 +7354,7 @@ instruct compareAndSwapN(rRegI res,
rax_RegN oldval, rRegN newval,
rFlagsReg cr) %{
match(Set res (CompareAndSwapN mem_ptr (Binary oldval newval)));
match(Set res (WeakCompareAndSwapN mem_ptr (Binary oldval newval)));
effect(KILL cr, KILL oldval);
format %{ "cmpxchgl $mem_ptr,$newval\t# "
@ -7368,6 +7372,83 @@ instruct compareAndSwapN(rRegI res,
ins_pipe( pipe_cmpxchg );
%}
instruct compareAndExchangeI(
memory mem_ptr,
rax_RegI oldval, rRegI newval,
rFlagsReg cr)
%{
match(Set oldval (CompareAndExchangeI mem_ptr (Binary oldval newval)));
effect(KILL cr);
format %{ "cmpxchgl $mem_ptr,$newval\t# "
"If rax == $mem_ptr then store $newval into $mem_ptr\n\t" %}
opcode(0x0F, 0xB1);
ins_encode(lock_prefix,
REX_reg_mem(newval, mem_ptr),
OpcP, OpcS,
reg_mem(newval, mem_ptr) // lock cmpxchg
);
ins_pipe( pipe_cmpxchg );
%}
instruct compareAndExchangeL(
memory mem_ptr,
rax_RegL oldval, rRegL newval,
rFlagsReg cr)
%{
predicate(VM_Version::supports_cx8());
match(Set oldval (CompareAndExchangeL mem_ptr (Binary oldval newval)));
effect(KILL cr);
format %{ "cmpxchgq $mem_ptr,$newval\t# "
"If rax == $mem_ptr then store $newval into $mem_ptr\n\t" %}
opcode(0x0F, 0xB1);
ins_encode(lock_prefix,
REX_reg_mem_wide(newval, mem_ptr),
OpcP, OpcS,
reg_mem(newval, mem_ptr) // lock cmpxchg
);
ins_pipe( pipe_cmpxchg );
%}
instruct compareAndExchangeN(
memory mem_ptr,
rax_RegN oldval, rRegN newval,
rFlagsReg cr) %{
match(Set oldval (CompareAndExchangeN mem_ptr (Binary oldval newval)));
effect(KILL cr);
format %{ "cmpxchgl $mem_ptr,$newval\t# "
"If rax == $mem_ptr then store $newval into $mem_ptr\n\t" %}
opcode(0x0F, 0xB1);
ins_encode(lock_prefix,
REX_reg_mem(newval, mem_ptr),
OpcP, OpcS,
reg_mem(newval, mem_ptr) // lock cmpxchg
);
ins_pipe( pipe_cmpxchg );
%}
instruct compareAndExchangeP(
memory mem_ptr,
rax_RegP oldval, rRegP newval,
rFlagsReg cr)
%{
predicate(VM_Version::supports_cx8());
match(Set oldval (CompareAndExchangeP mem_ptr (Binary oldval newval)));
effect(KILL cr);
format %{ "cmpxchgq $mem_ptr,$newval\t# "
"If rax == $mem_ptr then store $newval into $mem_ptr\n\t" %}
opcode(0x0F, 0xB1);
ins_encode(lock_prefix,
REX_reg_mem_wide(newval, mem_ptr),
OpcP, OpcS,
reg_mem(newval, mem_ptr) // lock cmpxchg
);
ins_pipe( pipe_cmpxchg );
%}
instruct xaddI_no_res( memory mem, Universe dummy, immI add, rFlagsReg cr) %{
predicate(n->as_LoadStore()->result_not_used());
match(Set dummy (GetAndAddI mem add));

View File

@ -22,6 +22,7 @@
*/
package jdk.vm.ci.amd64;
import static jdk.vm.ci.code.MemoryBarriers.LOAD_LOAD;
import static jdk.vm.ci.code.MemoryBarriers.LOAD_STORE;
import static jdk.vm.ci.code.MemoryBarriers.STORE_STORE;
import static jdk.vm.ci.code.Register.SPECIAL;
@ -220,7 +221,7 @@ public class AMD64 extends Architecture {
private final AMD64Kind largestKind;
public AMD64(EnumSet<CPUFeature> features, EnumSet<Flag> flags) {
super("AMD64", AMD64Kind.QWORD, ByteOrder.LITTLE_ENDIAN, true, allRegisters, LOAD_STORE | STORE_STORE, 1, 8);
super("AMD64", AMD64Kind.QWORD, ByteOrder.LITTLE_ENDIAN, true, allRegisters, LOAD_LOAD | LOAD_STORE | STORE_STORE, 1, 8);
this.features = features;
this.flags = flags;
assert features.contains(CPUFeature.SSE2) : "minimum config for x64";

View File

@ -1141,7 +1141,7 @@ public class HotSpotVMConfig {
@HotSpotVMField(name = "JavaFrameAnchor::_last_Java_sp", type = "intptr_t*", get = HotSpotVMField.Type.OFFSET) @Stable private int javaFrameAnchorLastJavaSpOffset;
@HotSpotVMField(name = "JavaFrameAnchor::_last_Java_pc", type = "address", get = HotSpotVMField.Type.OFFSET) @Stable private int javaFrameAnchorLastJavaPcOffset;
@HotSpotVMField(name = "JavaFrameAnchor::_last_Java_fp", type = "intptr_t*", get = HotSpotVMField.Type.OFFSET, archs = {"amd64"}) @Stable private int javaFrameAnchorLastJavaFpOffset;
@HotSpotVMField(name = "JavaFrameAnchor::_last_Java_fp", type = "intptr_t*", get = HotSpotVMField.Type.OFFSET, archs = {"aarch64, amd64"}) @Stable private int javaFrameAnchorLastJavaFpOffset;
@HotSpotVMField(name = "JavaFrameAnchor::_flags", type = "int", get = HotSpotVMField.Type.OFFSET, archs = {"sparc"}) @Stable private int javaFrameAnchorFlagsOffset;
public int threadLastJavaSpOffset() {
@ -1152,11 +1152,8 @@ public class HotSpotVMConfig {
return javaThreadAnchorOffset + javaFrameAnchorLastJavaPcOffset;
}
/**
* This value is only valid on AMD64.
*/
public int threadLastJavaFpOffset() {
// TODO add an assert for AMD64
assert getHostArchitectureName().equals("aarch64") || getHostArchitectureName().equals("amd64");
return javaThreadAnchorOffset + javaFrameAnchorLastJavaFpOffset;
}

View File

@ -264,6 +264,7 @@ void PICL::close_library() {
// We need to keep these here as long as we have to build on Solaris
// versions before 10.
#ifndef SI_ARCHITECTURE_32
#define SI_ARCHITECTURE_32 516 /* basic 32-bit SI_ARCHITECTURE */
#endif
@ -272,36 +273,87 @@ void PICL::close_library() {
#define SI_ARCHITECTURE_64 517 /* basic 64-bit SI_ARCHITECTURE */
#endif
static void do_sysinfo(int si, const char* string, int* features, int mask) {
char tmp;
size_t bufsize = sysinfo(si, &tmp, 1);
#ifndef SI_CPUBRAND
#define SI_CPUBRAND 523 /* return cpu brand string */
#endif
// All SI defines used below must be supported.
guarantee(bufsize != -1, "must be supported");
class Sysinfo {
char* _string;
public:
Sysinfo(int si) : _string(NULL) {
char tmp;
size_t bufsize = sysinfo(si, &tmp, 1);
char* buf = (char*) os::malloc(bufsize, mtInternal);
if (buf == NULL)
return;
if (sysinfo(si, buf, bufsize) == bufsize) {
// Compare the string.
if (strcmp(buf, string) == 0) {
*features |= mask;
if (bufsize != -1) {
char* buf = (char*) os::malloc(bufsize, mtInternal);
if (buf != NULL) {
if (sysinfo(si, buf, bufsize) == bufsize) {
_string = buf;
} else {
os::free(buf);
}
}
}
}
os::free(buf);
}
~Sysinfo() {
if (_string != NULL) {
os::free(_string);
}
}
const char* value() const {
return _string;
}
bool valid() const {
return _string != NULL;
}
bool match(const char* s) const {
return valid() ? strcmp(_string, s) == 0 : false;
}
bool match_substring(const char* s) const {
return valid() ? strstr(_string, s) != NULL : false;
}
};
class Sysconf {
int _value;
public:
Sysconf(int sc) : _value(-1) {
_value = sysconf(sc);
}
bool valid() const {
return _value != -1;
}
int value() const {
return _value;
}
};
#ifndef _SC_DCACHE_LINESZ
#define _SC_DCACHE_LINESZ 508 /* Data cache line size */
#endif
#ifndef _SC_L2CACHE_LINESZ
#define _SC_L2CACHE_LINESZ 527 /* Size of L2 cache line */
#endif
int VM_Version::platform_features(int features) {
assert(os::Solaris::supports_getisax(), "getisax() must be available");
// Check 32-bit architecture.
do_sysinfo(SI_ARCHITECTURE_32, "sparc", &features, v8_instructions_m);
if (Sysinfo(SI_ARCHITECTURE_32).match("sparc")) {
features |= v8_instructions_m;
}
// Check 64-bit architecture.
do_sysinfo(SI_ARCHITECTURE_64, "sparcv9", &features, generic_v9_m);
if (Sysinfo(SI_ARCHITECTURE_64).match("sparcv9")) {
features |= generic_v9_m;
}
// Extract valid instruction set extensions.
uint_t avs[2];
@ -388,67 +440,63 @@ int VM_Version::platform_features(int features) {
if (av & AV_SPARC_SHA512) features |= sha512_instruction_m;
// Determine the machine type.
do_sysinfo(SI_MACHINE, "sun4v", &features, sun4v_m);
if (Sysinfo(SI_MACHINE).match("sun4v")) {
features |= sun4v_m;
}
{
// Using kstat to determine the machine type.
bool use_solaris_12_api = false;
Sysinfo impl(SI_CPUBRAND);
if (impl.valid()) {
// If SI_CPUBRAND works, that means Solaris 12 API to get the cache line sizes
// is available to us as well
use_solaris_12_api = true;
features |= parse_features(impl.value());
} else {
// Otherwise use kstat to determine the machine type.
kstat_ctl_t* kc = kstat_open();
kstat_t* ksp = kstat_lookup(kc, (char*)"cpu_info", -1, NULL);
const char* implementation = "UNKNOWN";
const char* implementation;
bool has_implementation = false;
if (ksp != NULL) {
if (kstat_read(kc, ksp, NULL) != -1 && ksp->ks_data != NULL) {
kstat_named_t* knm = (kstat_named_t *)ksp->ks_data;
for (int i = 0; i < ksp->ks_ndata; i++) {
if (strcmp((const char*)&(knm[i].name),"implementation") == 0) {
implementation = KSTAT_NAMED_STR_PTR(&knm[i]);
has_implementation = true;
#ifndef PRODUCT
if (PrintMiscellaneous && Verbose) {
tty->print_cr("cpu_info.implementation: %s", implementation);
}
#endif
// Convert to UPPER case before compare.
char* impl = os::strdup_check_oom(implementation);
for (int i = 0; impl[i] != 0; i++)
impl[i] = (char)toupper((uint)impl[i]);
if (strstr(impl, "SPARC64") != NULL) {
features |= sparc64_family_m;
} else if (strstr(impl, "SPARC-M") != NULL) {
// M-series SPARC is based on T-series.
features |= (M_family_m | T_family_m);
} else if (strstr(impl, "SPARC-T") != NULL) {
features |= T_family_m;
if (strstr(impl, "SPARC-T1") != NULL) {
features |= T1_model_m;
}
} else {
if (strstr(impl, "SPARC") == NULL) {
#ifndef PRODUCT
// kstat on Solaris 8 virtual machines (branded zones)
// returns "(unsupported)" implementation. Solaris 8 is not
// supported anymore, but include this check to be on the
// safe side.
warning("kstat cpu_info implementation = '%s', assume generic SPARC", impl);
#endif
implementation = "SPARC";
}
}
os::free((void*)impl);
features |= parse_features(implementation);
break;
}
} // for(
}
}
assert(strcmp(implementation, "UNKNOWN") != 0,
"unknown cpu info (changed kstat interface?)");
assert(has_implementation, "unknown cpu info (changed kstat interface?)");
kstat_close(kc);
}
// Figure out cache line sizes using PICL
PICL picl((features & sparc64_family_m) != 0, (features & sun4v_m) != 0);
_L1_data_cache_line_size = picl.L1_data_cache_line_size();
_L2_data_cache_line_size = picl.L2_data_cache_line_size();
bool is_sun4v = (features & sun4v_m) != 0;
if (use_solaris_12_api && is_sun4v) {
// If Solaris 12 API is supported and it's sun4v use sysconf() to get the cache line sizes
Sysconf l1_dcache_line_size(_SC_DCACHE_LINESZ);
if (l1_dcache_line_size.valid()) {
_L1_data_cache_line_size = l1_dcache_line_size.value();
}
Sysconf l2_dcache_line_size(_SC_L2CACHE_LINESZ);
if (l2_dcache_line_size.valid()) {
_L2_data_cache_line_size = l2_dcache_line_size.value();
}
} else {
// Otherwise figure out the cache line sizes using PICL
bool is_fujitsu = (features & sparc64_family_m) != 0;
PICL picl(is_fujitsu, is_sun4v);
_L1_data_cache_line_size = picl.L1_data_cache_line_size();
_L2_data_cache_line_size = picl.L2_data_cache_line_size();
}
return features;
}

View File

@ -51,11 +51,8 @@ void MacroAssembler::int3() {
// movl reg, [reg + thread_ptr_offset] Load thread
//
void MacroAssembler::get_thread(Register thread) {
// can't use ExternalAddress because it can't take NULL
AddressLiteral null(0, relocInfo::none);
prefix(FS_segment);
movptr(thread, null);
movptr(thread, ExternalAddress(NULL));
assert(os::win32::get_thread_ptr_offset() != 0,
"Thread Pointer Offset has not been initialized");
movl(thread, Address(thread, os::win32::get_thread_ptr_offset()));

View File

@ -3491,6 +3491,8 @@ int MatchNode::needs_ideal_memory_edge(FormDict &globals) const {
"LoadPLocked",
"StorePConditional", "StoreIConditional", "StoreLConditional",
"CompareAndSwapI", "CompareAndSwapL", "CompareAndSwapP", "CompareAndSwapN",
"WeakCompareAndSwapI", "WeakCompareAndSwapL", "WeakCompareAndSwapP", "WeakCompareAndSwapN",
"CompareAndExchangeI", "CompareAndExchangeL", "CompareAndExchangeP", "CompareAndExchangeN",
"StoreCM",
"ClearArray",
"GetAndAddI", "GetAndSetI", "GetAndSetP",

View File

@ -1,5 +1,5 @@
/*
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2005, 2016, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -34,7 +34,9 @@
// compilation for later analysis.
class CFGPrinterOutput;
class IntervalList;
class Interval;
typedef GrowableArray<Interval*> IntervalList;
class CFGPrinter : public AllStatic {
private:

View File

@ -222,27 +222,36 @@ void Canonicalizer::do_StoreField (StoreField* x) {
}
void Canonicalizer::do_ArrayLength (ArrayLength* x) {
NewArray* array = x->array()->as_NewArray();
if (array != NULL && array->length() != NULL) {
Constant* length = array->length()->as_Constant();
if (length != NULL) {
// do not use the Constant itself, but create a new Constant
// with same value Otherwise a Constant is live over multiple
// blocks without being registered in a state array.
NewArray* na;
Constant* ct;
LoadField* lf;
if ((na = x->array()->as_NewArray()) != NULL) {
// New arrays might have the known length.
// Do not use the Constant itself, but create a new Constant
// with same value Otherwise a Constant is live over multiple
// blocks without being registered in a state array.
Constant* length;
if (na->length() != NULL &&
(length = na->length()->as_Constant()) != NULL) {
assert(length->type()->as_IntConstant() != NULL, "array length must be integer");
set_constant(length->type()->as_IntConstant()->value());
}
} else {
LoadField* lf = x->array()->as_LoadField();
if (lf != NULL) {
ciField* field = lf->field();
if (field->is_constant() && field->is_static()) {
// final static field
ciObject* c = field->constant_value().as_object();
if (c->is_array()) {
ciArray* array = (ciArray*) c;
set_constant(array->length());
}
} else if ((ct = x->array()->as_Constant()) != NULL) {
// Constant arrays have constant lengths.
ArrayConstant* cnst = ct->type()->as_ArrayConstant();
if (cnst != NULL) {
set_constant(cnst->value()->length());
}
} else if ((lf = x->array()->as_LoadField()) != NULL) {
ciField* field = lf->field();
if (field->is_constant() && field->is_static()) {
assert(PatchALot || ScavengeRootsInCode < 2, "Constant field loads are folded during parsing");
ciObject* c = field->constant_value().as_object();
if (!c->is_null_object()) {
set_constant(c->as_array()->length());
}
}
}

View File

@ -1,5 +1,5 @@
/*
* Copyright (c) 2005, 2015, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2005, 2016, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -1434,42 +1434,74 @@ int LinearScan::interval_cmp(Interval** a, Interval** b) {
}
#ifndef PRODUCT
bool LinearScan::is_sorted(IntervalArray* intervals) {
int from = -1;
int i, j;
for (i = 0; i < intervals->length(); i ++) {
Interval* it = intervals->at(i);
if (it != NULL) {
if (from > it->from()) {
assert(false, "");
return false;
}
from = it->from();
int interval_cmp(Interval* const& l, Interval* const& r) {
return l->from() - r->from();
}
bool find_interval(Interval* interval, IntervalArray* intervals) {
bool found;
int idx = intervals->find_sorted<Interval*, interval_cmp>(interval, found);
if (!found) {
return false;
}
int from = interval->from();
// The index we've found using binary search is pointing to an interval
// that is defined in the same place as the interval we were looking for.
// So now we have to look around that index and find exact interval.
for (int i = idx; i >= 0; i--) {
if (intervals->at(i) == interval) {
return true;
}
if (intervals->at(i)->from() != from) {
break;
}
}
// check in both directions if sorted list and unsorted list contain same intervals
for (i = 0; i < interval_count(); i++) {
if (interval_at(i) != NULL) {
int num_found = 0;
for (j = 0; j < intervals->length(); j++) {
if (interval_at(i) == intervals->at(j)) {
num_found++;
}
}
assert(num_found == 1, "lists do not contain same intervals");
for (int i = idx + 1; i < intervals->length(); i++) {
if (intervals->at(i) == interval) {
return true;
}
if (intervals->at(i)->from() != from) {
break;
}
}
for (j = 0; j < intervals->length(); j++) {
int num_found = 0;
for (i = 0; i < interval_count(); i++) {
if (interval_at(i) == intervals->at(j)) {
num_found++;
}
return false;
}
bool LinearScan::is_sorted(IntervalArray* intervals) {
int from = -1;
int null_count = 0;
for (int i = 0; i < intervals->length(); i++) {
Interval* it = intervals->at(i);
if (it != NULL) {
assert(from <= it->from(), "Intervals are unordered");
from = it->from();
} else {
null_count++;
}
assert(num_found == 1, "lists do not contain same intervals");
}
assert(null_count == 0, "Sorted intervals should not contain nulls");
null_count = 0;
for (int i = 0; i < interval_count(); i++) {
Interval* interval = interval_at(i);
if (interval != NULL) {
assert(find_interval(interval, intervals), "Lists do not contain same intervals");
} else {
null_count++;
}
}
assert(interval_count() - null_count == intervals->length(),
"Sorted list should contain the same amount of non-NULL intervals as unsorted list");
return true;
}
#endif
@ -1536,7 +1568,7 @@ void LinearScan::sort_intervals_before_allocation() {
sorted_len++;
}
}
IntervalArray* sorted_list = new IntervalArray(sorted_len);
IntervalArray* sorted_list = new IntervalArray(sorted_len, sorted_len, NULL);
// special sorting algorithm: the original interval-list is almost sorted,
// only some intervals are swapped. So this is much faster than a complete QuickSort
@ -1574,8 +1606,8 @@ void LinearScan::sort_intervals_after_allocation() {
_needs_full_resort = false;
}
IntervalArray* old_list = _sorted_intervals;
IntervalList* new_list = _new_intervals_from_allocation;
IntervalArray* old_list = _sorted_intervals;
IntervalList* new_list = _new_intervals_from_allocation;
int old_len = old_list->length();
int new_len = new_list->length();
@ -1589,7 +1621,8 @@ void LinearScan::sort_intervals_after_allocation() {
new_list->sort(interval_cmp);
// merge old and new list (both already sorted) into one combined list
IntervalArray* combined_list = new IntervalArray(old_len + new_len);
int combined_list_len = old_len + new_len;
IntervalArray* combined_list = new IntervalArray(combined_list_len, combined_list_len, NULL);
int old_idx = 0;
int new_idx = 0;
@ -3211,6 +3244,10 @@ void LinearScan::verify_intervals() {
has_error = true;
}
// special intervals that are created in MoveResolver
// -> ignore them because the range information has no meaning there
if (i1->from() == 1 && i1->to() == 2) continue;
if (i1->first() == Range::end()) {
tty->print_cr("Interval %d has no Range", i1->reg_num()); i1->print(); tty->cr();
has_error = true;
@ -3225,18 +3262,13 @@ void LinearScan::verify_intervals() {
for (int j = i + 1; j < len; j++) {
Interval* i2 = interval_at(j);
if (i2 == NULL) continue;
// special intervals that are created in MoveResolver
// -> ignore them because the range information has no meaning there
if (i1->from() == 1 && i1->to() == 2) continue;
if (i2->from() == 1 && i2->to() == 2) continue;
if (i2 == NULL || (i2->from() == 1 && i2->to() == 2)) continue;
int r1 = i1->assigned_reg();
int r1Hi = i1->assigned_regHi();
int r2 = i2->assigned_reg();
int r2Hi = i2->assigned_regHi();
if (i1->intersects(i2) && (r1 == r2 || r1 == r2Hi || (r1Hi != any_reg && (r1Hi == r2 || r1Hi == r2Hi)))) {
if ((r1 == r2 || r1 == r2Hi || (r1Hi != any_reg && (r1Hi == r2 || r1Hi == r2Hi))) && i1->intersects(i2)) {
tty->print_cr("Intervals %d and %d overlap and have the same register assigned", i1->reg_num(), i2->reg_num());
i1->print(); tty->cr();
i2->print(); tty->cr();
@ -3429,7 +3461,8 @@ void LinearScan::verify_registers() {
void RegisterVerifier::verify(BlockBegin* start) {
// setup input registers (method arguments) for first block
IntervalList* input_state = new IntervalList(state_size(), NULL);
int input_state_len = state_size();
IntervalList* input_state = new IntervalList(input_state_len, input_state_len, NULL);
CallingConvention* args = compilation()->frame_map()->incoming_arguments();
for (int n = 0; n < args->length(); n++) {
LIR_Opr opr = args->at(n);
@ -3543,7 +3576,7 @@ void RegisterVerifier::process_successor(BlockBegin* block, IntervalList* input_
IntervalList* RegisterVerifier::copy(IntervalList* input_state) {
IntervalList* copy_state = new IntervalList(input_state->length());
copy_state->push_all(input_state);
copy_state->appendAll(input_state);
return copy_state;
}
@ -5506,7 +5539,7 @@ void LinearScanWalker::split_and_spill_intersecting_intervals(int reg, int regHi
IntervalList* processed = _spill_intervals[reg];
for (int i = 0; i < _spill_intervals[regHi]->length(); i++) {
Interval* it = _spill_intervals[regHi]->at(i);
if (processed->index_of(it) == -1) {
if (processed->find_from_end(it) == -1) {
remove_from_list(it);
split_and_spill_interval(it);
}

View File

@ -1,5 +1,5 @@
/*
* Copyright (c) 2005, 2012, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2005, 2016, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -42,8 +42,8 @@ class LinearScan;
class MoveResolver;
class Range;
define_array(IntervalArray, Interval*)
define_stack(IntervalList, IntervalArray)
typedef GrowableArray<Interval*> IntervalArray;
typedef GrowableArray<Interval*> IntervalList;
define_array(IntervalsArray, IntervalList*)
define_stack(IntervalsList, IntervalsArray)

View File

@ -107,8 +107,9 @@ ciConstant ciArray::element_value_by_offset(intptr_t element_offset) {
intptr_t header = arrayOopDesc::base_offset_in_bytes(elembt);
intptr_t index = (element_offset - header) >> shift;
intptr_t offset = header + ((intptr_t)index << shift);
if (offset != element_offset || index != (jint)index)
if (offset != element_offset || index != (jint)index || index < 0 || index >= length()) {
return ciConstant();
}
return element_value((jint) index);
}

View File

@ -41,58 +41,37 @@ ciConstantPoolCache::ciConstantPoolCache(Arena* arena,
_keys = new (arena) GrowableArray<int>(arena, expected_size, 0, 0);
}
int ciConstantPoolCache::key_compare(const int& key, const int& elt) {
if (key < elt) return -1;
else if (key > elt) return 1;
else return 0;
}
// ------------------------------------------------------------------
// ciConstantPoolCache::get
//
// Get the entry at some index
void* ciConstantPoolCache::get(int index) {
ASSERT_IN_VM;
int pos = find(index);
if (pos >= _keys->length() ||
_keys->at(pos) != index) {
bool found = false;
int pos = _keys->find_sorted<int, ciConstantPoolCache::key_compare>(index, found);
if (!found) {
// This element is not present in the cache.
return NULL;
}
return _elements->at(pos);
}
// ------------------------------------------------------------------
// ciConstantPoolCache::find
//
// Use binary search to find the position of this index in the cache.
// If there is no entry in the cache corresponding to this oop, return
// the position at which the index would be inserted.
int ciConstantPoolCache::find(int key) {
int min = 0;
int max = _keys->length()-1;
while (max >= min) {
int mid = (max + min) / 2;
int value = _keys->at(mid);
if (value < key) {
min = mid + 1;
} else if (value > key) {
max = mid - 1;
} else {
return mid;
}
}
return min;
}
// ------------------------------------------------------------------
// ciConstantPoolCache::insert
//
// Insert a ciObject into the table at some index.
void ciConstantPoolCache::insert(int index, void* elem) {
int i;
int pos = find(index);
for (i = _keys->length()-1; i >= pos; i--) {
_keys->at_put_grow(i+1, _keys->at(i));
_elements->at_put_grow(i+1, _elements->at(i));
}
_keys->at_put_grow(pos, index);
_elements->at_put_grow(pos, elem);
bool found = false;
int pos = _keys->find_sorted<int, ciConstantPoolCache::key_compare>(index, found);
assert(!found, "duplicate");
_keys->insert_before(pos, index);
_elements->insert_before(pos, elem);
}
// ------------------------------------------------------------------

View File

@ -38,7 +38,7 @@ private:
GrowableArray<int>* _keys;
GrowableArray<void*>* _elements;
int find(int index);
static int key_compare(const int& key, const int& elt);
public:
ciConstantPoolCache(Arena* arena, int expected_size);

