7131192: BigInteger.doubleValue() is depressingly slow
In doubleValue() and floatValue() replace converting to String and parsing to Double or Float with direct conversion into IEEE 754 bits. Reviewed-by: bpb, drchase, martin
This commit is contained in:
parent
f52ad64ccc
commit
90aebf1cf9
@ -35,6 +35,8 @@ import java.io.ObjectOutputStream;
|
||||
import java.io.ObjectStreamField;
|
||||
import java.util.Arrays;
|
||||
import java.util.Random;
|
||||
import sun.misc.DoubleConsts;
|
||||
import sun.misc.FloatConsts;
|
||||
|
||||
/**
|
||||
* Immutable arbitrary-precision integers. All operations behave as if
|
||||
@ -3452,8 +3454,72 @@ public class BigInteger extends Number implements Comparable<BigInteger> {
|
||||
* @return this BigInteger converted to a {@code float}.
|
||||
*/
|
||||
public float floatValue() {
|
||||
// Somewhat inefficient, but guaranteed to work.
|
||||
return Float.parseFloat(this.toString());
|
||||
if (signum == 0) {
|
||||
return 0.0f;
|
||||
}
|
||||
|
||||
int exponent = ((mag.length - 1) << 5) + bitLengthForInt(mag[0]) - 1;
|
||||
|
||||
// exponent == floor(log2(abs(this)))
|
||||
if (exponent < Long.SIZE - 1) {
|
||||
return longValue();
|
||||
} else if (exponent > Float.MAX_EXPONENT) {
|
||||
return signum > 0 ? Float.POSITIVE_INFINITY : Float.NEGATIVE_INFINITY;
|
||||
}
|
||||
|
||||
/*
|
||||
* We need the top SIGNIFICAND_WIDTH bits, including the "implicit"
|
||||
* one bit. To make rounding easier, we pick out the top
|
||||
* SIGNIFICAND_WIDTH + 1 bits, so we have one to help us round up or
|
||||
* down. twiceSignifFloor will contain the top SIGNIFICAND_WIDTH + 1
|
||||
* bits, and signifFloor the top SIGNIFICAND_WIDTH.
|
||||
*
|
||||
* It helps to consider the real number signif = abs(this) *
|
||||
* 2^(SIGNIFICAND_WIDTH - 1 - exponent).
|
||||
*/
|
||||
int shift = exponent - FloatConsts.SIGNIFICAND_WIDTH;
|
||||
|
||||
int twiceSignifFloor;
|
||||
// twiceSignifFloor will be == abs().shiftRight(shift).intValue()
|
||||
// We do the shift into an int directly to improve performance.
|
||||
|
||||
int nBits = shift & 0x1f;
|
||||
int nBits2 = 32 - nBits;
|
||||
|
||||
if (nBits == 0) {
|
||||
twiceSignifFloor = mag[0];
|
||||
} else {
|
||||
twiceSignifFloor = mag[0] >>> nBits;
|
||||
if (twiceSignifFloor == 0) {
|
||||
twiceSignifFloor = (mag[0] << nBits2) | (mag[1] >>> nBits);
|
||||
}
|
||||
}
|
||||
|
||||
int signifFloor = twiceSignifFloor >> 1;
|
||||
signifFloor &= FloatConsts.SIGNIF_BIT_MASK; // remove the implied bit
|
||||
|
||||
/*
|
||||
* We round up if either the fractional part of signif is strictly
|
||||
* greater than 0.5 (which is true if the 0.5 bit is set and any lower
|
||||
* bit is set), or if the fractional part of signif is >= 0.5 and
|
||||
* signifFloor is odd (which is true if both the 0.5 bit and the 1 bit
|
||||
* are set). This is equivalent to the desired HALF_EVEN rounding.
|
||||
*/
|
||||
boolean increment = (twiceSignifFloor & 1) != 0
|
||||
&& ((signifFloor & 1) != 0 || abs().getLowestSetBit() < shift);
|
||||
int signifRounded = increment ? signifFloor + 1 : signifFloor;
|
||||
int bits = ((exponent + FloatConsts.EXP_BIAS))
|
||||
<< (FloatConsts.SIGNIFICAND_WIDTH - 1);
|
||||
bits += signifRounded;
|
||||
/*
|
||||
* If signifRounded == 2^24, we'd need to set all of the significand
|
||||
* bits to zero and add 1 to the exponent. This is exactly the behavior
|
||||
* we get from just adding signifRounded to bits directly. If the
|
||||
* exponent is Float.MAX_EXPONENT, we round up (correctly) to
|
||||
* Float.POSITIVE_INFINITY.
