8031498: Cleanup and re-factorize PhaseChaitin::build_ifg_physical

Created sub-functions, added data structures, improved naming and removed unnecessary code

Reviewed-by: kvn, roland, rbackman
This commit is contained in:
Niclas Adlertz 2014-01-24 13:06:52 +01:00
parent 3e1a99cabe
commit 970a35292b
2 changed files with 487 additions and 370 deletions

View File

@ -98,6 +98,12 @@ public:
}
// Compute the degree between 2 live ranges
int compute_degree( LRG &l ) const;
bool mask_is_nonempty_and_up() const {
return mask().is_UP() && mask_size();
}
bool is_float_or_vector() const {
return _is_float || _is_vector;
}
private:
RegMask _mask; // Allowed registers for this LRG
@ -129,6 +135,7 @@ public:
void SUBTRACT( const RegMask &rm ) { _mask.SUBTRACT(rm); debug_only(_msize_valid=0;)}
void Clear() { _mask.Clear() ; debug_only(_msize_valid=1); _mask_size = 0; }
void Set_All() { _mask.Set_All(); debug_only(_msize_valid=1); _mask_size = RegMask::CHUNK_SIZE; }
void Insert( OptoReg::Name reg ) { _mask.Insert(reg); debug_only(_msize_valid=0;) }
void Remove( OptoReg::Name reg ) { _mask.Remove(reg); debug_only(_msize_valid=0;) }
void clear_to_pairs() { _mask.clear_to_pairs(); debug_only(_msize_valid=0;) }
@ -483,15 +490,75 @@ private:
// Same as _ifg->add_vector(reg,live) EXCEPT use the RegMask
// information to trim the set of interferences. Return the
// count of edges added.
void interfere_with_live( uint reg, IndexSet *live );
void interfere_with_live(uint lid, IndexSet* liveout);
#ifdef ASSERT
// Count register pressure for asserts
uint count_int_pressure(IndexSet* liveout);
uint count_float_pressure(IndexSet* liveout);
#endif
// Build the interference graph using virtual registers only.
// Used for aggressive coalescing.
void build_ifg_virtual( );
class Pressure {
public:
// keeps track of the register pressure at the current
// instruction (used when stepping backwards in the block)
uint _current_pressure;
// keeps track of the instruction index of the first low to high register pressure
// transition (starting from the top) in the block
// if high_pressure_index == 0 then the whole block is high pressure
// if high_pressure_index = b.end_idx() + 1 then the whole block is low pressure
uint _high_pressure_index;
// stores the highest pressure we find
uint _final_pressure;
// number of live ranges that constitute high register pressure
const uint _high_pressure_limit;
// lower the register pressure and look for a low to high pressure
// transition
void lower(LRG& lrg, uint& location) {
_current_pressure -= lrg.reg_pressure();
if (_current_pressure == _high_pressure_limit) {
_high_pressure_index = location;
if (_current_pressure > _final_pressure) {
_final_pressure = _current_pressure + 1;
}
}
}
// raise the pressure and store the pressure if it's the biggest
// pressure so far
void raise(LRG &lrg) {
_current_pressure += lrg.reg_pressure();
if (_current_pressure > _final_pressure) {
_final_pressure = _current_pressure;
}
}
Pressure(uint high_pressure_index, uint high_pressure_limit)
: _current_pressure(0)
, _high_pressure_index(high_pressure_index)
, _high_pressure_limit(high_pressure_limit)
, _final_pressure(0) {}
};
void lower_pressure(Block* b, uint location, LRG& lrg, IndexSet* liveout, Pressure& int_pressure, Pressure& float_pressure);
void raise_pressure(Block* b, LRG& lrg, Pressure& int_pressure, Pressure& float_pressure);
void check_for_high_pressure_transition_at_fatproj(uint& block_reg_pressure, uint location, LRG& lrg, Pressure& pressure, const int op_regtype);
void add_input_to_liveout(Block* b, Node* n, IndexSet* liveout, double cost, Pressure& int_pressure, Pressure& float_pressure);
void compute_initial_block_pressure(Block* b, IndexSet* liveout, Pressure& int_pressure, Pressure& float_pressure, double cost);
bool remove_node_if_not_used(Block* b, uint location, Node* n, uint lid, IndexSet* liveout);
void assign_high_score_to_immediate_copies(Block* b, Node* n, LRG& lrg, uint next_inst, uint last_inst);
void remove_interference_from_copy(Block* b, uint location, uint lid_copy, IndexSet* liveout, double cost, Pressure& int_pressure, Pressure& float_pressure);
void remove_bound_register_from_interfering_live_ranges(LRG& lrg, IndexSet* liveout, uint& must_spill);
void check_for_high_pressure_block(Pressure& pressure);
void adjust_high_pressure_index(Block* b, uint& hrp_index, Pressure& pressure);
// Build the interference graph using physical registers when available.