View File

@ -260,6 +260,13 @@ ciObject* ciObjectFactory::get(oop key) {
return new_object;
}
int ciObjectFactory::metadata_compare(Metadata* const& key, ciMetadata* const& elt) {
Metadata* value = elt->constant_encoding();
if (key < value) return -1;
else if (key > value) return 1;
else return 0;
}
// ------------------------------------------------------------------
// ciObjectFactory::get_metadata
//
@ -280,7 +287,8 @@ ciMetadata* ciObjectFactory::get_metadata(Metadata* key) {
}
#endif // ASSERT
int len = _ci_metadata->length();
int index = find(key, _ci_metadata);
bool found = false;
int index = _ci_metadata->find_sorted<Metadata*, ciObjectFactory::metadata_compare>(key, found);
#ifdef ASSERT
if (CIObjectFactoryVerify) {
for (int i=0; i<_ci_metadata->length(); i++) {
@ -290,7 +298,8 @@ ciMetadata* ciObjectFactory::get_metadata(Metadata* key) {
}
}
#endif
if (!is_found_at(index, key, _ci_metadata)) {
if (!found) {
// The ciMetadata does not yet exist. Create it and insert it
// into the cache.
ciMetadata* new_object = create_new_metadata(key);
@ -300,10 +309,10 @@ ciMetadata* ciObjectFactory::get_metadata(Metadata* key) {
if (len != _ci_metadata->length()) {
// creating the new object has recursively entered new objects
// into the table. We need to recompute our index.
index = find(key, _ci_metadata);
index = _ci_metadata->find_sorted<Metadata*, ciObjectFactory::metadata_compare>(key, found);
}
assert(!is_found_at(index, key, _ci_metadata), "no double insert");
insert(index, new_object, _ci_metadata);
assert(!found, "no double insert");
_ci_metadata->insert_before(index, new_object);
return new_object;
}
return _ci_metadata->at(index)->as_metadata();
@ -655,60 +664,6 @@ void ciObjectFactory::init_ident_of(ciBaseObject* obj) {
obj->set_ident(_next_ident++);
}
// ------------------------------------------------------------------
// ciObjectFactory::find
//
// Use binary search to find the position of this oop in the cache.
// If there is no entry in the cache corresponding to this oop, return
// the position at which the oop should be inserted.
int ciObjectFactory::find(Metadata* key, GrowableArray<ciMetadata*>* objects) {
int min = 0;
int max = objects->length()-1;
// print_contents();
while (max >= min) {
int mid = (max + min) / 2;
Metadata* value = objects->at(mid)->constant_encoding();
if (value < key) {
min = mid + 1;
} else if (value > key) {
max = mid - 1;
} else {
return mid;
}
}
return min;
}
// ------------------------------------------------------------------
// ciObjectFactory::is_found_at
//
// Verify that the binary seach found the given key.
bool ciObjectFactory::is_found_at(int index, Metadata* key, GrowableArray<ciMetadata*>* objects) {
return (index < objects->length() &&
objects->at(index)->constant_encoding() == key);
}
// ------------------------------------------------------------------
// ciObjectFactory::insert
//
// Insert a ciObject into the table at some index.
void ciObjectFactory::insert(int index, ciMetadata* obj, GrowableArray<ciMetadata*>* objects) {
int len = objects->length();
if (len == index) {
objects->append(obj);
} else {
objects->append(objects->at(len-1));
int pos;
for (pos = len-2; pos >= index; pos--) {
objects->at_put(pos+1,objects->at(pos));
}
objects->at_put(index, obj);
}
}
static ciObjectFactory::NonPermObject* emptyBucket = NULL;
// ------------------------------------------------------------------

View File

@ -68,9 +68,7 @@ private:
NonPermObject* _non_perm_bucket[NON_PERM_BUCKETS];
int _non_perm_count;
int find(Metadata* key, GrowableArray<ciMetadata*>* objects);
bool is_found_at(int index, Metadata* key, GrowableArray<ciMetadata*>* objects);
void insert(int index, ciMetadata* obj, GrowableArray<ciMetadata*>* objects);
static int metadata_compare(Metadata* const& key, ciMetadata* const& elt);
ciObject* create_new_object(oop o);
ciMetadata* create_new_metadata(Metadata* o);

View File

@ -542,6 +542,42 @@ bool vmIntrinsics::is_disabled_by_flags(const methodHandle& method) {
case vmIntrinsics::_putLongVolatile:
case vmIntrinsics::_putFloatVolatile:
case vmIntrinsics::_putDoubleVolatile:
case vmIntrinsics::_getObjectAcquire:
case vmIntrinsics::_getBooleanAcquire:
case vmIntrinsics::_getByteAcquire:
case vmIntrinsics::_getShortAcquire:
case vmIntrinsics::_getCharAcquire:
case vmIntrinsics::_getIntAcquire:
case vmIntrinsics::_getLongAcquire:
case vmIntrinsics::_getFloatAcquire:
case vmIntrinsics::_getDoubleAcquire:
case vmIntrinsics::_putObjectRelease:
case vmIntrinsics::_putBooleanRelease:
case vmIntrinsics::_putByteRelease:
case vmIntrinsics::_putShortRelease:
case vmIntrinsics::_putCharRelease:
case vmIntrinsics::_putIntRelease:
case vmIntrinsics::_putLongRelease:
case vmIntrinsics::_putFloatRelease:
case vmIntrinsics::_putDoubleRelease:
case vmIntrinsics::_getObjectOpaque:
case vmIntrinsics::_getBooleanOpaque:
case vmIntrinsics::_getByteOpaque:
case vmIntrinsics::_getShortOpaque:
case vmIntrinsics::_getCharOpaque:
case vmIntrinsics::_getIntOpaque:
case vmIntrinsics::_getLongOpaque:
case vmIntrinsics::_getFloatOpaque:
case vmIntrinsics::_getDoubleOpaque:
case vmIntrinsics::_putObjectOpaque:
case vmIntrinsics::_putBooleanOpaque:
case vmIntrinsics::_putByteOpaque:
case vmIntrinsics::_putShortOpaque:
case vmIntrinsics::_putCharOpaque:
case vmIntrinsics::_putIntOpaque:
case vmIntrinsics::_putLongOpaque:
case vmIntrinsics::_putFloatOpaque:
case vmIntrinsics::_putDoubleOpaque:
case vmIntrinsics::_getByte_raw:
case vmIntrinsics::_getShort_raw:
case vmIntrinsics::_getChar_raw:
@ -567,9 +603,27 @@ bool vmIntrinsics::is_disabled_by_flags(const methodHandle& method) {
case vmIntrinsics::_loadFence:
case vmIntrinsics::_storeFence:
case vmIntrinsics::_fullFence:
case vmIntrinsics::_compareAndSwapObject:
case vmIntrinsics::_compareAndSwapLong:
case vmIntrinsics::_weakCompareAndSwapLong:
case vmIntrinsics::_weakCompareAndSwapLongAcquire:
case vmIntrinsics::_weakCompareAndSwapLongRelease:
case vmIntrinsics::_compareAndSwapInt:
case vmIntrinsics::_weakCompareAndSwapInt:
case vmIntrinsics::_weakCompareAndSwapIntAcquire:
case vmIntrinsics::_weakCompareAndSwapIntRelease:
case vmIntrinsics::_compareAndSwapObject:
case vmIntrinsics::_weakCompareAndSwapObject:
case vmIntrinsics::_weakCompareAndSwapObjectAcquire:
case vmIntrinsics::_weakCompareAndSwapObjectRelease:
case vmIntrinsics::_compareAndExchangeIntVolatile:
case vmIntrinsics::_compareAndExchangeIntAcquire:
case vmIntrinsics::_compareAndExchangeIntRelease:
case vmIntrinsics::_compareAndExchangeLongVolatile:
case vmIntrinsics::_compareAndExchangeLongAcquire:
case vmIntrinsics::_compareAndExchangeLongRelease:
case vmIntrinsics::_compareAndExchangeObjectVolatile:
case vmIntrinsics::_compareAndExchangeObjectAcquire:
case vmIntrinsics::_compareAndExchangeObjectRelease:
if (!InlineUnsafeOps) return true;
break;
case vmIntrinsics::_getShortUnaligned:

View File

@ -123,7 +123,7 @@
template(sun_misc_Launcher_ExtClassLoader, "sun/misc/Launcher$ExtClassLoader") \
\
/* Java runtime version access */ \
template(sun_misc_Version, "sun/misc/Version") \
template(java_lang_VersionProps, "java/lang/VersionProps") \
template(java_runtime_name_name, "java_runtime_name") \
template(java_runtime_version_name, "java_runtime_version") \
\
@ -1146,6 +1146,64 @@
do_intrinsic(_putFloatVolatile, jdk_internal_misc_Unsafe, putFloatVolatile_name, putFloat_signature, F_RN) \
do_intrinsic(_putDoubleVolatile, jdk_internal_misc_Unsafe, putDoubleVolatile_name, putDouble_signature, F_RN) \
\
do_name(getObjectOpaque_name,"getObjectOpaque") do_name(putObjectOpaque_name,"putObjectOpaque") \
do_name(getBooleanOpaque_name,"getBooleanOpaque") do_name(putBooleanOpaque_name,"putBooleanOpaque") \
do_name(getByteOpaque_name,"getByteOpaque") do_name(putByteOpaque_name,"putByteOpaque") \
do_name(getShortOpaque_name,"getShortOpaque") do_name(putShortOpaque_name,"putShortOpaque") \
do_name(getCharOpaque_name,"getCharOpaque") do_name(putCharOpaque_name,"putCharOpaque") \
do_name(getIntOpaque_name,"getIntOpaque") do_name(putIntOpaque_name,"putIntOpaque") \
do_name(getLongOpaque_name,"getLongOpaque") do_name(putLongOpaque_name,"putLongOpaque") \
do_name(getFloatOpaque_name,"getFloatOpaque") do_name(putFloatOpaque_name,"putFloatOpaque") \
do_name(getDoubleOpaque_name,"getDoubleOpaque") do_name(putDoubleOpaque_name,"putDoubleOpaque") \
\
do_intrinsic(_getObjectOpaque, jdk_internal_misc_Unsafe, getObjectOpaque_name, getObject_signature, F_R) \
do_intrinsic(_getBooleanOpaque, jdk_internal_misc_Unsafe, getBooleanOpaque_name, getBoolean_signature, F_R) \
do_intrinsic(_getByteOpaque, jdk_internal_misc_Unsafe, getByteOpaque_name, getByte_signature, F_R) \
do_intrinsic(_getShortOpaque, jdk_internal_misc_Unsafe, getShortOpaque_name, getShort_signature, F_R) \
do_intrinsic(_getCharOpaque, jdk_internal_misc_Unsafe, getCharOpaque_name, getChar_signature, F_R) \
do_intrinsic(_getIntOpaque, jdk_internal_misc_Unsafe, getIntOpaque_name, getInt_signature, F_R) \
do_intrinsic(_getLongOpaque, jdk_internal_misc_Unsafe, getLongOpaque_name, getLong_signature, F_R) \
do_intrinsic(_getFloatOpaque, jdk_internal_misc_Unsafe, getFloatOpaque_name, getFloat_signature, F_R) \
do_intrinsic(_getDoubleOpaque, jdk_internal_misc_Unsafe, getDoubleOpaque_name, getDouble_signature, F_R) \
do_intrinsic(_putObjectOpaque, jdk_internal_misc_Unsafe, putObjectOpaque_name, putObject_signature, F_R) \
do_intrinsic(_putBooleanOpaque, jdk_internal_misc_Unsafe, putBooleanOpaque_name, putBoolean_signature, F_R) \
do_intrinsic(_putByteOpaque, jdk_internal_misc_Unsafe, putByteOpaque_name, putByte_signature, F_R) \
do_intrinsic(_putShortOpaque, jdk_internal_misc_Unsafe, putShortOpaque_name, putShort_signature, F_R) \
do_intrinsic(_putCharOpaque, jdk_internal_misc_Unsafe, putCharOpaque_name, putChar_signature, F_R) \
do_intrinsic(_putIntOpaque, jdk_internal_misc_Unsafe, putIntOpaque_name, putInt_signature, F_R) \
do_intrinsic(_putLongOpaque, jdk_internal_misc_Unsafe, putLongOpaque_name, putLong_signature, F_R) \
do_intrinsic(_putFloatOpaque, jdk_internal_misc_Unsafe, putFloatOpaque_name, putFloat_signature, F_R) \
do_intrinsic(_putDoubleOpaque, jdk_internal_misc_Unsafe, putDoubleOpaque_name, putDouble_signature, F_R) \
\
do_name(getObjectAcquire_name, "getObjectAcquire") do_name(putObjectRelease_name, "putObjectRelease") \
do_name(getBooleanAcquire_name, "getBooleanAcquire") do_name(putBooleanRelease_name, "putBooleanRelease") \
do_name(getByteAcquire_name, "getByteAcquire") do_name(putByteRelease_name, "putByteRelease") \
do_name(getShortAcquire_name, "getShortAcquire") do_name(putShortRelease_name, "putShortRelease") \
do_name(getCharAcquire_name, "getCharAcquire") do_name(putCharRelease_name, "putCharRelease") \
do_name(getIntAcquire_name, "getIntAcquire") do_name(putIntRelease_name, "putIntRelease") \
do_name(getLongAcquire_name, "getLongAcquire") do_name(putLongRelease_name, "putLongRelease") \
do_name(getFloatAcquire_name, "getFloatAcquire") do_name(putFloatRelease_name, "putFloatRelease") \
do_name(getDoubleAcquire_name, "getDoubleAcquire") do_name(putDoubleRelease_name, "putDoubleRelease") \
\
do_intrinsic(_getObjectAcquire, jdk_internal_misc_Unsafe, getObjectAcquire_name, getObject_signature, F_R) \
do_intrinsic(_getBooleanAcquire, jdk_internal_misc_Unsafe, getBooleanAcquire_name, getBoolean_signature, F_R) \
do_intrinsic(_getByteAcquire, jdk_internal_misc_Unsafe, getByteAcquire_name, getByte_signature, F_R) \
do_intrinsic(_getShortAcquire, jdk_internal_misc_Unsafe, getShortAcquire_name, getShort_signature, F_R) \
do_intrinsic(_getCharAcquire, jdk_internal_misc_Unsafe, getCharAcquire_name, getChar_signature, F_R) \
do_intrinsic(_getIntAcquire, jdk_internal_misc_Unsafe, getIntAcquire_name, getInt_signature, F_R) \
do_intrinsic(_getLongAcquire, jdk_internal_misc_Unsafe, getLongAcquire_name, getLong_signature, F_R) \
do_intrinsic(_getFloatAcquire, jdk_internal_misc_Unsafe, getFloatAcquire_name, getFloat_signature, F_R) \
do_intrinsic(_getDoubleAcquire, jdk_internal_misc_Unsafe, getDoubleAcquire_name, getDouble_signature, F_R) \
do_intrinsic(_putObjectRelease, jdk_internal_misc_Unsafe, putObjectRelease_name, putObject_signature, F_R) \
do_intrinsic(_putBooleanRelease, jdk_internal_misc_Unsafe, putBooleanRelease_name, putBoolean_signature, F_R) \
do_intrinsic(_putByteRelease, jdk_internal_misc_Unsafe, putByteRelease_name, putByte_signature, F_R) \
do_intrinsic(_putShortRelease, jdk_internal_misc_Unsafe, putShortRelease_name, putShort_signature, F_R) \
do_intrinsic(_putCharRelease, jdk_internal_misc_Unsafe, putCharRelease_name, putChar_signature, F_R) \
do_intrinsic(_putIntRelease, jdk_internal_misc_Unsafe, putIntRelease_name, putInt_signature, F_R) \
do_intrinsic(_putLongRelease, jdk_internal_misc_Unsafe, putLongRelease_name, putLong_signature, F_R) \
do_intrinsic(_putFloatRelease, jdk_internal_misc_Unsafe, putFloatRelease_name, putFloat_signature, F_R) \
do_intrinsic(_putDoubleRelease, jdk_internal_misc_Unsafe, putDoubleRelease_name, putDouble_signature, F_R) \
\
do_name(getShortUnaligned_name,"getShortUnaligned") do_name(putShortUnaligned_name,"putShortUnaligned") \
do_name(getCharUnaligned_name,"getCharUnaligned") do_name(putCharUnaligned_name,"putCharUnaligned") \
do_name(getIntUnaligned_name,"getIntUnaligned") do_name(putIntUnaligned_name,"putIntUnaligned") \
@ -1197,24 +1255,68 @@
do_intrinsic(_putDouble_raw, jdk_internal_misc_Unsafe, putDouble_name, putDouble_raw_signature, F_R) \
do_intrinsic(_putAddress_raw, jdk_internal_misc_Unsafe, putAddress_name, putAddress_raw_signature, F_R) \
\
do_intrinsic(_compareAndSwapObject, jdk_internal_misc_Unsafe, compareAndSwapObject_name, compareAndSwapObject_signature, F_R) \
do_name( compareAndSwapObject_name, "compareAndSwapObject") \
do_signature(compareAndSwapObject_signature, "(Ljava/lang/Object;JLjava/lang/Object;Ljava/lang/Object;)Z") \
do_intrinsic(_compareAndSwapLong, jdk_internal_misc_Unsafe, compareAndSwapLong_name, compareAndSwapLong_signature, F_R) \
do_name( compareAndSwapLong_name, "compareAndSwapLong") \
do_signature(compareAndSwapLong_signature, "(Ljava/lang/Object;JJJ)Z") \
do_intrinsic(_compareAndSwapInt, jdk_internal_misc_Unsafe, compareAndSwapInt_name, compareAndSwapInt_signature, F_R) \
do_name( compareAndSwapInt_name, "compareAndSwapInt") \
do_signature(compareAndSwapInt_signature, "(Ljava/lang/Object;JII)Z") \
do_intrinsic(_putOrderedObject, jdk_internal_misc_Unsafe, putOrderedObject_name, putOrderedObject_signature, F_R) \
do_name( putOrderedObject_name, "putOrderedObject") \
do_alias( putOrderedObject_signature, /*(LObject;JLObject;)V*/ putObject_signature) \
do_intrinsic(_putOrderedLong, jdk_internal_misc_Unsafe, putOrderedLong_name, putOrderedLong_signature, F_R) \
do_name( putOrderedLong_name, "putOrderedLong") \
do_alias( putOrderedLong_signature, /*(Ljava/lang/Object;JJ)V*/ putLong_signature) \
do_intrinsic(_putOrderedInt, jdk_internal_misc_Unsafe, putOrderedInt_name, putOrderedInt_signature, F_R) \
do_name( putOrderedInt_name, "putOrderedInt") \
do_alias( putOrderedInt_signature, /*(Ljava/lang/Object;JI)V*/ putInt_signature) \
do_signature(compareAndSwapObject_signature, "(Ljava/lang/Object;JLjava/lang/Object;Ljava/lang/Object;)Z") \
do_signature(compareAndExchangeObject_signature, "(Ljava/lang/Object;JLjava/lang/Object;Ljava/lang/Object;)Ljava/lang/Object;") \
do_signature(compareAndSwapLong_signature, "(Ljava/lang/Object;JJJ)Z") \
do_signature(compareAndExchangeLong_signature, "(Ljava/lang/Object;JJJ)J") \
do_signature(compareAndSwapInt_signature, "(Ljava/lang/Object;JII)Z") \
do_signature(compareAndExchangeInt_signature, "(Ljava/lang/Object;JII)I") \
\
do_name(compareAndSwapObject_name, "compareAndSwapObject") \
do_name(compareAndExchangeObjectVolatile_name, "compareAndExchangeObjectVolatile") \
do_name(compareAndExchangeObjectAcquire_name, "compareAndExchangeObjectAcquire") \
do_name(compareAndExchangeObjectRelease_name, "compareAndExchangeObjectRelease") \
do_name(compareAndSwapLong_name, "compareAndSwapLong") \
do_name(compareAndExchangeLongVolatile_name, "compareAndExchangeLongVolatile") \
do_name(compareAndExchangeLongAcquire_name, "compareAndExchangeLongAcquire") \
do_name(compareAndExchangeLongRelease_name, "compareAndExchangeLongRelease") \
do_name(compareAndSwapInt_name, "compareAndSwapInt") \
do_name(compareAndExchangeIntVolatile_name, "compareAndExchangeIntVolatile") \
do_name(compareAndExchangeIntAcquire_name, "compareAndExchangeIntAcquire") \
do_name(compareAndExchangeIntRelease_name, "compareAndExchangeIntRelease") \
\
do_name(weakCompareAndSwapObject_name, "weakCompareAndSwapObject") \
do_name(weakCompareAndSwapObjectAcquire_name, "weakCompareAndSwapObjectAcquire") \
do_name(weakCompareAndSwapObjectRelease_name, "weakCompareAndSwapObjectRelease") \
do_name(weakCompareAndSwapLong_name, "weakCompareAndSwapLong") \
do_name(weakCompareAndSwapLongAcquire_name, "weakCompareAndSwapLongAcquire") \
do_name(weakCompareAndSwapLongRelease_name, "weakCompareAndSwapLongRelease") \
do_name(weakCompareAndSwapInt_name, "weakCompareAndSwapInt") \
do_name(weakCompareAndSwapIntAcquire_name, "weakCompareAndSwapIntAcquire") \
do_name(weakCompareAndSwapIntRelease_name, "weakCompareAndSwapIntRelease") \
\
do_intrinsic(_compareAndSwapObject, jdk_internal_misc_Unsafe, compareAndSwapObject_name, compareAndSwapObject_signature, F_RN) \
do_intrinsic(_compareAndExchangeObjectVolatile, jdk_internal_misc_Unsafe, compareAndExchangeObjectVolatile_name, compareAndExchangeObject_signature, F_RN) \
do_intrinsic(_compareAndExchangeObjectAcquire, jdk_internal_misc_Unsafe, compareAndExchangeObjectAcquire_name, compareAndExchangeObject_signature, F_R) \
do_intrinsic(_compareAndExchangeObjectRelease, jdk_internal_misc_Unsafe, compareAndExchangeObjectRelease_name, compareAndExchangeObject_signature, F_R) \
do_intrinsic(_compareAndSwapLong, jdk_internal_misc_Unsafe, compareAndSwapLong_name, compareAndSwapLong_signature, F_RN) \
do_intrinsic(_compareAndExchangeLongVolatile, jdk_internal_misc_Unsafe, compareAndExchangeLongVolatile_name, compareAndExchangeLong_signature, F_RN) \
do_intrinsic(_compareAndExchangeLongAcquire, jdk_internal_misc_Unsafe, compareAndExchangeLongAcquire_name, compareAndExchangeLong_signature, F_R) \
do_intrinsic(_compareAndExchangeLongRelease, jdk_internal_misc_Unsafe, compareAndExchangeLongRelease_name, compareAndExchangeLong_signature, F_R) \
do_intrinsic(_compareAndSwapInt, jdk_internal_misc_Unsafe, compareAndSwapInt_name, compareAndSwapInt_signature, F_RN) \
do_intrinsic(_compareAndExchangeIntVolatile, jdk_internal_misc_Unsafe, compareAndExchangeIntVolatile_name, compareAndExchangeInt_signature, F_RN) \
do_intrinsic(_compareAndExchangeIntAcquire, jdk_internal_misc_Unsafe, compareAndExchangeIntAcquire_name, compareAndExchangeInt_signature, F_R) \
do_intrinsic(_compareAndExchangeIntRelease, jdk_internal_misc_Unsafe, compareAndExchangeIntRelease_name, compareAndExchangeInt_signature, F_R) \
\
do_intrinsic(_weakCompareAndSwapObject, jdk_internal_misc_Unsafe, weakCompareAndSwapObject_name, compareAndSwapObject_signature, F_R) \
do_intrinsic(_weakCompareAndSwapObjectAcquire, jdk_internal_misc_Unsafe, weakCompareAndSwapObjectAcquire_name, compareAndSwapObject_signature, F_R) \
do_intrinsic(_weakCompareAndSwapObjectRelease, jdk_internal_misc_Unsafe, weakCompareAndSwapObjectRelease_name, compareAndSwapObject_signature, F_R) \
do_intrinsic(_weakCompareAndSwapLong, jdk_internal_misc_Unsafe, weakCompareAndSwapLong_name, compareAndSwapLong_signature, F_R) \
do_intrinsic(_weakCompareAndSwapLongAcquire, jdk_internal_misc_Unsafe, weakCompareAndSwapLongAcquire_name, compareAndSwapLong_signature, F_R) \
do_intrinsic(_weakCompareAndSwapLongRelease, jdk_internal_misc_Unsafe, weakCompareAndSwapLongRelease_name, compareAndSwapLong_signature, F_R) \
do_intrinsic(_weakCompareAndSwapInt, jdk_internal_misc_Unsafe, weakCompareAndSwapInt_name, compareAndSwapInt_signature, F_R) \
do_intrinsic(_weakCompareAndSwapIntAcquire, jdk_internal_misc_Unsafe, weakCompareAndSwapIntAcquire_name, compareAndSwapInt_signature, F_R) \
do_intrinsic(_weakCompareAndSwapIntRelease, jdk_internal_misc_Unsafe, weakCompareAndSwapIntRelease_name, compareAndSwapInt_signature, F_R) \
\
do_intrinsic(_putOrderedObject, jdk_internal_misc_Unsafe, putOrderedObject_name, putOrderedObject_signature, F_RN) \
do_name( putOrderedObject_name, "putOrderedObject") \
do_alias( putOrderedObject_signature, /*(LObject;JLObject;)V*/ putObject_signature) \
do_intrinsic(_putOrderedLong, jdk_internal_misc_Unsafe, putOrderedLong_name, putOrderedLong_signature, F_RN) \
do_name( putOrderedLong_name, "putOrderedLong") \
do_alias( putOrderedLong_signature, /*(Ljava/lang/Object;JJ)V*/ putLong_signature) \
do_intrinsic(_putOrderedInt, jdk_internal_misc_Unsafe, putOrderedInt_name, putOrderedInt_signature, F_RN) \
do_name( putOrderedInt_name, "putOrderedInt") \
do_alias( putOrderedInt_signature, /*(Ljava/lang/Object;JI)V*/ putInt_signature) \
\
do_intrinsic(_getAndAddInt, jdk_internal_misc_Unsafe, getAndAddInt_name, getAndAddInt_signature, F_R) \
do_name( getAndAddInt_name, "getAndAddInt") \

View File

@ -1045,7 +1045,7 @@ void CodeCache::clear_inline_caches() {
// Keeps track of time spent for checking dependencies
NOT_PRODUCT(static elapsedTimer dependentCheckTime;)
int CodeCache::mark_for_deoptimization(DepChange& changes) {
int CodeCache::mark_for_deoptimization(KlassDepChange& changes) {
MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
int number_of_marked_CodeBlobs = 0;

View File

@ -72,7 +72,7 @@
// Solaris and BSD.
class OopClosure;
class DepChange;
class KlassDepChange;
class CodeCache : AllStatic {
friend class VMStructs;
@ -231,7 +231,7 @@ class CodeCache : AllStatic {
// Deoptimization
private:
static int mark_for_deoptimization(DepChange& changes);
static int mark_for_deoptimization(KlassDepChange& changes);
#ifdef HOTSWAP
static int mark_for_evol_deoptimization(instanceKlassHandle dependee);
#endif // HOTSWAP

View File

@ -664,6 +664,8 @@ class DepChange : public StackObj {
virtual bool is_klass_change() const { return false; }
virtual bool is_call_site_change() const { return false; }
virtual void mark_for_deoptimization(nmethod* nm) = 0;
// Subclass casting with assertions.
KlassDepChange* as_klass_change() {
assert(is_klass_change(), "bad cast");
@ -753,6 +755,10 @@ class KlassDepChange : public DepChange {
// What kind of DepChange is this?
virtual bool is_klass_change() const { return true; }
virtual void mark_for_deoptimization(nmethod* nm) {
nm->mark_for_deoptimization(/*inc_recompile_counts=*/true);
}
Klass* new_type() { return _new_type(); }
// involves_context(k) is true if k is new_type or any of the super types
@ -772,6 +778,10 @@ class CallSiteDepChange : public DepChange {
// What kind of DepChange is this?
virtual bool is_call_site_change() const { return true; }
virtual void mark_for_deoptimization(nmethod* nm) {
nm->mark_for_deoptimization(/*inc_recompile_counts=*/false);
}
oop call_site() const { return _call_site(); }
oop method_handle() const { return _method_handle(); }
};