|
||||
*/
|
||||
bits |= signum & FloatConsts.SIGN_BIT_MASK;
|
||||
return Float.intBitsToFloat(bits);
|
||||
}
|
||||
|
||||
/**
|
||||
@ -3472,8 +3538,80 @@ public class BigInteger extends Number implements Comparable<BigInteger> {
|
||||
* @return this BigInteger converted to a {@code double}.
|
||||
*/
|
||||
public double doubleValue() {
|
||||
// Somewhat inefficient, but guaranteed to work.
|
||||
return Double.parseDouble(this.toString());
|
||||
if (signum == 0) {
|
||||
return 0.0;
|
||||
}
|
||||
|
||||
int exponent = ((mag.length - 1) << 5) + bitLengthForInt(mag[0]) - 1;
|
||||
|
||||
// exponent == floor(log2(abs(this))Double)
|
||||
if (exponent < Long.SIZE - 1) {
|
||||
return longValue();
|
||||
} else if (exponent > Double.MAX_EXPONENT) {
|
||||
return signum > 0 ? Double.POSITIVE_INFINITY : Double.NEGATIVE_INFINITY;
|
||||
}
|
||||
|
||||
/*
|
||||
* We need the top SIGNIFICAND_WIDTH bits, including the "implicit"
|
||||
* one bit. To make rounding easier, we pick out the top
|
||||
* SIGNIFICAND_WIDTH + 1 bits, so we have one to help us round up or
|
||||
* down. twiceSignifFloor will contain the top SIGNIFICAND_WIDTH + 1
|
||||
* bits, and signifFloor the top SIGNIFICAND_WIDTH.
|
||||
*
|
||||
* It helps to consider the real number signif = abs(this) *
|
||||
* 2^(SIGNIFICAND_WIDTH - 1 - exponent).
|
||||
*/
|
||||
int shift = exponent - DoubleConsts.SIGNIFICAND_WIDTH;
|
||||
|
||||
long twiceSignifFloor;
|
||||
// twiceSignifFloor will be == abs().shiftRight(shift).longValue()
|
||||
// We do the shift into a long directly to improve performance.
|
||||
|
||||
int nBits = shift & 0x1f;
|
||||
int nBits2 = 32 - nBits;
|
||||
|
||||
int highBits;
|
||||
int lowBits;
|
||||
if (nBits == 0) {
|
||||
highBits = mag[0];
|
||||
lowBits = mag[1];
|
||||
} else {
|
||||
highBits = mag[0] >>> nBits;
|
||||
lowBits = (mag[0] << nBits2) | (mag[1] >>> nBits);
|
||||
if (highBits == 0) {
|
||||
highBits = lowBits;
|
||||
lowBits = (mag[1] << nBits2) | (mag[2] >>> nBits);
|
||||
}
|
||||
}
|
||||
|
||||
twiceSignifFloor = ((highBits & LONG_MASK) << 32)
|
||||
| (lowBits & LONG_MASK);
|
||||
|
||||
long signifFloor = twiceSignifFloor >> 1;
|
||||
signifFloor &= DoubleConsts.SIGNIF_BIT_MASK; // remove the implied bit
|
||||
|
||||
/*
|
||||
* We round up if either the fractional part of signif is strictly
|
||||
* greater than 0.5 (which is true if the 0.5 bit is set and any lower
|
||||
* bit is set), or if the fractional part of signif is >= 0.5 and
|
||||
* signifFloor is odd (which is true if both the 0.5 bit and the 1 bit
|
||||
* are set). This is equivalent to the desired HALF_EVEN rounding.
|
||||
*/
|
||||
boolean increment = (twiceSignifFloor & 1) != 0
|
||||
&& ((signifFloor & 1) != 0 || abs().getLowestSetBit() < shift);
|
||||
long signifRounded = increment ? signifFloor + 1 : signifFloor;
|
||||
long bits = (long) ((exponent + DoubleConsts.EXP_BIAS))
|
||||
<< (DoubleConsts.SIGNIFICAND_WIDTH - 1);
|
||||
bits += signifRounded;
|
||||
/*
|
||||
* If signifRounded == 2^53, we'd need to set all of the significand
|
||||
* bits to zero and add 1 to the exponent. This is exactly the behavior
|
||||
* we get from just adding signifRounded to bits directly. If the
|
||||
* exponent is Double.MAX_EXPONENT, we round up (correctly) to
|
||||
* Double.POSITIVE_INFINITY.
