8271946: Cleanup leftovers in Space and subclasses

Reviewed-by: stefank, tschatzl
This commit is contained in:
Roman Kennke 2021-08-20 10:12:01 +00:00
parent db9834ff82
commit 92bde6738a
3 changed files with 164 additions and 263 deletions

View File

@ -393,7 +393,84 @@ HeapWord* CompactibleSpace::forward(oop q, size_t size,
#if INCLUDE_SERIALGC #if INCLUDE_SERIALGC
void ContiguousSpace::prepare_for_compaction(CompactPoint* cp) { void ContiguousSpace::prepare_for_compaction(CompactPoint* cp) {
scan_and_forward(this, cp); // Compute the new addresses for the live objects and store it in the mark
// Used by universe::mark_sweep_phase2()
// We're sure to be here before any objects are compacted into this
// space, so this is a good time to initialize this:
set_compaction_top(bottom());
if (cp->space == NULL) {
assert(cp->gen != NULL, "need a generation");
assert(cp->threshold == NULL, "just checking");
assert(cp->gen->first_compaction_space() == this, "just checking");
cp->space = cp->gen->first_compaction_space();
cp->threshold = cp->space->initialize_threshold();
cp->space->set_compaction_top(cp->space->bottom());
}
HeapWord* compact_top = cp->space->compaction_top(); // This is where we are currently compacting to.
DeadSpacer dead_spacer(this);
HeapWord* end_of_live = bottom(); // One byte beyond the last byte of the last live object.
HeapWord* first_dead = NULL; // The first dead object.
const intx interval = PrefetchScanIntervalInBytes;
HeapWord* cur_obj = bottom();
HeapWord* scan_limit = top();
while (cur_obj < scan_limit) {
if (cast_to_oop(cur_obj)->is_gc_marked()) {
// prefetch beyond cur_obj
Prefetch::write(cur_obj, interval);
size_t size = cast_to_oop(cur_obj)->size();
compact_top = cp->space->forward(cast_to_oop(cur_obj), size, cp, compact_top);
cur_obj += size;
end_of_live = cur_obj;
} else {
// run over all the contiguous dead objects
HeapWord* end = cur_obj;
do {
// prefetch beyond end
Prefetch::write(end, interval);
end += cast_to_oop(end)->size();
} while (end < scan_limit && !cast_to_oop(end)->is_gc_marked());
// see if we might want to pretend this object is alive so that
// we don't have to compact quite as often.
if (cur_obj == compact_top && dead_spacer.insert_deadspace(cur_obj, end)) {
oop obj = cast_to_oop(cur_obj);
compact_top = cp->space->forward(obj, obj->size(), cp, compact_top);
end_of_live = end;
} else {
// otherwise, it really is a free region.
// cur_obj is a pointer to a dead object. Use this dead memory to store a pointer to the next live object.
*(HeapWord**)cur_obj = end;
// see if this is the first dead region.
if (first_dead == NULL) {
first_dead = cur_obj;
}
}
// move on to the next object
cur_obj = end;
}
}
assert(cur_obj == scan_limit, "just checking");
_end_of_live = end_of_live;
if (first_dead != NULL) {
_first_dead = first_dead;
} else {
_first_dead = end_of_live;
}
// save the compaction_top of the compaction space.
cp->space->set_compaction_top(compact_top);
} }
void CompactibleSpace::adjust_pointers() { void CompactibleSpace::adjust_pointers() {
@ -402,11 +479,94 @@ void CompactibleSpace::adjust_pointers() {
return; // Nothing to do. return; // Nothing to do.
} }
scan_and_adjust_pointers(this); // adjust all the interior pointers to point at the new locations of objects
// Used by MarkSweep::mark_sweep_phase3()
HeapWord* cur_obj = bottom();
HeapWord* const end_of_live = _end_of_live; // Established by prepare_for_compaction().