View File

@ -73,7 +73,7 @@ int DependencyContext::mark_dependent_nmethods(DepChange& changes) {
nm->print();
nm->print_dependencies();
}
nm->mark_for_deoptimization();
changes.mark_for_deoptimization(nm);
found++;
}
}

View File

@ -536,7 +536,7 @@ void nmethod::init_defaults() {
_has_method_handle_invokes = 0;
_lazy_critical_native = 0;
_has_wide_vectors = 0;
_marked_for_deoptimization = 0;
_mark_for_deoptimization_status = not_marked;
_lock_count = 0;
_stack_traversal_mark = 0;
_unload_reported = false; // jvmti state
@ -1458,7 +1458,7 @@ bool nmethod::make_not_entrant_or_zombie(unsigned int state) {
SharedRuntime::get_handle_wrong_method_stub());
}
if (is_in_use()) {
if (is_in_use() && update_recompile_counts()) {
// It's a true state change, so mark the method as decompiled.
// Do it only for transition from alive.
inc_decompile_count();

View File

@ -107,6 +107,7 @@ class PcDescCache VALUE_OBJ_CLASS_SPEC {
// [Implicit Null Pointer exception table]
// - implicit null table array
class DepChange;
class Dependencies;
class ExceptionHandlerTable;
class ImplicitExceptionTable;
@ -188,7 +189,13 @@ class nmethod : public CodeBlob {
bool _has_flushed_dependencies; // Used for maintenance of dependencies (CodeCache_lock)
bool _marked_for_reclamation; // Used by NMethodSweeper (set only by sweeper)
bool _marked_for_deoptimization; // Used for stack deoptimization
enum MarkForDeoptimizationStatus {
not_marked,
deoptimize,
deoptimize_noupdate };
MarkForDeoptimizationStatus _mark_for_deoptimization_status; // Used for stack deoptimization
// used by jvmti to track if an unload event has been posted for this nmethod.
bool _unload_reported;
@ -462,8 +469,16 @@ class nmethod : public CodeBlob {
void set_unloading_clock(unsigned char unloading_clock);
unsigned char unloading_clock();
bool is_marked_for_deoptimization() const { return _marked_for_deoptimization; }
void mark_for_deoptimization() { _marked_for_deoptimization = true; }
bool is_marked_for_deoptimization() const { return _mark_for_deoptimization_status != not_marked; }
void mark_for_deoptimization(bool inc_recompile_counts = true) {
_mark_for_deoptimization_status = (inc_recompile_counts ? deoptimize : deoptimize_noupdate);
}
bool update_recompile_counts() const {
// Update recompile counts when either the update is explicitly requested (deoptimize)
// or the nmethod is not marked for deoptimization at all (not_marked).
// The latter happens during uncommon traps when deoptimized nmethod is made not entrant.
return _mark_for_deoptimization_status != deoptimize_noupdate;
}
void make_unloaded(BoolObjectClosure* is_alive, oop cause);

View File

@ -457,49 +457,6 @@ RelocationHolder Relocation::spec_simple(relocInfo::relocType rtype) {
return itr._rh;
}
int32_t Relocation::runtime_address_to_index(address runtime_address) {
assert(!is_reloc_index((intptr_t)runtime_address), "must not look like an index");
if (runtime_address == NULL) return 0;
StubCodeDesc* p = StubCodeDesc::desc_for(runtime_address);
if (p != NULL && p->begin() == runtime_address) {
assert(is_reloc_index(p->index()), "there must not be too many stubs");
return (int32_t)p->index();
} else {
// Known "miscellaneous" non-stub pointers:
// os::get_polling_page(), SafepointSynchronize::address_of_state()
if (PrintRelocations) {
tty->print_cr("random unregistered address in relocInfo: " INTPTR_FORMAT, p2i(runtime_address));
}
#ifndef _LP64
return (int32_t) (intptr_t)runtime_address;
#else
// didn't fit return non-index
return -1;
#endif /* _LP64 */
}
}
address Relocation::index_to_runtime_address(int32_t index) {
if (index == 0) return NULL;
if (is_reloc_index(index)) {
StubCodeDesc* p = StubCodeDesc::desc_for_index(index);
assert(p != NULL, "there must be a stub for this index");
return p->begin();
} else {
#ifndef _LP64
// this only works on 32bit machines
return (address) ((intptr_t) index);
#else
fatal("Relocation::index_to_runtime_address, int32_t not pointer sized");
return NULL;
#endif /* _LP64 */
}
}
address Relocation::old_addr_for(address newa,
const CodeBuffer* src, CodeBuffer* dest) {
int sect = dest->section_index_of(newa);
@ -623,20 +580,13 @@ void trampoline_stub_Relocation::unpack_data() {
void external_word_Relocation::pack_data_to(CodeSection* dest) {
short* p = (short*) dest->locs_end();
int32_t index = runtime_address_to_index(_target);
#ifndef _LP64
p = pack_1_int_to(p, index);
p = pack_1_int_to(p, (int32_t) (intptr_t)_target);
#else
if (is_reloc_index(index)) {
p = pack_2_ints_to(p, index, 0);
} else {
jlong t = (jlong) _target;
int32_t lo = low(t);
int32_t hi = high(t);
p = pack_2_ints_to(p, lo, hi);
DEBUG_ONLY(jlong t1 = jlong_from(hi, lo));
assert(!is_reloc_index(t1) && (address) t1 == _target, "not symmetric");
}
jlong t = (jlong) _target;
int32_t lo = low(t);
int32_t hi = high(t);
p = pack_2_ints_to(p, lo, hi);
#endif /* _LP64 */
dest->set_locs_end((relocInfo*) p);
}
@ -644,16 +594,12 @@ void external_word_Relocation::pack_data_to(CodeSection* dest) {
void external_word_Relocation::unpack_data() {
#ifndef _LP64
_target = index_to_runtime_address(unpack_1_int());
_target = (address) (intptr_t)unpack_1_int();
#else
int32_t lo, hi;
unpack_2_ints(lo, hi);
jlong t = jlong_from(hi, lo);;
if (is_reloc_index(t)) {
_target = index_to_runtime_address(t);
} else {
_target = (address) t;
}
_target = (address) t;
#endif /* _LP64 */
}

View File

@ -707,10 +707,6 @@ class Relocation VALUE_OBJ_CLASS_SPEC {
assert(datalen()==0 || type()==relocInfo::none, "no data here");
}
static bool is_reloc_index(intptr_t index) {
return 0 < index && index < os::vm_page_size();
}
protected:
// Helper functions for pack_data_to() and unpack_data().
@ -806,10 +802,6 @@ class Relocation VALUE_OBJ_CLASS_SPEC {
return base + byte_offset;
}
// these convert between indexes and addresses in the runtime system
static int32_t runtime_address_to_index(address runtime_address);
static address index_to_runtime_address(int32_t index);
// helpers for mapping between old and new addresses after a move or resize
address old_addr_for(address newa, const CodeBuffer* src, CodeBuffer* dest);
address new_addr_for(address olda, const CodeBuffer* src, CodeBuffer* dest);
@ -1253,7 +1245,8 @@ class external_word_Relocation : public DataRelocation {
// Some address looking values aren't safe to treat as relocations
// and should just be treated as constants.
static bool can_be_relocated(address target) {
return target != NULL && !is_reloc_index((intptr_t)target);
assert(target == NULL || (uintptr_t)target >= (uintptr_t)os::vm_page_size(), INTPTR_FORMAT, (intptr_t)target);
return target != NULL;
}
private:

View File

@ -469,7 +469,6 @@ CompileQueue* CompileBroker::compile_queue(int comp_level) {
void CompileBroker::print_compile_queues(outputStream* st) {
st->print_cr("Current compiles: ");
MutexLocker locker(MethodCompileQueue_lock);
MutexLocker locker2(Threads_lock);
char buf[2000];
int buflen = sizeof(buf);
@ -2152,18 +2151,33 @@ void CompileBroker::collect_statistics(CompilerThread* thread, elapsedTimer time
if (CITime) {
int bytes_compiled = method->code_size() + task->num_inlined_bytecodes();
JVMCI_ONLY(CompilerStatistics* stats = compiler(task->comp_level())->stats();)
if (is_osr) {
_t_osr_compilation.add(time);
_sum_osr_bytes_compiled += bytes_compiled;
JVMCI_ONLY(stats->_osr.update(time, bytes_compiled);)
} else {
_t_standard_compilation.add(time);
_sum_standard_bytes_compiled += method->code_size() + task->num_inlined_bytecodes();
JVMCI_ONLY(stats->_standard.update(time, bytes_compiled);)
}
JVMCI_ONLY(stats->_nmethods_size += code->total_size();)
JVMCI_ONLY(stats->_nmethods_code_size += code->insts_size();)
#if INCLUDE_JVMCI
AbstractCompiler* comp = compiler(task->comp_level());
if (comp) {
CompilerStatistics* stats = comp->stats();
if (stats) {
if (is_osr) {
stats->_osr.update(time, bytes_compiled);
} else {
stats->_standard.update(time, bytes_compiled);
}
stats->_nmethods_size += code->total_size();
stats->_nmethods_code_size += code->insts_size();
} else { // if (!stats)
assert(false, "Compiler statistics object must exist");
}
} else { // if (!comp)
assert(false, "Compiler object must exist");
}
#endif // INCLUDE_JVMCI
}
if (UsePerfData) {
@ -2222,11 +2236,15 @@ const char* CompileBroker::compiler_name(int comp_level) {
#if INCLUDE_JVMCI
void CompileBroker::print_times(AbstractCompiler* comp) {
CompilerStatistics* stats = comp->stats();
tty->print_cr(" %s {speed: %d bytes/s; standard: %6.3f s, %d bytes, %d methods; osr: %6.3f s, %d bytes, %d methods; nmethods_size: %d bytes; nmethods_code_size: %d bytes}",
if (stats) {
tty->print_cr(" %s {speed: %d bytes/s; standard: %6.3f s, %d bytes, %d methods; osr: %6.3f s, %d bytes, %d methods; nmethods_size: %d bytes; nmethods_code_size: %d bytes}",
comp->name(), stats->bytes_per_second(),
stats->_standard._time.seconds(), stats->_standard._bytes, stats->_standard._count,
stats->_osr._time.seconds(), stats->_osr._bytes, stats->_osr._count,
stats->_nmethods_size, stats->_nmethods_code_size);
} else { // if (!stats)
assert(false, "Compiler statistics object must exist");
}
comp->print_timers();
}
#endif // INCLUDE_JVMCI
@ -2260,17 +2278,21 @@ void CompileBroker::print_times(bool per_compiler, bool aggregate) {
}
CompilerStatistics* stats = comp->stats();
standard_compilation.add(stats->_standard._time);
osr_compilation.add(stats->_osr._time);
if (stats) {
standard_compilation.add(stats->_standard._time);
osr_compilation.add(stats->_osr._time);
standard_bytes_compiled += stats->_standard._bytes;
osr_bytes_compiled += stats->_osr._bytes;
standard_bytes_compiled += stats->_standard._bytes;
osr_bytes_compiled += stats->_osr._bytes;
standard_compile_count += stats->_standard._count;
osr_compile_count += stats->_osr._count;
standard_compile_count += stats->_standard._count;
osr_compile_count += stats->_osr._count;
nmethods_size += stats->_nmethods_size;
nmethods_code_size += stats->_nmethods_code_size;
nmethods_size += stats->_nmethods_size;
nmethods_code_size += stats->_nmethods_code_size;
} else { // if (!stats)
assert(false, "Compiler statistics object must exist");
}
if (per_compiler) {
print_times(comp);

View File

@ -551,6 +551,14 @@ JVMCIEnv::CodeInstallResult CodeInstaller::install(JVMCICompiler* compiler, Hand
compiler, _debug_recorder, _dependencies, env, id,
has_unsafe_access, _has_wide_vector, installed_code, compiled_code, speculation_log);
cb = nm;
if (nm != NULL && env == NULL) {
DirectiveSet* directive = DirectivesStack::getMatchingDirective(method, compiler);
bool printnmethods = directive->PrintAssemblyOption || directive->PrintNMethodsOption;
if (printnmethods || PrintDebugInfo || PrintRelocations || PrintDependencies || PrintExceptionHandlers) {
nm->print_nmethod(printnmethods);
}
DirectivesStack::release(directive);
}
}
if (cb != NULL) {

View File

@ -293,13 +293,11 @@ JRT_ENTRY_NO_ASYNC(static address, exception_handler_for_pc_helper(JavaThread* t
// tracing
if (log_is_enabled(Info, exceptions)) {
ResourceMark rm;
log_info(exceptions)("Exception <%s> (" INTPTR_FORMAT ") thrown in"
" compiled method <%s> at PC " INTPTR_FORMAT
" for thread " INTPTR_FORMAT,
exception->print_value_string(),
p2i((address)exception()),
nm->method()->print_value_string(), p2i(pc),
p2i(thread));
stringStream tempst;
tempst.print("compiled method <%s>\n"
" at PC" INTPTR_FORMAT " for thread " INTPTR_FORMAT,
nm->method()->print_value_string(), p2i(pc), p2i(thread));
Exceptions::log_exception(exception, tempst);
}
// for AbortVMOnException flag
NOT_PRODUCT(Exceptions::debug_check_abort(exception));

View File

@ -24,6 +24,8 @@
#include "precompiled.hpp"
#include "jvmci/jvmci_globals.hpp"
#include "utilities/defaultStream.hpp"
#include "runtime/globals_extension.hpp"
JVMCI_FLAGS(MATERIALIZE_DEVELOPER_FLAG, \
MATERIALIZE_PD_DEVELOPER_FLAG, \
@ -34,3 +36,185 @@ JVMCI_FLAGS(MATERIALIZE_DEVELOPER_FLAG, \
MATERIALIZE_NOTPRODUCT_FLAG,
IGNORE_RANGE, \
IGNORE_CONSTRAINT)
#define JVMCI_IGNORE_FLAG_FOUR_PARAM(type, name, value, doc)
#define JVMCI_IGNORE_FLAG_THREE_PARAM(type, name, doc)
// Return true if jvmci flags are consistent.
bool JVMCIGlobals::check_jvmci_flags_are_consistent() {
if (EnableJVMCI) {
return true;
}
// "FLAG_IS_DEFAULT" fail count.
int fail_count = 0;
// Number of "FLAG_IS_DEFAULT" fails that should be skipped before code
// detect real consistency failure.
int skip_fail_count;
// EnableJVMCI flag is false here.
// If any other flag is changed, consistency check should fail.
// JVMCI_FLAGS macros added below can handle all JVMCI flags automatically.
// But it contains check for EnableJVMCI flag too, which is required to be
// skipped. This can't be handled easily!
// So the code looks for at-least two flag changes to detect consistency
// failure when EnableJVMCI flag is changed.
// Otherwise one flag change is sufficient to detect consistency failure.
// Set skip_fail_count to 0 if EnableJVMCI flag is default.
// Set skip_fail_count to 1 if EnableJVMCI flag is changed.
// This value will be used to skip fails in macro expanded code later.
if (!FLAG_IS_DEFAULT(EnableJVMCI)) {
skip_fail_count = 1;
} else {
skip_fail_count = 0;
}
#define EMIT_FLAG_VALUE_CHANGED_CHECK_CODE(FLAG) \
if (!FLAG_IS_DEFAULT(FLAG)) { \
fail_count++; \
if (fail_count > skip_fail_count) { \
return false; \
} \
}
#define JVMCI_DIAGNOSTIC_FLAG_VALUE_CHANGED_CHECK_CODE(type, name, value, doc) EMIT_FLAG_VALUE_CHANGED_CHECK_CODE(name)
#define JVMCI_EXPERIMENTAL_FLAG_VALUE_CHANGED_CHECK_CODE(type, name, value, doc) EMIT_FLAG_VALUE_CHANGED_CHECK_CODE(name)
// Check consistency of diagnostic flags if UnlockDiagnosticVMOptions is true
// or not default. UnlockDiagnosticVMOptions is default true in debug builds.
if (UnlockDiagnosticVMOptions || !FLAG_IS_DEFAULT(UnlockDiagnosticVMOptions)) {
JVMCI_FLAGS(JVMCI_IGNORE_FLAG_FOUR_PARAM, \
JVMCI_IGNORE_FLAG_THREE_PARAM, \
JVMCI_IGNORE_FLAG_FOUR_PARAM, \
JVMCI_IGNORE_FLAG_THREE_PARAM, \
JVMCI_DIAGNOSTIC_FLAG_VALUE_CHANGED_CHECK_CODE, \
JVMCI_IGNORE_FLAG_FOUR_PARAM, \
JVMCI_IGNORE_FLAG_FOUR_PARAM, \
IGNORE_RANGE, \
IGNORE_CONSTRAINT)
}
// Check consistency of experimental flags if UnlockExperimentalVMOptions is
// true or not default.
if (UnlockExperimentalVMOptions || !FLAG_IS_DEFAULT(UnlockExperimentalVMOptions)) {
JVMCI_FLAGS(JVMCI_IGNORE_FLAG_FOUR_PARAM, \
JVMCI_IGNORE_FLAG_THREE_PARAM, \
JVMCI_IGNORE_FLAG_FOUR_PARAM, \
JVMCI_IGNORE_FLAG_THREE_PARAM, \
JVMCI_IGNORE_FLAG_FOUR_PARAM, \
JVMCI_EXPERIMENTAL_FLAG_VALUE_CHANGED_CHECK_CODE, \
JVMCI_IGNORE_FLAG_FOUR_PARAM, \
IGNORE_RANGE, \
IGNORE_CONSTRAINT)
}
#ifndef PRODUCT
#define JVMCI_DEVELOP_FLAG_VALUE_CHANGED_CHECK_CODE(type, name, value, doc) EMIT_FLAG_VALUE_CHANGED_CHECK_CODE(name)
#define JVMCI_PD_DEVELOP_FLAG_VALUE_CHANGED_CHECK_CODE(type, name, doc) EMIT_FLAG_VALUE_CHANGED_CHECK_CODE(name)
#define JVMCI_NOTPRODUCT_FLAG_VALUE_CHANGED_CHECK_CODE(type, name, value, doc) EMIT_FLAG_VALUE_CHANGED_CHECK_CODE(name)
#else
#define JVMCI_DEVELOP_FLAG_VALUE_CHANGED_CHECK_CODE(type, name, value, doc)
#define JVMCI_PD_DEVELOP_FLAG_VALUE_CHANGED_CHECK_CODE(type, name, doc)
#define JVMCI_NOTPRODUCT_FLAG_VALUE_CHANGED_CHECK_CODE(type, name, value, doc)
#endif
#define JVMCI_PD_PRODUCT_FLAG_VALUE_CHANGED_CHECK_CODE(type, name, doc) EMIT_FLAG_VALUE_CHANGED_CHECK_CODE(name)
#define JVMCI_PRODUCT_FLAG_VALUE_CHANGED_CHECK_CODE(type, name, value, doc) EMIT_FLAG_VALUE_CHANGED_CHECK_CODE(name)
JVMCI_FLAGS(JVMCI_DEVELOP_FLAG_VALUE_CHANGED_CHECK_CODE, \
JVMCI_PD_DEVELOP_FLAG_VALUE_CHANGED_CHECK_CODE, \
JVMCI_PRODUCT_FLAG_VALUE_CHANGED_CHECK_CODE, \
JVMCI_PD_PRODUCT_FLAG_VALUE_CHANGED_CHECK_CODE, \
JVMCI_IGNORE_FLAG_FOUR_PARAM, \
JVMCI_IGNORE_FLAG_FOUR_PARAM, \
JVMCI_NOTPRODUCT_FLAG_VALUE_CHANGED_CHECK_CODE, \
IGNORE_RANGE, \
IGNORE_CONSTRAINT)
#undef EMIT_FLAG_VALUE_CHANGED_CHECK_CODE
#undef JVMCI_DEVELOP_FLAG_VALUE_CHANGED_CHECK_CODE
#undef JVMCI_PD_DEVELOP_FLAG_VALUE_CHANGED_CHECK_CODE
#undef JVMCI_NOTPRODUCT_FLAG_VALUE_CHANGED_CHECK_CODE
#undef JVMCI_DIAGNOSTIC_FLAG_VALUE_CHANGED_CHECK_CODE
#undef JVMCI_PD_PRODUCT_FLAG_VALUE_CHANGED_CHECK_CODE
#undef JVMCI_PRODUCT_FLAG_VALUE_CHANGED_CHECK_CODE
#undef JVMCI_EXPERIMENTAL_FLAG_VALUE_CHANGED_CHECK_CODE
return true;
}
// Print jvmci arguments inconsistency error message.
void JVMCIGlobals::print_jvmci_args_inconsistency_error_message() {
const char* error_msg = "Improperly specified VM option '%s'\n";
jio_fprintf(defaultStream::error_stream(), "EnableJVMCI must be enabled\n");
#define EMIT_CHECK_PRINT_ERR_MSG_CODE(FLAG) \
if (!FLAG_IS_DEFAULT(FLAG)) { \
if (strcmp(#FLAG, "EnableJVMCI")) { \
jio_fprintf(defaultStream::error_stream(), error_msg, #FLAG); \
} \
}
#define JVMCI_DIAGNOSTIC_FLAG_CHECK_PRINT_ERR_MSG_CODE(type, name, value, doc) EMIT_CHECK_PRINT_ERR_MSG_CODE(name)
#define JVMCI_EXPERIMENTAL_FLAG_CHECK_PRINT_ERR_MSG_CODE(type, name, value, doc) EMIT_CHECK_PRINT_ERR_MSG_CODE(name)
if (UnlockDiagnosticVMOptions || !FLAG_IS_DEFAULT(UnlockDiagnosticVMOptions)) {
JVMCI_FLAGS(JVMCI_IGNORE_FLAG_FOUR_PARAM, \
JVMCI_IGNORE_FLAG_THREE_PARAM, \
JVMCI_IGNORE_FLAG_FOUR_PARAM, \
JVMCI_IGNORE_FLAG_THREE_PARAM, \
JVMCI_DIAGNOSTIC_FLAG_CHECK_PRINT_ERR_MSG_CODE, \
JVMCI_IGNORE_FLAG_FOUR_PARAM, \
JVMCI_IGNORE_FLAG_FOUR_PARAM, \
IGNORE_RANGE, \
IGNORE_CONSTRAINT)
}
if (UnlockExperimentalVMOptions || !FLAG_IS_DEFAULT(UnlockExperimentalVMOptions)) {
JVMCI_FLAGS(JVMCI_IGNORE_FLAG_FOUR_PARAM, \
JVMCI_IGNORE_FLAG_THREE_PARAM, \
JVMCI_IGNORE_FLAG_FOUR_PARAM, \
JVMCI_IGNORE_FLAG_THREE_PARAM, \
JVMCI_IGNORE_FLAG_FOUR_PARAM, \
JVMCI_EXPERIMENTAL_FLAG_CHECK_PRINT_ERR_MSG_CODE, \
JVMCI_IGNORE_FLAG_FOUR_PARAM, \
IGNORE_RANGE, \
IGNORE_CONSTRAINT)
}
#ifndef PRODUCT
#define JVMCI_DEVELOP_FLAG_CHECK_PRINT_ERR_MSG_CODE(type, name, value, doc) EMIT_CHECK_PRINT_ERR_MSG_CODE(name)
#define JVMCI_PD_DEVELOP_FLAG_CHECK_PRINT_ERR_MSG_CODE(type, name, doc) EMIT_CHECK_PRINT_ERR_MSG_CODE(name)
#define JVMCI_NOTPRODUCT_FLAG_CHECK_PRINT_ERR_MSG_CODE(type, name, value, doc) EMIT_CHECK_PRINT_ERR_MSG_CODE(name)
#else
#define JVMCI_DEVELOP_FLAG_CHECK_PRINT_ERR_MSG_CODE(type, name, value, doc)
#define JVMCI_PD_DEVELOP_FLAG_CHECK_PRINT_ERR_MSG_CODE(type, name, doc)
#define JVMCI_NOTPRODUCT_FLAG_CHECK_PRINT_ERR_MSG_CODE(type, name, value, doc)
#endif
#define JVMCI_PD_PRODUCT_FLAG_CHECK_PRINT_ERR_MSG_CODE(type, name, doc) EMIT_CHECK_PRINT_ERR_MSG_CODE(name)
#define JVMCI_PRODUCT_FLAG_CHECK_PRINT_ERR_MSG_CODE(type, name, value, doc) EMIT_CHECK_PRINT_ERR_MSG_CODE(name)
JVMCI_FLAGS(JVMCI_DEVELOP_FLAG_CHECK_PRINT_ERR_MSG_CODE, \
JVMCI_PD_DEVELOP_FLAG_CHECK_PRINT_ERR_MSG_CODE, \
JVMCI_PRODUCT_FLAG_CHECK_PRINT_ERR_MSG_CODE, \
JVMCI_PD_PRODUCT_FLAG_CHECK_PRINT_ERR_MSG_CODE, \
JVMCI_IGNORE_FLAG_FOUR_PARAM, \
JVMCI_IGNORE_FLAG_FOUR_PARAM, \
JVMCI_NOTPRODUCT_FLAG_CHECK_PRINT_ERR_MSG_CODE, \
IGNORE_RANGE, \
IGNORE_CONSTRAINT)
#undef EMIT_CHECK_PRINT_ERR_MSG_CODE
#undef JVMCI_DEVELOP_FLAG_CHECK_PRINT_ERR_MSG_CODE
#undef JVMCI_PD_DEVELOP_FLAG_CHECK_PRINT_ERR_MSG_CODE
#undef JVMCI_NOTPRODUCT_FLAG_CHECK_PRINT_ERR_MSG_CODE
#undef JVMCI_PD_PRODUCT_FLAG_CHECK_PRINT_ERR_MSG_CODE
#undef JVMCI_PRODUCT_FLAG_CHECK_PRINT_ERR_MSG_CODE
#undef JVMCI_DIAGNOSTIC_FLAG_CHECK_PRINT_ERR_MSG_CODE
#undef JVMCI_EXPERIMENTAL_FLAG_CHECK_PRINT_ERR_MSG_CODE
}
#undef JVMCI_IGNORE_FLAG_FOUR_PARAM
#undef JVMCI_IGNORE_FLAG_THREE_PARAM

