This commit is contained in:
Jesper Wilhelmsson 2017-11-25 04:36:43 +01:00
commit 96ba782488
92 changed files with 4165 additions and 1328 deletions

View File

@ -104,7 +104,6 @@ $(eval $(call SetupJvmtiGeneration, jvmtiEnterTrace.cpp, jvmtiEnter.xsl, \
$(eval $(call SetupJvmtiGeneration, jvmtiEnv.hpp, jvmtiHpp.xsl))
$(eval $(call SetupJvmtiGeneration, jvmti.h, jvmtiH.xsl))
$(eval $(call SetupJvmtiGeneration, jvmti.html, jvmti.xsl))
$(eval $(call SetupJvmtiGeneration, jvmtiEnvStub.cpp, jvmtiEnv.xsl))
JVMTI_BC_SRCDIR := $(TOPDIR)/src/hotspot/share/interpreter
@ -115,20 +114,6 @@ $(eval $(call SetupXslTransform, bytecodeInterpreterWithChecks.cpp, \
DEPS := $(JVMTI_BC_SRCDIR)/bytecodeInterpreter.cpp, \
))
# We need $(JVMTI_OUTPUTDIR)/jvmtiEnvStub.cpp (generated above) as input
$(JVMTI_OUTPUTDIR)/jvmtiEnvRecommended.cpp: $(JVMTI_SRCDIR)/jvmtiEnv.cpp \
$(JVMTI_OUTPUTDIR)/jvmtiEnvStub.cpp $(BUILD_JVMTI_TOOLS)
$(call LogInfo, Generating $(@F))
$(call MakeDir, $(@D))
$(call ExecuteWithLog, $@, $(TOOL_JVMTI_ENV_FILL) $(JVMTI_SRCDIR)/jvmtiEnv.cpp \
$(JVMTI_OUTPUTDIR)/jvmtiEnvStub.cpp \
$(JVMTI_OUTPUTDIR)/jvmtiEnvRecommended.cpp)
# jvmtiEnvFill does not necessarily return an error code on failure.
# NOTE: We should really fix jvmtiEnvFill.java instead.
test -f $@
TARGETS += $(JVMTI_OUTPUTDIR)/jvmtiEnvRecommended.cpp
################################################################################
# Copy jvmti.h to include dir

View File

@ -59,6 +59,7 @@ JVM_CFLAGS_INCLUDES += \
-I$(TOPDIR)/src/hotspot/share/precompiled \
-I$(TOPDIR)/src/java.base/share/native/include \
-I$(TOPDIR)/src/java.base/$(OPENJDK_TARGET_OS_TYPE)/native/include \
-I$(TOPDIR)/src/java.base/share/native/libjimage \
#
# INCLUDE_SUFFIX_* is only meant for including the proper
@ -112,7 +113,7 @@ JVM_LIBS += \
#
# These files and directories are always excluded
JVM_EXCLUDE_FILES += jvmtiEnvRecommended.cpp jvmtiEnvStub.cpp args.cc
JVM_EXCLUDE_FILES += args.cc
JVM_EXCLUDES += adlc
# Needed by vm_version.cpp

View File

@ -1074,7 +1074,7 @@ address TemplateInterpreterGenerator::generate_CRC32_updateBytes_entry(AbstractI
* CRC32C also uses an "end" variable instead of the length variable CRC32 uses
*/
address TemplateInterpreterGenerator::generate_CRC32C_updateBytes_entry(AbstractInterpreter::MethodKind kind) {
if (UseCRC32Intrinsics) {
if (UseCRC32CIntrinsics) {
address entry = __ pc();
// Prepare jump to stub using parameters from the stack

View File

@ -399,7 +399,7 @@ static void query_multipage_support() {
// thread (because primordial thread's stack may have different page size than
// pthread thread stacks). Running a VM on the primordial thread won't work for a
// number of reasons so we may just as well guarantee it here.
guarantee0(!os::Aix::is_primordial_thread());
guarantee0(!os::is_primordial_thread());
// Query pthread stack page size. Should be the same as data page size because
// pthread stacks are allocated from C-Heap.
@ -3448,7 +3448,7 @@ void os::init(void) {
init_random(1234567);
// Main_thread points to the aboriginal thread.
// _main_thread points to the thread that created/loaded the JVM.
Aix::_main_thread = pthread_self();
initial_time_count = os::elapsed_counter();
@ -3995,7 +3995,7 @@ void os::pause() {
}
}
bool os::Aix::is_primordial_thread() {
bool os::is_primordial_thread(void) {
if (pthread_self() == (pthread_t)1) {
return true;
} else {

View File

@ -99,12 +99,6 @@ class Aix {
// Given an address, returns the size of the page backing that address
static size_t query_pagesize(void* p);
// Return `true' if the calling thread is the primordial thread. The
// primordial thread is the thread which contains the main function,
// *not* necessarily the thread which initialized the VM by calling
// JNI_CreateJavaVM.
static bool is_primordial_thread(void);
static int page_size(void) {
assert(_page_size != -1, "not initialized");
return _page_size;

View File

@ -3360,7 +3360,7 @@ void os::init(void) {
Bsd::initialize_system_info();
// main_thread points to the aboriginal thread
// _main_thread points to the thread that created/loaded the JVM.
Bsd::_main_thread = pthread_self();
Bsd::clock_init();

View File

@ -74,7 +74,6 @@ class Bsd {
static void hotspot_sigmask(Thread* thread);
static bool is_initial_thread(void);
static pid_t gettid();
static int page_size(void) { return _page_size; }

View File

@ -853,8 +853,8 @@ bool os::create_attached_thread(JavaThread* thread) {
}
}
if (os::Linux::is_initial_thread()) {
// If current thread is initial thread, its stack is mapped on demand,
if (os::is_primordial_thread()) {
// If current thread is primordial thread, its stack is mapped on demand,
// see notes about MAP_GROWSDOWN. Here we try to force kernel to map
// the entire stack region to avoid SEGV in stack banging.
// It is also useful to get around the heap-stack-gap problem on SuSE
@ -915,19 +915,20 @@ void os::free_thread(OSThread* osthread) {
}
//////////////////////////////////////////////////////////////////////////////
// initial thread
// primordial thread
// Check if current thread is the initial thread, similar to Solaris thr_main.
bool os::Linux::is_initial_thread(void) {
// Check if current thread is the primordial thread, similar to Solaris thr_main.
bool os::is_primordial_thread(void) {
char dummy;
// If called before init complete, thread stack bottom will be null.
// Can be called if fatal error occurs before initialization.
if (initial_thread_stack_bottom() == NULL) return false;
assert(initial_thread_stack_bottom() != NULL &&
initial_thread_stack_size() != 0,
"os::init did not locate initial thread's stack region");
if ((address)&dummy >= initial_thread_stack_bottom() &&
(address)&dummy < initial_thread_stack_bottom() + initial_thread_stack_size()) {
if (os::Linux::initial_thread_stack_bottom() == NULL) return false;
assert(os::Linux::initial_thread_stack_bottom() != NULL &&
os::Linux::initial_thread_stack_size() != 0,
"os::init did not locate primordial thread's stack region");
if ((address)&dummy >= os::Linux::initial_thread_stack_bottom() &&
(address)&dummy < os::Linux::initial_thread_stack_bottom() +
os::Linux::initial_thread_stack_size()) {
return true;
} else {
return false;
@ -958,7 +959,7 @@ static bool find_vma(address addr, address* vma_low, address* vma_high) {
return false;
}
// Locate initial thread stack. This special handling of initial thread stack
// Locate primordial thread stack. This special handling of primordial thread stack
// is needed because pthread_getattr_np() on most (all?) Linux distros returns
// bogus value for the primordial process thread. While the launcher has created
// the VM in a new thread since JDK 6, we still have to allow for the use of the
@ -982,7 +983,10 @@ void os::Linux::capture_initial_stack(size_t max_size) {
// 6308388: a bug in ld.so will relocate its own .data section to the
// lower end of primordial stack; reduce ulimit -s value a little bit
// so we won't install guard page on ld.so's data section.
stack_size -= 2 * page_size();
// But ensure we don't underflow the stack size - allow 1 page spare
if (stack_size >= (size_t)(3 * page_size())) {
stack_size -= 2 * page_size();
}
// Try to figure out where the stack base (top) is. This is harder.
//
@ -1103,16 +1107,16 @@ void os::Linux::capture_initial_stack(size_t max_size) {
if (i != 28 - 2) {
assert(false, "Bad conversion from /proc/self/stat");
// product mode - assume we are the initial thread, good luck in the
// product mode - assume we are the primordial thread, good luck in the
// embedded case.
warning("Can't detect initial thread stack location - bad conversion");
warning("Can't detect primordial thread stack location - bad conversion");
stack_start = (uintptr_t) &rlim;
}
} else {
// For some reason we can't open /proc/self/stat (for example, running on
// FreeBSD with a Linux emulator, or inside chroot), this should work for
// most cases, so don't abort:
warning("Can't detect initial thread stack location - no /proc/self/stat");
warning("Can't detect primordial thread stack location - no /proc/self/stat");
stack_start = (uintptr_t) &rlim;
}
}
@ -1132,7 +1136,7 @@ void os::Linux::capture_initial_stack(size_t max_size) {
stack_top = (uintptr_t)high;
} else {
// failed, likely because /proc/self/maps does not exist
warning("Can't detect initial thread stack location - find_vma failed");
warning("Can't detect primordial thread stack location - find_vma failed");
// best effort: stack_start is normally within a few pages below the real
// stack top, use it as stack top, and reduce stack size so we won't put
// guard page outside stack.
@ -3136,10 +3140,10 @@ static address get_stack_commited_bottom(address bottom, size_t size) {
// where we're going to put our guard pages, truncate the mapping at
// that point by munmap()ping it. This ensures that when we later
// munmap() the guard pages we don't leave a hole in the stack
// mapping. This only affects the main/initial thread
// mapping. This only affects the main/primordial thread
bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
if (os::Linux::is_initial_thread()) {
if (os::is_primordial_thread()) {
// As we manually grow stack up to bottom inside create_attached_thread(),
// it's likely that os::Linux::initial_thread_stack_bottom is mapped and
// we don't need to do anything special.
@ -3164,14 +3168,14 @@ bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
// If this is a growable mapping, remove the guard pages entirely by
// munmap()ping them. If not, just call uncommit_memory(). This only
// affects the main/initial thread, but guard against future OS changes
// It's safe to always unmap guard pages for initial thread because we
// always place it right after end of the mapped region
// affects the main/primordial thread, but guard against future OS changes.
// It's safe to always unmap guard pages for primordial thread because we
// always place it right after end of the mapped region.
bool os::remove_stack_guard_pages(char* addr, size_t size) {
uintptr_t stack_extent, stack_base;
if (os::Linux::is_initial_thread()) {
if (os::is_primordial_thread()) {
return ::munmap(addr, size) == 0;
}
@ -4860,10 +4864,9 @@ void os::Linux::check_signal_handler(int sig) {
extern void report_error(char* file_name, int line_no, char* title,
char* format, ...);
// this is called _before_ the most of global arguments have been parsed
// this is called _before_ most of the global arguments have been parsed
void os::init(void) {
char dummy; // used to get a guess on initial stack address
// first_hrtime = gethrtime();
clock_tics_per_sec = sysconf(_SC_CLK_TCK);
@ -4880,7 +4883,7 @@ void os::init(void) {
Linux::initialize_os_info();
// main_thread points to the aboriginal thread
// _main_thread points to the thread that created/loaded the JVM.
Linux::_main_thread = pthread_self();
Linux::clock_init();
@ -5851,8 +5854,8 @@ bool os::start_debugging(char *buf, int buflen) {
//
#ifndef ZERO
static void current_stack_region(address * bottom, size_t * size) {
if (os::Linux::is_initial_thread()) {
// initial thread needs special handling because pthread_getattr_np()
if (os::is_primordial_thread()) {
// primordial thread needs special handling because pthread_getattr_np()
// may return bogus value.
*bottom = os::Linux::initial_thread_stack_bottom();
*size = os::Linux::initial_thread_stack_size();

View File

@ -132,7 +132,6 @@ class Linux {
static address initial_thread_stack_bottom(void) { return _initial_thread_stack_bottom; }
static uintptr_t initial_thread_stack_size(void) { return _initial_thread_stack_size; }
static bool is_initial_thread(void);
static int page_size(void) { return _page_size; }
static void set_page_size(int val) { _page_size = val; }

View File

@ -200,17 +200,21 @@ static inline stack_t get_stack_info() {
return st;
}
address os::current_stack_base() {
bool os::is_primordial_thread(void) {
int r = thr_main();
guarantee(r == 0 || r == 1, "CR6501650 or CR6493689");
bool is_primordial_thread = r;
return r == 1;
}
address os::current_stack_base() {
bool _is_primordial_thread = is_primordial_thread();
// Workaround 4352906, avoid calls to thr_stksegment by
// thr_main after the first one (it looks like we trash
// some data, causing the value for ss_sp to be incorrect).
if (!is_primordial_thread || os::Solaris::_main_stack_base == NULL) {
if (!_is_primordial_thread || os::Solaris::_main_stack_base == NULL) {
stack_t st = get_stack_info();
if (is_primordial_thread) {
if (_is_primordial_thread) {
// cache initial value of stack base
os::Solaris::_main_stack_base = (address)st.ss_sp;
}
@ -224,9 +228,7 @@ address os::current_stack_base() {
size_t os::current_stack_size() {
size_t size;
int r = thr_main();
guarantee(r == 0 || r == 1, "CR6501650 or CR6493689");
if (!r) {
if (!is_primordial_thread()) {
size = get_stack_info().ss_size;
} else {
struct rlimit limits;
@ -1102,9 +1104,7 @@ void _handle_uncaught_cxx_exception() {
// First crack at OS-specific initialization, from inside the new thread.
void os::initialize_thread(Thread* thr) {
int r = thr_main();
guarantee(r == 0 || r == 1, "CR6501650 or CR6493689");
if (r) {
if (is_primordial_thread()) {
JavaThread* jt = (JavaThread *)thr;
assert(jt != NULL, "Sanity check");
size_t stack_size;
@ -4203,6 +4203,7 @@ void os::init(void) {
dladdr1_func = CAST_TO_FN_PTR(dladdr1_func_type, dlsym(hdl, "dladdr1"));
}
// main_thread points to the thread that created/loaded the JVM.
main_thread = thr_self();
// dynamic lookup of functions that may not be available in our lowest

View File

@ -4061,41 +4061,116 @@ void os::make_polling_page_readable(void) {
}
}
// combine the high and low DWORD into a ULONGLONG
static ULONGLONG make_double_word(DWORD high_word, DWORD low_word) {
ULONGLONG value = high_word;
value <<= sizeof(high_word) * 8;
value |= low_word;
return value;
}
// Transfers data from WIN32_FILE_ATTRIBUTE_DATA structure to struct stat
static void file_attribute_data_to_stat(struct stat* sbuf, WIN32_FILE_ATTRIBUTE_DATA file_data) {
::memset((void*)sbuf, 0, sizeof(struct stat));
sbuf->st_size = (_off_t)make_double_word(file_data.nFileSizeHigh, file_data.nFileSizeLow);
sbuf->st_mtime = make_double_word(file_data.ftLastWriteTime.dwHighDateTime,
file_data.ftLastWriteTime.dwLowDateTime);
sbuf->st_ctime = make_double_word(file_data.ftCreationTime.dwHighDateTime,
file_data.ftCreationTime.dwLowDateTime);
sbuf->st_atime = make_double_word(file_data.ftLastAccessTime.dwHighDateTime,
file_data.ftLastAccessTime.dwLowDateTime);
if ((file_data.dwFileAttributes & FILE_ATTRIBUTE_DIRECTORY) != 0) {
sbuf->st_mode |= S_IFDIR;
} else {
sbuf->st_mode |= S_IFREG;
}
}
// The following function is adapted from java.base/windows/native/libjava/canonicalize_md.c
// Creates an UNC path from a single byte path. Return buffer is
// allocated in C heap and needs to be freed by the caller.
// Returns NULL on error.
static wchar_t* create_unc_path(const char* path, errno_t &err) {
wchar_t* wpath = NULL;
size_t converted_chars = 0;
size_t path_len = strlen(path) + 1; // includes the terminating NULL
if (path[0] == '\\' && path[1] == '\\') {
if (path[2] == '?' && path[3] == '\\'){
// if it already has a \\?\ don't do the prefix
wpath = (wchar_t*)os::malloc(path_len * sizeof(wchar_t), mtInternal);
if (wpath != NULL) {
err = ::mbstowcs_s(&converted_chars, wpath, path_len, path, path_len);
} else {
err = ENOMEM;
}
} else {
// only UNC pathname includes double slashes here
wpath = (wchar_t*)os::malloc((path_len + 7) * sizeof(wchar_t), mtInternal);
if (wpath != NULL) {
::wcscpy(wpath, L"\\\\?\\UNC\0");
err = ::mbstowcs_s(&converted_chars, &wpath[7], path_len, path, path_len);
} else {
err = ENOMEM;
}
}
} else {
wpath = (wchar_t*)os::malloc((path_len + 4) * sizeof(wchar_t), mtInternal);
if (wpath != NULL) {
::wcscpy(wpath, L"\\\\?\\\0");
err = ::mbstowcs_s(&converted_chars, &wpath[4], path_len, path, path_len);
} else {
err = ENOMEM;
}
}
return wpath;
}
static void destroy_unc_path(wchar_t* wpath) {
os::free(wpath);
}
int os::stat(const char *path, struct stat *sbuf) {
char pathbuf[MAX_PATH];
if (strlen(path) > MAX_PATH - 1) {
errno = ENAMETOOLONG;
char* pathbuf = (char*)os::strdup(path, mtInternal);
if (pathbuf == NULL) {
errno = ENOMEM;
return -1;
}
os::native_path(strcpy(pathbuf, path));
int ret = ::stat(pathbuf, sbuf);
if (sbuf != NULL && UseUTCFileTimestamp) {
// Fix for 6539723. st_mtime returned from stat() is dependent on
// the system timezone and so can return different values for the
// same file if/when daylight savings time changes. This adjustment
// makes sure the same timestamp is returned regardless of the TZ.
//
// See:
// http://msdn.microsoft.com/library/
// default.asp?url=/library/en-us/sysinfo/base/
// time_zone_information_str.asp
// and
// http://msdn.microsoft.com/library/default.asp?url=
// /library/en-us/sysinfo/base/settimezoneinformation.asp
//
// NOTE: there is a insidious bug here: If the timezone is changed
// after the call to stat() but before 'GetTimeZoneInformation()', then
// the adjustment we do here will be wrong and we'll return the wrong
// value (which will likely end up creating an invalid class data
// archive). Absent a better API for this, or some time zone locking
// mechanism, we'll have to live with this risk.
TIME_ZONE_INFORMATION tz;
DWORD tzid = GetTimeZoneInformation(&tz);
int daylightBias =
(tzid == TIME_ZONE_ID_DAYLIGHT) ? tz.DaylightBias : tz.StandardBias;
sbuf->st_mtime += (tz.Bias + daylightBias) * 60;
os::native_path(pathbuf);
int ret;
WIN32_FILE_ATTRIBUTE_DATA file_data;
// Not using stat() to avoid the problem described in JDK-6539723
if (strlen(path) < MAX_PATH) {
BOOL bret = ::GetFileAttributesExA(pathbuf, GetFileExInfoStandard, &file_data);
if (!bret) {
errno = ::GetLastError();
ret = -1;
}
else {
file_attribute_data_to_stat(sbuf, file_data);
ret = 0;
}
} else {
errno_t err = ERROR_SUCCESS;
wchar_t* wpath = create_unc_path(pathbuf, err);
if (err != ERROR_SUCCESS) {
if (wpath != NULL) {
destroy_unc_path(wpath);
}
os::free(pathbuf);
errno = err;
return -1;
}
BOOL bret = ::GetFileAttributesExW(wpath, GetFileExInfoStandard, &file_data);
if (!bret) {
errno = ::GetLastError();
ret = -1;
} else {
file_attribute_data_to_stat(sbuf, file_data);
ret = 0;
}
destroy_unc_path(wpath);
}
os::free(pathbuf);
return ret;
}
@ -4208,14 +4283,34 @@ bool os::dont_yield() {
// from src/windows/hpi/src/sys_api_md.c
int os::open(const char *path, int oflag, int mode) {
char pathbuf[MAX_PATH];
if (strlen(path) > MAX_PATH - 1) {
errno = ENAMETOOLONG;
char* pathbuf = (char*)os::strdup(path, mtInternal);
if (pathbuf == NULL) {
errno = ENOMEM;
return -1;
}
os::native_path(strcpy(pathbuf, path));
return ::open(pathbuf, oflag | O_BINARY | O_NOINHERIT, mode);
os::native_path(pathbuf);
int ret;
if (strlen(path) < MAX_PATH) {
ret = ::open(pathbuf, oflag | O_BINARY | O_NOINHERIT, mode);
} else {
errno_t err = ERROR_SUCCESS;
wchar_t* wpath = create_unc_path(pathbuf, err);
if (err != ERROR_SUCCESS) {
if (wpath != NULL) {
destroy_unc_path(wpath);
}
os::free(pathbuf);
errno = err;
return -1;
}
ret = ::_wopen(wpath, oflag | O_BINARY | O_NOINHERIT, mode);
if (ret == -1) {
errno = ::GetLastError();
}
destroy_unc_path(wpath);
}
os::free(pathbuf);
return ret;
}
FILE* os::open(int fd, const char* mode) {

View File

@ -372,7 +372,7 @@ static void current_stack_region(address *bottom, size_t *size) {
// The initial thread has a growable stack, and the size reported
// by pthread_attr_getstack is the maximum size it could possibly
// be given what currently mapped. This can be huge, so we cap it.
if (os::Linux::is_initial_thread()) {
if (os::is_primordial_thread()) {
stack_bytes = stack_top - stack_bottom;
if (stack_bytes > JavaThread::stack_size_at_create())

View File

@ -46,6 +46,7 @@
#include "memory/allocation.inline.hpp"
#include "memory/oopFactory.hpp"
#include "memory/resourceArea.hpp"
#include "oops/access.inline.hpp"
#include "oops/objArrayKlass.hpp"
#include "oops/oop.inline.hpp"
#include "runtime/atomic.hpp"
@ -1367,25 +1368,16 @@ enum {
template <class T> int obj_arraycopy_work(oopDesc* src, T* src_addr,
oopDesc* dst, T* dst_addr,
int length) {
// For performance reasons, we assume we are using a card marking write
// barrier. The assert will fail if this is not the case.
// Note that we use the non-virtual inlineable variant of write_ref_array.
BarrierSet* bs = Universe::heap()->barrier_set();
if (src == dst) {
// same object, no check
bs->write_ref_array_pre(dst_addr, length);
Copy::conjoint_oops_atomic(src_addr, dst_addr, length);
bs->write_ref_array((HeapWord*)dst_addr, length);
HeapAccess<>::oop_arraycopy(arrayOop(src), arrayOop(dst), src_addr, dst_addr, length);
return ac_ok;
} else {
Klass* bound = ObjArrayKlass::cast(dst->klass())->element_klass();
Klass* stype = ObjArrayKlass::cast(src->klass())->element_klass();
if (stype == bound || stype->is_subtype_of(bound)) {
// Elements are guaranteed to be subtypes, so no check necessary
bs->write_ref_array_pre(dst_addr, length);
Copy::conjoint_oops_atomic(src_addr, dst_addr, length);
bs->write_ref_array((HeapWord*)dst_addr, length);
HeapAccess<ARRAYCOPY_DISJOINT>::oop_arraycopy(arrayOop(src), arrayOop(dst), src_addr, dst_addr, length);
return ac_ok;
}
}

View File

@ -1101,6 +1101,7 @@ void ciEnv::register_method(ciMethod* target,
}
method->method_holder()->add_osr_nmethod(nm);
}
nm->make_in_use();
}
} // safepoints are allowed again