HeapWord* const first_dead = _first_dead; // Established by prepare_for_compaction().
assert(first_dead <= end_of_live, "Stands to reason, no?");
const intx interval = PrefetchScanIntervalInBytes;
debug_only(HeapWord* prev_obj = NULL);
while (cur_obj < end_of_live) {
Prefetch::write(cur_obj, interval);
if (cur_obj < first_dead || cast_to_oop(cur_obj)->is_gc_marked()) {
// cur_obj is alive
// point all the oops to the new location
size_t size = MarkSweep::adjust_pointers(cast_to_oop(cur_obj));
debug_only(prev_obj = cur_obj);
cur_obj += size;
} else {
debug_only(prev_obj = cur_obj);
// cur_obj is not a live object, instead it points at the next live object
cur_obj = *(HeapWord**)cur_obj;
assert(cur_obj > prev_obj, "we should be moving forward through memory, cur_obj: " PTR_FORMAT ", prev_obj: " PTR_FORMAT, p2i(cur_obj), p2i(prev_obj));
}
}
assert(cur_obj == end_of_live, "just checking");
} }
void CompactibleSpace::compact() { void CompactibleSpace::compact() {
scan_and_compact(this); // Copy all live objects to their new location
// Used by MarkSweep::mark_sweep_phase4()
verify_up_to_first_dead(this);
HeapWord* const start = bottom();
HeapWord* const end_of_live = _end_of_live;
assert(_first_dead <= end_of_live, "Invariant. _first_dead: " PTR_FORMAT " <= end_of_live: " PTR_FORMAT, p2i(_first_dead), p2i(end_of_live));
if (_first_dead == end_of_live && (start == end_of_live || !cast_to_oop(start)->is_gc_marked())) {
// Nothing to compact. The space is either empty or all live object should be left in place.
clear_empty_region(this);
return;
}
const intx scan_interval = PrefetchScanIntervalInBytes;
const intx copy_interval = PrefetchCopyIntervalInBytes;
assert(start < end_of_live, "bottom: " PTR_FORMAT " should be < end_of_live: " PTR_FORMAT, p2i(start), p2i(end_of_live));
HeapWord* cur_obj = start;
if (_first_dead > cur_obj && !cast_to_oop(cur_obj)->is_gc_marked()) {
// All object before _first_dead can be skipped. They should not be moved.
// A pointer to the first live object is stored at the memory location for _first_dead.
cur_obj = *(HeapWord**)(_first_dead);
}
debug_only(HeapWord* prev_obj = NULL);
while (cur_obj < end_of_live) {
if (!cast_to_oop(cur_obj)->is_gc_marked()) {
debug_only(prev_obj = cur_obj);
// The first word of the dead object contains a pointer to the next live object or end of space.
cur_obj = *(HeapWord**)cur_obj;
assert(cur_obj > prev_obj, "we should be moving forward through memory");
} else {
// prefetch beyond q
Prefetch::read(cur_obj, scan_interval);
// size and destination
size_t size = cast_to_oop(cur_obj)->size();
HeapWord* compaction_top = cast_from_oop<HeapWord*>(cast_to_oop(cur_obj)->forwardee());
// prefetch beyond compaction_top
Prefetch::write(compaction_top, copy_interval);
// copy object and reinit its mark
assert(cur_obj != compaction_top, "everything in this pass should be moving");
Copy::aligned_conjoint_words(cur_obj, compaction_top, size);
cast_to_oop(compaction_top)->init_mark();
assert(cast_to_oop(compaction_top)->klass() != NULL, "should have a class");
debug_only(prev_obj = cur_obj);
cur_obj += size;
}
}
clear_empty_region(this);
} }
#endif // INCLUDE_SERIALGC #endif // INCLUDE_SERIALGC

View File

@ -308,49 +308,12 @@ public:
// necessarily, a space that is normally contiguous. But, for example, a // necessarily, a space that is normally contiguous. But, for example, a
// free-list-based space whose normal collection is a mark-sweep without // free-list-based space whose normal collection is a mark-sweep without
// compaction could still support compaction in full GC's. // compaction could still support compaction in full GC's.
//
// The compaction operations are implemented by the
// scan_and_{adjust_pointers,compact,forward} function templates.
// The following are, non-virtual, auxiliary functions used by these function templates:
// - scan_limit()
// - scanned_block_is_obj()
// - scanned_block_size()
// - adjust_obj_size()
// - obj_size()
// These functions are to be used exclusively by the scan_and_* function templates,
// and must be defined for all (non-abstract) subclasses of CompactibleSpace.