View File

@ -39,29 +39,23 @@
\
experimental(bool, UseJVMCICompiler, false, \
"Use JVMCI as the default compiler") \
constraint(EnableJVMCIMustBeEnabledConstraintFunc,AtParse) \
\
experimental(bool, BootstrapJVMCI, false, \
"Bootstrap JVMCI before running Java main method") \
constraint(EnableJVMCIMustBeEnabledConstraintFunc,AtParse) \
\
experimental(bool, PrintBootstrap, true, \
"Print JVMCI bootstrap progress and summary") \
constraint(EnableJVMCIMustBeEnabledConstraintFunc,AtParse) \
\
experimental(intx, JVMCIThreads, 1, \
"Force number of JVMCI compiler threads to use") \
range(1, max_jint) \
constraint(EnableJVMCIMustBeEnabledConstraintFunc,AtParse) \
\
experimental(intx, JVMCIHostThreads, 1, \
"Force number of compiler threads for JVMCI host compiler") \
range(1, max_jint) \
constraint(EnableJVMCIMustBeEnabledConstraintFunc,AtParse) \
\
experimental(bool, CodeInstallSafepointChecks, true, \
"Perform explicit safepoint checks while installing code") \
constraint(EnableJVMCIMustBeEnabledConstraintFunc,AtParse) \
\
NOT_COMPILER2(product(intx, MaxVectorSize, 64, \
"Max vector size in bytes, " \
@ -74,28 +68,22 @@
"Trace level for JVMCI: " \
"1 means emit a message for each CompilerToVM call," \
"levels greater than 1 provide progressively greater detail") \
constraint(EnableJVMCIMustBeEnabledConstraintFunc,AtParse) \
\
experimental(intx, JVMCICounterSize, 0, \
"Reserved size for benchmark counters") \
range(0, max_jint) \
constraint(EnableJVMCIMustBeEnabledConstraintFunc,AtParse) \
\
experimental(bool, JVMCICountersExcludeCompiler, true, \
"Exclude JVMCI compiler threads from benchmark counters") \
constraint(EnableJVMCIMustBeEnabledConstraintFunc,AtParse) \
\
develop(bool, JVMCIUseFastLocking, true, \
"Use fast inlined locking code") \
constraint(EnableJVMCIMustBeEnabledConstraintFunc,AtParse) \
\
experimental(intx, JVMCINMethodSizeLimit, (80*K)*wordSize, \
"Maximum size of a compiled method.") \
constraint(EnableJVMCIMustBeEnabledConstraintFunc,AtParse) \
\
develop(bool, TraceUncollectedSpeculations, false, \
"Print message when a failed speculation was not collected") \
constraint(EnableJVMCIMustBeEnabledConstraintFunc,AtParse) \
"Print message when a failed speculation was not collected")
// Read default values for JVMCI globals
@ -110,4 +98,11 @@ JVMCI_FLAGS(DECLARE_DEVELOPER_FLAG, \
IGNORE_RANGE, \
IGNORE_CONSTRAINT)
class JVMCIGlobals {
public:
// Return true if jvmci flags are consistent.
static bool check_jvmci_flags_are_consistent();
// Print jvmci arguments inconsistency error message.
static void print_jvmci_args_inconsistency_error_message();
};
#endif // SHARE_VM_JVMCI_JVMCIGLOBALS_HPP

View File

@ -592,6 +592,14 @@
#endif // TARGET_OS_FAMILY_bsd
#ifdef TARGET_ARCH_aarch64
#define VM_STRUCTS_CPU(nonstatic_field, static_field, unchecked_nonstatic_field, volatile_nonstatic_field, nonproduct_nonstatic_field, c2_nonstatic_field, unchecked_c1_static_field, unchecked_c2_static_field) \
volatile_nonstatic_field(JavaFrameAnchor, _last_Java_fp, intptr_t*)
#endif // TARGET_ARCH_aarch64
#ifdef TARGET_ARCH_x86
#define VM_STRUCTS_CPU(nonstatic_field, static_field, unchecked_nonstatic_field, volatile_nonstatic_field, nonproduct_nonstatic_field, c2_nonstatic_field, unchecked_c1_static_field, unchecked_c2_static_field) \

View File

@ -1879,7 +1879,7 @@ inline DependencyContext InstanceKlass::dependencies() {
return dep_context;
}
int InstanceKlass::mark_dependent_nmethods(DepChange& changes) {
int InstanceKlass::mark_dependent_nmethods(KlassDepChange& changes) {
return dependencies().mark_dependent_nmethods(changes);
}

View File

@ -56,7 +56,7 @@
// forward declaration for class -- see below for definition
class BreakpointInfo;
class ClassFileParser;
class DepChange;
class KlassDepChange;
class DependencyContext;
class fieldDescriptor;
class jniIdMapBase;
@ -821,7 +821,7 @@ public:
// maintenance of deoptimization dependencies
inline DependencyContext dependencies();
int mark_dependent_nmethods(DepChange& changes);
int mark_dependent_nmethods(KlassDepChange& changes);
void add_dependent_nmethod(nmethod* nm);
void remove_dependent_nmethod(nmethod* nm, bool delete_immediately);

View File

@ -243,14 +243,72 @@ bool C2Compiler::is_intrinsic_supported(const methodHandle& method, bool is_virt
case vmIntrinsics::_reverseBytes_l:
if (!Matcher::match_rule_supported(Op_ReverseBytesL)) return false;
break;
/* CompareAndSwap, Object: */
case vmIntrinsics::_compareAndSwapObject:
#ifdef _LP64
if ( UseCompressedOops && !Matcher::match_rule_supported(Op_CompareAndSwapN)) return false;
if (!UseCompressedOops && !Matcher::match_rule_supported(Op_CompareAndSwapP)) return false;
#else
if (!Matcher::match_rule_supported(Op_CompareAndSwapP)) return false;
#endif
break;
case vmIntrinsics::_weakCompareAndSwapObject:
case vmIntrinsics::_weakCompareAndSwapObjectAcquire:
case vmIntrinsics::_weakCompareAndSwapObjectRelease:
#ifdef _LP64
if ( UseCompressedOops && !Matcher::match_rule_supported(Op_WeakCompareAndSwapN)) return false;
if (!UseCompressedOops && !Matcher::match_rule_supported(Op_WeakCompareAndSwapP)) return false;
#else
if (!Matcher::match_rule_supported(Op_WeakCompareAndSwapP)) return false;
#endif
break;
/* CompareAndSwap, Long: */
case vmIntrinsics::_compareAndSwapLong:
if (!Matcher::match_rule_supported(Op_CompareAndSwapL)) return false;
break;
case vmIntrinsics::_weakCompareAndSwapLong:
case vmIntrinsics::_weakCompareAndSwapLongAcquire:
case vmIntrinsics::_weakCompareAndSwapLongRelease:
if (!Matcher::match_rule_supported(Op_WeakCompareAndSwapL)) return false;
break;
/* CompareAndSwap, Int: */
case vmIntrinsics::_compareAndSwapInt:
if (!Matcher::match_rule_supported(Op_CompareAndSwapI)) return false;
break;
case vmIntrinsics::_weakCompareAndSwapInt:
case vmIntrinsics::_weakCompareAndSwapIntAcquire:
case vmIntrinsics::_weakCompareAndSwapIntRelease:
if (!Matcher::match_rule_supported(Op_WeakCompareAndSwapL)) return false;
break;
/* CompareAndExchange, Object: */
case vmIntrinsics::_compareAndExchangeObjectVolatile:
case vmIntrinsics::_compareAndExchangeObjectAcquire:
case vmIntrinsics::_compareAndExchangeObjectRelease:
#ifdef _LP64
if ( UseCompressedOops && !Matcher::match_rule_supported(Op_CompareAndExchangeN)) return false;
if (!UseCompressedOops && !Matcher::match_rule_supported(Op_CompareAndExchangeP)) return false;
#else
if (!Matcher::match_rule_supported(Op_CompareAndExchangeP)) return false;
#endif
break;
/* CompareAndExchange, Long: */
case vmIntrinsics::_compareAndExchangeLongVolatile:
case vmIntrinsics::_compareAndExchangeLongAcquire:
case vmIntrinsics::_compareAndExchangeLongRelease:
if (!Matcher::match_rule_supported(Op_CompareAndExchangeL)) return false;
break;
/* CompareAndExchange, Int: */
case vmIntrinsics::_compareAndExchangeIntVolatile:
case vmIntrinsics::_compareAndExchangeIntAcquire:
case vmIntrinsics::_compareAndExchangeIntRelease:
if (!Matcher::match_rule_supported(Op_CompareAndExchangeI)) return false;
break;
case vmIntrinsics::_getAndAddInt:
if (!Matcher::match_rule_supported(Op_GetAndAddI)) return false;
break;
@ -382,6 +440,42 @@ bool C2Compiler::is_intrinsic_supported(const methodHandle& method, bool is_virt
case vmIntrinsics::_putLongVolatile:
case vmIntrinsics::_putFloatVolatile:
case vmIntrinsics::_putDoubleVolatile:
case vmIntrinsics::_getObjectAcquire:
case vmIntrinsics::_getBooleanAcquire:
case vmIntrinsics::_getByteAcquire:
case vmIntrinsics::_getShortAcquire:
case vmIntrinsics::_getCharAcquire:
case vmIntrinsics::_getIntAcquire:
case vmIntrinsics::_getLongAcquire:
case vmIntrinsics::_getFloatAcquire:
case vmIntrinsics::_getDoubleAcquire:
case vmIntrinsics::_putObjectRelease:
case vmIntrinsics::_putBooleanRelease:
case vmIntrinsics::_putByteRelease:
case vmIntrinsics::_putShortRelease:
case vmIntrinsics::_putCharRelease:
case vmIntrinsics::_putIntRelease:
case vmIntrinsics::_putLongRelease:
case vmIntrinsics::_putFloatRelease:
case vmIntrinsics::_putDoubleRelease:
case vmIntrinsics::_getObjectOpaque:
case vmIntrinsics::_getBooleanOpaque:
case vmIntrinsics::_getByteOpaque:
case vmIntrinsics::_getShortOpaque:
case vmIntrinsics::_getCharOpaque:
case vmIntrinsics::_getIntOpaque:
case vmIntrinsics::_getLongOpaque:
case vmIntrinsics::_getFloatOpaque:
case vmIntrinsics::_getDoubleOpaque:
case vmIntrinsics::_putObjectOpaque:
case vmIntrinsics::_putBooleanOpaque:
case vmIntrinsics::_putByteOpaque:
case vmIntrinsics::_putShortOpaque:
case vmIntrinsics::_putCharOpaque:
case vmIntrinsics::_putIntOpaque:
case vmIntrinsics::_putLongOpaque:
case vmIntrinsics::_putFloatOpaque:
case vmIntrinsics::_putDoubleOpaque:
case vmIntrinsics::_getShortUnaligned:
case vmIntrinsics::_getCharUnaligned:
case vmIntrinsics::_getIntUnaligned:
@ -390,7 +484,6 @@ bool C2Compiler::is_intrinsic_supported(const methodHandle& method, bool is_virt
case vmIntrinsics::_putCharUnaligned:
case vmIntrinsics::_putIntUnaligned:
case vmIntrinsics::_putLongUnaligned:
case vmIntrinsics::_compareAndSwapInt:
case vmIntrinsics::_putOrderedObject:
case vmIntrinsics::_putOrderedInt:
case vmIntrinsics::_putOrderedLong:

View File

@ -85,6 +85,14 @@ macro(CompareAndSwapI)
macro(CompareAndSwapL)
macro(CompareAndSwapP)
macro(CompareAndSwapN)
macro(WeakCompareAndSwapI)
macro(WeakCompareAndSwapL)
macro(WeakCompareAndSwapP)
macro(WeakCompareAndSwapN)
macro(CompareAndExchangeI)
macro(CompareAndExchangeL)
macro(CompareAndExchangeP)
macro(CompareAndExchangeN)
macro(GetAndAddI)
macro(GetAndAddL)
macro(GetAndSetI)

View File

@ -88,7 +88,27 @@ MachConstantBaseNode* Compile::mach_constant_base_node() {
// Return the index at which m must be inserted (or already exists).
// The sort order is by the address of the ciMethod, with is_virtual as minor key.
int Compile::intrinsic_insertion_index(ciMethod* m, bool is_virtual) {
class IntrinsicDescPair {
private:
ciMethod* _m;
bool _is_virtual;
public:
IntrinsicDescPair(ciMethod* m, bool is_virtual) : _m(m), _is_virtual(is_virtual) {}
static int compare(IntrinsicDescPair* const& key, CallGenerator* const& elt) {
ciMethod* m= elt->method();
ciMethod* key_m = key->_m;
if (key_m < m) return -1;
else if (key_m > m) return 1;
else {
bool is_virtual = elt->is_virtual();
bool key_virtual = key->_is_virtual;
if (key_virtual < is_virtual) return -1;
else if (key_virtual > is_virtual) return 1;
else return 0;
}
}
};
int Compile::intrinsic_insertion_index(ciMethod* m, bool is_virtual, bool& found) {
#ifdef ASSERT
for (int i = 1; i < _intrinsics->length(); i++) {
CallGenerator* cg1 = _intrinsics->at(i-1);
@ -99,63 +119,28 @@ int Compile::intrinsic_insertion_index(ciMethod* m, bool is_virtual) {
"compiler intrinsics list must stay sorted");
}
#endif
// Binary search sorted list, in decreasing intervals [lo, hi].
int lo = 0, hi = _intrinsics->length()-1;
while (lo <= hi) {
int mid = (uint)(hi + lo) / 2;
ciMethod* mid_m = _intrinsics->at(mid)->method();
if (m < mid_m) {
hi = mid-1;
} else if (m > mid_m) {
lo = mid+1;
} else {
// look at minor sort key
bool mid_virt = _intrinsics->at(mid)->is_virtual();
if (is_virtual < mid_virt) {
hi = mid-1;
} else if (is_virtual > mid_virt) {
lo = mid+1;
} else {
return mid; // exact match
}
}
}
return lo; // inexact match
IntrinsicDescPair pair(m, is_virtual);
return _intrinsics->find_sorted<IntrinsicDescPair*, IntrinsicDescPair::compare>(&pair, found);
}
void Compile::register_intrinsic(CallGenerator* cg) {
if (_intrinsics == NULL) {
_intrinsics = new (comp_arena())GrowableArray<CallGenerator*>(comp_arena(), 60, 0, NULL);
}
// This code is stolen from ciObjectFactory::insert.
// Really, GrowableArray should have methods for
// insert_at, remove_at, and binary_search.
int len = _intrinsics->length();
int index = intrinsic_insertion_index(cg->method(), cg->is_virtual());
if (index == len) {
_intrinsics->append(cg);
} else {
#ifdef ASSERT
CallGenerator* oldcg = _intrinsics->at(index);
assert(oldcg->method() != cg->method() || oldcg->is_virtual() != cg->is_virtual(), "don't register twice");
#endif
_intrinsics->append(_intrinsics->at(len-1));
int pos;
for (pos = len-2; pos >= index; pos--) {
_intrinsics->at_put(pos+1,_intrinsics->at(pos));
}
_intrinsics->at_put(index, cg);
}
bool found = false;
int index = intrinsic_insertion_index(cg->method(), cg->is_virtual(), found);
assert(!found, "registering twice");
_intrinsics->insert_before(index, cg);
assert(find_intrinsic(cg->method(), cg->is_virtual()) == cg, "registration worked");
}
CallGenerator* Compile::find_intrinsic(ciMethod* m, bool is_virtual) {
assert(m->is_loaded(), "don't try this on unloaded methods");
if (_intrinsics != NULL) {
int index = intrinsic_insertion_index(m, is_virtual);
if (index < _intrinsics->length()
&& _intrinsics->at(index)->method() == m
&& _intrinsics->at(index)->is_virtual() == is_virtual) {
bool found = false;
int index = intrinsic_insertion_index(m, is_virtual, found);
if (found) {
return _intrinsics->at(index);
}
}
@ -2801,6 +2786,14 @@ void Compile::final_graph_reshaping_impl( Node *n, Final_Reshape_Counts &frc) {
case Op_CompareAndSwapL:
case Op_CompareAndSwapP:
case Op_CompareAndSwapN:
case Op_WeakCompareAndSwapI:
case Op_WeakCompareAndSwapL:
case Op_WeakCompareAndSwapP:
case Op_WeakCompareAndSwapN:
case Op_CompareAndExchangeI:
case Op_CompareAndExchangeL:
case Op_CompareAndExchangeP:
case Op_CompareAndExchangeN:
case Op_GetAndAddI:
case Op_GetAndAddL:
case Op_GetAndSetI:

View File

@ -1250,7 +1250,7 @@ class Compile : public Phase {
// Intrinsic setup.
void register_library_intrinsics(); // initializer
CallGenerator* make_vm_intrinsic(ciMethod* m, bool is_virtual); // constructor
int intrinsic_insertion_index(ciMethod* m, bool is_virtual); // helper
int intrinsic_insertion_index(ciMethod* m, bool is_virtual, bool& found); // helper
CallGenerator* find_intrinsic(ciMethod* m, bool is_virtual); // query fn
void register_intrinsic(CallGenerator* cg); // update fn

View File

@ -490,6 +490,8 @@ void ConnectionGraph::add_node_to_connection_graph(Node *n, Unique_Node_List *de
}
break;
}
case Op_CompareAndExchangeP:
case Op_CompareAndExchangeN:
case Op_GetAndSetP:
case Op_GetAndSetN: {
add_objload_to_connection_graph(n, delayed_worklist);
@ -499,6 +501,8 @@ void ConnectionGraph::add_node_to_connection_graph(Node *n, Unique_Node_List *de
case Op_StoreN:
case Op_StoreNKlass:
case Op_StorePConditional:
case Op_WeakCompareAndSwapP:
case Op_WeakCompareAndSwapN:
case Op_CompareAndSwapP:
case Op_CompareAndSwapN: {
Node* adr = n->in(MemNode::Address);
@ -698,8 +702,12 @@ void ConnectionGraph::add_final_edges(Node *n) {
case Op_StoreN:
case Op_StoreNKlass:
case Op_StorePConditional:
case Op_CompareAndExchangeP:
case Op_CompareAndExchangeN:
case Op_CompareAndSwapP:
case Op_CompareAndSwapN:
case Op_WeakCompareAndSwapP:
case Op_WeakCompareAndSwapN:
case Op_GetAndSetP:
case Op_GetAndSetN: {
Node* adr = n->in(MemNode::Address);

View File

@ -1179,8 +1179,10 @@ Node* GraphKit::load_array_length(Node* array) {
// Helper function to do a NULL pointer check. Returned value is
// the incoming address with NULL casted away. You are allowed to use the
// not-null value only if you are control dependent on the test.
#ifndef PRODUCT
extern int explicit_null_checks_inserted,
explicit_null_checks_elided;
#endif
Node* GraphKit::null_check_common(Node* value, BasicType type,
// optional arguments for variations:
bool assert_null,
@ -1193,7 +1195,7 @@ Node* GraphKit::null_check_common(Node* value, BasicType type,
value = cast_not_null(value); // Make it appear to be non-null (4962416).
return value;
}
explicit_null_checks_inserted++;
NOT_PRODUCT(explicit_null_checks_inserted++);
// Construct NULL check
Node *chk = NULL;
@ -1233,7 +1235,7 @@ Node* GraphKit::null_check_common(Node* value, BasicType type,
// See if the type is contained in NULL_PTR.
// If so, then the value is already null.
if (t->higher_equal(TypePtr::NULL_PTR)) {
explicit_null_checks_elided++;
NOT_PRODUCT(explicit_null_checks_elided++);
return value; // Elided null assert quickly!
}
} else {
@ -1242,7 +1244,7 @@ Node* GraphKit::null_check_common(Node* value, BasicType type,
// type. In other words, "value" was not-null.
if (t->meet(TypePtr::NULL_PTR) != t->remove_speculative()) {
// same as: if (!TypePtr::NULL_PTR->higher_equal(t)) ...
explicit_null_checks_elided++;
NOT_PRODUCT(explicit_null_checks_elided++);
return value; // Elided null check quickly!
}
}
@ -1282,7 +1284,7 @@ Node* GraphKit::null_check_common(Node* value, BasicType type,
set_control(cfg);
Node *res = cast_not_null(value);
set_control(oldcontrol);
explicit_null_checks_elided++;
NOT_PRODUCT(explicit_null_checks_elided++);
return res;
}
cfg = IfNode::up_one_dom(cfg, /*linear_only=*/ true);
@ -1326,15 +1328,18 @@ Node* GraphKit::null_check_common(Node* value, BasicType type,
IfNode* iff = create_and_map_if(control(), tst, ok_prob, COUNT_UNKNOWN);
Node* null_true = _gvn.transform( new IfFalseNode(iff));
set_control( _gvn.transform( new IfTrueNode(iff)));
if (null_true == top())
#ifndef PRODUCT
if (null_true == top()) {
explicit_null_checks_elided++;
}
#endif
(*null_control) = null_true;
} else {
BuildCutout unless(this, tst, ok_prob);
// Check for optimizer eliding test at parse time
if (stopped()) {
// Failure not possible; do not bother making uncommon trap.
explicit_null_checks_elided++;
NOT_PRODUCT(explicit_null_checks_elided++);
} else if (assert_null) {
uncommon_trap(reason,
Deoptimization::Action_make_not_entrant,
@ -3149,6 +3154,19 @@ Node* GraphKit::insert_mem_bar_volatile(int opcode, int alias_idx, Node* precede
return membar;
}
void GraphKit::insert_store_load_for_barrier() {
Node* mem = reset_memory();
MemBarNode* mb = MemBarNode::make(C, Op_MemBarVolatile, Compile::AliasIdxBot);
mb->init_req(TypeFunc::Control, control());
mb->init_req(TypeFunc::Memory, mem);
Node* membar = _gvn.transform(mb);
set_control(_gvn.transform(new ProjNode(membar, TypeFunc::Control)));
Node* newmem = _gvn.transform(new ProjNode(membar, TypeFunc::Memory));
set_all_memory(mem);
set_memory(newmem, Compile::AliasIdxRaw);
}
//------------------------------shared_lock------------------------------------
// Emit locking code.
FastLockNode* GraphKit::shared_lock(Node* obj) {
@ -3840,7 +3858,7 @@ void GraphKit::write_barrier_post(Node* oop_store,
BasicType bt = T_BYTE;
if (UseConcMarkSweepGC && UseCondCardMark) {
insert_mem_bar(Op_MemBarVolatile); // StoreLoad barrier
insert_store_load_for_barrier();
__ sync_kit(this);
}
@ -4280,8 +4298,7 @@ void GraphKit::g1_write_barrier_post(Node* oop_store,
__ if_then(card_val, BoolTest::ne, young_card); {
sync_kit(ideal);
// Use Op_MemBarVolatile to achieve the effect of a StoreLoad barrier.
insert_mem_bar(Op_MemBarVolatile, oop_store);
insert_store_load_for_barrier();
__ sync_kit(this);
Node* card_val_reload = __ load(__ ctrl(), card_adr, TypeInt::INT, T_BYTE, Compile::AliasIdxRaw);

View File

@ -834,6 +834,7 @@ class GraphKit : public Phase {
int next_monitor();
Node* insert_mem_bar(int opcode, Node* precedent = NULL);
Node* insert_mem_bar_volatile(int opcode, int alias_idx, Node* precedent = NULL);
void insert_store_load_for_barrier();
// Optional 'precedent' is appended as an extra edge, to force ordering.
FastLockNode* shared_lock(Node* obj);
void shared_unlock(Node* box, Node* obj);

View File

@ -40,7 +40,9 @@
// Optimization - Graph Style
#ifndef PRODUCT
extern int explicit_null_checks_elided;
#endif
//=============================================================================
//------------------------------Value------------------------------------------
@ -1504,24 +1506,28 @@ Node* IfNode::search_identical(int dist) {
Node* prev_dom = this;
int op = Opcode();
// Search up the dominator tree for an If with an identical test
while( dom->Opcode() != op || // Not same opcode?
while (dom->Opcode() != op || // Not same opcode?
dom->in(1) != in(1) || // Not same input 1?
(req() == 3 && dom->in(2) != in(2)) || // Not same input 2?
prev_dom->in(0) != dom ) { // One path of test does not dominate?
if( dist < 0 ) return NULL;
prev_dom->in(0) != dom) { // One path of test does not dominate?
if (dist < 0) return NULL;
dist--;
prev_dom = dom;
dom = up_one_dom( dom );
if( !dom ) return NULL;
dom = up_one_dom(dom);
if (!dom) return NULL;
}
// Check that we did not follow a loop back to ourselves
if( this == dom )
if (this == dom) {
return NULL;
}
if( dist > 2 ) // Add to count of NULL checks elided
#ifndef PRODUCT
if (dist > 2) { // Add to count of NULL checks elided
explicit_null_checks_elided++;
}
#endif
return prev_dom;
}

View File

@ -348,8 +348,10 @@ void PhaseCFG::implicit_null_check(Block* block, Node *proj, Node *val, int allo
}
// ---- Found an implicit null check
#ifndef PRODUCT
extern int implicit_null_checks;
implicit_null_checks++;
#endif
if( is_decoden ) {
// Check if we need to hoist decodeHeapOop_not_null first.