View File

@ -24,12 +24,12 @@
#include "precompiled.hpp"
#include "jvm.h"
#include "jimage.hpp"
#include "classfile/classFileStream.hpp"
#include "classfile/classLoader.hpp"
#include "classfile/classLoaderData.inline.hpp"
#include "classfile/classLoaderExt.hpp"
#include "classfile/javaClasses.hpp"
#include "classfile/jimage.hpp"
#include "classfile/moduleEntry.hpp"
#include "classfile/modules.hpp"
#include "classfile/packageEntry.hpp"
@ -145,9 +145,9 @@ GrowableArray<ModuleClassPathList*>* ClassLoader::_exploded_entries = NULL;
ClassPathEntry* ClassLoader::_jrt_entry = NULL;
ClassPathEntry* ClassLoader::_first_append_entry = NULL;
ClassPathEntry* ClassLoader::_last_append_entry = NULL;
int ClassLoader::_num_entries = 0;
int ClassLoader::_num_boot_entries = -1;
#if INCLUDE_CDS
ClassPathEntry* ClassLoader::_app_classpath_entries = NULL;
ClassPathEntry* ClassLoader::_last_app_classpath_entry = NULL;
GrowableArray<char*>* ClassLoader::_boot_modules_array = NULL;
GrowableArray<char*>* ClassLoader::_platform_modules_array = NULL;
SharedPathsMiscInfo* ClassLoader::_shared_paths_misc_info = NULL;
@ -262,11 +262,11 @@ ClassPathDirEntry::ClassPathDirEntry(const char* dir) : ClassPathEntry() {
ClassFileStream* ClassPathDirEntry::open_stream(const char* name, TRAPS) {
// construct full path name
char* path = NEW_RESOURCE_ARRAY_IN_THREAD(THREAD, char, JVM_MAXPATHLEN);
if (jio_snprintf(path, JVM_MAXPATHLEN, "%s%s%s", _dir, os::file_separator(), name) == -1) {
FREE_RESOURCE_ARRAY(char, path, JVM_MAXPATHLEN);
return NULL;
}
assert((_dir != NULL) && (name != NULL), "sanity");
size_t path_len = strlen(_dir) + strlen(name) + strlen(os::file_separator()) + 1;
char* path = NEW_RESOURCE_ARRAY_IN_THREAD(THREAD, char, path_len);
int len = jio_snprintf(path, path_len, "%s%s%s", _dir, os::file_separator(), name);
assert(len == (int)(path_len - 1), "sanity");
// check if file exists
struct stat st;
if (os::stat(path, &st) == 0) {
@ -291,7 +291,7 @@ ClassFileStream* ClassPathDirEntry::open_stream(const char* name, TRAPS) {
if (UsePerfData) {
ClassLoader::perf_sys_classfile_bytes_read()->inc(num_read);
}
FREE_RESOURCE_ARRAY(char, path, JVM_MAXPATHLEN);
FREE_RESOURCE_ARRAY(char, path, path_len);
// Resource allocated
return new ClassFileStream(buffer,
st.st_size,
@ -300,7 +300,7 @@ ClassFileStream* ClassPathDirEntry::open_stream(const char* name, TRAPS) {
}
}
}
FREE_RESOURCE_ARRAY(char, path, JVM_MAXPATHLEN);
FREE_RESOURCE_ARRAY(char, path, path_len);
return NULL;
}
@ -381,9 +381,13 @@ u1* ClassPathZipEntry::open_versioned_entry(const char* name, jint* filesize, TR
if (is_multi_ver) {
int n;
char* entry_name = NEW_RESOURCE_ARRAY_IN_THREAD(THREAD, char, JVM_MAXPATHLEN);
const char* version_entry = "META-INF/versions/";
// 10 is the max length of a decimal 32-bit non-negative number
// 2 includes the '/' and trailing zero
size_t entry_name_len = strlen(version_entry) + 10 + strlen(name) + 2;
char* entry_name = NEW_RESOURCE_ARRAY_IN_THREAD(THREAD, char, entry_name_len);
if (version > 0) {
n = jio_snprintf(entry_name, JVM_MAXPATHLEN, "META-INF/versions/%d/%s", version, name);
n = jio_snprintf(entry_name, entry_name_len, "%s%d/%s", version_entry, version, name);
entry_name[n] = '\0';
buffer = open_entry((const char*)entry_name, filesize, false, CHECK_NULL);
if (buffer == NULL) {
@ -392,7 +396,7 @@ u1* ClassPathZipEntry::open_versioned_entry(const char* name, jint* filesize, TR
}
if (buffer == NULL) {
for (int i = cur_ver; i >= base_version; i--) {
n = jio_snprintf(entry_name, JVM_MAXPATHLEN, "META-INF/versions/%d/%s", i, name);
n = jio_snprintf(entry_name, entry_name_len, "%s%d/%s", version_entry, i, name);
entry_name[n] = '\0';
buffer = open_entry((const char*)entry_name, filesize, false, CHECK_NULL);
if (buffer != NULL) {
@ -400,7 +404,7 @@ u1* ClassPathZipEntry::open_versioned_entry(const char* name, jint* filesize, TR
}
}
}
FREE_RESOURCE_ARRAY(char, entry_name, JVM_MAXPATHLEN);
FREE_RESOURCE_ARRAY(char, entry_name, entry_name_len);
}
}
return buffer;
@ -660,20 +664,18 @@ void ClassLoader::check_shared_classpath(const char *path) {
void ClassLoader::setup_bootstrap_search_path() {
const char* sys_class_path = Arguments::get_sysclasspath();
const char* java_class_path = Arguments::get_appclasspath();
if (PrintSharedArchiveAndExit) {
// Don't print sys_class_path - this is the bootcp of this current VM process, not necessarily
// the same as the bootcp of the shared archive.
} else {
trace_class_path("bootstrap loader class path=", sys_class_path);
trace_class_path("classpath: ", java_class_path);
}
#if INCLUDE_CDS
if (DumpSharedSpaces) {
_shared_paths_misc_info->add_boot_classpath(sys_class_path);
}
#endif
setup_search_path(sys_class_path, true);
setup_boot_search_path(sys_class_path);
}
#if INCLUDE_CDS
@ -691,6 +693,36 @@ bool ClassLoader::check_shared_paths_misc_info(void *buf, int size) {
delete checker;
return result;
}
void ClassLoader::setup_app_search_path(const char *class_path) {
assert(DumpSharedSpaces, "Sanity");
Thread* THREAD = Thread::current();
int len = (int)strlen(class_path);
int end = 0;
// Iterate over class path entries
for (int start = 0; start < len; start = end) {
while (class_path[end] && class_path[end] != os::path_separator()[0]) {
end++;
}
EXCEPTION_MARK;
ResourceMark rm(THREAD);
char* path = NEW_RESOURCE_ARRAY(char, end - start + 1);
strncpy(path, &class_path[start], end - start);
path[end - start] = '\0';
check_shared_classpath(path);
update_class_path_entry_list(path, false, false);
while (class_path[end] == os::path_separator()[0]) {
end++;
}
}
}
#endif
// Construct the array of module/path pairs as specified to --patch-module
@ -764,10 +796,11 @@ bool ClassLoader::is_in_patch_mod_entries(Symbol* module_name) {
return false;
}
void ClassLoader::setup_search_path(const char *class_path, bool bootstrap_search) {
// Set up the _jrt_entry if present and boot append path
void ClassLoader::setup_boot_search_path(const char *class_path) {
int len = (int)strlen(class_path);
int end = 0;
bool set_base_piece = bootstrap_search;
bool set_base_piece = true;
// Iterate over class path entries
for (int start = 0; start < len; start = end) {
@ -780,10 +813,10 @@ void ClassLoader::setup_search_path(const char *class_path, bool bootstrap_searc
strncpy(path, &class_path[start], end - start);
path[end - start] = '\0';
// The first time through the bootstrap_search setup, it must be determined
// what the base or core piece of the boot loader search is. Either a java runtime
// image is present or this is an exploded module build situation.
if (set_base_piece) {
// The first time through the bootstrap_search setup, it must be determined
// what the base or core piece of the boot loader search is. Either a java runtime
// image is present or this is an exploded module build situation.
assert(string_ends_with(path, MODULES_IMAGE_NAME) || string_ends_with(path, JAVA_BASE_NAME),
"Incorrect boot loader search path, no java runtime image or " JAVA_BASE_NAME " exploded build");
struct stat st;
@ -797,13 +830,7 @@ void ClassLoader::setup_search_path(const char *class_path, bool bootstrap_searc
assert(_jrt_entry == NULL, "should not setup bootstrap class search path twice");
assert(new_entry != NULL && new_entry->is_modules_image(), "No java runtime image present");
_jrt_entry = new_entry;
++_num_entries;
#if INCLUDE_CDS
if (DumpSharedSpaces) {
JImageFile *jimage = _jrt_entry->jimage();
assert(jimage != NULL, "No java runtime image file present");
}
#endif
assert(_jrt_entry->jimage() != NULL, "No java runtime image");
}
} else {
// If path does not exist, exit
@ -813,7 +840,7 @@ void ClassLoader::setup_search_path(const char *class_path, bool bootstrap_searc
} else {
// Every entry on the system boot class path after the initial base piece,
// which is set by os::set_boot_path(), is considered an appended entry.
update_class_path_entry_list(path, false, bootstrap_search);
update_class_path_entry_list(path, false, true);
}
#if INCLUDE_CDS
@ -968,7 +995,7 @@ bool ClassLoader::contains_append_entry(const char* name) {
return false;
}
void ClassLoader::add_to_list(ClassPathEntry *new_entry) {
void ClassLoader::add_to_boot_append_entries(ClassPathEntry *new_entry) {
if (new_entry != NULL) {
if (_last_append_entry == NULL) {
assert(_first_append_entry == NULL, "boot loader's append class path entry list not empty");
@ -978,11 +1005,48 @@ void ClassLoader::add_to_list(ClassPathEntry *new_entry) {
_last_append_entry = new_entry;
}
}
_num_entries++;
}
void ClassLoader::add_to_list(const char *apath) {
update_class_path_entry_list((char*)apath, false, false);
// Record the path entries specified in -cp during dump time. The recorded
// information will be used at runtime for loading the archived app classes.
//
// Note that at dump time, ClassLoader::_app_classpath_entries are NOT used for
// loading app classes. Instead, the app class are loaded by the
// jdk/internal/loader/ClassLoaders$AppClassLoader instance.
void ClassLoader::add_to_app_classpath_entries(const char* path,
ClassPathEntry* entry,
bool check_for_duplicates) {
#if INCLUDE_CDS
assert(entry != NULL, "ClassPathEntry should not be NULL");
ClassPathEntry* e = _app_classpath_entries;
if (check_for_duplicates) {
while (e != NULL) {
if (strcmp(e->name(), entry->name()) == 0) {
// entry already exists
return;
}
e = e->next();
}
}
// The entry does not exist, add to the list
if (_app_classpath_entries == NULL) {
assert(_last_app_classpath_entry == NULL, "Sanity");
_app_classpath_entries = _last_app_classpath_entry = entry;
} else {
_last_app_classpath_entry->set_next(entry);
_last_app_classpath_entry = entry;
}
if (entry->is_jar_file()) {
ClassLoaderExt::process_jar_manifest(entry, check_for_duplicates);
} else {
if (!os::dir_is_empty(path)) {
tty->print_cr("Error: non-empty directory '%s'", path);
exit_with_path_failure("Cannot have non-empty directory in app classpaths", NULL);
}
}
#endif
}
// Returns true IFF the file/dir exists and the entry was successfully created.
@ -1002,8 +1066,10 @@ bool ClassLoader::update_class_path_entry_list(const char *path,
// Do not reorder the bootclasspath which would break get_system_package().
// Add new entry to linked list
if (!check_for_duplicates || !contains_append_entry(new_entry->name())) {
ClassLoaderExt::add_class_path_entry(path, check_for_duplicates, new_entry);
if (is_boot_append) {
add_to_boot_append_entries(new_entry);
} else {
add_to_app_classpath_entries(path, new_entry, check_for_duplicates);
}
return true;
} else {
@ -1323,6 +1389,7 @@ ClassFileStream* ClassLoader::search_module_entries(const GrowableArray<ModuleCl
return NULL;
}
// Called by the boot classloader to load classes
InstanceKlass* ClassLoader::load_class(Symbol* name, bool search_append_only, TRAPS) {
assert(name != NULL, "invariant");
assert(THREAD->is_Java_thread(), "must be a JavaThread");
@ -1402,11 +1469,6 @@ InstanceKlass* ClassLoader::load_class(Symbol* name, bool search_append_only, TR
e = _first_append_entry;
while (e != NULL) {
if (DumpSharedSpaces && classpath_index >= _num_boot_entries) {
// Do not load any class from the app classpath using the boot loader. Let
// the built-in app class laoder load them.
break;
}
stream = e->open_stream(file_name, CHECK_NULL);
if (!context.check(stream, classpath_index)) {
return NULL;
@ -1442,7 +1504,11 @@ InstanceKlass* ClassLoader::load_class(Symbol* name, bool search_append_only, TR
return NULL;
}
return context.record_result(name, e, classpath_index, result, THREAD);
if (!add_package(file_name, classpath_index, THREAD)) {
return NULL;
}
return result;
}
#if INCLUDE_CDS
@ -1465,7 +1531,9 @@ static char* skip_uri_protocol(char* source) {
return source;
}
void ClassLoader::record_shared_class_loader_type(InstanceKlass* ik, const ClassFileStream* stream) {
// Record the shared classpath index and loader type for classes loaded
// by the builtin loaders at dump time.
void ClassLoader::record_result(InstanceKlass* ik, const ClassFileStream* stream) {
assert(DumpSharedSpaces, "sanity");
assert(stream != NULL, "sanity");
@ -1474,7 +1542,8 @@ void ClassLoader::record_shared_class_loader_type(InstanceKlass* ik, const Class
return;
}
if (stream->source() == NULL) {
char* src = (char*)stream->source();
if (src == NULL) {
if (ik->class_loader() == NULL) {
// JFR classes
ik->set_shared_classpath_index(0);
@ -1486,56 +1555,42 @@ void ClassLoader::record_shared_class_loader_type(InstanceKlass* ik, const Class
assert(has_jrt_entry(), "CDS dumping does not support exploded JDK build");
ModuleEntry* module = ik->module();
ClassPathEntry* e = NULL;
int classpath_index = 0;
int classpath_index = -1;
ResourceMark rm;
char* canonical_path = NEW_RESOURCE_ARRAY(char, JVM_MAXPATHLEN);
// Check if the class is from the runtime image
if (module != NULL && (module->location() != NULL) &&
(module->location()->starts_with("jrt:"))) {
e = _jrt_entry;
classpath_index = 0;
} else {
classpath_index = 1;
ResourceMark rm;
char* canonical_path = NEW_RESOURCE_ARRAY(char, JVM_MAXPATHLEN);
for (e = _first_append_entry; e != NULL; e = e->next()) {
if (get_canonical_path(e->name(), canonical_path, JVM_MAXPATHLEN)) {
char* src = (char*)stream->source();
// save the path from the file: protocol or the module name from the jrt: protocol
// if no protocol prefix is found, src is the same as stream->source() after the following call
src = skip_uri_protocol(src);
if (strcmp(canonical_path, os::native_path((char*)src)) == 0) {
break;
}
classpath_index ++;
// save the path from the file: protocol or the module name from the jrt: protocol
// if no protocol prefix is found, path is the same as stream->source()
char* path = skip_uri_protocol(src);
for (int i = 0; i < FileMapInfo::get_number_of_share_classpaths(); i++) {
SharedClassPathEntry* ent = FileMapInfo::shared_classpath(i);
if (get_canonical_path(ent->name(), canonical_path, JVM_MAXPATHLEN)) {
// If the path (from the class stream srouce) is the same as the shared
// class path, then we have a match. For classes from module image loaded by the
// PlatformClassLoader, the stream->source() is not the name of the module image.
// Need to look for 'jrt:' explicitly.
if (strcmp(canonical_path, os::native_path((char*)path)) == 0 ||
(i == 0 && string_starts_with(src, "jrt:"))) {
classpath_index = i;
break;
}
}
if (e == NULL) {
assert(ik->shared_classpath_index() < 0,
"must be a class from a custom jar which isn't in the class path or boot class path");
return;
}
}
if (classpath_index < 0) {
// Shared classpath entry table only contains boot class path and -cp path.
// No path entry found for this class. Must be a shared class loaded by the
// user defined classloader.
assert(ik->shared_classpath_index() < 0, "Sanity");
return;
}
if (classpath_index < _num_boot_entries) {
// ik is either:
// 1) a boot class loaded from the runtime image during vm initialization (classpath_index = 0); or
// 2) a user's class from -Xbootclasspath/a (classpath_index > 0)
// In the second case, the classpath_index, classloader_type will be recorded via
// context.record_result() in ClassLoader::load_class(Symbol* name, bool search_append_only, TRAPS).
if (classpath_index > 0) {
return;
}
}
ResourceMark rm;
const char* const class_name = ik->name()->as_C_string();
const char* const file_name = file_name_for_class_name(class_name,
ik->name()->utf8_length());
assert(file_name != NULL, "invariant");
Thread* THREAD = Thread::current();
ClassLoaderExt::Context context(class_name, file_name, CATCH);
context.record_result(ik->name(), e, classpath_index, ik, THREAD);
context.record_result(ik->name(), classpath_index, ik, THREAD);
}
#endif // INCLUDE_CDS
@ -1623,7 +1678,6 @@ void ClassLoader::initialize() {
#if INCLUDE_CDS
void ClassLoader::initialize_shared_path() {
if (DumpSharedSpaces) {
_num_boot_entries = _num_entries;
ClassLoaderExt::setup_search_paths();
_shared_paths_misc_info->write_jint(0); // see comments in SharedPathsMiscInfo::check()
}

View File

@ -25,7 +25,7 @@
#ifndef SHARE_VM_CLASSFILE_CLASSLOADER_HPP
#define SHARE_VM_CLASSFILE_CLASSLOADER_HPP
#include "classfile/jimage.hpp"
#include "jimage.hpp"
#include "runtime/orderAccess.hpp"
#include "runtime/perfData.hpp"
#include "utilities/exceptions.hpp"
@ -237,14 +237,6 @@ class ClassLoader: AllStatic {
// Last entry in linked list of appended ClassPathEntry instances
static ClassPathEntry* _last_append_entry;
// Note: _num_entries includes the java runtime image and all
// the entries on the _first_append_entry linked list.
static int _num_entries;
// number of entries in the boot class path including the
// java runtime image
static int _num_boot_entries;
// Array of module names associated with the boot class loader
CDS_ONLY(static GrowableArray<char*>* _boot_modules_array;)
@ -254,12 +246,22 @@ class ClassLoader: AllStatic {
// Info used by CDS
CDS_ONLY(static SharedPathsMiscInfo * _shared_paths_misc_info;)
CDS_ONLY(static ClassPathEntry* _app_classpath_entries;)
CDS_ONLY(static ClassPathEntry* _last_app_classpath_entry;)
CDS_ONLY(static void setup_app_search_path(const char *class_path);)
static void add_to_app_classpath_entries(const char* path,
ClassPathEntry* entry,
bool check_for_duplicates);
public:
CDS_ONLY(static ClassPathEntry* app_classpath_entries() {return _app_classpath_entries;})
protected:
// Initialization:
// - setup the boot loader's system class path
// - setup the boot loader's patch mod entries, if present
// - create the ModuleEntry for java.base
static void setup_bootstrap_search_path();
static void setup_search_path(const char *class_path, bool setting_bootstrap);
static void setup_boot_search_path(const char *class_path);
static void setup_patch_mod_entries();
static void create_javabase();
@ -395,7 +397,6 @@ class ClassLoader: AllStatic {
static ClassPathEntry* classpath_entry(int n) {
assert(n >= 0, "sanity");
assert(!has_jrt_entry() || n < _num_entries, "sanity");
if (n == 0) {
assert(has_jrt_entry(), "No class path entry at 0 for exploded module builds");
return ClassLoader::_jrt_entry;
@ -414,15 +415,46 @@ class ClassLoader: AllStatic {
}
}
static int number_of_classpath_entries() {
return _num_entries;
}
static bool is_in_patch_mod_entries(Symbol* module_name);
#if INCLUDE_CDS
// Sharing dump and restore
// Helper function used by CDS code to get the number of boot classpath
// entries during shared classpath setup time.
static int num_boot_classpath_entries() {
assert(DumpSharedSpaces, "Should only be called at CDS dump time");
assert(has_jrt_entry(), "must have a java runtime image");
int num_entries = 1; // count the runtime image
ClassPathEntry* e = ClassLoader::_first_append_entry;
while (e != NULL) {
num_entries ++;
e = e->next();
}
return num_entries;
}
static ClassPathEntry* get_next_boot_classpath_entry(ClassPathEntry* e) {
if (e == ClassLoader::_jrt_entry) {
return ClassLoader::_first_append_entry;
} else {
return e->next();
}
}
// Helper function used by CDS code to get the number of app classpath
// entries during shared classpath setup time.
static int num_app_classpath_entries() {
assert(DumpSharedSpaces, "Should only be called at CDS dump time");
int num_entries = 0;
ClassPathEntry* e= ClassLoader::_app_classpath_entries;
while (e != NULL) {
num_entries ++;
e = e->next();
}
return num_entries;
}
static void check_shared_classpath(const char *path);
static void finalize_shared_paths_misc_info();
static int get_shared_paths_misc_info_size();
@ -430,7 +462,7 @@ class ClassLoader: AllStatic {
static bool check_shared_paths_misc_info(void* info, int size);
static void exit_with_path_failure(const char* error, const char* message);
static void record_shared_class_loader_type(InstanceKlass* ik, const ClassFileStream* stream);
static void record_result(InstanceKlass* ik, const ClassFileStream* stream);
#endif
static JImageLocationRef jimage_find_resource(JImageFile* jf, const char* module_name,
const char* file_name, jlong &size);
@ -446,20 +478,15 @@ class ClassLoader: AllStatic {
static jlong class_link_count();
static jlong class_link_time_ms();
static void set_first_append_entry(ClassPathEntry* entry);
// indicates if class path already contains a entry (exact match by name)
static bool contains_append_entry(const char* name);
// adds a class path list
static void add_to_list(ClassPathEntry* new_entry);
// adds a class path to the boot append entries
static void add_to_boot_append_entries(ClassPathEntry* new_entry);
// creates a class path zip entry (returns NULL if JAR file cannot be opened)
static ClassPathZipEntry* create_class_path_zip_entry(const char *apath, bool is_boot_append);
// add a path to class path list
static void add_to_list(const char* apath);
static bool string_ends_with(const char* str, const char* str_to_find);
// obtain package name from a fully qualified class name

View File

@ -50,40 +50,28 @@ public:
return false;
}
InstanceKlass* record_result(Symbol* class_name,
ClassPathEntry* e,
const s2 classpath_index,
InstanceKlass* result, TRAPS) {
if (ClassLoader::add_package(_file_name, classpath_index, THREAD)) {
void record_result(Symbol* class_name,
const s2 classpath_index,
InstanceKlass* result, TRAPS) {
#if INCLUDE_CDS
if (DumpSharedSpaces) {
oop loader = result->class_loader();
s2 classloader_type = ClassLoader::BOOT_LOADER;
if (SystemDictionary::is_system_class_loader(loader)) {
classloader_type = ClassLoader::APP_LOADER;
ClassLoaderExt::set_has_app_classes();
} else if (SystemDictionary::is_platform_class_loader(loader)) {
classloader_type = ClassLoader::PLATFORM_LOADER;
ClassLoaderExt::set_has_platform_classes();
}
result->set_shared_classpath_index(classpath_index);
result->set_class_loader_type(classloader_type);
}
#endif
return result;
} else {
return NULL;
assert(DumpSharedSpaces, "Sanity");
oop loader = result->class_loader();
s2 classloader_type = ClassLoader::BOOT_LOADER;
if (SystemDictionary::is_system_class_loader(loader)) {
classloader_type = ClassLoader::APP_LOADER;
ClassLoaderExt::set_has_app_classes();
} else if (SystemDictionary::is_platform_class_loader(loader)) {
classloader_type = ClassLoader::PLATFORM_LOADER;
ClassLoaderExt::set_has_platform_classes();
}
result->set_shared_classpath_index(classpath_index);
result->set_class_loader_type(classloader_type);
#endif
}
};
static void add_class_path_entry(const char* path, bool check_for_duplicates,
ClassPathEntry* new_entry) {
ClassLoader::add_to_list(new_entry);
}
static void append_boot_classpath(ClassPathEntry* new_entry) {
ClassLoader::add_to_list(new_entry);
ClassLoader::add_to_boot_append_entries(new_entry);
}
static void setup_search_paths() {}
static bool is_boot_classpath(int classpath_index) {
@ -96,6 +84,7 @@ public:
static char* read_manifest(ClassPathEntry* entry, jint *manifest_size, TRAPS) {
return NULL;
}
static void process_jar_manifest(ClassPathEntry* entry, bool check_for_duplicates) {}
#endif
};

View File

@ -3064,6 +3064,25 @@ void java_lang_boxing_object::print(BasicType type, jvalue* value, outputStream*
}
}
// Support for java_lang_ref_Reference
bool java_lang_ref_Reference::is_referent_field(oop obj, ptrdiff_t offset) {
assert(!oopDesc::is_null(obj), "sanity");
if (offset != java_lang_ref_Reference::referent_offset) {
return false;
}
Klass* k = obj->klass();
if (!k->is_instance_klass()) {
return false;
}
InstanceKlass* ik = InstanceKlass::cast(obj->klass());
bool is_reference = ik->reference_type() != REF_NONE;
assert(!is_reference || ik->is_subclass_of(SystemDictionary::Reference_klass()), "sanity");
return is_reference;
}
// Support for java_lang_ref_SoftReference
jlong java_lang_ref_SoftReference::timestamp(oop ref) {

View File

@ -893,6 +893,8 @@ class java_lang_ref_Reference: AllStatic {
static inline void set_discovered(oop ref, oop value);
static inline void set_discovered_raw(oop ref, oop value);
static inline HeapWord* discovered_addr(oop ref);
static bool is_referent_field(oop obj, ptrdiff_t offset);
static inline bool is_phantom(oop ref);
};

View File

@ -121,6 +121,9 @@ void java_lang_ref_Reference::set_discovered_raw(oop ref, oop value) {
HeapWord* java_lang_ref_Reference::discovered_addr(oop ref) {
return ref->obj_field_addr<HeapWord>(discovered_offset);
}
bool java_lang_ref_Reference::is_phantom(oop ref) {
return InstanceKlass::cast(ref->klass())->reference_type() == REF_PHANTOM;
}
inline void java_lang_invoke_CallSite::set_target_volatile(oop site, oop target) {
site->obj_field_put_volatile(_target_offset, target);

View File

@ -1,198 +0,0 @@
/*
* Copyright (c) 2016, 2017, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "jni.h"
// Opaque reference to a JImage file.
class JImageFile;
// Opaque reference to an image file resource location.
typedef jlong JImageLocationRef;
// Max path length limit independent of platform. Windows max path is 1024,
// other platforms use 4096.
#define JIMAGE_MAX_PATH 4096
// JImage Error Codes
// Resource was not found
#define JIMAGE_NOT_FOUND (0)
// The image file is not prefixed with 0xCAFEDADA
#define JIMAGE_BAD_MAGIC (-1)
// The image file does not have a compatible (translatable) version
#define JIMAGE_BAD_VERSION (-2)
// The image file content is malformed
#define JIMAGE_CORRUPTED (-3)
/*
* JImageOpen - Given the supplied full path file name, open an image file. This
* function will also initialize tables and retrieve meta-data necessary to
* satisfy other functions in the API. If the image file has been previously
* open, a new open request will share memory and resources used by the previous
* open. A call to JImageOpen should be balanced by a call to JImageClose, to
* release memory and resources used. If the image file is not found or cannot
* be open, then NULL is returned and error will contain a reason for the
* failure; a positive value for a system error number, negative for a jimage
* specific error (see JImage Error Codes.)
*
* Ex.
* jint error;
* JImageFile* jimage = (*JImageOpen)(JAVA_HOME "lib/modules", &error);
* if (image == NULL) {
* tty->print_cr("JImage failed to open: %d", error);
* ...
* }
* ...
*/
extern "C" JImageFile* JIMAGE_Open(const char *name, jint* error);
typedef JImageFile* (*JImageOpen_t)(const char *name, jint* error);
/*
* JImageClose - Given the supplied open image file (see JImageOpen), release
* memory and resources used by the open file and close the file. If the image
* file is shared by other uses, release and close is deferred until the last use
* is also closed.
*
* Ex.
* (*JImageClose)(image);
*/
extern "C" void JIMAGE_Close(JImageFile* jimage);
typedef void (*JImageClose_t)(JImageFile* jimage);
/*
* JImagePackageToModule - Given an open image file (see JImageOpen) and the name
* of a package, return the name of module where the package resides. If the
* package does not exist in the image file, the function returns NULL.
* The resulting string does/should not have to be released. All strings are
* utf-8, zero byte terminated.
*
* Ex.
* const char* package = (*JImagePackageToModule)(image, "java/lang");
* tty->print_cr(package);
* -> java.base
*/
extern "C" const char * JIMAGE_PackageToModule(JImageFile* jimage, const char* package_name);
typedef const char* (*JImagePackageToModule_t)(JImageFile* jimage, const char* package_name);
/*
* JImageFindResource - Given an open image file (see JImageOpen), a module
* name, a version string and the name of a class/resource, return location
* information describing the resource and its size. If no resource is found, the
* function returns JIMAGE_NOT_FOUND and the value of size is undefined.
* The version number should be "9.0" and is not used in locating the resource.
* The resulting location does/should not have to be released.
* All strings are utf-8, zero byte terminated.
*
* Ex.
* jlong size;
* JImageLocationRef location = (*JImageFindResource)(image,
* "java.base", "9.0", "java/lang/String.class", &size);
*/
extern "C" JImageLocationRef JIMAGE_FindResource(JImageFile* jimage,
const char* module_name, const char* version, const char* name,
jlong* size);
typedef JImageLocationRef(*JImageFindResource_t)(JImageFile* jimage,
const char* module_name, const char* version, const char* name,
jlong* size);
/*
* JImageGetResource - Given an open image file (see JImageOpen), a resource's
* location information (see JImageFindResource), a buffer of appropriate
* size and the size, retrieve the bytes associated with the
* resource. If the size is less than the resource size then the read is truncated.
* If the size is greater than the resource size then the remainder of the buffer
* is zero filled. The function will return the actual size of the resource.
*
* Ex.
* jlong size;
* JImageLocationRef location = (*JImageFindResource)(image,
* "java.base", "9.0", "java/lang/String.class", &size);
* char* buffer = new char[size];
* (*JImageGetResource)(image, location, buffer, size);
*/
extern "C" jlong JIMAGE_GetResource(JImageFile* jimage, JImageLocationRef location,
char* buffer, jlong size);
typedef jlong(*JImageGetResource_t)(JImageFile* jimage, JImageLocationRef location,
char* buffer, jlong size);
/*
* JImageResourceIterator - Given an open image file (see JImageOpen), a visitor
* function and a visitor argument, iterator through each of the image's resources.
* The visitor function is called with the image file, the module name, the
* package name, the base name, the extension and the visitor argument. The return
* value of the visitor function should be true, unless an early iteration exit is
* required. All strings are utf-8, zero byte terminated.file.
*
* Ex.
* bool ctw_visitor(JImageFile* jimage, const char* module_name, const char* version,
* const char* package, const char* name, const char* extension, void* arg) {
* if (strcmp(extension, "class") == 0) {
* char path[JIMAGE_MAX_PATH];
* Thread* THREAD = Thread::current();
* jio_snprintf(path, JIMAGE_MAX_PATH - 1, "/%s/%s", package, name);
* ClassLoader::compile_the_world_in(path, (Handle)arg, THREAD);
* return !HAS_PENDING_EXCEPTION;
* }
* return true;
* }
* (*JImageResourceIterator)(image, ctw_visitor, loader);
*/
typedef bool (*JImageResourceVisitor_t)(JImageFile* jimage,
const char* module_name, const char* version, const char* package,
const char* name, const char* extension, void* arg);
extern "C" void JIMAGE_ResourceIterator(JImageFile* jimage,
JImageResourceVisitor_t visitor, void *arg);
typedef void (*JImageResourceIterator_t)(JImageFile* jimage,
JImageResourceVisitor_t visitor, void* arg);
/*
* JIMAGE_ResourcePath- Given an open image file, a location reference, a buffer
* and a maximum buffer size, copy the path of the resource into the buffer.
* Returns false if not a valid location reference.
*
* Ex.
* JImageLocationRef location = ...
* char path[JIMAGE_MAX_PATH];
* (*JImageResourcePath)(image, location, path, JIMAGE_MAX_PATH);
*/
extern "C" bool JIMAGE_ResourcePath(JImageFile* image, JImageLocationRef locationRef,
char* path, size_t max);
typedef bool (*JImage_ResourcePath_t)(JImageFile* jimage, JImageLocationRef location,
char* buffer, jlong size);

View File

@ -231,7 +231,7 @@ InstanceKlass* KlassFactory::create_from_stream(ClassFileStream* stream,
#if INCLUDE_CDS
if (DumpSharedSpaces) {
ClassLoader::record_shared_class_loader_type(result, stream);
ClassLoader::record_result(result, stream);
#if INCLUDE_JVMTI
assert(cached_class_file == NULL, "Sanity");
// Archive the class stream data into the optional data section

View File

@ -1465,25 +1465,23 @@ InstanceKlass* SystemDictionary::load_instance_class(Symbol* class_name, Handle
// java.base packages in the boot loader's PackageEntryTable.
// No class outside of java.base is allowed to be loaded during
// this bootstrapping window.
if (!DumpSharedSpaces) {
if (pkg_entry == NULL || pkg_entry->in_unnamed_module()) {
// Class is either in the unnamed package or in
// a named package within the unnamed module. Either
// case is outside of java.base, do not attempt to
// load the class post java.base definition. If
// java.base has not been defined, let the class load
// and its package will be checked later by
// ModuleEntryTable::verify_javabase_packages.
if (ModuleEntryTable::javabase_defined()) {
return NULL;
}
} else {
// Check that the class' package is defined within java.base.
ModuleEntry* mod_entry = pkg_entry->module();
Symbol* mod_entry_name = mod_entry->name();
if (mod_entry_name->fast_compare(vmSymbols::java_base()) != 0) {
return NULL;
}
if (pkg_entry == NULL || pkg_entry->in_unnamed_module()) {
// Class is either in the unnamed package or in
// a named package within the unnamed module. Either
// case is outside of java.base, do not attempt to
// load the class post java.base definition. If
// java.base has not been defined, let the class load
// and its package will be checked later by
// ModuleEntryTable::verify_javabase_packages.
if (ModuleEntryTable::javabase_defined()) {
return NULL;
}
} else {
// Check that the class' package is defined within java.base.
ModuleEntry* mod_entry = pkg_entry->module();
Symbol* mod_entry_name = mod_entry->name();
if (mod_entry_name->fast_compare(vmSymbols::java_base()) != 0) {
return NULL;
}
}
} else {
@ -1501,7 +1499,7 @@ InstanceKlass* SystemDictionary::load_instance_class(Symbol* class_name, Handle
// Prior to bootstrapping's module initialization, never load a class outside
// of the boot loader's module path
assert(Universe::is_module_initialized() || DumpSharedSpaces ||
assert(Universe::is_module_initialized() ||
!search_only_bootloader_append,
"Attempt to load a class outside of boot loader's module path");

View File

@ -494,7 +494,7 @@ void CompiledIC::compute_monomorphic_entry(const methodHandle& method,
bool far_c2a = entry != NULL && caller_is_nmethod && method_code->is_far_code();
if (entry != NULL && !far_c2a) {
// Call to near compiled code (nmethod or aot).
info.set_compiled_entry(entry, (static_bound || is_optimized) ? NULL : receiver_klass, is_optimized);
info.set_compiled_entry(entry, is_optimized ? NULL : receiver_klass, is_optimized);
} else {
if (is_optimized) {
if (far_c2a) {

View File

@ -64,6 +64,8 @@ bool CompiledMethod::is_method_handle_return(address return_pc) {
const char* CompiledMethod::state() const {
int state = get_state();
switch (state) {
case not_installed:
return "not installed";
case in_use:
return "in use";
case not_used:

View File

@ -183,12 +183,14 @@ public:
bool has_wide_vectors() const { return _has_wide_vectors; }
void set_has_wide_vectors(bool z) { _has_wide_vectors = z; }
enum { in_use = 0, // executable nmethod
not_used = 1, // not entrant, but revivable
not_entrant = 2, // marked for deoptimization but activations may still exist,
enum { not_installed = -1, // in construction, only the owner doing the construction is
// allowed to advance state
in_use = 0, // executable nmethod
not_used = 1, // not entrant, but revivable
not_entrant = 2, // marked for deoptimization but activations may still exist,
// will be transformed to zombie when all activations are gone
zombie = 3, // no activations exist, nmethod is ready for purge
unloaded = 4 // there should be no activations, should not be called,
zombie = 3, // no activations exist, nmethod is ready for purge
unloaded = 4 // there should be no activations, should not be called,
// will be transformed to zombie immediately
};

View File

@ -386,7 +386,7 @@ const char* nmethod::compile_kind() const {
// Fill in default values for various flag fields
void nmethod::init_defaults() {
_state = in_use;
_state = not_installed;
_has_flushed_dependencies = 0;
_lock_count = 0;
_stack_traversal_mark = 0;
@ -445,6 +445,7 @@ nmethod* nmethod::new_native_nmethod(const methodHandle& method,
nm->log_new_nmethod();
}
nm->make_in_use();
return nm;
}
@ -1129,7 +1130,7 @@ void nmethod::log_state_change() const {
/**
* Common functionality for both make_not_entrant and make_zombie
*/
bool nmethod::make_not_entrant_or_zombie(unsigned int state) {
bool nmethod::make_not_entrant_or_zombie(int state) {
assert(state == zombie || state == not_entrant, "must be zombie or not_entrant");
assert(!is_zombie(), "should not already be a zombie");
@ -2097,9 +2098,7 @@ void nmethod::verify() {
void nmethod::verify_interrupt_point(address call_site) {
// Verify IC only when nmethod installation is finished.
bool is_installed = (method()->code() == this) // nmethod is in state 'in_use' and installed
|| !this->is_in_use(); // nmethod is installed, but not in 'in_use' state
if (is_installed) {
if (!is_not_installed()) {
Thread *cur = Thread::current();
if (CompiledIC_lock->owner() == cur ||
((cur->is_VM_thread() || cur->is_ConcurrentGC_thread()) &&

View File

@ -124,7 +124,7 @@ class nmethod : public CompiledMethod {
bool _unload_reported;
// Protected by Patching_lock
volatile unsigned char _state; // {in_use, not_entrant, zombie, unloaded}
volatile char _state; // {not_installed, in_use, not_entrant, zombie, unloaded}
#ifdef ASSERT
bool _oops_are_stale; // indicates that it's no longer safe to access oops section
@ -216,7 +216,7 @@ class nmethod : public CompiledMethod {
const char* reloc_string_for(u_char* begin, u_char* end);
// Returns true if this thread changed the state of the nmethod or
// false if another thread performed the transition.
bool make_not_entrant_or_zombie(unsigned int state);
bool make_not_entrant_or_zombie(int state);
bool make_entrant() { Unimplemented(); return false; }
void inc_decompile_count();
@ -316,8 +316,9 @@ class nmethod : public CompiledMethod {
address verified_entry_point() const { return _verified_entry_point; } // if klass is correct
// flag accessing and manipulation
bool is_in_use() const { return _state == in_use; }
bool is_alive() const { unsigned char s = _state; return s < zombie; }
bool is_not_installed() const { return _state == not_installed; }
bool is_in_use() const { return _state <= in_use; }
bool is_alive() const { return _state < zombie; }
bool is_not_entrant() const { return _state == not_entrant; }
bool is_zombie() const { return _state == zombie; }
bool is_unloaded() const { return _state == unloaded; }
@ -328,6 +329,7 @@ class nmethod : public CompiledMethod {
void set_rtm_state(RTMState state) { _rtm_state = state; }
#endif
void make_in_use() { _state = in_use; }
// Make the nmethod non entrant. The nmethod will continue to be
// alive. It is used when an uncommon trap happens. Returns true
// if this thread changed the state of the nmethod or false if

View File

@ -288,7 +288,7 @@ void MethodMatcher::parse_method_pattern(char*& line, const char*& error_msg, Me
line++;
sig[0] = '(';
// scan the rest
if (1 == sscanf(line, "%254[[);/" RANGEBASE "]%n", sig+1, &bytes_read)) {
if (1 == sscanf(line, "%1022[[);/" RANGEBASE "]%n", sig+1, &bytes_read)) {
if (strchr(sig, '*') != NULL) {
error_msg = " Wildcard * not allowed in signature";
return;