//
// NOTE: Any subclasses to CompactibleSpace wanting to change/define the behavior
// in any of the auxiliary functions must also override the corresponding
// prepare_for_compaction/adjust_pointers/compact functions using them.
// If not, such changes will not be used or have no effect on the compaction operations.
//
// This translates to the following dependencies:
// Overrides/definitions of
// - scan_limit
// - scanned_block_is_obj
// - scanned_block_size
// require override/definition of prepare_for_compaction().
// Similar dependencies exist between
// - adjust_obj_size and adjust_pointers()
// - obj_size and compact().
//
// Additionally, this also means that changes to block_size() or block_is_obj() that
// should be effective during the compaction operations must provide a corresponding
// definition of scanned_block_size/scanned_block_is_obj respectively.
class CompactibleSpace: public Space { class CompactibleSpace: public Space {
friend class VMStructs; friend class VMStructs;
private: private:
HeapWord* _compaction_top; HeapWord* _compaction_top;
CompactibleSpace* _next_compaction_space; CompactibleSpace* _next_compaction_space;
// Auxiliary functions for scan_and_{forward,adjust_pointers,compact} support.
inline size_t adjust_obj_size(size_t size) const {
return size;
}
inline size_t obj_size(const HeapWord* addr) const;
template <class SpaceType> template <class SpaceType>
static inline void verify_up_to_first_dead(SpaceType* space) NOT_DEBUG_RETURN; static inline void verify_up_to_first_dead(SpaceType* space) NOT_DEBUG_RETURN;
@ -451,27 +414,6 @@ protected:
virtual HeapWord* cross_threshold(HeapWord* start, HeapWord* the_end) { virtual HeapWord* cross_threshold(HeapWord* start, HeapWord* the_end) {
return end(); return end();
} }
// Below are template functions for scan_and_* algorithms (avoiding virtual calls).
// The space argument should be a subclass of CompactibleSpace, implementing
// scan_limit(), scanned_block_is_obj(), and scanned_block_size(),
// and possibly also overriding obj_size(), and adjust_obj_size().
// These functions should avoid virtual calls whenever possible.
#if INCLUDE_SERIALGC
// Frequently calls adjust_obj_size().
template <class SpaceType>
static inline void scan_and_adjust_pointers(SpaceType* space);
#endif
// Frequently calls obj_size().
template <class SpaceType>
static inline void scan_and_compact(SpaceType* space);
// Frequently calls scanned_block_is_obj() and scanned_block_size().
// Requires the scan_limit() function.
template <class SpaceType>
static inline void scan_and_forward(SpaceType* space, CompactPoint* cp);
}; };
class GenSpaceMangler; class GenSpaceMangler;
@ -480,22 +422,6 @@ class GenSpaceMangler;
// faster allocation, and compaction. // faster allocation, and compaction.
class ContiguousSpace: public CompactibleSpace { class ContiguousSpace: public CompactibleSpace {
friend class VMStructs; friend class VMStructs;
// Allow scan_and_forward function to call (private) overrides for auxiliary functions on this class
template <typename SpaceType>
friend void CompactibleSpace::scan_and_forward(SpaceType* space, CompactPoint* cp);
private:
// Auxiliary functions for scan_and_forward support.
// See comments for CompactibleSpace for more information.
inline HeapWord* scan_limit() const {
return top();
}
inline bool scanned_block_is_obj(const HeapWord* addr) const {
return true; // Always true, since scan_limit is top
}
inline size_t scanned_block_size(const HeapWord* addr) const;
protected: protected:
HeapWord* _top; HeapWord* _top;

View File

@ -76,10 +76,6 @@ OffsetTableContigSpace::block_start_const(const void* p) const {
return _offsets.block_start(p); return _offsets.block_start(p);
} }
size_t CompactibleSpace::obj_size(const HeapWord* addr) const {
return cast_to_oop(addr)->size();
}
#if INCLUDE_SERIALGC #if INCLUDE_SERIALGC
class DeadSpacer : StackObj { class DeadSpacer : StackObj {
@ -133,122 +129,6 @@ public:
}; };
template <class SpaceType>
inline void CompactibleSpace::scan_and_forward(SpaceType* space, CompactPoint* cp) {
// Compute the new addresses for the live objects and store it in the mark
// Used by universe::mark_sweep_phase2()
// We're sure to be here before any objects are compacted into this
// space, so this is a good time to initialize this:
space->set_compaction_top(space->bottom());
if (cp->space == NULL) {
assert(cp->gen != NULL, "need a generation");
assert(cp->threshold == NULL, "just checking");
assert(cp->gen->first_compaction_space() == space, "just checking");
cp->space = cp->gen->first_compaction_space();
cp->threshold = cp->space->initialize_threshold();
cp->space->set_compaction_top(cp->space->bottom());
}
HeapWord* compact_top = cp->space->compaction_top(); // This is where we are currently compacting to.