// That is, if 2 live ranges are simultaneously alive but in their
// acceptable register sets do not overlap, then they do not interfere.

View File

@ -281,20 +281,23 @@ void PhaseIFG::verify( const PhaseChaitin *pc ) const {
}
#endif
// Interfere this register with everything currently live. Use the RegMasks
// to trim the set of possible interferences. Return a count of register-only
// interferences as an estimate of register pressure.
void PhaseChaitin::interfere_with_live( uint r, IndexSet *liveout ) {
uint retval = 0;
// Interfere with everything live.
const RegMask &rm = lrgs(r).mask();
// Check for interference by checking overlap of regmasks.
// Only interfere if acceptable register masks overlap.
/*
* Interfere this register with everything currently live.
* Check for interference by checking overlap of regmasks.
* Only interfere if acceptable register masks overlap.
*/
void PhaseChaitin::interfere_with_live(uint lid, IndexSet* liveout) {
LRG& lrg = lrgs(lid);
const RegMask& rm = lrg.mask();
IndexSetIterator elements(liveout);
uint l;
while( (l = elements.next()) != 0 )
if( rm.overlap( lrgs(l).mask() ) )
_ifg->add_edge( r, l );
uint interfering_lid = elements.next();
while (interfering_lid != 0) {
LRG& interfering_lrg = lrgs(interfering_lid);
if (rm.overlap(interfering_lrg.mask())) {
_ifg->add_edge(lid, interfering_lid);
}
interfering_lid = elements.next();
}
}
// Actually build the interference graph. Uses virtual registers only, no
@ -333,7 +336,7 @@ void PhaseChaitin::build_ifg_virtual( ) {
// Copies do not define a new value and so do not interfere.
// Remove the copies source from the liveout set before interfering.
uint idx = n->is_Copy();
if (idx) {
if (idx != 0) {
liveout->remove(_lrg_map.live_range_id(n->in(idx)));
}
@ -389,418 +392,465 @@ void PhaseChaitin::build_ifg_virtual( ) {
} // End of forall blocks
}
#ifdef ASSERT
uint PhaseChaitin::count_int_pressure(IndexSet* liveout) {
IndexSetIterator elements(liveout);
uint lidx;
uint lidx = elements.next();
uint cnt = 0;
while ((lidx = elements.next()) != 0) {
if( lrgs(lidx).mask().is_UP() &&
lrgs(lidx).mask_size() &&
!lrgs(lidx)._is_float &&
!lrgs(lidx)._is_vector &&
lrgs(lidx).mask().overlap(*Matcher::idealreg2regmask[Op_RegI]) )
cnt += lrgs(lidx).reg_pressure();
while (lidx != 0) {
LRG& lrg = lrgs(lidx);
if (lrg.mask_is_nonempty_and_up() &&
!lrg.is_float_or_vector() &&
lrg.mask().overlap(*Matcher::idealreg2regmask[Op_RegI])) {
cnt += lrg.reg_pressure();
}
lidx = elements.next();
}
return cnt;
}
uint PhaseChaitin::count_float_pressure(IndexSet* liveout) {
IndexSetIterator elements(liveout);
uint lidx;
uint lidx = elements.next();
uint cnt = 0;
while ((lidx = elements.next()) != 0) {
if( lrgs(lidx).mask().is_UP() &&
lrgs(lidx).mask_size() &&
(lrgs(lidx)._is_float || lrgs(lidx)._is_vector))
cnt += lrgs(lidx).reg_pressure();
while (lidx != 0) {
LRG& lrg = lrgs(lidx);
if (lrg.mask_is_nonempty_and_up() && lrg.is_float_or_vector()) {