View File

@ -90,7 +90,9 @@ G1Analytics::G1Analytics(const G1Predictions* predictor) :
_non_young_other_cost_per_region_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
_pending_cards_seq(new TruncatedSeq(TruncatedSeqLength)),
_rs_lengths_seq(new TruncatedSeq(TruncatedSeqLength)),
_recent_prev_end_times_for_all_gcs_sec(new TruncatedSeq(NumPrevPausesForHeuristics)) {
_recent_prev_end_times_for_all_gcs_sec(new TruncatedSeq(NumPrevPausesForHeuristics)),
_recent_avg_pause_time_ratio(0.0),
_last_pause_time_ratio(0.0) {
// Seed sequences with initial values.
_recent_prev_end_times_for_all_gcs_sec->add(os::elapsedTime());

View File

@ -73,6 +73,7 @@ void G1SATBCardTableModRefBS::write_ref_array_pre(oop* dst, int count, bool dest
write_ref_array_pre_work(dst, count);
}
}
void G1SATBCardTableModRefBS::write_ref_array_pre(narrowOop* dst, int count, bool dest_uninitialized) {
if (!dest_uninitialized) {
write_ref_array_pre_work(dst, count);
@ -154,14 +155,9 @@ void G1SATBCardTableLoggingModRefBS::initialize(G1RegionToSpaceMapper* mapper) {
log_trace(gc, barrier)(" byte_map_base: " INTPTR_FORMAT, p2i(byte_map_base));
}
void
G1SATBCardTableLoggingModRefBS::write_ref_field_work(void* field,
oop new_val,
bool release) {
volatile jbyte* byte = byte_for(field);
if (*byte == g1_young_gen) {
return;
}
void G1SATBCardTableLoggingModRefBS::write_ref_field_post_slow(volatile jbyte* byte) {
// In the slow path, we know a card is not young
assert(*byte != g1_young_gen, "slow path invoked without filtering");
OrderAccess::storeload();
if (*byte != dirty_card) {
*byte = dirty_card;

View File

@ -54,18 +54,15 @@ public:
// pre-marking object graph.
static void enqueue(oop pre_val);
// We export this to make it available in cases where the static
// type of the barrier set is known. Note that it is non-virtual.
template <class T> inline void inline_write_ref_field_pre(T* field, oop newVal);
// These are the more general virtual versions.
inline virtual void write_ref_field_pre_work(oop* field, oop new_val);
inline virtual void write_ref_field_pre_work(narrowOop* field, oop new_val);
static void enqueue_if_weak(DecoratorSet decorators, oop value);
template <class T> void write_ref_array_pre_work(T* dst, int count);
virtual void write_ref_array_pre(oop* dst, int count, bool dest_uninitialized);
virtual void write_ref_array_pre(narrowOop* dst, int count, bool dest_uninitialized);
template <DecoratorSet decorators, typename T>
void write_ref_field_pre(T* field);
/*
Claimed and deferred bits are used together in G1 during the evacuation
pause. These bits can have the following state transitions:
@ -102,6 +99,11 @@ struct BarrierSet::GetName<G1SATBCardTableModRefBS> {
static const BarrierSet::Name value = BarrierSet::G1SATBCT;
};
template<>
struct BarrierSet::GetType<BarrierSet::G1SATBCT> {
typedef G1SATBCardTableModRefBS type;
};
class G1SATBCardTableLoggingModRefBSChangedListener : public G1MappingChangedListener {
private:
G1SATBCardTableLoggingModRefBS* _card_table;
@ -121,9 +123,6 @@ class G1SATBCardTableLoggingModRefBS: public G1SATBCardTableModRefBS {
G1SATBCardTableLoggingModRefBSChangedListener _listener;
DirtyCardQueueSet& _dcqs;
protected:
virtual void write_ref_field_work(void* field, oop new_val, bool release);
public:
static size_t compute_size(size_t mem_region_size_in_words) {
size_t number_of_slots = (mem_region_size_in_words / card_size_in_words);
@ -148,6 +147,33 @@ class G1SATBCardTableLoggingModRefBS: public G1SATBCardTableModRefBS {
void write_region_work(MemRegion mr) { invalidate(mr); }
void write_ref_array_work(MemRegion mr) { invalidate(mr); }
template <DecoratorSet decorators, typename T>
void write_ref_field_post(T* field, oop new_val);
void write_ref_field_post_slow(volatile jbyte* byte);
// Callbacks for runtime accesses.
template <DecoratorSet decorators, typename BarrierSetT = G1SATBCardTableLoggingModRefBS>
class AccessBarrier: public ModRefBarrierSet::AccessBarrier<decorators, BarrierSetT> {
typedef ModRefBarrierSet::AccessBarrier<decorators, BarrierSetT> ModRef;
typedef BarrierSet::AccessBarrier<decorators, BarrierSetT> Raw;
public:
// Needed for loads on non-heap weak references
template <typename T>
static oop oop_load_not_in_heap(T* addr);
// Needed for non-heap stores
template <typename T>
static void oop_store_not_in_heap(T* addr, oop new_value);
// Needed for weak references
static oop oop_load_in_heap_at(oop base, ptrdiff_t offset);
// Defensive: will catch weak oops at addresses in heap
template <typename T>
static oop oop_load_in_heap(T* addr);
};
};
template<>
@ -155,4 +181,9 @@ struct BarrierSet::GetName<G1SATBCardTableLoggingModRefBS> {
static const BarrierSet::Name value = BarrierSet::G1SATBCTLogging;
};
template<>
struct BarrierSet::GetType<BarrierSet::G1SATBCTLogging> {
typedef G1SATBCardTableLoggingModRefBS type;
};
#endif // SHARE_VM_GC_G1_G1SATBCARDTABLEMODREFBS_HPP

View File

@ -1,5 +1,5 @@
/*
* Copyright (c) 2016, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2016, 2017, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -25,24 +25,30 @@
#ifndef SHARE_VM_GC_G1_G1SATBCARDTABLEMODREFBS_INLINE_HPP
#define SHARE_VM_GC_G1_G1SATBCARDTABLEMODREFBS_INLINE_HPP
#include "gc/shared/accessBarrierSupport.inline.hpp"
#include "gc/g1/g1SATBCardTableModRefBS.hpp"
#include "oops/oop.inline.hpp"
// We export this to make it available in cases where the static
// type of the barrier set is known. Note that it is non-virtual.
template <class T> void G1SATBCardTableModRefBS::inline_write_ref_field_pre(T* field, oop newVal) {
template <DecoratorSet decorators, typename T>
inline void G1SATBCardTableModRefBS::write_ref_field_pre(T* field) {
if (HasDecorator<decorators, ARRAYCOPY_DEST_NOT_INITIALIZED>::value ||
HasDecorator<decorators, AS_NO_KEEPALIVE>::value) {
return;
}
T heap_oop = oopDesc::load_heap_oop(field);
if (!oopDesc::is_null(heap_oop)) {
enqueue(oopDesc::decode_heap_oop(heap_oop));
enqueue(oopDesc::decode_heap_oop_not_null(heap_oop));
}
}
// These are the more general virtual versions.
void G1SATBCardTableModRefBS::write_ref_field_pre_work(oop* field, oop new_val) {
inline_write_ref_field_pre(field, new_val);
}
void G1SATBCardTableModRefBS::write_ref_field_pre_work(narrowOop* field, oop new_val) {
inline_write_ref_field_pre(field, new_val);
template <DecoratorSet decorators, typename T>
inline void G1SATBCardTableLoggingModRefBS::write_ref_field_post(T* field, oop new_val) {
volatile jbyte* byte = byte_for(field);
if (*byte != g1_young_gen) {
// Take a slow path for cards in old
write_ref_field_post_slow(byte);
}
}
void G1SATBCardTableModRefBS::set_card_claimed(size_t card_index) {
@ -55,4 +61,53 @@ void G1SATBCardTableModRefBS::set_card_claimed(size_t card_index) {
_byte_map[card_index] = val;
}
inline void G1SATBCardTableModRefBS::enqueue_if_weak(DecoratorSet decorators, oop value) {
assert((decorators & ON_UNKNOWN_OOP_REF) == 0, "Reference strength must be known");
const bool on_strong_oop_ref = (decorators & ON_STRONG_OOP_REF) != 0;
const bool peek = (decorators & AS_NO_KEEPALIVE) != 0;
if (!peek && !on_strong_oop_ref && value != NULL) {
enqueue(value);
}
}
template <DecoratorSet decorators, typename BarrierSetT>
template <typename T>
inline oop G1SATBCardTableLoggingModRefBS::AccessBarrier<decorators, BarrierSetT>::
oop_load_not_in_heap(T* addr) {
oop value = ModRef::oop_load_not_in_heap(addr);
enqueue_if_weak(decorators, value);
return value;
}
template <DecoratorSet decorators, typename BarrierSetT>
template <typename T>
inline oop G1SATBCardTableLoggingModRefBS::AccessBarrier<decorators, BarrierSetT>::
oop_load_in_heap(T* addr) {
oop value = ModRef::oop_load_in_heap(addr);
enqueue_if_weak(decorators, value);
return value;
}
template <DecoratorSet decorators, typename BarrierSetT>
inline oop G1SATBCardTableLoggingModRefBS::AccessBarrier<decorators, BarrierSetT>::
oop_load_in_heap_at(oop base, ptrdiff_t offset) {
oop value = ModRef::oop_load_in_heap_at(base, offset);
enqueue_if_weak(AccessBarrierSupport::resolve_possibly_unknown_oop_ref_strength<decorators>(base, offset), value);
return value;
}
template <DecoratorSet decorators, typename BarrierSetT>
template <typename T>
inline void G1SATBCardTableLoggingModRefBS::AccessBarrier<decorators, BarrierSetT>::
oop_store_not_in_heap(T* addr, oop new_value) {
if (HasDecorator<decorators, IN_CONCURRENT_ROOT>::value) {
// For roots not scanned in a safepoint, we have to apply SATB barriers
// even for roots.
G1SATBCardTableLoggingModRefBS *bs = barrier_set_cast<G1SATBCardTableLoggingModRefBS>(BarrierSet::barrier_set());
bs->write_ref_field_pre<decorators>(addr);
}
Raw::oop_store(addr, new_value);
}
#endif // SHARE_VM_GC_G1_G1SATBCARDTABLEMODREFBS_INLINE_HPP

View File

@ -1,5 +1,5 @@
/*
* Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2001, 2017, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -115,4 +115,9 @@ struct BarrierSet::GetName<CardTableExtension> {
static const BarrierSet::Name value = BarrierSet::CardTableExtension;
};
template<>
struct BarrierSet::GetType<BarrierSet::CardTableExtension> {
typedef ::CardTableExtension type;
};
#endif // SHARE_VM_GC_PARALLEL_CARDTABLEEXTENSION_HPP

View File

@ -0,0 +1,40 @@
/*
* Copyright (c) 2017, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "classfile/javaClasses.inline.hpp"
#include "gc/shared/accessBarrierSupport.inline.hpp"
#include "oops/access.hpp"
DecoratorSet AccessBarrierSupport::resolve_unknown_oop_ref_strength(DecoratorSet decorators, oop base, ptrdiff_t offset) {
DecoratorSet ds = decorators & ~ON_UNKNOWN_OOP_REF;
if (!java_lang_ref_Reference::is_referent_field(base, offset)) {
ds |= ON_STRONG_OOP_REF;
} else if (java_lang_ref_Reference::is_phantom(base)) {
ds |= ON_PHANTOM_OOP_REF;
} else {
ds |= ON_WEAK_OOP_REF;
}
return ds;
}

View File

@ -0,0 +1,44 @@
/*
* Copyright (c) 2017, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef SHARE_VM_GC_SHARED_ACCESSBARRIERSUPPORT_HPP
#define SHARE_VM_GC_SHARED_ACCESSBARRIERSUPPORT_HPP
#include "memory/allocation.hpp"
#include "oops/access.hpp"
class AccessBarrierSupport: AllStatic {
private:
static DecoratorSet resolve_unknown_oop_ref_strength(DecoratorSet decorators, oop base, ptrdiff_t offset);
public:
// Some collectors, like G1, needs to keep referents alive when loading them.
// Therefore, for APIs that accept unknown oop ref strength (e.g. unsafe),
// we need to dynamically find out if a given field is on a java.lang.ref.Reference object.
// and in that case what strength it has.
template<DecoratorSet decorators>
static DecoratorSet resolve_possibly_unknown_oop_ref_strength(oop base, ptrdiff_t offset);
};
#endif // SHARE_VM_GC_SHARED_ACCESSBARRIERSUPPORT_HPP

View File

@ -0,0 +1,39 @@
/*
* Copyright (c) 2017, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef SHARE_VM_GC_SHARED_ACCESSBARRIERSUPPORT_INLINE_HPP
#define SHARE_VM_GC_SHARED_ACCESSBARRIERSUPPORT_INLINE_HPP
#include "gc/shared/accessBarrierSupport.hpp"
template <DecoratorSet decorators>
DecoratorSet AccessBarrierSupport::resolve_possibly_unknown_oop_ref_strength(oop base, ptrdiff_t offset) {
if (!HasDecorator<decorators, ON_UNKNOWN_OOP_REF>::value) {
return decorators;
} else {
return resolve_unknown_oop_ref_strength(decorators, base, offset);
}
}
#endif // SHARE_VM_GC_SHARED_ACCESSBARRIERSUPPORT_INLINE_HPP

View File

@ -1,5 +1,5 @@
/*
* Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -27,6 +27,8 @@
#include "gc/shared/collectedHeap.hpp"
#include "memory/universe.hpp"
BarrierSet* BarrierSet::_bs = NULL;
// count is number of array elements being written
void BarrierSet::static_write_ref_array_pre(HeapWord* start, size_t count) {
assert(count <= (size_t)max_intx, "count too large");

View File

@ -25,7 +25,10 @@
#ifndef SHARE_VM_GC_SHARED_BARRIERSET_HPP
#define SHARE_VM_GC_SHARED_BARRIERSET_HPP
#include "gc/shared/barrierSetConfig.hpp"
#include "memory/memRegion.hpp"
#include "oops/access.hpp"
#include "oops/accessBackend.hpp"
#include "oops/oopsHierarchy.hpp"
#include "utilities/fakeRttiSupport.hpp"
@ -34,7 +37,20 @@
class BarrierSet: public CHeapObj<mtGC> {
friend class VMStructs;
static BarrierSet* _bs;
public:
enum Name {
#define BARRIER_SET_DECLARE_BS_ENUM(bs_name) bs_name ,
FOR_EACH_BARRIER_SET_DO(BARRIER_SET_DECLARE_BS_ENUM)
#undef BARRIER_SET_DECLARE_BS_ENUM
UnknownBS
};
static BarrierSet* barrier_set() { return _bs; }
protected:
// Fake RTTI support. For a derived class T to participate
// - T must have a corresponding Name entry.
// - GetName<T> must be specialized to return the corresponding Name
@ -45,32 +61,20 @@ public:
// - If T is a concrete class, the constructor must create a
// FakeRtti object whose tag set includes the corresponding Name
// entry, and pass it up to its base class.
enum Name { // associated class
ModRef, // ModRefBarrierSet
CardTableModRef, // CardTableModRefBS
CardTableForRS, // CardTableModRefBSForCTRS
CardTableExtension, // CardTableExtension
G1SATBCT, // G1SATBCardTableModRefBS
G1SATBCTLogging // G1SATBCardTableLoggingModRefBS
};
protected:
typedef FakeRttiSupport<BarrierSet, Name> FakeRtti;
private:
FakeRtti _fake_rtti;
public:
// Metafunction mapping a class derived from BarrierSet to the
// corresponding Name enum tag.
template<typename T> struct GetName;
// Downcast argument to a derived barrier set type.
// The cast is checked in a debug build.
// T must have a specialization for BarrierSet::GetName<T>.
template<typename T> friend T* barrier_set_cast(BarrierSet* bs);
// Metafunction mapping a Name enum type to the corresponding
// lass derived from BarrierSet.
template<BarrierSet::Name T> struct GetType;
public:
// Note: This is not presently the Name corresponding to the
// concrete class of this object.
BarrierSet::Name kind() const { return _fake_rtti.concrete_tag(); }
@ -84,23 +88,6 @@ protected:
BarrierSet(const FakeRtti& fake_rtti) : _fake_rtti(fake_rtti) { }
~BarrierSet() { }
public:
// Invoke the barrier, if any, necessary when writing "new_val" into the
// ref field at "offset" in "obj".
// (For efficiency reasons, this operation is specialized for certain
// barrier types. Semantically, it should be thought of as a call to the
// virtual "_work" function below, which must implement the barrier.)
// First the pre-write versions...
template <class T> inline void write_ref_field_pre(T* field, oop new_val);
// ...then the post-write version.
inline void write_ref_field(void* field, oop new_val, bool release = false);
protected:
virtual void write_ref_field_pre_work( oop* field, oop new_val) {};
virtual void write_ref_field_pre_work(narrowOop* field, oop new_val) {};
virtual void write_ref_field_work(void* field, oop new_val, bool release) = 0;
public:
// Operations on arrays, or general regions (e.g., for "clone") may be
// optimized by some barriers.
@ -144,6 +131,147 @@ public:
// Print a description of the memory for the barrier set
virtual void print_on(outputStream* st) const = 0;
static void set_bs(BarrierSet* bs) { _bs = bs; }
// The AccessBarrier of a BarrierSet subclass is called by the Access API
// (cf. oops/access.hpp) to perform decorated accesses. GC implementations
// may override these default access operations by declaring an
// AccessBarrier class in its BarrierSet. Its accessors will then be
// automatically resolved at runtime.
//
// In order to register a new FooBarrierSet::AccessBarrier with the Access API,
// the following steps should be taken:
// 1) Provide an enum "name" for the BarrierSet in barrierSetConfig.hpp
// 2) Make sure the barrier set headers are included from barrierSetConfig.inline.hpp
// 3) Provide specializations for BarrierSet::GetName and BarrierSet::GetType.
template <DecoratorSet decorators, typename BarrierSetT>
class AccessBarrier: protected RawAccessBarrier<decorators> {
protected:
typedef RawAccessBarrier<decorators> Raw;
typedef typename BarrierSetT::template AccessBarrier<decorators> CRTPAccessBarrier;
public:
// Primitive heap accesses. These accessors get resolved when
// IN_HEAP is set (e.g. when using the HeapAccess API), it is
// not an oop_* overload, and the barrier strength is AS_NORMAL.
template <typename T>
static T load_in_heap(T* addr) {
return Raw::template load<T>(addr);
}
template <typename T>
static T load_in_heap_at(oop base, ptrdiff_t offset) {
return Raw::template load_at<T>(base, offset);
}
template <typename T>
static void store_in_heap(T* addr, T value) {
Raw::store(addr, value);
}
template <typename T>
static void store_in_heap_at(oop base, ptrdiff_t offset, T value) {
Raw::store_at(base, offset, value);
}
template <typename T>
static T atomic_cmpxchg_in_heap(T new_value, T* addr, T compare_value) {
return Raw::atomic_cmpxchg(new_value, addr, compare_value);
}
template <typename T>
static T atomic_cmpxchg_in_heap_at(T new_value, oop base, ptrdiff_t offset, T compare_value) {
return Raw::oop_atomic_cmpxchg_at(new_value, base, offset, compare_value);
}
template <typename T>
static T atomic_xchg_in_heap(T new_value, T* addr) {
return Raw::atomic_xchg(new_value, addr);
}
template <typename T>
static T atomic_xchg_in_heap_at(T new_value, oop base, ptrdiff_t offset) {
return Raw::atomic_xchg_at(new_value, base, offset);
}
template <typename T>
static bool arraycopy_in_heap(arrayOop src_obj, arrayOop dst_obj, T* src, T* dst, size_t length) {
return Raw::arraycopy(src_obj, dst_obj, src, dst, length);
}
// Heap oop accesses. These accessors get resolved when
// IN_HEAP is set (e.g. when using the HeapAccess API), it is
// an oop_* overload, and the barrier strength is AS_NORMAL.
template <typename T>
static oop oop_load_in_heap(T* addr) {
return Raw::template oop_load<oop>(addr);
}
static oop oop_load_in_heap_at(oop base, ptrdiff_t offset) {
return Raw::template oop_load_at<oop>(base, offset);
}
template <typename T>
static void oop_store_in_heap(T* addr, oop value) {
Raw::oop_store(addr, value);
}
static void oop_store_in_heap_at(oop base, ptrdiff_t offset, oop value) {
Raw::oop_store_at(base, offset, value);
}
template <typename T>
static oop oop_atomic_cmpxchg_in_heap(oop new_value, T* addr, oop compare_value) {
return Raw::oop_atomic_cmpxchg(new_value, addr, compare_value);
}
static oop oop_atomic_cmpxchg_in_heap_at(oop new_value, oop base, ptrdiff_t offset, oop compare_value) {
return Raw::oop_atomic_cmpxchg_at(new_value, base, offset, compare_value);
}
template <typename T>
static oop oop_atomic_xchg_in_heap(oop new_value, T* addr) {
return Raw::oop_atomic_xchg(new_value, addr);
}
static oop oop_atomic_xchg_in_heap_at(oop new_value, oop base, ptrdiff_t offset) {
return Raw::oop_atomic_xchg_at(new_value, base, offset);
}
template <typename T>
static bool oop_arraycopy_in_heap(arrayOop src_obj, arrayOop dst_obj, T* src, T* dst, size_t length) {
return Raw::oop_arraycopy(src_obj, dst_obj, src, dst, length);
}
// Off-heap oop accesses. These accessors get resolved when
// IN_HEAP is not set (e.g. when using the RootAccess API), it is
// an oop* overload, and the barrier strength is AS_NORMAL.
template <typename T>
static oop oop_load_not_in_heap(T* addr) {
return Raw::template oop_load<oop>(addr);
}
template <typename T>
static void oop_store_not_in_heap(T* addr, oop value) {
Raw::oop_store(addr, value);
}
template <typename T>
static oop oop_atomic_cmpxchg_not_in_heap(oop new_value, T* addr, oop compare_value) {
return Raw::oop_atomic_cmpxchg(new_value, addr, compare_value);
}
template <typename T>
static oop oop_atomic_xchg_not_in_heap(oop new_value, T* addr) {
return Raw::oop_atomic_xchg(new_value, addr);
}
// Clone barrier support
static void clone_in_heap(oop src, oop dst, size_t size) {
Raw::clone(src, dst, size);
}
};
};
template<typename T>

View File

@ -26,17 +26,9 @@
#define SHARE_VM_GC_SHARED_BARRIERSET_INLINE_HPP
#include "gc/shared/barrierSet.hpp"
#include "gc/shared/barrierSetConfig.inline.hpp"
#include "utilities/align.hpp"
template <class T> void BarrierSet::write_ref_field_pre(T* field, oop new_val) {
write_ref_field_pre_work(field, new_val);
}
void BarrierSet::write_ref_field(void* field, oop new_val, bool release) {
write_ref_field_work(field, new_val, release);
}
// count is number of array elements being written
void BarrierSet::write_ref_array(HeapWord* start, size_t count) {
assert(count <= (size_t)max_intx, "count too large");
@ -60,7 +52,6 @@ void BarrierSet::write_ref_array(HeapWord* start, size_t count) {
write_ref_array_work(MemRegion(aligned_start, aligned_end));
}
inline void BarrierSet::write_region(MemRegion mr) {
write_region_work(mr);
}

View File

@ -0,0 +1,60 @@
/*
* Copyright (c) 2017, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef SHARE_VM_GC_SHARED_BARRIERSETCONFIG_HPP
#define SHARE_VM_GC_SHARED_BARRIERSETCONFIG_HPP
#include "utilities/macros.hpp"
#if INCLUDE_ALL_GCS
#define FOR_EACH_CONCRETE_INCLUDE_ALL_GC_BARRIER_SET_DO(f) \
f(CardTableExtension) \
f(G1SATBCTLogging)
#else
#define FOR_EACH_CONCRETE_INCLUDE_ALL_GC_BARRIER_SET_DO(f)
#endif
// Do something for each concrete barrier set part of the build.
#define FOR_EACH_CONCRETE_BARRIER_SET_DO(f) \
f(CardTableForRS) \
FOR_EACH_CONCRETE_INCLUDE_ALL_GC_BARRIER_SET_DO(f)
// Do something for each known barrier set.
#define FOR_EACH_BARRIER_SET_DO(f) \
f(ModRef) \
f(CardTableModRef) \
f(CardTableForRS) \
f(CardTableExtension) \
f(G1SATBCT) \
f(G1SATBCTLogging)
// To enable runtime-resolution of GC barriers on primitives, please
// define SUPPORT_BARRIER_ON_PRIMITIVES.
#ifdef SUPPORT_BARRIER_ON_PRIMITIVES
#define BT_BUILDTIME_DECORATORS INTERNAL_BT_BARRIER_ON_PRIMITIVES
#else
#define BT_BUILDTIME_DECORATORS INTERNAL_EMPTY
#endif
#endif // SHARE_VM_GC_SHARED_BARRIERSETCONFIG_HPP

View File

@ -0,0 +1,39 @@
/*
* Copyright (c) 2017, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef SHARE_VM_GC_SHARED_BARRIERSETCONFIG_INLINE_HPP
#define SHARE_VM_GC_SHARED_BARRIERSETCONFIG_INLINE_HPP
#include "gc/shared/barrierSetConfig.hpp"
#include "gc/shared/modRefBarrierSet.inline.hpp"
#include "gc/shared/cardTableModRefBS.inline.hpp"
#include "gc/shared/cardTableModRefBSForCTRS.hpp"
#if INCLUDE_ALL_GCS
#include "gc/parallel/cardTableExtension.hpp" // Parallel support
#include "gc/g1/g1SATBCardTableModRefBS.inline.hpp" // G1 support
#endif
#endif // SHARE_VM_GC_SHARED_BARRIERSETCONFIG_INLINE_HPP

View File

@ -1,5 +1,5 @@
/*
* Copyright (c) 2000, 2015, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2000, 2017, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -27,8 +27,9 @@
#include "gc/shared/collectedHeap.hpp"
#include "gc/shared/genCollectedHeap.hpp"
#include "gc/shared/space.inline.hpp"
#include "memory/virtualspace.hpp"
#include "logging/log.hpp"
#include "memory/virtualspace.hpp"
#include "oops/oop.inline.hpp"
#include "services/memTracker.hpp"
#include "utilities/align.hpp"
#include "utilities/macros.hpp"
@ -363,11 +364,6 @@ void CardTableModRefBS::resize_covered_region(MemRegion new_region) {
// Note that these versions are precise! The scanning code has to handle the
// fact that the write barrier may be either precise or imprecise.
void CardTableModRefBS::write_ref_field_work(void* field, oop newVal, bool release) {
inline_write_ref_field(field, newVal, release);
}
void CardTableModRefBS::dirty_MemRegion(MemRegion mr) {
assert(align_down(mr.start(), HeapWordSize) == mr.start(), "Unaligned start");
assert(align_up (mr.end(), HeapWordSize) == mr.end(), "Unaligned end" );
@ -525,4 +521,3 @@ void CardTableModRefBS::print_on(outputStream* st) const {
st->print_cr("Card table byte_map: [" INTPTR_FORMAT "," INTPTR_FORMAT "] byte_map_base: " INTPTR_FORMAT,
p2i(_byte_map), p2i(_byte_map + _byte_map_size), p2i(byte_map_base));
}

View File

@ -26,7 +26,6 @@
#define SHARE_VM_GC_SHARED_CARDTABLEMODREFBS_HPP
#include "gc/shared/modRefBarrierSet.hpp"
#include "oops/oop.hpp"
#include "utilities/align.hpp"
// This kind of "BarrierSet" allows a "CollectedHeap" to detect and
@ -181,14 +180,6 @@ class CardTableModRefBS: public ModRefBarrierSet {
CardTableModRefBS(MemRegion whole_heap, const BarrierSet::FakeRtti& fake_rtti);
~CardTableModRefBS();
// Record a reference update. Note that these versions are precise!
// The scanning code has to handle the fact that the write barrier may be
// either precise or imprecise. We make non-virtual inline variants of
// these functions here for performance.
void write_ref_field_work(oop obj, size_t offset, oop newVal);
virtual void write_ref_field_work(void* field, oop newVal, bool release);
protected:
void write_region_work(MemRegion mr) {
dirty_MemRegion(mr);
@ -206,9 +197,12 @@ class CardTableModRefBS: public ModRefBarrierSet {
// *** Card-table-barrier-specific things.
template <class T> inline void inline_write_ref_field_pre(T* field, oop newVal) {}
template <class T> inline void inline_write_ref_field(T* field, oop newVal, bool release);
// Record a reference update. Note that these versions are precise!
// The scanning code has to handle the fact that the write barrier may be
// either precise or imprecise. We make non-virtual inline variants of
// these functions here for performance.
template <DecoratorSet decorators, typename T>
void write_ref_field_post(T* field, oop newVal);
// These are used by G1, when it uses the card table as a temporary data
// structure for card claiming.
@ -319,6 +313,9 @@ class CardTableModRefBS: public ModRefBarrierSet {
void verify_region(MemRegion mr, jbyte val, bool val_equals) PRODUCT_RETURN;
void verify_not_dirty_region(MemRegion mr) PRODUCT_RETURN;
void verify_dirty_region(MemRegion mr) PRODUCT_RETURN;
template <DecoratorSet decorators, typename BarrierSetT = CardTableModRefBS>
class AccessBarrier: public ModRefBarrierSet::AccessBarrier<decorators, BarrierSetT> {};
};
template<>
@ -326,5 +323,9 @@ struct BarrierSet::GetName<CardTableModRefBS> {
static const BarrierSet::Name value = BarrierSet::CardTableModRef;
};
template<>
struct BarrierSet::GetType<BarrierSet::CardTableModRef> {
typedef CardTableModRefBS type;
};
#endif // SHARE_VM_GC_SHARED_CARDTABLEMODREFBS_HPP

View File

@ -26,13 +26,14 @@
#define SHARE_VM_GC_SHARED_CARDTABLEMODREFBS_INLINE_HPP
#include "gc/shared/cardTableModRefBS.hpp"
#include "oops/oopsHierarchy.hpp"
#include "runtime/orderAccess.inline.hpp"
template <class T> inline void CardTableModRefBS::inline_write_ref_field(T* field, oop newVal, bool release) {
volatile jbyte* byte = byte_for((void*)field);
if (release) {
// Perform a releasing store if requested.
template <DecoratorSet decorators, typename T>
inline void CardTableModRefBS::write_ref_field_post(T* field, oop newVal) {
volatile jbyte* byte = byte_for(field);
if (UseConcMarkSweepGC) {
// Perform a releasing store if using CMS so that it may
// scan and clear the cards concurrently during pre-cleaning.
OrderAccess::release_store(byte, jbyte(dirty_card));
} else {
*byte = dirty_card;

View File

@ -1,5 +1,5 @@
/*
* Copyright (c) 2015, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2015, 2017, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -139,5 +139,9 @@ struct BarrierSet::GetName<CardTableModRefBSForCTRS> {
static const BarrierSet::Name value = BarrierSet::CardTableForRS;
};
#endif // include guard
template<>
struct BarrierSet::GetType<BarrierSet::CardTableForRS> {
typedef CardTableModRefBSForCTRS type;
};
#endif // SHARE_VM_GC_SHARED_CARDTABLEMODREFBSFORCTRS_HPP

View File

@ -28,6 +28,7 @@
#include "gc/shared/cardTableModRefBSForCTRS.hpp"
#include "memory/memRegion.hpp"
class Generation;
class Space;
class OopsInGenClosure;

View File

@ -235,7 +235,7 @@ void CollectedHeap::collect_as_vm_thread(GCCause::Cause cause) {
void CollectedHeap::set_barrier_set(BarrierSet* barrier_set) {
_barrier_set = barrier_set;
oopDesc::set_bs(_barrier_set);
BarrierSet::set_bs(barrier_set);
}
void CollectedHeap::pre_initialize() {