DeadSpacer dead_spacer(space);
HeapWord* end_of_live = space->bottom(); // One byte beyond the last byte of the last live object.
HeapWord* first_dead = NULL; // The first dead object.
const intx interval = PrefetchScanIntervalInBytes;
HeapWord* cur_obj = space->bottom();
HeapWord* scan_limit = space->scan_limit();
while (cur_obj < scan_limit) {
if (space->scanned_block_is_obj(cur_obj) && cast_to_oop(cur_obj)->is_gc_marked()) {
// prefetch beyond cur_obj
Prefetch::write(cur_obj, interval);
size_t size = space->scanned_block_size(cur_obj);
compact_top = cp->space->forward(cast_to_oop(cur_obj), size, cp, compact_top);
cur_obj += size;
end_of_live = cur_obj;
} else {
// run over all the contiguous dead objects
HeapWord* end = cur_obj;
do {
// prefetch beyond end
Prefetch::write(end, interval);
end += space->scanned_block_size(end);
} while (end < scan_limit && (!space->scanned_block_is_obj(end) || !cast_to_oop(end)->is_gc_marked()));
// see if we might want to pretend this object is alive so that
// we don't have to compact quite as often.
if (cur_obj == compact_top && dead_spacer.insert_deadspace(cur_obj, end)) {
oop obj = cast_to_oop(cur_obj);
compact_top = cp->space->forward(obj, obj->size(), cp, compact_top);
end_of_live = end;
} else {
// otherwise, it really is a free region.
// cur_obj is a pointer to a dead object. Use this dead memory to store a pointer to the next live object.
*(HeapWord**)cur_obj = end;
// see if this is the first dead region.
if (first_dead == NULL) {
first_dead = cur_obj;
}
}
// move on to the next object
cur_obj = end;
}
}
assert(cur_obj == scan_limit, "just checking");
space->_end_of_live = end_of_live;
if (first_dead != NULL) {
space->_first_dead = first_dead;
} else {
space->_first_dead = end_of_live;
}
// save the compaction_top of the compaction space.
cp->space->set_compaction_top(compact_top);
}
template <class SpaceType>
inline void CompactibleSpace::scan_and_adjust_pointers(SpaceType* space) {
// adjust all the interior pointers to point at the new locations of objects
// Used by MarkSweep::mark_sweep_phase3()
HeapWord* cur_obj = space->bottom();
HeapWord* const end_of_live = space->_end_of_live; // Established by "scan_and_forward".
HeapWord* const first_dead = space->_first_dead; // Established by "scan_and_forward".