View File

@ -243,7 +243,9 @@ class LibraryCallKit : public GraphKit {
// Generates the guards that check whether the result of
// Unsafe.getObject should be recorded in an SATB log buffer.
void insert_pre_barrier(Node* base_oop, Node* offset, Node* pre_val, bool need_mem_bar);
bool inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile, bool is_unaligned);
typedef enum { Relaxed, Opaque, Volatile, Acquire, Release } AccessKind;
bool inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, AccessKind kind, bool is_unaligned);
static bool klass_needs_init_guard(Node* kls);
bool inline_unsafe_allocate();
bool inline_unsafe_copyMemory();
@ -273,9 +275,10 @@ class LibraryCallKit : public GraphKit {
JVMState* arraycopy_restore_alloc_state(AllocateArrayNode* alloc, int& saved_reexecute_sp);
void arraycopy_move_allocation_here(AllocateArrayNode* alloc, Node* dest, JVMState* saved_jvms, int saved_reexecute_sp);
typedef enum { LS_xadd, LS_xchg, LS_cmpxchg } LoadStoreKind;
bool inline_unsafe_load_store(BasicType type, LoadStoreKind kind);
bool inline_unsafe_ordered_store(BasicType type);
typedef enum { LS_get_add, LS_get_set, LS_cmp_swap, LS_cmp_swap_weak, LS_cmp_exchange } LoadStoreKind;
MemNode::MemOrd access_kind_to_memord_LS(AccessKind access_kind, bool is_store);
MemNode::MemOrd access_kind_to_memord(AccessKind access_kind);
bool inline_unsafe_load_store(BasicType type, LoadStoreKind kind, AccessKind access_kind);
bool inline_unsafe_fence(vmIntrinsics::ID id);
bool inline_fp_conversions(vmIntrinsics::ID id);
bool inline_number_methods(vmIntrinsics::ID id);
@ -552,86 +555,147 @@ bool LibraryCallKit::try_to_inline(int predicate) {
case vmIntrinsics::_inflateStringC:
case vmIntrinsics::_inflateStringB: return inline_string_copy(!is_compress);
case vmIntrinsics::_getObject: return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT, !is_volatile, false);
case vmIntrinsics::_getBoolean: return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, !is_volatile, false);
case vmIntrinsics::_getByte: return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE, !is_volatile, false);
case vmIntrinsics::_getShort: return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT, !is_volatile, false);
case vmIntrinsics::_getChar: return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR, !is_volatile, false);
case vmIntrinsics::_getInt: return inline_unsafe_access(!is_native_ptr, !is_store, T_INT, !is_volatile, false);
case vmIntrinsics::_getLong: return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG, !is_volatile, false);
case vmIntrinsics::_getFloat: return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT, !is_volatile, false);
case vmIntrinsics::_getDouble: return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE, !is_volatile, false);
case vmIntrinsics::_putObject: return inline_unsafe_access(!is_native_ptr, is_store, T_OBJECT, !is_volatile, false);
case vmIntrinsics::_putBoolean: return inline_unsafe_access(!is_native_ptr, is_store, T_BOOLEAN, !is_volatile, false);
case vmIntrinsics::_putByte: return inline_unsafe_access(!is_native_ptr, is_store, T_BYTE, !is_volatile, false);
case vmIntrinsics::_putShort: return inline_unsafe_access(!is_native_ptr, is_store, T_SHORT, !is_volatile, false);
case vmIntrinsics::_putChar: return inline_unsafe_access(!is_native_ptr, is_store, T_CHAR, !is_volatile, false);
case vmIntrinsics::_putInt: return inline_unsafe_access(!is_native_ptr, is_store, T_INT, !is_volatile, false);
case vmIntrinsics::_putLong: return inline_unsafe_access(!is_native_ptr, is_store, T_LONG, !is_volatile, false);
case vmIntrinsics::_putFloat: return inline_unsafe_access(!is_native_ptr, is_store, T_FLOAT, !is_volatile, false);
case vmIntrinsics::_putDouble: return inline_unsafe_access(!is_native_ptr, is_store, T_DOUBLE, !is_volatile, false);
case vmIntrinsics::_getObject: return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT, Relaxed, false);
case vmIntrinsics::_getBoolean: return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, Relaxed, false);
case vmIntrinsics::_getByte: return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE, Relaxed, false);
case vmIntrinsics::_getShort: return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT, Relaxed, false);
case vmIntrinsics::_getChar: return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR, Relaxed, false);
case vmIntrinsics::_getInt: return inline_unsafe_access(!is_native_ptr, !is_store, T_INT, Relaxed, false);
case vmIntrinsics::_getLong: return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG, Relaxed, false);
case vmIntrinsics::_getFloat: return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT, Relaxed, false);
case vmIntrinsics::_getDouble: return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE, Relaxed, false);
case vmIntrinsics::_getByte_raw: return inline_unsafe_access( is_native_ptr, !is_store, T_BYTE, !is_volatile, false);
case vmIntrinsics::_getShort_raw: return inline_unsafe_access( is_native_ptr, !is_store, T_SHORT, !is_volatile, false);
case vmIntrinsics::_getChar_raw: return inline_unsafe_access( is_native_ptr, !is_store, T_CHAR, !is_volatile, false);
case vmIntrinsics::_getInt_raw: return inline_unsafe_access( is_native_ptr, !is_store, T_INT, !is_volatile, false);
case vmIntrinsics::_getLong_raw: return inline_unsafe_access( is_native_ptr, !is_store, T_LONG, !is_volatile, false);
case vmIntrinsics::_getFloat_raw: return inline_unsafe_access( is_native_ptr, !is_store, T_FLOAT, !is_volatile, false);
case vmIntrinsics::_getDouble_raw: return inline_unsafe_access( is_native_ptr, !is_store, T_DOUBLE, !is_volatile, false);
case vmIntrinsics::_getAddress_raw: return inline_unsafe_access( is_native_ptr, !is_store, T_ADDRESS, !is_volatile, false);
case vmIntrinsics::_putObject: return inline_unsafe_access(!is_native_ptr, is_store, T_OBJECT, Relaxed, false);
case vmIntrinsics::_putBoolean: return inline_unsafe_access(!is_native_ptr, is_store, T_BOOLEAN, Relaxed, false);
case vmIntrinsics::_putByte: return inline_unsafe_access(!is_native_ptr, is_store, T_BYTE, Relaxed, false);
case vmIntrinsics::_putShort: return inline_unsafe_access(!is_native_ptr, is_store, T_SHORT, Relaxed, false);
case vmIntrinsics::_putChar: return inline_unsafe_access(!is_native_ptr, is_store, T_CHAR, Relaxed, false);
case vmIntrinsics::_putInt: return inline_unsafe_access(!is_native_ptr, is_store, T_INT, Relaxed, false);
case vmIntrinsics::_putLong: return inline_unsafe_access(!is_native_ptr, is_store, T_LONG, Relaxed, false);
case vmIntrinsics::_putFloat: return inline_unsafe_access(!is_native_ptr, is_store, T_FLOAT, Relaxed, false);
case vmIntrinsics::_putDouble: return inline_unsafe_access(!is_native_ptr, is_store, T_DOUBLE, Relaxed, false);
case vmIntrinsics::_putByte_raw: return inline_unsafe_access( is_native_ptr, is_store, T_BYTE, !is_volatile, false);
case vmIntrinsics::_putShort_raw: return inline_unsafe_access( is_native_ptr, is_store, T_SHORT, !is_volatile, false);
case vmIntrinsics::_putChar_raw: return inline_unsafe_access( is_native_ptr, is_store, T_CHAR, !is_volatile, false);
case vmIntrinsics::_putInt_raw: return inline_unsafe_access( is_native_ptr, is_store, T_INT, !is_volatile, false);
case vmIntrinsics::_putLong_raw: return inline_unsafe_access( is_native_ptr, is_store, T_LONG, !is_volatile, false);
case vmIntrinsics::_putFloat_raw: return inline_unsafe_access( is_native_ptr, is_store, T_FLOAT, !is_volatile, false);
case vmIntrinsics::_putDouble_raw: return inline_unsafe_access( is_native_ptr, is_store, T_DOUBLE, !is_volatile, false);
case vmIntrinsics::_putAddress_raw: return inline_unsafe_access( is_native_ptr, is_store, T_ADDRESS, !is_volatile, false);
case vmIntrinsics::_getByte_raw: return inline_unsafe_access( is_native_ptr, !is_store, T_BYTE, Relaxed, false);
case vmIntrinsics::_getShort_raw: return inline_unsafe_access( is_native_ptr, !is_store, T_SHORT, Relaxed, false);
case vmIntrinsics::_getChar_raw: return inline_unsafe_access( is_native_ptr, !is_store, T_CHAR, Relaxed, false);
case vmIntrinsics::_getInt_raw: return inline_unsafe_access( is_native_ptr, !is_store, T_INT, Relaxed, false);
case vmIntrinsics::_getLong_raw: return inline_unsafe_access( is_native_ptr, !is_store, T_LONG, Relaxed, false);
case vmIntrinsics::_getFloat_raw: return inline_unsafe_access( is_native_ptr, !is_store, T_FLOAT, Relaxed, false);
case vmIntrinsics::_getDouble_raw: return inline_unsafe_access( is_native_ptr, !is_store, T_DOUBLE, Relaxed, false);
case vmIntrinsics::_getAddress_raw: return inline_unsafe_access( is_native_ptr, !is_store, T_ADDRESS, Relaxed, false);
case vmIntrinsics::_getObjectVolatile: return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT, is_volatile, false);
case vmIntrinsics::_getBooleanVolatile: return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, is_volatile, false);
case vmIntrinsics::_getByteVolatile: return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE, is_volatile, false);
case vmIntrinsics::_getShortVolatile: return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT, is_volatile, false);
case vmIntrinsics::_getCharVolatile: return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR, is_volatile, false);
case vmIntrinsics::_getIntVolatile: return inline_unsafe_access(!is_native_ptr, !is_store, T_INT, is_volatile, false);
case vmIntrinsics::_getLongVolatile: return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG, is_volatile, false);
case vmIntrinsics::_getFloatVolatile: return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT, is_volatile, false);
case vmIntrinsics::_getDoubleVolatile: return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE, is_volatile, false);
case vmIntrinsics::_putByte_raw: return inline_unsafe_access( is_native_ptr, is_store, T_BYTE, Relaxed, false);
case vmIntrinsics::_putShort_raw: return inline_unsafe_access( is_native_ptr, is_store, T_SHORT, Relaxed, false);
case vmIntrinsics::_putChar_raw: return inline_unsafe_access( is_native_ptr, is_store, T_CHAR, Relaxed, false);
case vmIntrinsics::_putInt_raw: return inline_unsafe_access( is_native_ptr, is_store, T_INT, Relaxed, false);
case vmIntrinsics::_putLong_raw: return inline_unsafe_access( is_native_ptr, is_store, T_LONG, Relaxed, false);
case vmIntrinsics::_putFloat_raw: return inline_unsafe_access( is_native_ptr, is_store, T_FLOAT, Relaxed, false);
case vmIntrinsics::_putDouble_raw: return inline_unsafe_access( is_native_ptr, is_store, T_DOUBLE, Relaxed, false);
case vmIntrinsics::_putAddress_raw: return inline_unsafe_access( is_native_ptr, is_store, T_ADDRESS, Relaxed, false);
case vmIntrinsics::_putObjectVolatile: return inline_unsafe_access(!is_native_ptr, is_store, T_OBJECT, is_volatile, false);
case vmIntrinsics::_putBooleanVolatile: return inline_unsafe_access(!is_native_ptr, is_store, T_BOOLEAN, is_volatile, false);
case vmIntrinsics::_putByteVolatile: return inline_unsafe_access(!is_native_ptr, is_store, T_BYTE, is_volatile, false);
case vmIntrinsics::_putShortVolatile: return inline_unsafe_access(!is_native_ptr, is_store, T_SHORT, is_volatile, false);
case vmIntrinsics::_putCharVolatile: return inline_unsafe_access(!is_native_ptr, is_store, T_CHAR, is_volatile, false);
case vmIntrinsics::_putIntVolatile: return inline_unsafe_access(!is_native_ptr, is_store, T_INT, is_volatile, false);
case vmIntrinsics::_putLongVolatile: return inline_unsafe_access(!is_native_ptr, is_store, T_LONG, is_volatile, false);
case vmIntrinsics::_putFloatVolatile: return inline_unsafe_access(!is_native_ptr, is_store, T_FLOAT, is_volatile, false);
case vmIntrinsics::_putDoubleVolatile: return inline_unsafe_access(!is_native_ptr, is_store, T_DOUBLE, is_volatile, false);
case vmIntrinsics::_getObjectVolatile: return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT, Volatile, false);
case vmIntrinsics::_getBooleanVolatile: return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, Volatile, false);
case vmIntrinsics::_getByteVolatile: return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE, Volatile, false);
case vmIntrinsics::_getShortVolatile: return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT, Volatile, false);
case vmIntrinsics::_getCharVolatile: return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR, Volatile, false);
case vmIntrinsics::_getIntVolatile: return inline_unsafe_access(!is_native_ptr, !is_store, T_INT, Volatile, false);
case vmIntrinsics::_getLongVolatile: return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG, Volatile, false);
case vmIntrinsics::_getFloatVolatile: return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT, Volatile, false);
case vmIntrinsics::_getDoubleVolatile: return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE, Volatile, false);
case vmIntrinsics::_getShortUnaligned: return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT, !is_volatile, true);
case vmIntrinsics::_getCharUnaligned: return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR, !is_volatile, true);
case vmIntrinsics::_getIntUnaligned: return inline_unsafe_access(!is_native_ptr, !is_store, T_INT, !is_volatile, true);
case vmIntrinsics::_getLongUnaligned: return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG, !is_volatile, true);
case vmIntrinsics::_putObjectVolatile: return inline_unsafe_access(!is_native_ptr, is_store, T_OBJECT, Volatile, false);
case vmIntrinsics::_putBooleanVolatile: return inline_unsafe_access(!is_native_ptr, is_store, T_BOOLEAN, Volatile, false);
case vmIntrinsics::_putByteVolatile: return inline_unsafe_access(!is_native_ptr, is_store, T_BYTE, Volatile, false);
case vmIntrinsics::_putShortVolatile: return inline_unsafe_access(!is_native_ptr, is_store, T_SHORT, Volatile, false);
case vmIntrinsics::_putCharVolatile: return inline_unsafe_access(!is_native_ptr, is_store, T_CHAR, Volatile, false);
case vmIntrinsics::_putIntVolatile: return inline_unsafe_access(!is_native_ptr, is_store, T_INT, Volatile, false);
case vmIntrinsics::_putLongVolatile: return inline_unsafe_access(!is_native_ptr, is_store, T_LONG, Volatile, false);
case vmIntrinsics::_putFloatVolatile: return inline_unsafe_access(!is_native_ptr, is_store, T_FLOAT, Volatile, false);
case vmIntrinsics::_putDoubleVolatile: return inline_unsafe_access(!is_native_ptr, is_store, T_DOUBLE, Volatile, false);
case vmIntrinsics::_putShortUnaligned: return inline_unsafe_access(!is_native_ptr, is_store, T_SHORT, !is_volatile, true);
case vmIntrinsics::_putCharUnaligned: return inline_unsafe_access(!is_native_ptr, is_store, T_CHAR, !is_volatile, true);
case vmIntrinsics::_putIntUnaligned: return inline_unsafe_access(!is_native_ptr, is_store, T_INT, !is_volatile, true);
case vmIntrinsics::_putLongUnaligned: return inline_unsafe_access(!is_native_ptr, is_store, T_LONG, !is_volatile, true);
case vmIntrinsics::_getShortUnaligned: return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT, Relaxed, true);
case vmIntrinsics::_getCharUnaligned: return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR, Relaxed, true);
case vmIntrinsics::_getIntUnaligned: return inline_unsafe_access(!is_native_ptr, !is_store, T_INT, Relaxed, true);
case vmIntrinsics::_getLongUnaligned: return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG, Relaxed, true);
case vmIntrinsics::_compareAndSwapObject: return inline_unsafe_load_store(T_OBJECT, LS_cmpxchg);
case vmIntrinsics::_compareAndSwapInt: return inline_unsafe_load_store(T_INT, LS_cmpxchg);
case vmIntrinsics::_compareAndSwapLong: return inline_unsafe_load_store(T_LONG, LS_cmpxchg);
case vmIntrinsics::_putShortUnaligned: return inline_unsafe_access(!is_native_ptr, is_store, T_SHORT, Relaxed, true);
case vmIntrinsics::_putCharUnaligned: return inline_unsafe_access(!is_native_ptr, is_store, T_CHAR, Relaxed, true);
case vmIntrinsics::_putIntUnaligned: return inline_unsafe_access(!is_native_ptr, is_store, T_INT, Relaxed, true);
case vmIntrinsics::_putLongUnaligned: return inline_unsafe_access(!is_native_ptr, is_store, T_LONG, Relaxed, true);
case vmIntrinsics::_putOrderedObject: return inline_unsafe_ordered_store(T_OBJECT);
case vmIntrinsics::_putOrderedInt: return inline_unsafe_ordered_store(T_INT);
case vmIntrinsics::_putOrderedLong: return inline_unsafe_ordered_store(T_LONG);
case vmIntrinsics::_putOrderedObject: return inline_unsafe_access(!is_native_ptr, is_store, T_OBJECT, Release, false);
case vmIntrinsics::_putOrderedInt: return inline_unsafe_access(!is_native_ptr, is_store, T_INT, Release, false);
case vmIntrinsics::_putOrderedLong: return inline_unsafe_access(!is_native_ptr, is_store, T_LONG, Release, false);
case vmIntrinsics::_getAndAddInt: return inline_unsafe_load_store(T_INT, LS_xadd);
case vmIntrinsics::_getAndAddLong: return inline_unsafe_load_store(T_LONG, LS_xadd);
case vmIntrinsics::_getAndSetInt: return inline_unsafe_load_store(T_INT, LS_xchg);
case vmIntrinsics::_getAndSetLong: return inline_unsafe_load_store(T_LONG, LS_xchg);
case vmIntrinsics::_getAndSetObject: return inline_unsafe_load_store(T_OBJECT, LS_xchg);
case vmIntrinsics::_getObjectAcquire: return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT, Acquire, false);
case vmIntrinsics::_getBooleanAcquire: return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, Acquire, false);
case vmIntrinsics::_getByteAcquire: return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE, Acquire, false);
case vmIntrinsics::_getShortAcquire: return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT, Acquire, false);
case vmIntrinsics::_getCharAcquire: return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR, Acquire, false);
case vmIntrinsics::_getIntAcquire: return inline_unsafe_access(!is_native_ptr, !is_store, T_INT, Acquire, false);
case vmIntrinsics::_getLongAcquire: return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG, Acquire, false);
case vmIntrinsics::_getFloatAcquire: return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT, Acquire, false);
case vmIntrinsics::_getDoubleAcquire: return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE, Acquire, false);
case vmIntrinsics::_putObjectRelease: return inline_unsafe_access(!is_native_ptr, is_store, T_OBJECT, Release, false);
case vmIntrinsics::_putBooleanRelease: return inline_unsafe_access(!is_native_ptr, is_store, T_BOOLEAN, Release, false);
case vmIntrinsics::_putByteRelease: return inline_unsafe_access(!is_native_ptr, is_store, T_BYTE, Release, false);
case vmIntrinsics::_putShortRelease: return inline_unsafe_access(!is_native_ptr, is_store, T_SHORT, Release, false);
case vmIntrinsics::_putCharRelease: return inline_unsafe_access(!is_native_ptr, is_store, T_CHAR, Release, false);
case vmIntrinsics::_putIntRelease: return inline_unsafe_access(!is_native_ptr, is_store, T_INT, Release, false);
case vmIntrinsics::_putLongRelease: return inline_unsafe_access(!is_native_ptr, is_store, T_LONG, Release, false);
case vmIntrinsics::_putFloatRelease: return inline_unsafe_access(!is_native_ptr, is_store, T_FLOAT, Release, false);
case vmIntrinsics::_putDoubleRelease: return inline_unsafe_access(!is_native_ptr, is_store, T_DOUBLE, Release, false);
case vmIntrinsics::_getObjectOpaque: return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT, Opaque, false);
case vmIntrinsics::_getBooleanOpaque: return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, Opaque, false);
case vmIntrinsics::_getByteOpaque: return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE, Opaque, false);
case vmIntrinsics::_getShortOpaque: return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT, Opaque, false);
case vmIntrinsics::_getCharOpaque: return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR, Opaque, false);
case vmIntrinsics::_getIntOpaque: return inline_unsafe_access(!is_native_ptr, !is_store, T_INT, Opaque, false);
case vmIntrinsics::_getLongOpaque: return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG, Opaque, false);
case vmIntrinsics::_getFloatOpaque: return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT, Opaque, false);
case vmIntrinsics::_getDoubleOpaque: return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE, Opaque, false);
case vmIntrinsics::_putObjectOpaque: return inline_unsafe_access(!is_native_ptr, is_store, T_OBJECT, Opaque, false);
case vmIntrinsics::_putBooleanOpaque: return inline_unsafe_access(!is_native_ptr, is_store, T_BOOLEAN, Opaque, false);
case vmIntrinsics::_putByteOpaque: return inline_unsafe_access(!is_native_ptr, is_store, T_BYTE, Opaque, false);
case vmIntrinsics::_putShortOpaque: return inline_unsafe_access(!is_native_ptr, is_store, T_SHORT, Opaque, false);
case vmIntrinsics::_putCharOpaque: return inline_unsafe_access(!is_native_ptr, is_store, T_CHAR, Opaque, false);
case vmIntrinsics::_putIntOpaque: return inline_unsafe_access(!is_native_ptr, is_store, T_INT, Opaque, false);
case vmIntrinsics::_putLongOpaque: return inline_unsafe_access(!is_native_ptr, is_store, T_LONG, Opaque, false);
case vmIntrinsics::_putFloatOpaque: return inline_unsafe_access(!is_native_ptr, is_store, T_FLOAT, Opaque, false);
case vmIntrinsics::_putDoubleOpaque: return inline_unsafe_access(!is_native_ptr, is_store, T_DOUBLE, Opaque, false);
case vmIntrinsics::_compareAndSwapObject: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap, Volatile);
case vmIntrinsics::_compareAndSwapInt: return inline_unsafe_load_store(T_INT, LS_cmp_swap, Volatile);
case vmIntrinsics::_compareAndSwapLong: return inline_unsafe_load_store(T_LONG, LS_cmp_swap, Volatile);
case vmIntrinsics::_weakCompareAndSwapObject: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Relaxed);
case vmIntrinsics::_weakCompareAndSwapObjectAcquire: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Acquire);
case vmIntrinsics::_weakCompareAndSwapObjectRelease: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Release);
case vmIntrinsics::_weakCompareAndSwapInt: return inline_unsafe_load_store(T_INT, LS_cmp_swap_weak, Relaxed);
case vmIntrinsics::_weakCompareAndSwapIntAcquire: return inline_unsafe_load_store(T_INT, LS_cmp_swap_weak, Acquire);
case vmIntrinsics::_weakCompareAndSwapIntRelease: return inline_unsafe_load_store(T_INT, LS_cmp_swap_weak, Release);
case vmIntrinsics::_weakCompareAndSwapLong: return inline_unsafe_load_store(T_LONG, LS_cmp_swap_weak, Relaxed);
case vmIntrinsics::_weakCompareAndSwapLongAcquire: return inline_unsafe_load_store(T_LONG, LS_cmp_swap_weak, Acquire);
case vmIntrinsics::_weakCompareAndSwapLongRelease: return inline_unsafe_load_store(T_LONG, LS_cmp_swap_weak, Release);
case vmIntrinsics::_compareAndExchangeObjectVolatile: return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange, Volatile);
case vmIntrinsics::_compareAndExchangeObjectAcquire: return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange, Acquire);
case vmIntrinsics::_compareAndExchangeObjectRelease: return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange, Release);
case vmIntrinsics::_compareAndExchangeIntVolatile: return inline_unsafe_load_store(T_INT, LS_cmp_exchange, Volatile);
case vmIntrinsics::_compareAndExchangeIntAcquire: return inline_unsafe_load_store(T_INT, LS_cmp_exchange, Acquire);
case vmIntrinsics::_compareAndExchangeIntRelease: return inline_unsafe_load_store(T_INT, LS_cmp_exchange, Release);
case vmIntrinsics::_compareAndExchangeLongVolatile: return inline_unsafe_load_store(T_LONG, LS_cmp_exchange, Volatile);
case vmIntrinsics::_compareAndExchangeLongAcquire: return inline_unsafe_load_store(T_LONG, LS_cmp_exchange, Acquire);
case vmIntrinsics::_compareAndExchangeLongRelease: return inline_unsafe_load_store(T_LONG, LS_cmp_exchange, Release);
case vmIntrinsics::_getAndAddInt: return inline_unsafe_load_store(T_INT, LS_get_add, Volatile);
case vmIntrinsics::_getAndAddLong: return inline_unsafe_load_store(T_LONG, LS_get_add, Volatile);
case vmIntrinsics::_getAndSetInt: return inline_unsafe_load_store(T_INT, LS_get_set, Volatile);
case vmIntrinsics::_getAndSetLong: return inline_unsafe_load_store(T_LONG, LS_get_set, Volatile);
case vmIntrinsics::_getAndSetObject: return inline_unsafe_load_store(T_OBJECT, LS_get_set, Volatile);
case vmIntrinsics::_loadFence:
case vmIntrinsics::_storeFence:
@ -1581,6 +1645,13 @@ bool LibraryCallKit::inline_string_char_access(bool is_store) {
assert (type2aelembytes(T_CHAR) == type2aelembytes(T_BYTE)*2,
"sanity: byte[] and char[] scales agree");
// Bail when getChar over constants is requested: constant folding would
// reject folding mismatched char access over byte[]. A normal inlining for getChar
// Java method would constant fold nicely instead.
if (!is_store && value->is_Con() && index->is_Con()) {
return false;
}
Node* adr = array_element_address(value, index, T_CHAR);
if (is_store) {
(void) store_to_memory(control(), adr, ch, T_CHAR, TypeAryPtr::BYTES, MemNode::unordered,
@ -2274,8 +2345,10 @@ const TypeOopPtr* LibraryCallKit::sharpen_unsafe_type(Compile::AliasType* alias_
return NULL;
}
bool LibraryCallKit::inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile, bool unaligned) {
bool LibraryCallKit::inline_unsafe_access(const bool is_native_ptr, bool is_store, const BasicType type, const AccessKind kind, const bool unaligned) {
if (callee()->is_static()) return false; // caller must have the capability!
guarantee(!is_store || kind != Acquire, "Acquire accesses can be produced only for loads");
guarantee( is_store || kind != Release, "Release accesses can be produced only for stores");
#ifndef PRODUCT
{
@ -2364,7 +2437,42 @@ bool LibraryCallKit::inline_unsafe_access(bool is_native_ptr, bool is_store, Bas
// the barriers get omitted and the unsafe reference begins to "pollute"
// the alias analysis of the rest of the graph, either Compile::can_alias
// or Compile::must_alias will throw a diagnostic assert.)
bool need_mem_bar = (alias_type->adr_type() == TypeOopPtr::BOTTOM);
bool need_mem_bar;
switch (kind) {
case Relaxed:
need_mem_bar = (alias_type->adr_type() == TypeOopPtr::BOTTOM);
break;
case Opaque:
// Opaque uses CPUOrder membars for protection against code movement.
case Acquire:
case Release:
case Volatile:
need_mem_bar = true;
break;
default:
ShouldNotReachHere();
}
// Some accesses require access atomicity for all types, notably longs and doubles.
// When AlwaysAtomicAccesses is enabled, all accesses are atomic.
bool requires_atomic_access = false;
switch (kind) {
case Relaxed:
case Opaque:
requires_atomic_access = AlwaysAtomicAccesses;
break;
case Acquire:
case Release:
case Volatile:
requires_atomic_access = true;
break;
default:
ShouldNotReachHere();
}
// Figure out the memory ordering.
// Acquire/Release/Volatile accesses require marking the loads/stores with MemOrd
MemNode::MemOrd mo = access_kind_to_memord_LS(kind, is_store);
// If we are reading the value of the referent field of a Reference
// object (either by using Unsafe directly or through reflection)
@ -2391,22 +2499,30 @@ bool LibraryCallKit::inline_unsafe_access(bool is_native_ptr, bool is_store, Bas
// and it is not possible to fully distinguish unintended nulls
// from intended ones in this API.
if (is_volatile) {
// We need to emit leading and trailing CPU membars (see below) in
// addition to memory membars when is_volatile. This is a little
// too strong, but avoids the need to insert per-alias-type
// volatile membars (for stores; compare Parse::do_put_xxx), which
// we cannot do effectively here because we probably only have a
// rough approximation of type.
need_mem_bar = true;
// For Stores, place a memory ordering barrier now.
if (is_store) {
insert_mem_bar(Op_MemBarRelease);
} else {
if (support_IRIW_for_not_multiple_copy_atomic_cpu) {
insert_mem_bar(Op_MemBarVolatile);
// We need to emit leading and trailing CPU membars (see below) in
// addition to memory membars for special access modes. This is a little
// too strong, but avoids the need to insert per-alias-type
// volatile membars (for stores; compare Parse::do_put_xxx), which
// we cannot do effectively here because we probably only have a
// rough approximation of type.
switch(kind) {
case Relaxed:
case Opaque:
case Acquire:
break;
case Release:
case Volatile:
if (is_store) {
insert_mem_bar(Op_MemBarRelease);
} else {
if (support_IRIW_for_not_multiple_copy_atomic_cpu) {
insert_mem_bar(Op_MemBarVolatile);
}
}
}
break;
default:
ShouldNotReachHere();
}
// Memory barrier to prevent normal and 'unsafe' accesses from
@ -2422,10 +2538,12 @@ bool LibraryCallKit::inline_unsafe_access(bool is_native_ptr, bool is_store, Bas
if (alias_type->element() != NULL || alias_type->field() != NULL) {
BasicType bt;
if (alias_type->element() != NULL) {
const Type* element = alias_type->element();
// Use address type to get the element type. Alias type doesn't provide
// enough information (e.g., doesn't differentiate between byte[] and boolean[]).
const Type* element = adr_type->is_aryptr()->elem();
bt = element->isa_narrowoop() ? T_OBJECT : element->array_element_basic_type();
} else {
bt = alias_type->field()->type()->basic_type();
bt = alias_type->field()->layout_type();
}
if (bt == T_ARRAY) {
// accessing an array field with getObject is not a mismatch
@ -2442,7 +2560,7 @@ bool LibraryCallKit::inline_unsafe_access(bool is_native_ptr, bool is_store, Bas
// Try to constant fold a load from a constant field
ciField* field = alias_type->field();
if (heap_base_oop != top() &&
field != NULL && field->is_constant() && field->layout_type() == type) {
field != NULL && field->is_constant() && !mismatched) {
// final or stable field
const Type* con_type = Type::make_constant(alias_type->field(), heap_base_oop);
if (con_type != NULL) {
@ -2450,10 +2568,9 @@ bool LibraryCallKit::inline_unsafe_access(bool is_native_ptr, bool is_store, Bas
}
}
if (p == NULL) {
MemNode::MemOrd mo = is_volatile ? MemNode::acquire : MemNode::unordered;
// To be valid, unsafe loads may depend on other conditions than
// the one that guards them: pin the Load node
p = make_load(control(), adr, value_type, type, adr_type, mo, LoadNode::Pinned, is_volatile, unaligned, mismatched);
p = make_load(control(), adr, value_type, type, adr_type, mo, LoadNode::Pinned, requires_atomic_access, unaligned, mismatched);
// load value
switch (type) {
case T_BOOLEAN:
@ -2467,7 +2584,9 @@ bool LibraryCallKit::inline_unsafe_access(bool is_native_ptr, bool is_store, Bas
break;
case T_OBJECT:
if (need_read_barrier) {
insert_pre_barrier(heap_base_oop, offset, p, !(is_volatile || need_mem_bar));
// We do not require a mem bar inside pre_barrier if need_mem_bar
// is set: the barriers would be emitted by us.
insert_pre_barrier(heap_base_oop, offset, p, !need_mem_bar);
}
break;
case T_ADDRESS:
@ -2498,9 +2617,8 @@ bool LibraryCallKit::inline_unsafe_access(bool is_native_ptr, bool is_store, Bas
break;
}
MemNode::MemOrd mo = is_volatile ? MemNode::release : MemNode::unordered;
if (type != T_OBJECT ) {
(void) store_to_memory(control(), adr, val, type, adr_type, mo, is_volatile, unaligned, mismatched);
if (type != T_OBJECT) {
(void) store_to_memory(control(), adr, val, type, adr_type, mo, requires_atomic_access, unaligned, mismatched);
} else {
// Possibly an oop being stored to Java heap or native memory
if (!TypePtr::NULL_PTR->higher_equal(_gvn.type(heap_base_oop))) {
@ -2521,7 +2639,7 @@ bool LibraryCallKit::inline_unsafe_access(bool is_native_ptr, bool is_store, Bas
// Update IdealKit memory.
__ sync_kit(this);
} __ else_(); {
__ store(__ ctrl(), adr, val, type, alias_type->index(), mo, is_volatile, mismatched);
__ store(__ ctrl(), adr, val, type, alias_type->index(), mo, requires_atomic_access, mismatched);
} __ end_if();
// Final sync IdealKit and GraphKit.
final_sync(ideal);
@ -2530,14 +2648,23 @@ bool LibraryCallKit::inline_unsafe_access(bool is_native_ptr, bool is_store, Bas
}
}
if (is_volatile) {
if (!is_store) {
insert_mem_bar(Op_MemBarAcquire);
} else {
if (!support_IRIW_for_not_multiple_copy_atomic_cpu) {
insert_mem_bar(Op_MemBarVolatile);
switch(kind) {
case Relaxed:
case Opaque:
case Release:
break;
case Acquire:
case Volatile:
if (!is_store) {
insert_mem_bar(Op_MemBarAcquire);
} else {
if (!support_IRIW_for_not_multiple_copy_atomic_cpu) {
insert_mem_bar(Op_MemBarVolatile);
}
}
}
break;
default:
ShouldNotReachHere();
}
if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
@ -2548,21 +2675,52 @@ bool LibraryCallKit::inline_unsafe_access(bool is_native_ptr, bool is_store, Bas
//----------------------------inline_unsafe_load_store----------------------------
// This method serves a couple of different customers (depending on LoadStoreKind):
//
// LS_cmpxchg:
// public final native boolean compareAndSwapObject(Object o, long offset, Object expected, Object x);
// public final native boolean compareAndSwapInt( Object o, long offset, int expected, int x);
// public final native boolean compareAndSwapLong( Object o, long offset, long expected, long x);
// LS_cmp_swap:
//
// LS_xadd:
// public int getAndAddInt( Object o, long offset, int delta)
// public long getAndAddLong(Object o, long offset, long delta)
// boolean compareAndSwapObject(Object o, long offset, Object expected, Object x);
// boolean compareAndSwapInt( Object o, long offset, int expected, int x);
// boolean compareAndSwapLong( Object o, long offset, long expected, long x);
//
// LS_cmp_swap_weak:
//
// boolean weakCompareAndSwapObject( Object o, long offset, Object expected, Object x);
// boolean weakCompareAndSwapObjectAcquire(Object o, long offset, Object expected, Object x);
// boolean weakCompareAndSwapObjectRelease(Object o, long offset, Object expected, Object x);
//
// boolean weakCompareAndSwapInt( Object o, long offset, int expected, int x);
// boolean weakCompareAndSwapIntAcquire( Object o, long offset, int expected, int x);
// boolean weakCompareAndSwapIntRelease( Object o, long offset, int expected, int x);
//
// boolean weakCompareAndSwapLong( Object o, long offset, long expected, long x);
// boolean weakCompareAndSwapLongAcquire( Object o, long offset, long expected, long x);
// boolean weakCompareAndSwapLongRelease( Object o, long offset, long expected, long x);
//
// LS_cmp_exchange:
//
// Object compareAndExchangeObjectVolatile(Object o, long offset, Object expected, Object x);
// Object compareAndExchangeObjectAcquire( Object o, long offset, Object expected, Object x);
// Object compareAndExchangeObjectRelease( Object o, long offset, Object expected, Object x);
//
// Object compareAndExchangeIntVolatile( Object o, long offset, Object expected, Object x);
// Object compareAndExchangeIntAcquire( Object o, long offset, Object expected, Object x);
// Object compareAndExchangeIntRelease( Object o, long offset, Object expected, Object x);
//
// Object compareAndExchangeLongVolatile( Object o, long offset, Object expected, Object x);
// Object compareAndExchangeLongAcquire( Object o, long offset, Object expected, Object x);
// Object compareAndExchangeLongRelease( Object o, long offset, Object expected, Object x);
//
// LS_get_add:
//
// int getAndAddInt( Object o, long offset, int delta)
// long getAndAddLong(Object o, long offset, long delta)
//
// LS_get_set:
//
// LS_xchg:
// int getAndSet(Object o, long offset, int newValue)
// long getAndSet(Object o, long offset, long newValue)
// Object getAndSet(Object o, long offset, Object newValue)
//
bool LibraryCallKit::inline_unsafe_load_store(BasicType type, LoadStoreKind kind) {
bool LibraryCallKit::inline_unsafe_load_store(const BasicType type, const LoadStoreKind kind, const AccessKind access_kind) {
// This basic scheme here is the same as inline_unsafe_access, but
// differs in enough details that combining them would make the code
// overly confusing. (This is a true fact! I originally combined
@ -2579,7 +2737,9 @@ bool LibraryCallKit::inline_unsafe_load_store(BasicType type, LoadStoreKind kind
// Check the signatures.
ciSignature* sig = callee()->signature();
rtype = sig->return_type()->basic_type();
if (kind == LS_xadd || kind == LS_xchg) {
switch(kind) {
case LS_get_add:
case LS_get_set: {
// Check the signatures.
#ifdef ASSERT
assert(rtype == type, "get and set must return the expected type");
@ -2588,7 +2748,10 @@ bool LibraryCallKit::inline_unsafe_load_store(BasicType type, LoadStoreKind kind
assert(sig->type_at(1)->basic_type() == T_LONG, "get and set offset is long");
assert(sig->type_at(2)->basic_type() == type, "get and set must take expected type as new value/delta");
#endif // ASSERT
} else if (kind == LS_cmpxchg) {
break;
}
case LS_cmp_swap:
case LS_cmp_swap_weak: {
// Check the signatures.
#ifdef ASSERT
assert(rtype == T_BOOLEAN, "CAS must return boolean");
@ -2596,8 +2759,20 @@ bool LibraryCallKit::inline_unsafe_load_store(BasicType type, LoadStoreKind kind
assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
#endif // ASSERT
} else {
ShouldNotReachHere();
break;
}
case LS_cmp_exchange: {
// Check the signatures.
#ifdef ASSERT
assert(rtype == type, "CAS must return the expected type");
assert(sig->count() == 4, "CAS has 4 arguments");
assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
#endif // ASSERT
break;
}
default:
ShouldNotReachHere();
}
}
#endif //PRODUCT
@ -2610,19 +2785,29 @@ bool LibraryCallKit::inline_unsafe_load_store(BasicType type, LoadStoreKind kind
Node* offset = NULL;
Node* oldval = NULL;
Node* newval = NULL;
if (kind == LS_cmpxchg) {
const bool two_slot_type = type2size[type] == 2;
receiver = argument(0); // type: oop
base = argument(1); // type: oop
offset = argument(2); // type: long
oldval = argument(4); // type: oop, int, or long
newval = argument(two_slot_type ? 6 : 5); // type: oop, int, or long
} else if (kind == LS_xadd || kind == LS_xchg){
receiver = argument(0); // type: oop
base = argument(1); // type: oop
offset = argument(2); // type: long
oldval = NULL;
newval = argument(4); // type: oop, int, or long
switch(kind) {
case LS_cmp_swap:
case LS_cmp_swap_weak:
case LS_cmp_exchange: {
const bool two_slot_type = type2size[type] == 2;
receiver = argument(0); // type: oop
base = argument(1); // type: oop
offset = argument(2); // type: long
oldval = argument(4); // type: oop, int, or long
newval = argument(two_slot_type ? 6 : 5); // type: oop, int, or long
break;
}
case LS_get_add:
case LS_get_set: {
receiver = argument(0); // type: oop
base = argument(1); // type: oop
offset = argument(2); // type: long
oldval = NULL;
newval = argument(4); // type: oop, int, or long
break;
}
default:
ShouldNotReachHere();
}
// Null check receiver.
@ -2647,11 +2832,23 @@ bool LibraryCallKit::inline_unsafe_load_store(BasicType type, LoadStoreKind kind
Compile::AliasType* alias_type = C->alias_type(adr_type);
assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
if (kind == LS_xchg && type == T_OBJECT) {
const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type);
if (tjp != NULL) {
value_type = tjp;
switch (kind) {
case LS_get_set:
case LS_cmp_exchange: {
if (type == T_OBJECT) {
const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type);
if (tjp != NULL) {
value_type = tjp;
}
}
break;
}
case LS_cmp_swap:
case LS_cmp_swap_weak:
case LS_get_add:
break;
default:
ShouldNotReachHere();
}
int alias_idx = C->get_alias_index(adr_type);
@ -2661,9 +2858,22 @@ bool LibraryCallKit::inline_unsafe_load_store(BasicType type, LoadStoreKind kind
// into actual barriers on most machines, but we still need rest of
// compiler to respect ordering.
insert_mem_bar(Op_MemBarRelease);
switch (access_kind) {
case Relaxed:
case Acquire:
break;
case Release:
case Volatile:
insert_mem_bar(Op_MemBarRelease);
break;
default:
ShouldNotReachHere();
}
insert_mem_bar(Op_MemBarCPUOrder);
// Figure out the memory ordering.
MemNode::MemOrd mo = access_kind_to_memord(access_kind);
// 4984716: MemBars must be inserted before this
// memory node in order to avoid a false
// dependency which will confuse the scheduler.
@ -2674,25 +2884,45 @@ bool LibraryCallKit::inline_unsafe_load_store(BasicType type, LoadStoreKind kind
Node* load_store = NULL;
switch(type) {
case T_INT:
if (kind == LS_xadd) {
load_store = _gvn.transform(new GetAndAddINode(control(), mem, adr, newval, adr_type));
} else if (kind == LS_xchg) {
load_store = _gvn.transform(new GetAndSetINode(control(), mem, adr, newval, adr_type));
} else if (kind == LS_cmpxchg) {
load_store = _gvn.transform(new CompareAndSwapINode(control(), mem, adr, newval, oldval));
} else {
ShouldNotReachHere();
switch(kind) {
case LS_get_add:
load_store = _gvn.transform(new GetAndAddINode(control(), mem, adr, newval, adr_type));
break;
case LS_get_set:
load_store = _gvn.transform(new GetAndSetINode(control(), mem, adr, newval, adr_type));
break;
case LS_cmp_swap_weak:
load_store = _gvn.transform(new WeakCompareAndSwapINode(control(), mem, adr, newval, oldval, mo));
break;
case LS_cmp_swap:
load_store = _gvn.transform(new CompareAndSwapINode(control(), mem, adr, newval, oldval, mo));
break;
case LS_cmp_exchange:
load_store = _gvn.transform(new CompareAndExchangeINode(control(), mem, adr, newval, oldval, adr_type, mo));
break;
default:
ShouldNotReachHere();
}
break;
case T_LONG:
if (kind == LS_xadd) {
load_store = _gvn.transform(new GetAndAddLNode(control(), mem, adr, newval, adr_type));
} else if (kind == LS_xchg) {
load_store = _gvn.transform(new GetAndSetLNode(control(), mem, adr, newval, adr_type));
} else if (kind == LS_cmpxchg) {
load_store = _gvn.transform(new CompareAndSwapLNode(control(), mem, adr, newval, oldval));
} else {
ShouldNotReachHere();
switch(kind) {
case LS_get_add:
load_store = _gvn.transform(new GetAndAddLNode(control(), mem, adr, newval, adr_type));
break;
case LS_get_set:
load_store = _gvn.transform(new GetAndSetLNode(control(), mem, adr, newval, adr_type));
break;
case LS_cmp_swap_weak:
load_store = _gvn.transform(new WeakCompareAndSwapLNode(control(), mem, adr, newval, oldval, mo));
break;
case LS_cmp_swap:
load_store = _gvn.transform(new CompareAndSwapLNode(control(), mem, adr, newval, oldval, mo));
break;
case LS_cmp_exchange:
load_store = _gvn.transform(new CompareAndExchangeLNode(control(), mem, adr, newval, oldval, adr_type, mo));
break;
default:
ShouldNotReachHere();
}
break;
case T_OBJECT:
@ -2703,65 +2933,109 @@ bool LibraryCallKit::inline_unsafe_load_store(BasicType type, LoadStoreKind kind
newval = _gvn.makecon(TypePtr::NULL_PTR);
// Reference stores need a store barrier.
if (kind == LS_xchg) {
// If pre-barrier must execute before the oop store, old value will require do_load here.
if (!can_move_pre_barrier()) {
pre_barrier(true /* do_load*/,
control(), base, adr, alias_idx, newval, value_type->make_oopptr(),
NULL /* pre_val*/,
T_OBJECT);
} // Else move pre_barrier to use load_store value, see below.
} else if (kind == LS_cmpxchg) {
// Same as for newval above:
if (_gvn.type(oldval) == TypePtr::NULL_PTR) {
oldval = _gvn.makecon(TypePtr::NULL_PTR);
switch(kind) {
case LS_get_set: {
// If pre-barrier must execute before the oop store, old value will require do_load here.
if (!can_move_pre_barrier()) {
pre_barrier(true /* do_load*/,
control(), base, adr, alias_idx, newval, value_type->make_oopptr(),
NULL /* pre_val*/,
T_OBJECT);
} // Else move pre_barrier to use load_store value, see below.
break;
}
// The only known value which might get overwritten is oldval.
pre_barrier(false /* do_load */,
control(), NULL, NULL, max_juint, NULL, NULL,
oldval /* pre_val */,
T_OBJECT);
} else {
ShouldNotReachHere();
case LS_cmp_swap_weak:
case LS_cmp_swap:
case LS_cmp_exchange: {
// Same as for newval above:
if (_gvn.type(oldval) == TypePtr::NULL_PTR) {
oldval = _gvn.makecon(TypePtr::NULL_PTR);
}
// The only known value which might get overwritten is oldval.
pre_barrier(false /* do_load */,
control(), NULL, NULL, max_juint, NULL, NULL,
oldval /* pre_val */,
T_OBJECT);
break;
}
default:
ShouldNotReachHere();
}
#ifdef _LP64
if (adr->bottom_type()->is_ptr_to_narrowoop()) {
Node *newval_enc = _gvn.transform(new EncodePNode(newval, newval->bottom_type()->make_narrowoop()));
if (kind == LS_xchg) {
load_store = _gvn.transform(new GetAndSetNNode(control(), mem, adr,
newval_enc, adr_type, value_type->make_narrowoop()));
} else {
assert(kind == LS_cmpxchg, "wrong LoadStore operation");
Node *oldval_enc = _gvn.transform(new EncodePNode(oldval, oldval->bottom_type()->make_narrowoop()));
load_store = _gvn.transform(new CompareAndSwapNNode(control(), mem, adr,
newval_enc, oldval_enc));
switch(kind) {
case LS_get_set:
load_store = _gvn.transform(new GetAndSetNNode(control(), mem, adr, newval_enc, adr_type, value_type->make_narrowoop()));
break;
case LS_cmp_swap_weak: {
Node *oldval_enc = _gvn.transform(new EncodePNode(oldval, oldval->bottom_type()->make_narrowoop()));
load_store = _gvn.transform(new WeakCompareAndSwapNNode(control(), mem, adr, newval_enc, oldval_enc, mo));
break;
}
case LS_cmp_swap: {
Node *oldval_enc = _gvn.transform(new EncodePNode(oldval, oldval->bottom_type()->make_narrowoop()));
load_store = _gvn.transform(new CompareAndSwapNNode(control(), mem, adr, newval_enc, oldval_enc, mo));
break;
}
case LS_cmp_exchange: {
Node *oldval_enc = _gvn.transform(new EncodePNode(oldval, oldval->bottom_type()->make_narrowoop()));
load_store = _gvn.transform(new CompareAndExchangeNNode(control(), mem, adr, newval_enc, oldval_enc, adr_type, value_type->make_narrowoop(), mo));
break;
}
default:
ShouldNotReachHere();
}
} else
#endif
{
if (kind == LS_xchg) {
switch (kind) {
case LS_get_set:
load_store = _gvn.transform(new GetAndSetPNode(control(), mem, adr, newval, adr_type, value_type->is_oopptr()));
} else {
assert(kind == LS_cmpxchg, "wrong LoadStore operation");
load_store = _gvn.transform(new CompareAndSwapPNode(control(), mem, adr, newval, oldval));
}
break;
case LS_cmp_swap_weak:
load_store = _gvn.transform(new WeakCompareAndSwapPNode(control(), mem, adr, newval, oldval, mo));
break;
case LS_cmp_swap:
load_store = _gvn.transform(new CompareAndSwapPNode(control(), mem, adr, newval, oldval, mo));
break;
case LS_cmp_exchange:
load_store = _gvn.transform(new CompareAndExchangePNode(control(), mem, adr, newval, oldval, adr_type, value_type->is_oopptr(), mo));
break;
default:
ShouldNotReachHere();
}
if (kind == LS_cmpxchg) {
// Emit the post barrier only when the actual store happened.
// This makes sense to check only for compareAndSet that can fail to set the value.
// CAS success path is marked more likely since we anticipate this is a performance
// critical path, while CAS failure path can use the penalty for going through unlikely
// path as backoff. Which is still better than doing a store barrier there.
IdealKit ideal(this);
ideal.if_then(load_store, BoolTest::ne, ideal.ConI(0), PROB_STATIC_FREQUENT); {
sync_kit(ideal);
post_barrier(ideal.ctrl(), load_store, base, adr, alias_idx, newval, T_OBJECT, true);
ideal.sync_kit(this);
} ideal.end_if();
final_sync(ideal);
} else {
post_barrier(control(), load_store, base, adr, alias_idx, newval, T_OBJECT, true);
// Emit the post barrier only when the actual store happened. This makes sense
// to check only for LS_cmp_* that can fail to set the value.
// LS_cmp_exchange does not produce any branches by default, so there is no
// boolean result to piggyback on. TODO: When we merge CompareAndSwap with
// CompareAndExchange and move branches here, it would make sense to conditionalize
// post_barriers for LS_cmp_exchange as well.
//
// CAS success path is marked more likely since we anticipate this is a performance
// critical path, while CAS failure path can use the penalty for going through unlikely
// path as backoff. Which is still better than doing a store barrier there.
switch (kind) {
case LS_get_set:
case LS_cmp_exchange: {
post_barrier(control(), load_store, base, adr, alias_idx, newval, T_OBJECT, true);
break;
}
case LS_cmp_swap_weak:
case LS_cmp_swap: {
IdealKit ideal(this);
ideal.if_then(load_store, BoolTest::ne, ideal.ConI(0), PROB_STATIC_FREQUENT); {
sync_kit(ideal);
post_barrier(ideal.ctrl(), load_store, base, adr, alias_idx, newval, T_OBJECT, true);
ideal.sync_kit(this);
} ideal.end_if();
final_sync(ideal);
break;
}
default:
ShouldNotReachHere();
}
break;
default:
@ -2775,7 +3049,7 @@ bool LibraryCallKit::inline_unsafe_load_store(BasicType type, LoadStoreKind kind
Node* proj = _gvn.transform(new SCMemProjNode(load_store));
set_memory(proj, alias_idx);
if (type == T_OBJECT && kind == LS_xchg) {
if (type == T_OBJECT && (kind == LS_get_set || kind == LS_cmp_exchange)) {
#ifdef _LP64
if (adr->bottom_type()->is_ptr_to_narrowoop()) {
load_store = _gvn.transform(new DecodeNNode(load_store, load_store->get_ptr_type()));
@ -2794,74 +3068,52 @@ bool LibraryCallKit::inline_unsafe_load_store(BasicType type, LoadStoreKind kind
// Add the trailing membar surrounding the access
insert_mem_bar(Op_MemBarCPUOrder);
insert_mem_bar(Op_MemBarAcquire);
switch (access_kind) {
case Relaxed:
case Release:
break; // do nothing
case Acquire:
case Volatile:
insert_mem_bar(Op_MemBarAcquire);
break;
default:
ShouldNotReachHere();
}
assert(type2size[load_store->bottom_type()->basic_type()] == type2size[rtype], "result type should match");
set_result(load_store);
return true;
}
//----------------------------inline_unsafe_ordered_store----------------------
// public native void Unsafe.putOrderedObject(Object o, long offset, Object x);
// public native void Unsafe.putOrderedInt(Object o, long offset, int x);
// public native void Unsafe.putOrderedLong(Object o, long offset, long x);
bool LibraryCallKit::inline_unsafe_ordered_store(BasicType type) {
// This is another variant of inline_unsafe_access, differing in
// that it always issues store-store ("release") barrier and ensures
// store-atomicity (which only matters for "long").
if (callee()->is_static()) return false; // caller must have the capability!
#ifndef PRODUCT
{
ResourceMark rm;
// Check the signatures.
ciSignature* sig = callee()->signature();
#ifdef ASSERT
BasicType rtype = sig->return_type()->basic_type();
assert(rtype == T_VOID, "must return void");
assert(sig->count() == 3, "has 3 arguments");
assert(sig->type_at(0)->basic_type() == T_OBJECT, "base is object");
assert(sig->type_at(1)->basic_type() == T_LONG, "offset is long");
#endif // ASSERT
MemNode::MemOrd LibraryCallKit::access_kind_to_memord_LS(AccessKind kind, bool is_store) {
MemNode::MemOrd mo = MemNode::unset;
switch(kind) {
case Opaque:
case Relaxed: mo = MemNode::unordered; break;
case Acquire: mo = MemNode::acquire; break;
case Release: mo = MemNode::release; break;
case Volatile: mo = is_store ? MemNode::release : MemNode::acquire; break;
default:
ShouldNotReachHere();
}
#endif //PRODUCT
guarantee(mo != MemNode::unset, "Should select memory ordering");
return mo;
}
C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe".
// Get arguments:
Node* receiver = argument(0); // type: oop
Node* base = argument(1); // type: oop
Node* offset = argument(2); // type: long
Node* val = argument(4); // type: oop, int, or long
// Null check receiver.
receiver = null_check(receiver);
if (stopped()) {
return true;
MemNode::MemOrd LibraryCallKit::access_kind_to_memord(AccessKind kind) {
MemNode::MemOrd mo = MemNode::unset;
switch(kind) {
case Opaque:
case Relaxed: mo = MemNode::unordered; break;
case Acquire: mo = MemNode::acquire; break;
case Release: mo = MemNode::release; break;
case Volatile: mo = MemNode::seqcst; break;
default:
ShouldNotReachHere();
}
// Build field offset expression.
assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
// 32-bit machines ignore the high half of long offsets
offset = ConvL2X(offset);
Node* adr = make_unsafe_address(base, offset);
const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
const Type *value_type = Type::get_const_basic_type(type);
Compile::AliasType* alias_type = C->alias_type(adr_type);
insert_mem_bar(Op_MemBarRelease);
insert_mem_bar(Op_MemBarCPUOrder);
// Ensure that the store is atomic for longs:
const bool require_atomic_access = true;
Node* store;
if (type == T_OBJECT) // reference stores need a store barrier.
store = store_oop_to_unknown(control(), base, adr, adr_type, val, type, MemNode::release);
else {
store = store_to_memory(control(), adr, val, type, adr_type, MemNode::release, require_atomic_access);
}
insert_mem_bar(Op_MemBarCPUOrder);
return true;
guarantee(mo != MemNode::unset, "Should select memory ordering");
return mo;
}
bool LibraryCallKit::inline_unsafe_fence(vmIntrinsics::ID id) {