View File

@ -25,6 +25,8 @@
#include "precompiled.hpp"
#include "gc/shared/gcArguments.hpp"
#include "gc/serial/serialArguments.hpp"
#include "memory/allocation.inline.hpp"
#include "runtime/arguments.hpp"
#include "runtime/globals.hpp"
#include "runtime/globals_extension.hpp"
#include "runtime/java.hpp"
@ -84,13 +86,6 @@ void GCArguments::select_gc_ergonomically() {
void GCArguments::initialize_flags() {
#if INCLUDE_ALL_GCS
if (AssumeMP && !UseSerialGC) {
if (FLAG_IS_DEFAULT(ParallelGCThreads) && ParallelGCThreads == 1) {
warning("If the number of processors is expected to increase from one, then"
" you should configure the number of parallel GC threads appropriately"
" using -XX:ParallelGCThreads=N");
}
}
if (MinHeapFreeRatio == 100) {
// Keeping the heap 100% free is hard ;-) so limit it to 99%.
FLAG_SET_ERGO(uintx, MinHeapFreeRatio, 99);

View File

@ -26,13 +26,9 @@
#define SHARE_VM_GC_SHARED_MODREFBARRIERSET_HPP
#include "gc/shared/barrierSet.hpp"
#include "memory/memRegion.hpp"
// This kind of "BarrierSet" allows a "CollectedHeap" to detect and
// enumerate ref fields that have been modified (since the last
// enumeration), using a card table.
class OopClosure;
class Generation;
class Klass;
class ModRefBarrierSet: public BarrierSet {
protected:
@ -41,12 +37,49 @@ protected:
~ModRefBarrierSet() { }
public:
template <DecoratorSet decorators, typename T>
inline void write_ref_field_pre(T* addr) {}
template <DecoratorSet decorators, typename T>
inline void write_ref_field_post(T *addr, oop new_value) {}
// Causes all refs in "mr" to be assumed to be modified.
virtual void invalidate(MemRegion mr) = 0;
// The caller guarantees that "mr" contains no references. (Perhaps it's
// objects have been moved elsewhere.)
virtual void clear(MemRegion mr) = 0;
// The ModRef abstraction introduces pre and post barriers
template <DecoratorSet decorators, typename BarrierSetT>
class AccessBarrier: public BarrierSet::AccessBarrier<decorators, BarrierSetT> {
typedef BarrierSet::AccessBarrier<decorators, BarrierSetT> Raw;
public:
template <typename T>
static void oop_store_in_heap(T* addr, oop value);
template <typename T>
static oop oop_atomic_cmpxchg_in_heap(oop new_value, T* addr, oop compare_value);
template <typename T>
static oop oop_atomic_xchg_in_heap(oop new_value, T* addr);
template <typename T>
static bool oop_arraycopy_in_heap(arrayOop src_obj, arrayOop dst_obj, T* src, T* dst, size_t length);
static void clone_in_heap(oop src, oop dst, size_t size);
static void oop_store_in_heap_at(oop base, ptrdiff_t offset, oop value) {
oop_store_in_heap(AccessInternal::oop_field_addr<decorators>(base, offset), value);
}
static oop oop_atomic_xchg_in_heap_at(oop new_value, oop base, ptrdiff_t offset) {
return oop_atomic_xchg_in_heap(new_value, AccessInternal::oop_field_addr<decorators>(base, offset));
}
static oop oop_atomic_cmpxchg_in_heap_at(oop new_value, oop base, ptrdiff_t offset, oop compare_value) {
return oop_atomic_cmpxchg_in_heap(new_value, AccessInternal::oop_field_addr<decorators>(base, offset), compare_value);
}
};
};
template<>

View File

@ -0,0 +1,111 @@
/*
* Copyright (c) 2017, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef SHARE_VM_GC_SHARED_MODREFBARRIERSET_INLINE_HPP
#define SHARE_VM_GC_SHARED_MODREFBARRIERSET_INLINE_HPP
#include "gc/shared/modRefBarrierSet.hpp"
#include "oops/klass.inline.hpp"
#include "oops/objArrayOop.hpp"
#include "oops/oop.hpp"
template <DecoratorSet decorators, typename BarrierSetT>
template <typename T>
inline void ModRefBarrierSet::AccessBarrier<decorators, BarrierSetT>::
oop_store_in_heap(T* addr, oop value) {
BarrierSetT *bs = barrier_set_cast<BarrierSetT>(barrier_set());
bs->template write_ref_field_pre<decorators>(addr);
Raw::oop_store(addr, value);
bs->template write_ref_field_post<decorators>(addr, value);
}
template <DecoratorSet decorators, typename BarrierSetT>
template <typename T>
inline oop ModRefBarrierSet::AccessBarrier<decorators, BarrierSetT>::
oop_atomic_cmpxchg_in_heap(oop new_value, T* addr, oop compare_value) {
BarrierSetT *bs = barrier_set_cast<BarrierSetT>(barrier_set());
bs->template write_ref_field_pre<decorators>(addr);
oop result = Raw::oop_atomic_cmpxchg(new_value, addr, compare_value);
if (result == compare_value) {
bs->template write_ref_field_post<decorators>(addr, new_value);
}
return result;
}
template <DecoratorSet decorators, typename BarrierSetT>
template <typename T>
inline oop ModRefBarrierSet::AccessBarrier<decorators, BarrierSetT>::
oop_atomic_xchg_in_heap(oop new_value, T* addr) {
BarrierSetT *bs = barrier_set_cast<BarrierSetT>(barrier_set());
bs->template write_ref_field_pre<decorators>(addr);
oop result = Raw::oop_atomic_xchg(new_value, addr);
bs->template write_ref_field_post<decorators>(addr, new_value);
return result;
}
template <DecoratorSet decorators, typename BarrierSetT>
template <typename T>
inline bool ModRefBarrierSet::AccessBarrier<decorators, BarrierSetT>::
oop_arraycopy_in_heap(arrayOop src_obj, arrayOop dst_obj, T* src, T* dst, size_t length) {
BarrierSetT *bs = barrier_set_cast<BarrierSetT>(barrier_set());
if (!HasDecorator<decorators, ARRAYCOPY_CHECKCAST>::value) {
// Optimized covariant case
bs->write_ref_array_pre(dst, (int)length,
HasDecorator<decorators, ARRAYCOPY_DEST_NOT_INITIALIZED>::value);
Raw::oop_arraycopy(src_obj, dst_obj, src, dst, length);
bs->write_ref_array((HeapWord*)dst, length);
} else {
Klass* bound = objArrayOop(dst_obj)->element_klass();
T* from = src;
T* end = from + length;
for (T* p = dst; from < end; from++, p++) {
T element = *from;
if (bound->is_instanceof_or_null(element)) {
bs->template write_ref_field_pre<decorators>(p);
*p = element;
} else {
// We must do a barrier to cover the partial copy.
const size_t pd = pointer_delta(p, dst, (size_t)heapOopSize);
// pointer delta is scaled to number of elements (length field in
// objArrayOop) which we assume is 32 bit.
assert(pd == (size_t)(int)pd, "length field overflow");
bs->write_ref_array((HeapWord*)dst, pd);
return false;
}
}
bs->write_ref_array((HeapWord*)dst, length);
}
return true;
}
template <DecoratorSet decorators, typename BarrierSetT>
inline void ModRefBarrierSet::AccessBarrier<decorators, BarrierSetT>::
clone_in_heap(oop src, oop dst, size_t size) {
Raw::clone(src, dst, size);
BarrierSetT *bs = barrier_set_cast<BarrierSetT>(barrier_set());
bs->write_region(MemRegion((HeapWord*)(void*)dst, size));
}
#endif // SHARE_VM_GC_SHARED_MODREFBARRIERSET_INLINE_HPP

View File

@ -34,6 +34,7 @@
#include "logging/log.hpp"
#include "memory/allocation.hpp"
#include "memory/resourceArea.hpp"
#include "oops/access.inline.hpp"
#include "oops/oop.inline.hpp"
#include "runtime/java.hpp"
@ -294,14 +295,13 @@ void ReferenceProcessor::enqueue_discovered_reflist(DiscoveredList& refs_list) {
// Self-loop next, so as to make Ref not active.
java_lang_ref_Reference::set_next_raw(obj, obj);
if (next_d != obj) {
oopDesc::bs()->write_ref_field(java_lang_ref_Reference::discovered_addr(obj), next_d);
HeapAccess<AS_NO_KEEPALIVE>::oop_store_at(obj, java_lang_ref_Reference::discovered_offset, next_d);
} else {
// This is the last object.
// Swap refs_list into pending list and set obj's
// discovered to what we read from the pending list.
oop old = Universe::swap_reference_pending_list(refs_list.head());
java_lang_ref_Reference::set_discovered_raw(obj, old); // old may be NULL
oopDesc::bs()->write_ref_field(java_lang_ref_Reference::discovered_addr(obj), old);
HeapAccess<AS_NO_KEEPALIVE>::oop_store_at(obj, java_lang_ref_Reference::discovered_offset, old);
}
}
}
@ -382,7 +382,7 @@ void DiscoveredListIterator::load_ptrs(DEBUG_ONLY(bool allow_null_referent)) {
void DiscoveredListIterator::remove() {
assert(oopDesc::is_oop(_ref), "Dropping a bad reference");
oop_store_raw(_discovered_addr, NULL);
RawAccess<>::oop_store(_discovered_addr, oop(NULL));
// First _prev_next ref actually points into DiscoveredList (gross).
oop new_next;
@ -397,13 +397,13 @@ void DiscoveredListIterator::remove() {
// Remove Reference object from discovered list. Note that G1 does not need a
// pre-barrier here because we know the Reference has already been found/marked,
// that's how it ended up in the discovered list in the first place.
oop_store_raw(_prev_next, new_next);
RawAccess<>::oop_store(_prev_next, new_next);
NOT_PRODUCT(_removed++);
_refs_list.dec_length(1);
}
void DiscoveredListIterator::clear_referent() {
oop_store_raw(_referent_addr, NULL);
RawAccess<>::oop_store(_referent_addr, oop(NULL));
}
// NOTE: process_phase*() are largely similar, and at a high level
@ -917,8 +917,8 @@ ReferenceProcessor::add_to_discovered_list_mt(DiscoveredList& refs_list,
// The last ref must have its discovered field pointing to itself.
oop next_discovered = (current_head != NULL) ? current_head : obj;
oop retest = oopDesc::atomic_compare_exchange_oop(next_discovered, discovered_addr,
NULL);
oop retest = RawAccess<>::oop_atomic_cmpxchg(next_discovered, discovered_addr, oop(NULL));
if (retest == NULL) {
// This thread just won the right to enqueue the object.
// We have separate lists for enqueueing, so no synchronization
@ -933,8 +933,8 @@ ReferenceProcessor::add_to_discovered_list_mt(DiscoveredList& refs_list,
// The reference has already been discovered...
log_develop_trace(gc, ref)("Already discovered reference (" INTPTR_FORMAT ": %s)",
p2i(obj), obj->klass()->internal_name());
}
}
}
#ifndef PRODUCT
// Non-atomic (i.e. concurrent) discovery might allow us
@ -1076,7 +1076,7 @@ bool ReferenceProcessor::discover_reference(oop obj, ReferenceType rt) {
oop next_discovered = (current_head != NULL) ? current_head : obj;
assert(discovered == NULL, "control point invariant");
oop_store_raw(discovered_addr, next_discovered);
RawAccess<>::oop_store(discovered_addr, next_discovered);
list->set_head(obj);
list->inc_length(1);

View File

@ -193,7 +193,7 @@ void ThreadLocalAllocBuffer::initialize() {
set_desired_size(initial_desired_size());
// Following check is needed because at startup the main (primordial)
// Following check is needed because at startup the main
// thread is initialized before the heap is. The initialization for
// this thread is redone in startup_initialization below.
if (Universe::heap() != NULL) {
@ -240,7 +240,7 @@ void ThreadLocalAllocBuffer::startup_initialization() {
}
#endif
// During jvm startup, the main (primordial) thread is initialized
// During jvm startup, the main thread is initialized
// before the heap is initialized. So reinitialize it now.
guarantee(Thread::current()->is_Java_thread(), "tlab initialization thread not Java thread");
Thread::current()->tlab().initialize();

View File

@ -582,6 +582,7 @@ JVMCIEnv::CodeInstallResult JVMCIEnv::register_method(
InstanceKlass::cast(method->method_holder())->add_osr_nmethod(nm);
}
}
nm->make_in_use();
}
result = nm != NULL ? JVMCIEnv::ok :JVMCIEnv::cache_full;
}

View File

@ -25,6 +25,7 @@
#define SHARE_VM_JVMCI_JVMCIJAVACLASSES_HPP
#include "classfile/systemDictionary.hpp"
#include "oops/access.inline.hpp"
#include "oops/instanceMirrorKlass.hpp"
#include "oops/oop.inline.hpp"
@ -351,22 +352,15 @@ class name : AllStatic {
assert(klassName::klass() != NULL && klassName::klass()->is_linked(), "Class not yet linked: " #klassName); \
InstanceKlass* ik = klassName::klass(); \
address addr = ik->static_field_addr(_##name##_offset - InstanceMirrorKlass::offset_of_static_fields()); \
if (UseCompressedOops) { \
return (type) oopDesc::load_decode_heap_oop((narrowOop *)addr); \
} else { \
return (type) oopDesc::load_decode_heap_oop((oop*)addr); \
} \
oop result = HeapAccess<>::oop_load((HeapWord*)addr); \
return type(result); \
} \
static void set_##name(type x) { \
assert(klassName::klass() != NULL && klassName::klass()->is_linked(), "Class not yet linked: " #klassName); \
assert(klassName::klass() != NULL, "Class not yet loaded: " #klassName); \
InstanceKlass* ik = klassName::klass(); \
address addr = ik->static_field_addr(_##name##_offset - InstanceMirrorKlass::offset_of_static_fields()); \
if (UseCompressedOops) { \
oop_store((narrowOop *)addr, x); \
} else { \
oop_store((oop*)addr, x); \
} \
HeapAccess<>::oop_store((HeapWord*)addr, x); \
}
#define STATIC_PRIMITIVE_FIELD(klassName, name, jtypename) \
static int _##name##_offset; \
@ -374,13 +368,13 @@ class name : AllStatic {
assert(klassName::klass() != NULL && klassName::klass()->is_linked(), "Class not yet linked: " #klassName); \
InstanceKlass* ik = klassName::klass(); \
address addr = ik->static_field_addr(_##name##_offset - InstanceMirrorKlass::offset_of_static_fields()); \
return *((jtypename *)addr); \
return HeapAccess<>::load((jtypename*)addr); \
} \
static void set_##name(jtypename x) { \
assert(klassName::klass() != NULL && klassName::klass()->is_linked(), "Class not yet linked: " #klassName); \
InstanceKlass* ik = klassName::klass(); \
address addr = ik->static_field_addr(_##name##_offset - InstanceMirrorKlass::offset_of_static_fields()); \
*((jtypename *)addr) = x; \
HeapAccess<>::store((jtypename*)addr, x); \
}
#define STATIC_INT_FIELD(klassName, name) STATIC_PRIMITIVE_FIELD(klassName, name, jint)

View File

@ -266,32 +266,55 @@ void SharedClassPathEntry::metaspace_pointers_do(MetaspaceClosure* it) {
}
void FileMapInfo::allocate_classpath_entry_table() {
assert(DumpSharedSpaces, "Sanity");
Thread* THREAD = Thread::current();
ClassLoaderData* loader_data = ClassLoaderData::the_null_class_loader_data();
ClassPathEntry* jrt = ClassLoader::get_jrt_entry();
assert(jrt != NULL,
"No modular java runtime image present when allocating the CDS classpath entry table");
size_t entry_size = SharedClassUtil::shared_class_path_entry_size(); // assert ( should be 8 byte aligned??)
int num_entries = ClassLoader::number_of_classpath_entries();
int num_boot_classpath_entries = ClassLoader::num_boot_classpath_entries();
int num_app_classpath_entries = ClassLoader::num_app_classpath_entries();
int num_entries = num_boot_classpath_entries + num_app_classpath_entries;
size_t bytes = entry_size * num_entries;
_classpath_entry_table = MetadataFactory::new_array<u8>(loader_data, (int)(bytes + 7 / 8), THREAD);
_classpath_entry_table_size = num_entries;
_classpath_entry_size = entry_size;
assert(ClassLoader::get_jrt_entry() != NULL,
"No modular java runtime image present when allocating the CDS classpath entry table");
for (int i=0; i<num_entries; i++) {
ClassPathEntry *cpe = ClassLoader::classpath_entry(i);
const char* type = ((i == 0) ? "jrt" : (cpe->is_jar_file() ? "jar" : "dir"));
// 1. boot class path
int i = 0;
ClassPathEntry* cpe = jrt;
while (cpe != NULL) {
const char* type = ((cpe == jrt) ? "jrt" : (cpe->is_jar_file() ? "jar" : "dir"));
log_info(class, path)("add main shared path (%s) %s", type, cpe->name());
SharedClassPathEntry* ent = shared_classpath(i);
ent->init(cpe->name(), THREAD);
if (i > 0) { // No need to do jimage.
if (cpe != jrt) { // No need to do jimage.
EXCEPTION_MARK; // The following call should never throw, but would exit VM on error.
SharedClassUtil::update_shared_classpath(cpe, ent, THREAD);
}
cpe = ClassLoader::get_next_boot_classpath_entry(cpe);
i++;
}
assert(i == num_boot_classpath_entries,
"number of boot class path entry mismatch");
// 2. app class path
ClassPathEntry *acpe = ClassLoader::app_classpath_entries();
while (acpe != NULL) {
log_info(class, path)("add app shared path %s", acpe->name());
SharedClassPathEntry* ent = shared_classpath(i);
ent->init(acpe->name(), THREAD);
EXCEPTION_MARK;
SharedClassUtil::update_shared_classpath(acpe, ent, THREAD);
acpe = acpe->next();
i ++;
}
assert(i == num_entries, "number of app class path entry mismatch");
}
bool FileMapInfo::validate_classpath_entry_table() {

View File

@ -0,0 +1,519 @@
/*
* Copyright (c) 2017, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef SHARE_VM_RUNTIME_ACCESS_HPP
#define SHARE_VM_RUNTIME_ACCESS_HPP
#include "memory/allocation.hpp"
#include "metaprogramming/decay.hpp"
#include "metaprogramming/integralConstant.hpp"
#include "oops/oopsHierarchy.hpp"
#include "utilities/debug.hpp"
#include "utilities/globalDefinitions.hpp"
// = GENERAL =
// Access is an API for performing accesses with declarative semantics. Each access can have a number of "decorators".
// A decorator is an attribute or property that affects the way a memory access is performed in some way.
// There are different groups of decorators. Some have to do with memory ordering, others to do with,
// e.g. strength of references, strength of GC barriers, or whether compression should be applied or not.
// Some decorators are set at buildtime, such as whether primitives require GC barriers or not, others
// at callsites such as whether an access is in the heap or not, and others are resolved at runtime
// such as GC-specific barriers and encoding/decoding compressed oops.
// By pipelining handling of these decorators, the design of the Access API allows separation of concern
// over the different orthogonal concerns of decorators, while providing a powerful way of
// expressing these orthogonal semantic properties in a unified way.
// == OPERATIONS ==
// * load: Load a value from an address.
// * load_at: Load a value from an internal pointer relative to a base object.
// * store: Store a value at an address.
// * store_at: Store a value in an internal pointer relative to a base object.
// * atomic_cmpxchg: Atomically compare-and-swap a new value at an address if previous value matched the compared value.
// * atomic_cmpxchg_at: Atomically compare-and-swap a new value at an internal pointer address if previous value matched the compared value.
// * atomic_xchg: Atomically swap a new value at an address if previous value matched the compared value.
// * atomic_xchg_at: Atomically swap a new value at an internal pointer address if previous value matched the compared value.
// * arraycopy: Copy data from one heap array to another heap array.
// * clone: Clone the contents of an object to a newly allocated object.
typedef uint64_t DecoratorSet;
// == Internal Decorators - do not use ==
// * INTERNAL_EMPTY: This is the name for the empty decorator set (in absence of other decorators).
// * INTERNAL_CONVERT_COMPRESSED_OOPS: This is an oop access that will require converting an oop
// to a narrowOop or vice versa, if UseCompressedOops is known to be set.
// * INTERNAL_VALUE_IS_OOP: Remember that the involved access is on oop rather than primitive.
const DecoratorSet INTERNAL_EMPTY = UCONST64(0);
const DecoratorSet INTERNAL_CONVERT_COMPRESSED_OOP = UCONST64(1) << 1;
const DecoratorSet INTERNAL_VALUE_IS_OOP = UCONST64(1) << 2;
// == Internal build-time Decorators ==
// * INTERNAL_BT_BARRIER_ON_PRIMITIVES: This is set in the barrierSetConfig.hpp file.
const DecoratorSet INTERNAL_BT_BARRIER_ON_PRIMITIVES = UCONST64(1) << 3;
// == Internal run-time Decorators ==
// * INTERNAL_RT_USE_COMPRESSED_OOPS: This decorator will be set in runtime resolved
// access backends iff UseCompressedOops is true.
const DecoratorSet INTERNAL_RT_USE_COMPRESSED_OOPS = UCONST64(1) << 4;
const DecoratorSet INTERNAL_DECORATOR_MASK = INTERNAL_CONVERT_COMPRESSED_OOP | INTERNAL_VALUE_IS_OOP |
INTERNAL_BT_BARRIER_ON_PRIMITIVES | INTERNAL_RT_USE_COMPRESSED_OOPS;
// == Memory Ordering Decorators ==
// The memory ordering decorators can be described in the following way:
// === Decorator Rules ===
// The different types of memory ordering guarantees have a strict order of strength.
// Explicitly specifying the stronger ordering implies that the guarantees of the weaker
// property holds too. The names come from the C++11 atomic operations, and typically
// have a JMM equivalent property.
// The equivalence may be viewed like this:
// MO_UNORDERED is equivalent to JMM plain.
// MO_VOLATILE has no equivalence in JMM, because it's a C++ thing.
// MO_RELAXED is equivalent to JMM opaque.
// MO_ACQUIRE is equivalent to JMM acquire.
// MO_RELEASE is equivalent to JMM release.
// MO_SEQ_CST is equivalent to JMM volatile.
//
// === Stores ===
// * MO_UNORDERED (Default): No guarantees.
// - The compiler and hardware are free to reorder aggressively. And they will.
// * MO_VOLATILE: Volatile stores (in the C++ sense).
// - The stores are not reordered by the compiler (but possibly the HW) w.r.t. other
// volatile accesses in program order (but possibly non-volatile accesses).
// * MO_RELAXED: Relaxed atomic stores.
// - The stores are atomic.
// - Guarantees from volatile stores hold.
// * MO_RELEASE: Releasing stores.
// - The releasing store will make its preceding memory accesses observable to memory accesses
// subsequent to an acquiring load observing this releasing store.
// - Guarantees from relaxed stores hold.
// * MO_SEQ_CST: Sequentially consistent stores.
// - The stores are observed in the same order by MO_SEQ_CST loads on other processors
// - Preceding loads and stores in program order are not reordered with subsequent loads and stores in program order.
// - Guarantees from releasing stores hold.
// === Loads ===
// * MO_UNORDERED (Default): No guarantees
// - The compiler and hardware are free to reorder aggressively. And they will.
// * MO_VOLATILE: Volatile loads (in the C++ sense).
// - The loads are not reordered by the compiler (but possibly the HW) w.r.t. other
// volatile accesses in program order (but possibly non-volatile accesses).
// * MO_RELAXED: Relaxed atomic loads.
// - The stores are atomic.
// - Guarantees from volatile loads hold.
// * MO_ACQUIRE: Acquiring loads.
// - An acquiring load will make subsequent memory accesses observe the memory accesses
// preceding the releasing store that the acquiring load observed.
// - Guarantees from relaxed loads hold.
// * MO_SEQ_CST: Sequentially consistent loads.
// - These loads observe MO_SEQ_CST stores in the same order on other processors
// - Preceding loads and stores in program order are not reordered with subsequent loads and stores in program order.
// - Guarantees from acquiring loads hold.
// === Atomic Cmpxchg ===
// * MO_RELAXED: Atomic but relaxed cmpxchg.
// - Guarantees from MO_RELAXED loads and MO_RELAXED stores hold unconditionally.
// * MO_SEQ_CST: Sequentially consistent cmpxchg.
// - Guarantees from MO_SEQ_CST loads and MO_SEQ_CST stores hold unconditionally.
// === Atomic Xchg ===
// * MO_RELAXED: Atomic but relaxed atomic xchg.
// - Guarantees from MO_RELAXED loads and MO_RELAXED stores hold.
// * MO_SEQ_CST: Sequentially consistent xchg.
// - Guarantees from MO_SEQ_CST loads and MO_SEQ_CST stores hold.
const DecoratorSet MO_UNORDERED = UCONST64(1) << 5;
const DecoratorSet MO_VOLATILE = UCONST64(1) << 6;
const DecoratorSet MO_RELAXED = UCONST64(1) << 7;
const DecoratorSet MO_ACQUIRE = UCONST64(1) << 8;
const DecoratorSet MO_RELEASE = UCONST64(1) << 9;
const DecoratorSet MO_SEQ_CST = UCONST64(1) << 10;
const DecoratorSet MO_DECORATOR_MASK = MO_UNORDERED | MO_VOLATILE | MO_RELAXED |
MO_ACQUIRE | MO_RELEASE | MO_SEQ_CST;
// === Barrier Strength Decorators ===
// * AS_RAW: The access will translate into a raw memory access, hence ignoring all semantic concerns
// except memory ordering and compressed oops. This will bypass runtime function pointer dispatching
// in the pipeline and hardwire to raw accesses without going trough the GC access barriers.
// - Accesses on oop* translate to raw memory accesses without runtime checks
// - Accesses on narrowOop* translate to encoded/decoded memory accesses without runtime checks
// - Accesses on HeapWord* translate to a runtime check choosing one of the above
// - Accesses on other types translate to raw memory accesses without runtime checks
// * AS_NO_KEEPALIVE: The barrier is used only on oop references and will not keep any involved objects
// alive, regardless of the type of reference being accessed. It will however perform the memory access
// in a consistent way w.r.t. e.g. concurrent compaction, so that the right field is being accessed,
// or maintain, e.g. intergenerational or interregional pointers if applicable. This should be used with
// extreme caution in isolated scopes.
// * AS_NORMAL: The accesses will be resolved to an accessor on the BarrierSet class, giving the
// responsibility of performing the access and what barriers to be performed to the GC. This is the default.
// Note that primitive accesses will only be resolved on the barrier set if the appropriate build-time
// decorator for enabling primitive barriers is enabled for the build.
const DecoratorSet AS_RAW = UCONST64(1) << 11;
const DecoratorSet AS_NO_KEEPALIVE = UCONST64(1) << 12;
const DecoratorSet AS_NORMAL = UCONST64(1) << 13;
const DecoratorSet AS_DECORATOR_MASK = AS_RAW | AS_NO_KEEPALIVE | AS_NORMAL;
// === Reference Strength Decorators ===
// These decorators only apply to accesses on oop-like types (oop/narrowOop).
// * ON_STRONG_OOP_REF: Memory access is performed on a strongly reachable reference.
// * ON_WEAK_OOP_REF: The memory access is performed on a weakly reachable reference.
// * ON_PHANTOM_OOP_REF: The memory access is performed on a phantomly reachable reference.
// This is the same ring of strength as jweak and weak oops in the VM.
// * ON_UNKNOWN_OOP_REF: The memory access is performed on a reference of unknown strength.
// This could for example come from the unsafe API.
// * Default (no explicit reference strength specified): ON_STRONG_OOP_REF
const DecoratorSet ON_STRONG_OOP_REF = UCONST64(1) << 14;
const DecoratorSet ON_WEAK_OOP_REF = UCONST64(1) << 15;
const DecoratorSet ON_PHANTOM_OOP_REF = UCONST64(1) << 16;
const DecoratorSet ON_UNKNOWN_OOP_REF = UCONST64(1) << 17;
const DecoratorSet ON_DECORATOR_MASK = ON_STRONG_OOP_REF | ON_WEAK_OOP_REF |
ON_PHANTOM_OOP_REF | ON_UNKNOWN_OOP_REF;
// === Access Location ===
// Accesses can take place in, e.g. the heap, old or young generation and different native roots.
// The location is important to the GC as it may imply different actions. The following decorators are used:
// * IN_HEAP: The access is performed in the heap. Many barriers such as card marking will
// be omitted if this decorator is not set.
// * IN_HEAP_ARRAY: The access is performed on a heap allocated array. This is sometimes a special case
// for some GCs, and implies that it is an IN_HEAP.
// * IN_ROOT: The access is performed in an off-heap data structure pointing into the Java heap.
// * IN_CONCURRENT_ROOT: The access is performed in an off-heap data structure pointing into the Java heap,
// but is notably not scanned during safepoints. This is sometimes a special case for some GCs and
// implies that it is also an IN_ROOT.
const DecoratorSet IN_HEAP = UCONST64(1) << 18;
const DecoratorSet IN_HEAP_ARRAY = UCONST64(1) << 19;
const DecoratorSet IN_ROOT = UCONST64(1) << 20;
const DecoratorSet IN_CONCURRENT_ROOT = UCONST64(1) << 21;
const DecoratorSet IN_DECORATOR_MASK = IN_HEAP | IN_HEAP_ARRAY |
IN_ROOT | IN_CONCURRENT_ROOT;
// == Value Decorators ==
// * OOP_NOT_NULL: This property can make certain barriers faster such as compressing oops.
const DecoratorSet OOP_NOT_NULL = UCONST64(1) << 22;
const DecoratorSet OOP_DECORATOR_MASK = OOP_NOT_NULL;
// == Arraycopy Decorators ==
// * ARRAYCOPY_DEST_NOT_INITIALIZED: This property can be important to e.g. SATB barriers by
// marking that the previous value uninitialized nonsense rather than a real value.
// * ARRAYCOPY_CHECKCAST: This property means that the class of the objects in source
// are not guaranteed to be subclasses of the class of the destination array. This requires
// a check-cast barrier during the copying operation. If this is not set, it is assumed
// that the array is covariant: (the source array type is-a destination array type)
// * ARRAYCOPY_DISJOINT: This property means that it is known that the two array ranges
// are disjoint.
// * ARRAYCOPY_ARRAYOF: The copy is in the arrayof form.
// * ARRAYCOPY_ATOMIC: The accesses have to be atomic over the size of its elements.
// * ARRAYCOPY_ALIGNED: The accesses have to be aligned on a HeapWord.
const DecoratorSet ARRAYCOPY_DEST_NOT_INITIALIZED = UCONST64(1) << 24;
const DecoratorSet ARRAYCOPY_CHECKCAST = UCONST64(1) << 25;
const DecoratorSet ARRAYCOPY_DISJOINT = UCONST64(1) << 26;
const DecoratorSet ARRAYCOPY_ARRAYOF = UCONST64(1) << 27;
const DecoratorSet ARRAYCOPY_ATOMIC = UCONST64(1) << 28;
const DecoratorSet ARRAYCOPY_ALIGNED = UCONST64(1) << 29;
const DecoratorSet ARRAYCOPY_DECORATOR_MASK = ARRAYCOPY_DEST_NOT_INITIALIZED |
ARRAYCOPY_CHECKCAST | ARRAYCOPY_DISJOINT |
ARRAYCOPY_DISJOINT | ARRAYCOPY_ARRAYOF |
ARRAYCOPY_ATOMIC | ARRAYCOPY_ALIGNED;
// The HasDecorator trait can help at compile-time determining whether a decorator set
// has an intersection with a certain other decorator set
template <DecoratorSet decorators, DecoratorSet decorator>
struct HasDecorator: public IntegralConstant<bool, (decorators & decorator) != 0> {};
namespace AccessInternal {
template <typename T>
struct OopOrNarrowOopInternal: AllStatic {
typedef oop type;
};
template <>
struct OopOrNarrowOopInternal<narrowOop>: AllStatic {
typedef narrowOop type;
};
// This metafunction returns a canonicalized oop/narrowOop type for a passed
// in oop-like types passed in from oop_* overloads where the user has sworn
// that the passed in values should be oop-like (e.g. oop, oopDesc*, arrayOop,
// narrowOoop, instanceOopDesc*, and random other things).
// In the oop_* overloads, it must hold that if the passed in type T is not
// narrowOop, then it by contract has to be one of many oop-like types implicitly
// convertible to oop, and hence returns oop as the canonical oop type.
// If it turns out it was not, then the implicit conversion to oop will fail
// to compile, as desired.
template <typename T>
struct OopOrNarrowOop: AllStatic {
typedef typename OopOrNarrowOopInternal<typename Decay<T>::type>::type type;
};
inline void* field_addr(oop base, ptrdiff_t byte_offset) {
return reinterpret_cast<void*>(reinterpret_cast<intptr_t>((void*)base) + byte_offset);
}
template <DecoratorSet decorators, typename T>
void store_at(oop base, ptrdiff_t offset, T value);
template <DecoratorSet decorators, typename T>
T load_at(oop base, ptrdiff_t offset);
template <DecoratorSet decorators, typename T>
T atomic_cmpxchg_at(T new_value, oop base, ptrdiff_t offset, T compare_value);
template <DecoratorSet decorators, typename T>
T atomic_xchg_at(T new_value, oop base, ptrdiff_t offset);
template <DecoratorSet decorators, typename P, typename T>
void store(P* addr, T value);
template <DecoratorSet decorators, typename P, typename T>
T load(P* addr);
template <DecoratorSet decorators, typename P, typename T>
T atomic_cmpxchg(T new_value, P* addr, T compare_value);
template <DecoratorSet decorators, typename P, typename T>
T atomic_xchg(T new_value, P* addr);
template <DecoratorSet decorators, typename T>
bool arraycopy(arrayOop src_obj, arrayOop dst_obj, T *src, T *dst, size_t length);
template <DecoratorSet decorators>
void clone(oop src, oop dst, size_t size);
// Infer the type that should be returned from a load.
template <typename P, DecoratorSet decorators>
class LoadProxy: public StackObj {
private:
P *const _addr;
public:
LoadProxy(P* addr) : _addr(addr) {}
template <typename T>
inline operator T() {
return load<decorators, P, T>(_addr);
}
inline operator P() {
return load<decorators, P, P>(_addr);
}
};
// Infer the type that should be returned from a load_at.
template <DecoratorSet decorators>
class LoadAtProxy: public StackObj {
private:
const oop _base;
const ptrdiff_t _offset;
public:
LoadAtProxy(oop base, ptrdiff_t offset) : _base(base), _offset(offset) {}
template <typename T>
inline operator T() const {
return load_at<decorators, T>(_base, _offset);
}
};
}
template <DecoratorSet decorators = INTERNAL_EMPTY>
class Access: public AllStatic {
// This function asserts that if an access gets passed in a decorator outside
// of the expected_decorators, then something is wrong. It additionally checks
// the consistency of the decorators so that supposedly disjoint decorators are indeed
// disjoint. For example, an access can not be both in heap and on root at the
// same time.
template <DecoratorSet expected_decorators>
static void verify_decorators();
template <DecoratorSet expected_mo_decorators>
static void verify_primitive_decorators() {
const DecoratorSet primitive_decorators = (AS_DECORATOR_MASK ^ AS_NO_KEEPALIVE) | IN_HEAP |
IN_HEAP_ARRAY | MO_DECORATOR_MASK;
verify_decorators<expected_mo_decorators | primitive_decorators>();
}
template <DecoratorSet expected_mo_decorators>
static void verify_oop_decorators() {
const DecoratorSet oop_decorators = AS_DECORATOR_MASK | IN_DECORATOR_MASK |
(ON_DECORATOR_MASK ^ ON_UNKNOWN_OOP_REF) | // no unknown oop refs outside of the heap
OOP_DECORATOR_MASK | MO_DECORATOR_MASK;
verify_decorators<expected_mo_decorators | oop_decorators>();
}
template <DecoratorSet expected_mo_decorators>
static void verify_heap_oop_decorators() {
const DecoratorSet heap_oop_decorators = AS_DECORATOR_MASK | ON_DECORATOR_MASK |
OOP_DECORATOR_MASK | (IN_DECORATOR_MASK ^
(IN_ROOT ^ IN_CONCURRENT_ROOT)) | // no root accesses in the heap
MO_DECORATOR_MASK;
verify_decorators<expected_mo_decorators | heap_oop_decorators>();
}
static const DecoratorSet load_mo_decorators = MO_UNORDERED | MO_VOLATILE | MO_RELAXED | MO_ACQUIRE | MO_SEQ_CST;
static const DecoratorSet store_mo_decorators = MO_UNORDERED | MO_VOLATILE | MO_RELAXED | MO_RELEASE | MO_SEQ_CST;
static const DecoratorSet atomic_xchg_mo_decorators = MO_SEQ_CST;
static const DecoratorSet atomic_cmpxchg_mo_decorators = MO_RELAXED | MO_SEQ_CST;
public:
// Primitive heap accesses
static inline AccessInternal::LoadAtProxy<decorators> load_at(oop base, ptrdiff_t offset) {
verify_primitive_decorators<load_mo_decorators>();
return AccessInternal::LoadAtProxy<decorators>(base, offset);
}
template <typename T>
static inline void store_at(oop base, ptrdiff_t offset, T value) {
verify_primitive_decorators<store_mo_decorators>();
AccessInternal::store_at<decorators>(base, offset, value);
}
template <typename T>
static inline T atomic_cmpxchg_at(T new_value, oop base, ptrdiff_t offset, T compare_value) {
verify_primitive_decorators<atomic_cmpxchg_mo_decorators>();
return AccessInternal::atomic_cmpxchg_at<decorators>(new_value, base, offset, compare_value);
}
template <typename T>
static inline T atomic_xchg_at(T new_value, oop base, ptrdiff_t offset) {
verify_primitive_decorators<atomic_xchg_mo_decorators>();
return AccessInternal::atomic_xchg_at<decorators>(new_value, base, offset);
}
template <typename T>
static inline bool arraycopy(arrayOop src_obj, arrayOop dst_obj, T *src, T *dst, size_t length) {
verify_decorators<ARRAYCOPY_DECORATOR_MASK | IN_HEAP |
AS_DECORATOR_MASK>();
return AccessInternal::arraycopy<decorators>(src_obj, dst_obj, src, dst, length);
}
// Oop heap accesses
static inline AccessInternal::LoadAtProxy<decorators | INTERNAL_VALUE_IS_OOP> oop_load_at(oop base, ptrdiff_t offset) {
verify_heap_oop_decorators<load_mo_decorators>();
return AccessInternal::LoadAtProxy<decorators | INTERNAL_VALUE_IS_OOP>(base, offset);
}
template <typename T>
static inline void oop_store_at(oop base, ptrdiff_t offset, T value) {
verify_heap_oop_decorators<store_mo_decorators>();
typedef typename AccessInternal::OopOrNarrowOop<T>::type OopType;
OopType oop_value = value;
AccessInternal::store_at<decorators | INTERNAL_VALUE_IS_OOP>(base, offset, oop_value);
}
template <typename T>
static inline T oop_atomic_cmpxchg_at(T new_value, oop base, ptrdiff_t offset, T compare_value) {
verify_heap_oop_decorators<atomic_cmpxchg_mo_decorators>();
typedef typename AccessInternal::OopOrNarrowOop<T>::type OopType;
OopType new_oop_value = new_value;
OopType compare_oop_value = compare_value;
return AccessInternal::atomic_cmpxchg_at<decorators | INTERNAL_VALUE_IS_OOP>(new_oop_value, base, offset, compare_oop_value);
}
template <typename T>
static inline T oop_atomic_xchg_at(T new_value, oop base, ptrdiff_t offset) {
verify_heap_oop_decorators<atomic_xchg_mo_decorators>();
typedef typename AccessInternal::OopOrNarrowOop<T>::type OopType;
OopType new_oop_value = new_value;
return AccessInternal::atomic_xchg_at<decorators | INTERNAL_VALUE_IS_OOP>(new_oop_value, base, offset);
}
template <typename T>
static inline bool oop_arraycopy(arrayOop src_obj, arrayOop dst_obj, T *src, T *dst, size_t length) {
verify_decorators<ARRAYCOPY_DECORATOR_MASK | IN_HEAP | AS_DECORATOR_MASK>();
return AccessInternal::arraycopy<decorators | INTERNAL_VALUE_IS_OOP>(src_obj, dst_obj, src, dst, length);
}
// Clone an object from src to dst
static inline void clone(oop src, oop dst, size_t size) {
verify_decorators<IN_HEAP>();
AccessInternal::clone<decorators>(src, dst, size);
}
// Primitive accesses
template <typename P>
static inline P load(P* addr) {
verify_primitive_decorators<load_mo_decorators>();
return AccessInternal::load<decorators, P, P>(addr);
}
template <typename P, typename T>
static inline void store(P* addr, T value) {
verify_primitive_decorators<store_mo_decorators>();
AccessInternal::store<decorators>(addr, value);
}
template <typename P, typename T>
static inline T atomic_cmpxchg(T new_value, P* addr, T compare_value) {
verify_primitive_decorators<atomic_cmpxchg_mo_decorators>();
return AccessInternal::atomic_cmpxchg<decorators>(new_value, addr, compare_value);
}
template <typename P, typename T>
static inline T atomic_xchg(T new_value, P* addr) {
verify_primitive_decorators<atomic_xchg_mo_decorators>();
return AccessInternal::atomic_xchg<decorators>(new_value, addr);
}
// Oop accesses
template <typename P>
static inline AccessInternal::LoadProxy<P, decorators | INTERNAL_VALUE_IS_OOP> oop_load(P* addr) {
verify_oop_decorators<load_mo_decorators>();
return AccessInternal::LoadProxy<P, decorators | INTERNAL_VALUE_IS_OOP>(addr);
}
template <typename P, typename T>
static inline void oop_store(P* addr, T value) {
verify_oop_decorators<store_mo_decorators>();
typedef typename AccessInternal::OopOrNarrowOop<T>::type OopType;
OopType oop_value = value;
AccessInternal::store<decorators | INTERNAL_VALUE_IS_OOP>(addr, oop_value);
}
template <typename P, typename T>
static inline T oop_atomic_cmpxchg(T new_value, P* addr, T compare_value) {
verify_oop_decorators<atomic_cmpxchg_mo_decorators>();
typedef typename AccessInternal::OopOrNarrowOop<T>::type OopType;
OopType new_oop_value = new_value;
OopType compare_oop_value = compare_value;
return AccessInternal::atomic_cmpxchg<decorators | INTERNAL_VALUE_IS_OOP>(new_oop_value, addr, compare_oop_value);
}
template <typename P, typename T>
static inline T oop_atomic_xchg(T new_value, P* addr) {
verify_oop_decorators<atomic_xchg_mo_decorators>();
typedef typename AccessInternal::OopOrNarrowOop<T>::type OopType;
OopType new_oop_value = new_value;
return AccessInternal::atomic_xchg<decorators | INTERNAL_VALUE_IS_OOP>(new_oop_value, addr);
}
};
// Helper for performing raw accesses (knows only of memory ordering
// atomicity decorators as well as compressed oops)
template <DecoratorSet decorators = INTERNAL_EMPTY>
class RawAccess: public Access<AS_RAW | decorators> {};
// Helper for performing normal accesses on the heap. These accesses
// may resolve an accessor on a GC barrier set
template <DecoratorSet decorators = INTERNAL_EMPTY>
class HeapAccess: public Access<IN_HEAP | decorators> {};
// Helper for performing normal accesses in roots. These accesses
// may resolve an accessor on a GC barrier set
template <DecoratorSet decorators = INTERNAL_EMPTY>
class RootAccess: public Access<IN_ROOT | decorators> {};
#endif // SHARE_VM_RUNTIME_ACCESS_HPP