|
||||
*/
|
||||
bits |= signum & DoubleConsts.SIGN_BIT_MASK;
|
||||
return Double.longBitsToDouble(bits);
|
||||
}
|
||||
|
||||
/**
|
||||
|
105
jdk/test/java/math/BigInteger/PrimitiveConversionTests.java
Normal file
105
jdk/test/java/math/BigInteger/PrimitiveConversionTests.java
Normal file
@ -0,0 +1,105 @@
|
||||
/*
|
||||
* Copyright (c) 1998, 2013, Oracle and/or its affiliates. All rights reserved.
|
||||
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
||||
*
|
||||
* This code is free software; you can redistribute it and/or modify it
|
||||
* under the terms of the GNU General Public License version 2 only, as
|
||||
* published by the Free Software Foundation.
|
||||
*
|
||||
* This code is distributed in the hope that it will be useful, but WITHOUT
|
||||
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||||
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||||
* version 2 for more details (a copy is included in the LICENSE file that
|
||||
* accompanied this code).
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License version
|
||||
* 2 along with this work; if not, write to the Free Software Foundation,
|
||||
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
*
|
||||
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
||||
* or visit www.oracle.com if you need additional information or have any
|
||||
* questions.
|
||||
*/
|
||||
|
||||
import static java.math.BigInteger.ONE;
|
||||
|
||||
import java.math.BigInteger;
|
||||
import java.util.ArrayList;
|
||||
import java.util.Arrays;
|
||||
import java.util.Collections;
|
||||
import java.util.List;
|
||||
import java.util.Random;
|
||||
|
||||
/**
|
||||
* @test
|
||||
* @bug 7131192
|
||||
* @summary This test ensures that BigInteger.floatValue() and
|
||||
* BigInteger.doubleValue() behave correctly.
|
||||
* @author Louis Wasserman
|
||||
*/
|
||||
public class PrimitiveConversionTests {
|
||||
static final List<BigInteger> ALL_BIGINTEGER_CANDIDATES;
|
||||
|
||||
static {
|
||||
List<BigInteger> samples = new ArrayList<>();
|
||||
// Now add values near 2^N for lots of values of N.
|
||||
for (int exponent : Arrays.asList(0, 1, 2, 3, 4, 5, 6, 7, 31, 32, 33,
|
||||
34, 62, 63, 64, 65, 71, 72, 73, 79, 80, 81, 255, 256, 257, 511,
|
||||
512, 513, Double.MAX_EXPONENT - 1, Double.MAX_EXPONENT,
|
||||
Double.MAX_EXPONENT + 1, 2000, 2001, 2002)) {
|
||||
BigInteger x = ONE.shiftLeft(exponent);
|
||||
for (BigInteger y : Arrays.asList(x, x.add(ONE), x.subtract(ONE))) {
|
||||
samples.add(y);
|
||||
samples.add(y.negate());
|
||||
}
|
||||
}
|
||||
|
||||
Random rng = new Random(1234567);
|
||||
for (int i = 0; i < 2000; i++) {
|
||||
samples.add(new BigInteger(rng.nextInt(2000), rng));
|
||||
}
|
||||
|
||||
ALL_BIGINTEGER_CANDIDATES = Collections.unmodifiableList(samples);
|
||||
}
|
||||
|
||||
public static int testDoubleValue() {
|
||||
int failures = 0;
|
||||
for (BigInteger big : ALL_BIGINTEGER_CANDIDATES) {
|
||||
double expected = Double.parseDouble(big.toString());
|
||||
double actual = big.doubleValue();
|
||||
|
||||
// should be bitwise identical
|
||||
if (Double.doubleToRawLongBits(expected) != Double
|
||||
.doubleToRawLongBits(actual)) {
|
||||
System.out.println(big);
|
||||
failures++;
|
||||
}
|
||||
}
|
||||
return failures;
|
||||
}
|
||||
|
||||
public static int testFloatValue() {
|
||||
int failures = 0;
|
||||
for (BigInteger big : ALL_BIGINTEGER_CANDIDATES) {
|
||||
float expected = Float.parseFloat(big.toString());
|
||||
float actual = big.floatValue();
|
||||
|
||||
// should be bitwise identical
|
||||
if (Float.floatToRawIntBits(expected) != Float
|
||||
.floatToRawIntBits(actual)) {
|
||||
System.out.println(big + " " + expected + " " + actual);
|
||||
failures++;
|
||||
}
|
||||
}
|
||||
return failures;
|
||||
}
|
||||
|
||||
public static void main(String[] args) {
|
||||
int failures = testDoubleValue();
|
||||
failures += testFloatValue();
|
||||
if (failures > 0) {
|
||||
throw new RuntimeException("Incurred " + failures
|
||||
+ " failures while testing primitive conversions.");
|
||||
}
|
||||
}
|
||||
}
|
Loading…
x
Reference in New Issue
Block a user