View File

@ -2417,6 +2417,14 @@ void IdealLoopTree::adjust_loop_exit_prob( PhaseIdealLoop *phase ) {
((bol->in(1)->Opcode() == Op_StorePConditional ) ||
(bol->in(1)->Opcode() == Op_StoreIConditional ) ||
(bol->in(1)->Opcode() == Op_StoreLConditional ) ||
(bol->in(1)->Opcode() == Op_CompareAndExchangeI ) ||
(bol->in(1)->Opcode() == Op_CompareAndExchangeL ) ||
(bol->in(1)->Opcode() == Op_CompareAndExchangeP ) ||
(bol->in(1)->Opcode() == Op_CompareAndExchangeN ) ||
(bol->in(1)->Opcode() == Op_WeakCompareAndSwapI ) ||
(bol->in(1)->Opcode() == Op_WeakCompareAndSwapL ) ||
(bol->in(1)->Opcode() == Op_WeakCompareAndSwapP ) ||
(bol->in(1)->Opcode() == Op_WeakCompareAndSwapN ) ||
(bol->in(1)->Opcode() == Op_CompareAndSwapI ) ||
(bol->in(1)->Opcode() == Op_CompareAndSwapL ) ||
(bol->in(1)->Opcode() == Op_CompareAndSwapP ) ||

View File

@ -285,20 +285,29 @@ public:
Node *incr() const { Node *tmp = cmp_node(); return (tmp && tmp->req()==3) ? tmp->in(1) : NULL; }
Node *limit() const { Node *tmp = cmp_node(); return (tmp && tmp->req()==3) ? tmp->in(2) : NULL; }
Node *stride() const { Node *tmp = incr (); return (tmp && tmp->req()==3) ? tmp->in(2) : NULL; }
Node *phi() const { Node *tmp = incr (); return (tmp && tmp->req()==3) ? tmp->in(1) : NULL; }
Node *init_trip() const { Node *tmp = phi (); return (tmp && tmp->req()==3) ? tmp->in(1) : NULL; }
int stride_con() const;
bool stride_is_con() const { Node *tmp = stride (); return (tmp != NULL && tmp->is_Con()); }
BoolTest::mask test_trip() const { return in(TestValue)->as_Bool()->_test._test; }
PhiNode *phi() const {
Node *tmp = incr();
if (tmp && tmp->req() == 3) {
Node* phi = tmp->in(1);
if (phi->is_Phi()) {
return phi->as_Phi();
}
}
return NULL;
}
CountedLoopNode *loopnode() const {
// The CountedLoopNode that goes with this CountedLoopEndNode may
// have been optimized out by the IGVN so be cautious with the
// pattern matching on the graph
if (phi() == NULL) {
PhiNode* iv_phi = phi();
if (iv_phi == NULL) {
return NULL;
}
assert(phi()->is_Phi(), "should be PhiNode");
Node *ln = phi()->in(0);
Node *ln = iv_phi->in(0);
if (ln->is_CountedLoop() && ln->as_CountedLoop()->loopexit() == this) {
return (CountedLoopNode*)ln;
}