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,189 @@
/*
* Copyright (c) 2017, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "accessBackend.inline.hpp"
#include "gc/shared/collectedHeap.hpp"
#include "oops/oop.inline.hpp"
#include "runtime/mutexLocker.hpp"
#include "runtime/vm_version.hpp"
#include "utilities/copy.hpp"
namespace AccessInternal {
// VM_Version::supports_cx8() is a surrogate for 'supports atomic long memory ops'.
//
// On platforms which do not support atomic compare-and-swap of jlong (8 byte)
// values we have to use a lock-based scheme to enforce atomicity. This has to be
// applied to all Unsafe operations that set the value of a jlong field. Even so
// the compareAndSwapLong operation will not be atomic with respect to direct stores
// to the field from Java code. It is important therefore that any Java code that
// utilizes these Unsafe jlong operations does not perform direct stores. To permit
// direct loads of the field from Java code we must also use Atomic::store within the
// locked regions. And for good measure, in case there are direct stores, we also
// employ Atomic::load within those regions. Note that the field in question must be
// volatile and so must have atomic load/store accesses applied at the Java level.
//
// The locking scheme could utilize a range of strategies for controlling the locking
// granularity: from a lock per-field through to a single global lock. The latter is
// the simplest and is used for the current implementation. Note that the Java object
// that contains the field, can not, in general, be used for locking. To do so can lead
// to deadlocks as we may introduce locking into what appears to the Java code to be a
// lock-free path.
//
// As all the locked-regions are very short and themselves non-blocking we can treat
// them as leaf routines and elide safepoint checks (ie we don't perform any thread
// state transitions even when blocking for the lock). Note that if we do choose to
// add safepoint checks and thread state transitions, we must ensure that we calculate
// the address of the field _after_ we have acquired the lock, else the object may have
// been moved by the GC
#ifndef SUPPORTS_NATIVE_CX8
// This is intentionally in the cpp file rather than the .inline.hpp file. It seems
// desirable to trade faster JDK build times (not propagating vm_version.hpp)
// for slightly worse runtime atomic jlong performance on 32 bit machines with
// support for 64 bit atomics.
bool wide_atomic_needs_locking() {
return !VM_Version::supports_cx8();
}
AccessLocker::AccessLocker() {
assert(!VM_Version::supports_cx8(), "why else?");
UnsafeJlong_lock->lock_without_safepoint_check();
}
AccessLocker::~AccessLocker() {
UnsafeJlong_lock->unlock();
}
#endif
// These forward copying calls to Copy without exposing the Copy type in headers unnecessarily
void arraycopy_arrayof_conjoint_oops(void* src, void* dst, size_t length) {
Copy::arrayof_conjoint_oops(reinterpret_cast<HeapWord*>(src),
reinterpret_cast<HeapWord*>(dst), length);
}
void arraycopy_conjoint_oops(oop* src, oop* dst, size_t length) {
Copy::conjoint_oops_atomic(src, dst, length);
}
void arraycopy_conjoint_oops(narrowOop* src, narrowOop* dst, size_t length) {
Copy::conjoint_oops_atomic(src, dst, length);
}
void arraycopy_disjoint_words(void* src, void* dst, size_t length) {
Copy::disjoint_words(reinterpret_cast<HeapWord*>(src),
reinterpret_cast<HeapWord*>(dst), length);
}
void arraycopy_disjoint_words_atomic(void* src, void* dst, size_t length) {
Copy::disjoint_words_atomic(reinterpret_cast<HeapWord*>(src),
reinterpret_cast<HeapWord*>(dst), length);
}
template<>
void arraycopy_conjoint<jbyte>(jbyte* src, jbyte* dst, size_t length) {
Copy::conjoint_jbytes(src, dst, length);
}
template<>
void arraycopy_conjoint<jshort>(jshort* src, jshort* dst, size_t length) {
Copy::conjoint_jshorts_atomic(src, dst, length);
}
template<>
void arraycopy_conjoint<jint>(jint* src, jint* dst, size_t length) {
Copy::conjoint_jints_atomic(src, dst, length);
}
template<>
void arraycopy_conjoint<jlong>(jlong* src, jlong* dst, size_t length) {
Copy::conjoint_jlongs_atomic(src, dst, length);
}
template<>
void arraycopy_arrayof_conjoint<jbyte>(jbyte* src, jbyte* dst, size_t length) {
Copy::arrayof_conjoint_jbytes(reinterpret_cast<HeapWord*>(src),
reinterpret_cast<HeapWord*>(dst),
length);
}
template<>
void arraycopy_arrayof_conjoint<jshort>(jshort* src, jshort* dst, size_t length) {
Copy::arrayof_conjoint_jshorts(reinterpret_cast<HeapWord*>(src),
reinterpret_cast<HeapWord*>(dst),
length);
}
template<>
void arraycopy_arrayof_conjoint<jint>(jint* src, jint* dst, size_t length) {
Copy::arrayof_conjoint_jints(reinterpret_cast<HeapWord*>(src),
reinterpret_cast<HeapWord*>(dst),
length);
}
template<>
void arraycopy_arrayof_conjoint<jlong>(jlong* src, jlong* dst, size_t length) {
Copy::arrayof_conjoint_jlongs(reinterpret_cast<HeapWord*>(src),
reinterpret_cast<HeapWord*>(dst),
length);
}
template<>
void arraycopy_conjoint_atomic<jbyte>(jbyte* src, jbyte* dst, size_t length) {
Copy::conjoint_jbytes_atomic(src, dst, length);
}
template<>
void arraycopy_conjoint_atomic<jshort>(jshort* src, jshort* dst, size_t length) {
Copy::conjoint_jshorts_atomic(src, dst, length);
}
template<>
void arraycopy_conjoint_atomic<jint>(jint* src, jint* dst, size_t length) {
Copy::conjoint_jints_atomic(src, dst, length);
}
template<>
void arraycopy_conjoint_atomic<jlong>(jlong* src, jlong* dst, size_t length) {
Copy::conjoint_jlongs_atomic(src, dst, length);
}
}
template void AccessInternal::arraycopy_conjoint<jbyte>(jbyte* src, jbyte* dst, size_t length);
template void AccessInternal::arraycopy_conjoint<jshort>(jshort* src, jshort* dst, size_t length);
template void AccessInternal::arraycopy_conjoint<jint>(jint* src, jint* dst, size_t length);
template void AccessInternal::arraycopy_conjoint<jlong>(jlong* src, jlong* dst, size_t length);
template void AccessInternal::arraycopy_arrayof_conjoint<jbyte>(jbyte* src, jbyte* dst, size_t length);
template void AccessInternal::arraycopy_arrayof_conjoint<jshort>(jshort* src, jshort* dst, size_t length);
template void AccessInternal::arraycopy_arrayof_conjoint<jint>(jint* src, jint* dst, size_t length);
template void AccessInternal::arraycopy_arrayof_conjoint<jlong>(jlong* src, jlong* dst, size_t length);
template void AccessInternal::arraycopy_conjoint_atomic<jbyte>(jbyte* src, jbyte* dst, size_t length);
template void AccessInternal::arraycopy_conjoint_atomic<jshort>(jshort* src, jshort* dst, size_t length);
template void AccessInternal::arraycopy_conjoint_atomic<jint>(jint* src, jint* dst, size_t length);
template void AccessInternal::arraycopy_conjoint_atomic<jlong>(jlong* src, jlong* dst, size_t length);

View File

@ -0,0 +1,383 @@
/*
* Copyright (c) 2017, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef SHARE_VM_RUNTIME_ACCESSBACKEND_HPP
#define SHARE_VM_RUNTIME_ACCESSBACKEND_HPP
#include "metaprogramming/conditional.hpp"
#include "metaprogramming/enableIf.hpp"
#include "metaprogramming/integralConstant.hpp"
#include "utilities/debug.hpp"
#include "utilities/globalDefinitions.hpp"
// This metafunction returns either oop or narrowOop depending on whether
// an access needs to use compressed oops or not.
template <DecoratorSet decorators>
struct HeapOopType: AllStatic {
static const bool needs_oop_compress = HasDecorator<decorators, INTERNAL_CONVERT_COMPRESSED_OOP>::value &&
HasDecorator<decorators, INTERNAL_RT_USE_COMPRESSED_OOPS>::value;
typedef typename Conditional<needs_oop_compress, narrowOop, oop>::type type;
};
namespace AccessInternal {
enum BarrierType {
BARRIER_STORE,
BARRIER_STORE_AT,
BARRIER_LOAD,
BARRIER_LOAD_AT,
BARRIER_ATOMIC_CMPXCHG,
BARRIER_ATOMIC_CMPXCHG_AT,
BARRIER_ATOMIC_XCHG,
BARRIER_ATOMIC_XCHG_AT,
BARRIER_ARRAYCOPY,
BARRIER_CLONE
};
template <DecoratorSet decorators>
struct MustConvertCompressedOop: public IntegralConstant<bool,
HasDecorator<decorators, INTERNAL_VALUE_IS_OOP>::value &&
HasDecorator<decorators, INTERNAL_CONVERT_COMPRESSED_OOP>::value &&
HasDecorator<decorators, INTERNAL_RT_USE_COMPRESSED_OOPS>::value> {};
// This metafunction returns an appropriate oop type if the value is oop-like
// and otherwise returns the same type T.
template <DecoratorSet decorators, typename T>
struct EncodedType: AllStatic {
typedef typename Conditional<
HasDecorator<decorators, INTERNAL_VALUE_IS_OOP>::value,
typename HeapOopType<decorators>::type, T>::type type;
};
template <DecoratorSet decorators>
inline typename HeapOopType<decorators>::type*
oop_field_addr(oop base, ptrdiff_t byte_offset) {
return reinterpret_cast<typename HeapOopType<decorators>::type*>(
reinterpret_cast<intptr_t>((void*)base) + byte_offset);
}
// This metafunction returns whether it is possible for a type T to require
// locking to support wide atomics or not.
template <typename T>
#ifdef SUPPORTS_NATIVE_CX8
struct PossiblyLockedAccess: public IntegralConstant<bool, false> {};
#else
struct PossiblyLockedAccess: public IntegralConstant<bool, (sizeof(T) > 4)> {};
#endif
template <DecoratorSet decorators, typename T>
struct AccessFunctionTypes {
typedef T (*load_at_func_t)(oop base, ptrdiff_t offset);
typedef void (*store_at_func_t)(oop base, ptrdiff_t offset, T value);
typedef T (*atomic_cmpxchg_at_func_t)(T new_value, oop base, ptrdiff_t offset, T compare_value);
typedef T (*atomic_xchg_at_func_t)(T new_value, oop base, ptrdiff_t offset);
typedef T (*load_func_t)(void* addr);
typedef void (*store_func_t)(void* addr, T value);
typedef T (*atomic_cmpxchg_func_t)(T new_value, void* addr, T compare_value);
typedef T (*atomic_xchg_func_t)(T new_value, void* addr);
typedef bool (*arraycopy_func_t)(arrayOop src_obj, arrayOop dst_obj, T* src, T* dst, size_t length);
typedef void (*clone_func_t)(oop src, oop dst, size_t size);
};
template <DecoratorSet decorators, typename T, BarrierType barrier> struct AccessFunction {};
#define ACCESS_GENERATE_ACCESS_FUNCTION(bt, func) \
template <DecoratorSet decorators, typename T> \
struct AccessFunction<decorators, T, bt>: AllStatic{ \
typedef typename AccessFunctionTypes<decorators, T>::func type; \
}
ACCESS_GENERATE_ACCESS_FUNCTION(BARRIER_STORE, store_func_t);
ACCESS_GENERATE_ACCESS_FUNCTION(BARRIER_STORE_AT, store_at_func_t);
ACCESS_GENERATE_ACCESS_FUNCTION(BARRIER_LOAD, load_func_t);
ACCESS_GENERATE_ACCESS_FUNCTION(BARRIER_LOAD_AT, load_at_func_t);
ACCESS_GENERATE_ACCESS_FUNCTION(BARRIER_ATOMIC_CMPXCHG, atomic_cmpxchg_func_t);
ACCESS_GENERATE_ACCESS_FUNCTION(BARRIER_ATOMIC_CMPXCHG_AT, atomic_cmpxchg_at_func_t);
ACCESS_GENERATE_ACCESS_FUNCTION(BARRIER_ATOMIC_XCHG, atomic_xchg_func_t);
ACCESS_GENERATE_ACCESS_FUNCTION(BARRIER_ATOMIC_XCHG_AT, atomic_xchg_at_func_t);
ACCESS_GENERATE_ACCESS_FUNCTION(BARRIER_ARRAYCOPY, arraycopy_func_t);
ACCESS_GENERATE_ACCESS_FUNCTION(BARRIER_CLONE, clone_func_t);
#undef ACCESS_GENERATE_ACCESS_FUNCTION
template <DecoratorSet decorators, typename T, BarrierType barrier_type>
typename AccessFunction<decorators, T, barrier_type>::type resolve_barrier();
template <DecoratorSet decorators, typename T, BarrierType barrier_type>
typename AccessFunction<decorators, T, barrier_type>::type resolve_oop_barrier();
class AccessLocker VALUE_OBJ_CLASS_SPEC {
public:
AccessLocker();
~AccessLocker();
};
bool wide_atomic_needs_locking();
void* field_addr(oop base, ptrdiff_t offset);
// Forward calls to Copy:: in the cpp file to reduce dependencies and allow
// faster build times, given how frequently included access is.
void arraycopy_arrayof_conjoint_oops(void* src, void* dst, size_t length);
void arraycopy_conjoint_oops(oop* src, oop* dst, size_t length);
void arraycopy_conjoint_oops(narrowOop* src, narrowOop* dst, size_t length);
void arraycopy_disjoint_words(void* src, void* dst, size_t length);
void arraycopy_disjoint_words_atomic(void* src, void* dst, size_t length);
template<typename T>
void arraycopy_conjoint(T* src, T* dst, size_t length);
template<typename T>
void arraycopy_arrayof_conjoint(T* src, T* dst, size_t length);
template<typename T>
void arraycopy_conjoint_atomic(T* src, T* dst, size_t length);
}
// This mask specifies what decorators are relevant for raw accesses. When passing
// accesses to the raw layer, irrelevant decorators are removed.
const DecoratorSet RAW_DECORATOR_MASK = INTERNAL_DECORATOR_MASK | MO_DECORATOR_MASK |
ARRAYCOPY_DECORATOR_MASK | OOP_DECORATOR_MASK;
// The RawAccessBarrier performs raw accesses with additional knowledge of
// memory ordering, so that OrderAccess/Atomic is called when necessary.
// It additionally handles compressed oops, and hence is not completely "raw"
// strictly speaking.
template <DecoratorSet decorators>
class RawAccessBarrier: public AllStatic {
protected:
static inline void* field_addr(oop base, ptrdiff_t byte_offset) {
return AccessInternal::field_addr(base, byte_offset);
}
protected:
// Only encode if INTERNAL_VALUE_IS_OOP
template <DecoratorSet idecorators, typename T>
static inline typename EnableIf<
AccessInternal::MustConvertCompressedOop<idecorators>::value,
typename HeapOopType<idecorators>::type>::type
encode_internal(T value);
template <DecoratorSet idecorators, typename T>
static inline typename EnableIf<
!AccessInternal::MustConvertCompressedOop<idecorators>::value, T>::type
encode_internal(T value) {
return value;
}
template <typename T>
static inline typename AccessInternal::EncodedType<decorators, T>::type
encode(T value) {
return encode_internal<decorators, T>(value);
}
// Only decode if INTERNAL_VALUE_IS_OOP
template <DecoratorSet idecorators, typename T>
static inline typename EnableIf<
AccessInternal::MustConvertCompressedOop<idecorators>::value, T>::type
decode_internal(typename HeapOopType<idecorators>::type value);
template <DecoratorSet idecorators, typename T>
static inline typename EnableIf<
!AccessInternal::MustConvertCompressedOop<idecorators>::value, T>::type
decode_internal(T value) {
return value;
}
template <typename T>
static inline T decode(typename AccessInternal::EncodedType<decorators, T>::type value) {
return decode_internal<decorators, T>(value);
}
protected:
template <DecoratorSet ds, typename T>
static typename EnableIf<
HasDecorator<ds, MO_SEQ_CST>::value, T>::type
load_internal(void* addr);
template <DecoratorSet ds, typename T>
static typename EnableIf<
HasDecorator<ds, MO_ACQUIRE>::value, T>::type
load_internal(void* addr);
template <DecoratorSet ds, typename T>
static typename EnableIf<
HasDecorator<ds, MO_RELAXED>::value, T>::type
load_internal(void* addr);
template <DecoratorSet ds, typename T>
static inline typename EnableIf<
HasDecorator<ds, MO_VOLATILE>::value, T>::type
load_internal(void* addr) {
return *reinterpret_cast<const volatile T*>(addr);
}
template <DecoratorSet ds, typename T>
static inline typename EnableIf<
HasDecorator<ds, MO_UNORDERED>::value, T>::type
load_internal(void* addr) {
return *reinterpret_cast<const T*>(addr);
}
template <DecoratorSet ds, typename T>
static typename EnableIf<
HasDecorator<ds, MO_SEQ_CST>::value>::type
store_internal(void* addr, T value);
template <DecoratorSet ds, typename T>
static typename EnableIf<
HasDecorator<ds, MO_RELEASE>::value>::type
store_internal(void* addr, T value);
template <DecoratorSet ds, typename T>
static typename EnableIf<
HasDecorator<ds, MO_RELAXED>::value>::type
store_internal(void* addr, T value);
template <DecoratorSet ds, typename T>
static inline typename EnableIf<
HasDecorator<ds, MO_VOLATILE>::value>::type
store_internal(void* addr, T value) {
(void)const_cast<T&>(*reinterpret_cast<volatile T*>(addr) = value);
}
template <DecoratorSet ds, typename T>
static inline typename EnableIf<
HasDecorator<ds, MO_UNORDERED>::value>::type
store_internal(void* addr, T value) {
*reinterpret_cast<T*>(addr) = value;
}
template <DecoratorSet ds, typename T>
static typename EnableIf<
HasDecorator<ds, MO_SEQ_CST>::value, T>::type
atomic_cmpxchg_internal(T new_value, void* addr, T compare_value);
template <DecoratorSet ds, typename T>
static typename EnableIf<
HasDecorator<ds, MO_RELAXED>::value, T>::type
atomic_cmpxchg_internal(T new_value, void* addr, T compare_value);
template <DecoratorSet ds, typename T>
static typename EnableIf<
HasDecorator<ds, MO_SEQ_CST>::value, T>::type
atomic_xchg_internal(T new_value, void* addr);
// The following *_locked mechanisms serve the purpose of handling atomic operations
// that are larger than a machine can handle, and then possibly opt for using
// a slower path using a mutex to perform the operation.
template <DecoratorSet ds, typename T>
static inline typename EnableIf<
!AccessInternal::PossiblyLockedAccess<T>::value, T>::type
atomic_cmpxchg_maybe_locked(T new_value, void* addr, T compare_value) {
return atomic_cmpxchg_internal<ds>(new_value, addr, compare_value);
}
template <DecoratorSet ds, typename T>
static typename EnableIf<
AccessInternal::PossiblyLockedAccess<T>::value, T>::type
atomic_cmpxchg_maybe_locked(T new_value, void* addr, T compare_value);
template <DecoratorSet ds, typename T>
static inline typename EnableIf<
!AccessInternal::PossiblyLockedAccess<T>::value, T>::type
atomic_xchg_maybe_locked(T new_value, void* addr) {
return atomic_xchg_internal<ds>(new_value, addr);
}
template <DecoratorSet ds, typename T>
static typename EnableIf<
AccessInternal::PossiblyLockedAccess<T>::value, T>::type
atomic_xchg_maybe_locked(T new_value, void* addr);
public:
template <typename T>
static inline void store(void* addr, T value) {
store_internal<decorators>(addr, value);
}
template <typename T>
static inline T load(void* addr) {
return load_internal<decorators, T>(addr);
}
template <typename T>
static inline T atomic_cmpxchg(T new_value, void* addr, T compare_value) {
return atomic_cmpxchg_maybe_locked<decorators>(new_value, addr, compare_value);
}
template <typename T>
static inline T atomic_xchg(T new_value, void* addr) {
return atomic_xchg_maybe_locked<decorators>(new_value, addr);
}
template <typename T>
static bool arraycopy(T* src, T* dst, size_t length);
template <typename T>
static void oop_store(void* addr, T value);
template <typename T>
static void oop_store_at(oop base, ptrdiff_t offset, T value);
template <typename T>
static T oop_load(void* addr);
template <typename T>
static T oop_load_at(oop base, ptrdiff_t offset);
template <typename T>
static T oop_atomic_cmpxchg(T new_value, void* addr, T compare_value);
template <typename T>
static T oop_atomic_cmpxchg_at(T new_value, oop base, ptrdiff_t offset, T compare_value);
template <typename T>
static T oop_atomic_xchg(T new_value, void* addr);
template <typename T>
static T oop_atomic_xchg_at(T new_value, oop base, ptrdiff_t offset);
template <typename T>
static void store_at(oop base, ptrdiff_t offset, T value) {
store(field_addr(base, offset), value);
}
template <typename T>
static T load_at(oop base, ptrdiff_t offset) {
return load<T>(field_addr(base, offset));
}
template <typename T>
static T atomic_cmpxchg_at(T new_value, oop base, ptrdiff_t offset, T compare_value) {
return atomic_cmpxchg(new_value, field_addr(base, offset), compare_value);
}
template <typename T>
static T atomic_xchg_at(T new_value, oop base, ptrdiff_t offset) {
return atomic_xchg(new_value, field_addr(base, offset));
}
template <typename T>
static bool oop_arraycopy(arrayOop src_obj, arrayOop dst_obj, T* src, T* dst, size_t length);
static bool oop_arraycopy(arrayOop src_obj, arrayOop dst_obj, HeapWord* src, HeapWord* dst, size_t length);
static void clone(oop src, oop dst, size_t size);
};
#endif // SHARE_VM_RUNTIME_ACCESSBACKEND_HPP