assert(first_dead <= end_of_live, "Stands to reason, no?");
const intx interval = PrefetchScanIntervalInBytes;
debug_only(HeapWord* prev_obj = NULL);
while (cur_obj < end_of_live) {
Prefetch::write(cur_obj, interval);
if (cur_obj < first_dead || cast_to_oop(cur_obj)->is_gc_marked()) {
// cur_obj is alive
// point all the oops to the new location
size_t size = MarkSweep::adjust_pointers(cast_to_oop(cur_obj));
size = space->adjust_obj_size(size);
debug_only(prev_obj = cur_obj);
cur_obj += size;
} else {
debug_only(prev_obj = cur_obj);
// cur_obj is not a live object, instead it points at the next live object
cur_obj = *(HeapWord**)cur_obj;
assert(cur_obj > prev_obj, "we should be moving forward through memory, cur_obj: " PTR_FORMAT ", prev_obj: " PTR_FORMAT, p2i(cur_obj), p2i(prev_obj));
}
}
assert(cur_obj == end_of_live, "just checking");
}
#ifdef ASSERT #ifdef ASSERT
template <class SpaceType> template <class SpaceType>
inline void CompactibleSpace::verify_up_to_first_dead(SpaceType* space) { inline void CompactibleSpace::verify_up_to_first_dead(SpaceType* space) {
@ -261,7 +141,7 @@ inline void CompactibleSpace::verify_up_to_first_dead(SpaceType* space) {
HeapWord* prev_obj = NULL; HeapWord* prev_obj = NULL;
while (cur_obj < space->_first_dead) { while (cur_obj < space->_first_dead) {
size_t size = space->obj_size(cur_obj); size_t size = cast_to_oop(cur_obj)->size();
assert(!cast_to_oop(cur_obj)->is_gc_marked(), "should be unmarked (special dense prefix handling)"); assert(!cast_to_oop(cur_obj)->is_gc_marked(), "should be unmarked (special dense prefix handling)");
prev_obj = cur_obj; prev_obj = cur_obj;
cur_obj += size; cur_obj += size;
@ -287,73 +167,8 @@ inline void CompactibleSpace::clear_empty_region(SpaceType* space) {
if (ZapUnusedHeapArea) space->mangle_unused_area(); if (ZapUnusedHeapArea) space->mangle_unused_area();
} }
} }
template <class SpaceType>
inline void CompactibleSpace::scan_and_compact(SpaceType* space) {
// Copy all live objects to their new location
// Used by MarkSweep::mark_sweep_phase4()
verify_up_to_first_dead(space);
HeapWord* const bottom = space->bottom();
HeapWord* const end_of_live = space->_end_of_live;
assert(space->_first_dead <= end_of_live, "Invariant. _first_dead: " PTR_FORMAT " <= end_of_live: " PTR_FORMAT, p2i(space->_first_dead), p2i(end_of_live));
if (space->_first_dead == end_of_live && (bottom == end_of_live || !cast_to_oop(bottom)->is_gc_marked())) {
// Nothing to compact. The space is either empty or all live object should be left in place.
clear_empty_region(space);
return;
}
const intx scan_interval = PrefetchScanIntervalInBytes;
const intx copy_interval = PrefetchCopyIntervalInBytes;
assert(bottom < end_of_live, "bottom: " PTR_FORMAT " should be < end_of_live: " PTR_FORMAT, p2i(bottom), p2i(end_of_live));
HeapWord* cur_obj = bottom;
if (space->_first_dead > cur_obj && !cast_to_oop(cur_obj)->is_gc_marked()) {
// All object before _first_dead can be skipped. They should not be moved.
// A pointer to the first live object is stored at the memory location for _first_dead.
cur_obj = *(HeapWord**)(space->_first_dead);
}
debug_only(HeapWord* prev_obj = NULL);
while (cur_obj < end_of_live) {
if (!cast_to_oop(cur_obj)->is_gc_marked()) {
debug_only(prev_obj = cur_obj);
// The first word of the dead object contains a pointer to the next live object or end of space.
cur_obj = *(HeapWord**)cur_obj;
assert(cur_obj > prev_obj, "we should be moving forward through memory");
} else {
// prefetch beyond q
Prefetch::read(cur_obj, scan_interval);
// size and destination
size_t size = space->obj_size(cur_obj);
HeapWord* compaction_top = cast_from_oop<HeapWord*>(cast_to_oop(cur_obj)->forwardee());
// prefetch beyond compaction_top
Prefetch::write(compaction_top, copy_interval);
// copy object and reinit its mark
assert(cur_obj != compaction_top, "everything in this pass should be moving");
Copy::aligned_conjoint_words(cur_obj, compaction_top, size);
cast_to_oop(compaction_top)->init_mark();
assert(cast_to_oop(compaction_top)->klass() != NULL, "should have a class");
debug_only(prev_obj = cur_obj);
cur_obj += size;
}
}
clear_empty_region(space);
}
#endif // INCLUDE_SERIALGC #endif // INCLUDE_SERIALGC
size_t ContiguousSpace::scanned_block_size(const HeapWord* addr) const {
return cast_to_oop(addr)->size();
}
template <typename OopClosureType> template <typename OopClosureType>
void ContiguousSpace::oop_since_save_marks_iterate(OopClosureType* blk) { void ContiguousSpace::oop_since_save_marks_iterate(OopClosureType* blk) {
HeapWord* t; HeapWord* t;