cnt += lrg.reg_pressure();
}
lidx = elements.next();
}
return cnt;
}
#endif
// Adjust register pressure down by 1. Capture last hi-to-low transition,
static void lower_pressure( LRG *lrg, uint where, Block *b, uint *pressure, uint *hrp_index ) {
if (lrg->mask().is_UP() && lrg->mask_size()) {
if (lrg->_is_float || lrg->_is_vector) {
pressure[1] -= lrg->reg_pressure();
if( pressure[1] == (uint)FLOATPRESSURE ) {
hrp_index[1] = where;
if( pressure[1] > b->_freg_pressure )
b->_freg_pressure = pressure[1]+1;
}
} else if( lrg->mask().overlap(*Matcher::idealreg2regmask[Op_RegI]) ) {
pressure[0] -= lrg->reg_pressure();
if( pressure[0] == (uint)INTPRESSURE ) {
hrp_index[0] = where;
if( pressure[0] > b->_reg_pressure )
b->_reg_pressure = pressure[0]+1;
/*
* Adjust register pressure down by 1. Capture last hi-to-low transition,
*/
void PhaseChaitin::lower_pressure(Block* b, uint location, LRG& lrg, IndexSet* liveout, Pressure& int_pressure, Pressure& float_pressure) {
if (lrg.mask_is_nonempty_and_up()) {
if (lrg.is_float_or_vector()) {
float_pressure.lower(lrg, location);
} else {
// Do not count the SP and flag registers
const RegMask& r = lrg.mask();
if (r.overlap(*Matcher::idealreg2regmask[Op_RegI])) {
int_pressure.lower(lrg, location);
}
}
}
assert(int_pressure._current_pressure == count_int_pressure(liveout), "the int pressure is incorrect");
assert(float_pressure._current_pressure == count_float_pressure(liveout), "the float pressure is incorrect");
}
// Build the interference graph using physical registers when available.
// That is, if 2 live ranges are simultaneously alive but in their acceptable
// register sets do not overlap, then they do not interfere.
uint PhaseChaitin::build_ifg_physical( ResourceArea *a ) {
NOT_PRODUCT( Compile::TracePhase t3("buildIFG", &_t_buildIFGphysical, TimeCompiler); )
uint must_spill = 0;
// For all blocks (in any order) do...
for (uint i = 0; i < _cfg.number_of_blocks(); i++) {
Block* block = _cfg.get_block(i);
// Clone (rather than smash in place) the liveout info, so it is alive
// for the "collect_gc_info" phase later.
IndexSet liveout(_live->live(block));
uint last_inst = block->end_idx();
// Compute first nonphi node index
uint first_inst;
for (first_inst = 1; first_inst < last_inst; first_inst++) {
if (!block->get_node(first_inst)->is_Phi()) {
/* Go to the first non-phi index in a block */
static uint first_nonphi_index(Block* b) {
uint i;
uint end_idx = b->end_idx();
for (i = 1; i < end_idx; i++) {
Node* n = b->get_node(i);
if (!n->is_Phi()) {
break;
}
}
return i;
}
// Spills could be inserted before CreateEx node which should be
// first instruction in block after Phis. Move CreateEx up.
for (uint insidx = first_inst; insidx < last_inst; insidx++) {
Node *ex = block->get_node(insidx);
/*
* Spills could be inserted before a CreateEx node which should be the first
* instruction in a block after Phi nodes. If so, move the CreateEx node up.