View File

@ -0,0 +1,321 @@
/*
* Copyright (c) 2017, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef SHARE_VM_RUNTIME_ACCESSBACKEND_INLINE_HPP
#define SHARE_VM_RUNTIME_ACCESSBACKEND_INLINE_HPP
#include "oops/access.hpp"
#include "oops/accessBackend.hpp"
#include "oops/oop.inline.hpp"
template <DecoratorSet decorators>
template <DecoratorSet idecorators, typename T>
inline typename EnableIf<
AccessInternal::MustConvertCompressedOop<idecorators>::value, T>::type
RawAccessBarrier<decorators>::decode_internal(typename HeapOopType<idecorators>::type value) {
if (HasDecorator<decorators, OOP_NOT_NULL>::value) {
return oopDesc::decode_heap_oop_not_null(value);
} else {
return oopDesc::decode_heap_oop(value);
}
}
template <DecoratorSet decorators>
template <DecoratorSet idecorators, typename T>
inline typename EnableIf<
AccessInternal::MustConvertCompressedOop<idecorators>::value,
typename HeapOopType<idecorators>::type>::type
RawAccessBarrier<decorators>::encode_internal(T value) {
if (HasDecorator<decorators, OOP_NOT_NULL>::value) {
return oopDesc::encode_heap_oop_not_null(value);
} else {
return oopDesc::encode_heap_oop(value);
}
}
template <DecoratorSet decorators>
template <typename T>
inline void RawAccessBarrier<decorators>::oop_store(void* addr, T value) {
typedef typename AccessInternal::EncodedType<decorators, T>::type Encoded;
Encoded encoded = encode(value);
store(reinterpret_cast<Encoded*>(addr), encoded);
}
template <DecoratorSet decorators>
template <typename T>
inline void RawAccessBarrier<decorators>::oop_store_at(oop base, ptrdiff_t offset, T value) {
oop_store(field_addr(base, offset), value);
}
template <DecoratorSet decorators>
template <typename T>
inline T RawAccessBarrier<decorators>::oop_load(void* addr) {
typedef typename AccessInternal::EncodedType<decorators, T>::type Encoded;
Encoded encoded = load<Encoded>(reinterpret_cast<Encoded*>(addr));
return decode<T>(encoded);
}
template <DecoratorSet decorators>
template <typename T>
inline T RawAccessBarrier<decorators>::oop_load_at(oop base, ptrdiff_t offset) {
return oop_load<T>(field_addr(base, offset));
}
template <DecoratorSet decorators>
template <typename T>
inline T RawAccessBarrier<decorators>::oop_atomic_cmpxchg(T new_value, void* addr, T compare_value) {
typedef typename AccessInternal::EncodedType<decorators, T>::type Encoded;
Encoded encoded_new = encode(new_value);
Encoded encoded_compare = encode(compare_value);
Encoded encoded_result = atomic_cmpxchg(encoded_new,
reinterpret_cast<Encoded*>(addr),
encoded_compare);
return decode<T>(encoded_result);
}
template <DecoratorSet decorators>
template <typename T>
inline T RawAccessBarrier<decorators>::oop_atomic_cmpxchg_at(T new_value, oop base, ptrdiff_t offset, T compare_value) {
return oop_atomic_cmpxchg(new_value, field_addr(base, offset), compare_value);
}
template <DecoratorSet decorators>
template <typename T>
inline T RawAccessBarrier<decorators>::oop_atomic_xchg(T new_value, void* addr) {
typedef typename AccessInternal::EncodedType<decorators, T>::type Encoded;
Encoded encoded_new = encode(new_value);
Encoded encoded_result = atomic_xchg(encoded_new, reinterpret_cast<Encoded*>(addr));
return decode<T>(encoded_result);
}
template <DecoratorSet decorators>
template <typename T>
inline T RawAccessBarrier<decorators>::oop_atomic_xchg_at(T new_value, oop base, ptrdiff_t offset) {
return oop_atomic_xchg(new_value, field_addr(base, offset));
}
template <DecoratorSet decorators>
template <typename T>
inline bool RawAccessBarrier<decorators>::oop_arraycopy(arrayOop src_obj, arrayOop dst_obj, T* src, T* dst, size_t length) {
return arraycopy(src, dst, length);
}
template <DecoratorSet decorators>
inline bool RawAccessBarrier<decorators>::oop_arraycopy(arrayOop src_obj, arrayOop dst_obj, HeapWord* src, HeapWord* dst, size_t length) {
bool needs_oop_compress = HasDecorator<decorators, INTERNAL_CONVERT_COMPRESSED_OOP>::value &&
HasDecorator<decorators, INTERNAL_RT_USE_COMPRESSED_OOPS>::value;
if (needs_oop_compress) {
return arraycopy(reinterpret_cast<narrowOop*>(src), reinterpret_cast<narrowOop*>(dst), length);
} else {
return arraycopy(reinterpret_cast<oop*>(src), reinterpret_cast<oop*>(dst), length);
}
}
template <DecoratorSet decorators>
template <DecoratorSet ds, typename T>
inline typename EnableIf<
HasDecorator<ds, MO_SEQ_CST>::value, T>::type
RawAccessBarrier<decorators>::load_internal(void* addr) {
if (support_IRIW_for_not_multiple_copy_atomic_cpu) {
OrderAccess::fence();
}
return OrderAccess::load_acquire(reinterpret_cast<const volatile T*>(addr));
}
template <DecoratorSet decorators>
template <DecoratorSet ds, typename T>
inline typename EnableIf<
HasDecorator<ds, MO_ACQUIRE>::value, T>::type
RawAccessBarrier<decorators>::load_internal(void* addr) {
return OrderAccess::load_acquire(reinterpret_cast<const volatile T*>(addr));
}
template <DecoratorSet decorators>
template <DecoratorSet ds, typename T>
inline typename EnableIf<
HasDecorator<ds, MO_RELAXED>::value, T>::type
RawAccessBarrier<decorators>::load_internal(void* addr) {
return Atomic::load(reinterpret_cast<const volatile T*>(addr));
}
template <DecoratorSet decorators>
template <DecoratorSet ds, typename T>
inline typename EnableIf<
HasDecorator<ds, MO_SEQ_CST>::value>::type
RawAccessBarrier<decorators>::store_internal(void* addr, T value) {
OrderAccess::release_store_fence(reinterpret_cast<volatile T*>(addr), value);
}
template <DecoratorSet decorators>
template <DecoratorSet ds, typename T>
inline typename EnableIf<
HasDecorator<ds, MO_RELEASE>::value>::type
RawAccessBarrier<decorators>::store_internal(void* addr, T value) {
OrderAccess::release_store(reinterpret_cast<volatile T*>(addr), value);
}
template <DecoratorSet decorators>
template <DecoratorSet ds, typename T>
inline typename EnableIf<
HasDecorator<ds, MO_RELAXED>::value>::type
RawAccessBarrier<decorators>::store_internal(void* addr, T value) {
Atomic::store(value, reinterpret_cast<volatile T*>(addr));
}
template <DecoratorSet decorators>
template <DecoratorSet ds, typename T>
inline typename EnableIf<
HasDecorator<ds, MO_RELAXED>::value, T>::type
RawAccessBarrier<decorators>::atomic_cmpxchg_internal(T new_value, void* addr, T compare_value) {
return Atomic::cmpxchg(new_value,
reinterpret_cast<volatile T*>(addr),
compare_value,
memory_order_relaxed);
}
template <DecoratorSet decorators>
template <DecoratorSet ds, typename T>
inline typename EnableIf<
HasDecorator<ds, MO_SEQ_CST>::value, T>::type
RawAccessBarrier<decorators>::atomic_cmpxchg_internal(T new_value, void* addr, T compare_value) {
return Atomic::cmpxchg(new_value,
reinterpret_cast<volatile T*>(addr),
compare_value,
memory_order_conservative);
}
template <DecoratorSet decorators>
template <DecoratorSet ds, typename T>
inline typename EnableIf<
HasDecorator<ds, MO_SEQ_CST>::value, T>::type
RawAccessBarrier<decorators>::atomic_xchg_internal(T new_value, void* addr) {
return Atomic::xchg(new_value,
reinterpret_cast<volatile T*>(addr));
}
// For platforms that do not have native support for wide atomics,
// we can emulate the atomicity using a lock. So here we check
// whether that is necessary or not.
template <DecoratorSet ds>
template <DecoratorSet decorators, typename T>
inline typename EnableIf<
AccessInternal::PossiblyLockedAccess<T>::value, T>::type
RawAccessBarrier<ds>::atomic_xchg_maybe_locked(T new_value, void* addr) {
if (!AccessInternal::wide_atomic_needs_locking()) {
return atomic_xchg_internal<ds>(new_value, addr);
} else {
AccessInternal::AccessLocker access_lock;
volatile T* p = reinterpret_cast<volatile T*>(addr);
T old_val = RawAccess<>::load(p);
RawAccess<>::store(p, new_value);
return old_val;
}
}
template <DecoratorSet ds>
template <DecoratorSet decorators, typename T>
inline typename EnableIf<
AccessInternal::PossiblyLockedAccess<T>::value, T>::type
RawAccessBarrier<ds>::atomic_cmpxchg_maybe_locked(T new_value, void* addr, T compare_value) {
if (!AccessInternal::wide_atomic_needs_locking()) {
return atomic_cmpxchg_internal<ds>(new_value, addr, compare_value);
} else {
AccessInternal::AccessLocker access_lock;
volatile T* p = reinterpret_cast<volatile T*>(addr);
T old_val = RawAccess<>::load(p);
if (old_val == compare_value) {
RawAccess<>::store(p, new_value);
}
return old_val;
}
}
class RawAccessBarrierArrayCopy: public AllStatic {
public:
template <DecoratorSet decorators, typename T>
static inline typename EnableIf<
HasDecorator<decorators, INTERNAL_VALUE_IS_OOP>::value>::type
arraycopy(T* src, T* dst, size_t length) {
// We do not check for ARRAYCOPY_ATOMIC for oops, because they are unconditionally always atomic.
if (HasDecorator<decorators, ARRAYCOPY_ARRAYOF>::value) {
AccessInternal::arraycopy_arrayof_conjoint_oops(src, dst, length);
} else {
typedef typename HeapOopType<decorators>::type OopType;
AccessInternal::arraycopy_conjoint_oops(reinterpret_cast<OopType*>(src),
reinterpret_cast<OopType*>(dst), length);
}
}
template <DecoratorSet decorators, typename T>
static inline typename EnableIf<
!HasDecorator<decorators, INTERNAL_VALUE_IS_OOP>::value>::type
arraycopy(T* src, T* dst, size_t length) {
if (HasDecorator<decorators, ARRAYCOPY_ARRAYOF>::value) {
AccessInternal::arraycopy_arrayof_conjoint(src, dst, length);
} else if (HasDecorator<decorators, ARRAYCOPY_DISJOINT>::value && sizeof(T) == HeapWordSize) {
// There is only a disjoint optimization for word granularity copying
if (HasDecorator<decorators, ARRAYCOPY_ATOMIC>::value) {
AccessInternal::arraycopy_disjoint_words_atomic(src, dst, length);
} else {
AccessInternal::arraycopy_disjoint_words(src, dst, length);
}
} else {
if (HasDecorator<decorators, ARRAYCOPY_ATOMIC>::value) {
AccessInternal::arraycopy_conjoint_atomic(src, dst, length);
} else {
AccessInternal::arraycopy_conjoint(src, dst, length);
}
}
}
};
template <DecoratorSet decorators>
template <typename T>
inline bool RawAccessBarrier<decorators>::arraycopy(T* src, T* dst, size_t length) {
RawAccessBarrierArrayCopy::arraycopy<decorators>(src, dst, length);
return true;
}
template <DecoratorSet decorators>
inline void RawAccessBarrier<decorators>::clone(oop src, oop dst, size_t size) {
// 4839641 (4840070): We must do an oop-atomic copy, because if another thread
// is modifying a reference field in the clonee, a non-oop-atomic copy might
// be suspended in the middle of copying the pointer and end up with parts
// of two different pointers in the field. Subsequent dereferences will crash.
// 4846409: an oop-copy of objects with long or double fields or arrays of same
// won't copy the longs/doubles atomically in 32-bit vm's, so we copy jlongs instead
// of oops. We know objects are aligned on a minimum of an jlong boundary.
// The same is true of StubRoutines::object_copy and the various oop_copy
// variants, and of the code generated by the inline_native_clone intrinsic.
assert(MinObjAlignmentInBytes >= BytesPerLong, "objects misaligned");
AccessInternal::arraycopy_conjoint_atomic(reinterpret_cast<jlong*>((oopDesc*)src),
reinterpret_cast<jlong*>((oopDesc*)dst),
align_object_size(size) / HeapWordsPerLong);
// Clear the header
dst->init_mark();
}
#endif // SHARE_VM_RUNTIME_ACCESSBACKEND_INLINE_HPP

View File

@ -408,6 +408,11 @@ protected:
return search_secondary_supers(k);
}
}
// Is an oop/narrowOop null or subtype of this Klass?
template <typename T>
bool is_instanceof_or_null(T element);
bool search_secondary_supers(Klass* k) const;
// Find LCA in class hierarchy

View File

@ -71,4 +71,13 @@ inline Klass* Klass::decode_klass(narrowKlass v) {
return is_null(v) ? (Klass*)NULL : decode_klass_not_null(v);
}
template <typename T>
bool Klass::is_instanceof_or_null(T element) {
if (oopDesc::is_null(element)) {
return true;
}
oop obj = oopDesc::decode_heap_oop_not_null(element);
return obj->klass()->is_subtype_of(this);
}
#endif // SHARE_VM_OOPS_KLASS_INLINE_HPP

View File

@ -44,7 +44,6 @@
#include "oops/symbol.hpp"
#include "runtime/handles.inline.hpp"
#include "runtime/mutexLocker.hpp"
#include "utilities/copy.hpp"
#include "utilities/macros.hpp"
ObjArrayKlass* ObjArrayKlass::allocate(ClassLoaderData* loader_data, int n, Klass* k, Symbol* name, TRAPS) {
@ -221,55 +220,25 @@ oop ObjArrayKlass::multi_allocate(int rank, jint* sizes, TRAPS) {
// Either oop or narrowOop depending on UseCompressedOops.
template <class T> void ObjArrayKlass::do_copy(arrayOop s, T* src,
arrayOop d, T* dst, int length, TRAPS) {
BarrierSet* bs = Universe::heap()->barrier_set();
// For performance reasons, we assume we are that the write barrier we
// are using has optimized modes for arrays of references. At least one
// of the asserts below will fail if this is not the case.
if (s == d) {
// since source and destination are equal we do not need conversion checks.
assert(length > 0, "sanity check");
bs->write_ref_array_pre(dst, length);
Copy::conjoint_oops_atomic(src, dst, length);
HeapAccess<>::oop_arraycopy(s, d, src, dst, length);
} else {
// We have to make sure all elements conform to the destination array
Klass* bound = ObjArrayKlass::cast(d->klass())->element_klass();
Klass* stype = ObjArrayKlass::cast(s->klass())->element_klass();
if (stype == bound || stype->is_subtype_of(bound)) {
// elements are guaranteed to be subtypes, so no check necessary
bs->write_ref_array_pre(dst, length);
Copy::conjoint_oops_atomic(src, dst, length);
HeapAccess<ARRAYCOPY_DISJOINT>::oop_arraycopy(s, d, src, dst, length);
} else {
// slow case: need individual subtype checks
// note: don't use obj_at_put below because it includes a redundant store check
T* from = src;
T* end = from + length;
for (T* p = dst; from < end; from++, p++) {
// XXX this is going to be slow.
T element = *from;
// even slower now
bool element_is_null = oopDesc::is_null(element);
oop new_val = element_is_null ? oop(NULL)
: oopDesc::decode_heap_oop_not_null(element);
if (element_is_null ||
(new_val->klass())->is_subtype_of(bound)) {
bs->write_ref_field_pre(p, new_val);
*p = element;
} else {
// We must do a barrier to cover the partial copy.
const size_t pd = pointer_delta(p, dst, (size_t)heapOopSize);
// pointer delta is scaled to number of elements (length field in
// objArrayOop) which we assume is 32 bit.
assert(pd == (size_t)(int)pd, "length field overflow");
bs->write_ref_array((HeapWord*)dst, pd);
THROW(vmSymbols::java_lang_ArrayStoreException());
return;
}
if (!HeapAccess<ARRAYCOPY_DISJOINT | ARRAYCOPY_CHECKCAST>::oop_arraycopy(s, d, src, dst, length)) {
THROW(vmSymbols::java_lang_ArrayStoreException());
}
}
}
bs->write_ref_array((HeapWord*)dst, length);
}
void ObjArrayKlass::copy_array(arrayOop s, int src_pos, arrayOop d,

View File

@ -1,5 +1,5 @@
/*
* Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -24,6 +24,7 @@
#include "precompiled.hpp"
#include "gc/shared/specialized_oop_closures.hpp"
#include "oops/access.inline.hpp"
#include "oops/objArrayKlass.hpp"
#include "oops/objArrayOop.hpp"
#include "oops/oop.inline.hpp"
@ -36,12 +37,11 @@ oop objArrayOopDesc::atomic_compare_exchange_oop(int index, oop exchange_value,
} else {
dest = (HeapWord*)obj_at_addr<oop>(index);
}
oop res = oopDesc::atomic_compare_exchange_oop(exchange_value, dest, compare_value, true);
// update card mark if success
if (res == compare_value) {
update_barrier_set((void*)dest, exchange_value);
}
return res;
return HeapAccess<>::oop_atomic_cmpxchg(exchange_value, dest, compare_value);
}
Klass* objArrayOopDesc::element_klass() {
return ObjArrayKlass::cast(klass())->element_klass();
}
#define ObjArrayOop_OOP_ITERATE_DEFN(OopClosureType, nv_suffix) \

View File

@ -1,5 +1,5 @@
/*
* Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -29,6 +29,8 @@
#include "oops/arrayOop.hpp"
#include "utilities/align.hpp"
class Klass;
// An objArrayOop is an array containing oops.
// Evaluating "String arg[10]" will create an objArrayOop.
@ -44,6 +46,11 @@ class objArrayOopDesc : public arrayOopDesc {
return &((T*)base())[index];
}
template <class T>
static ptrdiff_t obj_at_offset(int index) {
return base_offset_in_bytes() + sizeof(T) * index;
}
private:
// Give size of objArrayOop in HeapWords minus the header
static int array_size(int length) {
@ -82,7 +89,7 @@ private:
// Accessing
oop obj_at(int index) const;
void inline obj_at_put(int index, oop value);
void obj_at_put(int index, oop value);
oop atomic_compare_exchange_oop(int index, oop exchange_value, oop compare_value);
@ -99,6 +106,8 @@ private:
return (int)osz;
}
Klass* element_klass();
// special iterators for index ranges, returns size of object
#define ObjArrayOop_OOP_ITERATE_DECL(OopClosureType, nv_suffix) \
void oop_iterate_range(OopClosureType* blk, int start, int end);

View File

@ -1,5 +1,5 @@
/*
* Copyright (c) 2015, 2016, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2015, 2017, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -25,26 +25,19 @@
#ifndef SHARE_VM_OOPS_OBJARRAYOOP_INLINE_HPP
#define SHARE_VM_OOPS_OBJARRAYOOP_INLINE_HPP
#include "oops/access.inline.hpp"
#include "oops/objArrayOop.hpp"
#include "oops/oop.inline.hpp"
#include "runtime/globals.hpp"
inline oop objArrayOopDesc::obj_at(int index) const {
// With UseCompressedOops decode the narrow oop in the objArray to an
// uncompressed oop. Otherwise this is simply a "*" operator.
if (UseCompressedOops) {
return load_decode_heap_oop(obj_at_addr<narrowOop>(index));
} else {
return load_decode_heap_oop(obj_at_addr<oop>(index));
}
ptrdiff_t offset = UseCompressedOops ? obj_at_offset<narrowOop>(index) : obj_at_offset<oop>(index);
return HeapAccess<IN_HEAP_ARRAY>::oop_load_at(as_oop(), offset);
}
void objArrayOopDesc::obj_at_put(int index, oop value) {
if (UseCompressedOops) {
oop_store(obj_at_addr<narrowOop>(index), value);
} else {
oop_store(obj_at_addr<oop>(index), value);
}
inline void objArrayOopDesc::obj_at_put(int index, oop value) {
ptrdiff_t offset = UseCompressedOops ? obj_at_offset<narrowOop>(index) : obj_at_offset<oop>(index);
HeapAccess<IN_HEAP_ARRAY>::oop_store_at(as_oop(), offset, value);
}
#endif // SHARE_VM_OOPS_OBJARRAYOOP_INLINE_HPP

View File

@ -37,8 +37,6 @@
bool always_do_update_barrier = false;
BarrierSet* oopDesc::_bs = NULL;
void oopDesc::print_on(outputStream* st) const {
if (this == NULL) {
st->print_cr("NULL");
@ -175,6 +173,48 @@ bool oopDesc::has_klass_gap() {
return UseCompressedClassPointers;
}
oop oopDesc::obj_field_acquire(int offset) const { return HeapAccess<MO_ACQUIRE>::oop_load_at(as_oop(), offset); }
void oopDesc::obj_field_put_raw(int offset, oop value) { RawAccess<>::oop_store_at(as_oop(), offset, value); }
void oopDesc::release_obj_field_put(int offset, oop value) { HeapAccess<MO_RELEASE>::oop_store_at(as_oop(), offset, value); }
void oopDesc::obj_field_put_volatile(int offset, oop value) { HeapAccess<MO_SEQ_CST>::oop_store_at(as_oop(), offset, value); }
address oopDesc::address_field(int offset) const { return HeapAccess<>::load_at(as_oop(), offset); }
address oopDesc::address_field_acquire(int offset) const { return HeapAccess<MO_ACQUIRE>::load_at(as_oop(), offset); }
void oopDesc::address_field_put(int offset, address value) { HeapAccess<>::store_at(as_oop(), offset, value); }
void oopDesc::release_address_field_put(int offset, address value) { HeapAccess<MO_RELEASE>::store_at(as_oop(), offset, value); }
Metadata* oopDesc::metadata_field(int offset) const { return HeapAccess<>::load_at(as_oop(), offset); }
void oopDesc::metadata_field_put(int offset, Metadata* value) { HeapAccess<>::store_at(as_oop(), offset, value); }
Metadata* oopDesc::metadata_field_acquire(int offset) const { return HeapAccess<MO_ACQUIRE>::load_at(as_oop(), offset); }
void oopDesc::release_metadata_field_put(int offset, Metadata* value) { HeapAccess<MO_RELEASE>::store_at(as_oop(), offset, value); }
jbyte oopDesc::byte_field_acquire(int offset) const { return HeapAccess<MO_ACQUIRE>::load_at(as_oop(), offset); }
void oopDesc::release_byte_field_put(int offset, jbyte value) { HeapAccess<MO_RELEASE>::store_at(as_oop(), offset, value); }
jchar oopDesc::char_field_acquire(int offset) const { return HeapAccess<MO_ACQUIRE>::load_at(as_oop(), offset); }
void oopDesc::release_char_field_put(int offset, jchar value) { HeapAccess<MO_RELEASE>::store_at(as_oop(), offset, value); }
jboolean oopDesc::bool_field_acquire(int offset) const { return HeapAccess<MO_ACQUIRE>::load_at(as_oop(), offset); }
void oopDesc::release_bool_field_put(int offset, jboolean value) { HeapAccess<MO_RELEASE>::store_at(as_oop(), offset, jboolean(value & 1)); }
jint oopDesc::int_field_acquire(int offset) const { return HeapAccess<MO_ACQUIRE>::load_at(as_oop(), offset); }
void oopDesc::release_int_field_put(int offset, jint value) { HeapAccess<MO_RELEASE>::store_at(as_oop(), offset, value); }
jshort oopDesc::short_field_acquire(int offset) const { return HeapAccess<MO_ACQUIRE>::load_at(as_oop(), offset); }
void oopDesc::release_short_field_put(int offset, jshort value) { HeapAccess<MO_RELEASE>::store_at(as_oop(), offset, value); }
jlong oopDesc::long_field_acquire(int offset) const { return HeapAccess<MO_ACQUIRE>::load_at(as_oop(), offset); }
void oopDesc::release_long_field_put(int offset, jlong value) { HeapAccess<MO_RELEASE>::store_at(as_oop(), offset, value); }
jfloat oopDesc::float_field_acquire(int offset) const { return HeapAccess<MO_ACQUIRE>::load_at(as_oop(), offset); }
void oopDesc::release_float_field_put(int offset, jfloat value) { HeapAccess<MO_RELEASE>::store_at(as_oop(), offset, value); }
jdouble oopDesc::double_field_acquire(int offset) const { return HeapAccess<MO_ACQUIRE>::load_at(as_oop(), offset); }
void oopDesc::release_double_field_put(int offset, jdouble value) { HeapAccess<MO_RELEASE>::store_at(as_oop(), offset, value); }
#if INCLUDE_CDS_JAVA_HEAP
bool oopDesc::is_archive_object(oop p) {
return (p == NULL) ? false : G1ArchiveAllocator::is_archive_object(p);

View File

@ -38,10 +38,6 @@
//
// no virtual functions allowed
// store into oop with store check
template <class T> inline void oop_store(T* p, oop v);
template <class T> inline void oop_store(volatile T* p, oop v);
extern bool always_do_update_barrier;
// Forward declarations.
@ -65,9 +61,6 @@ class oopDesc {
narrowKlass _compressed_klass;
} _metadata;
// Fast access to barrier set. Must be initialized.
static BarrierSet* _bs;
public:
markOop mark() const { return _mark; }
markOop* mark_addr() const { return (markOop*) &_mark; }
@ -122,6 +115,9 @@ class oopDesc {
bool is_objArray_noinline() const;
bool is_typeArray_noinline() const;
protected:
inline oop as_oop() const { return const_cast<oopDesc*>(this); }
private:
// field addresses in oop
inline void* field_base(int offset) const;
@ -162,107 +158,93 @@ class oopDesc {
// Load an oop out of the Java heap as is without decoding.
// Called by GC to check for null before decoding.
static inline narrowOop load_heap_oop(narrowOop* p) { return *p; }
static inline oop load_heap_oop(oop* p) { return *p; }
static inline narrowOop load_heap_oop(narrowOop* p);
static inline oop load_heap_oop(oop* p);
// Load an oop out of Java heap and decode it to an uncompressed oop.
static inline oop load_decode_heap_oop_not_null(narrowOop* p);
static inline oop load_decode_heap_oop_not_null(oop* p) { return *p; }
static inline oop load_decode_heap_oop_not_null(oop* p);
static inline oop load_decode_heap_oop(narrowOop* p);
static inline oop load_decode_heap_oop(oop* p) { return *p; }
static inline oop load_decode_heap_oop(oop* p);
// Store already encoded heap oop into the heap.
static inline void store_heap_oop(narrowOop* p, narrowOop v) { *p = v; }
static inline void store_heap_oop(oop* p, oop v) { *p = v; }
static inline void store_heap_oop(narrowOop* p, narrowOop v);
static inline void store_heap_oop(oop* p, oop v);
// Encode oop if UseCompressedOops and store into the heap.
static inline void encode_store_heap_oop_not_null(narrowOop* p, oop v);
static inline void encode_store_heap_oop_not_null(oop* p, oop v) { *p = v; }
static inline void encode_store_heap_oop_not_null(oop* p, oop v);
static inline void encode_store_heap_oop(narrowOop* p, oop v);
static inline void encode_store_heap_oop(oop* p, oop v) { *p = v; }
static inline void release_store_heap_oop(volatile narrowOop* p, narrowOop v);
static inline void release_store_heap_oop(volatile oop* p, oop v);
static inline void release_encode_store_heap_oop_not_null(volatile narrowOop* p, oop v);
static inline void release_encode_store_heap_oop_not_null(volatile oop* p, oop v);
static inline void release_encode_store_heap_oop(volatile narrowOop* p, oop v);
static inline void release_encode_store_heap_oop(volatile oop* p, oop v);
static inline oop atomic_exchange_oop(oop exchange_value, volatile HeapWord *dest);
static inline oop atomic_compare_exchange_oop(oop exchange_value,
volatile HeapWord *dest,
oop compare_value,
bool prebarrier = false);
static inline void encode_store_heap_oop(oop* p, oop v);
// Access to fields in a instanceOop through these methods.
inline oop obj_field(int offset) const;
inline void obj_field_put(int offset, oop value);
inline void obj_field_put_raw(int offset, oop value);
inline void obj_field_put_volatile(int offset, oop value);
oop obj_field(int offset) const;
void obj_field_put(int offset, oop value);
void obj_field_put_raw(int offset, oop value);
void obj_field_put_volatile(int offset, oop value);
inline Metadata* metadata_field(int offset) const;
inline void metadata_field_put(int offset, Metadata* value);
Metadata* metadata_field(int offset) const;
void metadata_field_put(int offset, Metadata* value);
inline Metadata* metadata_field_acquire(int offset) const;
inline void release_metadata_field_put(int offset, Metadata* value);
Metadata* metadata_field_acquire(int offset) const;
void release_metadata_field_put(int offset, Metadata* value);
inline jbyte byte_field(int offset) const;
inline void byte_field_put(int offset, jbyte contents);
jbyte byte_field(int offset) const;
void byte_field_put(int offset, jbyte contents);
inline jchar char_field(int offset) const;
inline void char_field_put(int offset, jchar contents);
jchar char_field(int offset) const;
void char_field_put(int offset, jchar contents);
inline jboolean bool_field(int offset) const;
inline void bool_field_put(int offset, jboolean contents);
jboolean bool_field(int offset) const;
void bool_field_put(int offset, jboolean contents);
inline jint int_field(int offset) const;
inline void int_field_put(int offset, jint contents);
jint int_field(int offset) const;
void int_field_put(int offset, jint contents);
inline jshort short_field(int offset) const;
inline void short_field_put(int offset, jshort contents);
jshort short_field(int offset) const;
void short_field_put(int offset, jshort contents);
inline jlong long_field(int offset) const;
inline void long_field_put(int offset, jlong contents);
jlong long_field(int offset) const;
void long_field_put(int offset, jlong contents);
inline jfloat float_field(int offset) const;
inline void float_field_put(int offset, jfloat contents);
jfloat float_field(int offset) const;
void float_field_put(int offset, jfloat contents);
inline jdouble double_field(int offset) const;
inline void double_field_put(int offset, jdouble contents);
jdouble double_field(int offset) const;
void double_field_put(int offset, jdouble contents);
inline address address_field(int offset) const;
inline void address_field_put(int offset, address contents);
address address_field(int offset) const;
void address_field_put(int offset, address contents);
inline oop obj_field_acquire(int offset) const;
inline void release_obj_field_put(int offset, oop value);
oop obj_field_acquire(int offset) const;
void release_obj_field_put(int offset, oop value);
inline jbyte byte_field_acquire(int offset) const;
inline void release_byte_field_put(int offset, jbyte contents);
jbyte byte_field_acquire(int offset) const;
void release_byte_field_put(int offset, jbyte contents);
inline jchar char_field_acquire(int offset) const;
inline void release_char_field_put(int offset, jchar contents);
jchar char_field_acquire(int offset) const;
void release_char_field_put(int offset, jchar contents);
inline jboolean bool_field_acquire(int offset) const;
inline void release_bool_field_put(int offset, jboolean contents);
jboolean bool_field_acquire(int offset) const;
void release_bool_field_put(int offset, jboolean contents);
inline jint int_field_acquire(int offset) const;
inline void release_int_field_put(int offset, jint contents);
jint int_field_acquire(int offset) const;
void release_int_field_put(int offset, jint contents);
inline jshort short_field_acquire(int offset) const;
inline void release_short_field_put(int offset, jshort contents);
jshort short_field_acquire(int offset) const;
void release_short_field_put(int offset, jshort contents);
inline jlong long_field_acquire(int offset) const;
inline void release_long_field_put(int offset, jlong contents);
jlong long_field_acquire(int offset) const;
void release_long_field_put(int offset, jlong contents);
inline jfloat float_field_acquire(int offset) const;
inline void release_float_field_put(int offset, jfloat contents);
jfloat float_field_acquire(int offset) const;
void release_float_field_put(int offset, jfloat contents);
inline jdouble double_field_acquire(int offset) const;
inline void release_double_field_put(int offset, jdouble contents);
jdouble double_field_acquire(int offset) const;
void release_double_field_put(int offset, jdouble contents);
inline address address_field_acquire(int offset) const;
inline void release_address_field_put(int offset, address contents);
address address_field_acquire(int offset) const;
void release_address_field_put(int offset, address contents);
// printing functions for VM debugging
void print_on(outputStream* st) const; // First level print
@ -322,10 +304,6 @@ class oopDesc {
// mark-sweep support
void follow_body(int begin, int end);
// Fast access to barrier set
static BarrierSet* bs() { return _bs; }
static void set_bs(BarrierSet* bs) { _bs = bs; }
// Garbage Collection support
#if INCLUDE_ALL_GCS