View File

@ -880,8 +880,14 @@ bool PhaseMacroExpand::generate_block_arraycopy(Node** ctrl, MergeMemNode** mem,
Node* sptr = basic_plus_adr(src, src_off);
Node* dptr = basic_plus_adr(dest, dest_off);
uint alias_idx = C->get_alias_index(adr_type);
Node* sval = transform_later(LoadNode::make(_igvn, *ctrl, (*mem)->memory_at(alias_idx), sptr, adr_type, TypeInt::INT, T_INT, MemNode::unordered));
Node* st = transform_later(StoreNode::make(_igvn, *ctrl, (*mem)->memory_at(alias_idx), dptr, adr_type, sval, T_INT, MemNode::unordered));
bool is_mismatched = (basic_elem_type != T_INT);
Node* sval = transform_later(
LoadNode::make(_igvn, *ctrl, (*mem)->memory_at(alias_idx), sptr, adr_type,
TypeInt::INT, T_INT, MemNode::unordered, LoadNode::DependsOnlyOnTest,
false /*unaligned*/, is_mismatched));
Node* st = transform_later(
StoreNode::make(_igvn, *ctrl, (*mem)->memory_at(alias_idx), dptr, adr_type,
sval, T_INT, MemNode::unordered));
(*mem)->set_memory_at(alias_idx, st);
src_off += BytesPerInt;
dest_off += BytesPerInt;

View File

@ -2307,6 +2307,14 @@ void Matcher::find_shared( Node *n ) {
case Op_StorePConditional:
case Op_StoreIConditional:
case Op_StoreLConditional:
case Op_CompareAndExchangeI:
case Op_CompareAndExchangeL:
case Op_CompareAndExchangeP:
case Op_CompareAndExchangeN:
case Op_WeakCompareAndSwapI:
case Op_WeakCompareAndSwapL:
case Op_WeakCompareAndSwapP:
case Op_WeakCompareAndSwapN:
case Op_CompareAndSwapI:
case Op_CompareAndSwapL:
case Op_CompareAndSwapP:
@ -2407,8 +2415,10 @@ void Matcher::collect_null_checks( Node *proj, Node *orig_proj ) {
bool push_it = false;
if( proj->Opcode() == Op_IfTrue ) {
#ifndef PRODUCT
extern int all_null_checks_found;
all_null_checks_found++;
#endif
if( b->_test._test == BoolTest::ne ) {
push_it = true;
}
@ -2522,6 +2532,14 @@ bool Matcher::post_store_load_barrier(const Node* vmb) {
// that a monitor exit operation contains a serializing instruction.
if (xop == Op_MemBarVolatile ||
xop == Op_CompareAndExchangeI ||
xop == Op_CompareAndExchangeL ||
xop == Op_CompareAndExchangeP ||
xop == Op_CompareAndExchangeN ||
xop == Op_WeakCompareAndSwapL ||
xop == Op_WeakCompareAndSwapP ||
xop == Op_WeakCompareAndSwapN ||
xop == Op_WeakCompareAndSwapI ||
xop == Op_CompareAndSwapL ||
xop == Op_CompareAndSwapP ||
xop == Op_CompareAndSwapN ||

View File

@ -1582,6 +1582,21 @@ LoadNode::load_array_final_field(const TypeKlassPtr *tkls,
return NULL;
}
static bool is_mismatched_access(ciConstant con, BasicType loadbt) {
BasicType conbt = con.basic_type();
switch (conbt) {
case T_BOOLEAN: conbt = T_BYTE; break;
case T_ARRAY: conbt = T_OBJECT; break;
}
switch (loadbt) {
case T_BOOLEAN: loadbt = T_BYTE; break;
case T_NARROWOOP: loadbt = T_OBJECT; break;
case T_ARRAY: loadbt = T_OBJECT; break;
case T_ADDRESS: loadbt = T_OBJECT; break;
}
return (conbt != loadbt);
}
// Try to constant-fold a stable array element.
static const Type* fold_stable_ary_elem(const TypeAryPtr* ary, int off, BasicType loadbt) {
assert(ary->const_oop(), "array should be constant");
@ -1590,10 +1605,12 @@ static const Type* fold_stable_ary_elem(const TypeAryPtr* ary, int off, BasicTyp
// Decode the results of GraphKit::array_element_address.
ciArray* aobj = ary->const_oop()->as_array();
ciConstant con = aobj->element_value_by_offset(off);
if (con.basic_type() != T_ILLEGAL && !con.is_null_or_zero()) {
bool is_mismatched = is_mismatched_access(con, loadbt);
assert(!is_mismatched, "conbt=%s; loadbt=%s", type2name(con.basic_type()), type2name(loadbt));
const Type* con_type = Type::make_from_constant(con);
if (con_type != NULL) {
// Guard against erroneous constant folding.
if (!is_mismatched && con_type != NULL) {
if (con_type->isa_aryptr()) {
// Join with the array element type, in case it is also stable.
int dim = ary->stable_dimension();
@ -1642,7 +1659,7 @@ const Type* LoadNode::Value(PhaseGVN* phase) const {
const bool off_beyond_header = ((uint)off >= (uint)min_base_off);
// Try to constant-fold a stable array element.
if (FoldStableValues && ary->is_stable() && ary->const_oop() != NULL) {
if (FoldStableValues && !is_mismatched_access() && ary->is_stable() && ary->const_oop() != NULL) {
// Make sure the reference is not into the header and the offset is constant
if (off_beyond_header && adr->is_AddP() && off != Type::OffsetBot) {
const Type* con_type = fold_stable_ary_elem(ary, off, memory_type());

View File

@ -56,7 +56,9 @@ public:
};
typedef enum { unordered = 0,
acquire, // Load has to acquire or be succeeded by MemBarAcquire.
release // Store has to release or be preceded by MemBarRelease.
release, // Store has to release or be preceded by MemBarRelease.
seqcst, // LoadStore has to have both acquire and release semantics.
unset // The memory ordering is not set (used for testing)
} MemOrd;
protected:
MemNode( Node *c0, Node *c1, Node *c2, const TypePtr* at )
@ -848,34 +850,121 @@ public:
virtual uint ideal_reg() const { return Op_RegFlags; }
};
class CompareAndSwapNode : public LoadStoreConditionalNode {
private:
const MemNode::MemOrd _mem_ord;
public:
CompareAndSwapNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, MemNode::MemOrd mem_ord) : LoadStoreConditionalNode(c, mem, adr, val, ex), _mem_ord(mem_ord) {}
MemNode::MemOrd order() const {
return _mem_ord;
}
};
class CompareAndExchangeNode : public LoadStoreNode {
private:
const MemNode::MemOrd _mem_ord;
public:
enum {
ExpectedIn = MemNode::ValueIn+1 // One more input than MemNode
};
CompareAndExchangeNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, MemNode::MemOrd mem_ord, const TypePtr* at, const Type* t) :
LoadStoreNode(c, mem, adr, val, at, t, 5), _mem_ord(mem_ord) {
init_req(ExpectedIn, ex );
}
MemNode::MemOrd order() const {
return _mem_ord;
}
};
//------------------------------CompareAndSwapLNode---------------------------
class CompareAndSwapLNode : public LoadStoreConditionalNode {
class CompareAndSwapLNode : public CompareAndSwapNode {
public:
CompareAndSwapLNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex) : LoadStoreConditionalNode(c, mem, adr, val, ex) { }
CompareAndSwapLNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, MemNode::MemOrd mem_ord) : CompareAndSwapNode(c, mem, adr, val, ex, mem_ord) { }
virtual int Opcode() const;
};
//------------------------------CompareAndSwapINode---------------------------
class CompareAndSwapINode : public LoadStoreConditionalNode {
class CompareAndSwapINode : public CompareAndSwapNode {
public:
CompareAndSwapINode( Node *c, Node *mem, Node *adr, Node *val, Node *ex) : LoadStoreConditionalNode(c, mem, adr, val, ex) { }
CompareAndSwapINode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, MemNode::MemOrd mem_ord) : CompareAndSwapNode(c, mem, adr, val, ex, mem_ord) { }
virtual int Opcode() const;
};
//------------------------------CompareAndSwapPNode---------------------------
class CompareAndSwapPNode : public LoadStoreConditionalNode {
class CompareAndSwapPNode : public CompareAndSwapNode {
public:
CompareAndSwapPNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex) : LoadStoreConditionalNode(c, mem, adr, val, ex) { }
CompareAndSwapPNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, MemNode::MemOrd mem_ord) : CompareAndSwapNode(c, mem, adr, val, ex, mem_ord) { }
virtual int Opcode() const;
};
//------------------------------CompareAndSwapNNode---------------------------
class CompareAndSwapNNode : public LoadStoreConditionalNode {
class CompareAndSwapNNode : public CompareAndSwapNode {
public:
CompareAndSwapNNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex) : LoadStoreConditionalNode(c, mem, adr, val, ex) { }
CompareAndSwapNNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, MemNode::MemOrd mem_ord) : CompareAndSwapNode(c, mem, adr, val, ex, mem_ord) { }
virtual int Opcode() const;
};
//------------------------------WeakCompareAndSwapLNode---------------------------
class WeakCompareAndSwapLNode : public CompareAndSwapNode {
public:
WeakCompareAndSwapLNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, MemNode::MemOrd mem_ord) : CompareAndSwapNode(c, mem, adr, val, ex, mem_ord) { }
virtual int Opcode() const;
};
//------------------------------WeakCompareAndSwapINode---------------------------
class WeakCompareAndSwapINode : public CompareAndSwapNode {
public:
WeakCompareAndSwapINode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, MemNode::MemOrd mem_ord) : CompareAndSwapNode(c, mem, adr, val, ex, mem_ord) { }
virtual int Opcode() const;
};
//------------------------------WeakCompareAndSwapPNode---------------------------
class WeakCompareAndSwapPNode : public CompareAndSwapNode {
public:
WeakCompareAndSwapPNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, MemNode::MemOrd mem_ord) : CompareAndSwapNode(c, mem, adr, val, ex, mem_ord) { }
virtual int Opcode() const;
};
//------------------------------WeakCompareAndSwapNNode---------------------------
class WeakCompareAndSwapNNode : public CompareAndSwapNode {
public:
WeakCompareAndSwapNNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, MemNode::MemOrd mem_ord) : CompareAndSwapNode(c, mem, adr, val, ex, mem_ord) { }
virtual int Opcode() const;
};
//------------------------------CompareAndExchangeLNode---------------------------
class CompareAndExchangeLNode : public CompareAndExchangeNode {
public:
CompareAndExchangeLNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, const TypePtr* at, MemNode::MemOrd mem_ord) : CompareAndExchangeNode(c, mem, adr, val, ex, mem_ord, at, TypeLong::LONG) { }
virtual int Opcode() const;
};
//------------------------------CompareAndExchangeINode---------------------------
class CompareAndExchangeINode : public CompareAndExchangeNode {
public:
CompareAndExchangeINode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, const TypePtr* at, MemNode::MemOrd mem_ord) : CompareAndExchangeNode(c, mem, adr, val, ex, mem_ord, at, TypeInt::INT) { }
virtual int Opcode() const;
};
//------------------------------CompareAndExchangePNode---------------------------
class CompareAndExchangePNode : public CompareAndExchangeNode {
public:
CompareAndExchangePNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, const TypePtr* at, const Type* t, MemNode::MemOrd mem_ord) : CompareAndExchangeNode(c, mem, adr, val, ex, mem_ord, at, t) { }
virtual int Opcode() const;
};
//------------------------------CompareAndExchangeNNode---------------------------
class CompareAndExchangeNNode : public CompareAndExchangeNode {
public:
CompareAndExchangeNNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, const TypePtr* at, const Type* t, MemNode::MemOrd mem_ord) : CompareAndExchangeNode(c, mem, adr, val, ex, mem_ord, at, t) { }
virtual int Opcode() const;
};

View File

@ -576,17 +576,11 @@ void Node::setup_is_top() {
//------------------------------~Node------------------------------------------
// Fancy destructor; eagerly attempt to reclaim Node numberings and storage
extern int reclaim_idx ;
extern int reclaim_in ;
extern int reclaim_node;
void Node::destruct() {
// Eagerly reclaim unique Node numberings
Compile* compile = Compile::current();
if ((uint)_idx+1 == compile->unique()) {
compile->set_unique(compile->unique()-1);
#ifdef ASSERT
reclaim_idx++;
#endif
}
// Clear debug info:
Node_Notes* nn = compile->node_notes_at(_idx);
@ -604,43 +598,25 @@ void Node::destruct() {
int out_edge_size = _outmax*sizeof(void*);
char *edge_end = ((char*)_in) + edge_size;
char *out_array = (char*)(_out == NO_OUT_ARRAY? NULL: _out);
char *out_edge_end = out_array + out_edge_size;
int node_size = size_of();
// Free the output edge array
if (out_edge_size > 0) {
#ifdef ASSERT
if( out_edge_end == compile->node_arena()->hwm() )
reclaim_in += out_edge_size; // count reclaimed out edges with in edges
#endif
compile->node_arena()->Afree(out_array, out_edge_size);
}
// Free the input edge array and the node itself
if( edge_end == (char*)this ) {
#ifdef ASSERT
if( edge_end+node_size == compile->node_arena()->hwm() ) {
reclaim_in += edge_size;
reclaim_node+= node_size;
}
#else
// It was; free the input array and object all in one hit
#ifndef ASSERT
compile->node_arena()->Afree(_in,edge_size+node_size);
#endif
} else {
// Free just the input array
#ifdef ASSERT
if( edge_end == compile->node_arena()->hwm() )
reclaim_in += edge_size;
#endif
compile->node_arena()->Afree(_in,edge_size);
// Free just the object
#ifdef ASSERT
if( ((char*)this) + node_size == compile->node_arena()->hwm() )
reclaim_node+= node_size;
#else
#ifndef ASSERT
compile->node_arena()->Afree(this,node_size);
#endif
}

View File

@ -60,6 +60,8 @@ class CmpNode;
class CodeBuffer;
class ConstraintCastNode;
class ConNode;
class CompareAndSwapNode;
class CompareAndExchangeNode;
class CountedLoopNode;
class CountedLoopEndNode;
class DecodeNarrowPtrNode;
@ -679,6 +681,9 @@ public:
DEFINE_CLASS_ID(Store, Mem, 1)
DEFINE_CLASS_ID(StoreVector, Store, 0)
DEFINE_CLASS_ID(LoadStore, Mem, 2)
DEFINE_CLASS_ID(LoadStoreConditional, LoadStore, 0)
DEFINE_CLASS_ID(CompareAndSwap, LoadStoreConditional, 0)
DEFINE_CLASS_ID(CompareAndExchangeNode, LoadStore, 1)
DEFINE_CLASS_ID(Region, Node, 5)
DEFINE_CLASS_ID(Loop, Region, 0)

View File

@ -104,13 +104,6 @@ public:
// For temporary (stack-allocated, stateless) ilts:
InlineTree(Compile* c, ciMethod* callee_method, JVMState* caller_jvms, float site_invoke_ratio, int max_inline_level);
// InlineTree enum
enum InlineStyle {
Inline_do_not_inline = 0, //
Inline_cha_is_monomorphic = 1, //
Inline_type_profile_monomorphic = 2 //
};
// See if it is OK to inline.
// The receiver is the inline tree for the caller.
//
@ -349,9 +342,6 @@ class Parse : public GraphKit {
Block* _block; // block currently getting parsed
ciBytecodeStream _iter; // stream of this method's bytecodes
int _blocks_merged; // Progress meter: state merges from BB preds
int _blocks_parsed; // Progress meter: BBs actually parsed
const FastLockNode* _synch_lock; // FastLockNode for synchronized method
#ifndef PRODUCT

View File

@ -45,6 +45,7 @@
// the most. Some of the non-static variables are needed in bytecodeInfo.cpp
// and eventually should be encapsulated in a proper class (gri 8/18/98).
#ifndef PRODUCT
int nodes_created = 0;
int methods_parsed = 0;
int methods_seen = 0;
@ -53,42 +54,42 @@ int blocks_seen = 0;
int explicit_null_checks_inserted = 0;
int explicit_null_checks_elided = 0;
int all_null_checks_found = 0, implicit_null_checks = 0;
int implicit_null_throws = 0;
int all_null_checks_found = 0;
int implicit_null_checks = 0;
int reclaim_idx = 0;
int reclaim_in = 0;
int reclaim_node = 0;
#ifndef PRODUCT
bool Parse::BytecodeParseHistogram::_initialized = false;
uint Parse::BytecodeParseHistogram::_bytecodes_parsed [Bytecodes::number_of_codes];
uint Parse::BytecodeParseHistogram::_nodes_constructed[Bytecodes::number_of_codes];
uint Parse::BytecodeParseHistogram::_nodes_transformed[Bytecodes::number_of_codes];
uint Parse::BytecodeParseHistogram::_new_values [Bytecodes::number_of_codes];
#endif
//------------------------------print_statistics-------------------------------
#ifndef PRODUCT
void Parse::print_statistics() {
tty->print_cr("--- Compiler Statistics ---");
tty->print("Methods seen: %d Methods parsed: %d", methods_seen, methods_parsed);
tty->print(" Nodes created: %d", nodes_created);
tty->cr();
if (methods_seen != methods_parsed)
if (methods_seen != methods_parsed) {
tty->print_cr("Reasons for parse failures (NOT cumulative):");
}
tty->print_cr("Blocks parsed: %d Blocks seen: %d", blocks_parsed, blocks_seen);
if( explicit_null_checks_inserted )
tty->print_cr("%d original NULL checks - %d elided (%2d%%); optimizer leaves %d,", explicit_null_checks_inserted, explicit_null_checks_elided, (100*explicit_null_checks_elided)/explicit_null_checks_inserted, all_null_checks_found);
if( all_null_checks_found )
if (explicit_null_checks_inserted) {
tty->print_cr("%d original NULL checks - %d elided (%2d%%); optimizer leaves %d,",
explicit_null_checks_inserted, explicit_null_checks_elided,
(100*explicit_null_checks_elided)/explicit_null_checks_inserted,
all_null_checks_found);
}
if (all_null_checks_found) {
tty->print_cr("%d made implicit (%2d%%)", implicit_null_checks,
(100*implicit_null_checks)/all_null_checks_found);
if( implicit_null_throws )
}
if (SharedRuntime::_implicit_null_throws) {
tty->print_cr("%d implicit null exceptions at runtime",
implicit_null_throws);
SharedRuntime::_implicit_null_throws);
}
if( PrintParseStatistics && BytecodeParseHistogram::initialized() ) {
if (PrintParseStatistics && BytecodeParseHistogram::initialized()) {
BytecodeParseHistogram::print();
}
}
@ -495,7 +496,7 @@ Parse::Parse(JVMState* caller, ciMethod* parse_method, float expected_uses)
C->dependencies()->assert_evol_method(method());
}
methods_seen++;
NOT_PRODUCT(methods_seen++);
// Do some special top-level things.
if (depth() == 1 && C->is_osr_compilation()) {
@ -530,8 +531,8 @@ Parse::Parse(JVMState* caller, ciMethod* parse_method, float expected_uses)
}
#endif
methods_parsed++;
#ifndef PRODUCT
methods_parsed++;
// add method size here to guarantee that inlined methods are added too
if (CITime)
_total_bytes_compiled += method()->code_size();
@ -652,7 +653,7 @@ void Parse::do_all_blocks() {
continue;
}
blocks_parsed++;
NOT_PRODUCT(blocks_parsed++);
progress = true;
if (block->is_loop_head() || block->is_handler() || has_irreducible && !block->is_ready()) {
@ -712,9 +713,9 @@ void Parse::do_all_blocks() {
}
}
#ifndef PRODUCT
blocks_seen += block_count();
#ifndef PRODUCT
// Make sure there are no half-processed blocks remaining.
// Every remaining unprocessed block is dead and may be ignored now.
for (int rpo = 0; rpo < block_count(); rpo++) {
@ -1446,7 +1447,6 @@ void Parse::do_one_block() {
assert(block()->is_merged(), "must be merged before being parsed");
block()->mark_parsed();
++_blocks_parsed;
// Set iterator to start of block.
iter().reset_to_bci(block()->start());
@ -1596,9 +1596,6 @@ void Parse::merge_common(Parse::Block* target, int pnum) {
return;
}
// Record that a new block has been merged.
++_blocks_merged;
// Make a region if we know there are multiple or unpredictable inputs.
// (Also, if this is a plain fall-through, we might see another region,
// which must not be allowed into this block's map.)

View File

@ -44,8 +44,10 @@
#include "runtime/deoptimization.hpp"
#include "runtime/sharedRuntime.hpp"
#ifndef PRODUCT
extern int explicit_null_checks_inserted,
explicit_null_checks_elided;
#endif
//---------------------------------array_load----------------------------------
void Parse::array_load(BasicType elem_type) {
@ -997,7 +999,7 @@ void Parse::do_ifnull(BoolTest::mask btest, Node *c) {
return;
}
explicit_null_checks_inserted++;
NOT_PRODUCT(explicit_null_checks_inserted++);
// Generate real control flow
Node *tst = _gvn.transform( new BoolNode( c, btest ) );
@ -1013,7 +1015,7 @@ void Parse::do_ifnull(BoolTest::mask btest, Node *c) {
set_control(iftrue);
if (stopped()) { // Path is dead?
explicit_null_checks_elided++;
NOT_PRODUCT(explicit_null_checks_elided++);
if (C->eliminate_boxing()) {
// Mark the successor block as parsed
branch_block->next_path_num();
@ -1033,7 +1035,7 @@ void Parse::do_ifnull(BoolTest::mask btest, Node *c) {
set_control(iffalse);
if (stopped()) { // Path is dead?
explicit_null_checks_elided++;
NOT_PRODUCT(explicit_null_checks_elided++);
if (C->eliminate_boxing()) {
// Mark the successor block as parsed
next_block->next_path_num();

View File

@ -1471,6 +1471,27 @@ void PhaseIterGVN::add_users_to_worklist0( Node *n ) {
}
}
// Return counted loop Phi if as a counted loop exit condition, cmp
// compares the the induction variable with n
static PhiNode* countedloop_phi_from_cmp(CmpINode* cmp, Node* n) {
for (DUIterator_Fast imax, i = cmp->fast_outs(imax); i < imax; i++) {
Node* bol = cmp->fast_out(i);
for (DUIterator_Fast i2max, i2 = bol->fast_outs(i2max); i2 < i2max; i2++) {
Node* iff = bol->fast_out(i2);
if (iff->is_CountedLoopEnd()) {
CountedLoopEndNode* cle = iff->as_CountedLoopEnd();
if (cle->limit() == n) {
PhiNode* phi = cle->phi();
if (phi != NULL) {
return phi;
}
}
}
}
}
return NULL;
}
void PhaseIterGVN::add_users_to_worklist( Node *n ) {
add_users_to_worklist0(n);
@ -1500,18 +1521,7 @@ void PhaseIterGVN::add_users_to_worklist( Node *n ) {
Node* bol = use->raw_out(0);
if (bol->outcnt() > 0) {
Node* iff = bol->raw_out(0);
if (use_op == Op_CmpI &&
iff->is_CountedLoopEnd()) {
CountedLoopEndNode* cle = iff->as_CountedLoopEnd();
if (cle->limit() == n && cle->phi() != NULL) {
// If an opaque node feeds into the limit condition of a
// CountedLoop, we need to process the Phi node for the
// induction variable when the opaque node is removed:
// the range of values taken by the Phi is now known and
// so its type is also known.
_worklist.push(cle->phi());
}
} else if (iff->outcnt() == 2) {
if (iff->outcnt() == 2) {
// Look for the 'is_x2logic' pattern: "x ? : 0 : 1" and put the
// phi merging either 0 or 1 onto the worklist
Node* ifproj0 = iff->raw_out(0);
@ -1526,6 +1536,15 @@ void PhaseIterGVN::add_users_to_worklist( Node *n ) {
}
}
if (use_op == Op_CmpI) {
Node* phi = countedloop_phi_from_cmp((CmpINode*)use, n);
if (phi != NULL) {
// If an opaque node feeds into the limit condition of a
// CountedLoop, we need to process the Phi node for the
// induction variable when the opaque node is removed:
// the range of values taken by the Phi is now known and
// so its type is also known.
_worklist.push(phi);
}
Node* in1 = use->in(1);
for (uint i = 0; i < in1->outcnt(); i++) {
if (in1->raw_out(i)->Opcode() == Op_CastII) {
@ -1714,6 +1733,15 @@ void PhaseCCP::analyze() {
}
}
}
// If n is used in a counted loop exit condition then the type
// of the counted loop's Phi depends on the type of n. See
// PhiNode::Value().
if (m_op == Op_CmpI) {
PhiNode* phi = countedloop_phi_from_cmp((CmpINode*)m, n);
if (phi != NULL) {
worklist.push(phi);
}
}
}
}
}

View File

@ -431,7 +431,7 @@ public:
// Phase for iteratively performing local, pessimistic GVN-style optimizations.
// and ideal transformations on the graph.
class PhaseIterGVN : public PhaseGVN {
private:
private:
bool _delay_transform; // When true simply register the node when calling transform
// instead of actually optimizing it

View File

@ -173,9 +173,7 @@ void CodeBlobCollector::collect() {
_global_code_blobs = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<JvmtiCodeBlobDesc*>(50,true);
// iterate over the stub code descriptors and put them in the list first.
int index = 0;
StubCodeDesc* desc;
while ((desc = StubCodeDesc::desc_for_index(++index)) != NULL) {
for (StubCodeDesc* desc = StubCodeDesc::first(); desc != NULL; desc = StubCodeDesc::next(desc)) {
_global_code_blobs->append(new JvmtiCodeBlobDesc(desc->name(), desc->begin(), desc->end()));
}

View File

@ -1117,6 +1117,44 @@ UNSAFE_END
// JSR166 ------------------------------------------------------------------
UNSAFE_ENTRY(jobject, Unsafe_CompareAndExchangeObject(JNIEnv *env, jobject unsafe, jobject obj, jlong offset, jobject e_h, jobject x_h))
UnsafeWrapper("Unsafe_CompareAndExchangeObject");
oop x = JNIHandles::resolve(x_h);
oop e = JNIHandles::resolve(e_h);
oop p = JNIHandles::resolve(obj);
HeapWord* addr = (HeapWord *)index_oop_from_field_offset_long(p, offset);
oop res = oopDesc::atomic_compare_exchange_oop(x, addr, e, true);
if (res == e)
update_barrier_set((void*)addr, x);
return JNIHandles::make_local(env, res);
UNSAFE_END
UNSAFE_ENTRY(jint, Unsafe_CompareAndExchangeInt(JNIEnv *env, jobject unsafe, jobject obj, jlong offset, jint e, jint x))
UnsafeWrapper("Unsafe_CompareAndExchangeInt");
oop p = JNIHandles::resolve(obj);
jint* addr = (jint *) index_oop_from_field_offset_long(p, offset);
return (jint)(Atomic::cmpxchg(x, addr, e));
UNSAFE_END
UNSAFE_ENTRY(jlong, Unsafe_CompareAndExchangeLong(JNIEnv *env, jobject unsafe, jobject obj, jlong offset, jlong e, jlong x))
UnsafeWrapper("Unsafe_CompareAndExchangeLong");
Handle p (THREAD, JNIHandles::resolve(obj));
jlong* addr = (jlong*)(index_oop_from_field_offset_long(p(), offset));
#ifdef SUPPORTS_NATIVE_CX8
return (jlong)(Atomic::cmpxchg(x, addr, e));
#else
if (VM_Version::supports_cx8())
return (jlong)(Atomic::cmpxchg(x, addr, e));
else {
MutexLockerEx mu(UnsafeJlong_lock, Mutex::_no_safepoint_check_flag);
jlong val = Atomic::load(addr);
if (val == e)
Atomic::store(x, addr);
return val;
}
#endif
UNSAFE_END
UNSAFE_ENTRY(jboolean, Unsafe_CompareAndSwapObject(JNIEnv *env, jobject unsafe, jobject obj, jlong offset, jobject e_h, jobject x_h))
UnsafeWrapper("Unsafe_CompareAndSwapObject");
oop x = JNIHandles::resolve(x_h);
@ -1384,6 +1422,10 @@ static JNINativeMethod jdk_internal_misc_Unsafe_methods[] = {
{CC "compareAndSwapObject", CC "(" OBJ "J" OBJ "" OBJ ")Z", FN_PTR(Unsafe_CompareAndSwapObject)},
{CC "compareAndSwapInt", CC "(" OBJ "J""I""I"")Z", FN_PTR(Unsafe_CompareAndSwapInt)},
{CC "compareAndSwapLong", CC "(" OBJ "J""J""J"")Z", FN_PTR(Unsafe_CompareAndSwapLong)},
{CC "compareAndExchangeObjectVolatile", CC "(" OBJ "J" OBJ "" OBJ ")" OBJ, FN_PTR(Unsafe_CompareAndExchangeObject)},
{CC "compareAndExchangeIntVolatile", CC "(" OBJ "J""I""I"")I", FN_PTR(Unsafe_CompareAndExchangeInt)},
{CC "compareAndExchangeLongVolatile", CC "(" OBJ "J""J""J"")J", FN_PTR(Unsafe_CompareAndExchangeLong)},
{CC "putOrderedObject", CC "(" OBJ "J" OBJ ")V", FN_PTR(Unsafe_SetOrderedObject)},
{CC "putOrderedInt", CC "(" OBJ "JI)V", FN_PTR(Unsafe_SetOrderedInt)},
{CC "putOrderedLong", CC "(" OBJ "JJ)V", FN_PTR(Unsafe_SetOrderedLong)},

View File

@ -34,6 +34,7 @@
#include "memory/metadataFactory.hpp"
#include "memory/metaspaceShared.hpp"
#include "memory/universe.hpp"
#include "oops/constantPool.hpp"
#include "oops/oop.inline.hpp"
#include "prims/wbtestmethods/parserTests.hpp"
#include "prims/whitebox.hpp"
@ -643,12 +644,12 @@ WB_ENTRY(jboolean, WB_EnqueueMethodForCompilation(JNIEnv* env, jobject o, jobjec
return (mh->queued_for_compilation() || nm != NULL);
WB_END
WB_ENTRY(jboolean, WB_ShouldPrintAssembly(JNIEnv* env, jobject o, jobject method))
WB_ENTRY(jboolean, WB_ShouldPrintAssembly(JNIEnv* env, jobject o, jobject method, jint comp_level))
jmethodID jmid = reflected_method_to_jmid(thread, env, method);
CHECK_JNI_EXCEPTION_(env, JNI_FALSE);
methodHandle mh(THREAD, Method::checked_resolve_jmethod_id(jmid));
DirectiveSet* directive = DirectivesStack::getMatchingDirective(mh, CompileBroker::compiler(CompLevel_simple));
DirectiveSet* directive = DirectivesStack::getMatchingDirective(mh, CompileBroker::compiler(comp_level));
bool result = directive->PrintAssemblyOption;
DirectivesStack::release(directive);
@ -1305,6 +1306,38 @@ WB_ENTRY(jlong, WB_GetConstantPool(JNIEnv* env, jobject wb, jclass klass))
return (jlong) ikh->constants();
WB_END
WB_ENTRY(jint, WB_GetConstantPoolCacheIndexTag(JNIEnv* env, jobject wb))
return ConstantPool::CPCACHE_INDEX_TAG;
WB_END
WB_ENTRY(jint, WB_GetConstantPoolCacheLength(JNIEnv* env, jobject wb, jclass klass))
instanceKlassHandle ikh(java_lang_Class::as_Klass(JNIHandles::resolve(klass)));
ConstantPool* cp = ikh->constants();
if (cp->cache() == NULL) {
return -1;
}
return cp->cache()->length();
WB_END
WB_ENTRY(jint, WB_ConstantPoolRemapInstructionOperandFromCache(JNIEnv* env, jobject wb, jclass klass, jint index))
instanceKlassHandle ikh(java_lang_Class::as_Klass(JNIHandles::resolve(klass)));
ConstantPool* cp = ikh->constants();
if (cp->cache() == NULL) {
THROW_MSG_0(vmSymbols::java_lang_IllegalStateException(), "Constant pool does not have a cache");
}
jint cpci = index;
jint cpciTag = ConstantPool::CPCACHE_INDEX_TAG;
if (cpciTag > cpci || cpci >= cp->cache()->length() + cpciTag) {
THROW_MSG_0(vmSymbols::java_lang_IllegalArgumentException(), "Constant pool cache index is out of range");
}
jint cpi = cp->remap_instruction_operand_from_cache(cpci);
return cpi;
WB_END
WB_ENTRY(jint, WB_ConstantPoolEncodeIndyIndex(JNIEnv* env, jobject wb, jint index))
return ConstantPool::encode_invokedynamic_index(index);
WB_END
WB_ENTRY(void, WB_ClearInlineCaches(JNIEnv* env, jobject wb))
VM_ClearICs clear_ics;
VMThread::execute(&clear_ics);
@ -1523,8 +1556,8 @@ static JNINativeMethod methods[] = {
#endif // INCLUDE_NMT
{CC"deoptimizeFrames", CC"(Z)I", (void*)&WB_DeoptimizeFrames },
{CC"deoptimizeAll", CC"()V", (void*)&WB_DeoptimizeAll },
{CC"deoptimizeMethod0", CC"(Ljava/lang/reflect/Executable;Z)I",
(void*)&WB_DeoptimizeMethod },
{CC"deoptimizeMethod0", CC"(Ljava/lang/reflect/Executable;Z)I",
(void*)&WB_DeoptimizeMethod },
{CC"isMethodCompiled0", CC"(Ljava/lang/reflect/Executable;Z)Z",
(void*)&WB_IsMethodCompiled },
{CC"isMethodCompilable0", CC"(Ljava/lang/reflect/Executable;IZ)Z",
@ -1559,7 +1592,7 @@ static JNINativeMethod methods[] = {
CC"(Ljava/lang/reflect/Executable;Ljava/lang/String;)I",
(void*)&WB_MatchesInline},
{CC"shouldPrintAssembly",
CC"(Ljava/lang/reflect/Executable;)Z",
CC"(Ljava/lang/reflect/Executable;I)Z",
(void*)&WB_ShouldPrintAssembly},
{CC"isConstantVMFlag", CC"(Ljava/lang/String;)Z", (void*)&WB_IsConstantVMFlag},
@ -1620,6 +1653,12 @@ static JNINativeMethod methods[] = {
{CC"isMonitorInflated0", CC"(Ljava/lang/Object;)Z", (void*)&WB_IsMonitorInflated },
{CC"forceSafepoint", CC"()V", (void*)&WB_ForceSafepoint },
{CC"getConstantPool0", CC"(Ljava/lang/Class;)J", (void*)&WB_GetConstantPool },
{CC"getConstantPoolCacheIndexTag0", CC"()I", (void*)&WB_GetConstantPoolCacheIndexTag},
{CC"getConstantPoolCacheLength0", CC"(Ljava/lang/Class;)I", (void*)&WB_GetConstantPoolCacheLength},
{CC"remapInstructionOperandFromCPCache0",
CC"(Ljava/lang/Class;I)I", (void*)&WB_ConstantPoolRemapInstructionOperandFromCache},
{CC"encodeConstantPoolIndyIndex0",
CC"(I)I", (void*)&WB_ConstantPoolEncodeIndyIndex},
{CC"getMethodBooleanOption",
CC"(Ljava/lang/reflect/Executable;Ljava/lang/String;)Ljava/lang/Boolean;",
(void*)&WB_GetMethodBooleaneOption},

View File

@ -2318,6 +2318,17 @@ bool Arguments::sun_java_launcher_is_altjvm() {
//===========================================================================================================
// Parsing of main arguments
#if INCLUDE_JVMCI
// Check consistency of jvmci vm argument settings.
bool Arguments::check_jvmci_args_consistency() {
if (!EnableJVMCI && !JVMCIGlobals::check_jvmci_flags_are_consistent()) {
JVMCIGlobals::print_jvmci_args_inconsistency_error_message();
return false;
}
return true;
}
#endif //INCLUDE_JVMCI
// Check consistency of GC selection
bool Arguments::check_gc_consistency() {
// Ensure that the user has not selected conflicting sets
@ -2414,6 +2425,9 @@ bool Arguments::check_vm_args_consistency() {
#endif
}
#if INCLUDE_JVMCI
status = status && check_jvmci_args_consistency();
if (EnableJVMCI) {
if (!ScavengeRootsInCode) {
warning("forcing ScavengeRootsInCode non-zero because JVMCI is enabled");

View File

@ -505,7 +505,10 @@ class Arguments : AllStatic {
static void set_gc_specific_flags();
static inline bool gc_selected(); // whether a gc has been selected
static void select_gc_ergonomically();
#if INCLUDE_JVMCI
// Check consistency of jvmci vm argument settings.
static bool check_jvmci_args_consistency();
#endif
// Check for consistency in the selection of the garbage collector.
static bool check_gc_consistency(); // Check user-selected gc
// Check consistency or otherwise of VM argument settings

View File

@ -33,9 +33,6 @@
#include "runtime/commandLineFlagConstraintsRuntime.hpp"
#include "runtime/os.hpp"
#include "utilities/macros.hpp"
#if INCLUDE_JVMCI
#include "jvmci/commandLineFlagConstraintsJVMCI.hpp"
#endif
class CommandLineFlagConstraint_bool : public CommandLineFlagConstraint {
CommandLineFlagConstraintFunc_bool _constraint;
@ -254,17 +251,6 @@ void CommandLineFlagConstraintList::init(void) {
IGNORE_RANGE,
EMIT_CONSTRAINT_CHECK));
#if INCLUDE_JVMCI
emit_constraint_no(NULL JVMCI_FLAGS(EMIT_CONSTRAINT_DEVELOPER_FLAG,
EMIT_CONSTRAINT_PD_DEVELOPER_FLAG,
EMIT_CONSTRAINT_PRODUCT_FLAG,
EMIT_CONSTRAINT_PD_PRODUCT_FLAG,
EMIT_CONSTRAINT_DIAGNOSTIC_FLAG,
EMIT_CONSTRAINT_EXPERIMENTAL_FLAG,
EMIT_CONSTRAINT_NOTPRODUCT_FLAG,
IGNORE_RANGE,
EMIT_CONSTRAINT_CHECK));
#endif // INCLUDE_JVMCI
#ifdef COMPILER1
emit_constraint_no(NULL C1_FLAGS(EMIT_CONSTRAINT_DEVELOPER_FLAG,

View File

@ -662,14 +662,14 @@ void frame::print_on_error(outputStream* st, char* buf, int buflen, bool verbose
st->print("J %d%s %s ",
nm->compile_id(), (nm->is_osr_method() ? "%" : ""),
((nm->compiler() != NULL) ? nm->compiler()->name() : ""));
st->print("%s (%d bytes) @ " PTR_FORMAT " [" PTR_FORMAT "+" INTPTR_FORMAT "]",
buf, m->code_size(), p2i(_pc), p2i(_cb->code_begin()), _pc - _cb->code_begin());
#if INCLUDE_JVMCI
char* jvmciName = nm->jvmci_installed_code_name(buf, buflen);
if (jvmciName != NULL) {
st->print(" (%s)", jvmciName);
}
#endif
st->print("%s (%d bytes) @ " PTR_FORMAT " [" PTR_FORMAT "+" INTPTR_FORMAT "]",
buf, m->code_size(), p2i(_pc), p2i(_cb->code_begin()), _pc - _cb->code_begin());
} else {
st->print("J " PTR_FORMAT, p2i(pc()));
}

View File

@ -1134,12 +1134,19 @@ Handle SharedRuntime::find_callee_info_helper(JavaThread* thread,
MethodHandles::is_signature_polymorphic_intrinsic(id)) {
bc = MethodHandles::signature_polymorphic_intrinsic_bytecode(id);
// Need to adjust invokehandle since inlining through signature-polymorphic
// method happened.
if (bc == Bytecodes::_invokehandle &&
!MethodHandles::is_signature_polymorphic_method(attached_method())) {
bc = attached_method->is_static() ? Bytecodes::_invokestatic
: Bytecodes::_invokevirtual;
// Adjust invocation mode according to the attached method.
switch (bc) {
case Bytecodes::_invokeinterface:
if (!attached_method->method_holder()->is_interface()) {
bc = Bytecodes::_invokevirtual;
}
break;
case Bytecodes::_invokehandle:
if (!MethodHandles::is_signature_polymorphic_method(attached_method())) {
bc = attached_method->is_static() ? Bytecodes::_invokestatic
: Bytecodes::_invokevirtual;
}
break;
}
}
} else {

View File

@ -36,19 +36,13 @@
// Implementation of StubCodeDesc
StubCodeDesc* StubCodeDesc::_list = NULL;
int StubCodeDesc::_count = 0;
bool StubCodeDesc::_frozen = false;
StubCodeDesc* StubCodeDesc::desc_for(address pc) {
StubCodeDesc* p = _list;
while (p != NULL && !p->contains(pc)) p = p->_next;
// p == NULL || p->contains(pc)
return p;
}
StubCodeDesc* StubCodeDesc::desc_for_index(int index) {
StubCodeDesc* p = _list;
while (p != NULL && p->index() != index) p = p->_next;
while (p != NULL && !p->contains(pc)) {
p = p->_next;
}
return p;
}
@ -73,43 +67,17 @@ void StubCodeDesc::print_on(outputStream* st) const {
// Implementation of StubCodeGenerator
StubCodeGenerator::StubCodeGenerator(CodeBuffer* code, bool print_code) {
_masm = new MacroAssembler(code);
_first_stub = _last_stub = NULL;
_print_code = print_code;
}
extern "C" {
static int compare_cdesc(const void* void_a, const void* void_b) {
int ai = (*((StubCodeDesc**) void_a))->index();
int bi = (*((StubCodeDesc**) void_b))->index();
return ai - bi;
}
_masm = new MacroAssembler(code );
_print_code = PrintStubCode || print_code;
}
StubCodeGenerator::~StubCodeGenerator() {
if (PrintStubCode || _print_code) {
if (_print_code) {
CodeBuffer* cbuf = _masm->code();
CodeBlob* blob = CodeCache::find_blob_unsafe(cbuf->insts()->start());
if (blob != NULL) {
blob->set_strings(cbuf->strings());
}
bool saw_first = false;
StubCodeDesc* toprint[1000];
int toprint_len = 0;
for (StubCodeDesc* cdesc = _last_stub; cdesc != NULL; cdesc = cdesc->_next) {
toprint[toprint_len++] = cdesc;
if (cdesc == _first_stub) { saw_first = true; break; }
}
assert(toprint_len == 0 || saw_first, "must get both first & last");
// Print in reverse order:
qsort(toprint, toprint_len, sizeof(toprint[0]), compare_cdesc);
for (int i = 0; i < toprint_len; i++) {
StubCodeDesc* cdesc = toprint[i];
cdesc->print();
tty->cr();
Disassembler::decode(cdesc->begin(), cdesc->end());
tty->cr();
}
}
}
@ -118,9 +86,12 @@ void StubCodeGenerator::stub_prolog(StubCodeDesc* cdesc) {
}
void StubCodeGenerator::stub_epilog(StubCodeDesc* cdesc) {
// default implementation - record the cdesc
if (_first_stub == NULL) _first_stub = cdesc;
_last_stub = cdesc;
if (_print_code) {
cdesc->print();
tty->cr();
Disassembler::decode(cdesc->begin(), cdesc->end());
tty->cr();
}
}

View File

@ -39,13 +39,11 @@
class StubCodeDesc: public CHeapObj<mtCode> {
private:
static StubCodeDesc* _list; // the list of all descriptors
static int _count; // length of list
static bool _frozen; // determines whether _list modifications are allowed
StubCodeDesc* _next; // the next element in the linked list
const char* _group; // the group to which the stub code belongs
const char* _name; // the name assigned to the stub code
int _index; // serial number assigned to the stub
address _begin; // points to the first byte of the stub code (included)
address _end; // points to the first byte after the stub code (excluded)
@ -64,8 +62,10 @@ class StubCodeDesc: public CHeapObj<mtCode> {
friend class StubCodeGenerator;
public:
static StubCodeDesc* first() { return _list; }
static StubCodeDesc* next(StubCodeDesc* desc) { return desc->_next; }
static StubCodeDesc* desc_for(address pc); // returns the code descriptor for the code containing pc or NULL
static StubCodeDesc* desc_for_index(int); // returns the code descriptor for the index or NULL
static const char* name_for(address pc); // returns the name of the code containing pc or NULL
StubCodeDesc(const char* group, const char* name, address begin, address end = NULL) {
@ -74,7 +74,6 @@ class StubCodeDesc: public CHeapObj<mtCode> {
_next = _list;
_group = group;
_name = name;
_index = ++_count; // (never zero)
_begin = begin;
_end = end;
_list = this;
@ -84,7 +83,6 @@ class StubCodeDesc: public CHeapObj<mtCode> {
const char* group() const { return _group; }
const char* name() const { return _name; }
int index() const { return _index; }
address begin() const { return _begin; }
address end() const { return _end; }
int size_in_bytes() const { return _end - _begin; }
@ -97,13 +95,12 @@ class StubCodeDesc: public CHeapObj<mtCode> {
// Provides utility functions.
class StubCodeGenerator: public StackObj {
private:
bool _print_code;
protected:
MacroAssembler* _masm;
StubCodeDesc* _first_stub;
StubCodeDesc* _last_stub;
bool _print_code;
public:
StubCodeGenerator(CodeBuffer* code, bool print_code = false);
~StubCodeGenerator();

View File

@ -1009,9 +1009,9 @@ static void call_initializeSystemClass(TRAPS) {
char java_runtime_name[128] = "";
char java_runtime_version[128] = "";
// extract the JRE name from sun.misc.Version.java_runtime_name
// extract the JRE name from java.lang.VersionProps.java_runtime_name
static const char* get_java_runtime_name(TRAPS) {
Klass* k = SystemDictionary::find(vmSymbols::sun_misc_Version(),
Klass* k = SystemDictionary::find(vmSymbols::java_lang_VersionProps(),
Handle(), Handle(), CHECK_AND_CLEAR_NULL);
fieldDescriptor fd;
bool found = k != NULL &&
@ -1031,9 +1031,9 @@ static const char* get_java_runtime_name(TRAPS) {
}
}
// extract the JRE version from sun.misc.Version.java_runtime_version
// extract the JRE version from java.lang.VersionProps.java_runtime_version
static const char* get_java_runtime_version(TRAPS) {
Klass* k = SystemDictionary::find(vmSymbols::sun_misc_Version(),
Klass* k = SystemDictionary::find(vmSymbols::java_lang_VersionProps(),
Handle(), Handle(), CHECK_AND_CLEAR_NULL);
fieldDescriptor fd;
bool found = k != NULL &&

View File

@ -960,7 +960,6 @@ typedef CompactHashtable<Symbol*, char> SymbolCompactHashTable;
nonstatic_field(nmethod, _compile_id, int) \
nonstatic_field(nmethod, _comp_level, int) \
nonstatic_field(nmethod, _exception_cache, ExceptionCache*) \
nonstatic_field(nmethod, _marked_for_deoptimization, bool) \
\
unchecked_c2_static_field(Deoptimization, _trap_reason_name, void*) \
\
@ -2006,10 +2005,20 @@ typedef CompactHashtable<Symbol*, char> SymbolCompactHashTable;
declare_c2_type(LoadStoreNode, Node) \
declare_c2_type(StorePConditionalNode, LoadStoreNode) \
declare_c2_type(StoreLConditionalNode, LoadStoreNode) \
declare_c2_type(CompareAndSwapLNode, LoadStoreNode) \
declare_c2_type(CompareAndSwapINode, LoadStoreNode) \
declare_c2_type(CompareAndSwapPNode, LoadStoreNode) \
declare_c2_type(CompareAndSwapNNode, LoadStoreNode) \
declare_c2_type(CompareAndSwapNode, LoadStoreConditionalNode) \
declare_c2_type(CompareAndSwapLNode, CompareAndSwapNode) \
declare_c2_type(CompareAndSwapINode, CompareAndSwapNode) \
declare_c2_type(CompareAndSwapPNode, CompareAndSwapNode) \
declare_c2_type(CompareAndSwapNNode, CompareAndSwapNode) \
declare_c2_type(WeakCompareAndSwapLNode, CompareAndSwapNode) \
declare_c2_type(WeakCompareAndSwapINode, CompareAndSwapNode) \
declare_c2_type(WeakCompareAndSwapPNode, CompareAndSwapNode) \
declare_c2_type(WeakCompareAndSwapNNode, CompareAndSwapNode) \
declare_c2_type(CompareAndExchangeNode, LoadStoreNode) \
declare_c2_type(CompareAndExchangeLNode, CompareAndExchangeNode) \
declare_c2_type(CompareAndExchangeINode, CompareAndExchangeNode) \
declare_c2_type(CompareAndExchangePNode, CompareAndExchangeNode) \
declare_c2_type(CompareAndExchangeNNode, CompareAndExchangeNode) \
declare_c2_type(MulNode, Node) \
declare_c2_type(MulINode, MulNode) \
declare_c2_type(MulLNode, MulNode) \

View File

@ -485,6 +485,10 @@ void VM_Exit::wait_if_vm_exited() {
}
}
void VM_PrintCompileQueue::doit() {
CompileBroker::print_compile_queues(_out);
}
#if INCLUDE_SERVICES
void VM_PrintClassHierarchy::doit() {
KlassHierarchy::print_class_hierarchy(_out, _print_interfaces, _print_subclasses, _classname);

View File

@ -105,6 +105,7 @@
template(DumpHashtable) \
template(DumpTouchedMethods) \
template(MarkActiveNMethods) \
template(PrintCompileQueue) \
template(PrintClassHierarchy) \
class VM_Operation: public CHeapObj<mtInternal> {
@ -421,6 +422,17 @@ class VM_Exit: public VM_Operation {
void doit();
};
class VM_PrintCompileQueue: public VM_Operation {
private:
outputStream* _out;
public:
VM_PrintCompileQueue(outputStream* st) : _out(st) {}
VMOp_Type type() const { return VMOp_PrintCompileQueue; }
Mode evaluation_mode() const { return _safepoint; }
void doit();
};
#if INCLUDE_SERVICES
class VM_PrintClassHierarchy: public VM_Operation {
private:

View File

@ -893,7 +893,8 @@ void VMDynamicLibrariesDCmd::execute(DCmdSource source, TRAPS) {
}
void CompileQueueDCmd::execute(DCmdSource source, TRAPS) {
CompileBroker::print_compile_queues(output());
VM_PrintCompileQueue printCompileQueueOp(output());
VMThread::execute(&printCompileQueueOp);
}
void CodeListDCmd::execute(DCmdSource source, TRAPS) {

View File

@ -396,7 +396,7 @@ template<class E> class GrowableArray : public GenericGrowableArray {
int max = length() - 1;
while (max >= min) {
int mid = (max + min) / 2;
int mid = (int)(((uint)max + min) / 2);
E value = at(mid);
int diff = compare(key, value);
if (diff > 0) {

View File

@ -1121,6 +1121,10 @@ void VMError::report_and_die(int id, const char* message, const char* detail_fmt
if (first_error_tid == -1 &&
Atomic::cmpxchg_ptr(mytid, &first_error_tid, -1) == -1) {
// Initialize time stamps to use the same base.
out.time_stamp().update_to(1);
log.time_stamp().update_to(1);
_id = id;
_message = message;
_thread = thread;

View File

@ -299,7 +299,8 @@ hotspot_compiler_3 = \
compiler/types/ \
compiler/uncommontrap/ \
compiler/unsafe/ \
-compiler/intrinsics/bmi/verifycode \
-compiler/intrinsics/adler32 \
-compiler/intrinsics/bmi \
-compiler/intrinsics/mathexact \
-compiler/intrinsics/multiplytolen \
-compiler/intrinsics/sha \

View File

@ -0,0 +1,155 @@
/*
* Copyright (c) 2016, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
/*
* @test
* @bug 8150102 8150514 8150534
* @summary C1 crashes in Canonicalizer::do_ArrayLength() after fix for JDK-8150102
* @run main/othervm -XX:+IgnoreUnrecognizedVMOptions -XX:+UnlockDiagnosticVMOptions -XX:CompileThreshold=100 -XX:+TieredCompilation -XX:TieredStopAtLevel=1 -XX:-BackgroundCompilation CanonicalizeArrayLength
* @run main/othervm -XX:+IgnoreUnrecognizedVMOptions -XX:+UnlockDiagnosticVMOptions -XX:CompileThreshold=100 -XX:+TieredCompilation -XX:TieredStopAtLevel=1 -XX:-BackgroundCompilation -XX:+PatchALot CanonicalizeArrayLength
* @run main/othervm -XX:+IgnoreUnrecognizedVMOptions -XX:+UnlockDiagnosticVMOptions -XX:CompileThreshold=100 -XX:+TieredCompilation -XX:TieredStopAtLevel=1 -XX:-BackgroundCompilation -XX:ScavengeRootsInCode=0 CanonicalizeArrayLength
* @run main/othervm -XX:+IgnoreUnrecognizedVMOptions -XX:+UnlockDiagnosticVMOptions -XX:CompileThreshold=100 -XX:+TieredCompilation -XX:TieredStopAtLevel=1 -XX:-BackgroundCompilation -XX:ScavengeRootsInCode=1 CanonicalizeArrayLength
*/
public class CanonicalizeArrayLength {
int[] arr = new int[42];
int[] arrNull = null;
final int[] finalArr = new int[42];
final int[] finalArrNull = null;
static int[] staticArr = new int[42];
static int[] staticArrNull = null;
static final int[] staticFinalArr = new int[42];
static final int[] staticFinalArrNull = null;
public static void main(String... args) {
CanonicalizeArrayLength t = new CanonicalizeArrayLength();
for (int i = 0; i < 20000; i++) {
if (t.testLocal() != 42)
throw new IllegalStateException();
if (t.testLocalNull() != 42)
throw new IllegalStateException();
if (t.testField() != 42)
throw new IllegalStateException();
if (t.testFieldNull() != 42)
throw new IllegalStateException();
if (t.testFinalField() != 42)
throw new IllegalStateException();
if (t.testFinalFieldNull() != 42)
throw new IllegalStateException();
if (t.testStaticField() != 42)
throw new IllegalStateException();
if (t.testStaticFieldNull() != 42)
throw new IllegalStateException();
if (t.testStaticFinalField() != 42)
throw new IllegalStateException();
if (t.testStaticFinalFieldNull() != 42)
throw new IllegalStateException();
}
}
int testField() {
try {
return arr.length;
} catch (Throwable t) {
return -1;
}
}
int testFieldNull() {
try {
return arrNull.length;
} catch (Throwable t) {
return 42;
}
}
int testFinalField() {
try {
return finalArr.length;
} catch (Throwable t) {
return -1;
}
}
int testFinalFieldNull() {
try {
return finalArrNull.length;
} catch (Throwable t) {
return 42;
}
}
int testStaticField() {
try {
return staticArr.length;
} catch (Throwable t) {
return -1;
}
}
int testStaticFieldNull() {
try {
return staticArrNull.length;
} catch (Throwable t) {
return 42;
}
}
int testStaticFinalField() {
try {
return staticFinalArr.length;
} catch (Throwable t) {
return -1;
}
}
int testStaticFinalFieldNull() {
try {
return staticFinalArrNull.length;
} catch (Throwable t) {
return 42;
}
}
int testLocal() {
int[] arr = new int[42];
try {
return arr.length;
} catch (Throwable t) {
return -1;
}
}
int testLocalNull() {
int[] arrNull = null;
try {
return arrNull.length;
} catch (Throwable t) {
return 42;
}
}
}

Some files were not shown because too many files have changed in this diff Show More