View File

@ -26,11 +26,10 @@
#define SHARE_VM_OOPS_OOP_INLINE_HPP
#include "gc/shared/ageTable.hpp"
#include "gc/shared/barrierSet.inline.hpp"
#include "gc/shared/cardTableModRefBS.hpp"
#include "gc/shared/collectedHeap.inline.hpp"
#include "gc/shared/genCollectedHeap.hpp"
#include "gc/shared/generation.hpp"
#include "oops/access.inline.hpp"
#include "oops/arrayKlass.hpp"
#include "oops/arrayOop.hpp"
#include "oops/klass.inline.hpp"
@ -42,50 +41,6 @@
#include "utilities/align.hpp"
#include "utilities/macros.hpp"
inline void update_barrier_set(void* p, oop v, bool release = false) {
assert(oopDesc::bs() != NULL, "Uninitialized bs in oop!");
oopDesc::bs()->write_ref_field(p, v, release);
}
template <class T> inline void update_barrier_set_pre(T* p, oop v) {
oopDesc::bs()->write_ref_field_pre(p, v);
}
template <class T> void oop_store(T* p, oop v) {
if (always_do_update_barrier) {
oop_store((volatile T*)p, v);
} else {
update_barrier_set_pre(p, v);
oopDesc::encode_store_heap_oop(p, v);
// always_do_update_barrier == false =>
// Either we are at a safepoint (in GC) or CMS is not used. In both
// cases it's unnecessary to mark the card as dirty with release sematics.
update_barrier_set((void*)p, v, false /* release */); // cast away type
}
}
template <class T> void oop_store(volatile T* p, oop v) {
update_barrier_set_pre((T*)p, v); // cast away volatile
// Used by release_obj_field_put, so use release_store.
oopDesc::release_encode_store_heap_oop(p, v);
// When using CMS we must mark the card corresponding to p as dirty
// with release sematics to prevent that CMS sees the dirty card but
// not the new value v at p due to reordering of the two
// stores. Note that CMS has a concurrent precleaning phase, where
// it reads the card table while the Java threads are running.
update_barrier_set((void*)p, v, true /* release */); // cast away type
}
// Should replace *addr = oop assignments where addr type depends on UseCompressedOops
// (without having to remember the function name this calls).
inline void oop_store_raw(HeapWord* addr, oop value) {
if (UseCompressedOops) {
oopDesc::encode_store_heap_oop((narrowOop*)addr, value);
} else {
oopDesc::encode_store_heap_oop((oop*)addr, value);
}
}
// Implementation of all inlined member functions defined in oop.hpp
// We need a separate file to avoid circular references
@ -339,16 +294,28 @@ narrowOop oopDesc::encode_heap_oop(oop v) {
return (is_null(v)) ? (narrowOop)0 : encode_heap_oop_not_null(v);
}
narrowOop oopDesc::load_heap_oop(narrowOop* p) { return *p; }
oop oopDesc::load_heap_oop(oop* p) { return *p; }
void oopDesc::store_heap_oop(narrowOop* p, narrowOop v) { *p = v; }
void oopDesc::store_heap_oop(oop* p, oop v) { *p = v; }
// Load and decode an oop out of the Java heap into a wide oop.
oop oopDesc::load_decode_heap_oop_not_null(narrowOop* p) {
return decode_heap_oop_not_null(*p);
return decode_heap_oop_not_null(load_heap_oop(p));
}
// Load and decode an oop out of the heap accepting null
oop oopDesc::load_decode_heap_oop(narrowOop* p) {
return decode_heap_oop(*p);
return decode_heap_oop(load_heap_oop(p));
}
oop oopDesc::load_decode_heap_oop_not_null(oop* p) { return *p; }
oop oopDesc::load_decode_heap_oop(oop* p) { return *p; }
void oopDesc::encode_store_heap_oop_not_null(oop* p, oop v) { *p = v; }
void oopDesc::encode_store_heap_oop(oop* p, oop v) { *p = v; }
// Encode and store a heap oop.
void oopDesc::encode_store_heap_oop_not_null(narrowOop* p, oop v) {
*p = encode_heap_oop_not_null(v);
@ -359,167 +326,32 @@ void oopDesc::encode_store_heap_oop(narrowOop* p, oop v) {
*p = encode_heap_oop(v);
}
// Store heap oop as is for volatile fields.
void oopDesc::release_store_heap_oop(volatile oop* p, oop v) {
OrderAccess::release_store(p, v);
}
void oopDesc::release_store_heap_oop(volatile narrowOop* p, narrowOop v) {
OrderAccess::release_store(p, v);
}
inline oop oopDesc::obj_field(int offset) const { return HeapAccess<>::oop_load_at(as_oop(), offset); }
inline void oopDesc::obj_field_put(int offset, oop value) { HeapAccess<>::oop_store_at(as_oop(), offset, value); }
void oopDesc::release_encode_store_heap_oop_not_null(volatile narrowOop* p, oop v) {
// heap oop is not pointer sized.
OrderAccess::release_store(p, encode_heap_oop_not_null(v));
}
void oopDesc::release_encode_store_heap_oop_not_null(volatile oop* p, oop v) {
OrderAccess::release_store(p, v);
}
inline jbyte oopDesc::byte_field(int offset) const { return HeapAccess<>::load_at(as_oop(), offset); }
inline void oopDesc::byte_field_put(int offset, jbyte value) { HeapAccess<>::store_at(as_oop(), offset, value); }
void oopDesc::release_encode_store_heap_oop(volatile oop* p, oop v) {
OrderAccess::release_store(p, v);
}
void oopDesc::release_encode_store_heap_oop(volatile narrowOop* p, oop v) {
OrderAccess::release_store(p, encode_heap_oop(v));
}
inline jchar oopDesc::char_field(int offset) const { return HeapAccess<>::load_at(as_oop(), offset); }
inline void oopDesc::char_field_put(int offset, jchar value) { HeapAccess<>::store_at(as_oop(), offset, value); }
// These functions are only used to exchange oop fields in instances,
// not headers.
oop oopDesc::atomic_exchange_oop(oop exchange_value, volatile HeapWord *dest) {
if (UseCompressedOops) {
// encode exchange value from oop to T
narrowOop val = encode_heap_oop(exchange_value);
narrowOop old = Atomic::xchg(val, (narrowOop*)dest);
// decode old from T to oop
return decode_heap_oop(old);
} else {
return Atomic::xchg(exchange_value, (oop*)dest);
}
}
inline jboolean oopDesc::bool_field(int offset) const { return HeapAccess<>::load_at(as_oop(), offset); }
inline void oopDesc::bool_field_put(int offset, jboolean value) { HeapAccess<>::store_at(as_oop(), offset, jboolean(value & 1)); }
oop oopDesc::atomic_compare_exchange_oop(oop exchange_value,
volatile HeapWord *dest,
oop compare_value,
bool prebarrier) {
if (UseCompressedOops) {
if (prebarrier) {
update_barrier_set_pre((narrowOop*)dest, exchange_value);
}
// encode exchange and compare value from oop to T
narrowOop val = encode_heap_oop(exchange_value);
narrowOop cmp = encode_heap_oop(compare_value);
inline jshort oopDesc::short_field(int offset) const { return HeapAccess<>::load_at(as_oop(), offset); }
inline void oopDesc::short_field_put(int offset, jshort value) { HeapAccess<>::store_at(as_oop(), offset, value); }
narrowOop old = Atomic::cmpxchg(val, (narrowOop*)dest, cmp);
// decode old from T to oop
return decode_heap_oop(old);
} else {
if (prebarrier) {
update_barrier_set_pre((oop*)dest, exchange_value);
}
return Atomic::cmpxchg(exchange_value, (oop*)dest, compare_value);
}
}
inline jint oopDesc::int_field(int offset) const { return HeapAccess<>::load_at(as_oop(), offset); }
inline void oopDesc::int_field_put(int offset, jint value) { HeapAccess<>::store_at(as_oop(), offset, value); }
// In order to put or get a field out of an instance, must first check
// if the field has been compressed and uncompress it.
oop oopDesc::obj_field(int offset) const {
return UseCompressedOops ?
load_decode_heap_oop(obj_field_addr<narrowOop>(offset)) :
load_decode_heap_oop(obj_field_addr<oop>(offset));
}
inline jlong oopDesc::long_field(int offset) const { return HeapAccess<>::load_at(as_oop(), offset); }
inline void oopDesc::long_field_put(int offset, jlong value) { HeapAccess<>::store_at(as_oop(), offset, value); }
void oopDesc::obj_field_put(int offset, oop value) {
UseCompressedOops ? oop_store(obj_field_addr<narrowOop>(offset), value) :
oop_store(obj_field_addr<oop>(offset), value);
}
inline jfloat oopDesc::float_field(int offset) const { return HeapAccess<>::load_at(as_oop(), offset); }
inline void oopDesc::float_field_put(int offset, jfloat value) { HeapAccess<>::store_at(as_oop(), offset, value); }
void oopDesc::obj_field_put_raw(int offset, oop value) {
UseCompressedOops ?
encode_store_heap_oop(obj_field_addr<narrowOop>(offset), value) :
encode_store_heap_oop(obj_field_addr<oop>(offset), value);
}
void oopDesc::obj_field_put_volatile(int offset, oop value) {
OrderAccess::release();
obj_field_put(offset, value);
OrderAccess::fence();
}
Metadata* oopDesc::metadata_field(int offset) const { return *metadata_field_addr(offset); }
void oopDesc::metadata_field_put(int offset, Metadata* value) { *metadata_field_addr(offset) = value; }
Metadata* oopDesc::metadata_field_acquire(int offset) const {
return OrderAccess::load_acquire(metadata_field_addr(offset));
}
void oopDesc::release_metadata_field_put(int offset, Metadata* value) {
OrderAccess::release_store(metadata_field_addr(offset), value);
}
jbyte oopDesc::byte_field(int offset) const { return (jbyte) *byte_field_addr(offset); }
void oopDesc::byte_field_put(int offset, jbyte contents) { *byte_field_addr(offset) = (jint) contents; }
jchar oopDesc::char_field(int offset) const { return (jchar) *char_field_addr(offset); }
void oopDesc::char_field_put(int offset, jchar contents) { *char_field_addr(offset) = (jint) contents; }
jboolean oopDesc::bool_field(int offset) const { return (jboolean) *bool_field_addr(offset); }
void oopDesc::bool_field_put(int offset, jboolean contents) { *bool_field_addr(offset) = (((jint) contents) & 1); }
jint oopDesc::int_field(int offset) const { return *int_field_addr(offset); }
void oopDesc::int_field_put(int offset, jint contents) { *int_field_addr(offset) = contents; }
jshort oopDesc::short_field(int offset) const { return (jshort) *short_field_addr(offset); }
void oopDesc::short_field_put(int offset, jshort contents) { *short_field_addr(offset) = (jint) contents;}
jlong oopDesc::long_field(int offset) const { return *long_field_addr(offset); }
void oopDesc::long_field_put(int offset, jlong contents) { *long_field_addr(offset) = contents; }
jfloat oopDesc::float_field(int offset) const { return *float_field_addr(offset); }
void oopDesc::float_field_put(int offset, jfloat contents) { *float_field_addr(offset) = contents; }
jdouble oopDesc::double_field(int offset) const { return *double_field_addr(offset); }
void oopDesc::double_field_put(int offset, jdouble contents) { *double_field_addr(offset) = contents; }
address oopDesc::address_field(int offset) const { return *address_field_addr(offset); }
void oopDesc::address_field_put(int offset, address contents) { *address_field_addr(offset) = contents; }
oop oopDesc::obj_field_acquire(int offset) const {
return UseCompressedOops ?
decode_heap_oop((narrowOop)
OrderAccess::load_acquire(obj_field_addr<narrowOop>(offset)))
: decode_heap_oop(
OrderAccess::load_acquire(obj_field_addr<oop>(offset)));
}
void oopDesc::release_obj_field_put(int offset, oop value) {
UseCompressedOops ?
oop_store((volatile narrowOop*)obj_field_addr<narrowOop>(offset), value) :
oop_store((volatile oop*) obj_field_addr<oop>(offset), value);
}
jbyte oopDesc::byte_field_acquire(int offset) const { return OrderAccess::load_acquire(byte_field_addr(offset)); }
void oopDesc::release_byte_field_put(int offset, jbyte contents) { OrderAccess::release_store(byte_field_addr(offset), contents); }
jchar oopDesc::char_field_acquire(int offset) const { return OrderAccess::load_acquire(char_field_addr(offset)); }
void oopDesc::release_char_field_put(int offset, jchar contents) { OrderAccess::release_store(char_field_addr(offset), contents); }
jboolean oopDesc::bool_field_acquire(int offset) const { return OrderAccess::load_acquire(bool_field_addr(offset)); }
void oopDesc::release_bool_field_put(int offset, jboolean contents) { OrderAccess::release_store(bool_field_addr(offset), jboolean(contents & 1)); }
jint oopDesc::int_field_acquire(int offset) const { return OrderAccess::load_acquire(int_field_addr(offset)); }
void oopDesc::release_int_field_put(int offset, jint contents) { OrderAccess::release_store(int_field_addr(offset), contents); }
jshort oopDesc::short_field_acquire(int offset) const { return (jshort)OrderAccess::load_acquire(short_field_addr(offset)); }
void oopDesc::release_short_field_put(int offset, jshort contents) { OrderAccess::release_store(short_field_addr(offset), contents); }
jlong oopDesc::long_field_acquire(int offset) const { return OrderAccess::load_acquire(long_field_addr(offset)); }
void oopDesc::release_long_field_put(int offset, jlong contents) { OrderAccess::release_store(long_field_addr(offset), contents); }
jfloat oopDesc::float_field_acquire(int offset) const { return OrderAccess::load_acquire(float_field_addr(offset)); }
void oopDesc::release_float_field_put(int offset, jfloat contents) { OrderAccess::release_store(float_field_addr(offset), contents); }
jdouble oopDesc::double_field_acquire(int offset) const { return OrderAccess::load_acquire(double_field_addr(offset)); }
void oopDesc::release_double_field_put(int offset, jdouble contents) { OrderAccess::release_store(double_field_addr(offset), contents); }
address oopDesc::address_field_acquire(int offset) const { return OrderAccess::load_acquire(address_field_addr(offset)); }
void oopDesc::release_address_field_put(int offset, address contents) { OrderAccess::release_store(address_field_addr(offset), contents); }
inline jdouble oopDesc::double_field(int offset) const { return HeapAccess<>::load_at(as_oop(), offset); }
inline void oopDesc::double_field_put(int offset, jdouble value) { HeapAccess<>::store_at(as_oop(), offset, value); }
bool oopDesc::is_locked() const {
return mark()->is_locked();

View File

@ -478,7 +478,6 @@ const char* InlineTree::check_can_parse(ciMethod* callee) {
// Certain methods cannot be parsed at all:
if ( callee->is_native()) return "native method";
if ( callee->is_abstract()) return "abstract method";
if (!callee->can_be_compiled()) return "not compilable (disabled)";
if (!callee->has_balanced_monitors()) return "not compilable (unbalanced monitors)";
if ( callee->get_flow_analysis()->failing()) return "not compilable (flow analysis failed)";
return NULL;

View File

@ -487,7 +487,7 @@ Parse::Parse(JVMState* caller, ciMethod* parse_method, float expected_uses)
log->elem("observe that='has_exception_handlers'");
}
assert(method()->can_be_compiled(), "Can not parse this method, cutout earlier");
assert(InlineTree::check_can_parse(method()) == NULL, "Can not parse this method, cutout earlier");
assert(method()->has_balanced_monitors(), "Can not parse unbalanced monitors, cutout earlier");
// Always register dependence if JVMTI is enabled, because

View File

@ -43,6 +43,7 @@
#include "memory/oopFactory.hpp"
#include "memory/resourceArea.hpp"
#include "memory/universe.inline.hpp"
#include "oops/access.inline.hpp"
#include "oops/instanceKlass.hpp"
#include "oops/instanceOop.hpp"
#include "oops/markOop.hpp"
@ -84,9 +85,6 @@
#include "utilities/internalVMTests.hpp"
#include "utilities/macros.hpp"
#include "utilities/vmError.hpp"
#if INCLUDE_ALL_GCS
#include "gc/g1/g1SATBCardTableModRefBS.hpp"
#endif // INCLUDE_ALL_GCS
#if INCLUDE_JVMCI
#include "jvmci/jvmciCompiler.hpp"
#include "jvmci/jvmciRuntime.hpp"
@ -2069,28 +2067,9 @@ JNI_ENTRY(jobject, jni_GetObjectField(JNIEnv *env, jobject obj, jfieldID fieldID
if (JvmtiExport::should_post_field_access()) {
o = JvmtiExport::jni_GetField_probe(thread, obj, o, k, fieldID, false);
}
jobject ret = JNIHandles::make_local(env, o->obj_field(offset));
#if INCLUDE_ALL_GCS
// If G1 is enabled and we are accessing the value of the referent
// field in a reference object then we need to register a non-null
// referent with the SATB barrier.
if (UseG1GC) {
bool needs_barrier = false;
if (ret != NULL &&
offset == java_lang_ref_Reference::referent_offset &&
InstanceKlass::cast(k)->reference_type() != REF_NONE) {
assert(InstanceKlass::cast(k)->is_subclass_of(SystemDictionary::Reference_klass()), "sanity");
needs_barrier = true;
}
if (needs_barrier) {
oop referent = JNIHandles::resolve(ret);
G1SATBCardTableModRefBS::enqueue(referent);
}
}
#endif // INCLUDE_ALL_GCS
HOTSPOT_JNI_GETOBJECTFIELD_RETURN(ret);
oop loaded_obj = HeapAccess<ON_UNKNOWN_OOP_REF>::oop_load_at(o, offset);
jobject ret = JNIHandles::make_local(env, loaded_obj);
HOTSPOT_JNI_GETOBJECTFIELD_RETURN(ret);
return ret;
JNI_END
@ -2187,7 +2166,7 @@ JNI_QUICK_ENTRY(void, jni_SetObjectField(JNIEnv *env, jobject obj, jfieldID fiel
field_value.l = value;
o = JvmtiExport::jni_SetField_probe_nh(thread, obj, o, k, fieldID, false, 'L', (jvalue *)&field_value);
}
o->obj_field_put(offset, JNIHandles::resolve(value));
HeapAccess<ON_UNKNOWN_OOP_REF>::oop_store_at(o, offset, JNIHandles::resolve(value));
HOTSPOT_JNI_SETOBJECTFIELD_RETURN();
JNI_END

View File

@ -35,12 +35,12 @@
#include "classfile/stringTable.hpp"
#include "classfile/systemDictionary.hpp"
#include "classfile/vmSymbols.hpp"
#include "gc/shared/barrierSet.inline.hpp"
#include "gc/shared/collectedHeap.inline.hpp"
#include "interpreter/bytecode.hpp"
#include "memory/oopFactory.hpp"
#include "memory/resourceArea.hpp"
#include "memory/universe.inline.hpp"
#include "oops/access.inline.hpp"
#include "oops/fieldStreams.hpp"
#include "oops/instanceKlass.hpp"
#include "oops/method.hpp"
@ -652,24 +652,7 @@ JVM_ENTRY(jobject, JVM_Clone(JNIEnv* env, jobject handle))
new_obj_oop = CollectedHeap::obj_allocate(klass, size, CHECK_NULL);
}
// 4839641 (4840070): We must do an oop-atomic copy, because if another thread
// is modifying a reference field in the clonee, a non-oop-atomic copy might
// be suspended in the middle of copying the pointer and end up with parts
// of two different pointers in the field. Subsequent dereferences will crash.
// 4846409: an oop-copy of objects with long or double fields or arrays of same
// won't copy the longs/doubles atomically in 32-bit vm's, so we copy jlongs instead
// of oops. We know objects are aligned on a minimum of an jlong boundary.
// The same is true of StubRoutines::object_copy and the various oop_copy
// variants, and of the code generated by the inline_native_clone intrinsic.
assert(MinObjAlignmentInBytes >= BytesPerLong, "objects misaligned");
Copy::conjoint_jlongs_atomic((jlong*)obj(), (jlong*)new_obj_oop,
align_object_size(size) / HeapWordsPerLong);
// Clear the header
new_obj_oop->init_mark();
// Store check (mark entire object and let gc sort it out)
BarrierSet* bs = Universe::heap()->barrier_set();
bs->write_region(MemRegion((HeapWord*)new_obj_oop, size));
HeapAccess<>::clone(obj(), new_obj_oop, size);
Handle new_obj(THREAD, new_obj_oop);
// Caution: this involves a java upcall, so the clone should be

View File

@ -29,6 +29,7 @@
#include "classfile/vmSymbols.hpp"
#include "memory/allocation.inline.hpp"
#include "memory/resourceArea.hpp"
#include "oops/access.inline.hpp"
#include "oops/fieldStreams.hpp"
#include "oops/objArrayOop.inline.hpp"
#include "oops/oop.inline.hpp"
@ -45,9 +46,6 @@
#include "utilities/copy.hpp"
#include "utilities/dtrace.hpp"
#include "utilities/macros.hpp"
#if INCLUDE_ALL_GCS
#include "gc/g1/g1SATBCardTableModRefBS.hpp"
#endif // INCLUDE_ALL_GCS
/**
* Implementation of the jdk.internal.misc.Unsafe class
@ -100,10 +98,10 @@ static inline jlong field_offset_from_byte_offset(jlong byte_offset) {
return byte_offset;
}
static inline void* index_oop_from_field_offset_long(oop p, jlong field_offset) {
static inline void assert_field_offset_sane(oop p, jlong field_offset) {
#ifdef ASSERT
jlong byte_offset = field_offset_to_byte_offset(field_offset);
#ifdef ASSERT
if (p != NULL) {
assert(byte_offset >= 0 && byte_offset <= (jlong)MAX_OBJECT_SIZE, "sane offset");
if (byte_offset == (jint)byte_offset) {
@ -115,6 +113,11 @@ static inline void* index_oop_from_field_offset_long(oop p, jlong field_offset)
assert(byte_offset < p_size, "Unsafe access: offset " INT64_FORMAT " > object's size " INT64_FORMAT, (int64_t)byte_offset, (int64_t)p_size);
}
#endif
}
static inline void* index_oop_from_field_offset_long(oop p, jlong field_offset) {
assert_field_offset_sane(p, field_offset);
jlong byte_offset = field_offset_to_byte_offset(field_offset);
if (sizeof(char*) == sizeof(jint)) { // (this constant folds!)
return (address)p + (jint) byte_offset;
@ -143,12 +146,12 @@ jlong Unsafe_field_offset_from_byte_offset(jlong byte_offset) {
*/
class MemoryAccess : StackObj {
JavaThread* _thread;
jobject _obj;
jlong _offset;
oop _obj;
ptrdiff_t _offset;
// Resolves and returns the address of the memory access
void* addr() {
return index_oop_from_field_offset_long(JNIHandles::resolve(_obj), _offset);
return index_oop_from_field_offset_long(_obj, _offset);
}
template <typename T>
@ -174,252 +177,108 @@ class MemoryAccess : StackObj {
*/
class GuardUnsafeAccess {
JavaThread* _thread;
bool _active;
public:
GuardUnsafeAccess(JavaThread* thread, jobject _obj) : _thread(thread) {
if (JNIHandles::resolve(_obj) == NULL) {
// native/off-heap access which may raise SIGBUS if accessing
// memory mapped file data in a region of the file which has
// been truncated and is now invalid
_thread->set_doing_unsafe_access(true);
_active = true;
} else {
_active = false;
}
GuardUnsafeAccess(JavaThread* thread) : _thread(thread) {
// native/off-heap access which may raise SIGBUS if accessing
// memory mapped file data in a region of the file which has
// been truncated and is now invalid
_thread->set_doing_unsafe_access(true);
}
~GuardUnsafeAccess() {
if (_active) {
_thread->set_doing_unsafe_access(false);
}
_thread->set_doing_unsafe_access(false);
}
};
public:
MemoryAccess(JavaThread* thread, jobject obj, jlong offset)
: _thread(thread), _obj(obj), _offset(offset) {
: _thread(thread), _obj(JNIHandles::resolve(obj)), _offset((ptrdiff_t)offset) {
assert_field_offset_sane(_obj, offset);
}
template <typename T>
T get() {
GuardUnsafeAccess guard(_thread, _obj);
T* p = (T*)addr();
T x = normalize_for_read(*p);
return x;
if (oopDesc::is_null(_obj)) {
GuardUnsafeAccess guard(_thread);
T ret = RawAccess<>::load((T*)addr());
return normalize_for_read(ret);
} else {
T ret = HeapAccess<>::load_at(_obj, _offset);
return normalize_for_read(ret);
}
}
template <typename T>
void put(T x) {
GuardUnsafeAccess guard(_thread, _obj);
T* p = (T*)addr();
*p = normalize_for_write(x);
if (oopDesc::is_null(_obj)) {
GuardUnsafeAccess guard(_thread);
RawAccess<>::store((T*)addr(), normalize_for_write(x));
} else {
HeapAccess<>::store_at(_obj, _offset, normalize_for_write(x));
}
}
template <typename T>
T get_volatile() {
GuardUnsafeAccess guard(_thread, _obj);
T* p = (T*)addr();
if (support_IRIW_for_not_multiple_copy_atomic_cpu) {
OrderAccess::fence();
if (oopDesc::is_null(_obj)) {
GuardUnsafeAccess guard(_thread);
volatile T ret = RawAccess<MO_SEQ_CST>::load((volatile T*)addr());
return normalize_for_read(ret);
} else {
T ret = HeapAccess<MO_SEQ_CST>::load_at(_obj, _offset);
return normalize_for_read(ret);
}
T x = OrderAccess::load_acquire((volatile T*)p);
return normalize_for_read(x);
}
template <typename T>
void put_volatile(T x) {
GuardUnsafeAccess guard(_thread, _obj);
T* p = (T*)addr();
OrderAccess::release_store_fence((volatile T*)p, normalize_for_write(x));
}
#ifndef SUPPORTS_NATIVE_CX8
jlong get_jlong_locked() {
GuardUnsafeAccess guard(_thread, _obj);
MutexLockerEx mu(UnsafeJlong_lock, Mutex::_no_safepoint_check_flag);
jlong* p = (jlong*)addr();
jlong x = Atomic::load(p);
return x;
}
void put_jlong_locked(jlong x) {
GuardUnsafeAccess guard(_thread, _obj);
MutexLockerEx mu(UnsafeJlong_lock, Mutex::_no_safepoint_check_flag);
jlong* p = (jlong*)addr();
Atomic::store(normalize_for_write(x), p);
}
#endif
};
// Get/PutObject must be special-cased, since it works with handles.
// We could be accessing the referent field in a reference
// object. If G1 is enabled then we need to register non-null
// referent with the SATB barrier.
#if INCLUDE_ALL_GCS
static bool is_java_lang_ref_Reference_access(oop o, jlong offset) {
if (offset == java_lang_ref_Reference::referent_offset && o != NULL) {
Klass* k = o->klass();
if (InstanceKlass::cast(k)->reference_type() != REF_NONE) {
assert(InstanceKlass::cast(k)->is_subclass_of(SystemDictionary::Reference_klass()), "sanity");
return true;
if (oopDesc::is_null(_obj)) {
GuardUnsafeAccess guard(_thread);
RawAccess<MO_SEQ_CST>::store((volatile T*)addr(), normalize_for_write(x));
} else {
HeapAccess<MO_SEQ_CST>::store_at(_obj, _offset, normalize_for_write(x));
}
}
return false;
}
#endif
static void ensure_satb_referent_alive(oop o, jlong offset, oop v) {
#if INCLUDE_ALL_GCS
if (UseG1GC && v != NULL && is_java_lang_ref_Reference_access(o, offset)) {
G1SATBCardTableModRefBS::enqueue(v);
}
#endif
}
};
// These functions allow a null base pointer with an arbitrary address.
// But if the base pointer is non-null, the offset should make some sense.
// That is, it should be in the range [0, MAX_OBJECT_SIZE].
UNSAFE_ENTRY(jobject, Unsafe_GetObject(JNIEnv *env, jobject unsafe, jobject obj, jlong offset)) {
oop p = JNIHandles::resolve(obj);
oop v;
if (UseCompressedOops) {
narrowOop n = *(narrowOop*)index_oop_from_field_offset_long(p, offset);
v = oopDesc::decode_heap_oop(n);
} else {
v = *(oop*)index_oop_from_field_offset_long(p, offset);
}
ensure_satb_referent_alive(p, offset, v);
assert_field_offset_sane(p, offset);
oop v = HeapAccess<ON_UNKNOWN_OOP_REF>::oop_load_at(p, offset);
return JNIHandles::make_local(env, v);
} UNSAFE_END
UNSAFE_ENTRY(void, Unsafe_PutObject(JNIEnv *env, jobject unsafe, jobject obj, jlong offset, jobject x_h)) {
oop x = JNIHandles::resolve(x_h);
oop p = JNIHandles::resolve(obj);
if (UseCompressedOops) {
oop_store((narrowOop*)index_oop_from_field_offset_long(p, offset), x);
} else {
oop_store((oop*)index_oop_from_field_offset_long(p, offset), x);
}
assert_field_offset_sane(p, offset);
HeapAccess<ON_UNKNOWN_OOP_REF>::oop_store_at(p, offset, x);
} UNSAFE_END
UNSAFE_ENTRY(jobject, Unsafe_GetObjectVolatile(JNIEnv *env, jobject unsafe, jobject obj, jlong offset)) {
oop p = JNIHandles::resolve(obj);
void* addr = index_oop_from_field_offset_long(p, offset);
volatile oop v;
if (support_IRIW_for_not_multiple_copy_atomic_cpu) {
OrderAccess::fence();
}
if (UseCompressedOops) {
volatile narrowOop n = *(volatile narrowOop*) addr;
(void)const_cast<oop&>(v = oopDesc::decode_heap_oop(n));
} else {
(void)const_cast<oop&>(v = *(volatile oop*) addr);
}
ensure_satb_referent_alive(p, offset, v);
OrderAccess::acquire();
assert_field_offset_sane(p, offset);
oop v = HeapAccess<MO_SEQ_CST | ON_UNKNOWN_OOP_REF>::oop_load_at(p, offset);
return JNIHandles::make_local(env, v);
} UNSAFE_END
UNSAFE_ENTRY(void, Unsafe_PutObjectVolatile(JNIEnv *env, jobject unsafe, jobject obj, jlong offset, jobject x_h)) {
oop x = JNIHandles::resolve(x_h);
oop p = JNIHandles::resolve(obj);
void* addr = index_oop_from_field_offset_long(p, offset);
OrderAccess::release();
if (UseCompressedOops) {
oop_store((narrowOop*)addr, x);
} else {
oop_store((oop*)addr, x);
}
OrderAccess::fence();
assert_field_offset_sane(p, offset);
HeapAccess<MO_SEQ_CST | ON_UNKNOWN_OOP_REF>::oop_store_at(p, offset, x);
} UNSAFE_END
UNSAFE_ENTRY(jobject, Unsafe_GetUncompressedObject(JNIEnv *env, jobject unsafe, jlong addr)) {
oop v = *(oop*) (address) addr;
return JNIHandles::make_local(env, v);
} UNSAFE_END
#ifndef SUPPORTS_NATIVE_CX8
// VM_Version::supports_cx8() is a surrogate for 'supports atomic long memory ops'.
//
// On platforms which do not support atomic compare-and-swap of jlong (8 byte)
// values we have to use a lock-based scheme to enforce atomicity. This has to be
// applied to all Unsafe operations that set the value of a jlong field. Even so
// the compareAndSetLong operation will not be atomic with respect to direct stores
// to the field from Java code. It is important therefore that any Java code that
// utilizes these Unsafe jlong operations does not perform direct stores. To permit
// direct loads of the field from Java code we must also use Atomic::store within the
// locked regions. And for good measure, in case there are direct stores, we also
// employ Atomic::load within those regions. Note that the field in question must be
// volatile and so must have atomic load/store accesses applied at the Java level.
//
// The locking scheme could utilize a range of strategies for controlling the locking
// granularity: from a lock per-field through to a single global lock. The latter is
// the simplest and is used for the current implementation. Note that the Java object
// that contains the field, can not, in general, be used for locking. To do so can lead
// to deadlocks as we may introduce locking into what appears to the Java code to be a
// lock-free path.
//
// As all the locked-regions are very short and themselves non-blocking we can treat
// them as leaf routines and elide safepoint checks (ie we don't perform any thread
// state transitions even when blocking for the lock). Note that if we do choose to
// add safepoint checks and thread state transitions, we must ensure that we calculate
// the address of the field _after_ we have acquired the lock, else the object may have
// been moved by the GC
UNSAFE_ENTRY(jlong, Unsafe_GetLongVolatile(JNIEnv *env, jobject unsafe, jobject obj, jlong offset)) {
if (VM_Version::supports_cx8()) {
return MemoryAccess(thread, obj, offset).get_volatile<jlong>();
} else {
return MemoryAccess(thread, obj, offset).get_jlong_locked();
}
} UNSAFE_END
UNSAFE_ENTRY(void, Unsafe_PutLongVolatile(JNIEnv *env, jobject unsafe, jobject obj, jlong offset, jlong x)) {
if (VM_Version::supports_cx8()) {
MemoryAccess(thread, obj, offset).put_volatile<jlong>(x);
} else {
MemoryAccess(thread, obj, offset).put_jlong_locked(x);
}
} UNSAFE_END
#endif // not SUPPORTS_NATIVE_CX8
UNSAFE_LEAF(jboolean, Unsafe_isBigEndian0(JNIEnv *env, jobject unsafe)) {
#ifdef VM_LITTLE_ENDIAN
return false;
@ -472,13 +331,10 @@ DEFINE_GETSETOOP_VOLATILE(jbyte, Byte)
DEFINE_GETSETOOP_VOLATILE(jshort, Short);
DEFINE_GETSETOOP_VOLATILE(jchar, Char);
DEFINE_GETSETOOP_VOLATILE(jint, Int);
DEFINE_GETSETOOP_VOLATILE(jlong, Long);
DEFINE_GETSETOOP_VOLATILE(jfloat, Float);
DEFINE_GETSETOOP_VOLATILE(jdouble, Double);
#ifdef SUPPORTS_NATIVE_CX8
DEFINE_GETSETOOP_VOLATILE(jlong, Long);
#endif
#undef DEFINE_GETSETOOP_VOLATILE
UNSAFE_LEAF(void, Unsafe_LoadFence(JNIEnv *env, jobject unsafe)) {
@ -1001,85 +857,62 @@ UNSAFE_ENTRY(jobject, Unsafe_CompareAndExchangeObject(JNIEnv *env, jobject unsaf
oop x = JNIHandles::resolve(x_h);
oop e = JNIHandles::resolve(e_h);
oop p = JNIHandles::resolve(obj);
HeapWord* addr = (HeapWord *)index_oop_from_field_offset_long(p, offset);
oop res = oopDesc::atomic_compare_exchange_oop(x, addr, e, true);
if (res == e) {
update_barrier_set((void*)addr, x);
}
assert_field_offset_sane(p, offset);
oop res = HeapAccess<ON_UNKNOWN_OOP_REF>::oop_atomic_cmpxchg_at(x, p, (ptrdiff_t)offset, e);
return JNIHandles::make_local(env, res);
} UNSAFE_END
UNSAFE_ENTRY(jint, Unsafe_CompareAndExchangeInt(JNIEnv *env, jobject unsafe, jobject obj, jlong offset, jint e, jint x)) {
oop p = JNIHandles::resolve(obj);
jint* addr = (jint *) index_oop_from_field_offset_long(p, offset);
return (jint)(Atomic::cmpxchg(x, addr, e));
if (oopDesc::is_null(p)) {
volatile jint* addr = (volatile jint*)index_oop_from_field_offset_long(p, offset);
return RawAccess<>::atomic_cmpxchg(x, addr, e);
} else {
assert_field_offset_sane(p, offset);
return HeapAccess<>::atomic_cmpxchg_at(x, p, (ptrdiff_t)offset, e);
}
} UNSAFE_END
UNSAFE_ENTRY(jlong, Unsafe_CompareAndExchangeLong(JNIEnv *env, jobject unsafe, jobject obj, jlong offset, jlong e, jlong x)) {
Handle p(THREAD, JNIHandles::resolve(obj));
jlong* addr = (jlong*)index_oop_from_field_offset_long(p(), offset);
#ifdef SUPPORTS_NATIVE_CX8
return (jlong)(Atomic::cmpxchg(x, addr, e));
#else
if (VM_Version::supports_cx8()) {
return (jlong)(Atomic::cmpxchg(x, addr, e));
oop p = JNIHandles::resolve(obj);
if (oopDesc::is_null(p)) {
volatile jlong* addr = (volatile jlong*)index_oop_from_field_offset_long(p, offset);
return RawAccess<>::atomic_cmpxchg(x, addr, e);
} else {
MutexLockerEx mu(UnsafeJlong_lock, Mutex::_no_safepoint_check_flag);
jlong val = Atomic::load(addr);
if (val == e) {
Atomic::store(x, addr);
}
return val;
assert_field_offset_sane(p, offset);
return HeapAccess<>::atomic_cmpxchg_at(x, p, (ptrdiff_t)offset, e);
}
#endif
} UNSAFE_END
UNSAFE_ENTRY(jboolean, Unsafe_CompareAndSetObject(JNIEnv *env, jobject unsafe, jobject obj, jlong offset, jobject e_h, jobject x_h)) {
oop x = JNIHandles::resolve(x_h);
oop e = JNIHandles::resolve(e_h);
oop p = JNIHandles::resolve(obj);
HeapWord* addr = (HeapWord *)index_oop_from_field_offset_long(p, offset);
oop res = oopDesc::atomic_compare_exchange_oop(x, addr, e, true);
if (res != e) {
return false;
}
update_barrier_set((void*)addr, x);
return true;
assert_field_offset_sane(p, offset);
oop ret = HeapAccess<ON_UNKNOWN_OOP_REF>::oop_atomic_cmpxchg_at(x, p, (ptrdiff_t)offset, e);
return ret == e;
} UNSAFE_END
UNSAFE_ENTRY(jboolean, Unsafe_CompareAndSetInt(JNIEnv *env, jobject unsafe, jobject obj, jlong offset, jint e, jint x)) {
oop p = JNIHandles::resolve(obj);
jint* addr = (jint *)index_oop_from_field_offset_long(p, offset);
return (jint)(Atomic::cmpxchg(x, addr, e)) == e;
if (oopDesc::is_null(p)) {
volatile jint* addr = (volatile jint*)index_oop_from_field_offset_long(p, offset);
return RawAccess<>::atomic_cmpxchg(x, addr, e) == e;
} else {
assert_field_offset_sane(p, offset);
return HeapAccess<>::atomic_cmpxchg_at(x, p, (ptrdiff_t)offset, e) == e;
}
} UNSAFE_END
UNSAFE_ENTRY(jboolean, Unsafe_CompareAndSetLong(JNIEnv *env, jobject unsafe, jobject obj, jlong offset, jlong e, jlong x)) {
Handle p(THREAD, JNIHandles::resolve(obj));
jlong* addr = (jlong*)index_oop_from_field_offset_long(p(), offset);
#ifdef SUPPORTS_NATIVE_CX8
return (jlong)(Atomic::cmpxchg(x, addr, e)) == e;
#else
if (VM_Version::supports_cx8()) {
return (jlong)(Atomic::cmpxchg(x, addr, e)) == e;
oop p = JNIHandles::resolve(obj);
if (oopDesc::is_null(p)) {
volatile jlong* addr = (volatile jlong*)index_oop_from_field_offset_long(p, offset);
return RawAccess<>::atomic_cmpxchg(x, addr, e) == e;
} else {
MutexLockerEx mu(UnsafeJlong_lock, Mutex::_no_safepoint_check_flag);
jlong val = Atomic::load(addr);
if (val != e) {
return false;
}
Atomic::store(x, addr);
return true;
assert_field_offset_sane(p, offset);
return HeapAccess<>::atomic_cmpxchg_at(x, p, (ptrdiff_t)offset, e) == e;
}
#endif
} UNSAFE_END
UNSAFE_ENTRY(void, Unsafe_Park(JNIEnv *env, jobject unsafe, jboolean isAbsolute, jlong time)) {

View File

@ -380,8 +380,12 @@ static SpecialFlag const special_jvm_flags[] = {
{ "InitialRAMFraction", JDK_Version::jdk(10), JDK_Version::undefined(), JDK_Version::undefined() },
{ "UseMembar", JDK_Version::jdk(10), JDK_Version::jdk(11), JDK_Version::jdk(12) },
{ "FastTLABRefill", JDK_Version::jdk(10), JDK_Version::jdk(11), JDK_Version::jdk(12) },
{ "SafepointSpinBeforeYield", JDK_Version::jdk(10), JDK_Version::jdk(11), JDK_Version::jdk(12) },
{ "DeferThrSuspendLoopCount", JDK_Version::jdk(10), JDK_Version::jdk(11), JDK_Version::jdk(12) },
{ "DeferPollingPageLoopCount", JDK_Version::jdk(10), JDK_Version::jdk(11), JDK_Version::jdk(12) },
{ "UseCGroupMemoryLimitForHeap", JDK_Version::jdk(10), JDK_Version::undefined(), JDK_Version::jdk(11) },
{ "IgnoreUnverifiableClassesDuringDump", JDK_Version::jdk(10), JDK_Version::undefined(), JDK_Version::undefined() },
{ "CheckEndorsedAndExtDirs", JDK_Version::jdk(10), JDK_Version::undefined(), JDK_Version::undefined() },
// --- Deprecated alias flags (see also aliased_jvm_flags) - sorted by obsolete_in then expired_in:
{ "DefaultMaxRAMFraction", JDK_Version::jdk(8), JDK_Version::undefined(), JDK_Version::undefined() },

View File

@ -1178,6 +1178,10 @@ public:
"Use detached threads that are recycled upon termination " \
"(for Solaris only)") \
\
experimental(bool, DisablePrimordialThreadGuardPages, false, \
"Disable the use of stack guard pages if the JVM is loaded " \
"on the primordial process thread") \
\
product(bool, UseLWPSynchronization, true, \
"Use LWP-based instead of libthread-based synchronization " \
"(SPARC only)") \
@ -3274,16 +3278,18 @@ public:
"Delay in scheduling GC workers (in milliseconds)") \
\
product(intx, DeferThrSuspendLoopCount, 4000, \
"(Unstable) Number of times to iterate in safepoint loop " \
"(Unstable, Deprecated) " \
"Number of times to iterate in safepoint loop " \
"before blocking VM threads ") \
range(-1, max_jint-1) \
\
product(intx, DeferPollingPageLoopCount, -1, \
"(Unsafe,Unstable) Number of iterations in safepoint loop " \
"(Unsafe,Unstable,Deprecated) " \
"Number of iterations in safepoint loop " \
"before changing safepoint polling page to RO ") \
range(-1, max_jint-1) \
\
product(intx, SafepointSpinBeforeYield, 2000, "(Unstable)") \
product(intx, SafepointSpinBeforeYield, 2000, "(Unstable, Deprecated)") \
range(0, max_intx) \
\
product(bool, PSChunkLargeArrays, true, \

View File

@ -454,7 +454,24 @@ class os: AllStatic {
static bool create_thread(Thread* thread,
ThreadType thr_type,
size_t req_stack_size = 0);
// The "main thread", also known as "starting thread", is the thread
// that loads/creates the JVM via JNI_CreateJavaVM.
static bool create_main_thread(JavaThread* thread);
// The primordial thread is the initial process thread. The java
// launcher never uses the primordial thread as the main thread, but
// applications that host the JVM directly may do so. Some platforms
// need special-case handling of the primordial thread if it attaches
// to the VM.
static bool is_primordial_thread(void)
#if defined(_WINDOWS) || defined(BSD)
// No way to identify the primordial thread.
{ return false; }
#else
;
#endif
static bool create_attached_thread(JavaThread* thread);
static void pd_start_thread(Thread* thread);
static void start_thread(Thread* thread);

View File

@ -25,6 +25,7 @@
#include "precompiled.hpp"
#include "asm/codeBuffer.hpp"
#include "memory/resourceArea.hpp"
#include "oops/access.inline.hpp"
#include "oops/oop.inline.hpp"
#include "runtime/interfaceSupport.hpp"
#include "runtime/timerTrace.hpp"
@ -377,19 +378,6 @@ void stubRoutines_init2() { StubRoutines::initialize2(); }
// Default versions of arraycopy functions
//
static void gen_arraycopy_barrier_pre(oop* dest, size_t count, bool dest_uninitialized) {
assert(count != 0, "count should be non-zero");
assert(count <= (size_t)max_intx, "count too large");
BarrierSet* bs = Universe::heap()->barrier_set();
bs->write_ref_array_pre(dest, (int)count, dest_uninitialized);
}
static void gen_arraycopy_barrier(oop* dest, size_t count) {
assert(count != 0, "count should be non-zero");
BarrierSet* bs = Universe::heap()->barrier_set();
bs->write_ref_array((HeapWord*)dest, count);
}
JRT_LEAF(void, StubRoutines::jbyte_copy(jbyte* src, jbyte* dest, size_t count))
#ifndef PRODUCT
SharedRuntime::_jbyte_array_copy_ctr++; // Slow-path byte array copy
@ -423,9 +411,7 @@ JRT_LEAF(void, StubRoutines::oop_copy(oop* src, oop* dest, size_t count))
SharedRuntime::_oop_array_copy_ctr++; // Slow-path oop array copy
#endif // !PRODUCT
assert(count != 0, "count should be non-zero");
gen_arraycopy_barrier_pre(dest, count, /*dest_uninitialized*/false);
Copy::conjoint_oops_atomic(src, dest, count);
gen_arraycopy_barrier(dest, count);
HeapAccess<>::oop_arraycopy(NULL, NULL, (HeapWord*)src, (HeapWord*)dest, count);
JRT_END
JRT_LEAF(void, StubRoutines::oop_copy_uninit(oop* src, oop* dest, size_t count))
@ -433,9 +419,7 @@ JRT_LEAF(void, StubRoutines::oop_copy_uninit(oop* src, oop* dest, size_t count))
SharedRuntime::_oop_array_copy_ctr++; // Slow-path oop array copy
#endif // !PRODUCT
assert(count != 0, "count should be non-zero");
gen_arraycopy_barrier_pre(dest, count, /*dest_uninitialized*/true);
Copy::conjoint_oops_atomic(src, dest, count);
gen_arraycopy_barrier(dest, count);
HeapAccess<ARRAYCOPY_DEST_NOT_INITIALIZED>::oop_arraycopy(NULL, NULL, (HeapWord*)src, (HeapWord*)dest, count);
JRT_END
JRT_LEAF(void, StubRoutines::arrayof_jbyte_copy(HeapWord* src, HeapWord* dest, size_t count))
@ -471,9 +455,7 @@ JRT_LEAF(void, StubRoutines::arrayof_oop_copy(HeapWord* src, HeapWord* dest, siz
SharedRuntime::_oop_array_copy_ctr++; // Slow-path oop array copy
#endif // !PRODUCT
assert(count != 0, "count should be non-zero");
gen_arraycopy_barrier_pre((oop *) dest, count, /*dest_uninitialized*/false);
Copy::arrayof_conjoint_oops(src, dest, count);
gen_arraycopy_barrier((oop *) dest, count);
HeapAccess<ARRAYCOPY_ARRAYOF>::oop_arraycopy(NULL, NULL, src, dest, count);
JRT_END
JRT_LEAF(void, StubRoutines::arrayof_oop_copy_uninit(HeapWord* src, HeapWord* dest, size_t count))
@ -481,9 +463,7 @@ JRT_LEAF(void, StubRoutines::arrayof_oop_copy_uninit(HeapWord* src, HeapWord* de
SharedRuntime::_oop_array_copy_ctr++; // Slow-path oop array copy
#endif // !PRODUCT
assert(count != 0, "count should be non-zero");
gen_arraycopy_barrier_pre((oop *) dest, count, /*dest_uninitialized*/true);
Copy::arrayof_conjoint_oops(src, dest, count);
gen_arraycopy_barrier((oop *) dest, count);
HeapAccess<ARRAYCOPY_ARRAYOF | ARRAYCOPY_DEST_NOT_INITIALIZED>::oop_arraycopy(NULL, NULL, src, dest, count);
JRT_END
address StubRoutines::select_fill_function(BasicType t, bool aligned, const char* &name) {

View File

@ -699,7 +699,7 @@ NMethodSweeper::MethodStateChange NMethodSweeper::process_compiled_method(Compil
void NMethodSweeper::possibly_flush(nmethod* nm) {
if (UseCodeCacheFlushing) {
if (!nm->is_locked_by_vm() && !nm->is_native_method()) {
if (!nm->is_locked_by_vm() && !nm->is_native_method() && !nm->is_not_installed()) {
bool make_not_entrant = false;
// Do not make native methods not-entrant

View File

@ -2471,7 +2471,13 @@ size_t JavaThread::_stack_reserved_zone_size = 0;
size_t JavaThread::_stack_shadow_zone_size = 0;
void JavaThread::create_stack_guard_pages() {
if (!os::uses_stack_guard_pages() || _stack_guard_state != stack_guard_unused) { return; }
if (!os::uses_stack_guard_pages() ||
_stack_guard_state != stack_guard_unused ||
(DisablePrimordialThreadGuardPages && os::is_primordial_thread())) {
log_info(os, thread)("Stack guard page creation for thread "
UINTX_FORMAT " disabled", os::current_thread_id());
return;
}
address low_addr = stack_end();
size_t len = stack_guard_zone_size();

View File

@ -156,7 +156,8 @@ inline size_t JavaThread::stack_available(address cur_sp) {
inline bool JavaThread::stack_guards_enabled() {
#ifdef ASSERT
if (os::uses_stack_guard_pages()) {
if (os::uses_stack_guard_pages() &&
!(DisablePrimordialThreadGuardPages && os::is_primordial_thread())) {
assert(_stack_guard_state != stack_guard_unused, "guard pages must be in use");
}
#endif

View File

@ -228,8 +228,8 @@ typedef PaddedEnd<ObjectMonitor> PaddedObjectMonitor;
\
volatile_nonstatic_field(oopDesc, _mark, markOop) \
volatile_nonstatic_field(oopDesc, _metadata._klass, Klass*) \
volatile_nonstatic_field(oopDesc, _metadata._compressed_klass, narrowOop) \
static_field(oopDesc, _bs, BarrierSet*) \
volatile_nonstatic_field(oopDesc, _metadata._compressed_klass, narrowKlass) \
static_field(BarrierSet, _bs, BarrierSet*) \
nonstatic_field(ArrayKlass, _dimension, int) \
volatile_nonstatic_field(ArrayKlass, _higher_dimension, Klass*) \
volatile_nonstatic_field(ArrayKlass, _lower_dimension, Klass*) \
@ -830,7 +830,7 @@ typedef PaddedEnd<ObjectMonitor> PaddedObjectMonitor;
nonstatic_field(nmethod, _osr_link, nmethod*) \
nonstatic_field(nmethod, _scavenge_root_link, nmethod*) \
nonstatic_field(nmethod, _scavenge_root_state, jbyte) \
nonstatic_field(nmethod, _state, volatile unsigned char) \
nonstatic_field(nmethod, _state, volatile char) \
nonstatic_field(nmethod, _exception_offset, int) \
nonstatic_field(nmethod, _orig_pc_offset, int) \
nonstatic_field(nmethod, _stub_offset, int) \
@ -1351,7 +1351,7 @@ typedef PaddedEnd<ObjectMonitor> PaddedObjectMonitor;
declare_integer_type(long) \
declare_integer_type(char) \
declare_unsigned_integer_type(unsigned char) \
declare_unsigned_integer_type(volatile unsigned char) \
declare_unsigned_integer_type(volatile char) \
declare_unsigned_integer_type(u_char) \
declare_unsigned_integer_type(unsigned int) \
declare_unsigned_integer_type(uint) \

View File

@ -898,7 +898,7 @@ public class LogParser extends DefaultHandler implements ErrorHandler {
m.setName(parts[1]);
m.setSignature(parts[2]);
m.setFlags("0");
m.setBytes("unknown");
m.setBytes(search(atts, "bytes", "unknown"));
compile.setMethod(m);
events.add(compile);
compiles.put(id, compile);

View File

@ -0,0 +1,35 @@
/*
* Copyright (c) 2017, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "gc/g1/g1Predictions.hpp"
#include "gc/g1/g1Analytics.hpp"
#include "unittest.hpp"
TEST_VM(G1Analytics, is_initialized) {
G1Predictions p(0.888888); // the actual sigma value doesn't matter
G1Analytics a(&p);
ASSERT_EQ(a.recent_avg_pause_time_ratio(), 0.0);
ASSERT_EQ(a.last_pause_time_ratio(), 0.0);
}

View File

@ -26,7 +26,7 @@
* @bug 8044538
* @summary assert hit while printing relocations for jump table entries
*
* @run main/othervm -XX:+IgnoreUnrecognizedVMOptions -Xcomp -XX:+PrintRelocations
* @run main/othervm -XX:+IgnoreUnrecognizedVMOptions -Xcomp -XX:CompileCommand=compileonly,java.lang.String*::* -XX:+PrintRelocations
* compiler.relocations.TestPrintRelocations
*/
/**

View File

@ -39,6 +39,7 @@
* @run main/othervm -Xbootclasspath/a:. -XX:+UnlockDiagnosticVMOptions
* -XX:+WhiteBoxAPI -Xmixed -XX:-UseCounterDecay
* -XX:CompileCommand=compileonly,compiler.whitebox.DeoptimizeFramesTest$TestCaseImpl::method
* -XX:CompileCommand=dontinline,java.util.concurrent.Phaser::*
* -XX:+IgnoreUnrecognizedVMOptions -XX:-DeoptimizeRandom -XX:-DeoptimizeALot
* compiler.whitebox.DeoptimizeFramesTest false
*/
@ -110,6 +111,7 @@ public class DeoptimizeFramesTest extends CompilerWhiteBoxTest {
String.format("compilation %d can't be available", nm.compile_id));
}
} else {
Asserts.assertNE(nm2, null, "must not be null");
Asserts.assertEQ(nm.compile_id, nm2.compile_id, "should be the same nmethod");
}
}

View File

@ -0,0 +1,127 @@
/*
* Copyright (c) 2017, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
/*
* @test
* @summary JVM should be able to handle full path (directory path plus
* class name) or directory path longer than MAX_PATH specified
* in -Xbootclasspath/a on windows.
* @library /test/lib
* @modules java.base/jdk.internal.misc
* java.management
* @run main LongBCP
*/
import java.nio.file.Path;
import java.nio.file.Paths;
import java.util.Arrays;
import jdk.test.lib.Platform;
import jdk.test.lib.compiler.CompilerUtils;
import jdk.test.lib.process.ProcessTools;
import jdk.test.lib.process.OutputAnalyzer;
public class LongBCP {
private static final int MAX_PATH = 260;
public static void main(String args[]) throws Exception {
Path sourceDir = Paths.get(System.getProperty("test.src"), "test-classes");
Path classDir = Paths.get(System.getProperty("test.classes"));
Path destDir = classDir;
// create a sub-path so that the destDir length is almost MAX_PATH
// so that the full path (with the class name) will exceed MAX_PATH
int subDirLen = MAX_PATH - classDir.toString().length() - 2;
if (subDirLen > 0) {
char[] chars = new char[subDirLen];
Arrays.fill(chars, 'x');
String subPath = new String(chars);
destDir = Paths.get(System.getProperty("test.classes"), subPath);
}
CompilerUtils.compile(sourceDir, destDir);
String bootCP = "-Xbootclasspath/a:" + destDir.toString();
ProcessBuilder pb = ProcessTools.createJavaProcessBuilder(
bootCP, "Hello");
OutputAnalyzer output = new OutputAnalyzer(pb.start());
output.shouldContain("Hello World")
.shouldHaveExitValue(0);
// increase the length of destDir to slightly over MAX_PATH
destDir = Paths.get(destDir.toString(), "xxxxx");
CompilerUtils.compile(sourceDir, destDir);
bootCP = "-Xbootclasspath/a:" + destDir.toString();
pb = ProcessTools.createJavaProcessBuilder(
bootCP, "Hello");
output = new OutputAnalyzer(pb.start());
output.shouldContain("Hello World")
.shouldHaveExitValue(0);
// relative path tests
// We currently cannot handle relative path specified in the
// -Xbootclasspath/a on windows.
//
// relative path length within the 256 limit
char[] chars = new char[255];
Arrays.fill(chars, 'y');
String subPath = new String(chars);
destDir = Paths.get(".", subPath);
CompilerUtils.compile(sourceDir, destDir);
bootCP = "-Xbootclasspath/a:" + destDir.toString();
pb = ProcessTools.createJavaProcessBuilder(
bootCP, "Hello");
output = new OutputAnalyzer(pb.start());
if (!Platform.isWindows()) {
output.shouldContain("Hello World")
.shouldHaveExitValue(0);
} else {
output.shouldContain("Could not find or load main class Hello")
.shouldHaveExitValue(1);
}
// total relative path length exceeds MAX_PATH
destDir = Paths.get(destDir.toString(), "yyyyyyyy");
CompilerUtils.compile(sourceDir, destDir);
bootCP = "-Xbootclasspath/a:" + destDir.toString();
pb = ProcessTools.createJavaProcessBuilder(
bootCP, "Hello");
output = new OutputAnalyzer(pb.start());
if (!Platform.isWindows()) {
output.shouldContain("Hello World")
.shouldHaveExitValue(0);
} else {
output.shouldContain("Could not find or load main class Hello")
.shouldHaveExitValue(1);
}
}
}

View File

@ -29,14 +29,16 @@
* @modules java.base/jdk.internal.misc
* java.management
* @compile TriggerResize.java
* @requires (vm.debug == true)
* @run driver TestResize
*/
import java.lang.ProcessBuilder;
import java.lang.Process;
import jdk.test.lib.Platform;
import jdk.test.lib.process.ProcessTools;
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.lang.Process;
import java.lang.ProcessBuilder;
import java.util.Scanner;
public class TestResize {
@ -95,9 +97,11 @@ public class TestResize {
}
public static void main(String[] args) throws Exception {
ProcessBuilder pb = ProcessTools.createJavaProcessBuilder("-XX:+PrintSystemDictionaryAtExit",
"TriggerResize",
"50000");
analyzeOutputOn(pb);
if (Platform.isDebugBuild()) {
ProcessBuilder pb = ProcessTools.createJavaProcessBuilder("-XX:+PrintSystemDictionaryAtExit",
"TriggerResize",
"50000");
analyzeOutputOn(pb);
}
}
}

View File

@ -0,0 +1,10 @@
/*
* Copyright (c) 2014, Oracle and/or its affiliates. All rights reserved.
* ORACLE PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
*/
public class Hello {
public static void main(String args[]) {
System.out.println("Hello World");
}
}

View File

@ -169,7 +169,7 @@ public class BootAppendTests {
CDSOptions opts = (new CDSOptions())
.setXShareMode(mode).setUseVersion(false)
.addPrefix("-Xbootclasspath/a:" + bootAppendJar, "-showversion",
"--limit-modules=java.base", "-cp", appJar)
"--limit-modules=java.base,jdk.internal.vm.compiler", "-cp", appJar)
.addSuffix("-Xlog:class+load=info",
APP_CLASS, BOOT_APPEND_MODULE_CLASS_NAME);
@ -198,7 +198,7 @@ public class BootAppendTests {
CDSOptions opts = (new CDSOptions())
.setXShareMode(mode).setUseVersion(false)
.addPrefix("-Xbootclasspath/a:" + bootAppendJar, "-showversion",
"--limit-modules=java.base", "-cp", appJar)
"--limit-modules=java.base,jdk.internal.vm.compiler", "-cp", appJar)
.addSuffix("-Xlog:class+load=info",
APP_CLASS, BOOT_APPEND_DUPLICATE_MODULE_CLASS_NAME);
@ -226,7 +226,7 @@ public class BootAppendTests {
CDSOptions opts = (new CDSOptions())
.setXShareMode(mode).setUseVersion(false)
.addPrefix("-Xbootclasspath/a:" + bootAppendJar, "-showversion",
"--limit-modules=java.base", "-cp", appJar)
"--limit-modules=java.base,jdk.internal.vm.compiler", "-cp", appJar)
.addSuffix("-Xlog:class+load=info",
APP_CLASS, BOOT_APPEND_CLASS_NAME);

View File

@ -38,13 +38,13 @@ import java.security.Permission;
* @run main/othervm -Xverify:all -Djava.lang.invoke.stringConcat=MH_SB_SIZED_EXACT WithSecurityManager
* @run main/othervm -Xverify:all -Djava.lang.invoke.stringConcat=MH_INLINE_SIZED_EXACT WithSecurityManager
*
* @run main/othervm -Xverify:all --limit-modules=java.base WithSecurityManager
* @run main/othervm -Xverify:all --limit-modules=java.base -Djava.lang.invoke.stringConcat=BC_SB WithSecurityManager
* @run main/othervm -Xverify:all --limit-modules=java.base -Djava.lang.invoke.stringConcat=BC_SB_SIZED WithSecurityManager
* @run main/othervm -Xverify:all --limit-modules=java.base -Djava.lang.invoke.stringConcat=MH_SB_SIZED WithSecurityManager
* @run main/othervm -Xverify:all --limit-modules=java.base -Djava.lang.invoke.stringConcat=BC_SB_SIZED_EXACT WithSecurityManager
* @run main/othervm -Xverify:all --limit-modules=java.base -Djava.lang.invoke.stringConcat=MH_SB_SIZED_EXACT WithSecurityManager
* @run main/othervm -Xverify:all --limit-modules=java.base -Djava.lang.invoke.stringConcat=MH_INLINE_SIZED_EXACT WithSecurityManager
* @run main/othervm -Xverify:all --limit-modules=java.base,jdk.internal.vm.compiler WithSecurityManager
* @run main/othervm -Xverify:all --limit-modules=java.base,jdk.internal.vm.compiler -Djava.lang.invoke.stringConcat=BC_SB WithSecurityManager
* @run main/othervm -Xverify:all --limit-modules=java.base,jdk.internal.vm.compiler -Djava.lang.invoke.stringConcat=BC_SB_SIZED WithSecurityManager
* @run main/othervm -Xverify:all --limit-modules=java.base,jdk.internal.vm.compiler -Djava.lang.invoke.stringConcat=MH_SB_SIZED WithSecurityManager
* @run main/othervm -Xverify:all --limit-modules=java.base,jdk.internal.vm.compiler -Djava.lang.invoke.stringConcat=BC_SB_SIZED_EXACT WithSecurityManager
* @run main/othervm -Xverify:all --limit-modules=java.base,jdk.internal.vm.compiler -Djava.lang.invoke.stringConcat=MH_SB_SIZED_EXACT WithSecurityManager
* @run main/othervm -Xverify:all --limit-modules=java.base,jdk.internal.vm.compiler -Djava.lang.invoke.stringConcat=MH_INLINE_SIZED_EXACT WithSecurityManager
*/
public class WithSecurityManager {
public static void main(String[] args) throws Throwable {