*/
static void move_exception_node_up(Block* b, uint first_inst, uint last_inst) {
for (uint i = first_inst; i < last_inst; i++) {
Node* ex = b->get_node(i);
if (ex->is_SpillCopy()) {
continue;
}
if (insidx > first_inst && ex->is_Mach() && ex->as_Mach()->ideal_Opcode() == Op_CreateEx) {
// If the CreateEx isn't above all the MachSpillCopies
// then move it to the top.
block->remove_node(insidx);
block->insert_node(ex, first_inst);
if (i > first_inst &&
ex->is_Mach() && ex->as_Mach()->ideal_Opcode() == Op_CreateEx) {
b->remove_node(i);
b->insert_node(ex, first_inst);
}
// Stop once a CreateEx or any other node is found
break;
}
}
// Reset block's register pressure values for each ifg construction
uint pressure[2], hrp_index[2];
pressure[0] = pressure[1] = 0;
hrp_index[0] = hrp_index[1] = last_inst+1;
block->_reg_pressure = block->_freg_pressure = 0;
// Liveout things are presumed live for the whole block. We accumulate
// 'area' accordingly. If they get killed in the block, we'll subtract
// the unused part of the block from the area.
int inst_count = last_inst - first_inst;
double cost = (inst_count <= 0) ? 0.0 : block->_freq * double(inst_count);
assert(!(cost < 0.0), "negative spill cost" );
IndexSetIterator elements(&liveout);
uint lidx;
while ((lidx = elements.next()) != 0) {
LRG &lrg = lrgs(lidx);
/*
* When new live ranges are live, we raise the register pressure
*/
void PhaseChaitin::raise_pressure(Block* b, LRG& lrg, Pressure& int_pressure, Pressure& float_pressure) {
if (lrg.mask_is_nonempty_and_up()) {
if (lrg.is_float_or_vector()) {
float_pressure.raise(lrg);
} else {
// Do not count the SP and flag registers
const RegMask& rm = lrg.mask();
if (rm.overlap(*Matcher::idealreg2regmask[Op_RegI])) {
int_pressure.raise(lrg);
}
}
}
}
/*
* Computes the initial register pressure of a block, looking at all live
* ranges in the liveout. The register pressure is computed for both float
* and int/pointer registers.
* Live ranges in the liveout are presumed live for the whole block.
* We add the cost for the whole block to the area of the live ranges initially.
* If a live range gets killed in the block, we'll subtract the unused part of
* the block from the area.
*/
void PhaseChaitin::compute_initial_block_pressure(Block* b, IndexSet* liveout, Pressure& int_pressure, Pressure& float_pressure, double cost) {
IndexSetIterator elements(liveout);
uint lid = elements.next();
while (lid != 0) {
LRG& lrg = lrgs(lid);
lrg._area += cost;
// Compute initial register pressure
if (lrg.mask().is_UP() && lrg.mask_size()) {
if (lrg._is_float || lrg._is_vector) { // Count float pressure
pressure[1] += lrg.reg_pressure();
if (pressure[1] > block->_freg_pressure) {
block->_freg_pressure = pressure[1];
raise_pressure(b, lrg, int_pressure, float_pressure);
lid = elements.next();
}
// Count int pressure, but do not count the SP, flags
} else if(lrgs(lidx).mask().overlap(*Matcher::idealreg2regmask[Op_RegI])) {
pressure[0] += lrg.reg_pressure();
if (pressure[0] > block->_reg_pressure) {
block->_reg_pressure = pressure[0];
assert(int_pressure._current_pressure == count_int_pressure(liveout), "the int pressure is incorrect");
assert(float_pressure._current_pressure == count_float_pressure(liveout), "the float pressure is incorrect");
}
}
}
}
assert( pressure[0] == count_int_pressure (&liveout), "" );
assert( pressure[1] == count_float_pressure(&liveout), "" );
// The IFG is built by a single reverse pass over each basic block.
// Starting with the known live-out set, we remove things that get
// defined and add things that become live (essentially executing one
// pass of a standard LIVE analysis). Just before a Node defines a value
// (and removes it from the live-ness set) that value is certainly live.
// The defined value interferes with everything currently live. The
// value is then removed from the live-ness set and it's inputs are added
// to the live-ness set.
uint j;
for (j = last_inst + 1; j > 1; j--) {
Node* n = block->get_node(j - 1);
// Get value being defined
uint r = _lrg_map.live_range_id(n);
// Some special values do not allocate
if(r) {
// A DEF normally costs block frequency; rematerialized values are
// removed from the DEF sight, so LOWER costs here.
lrgs(r)._cost += n->rematerialize() ? 0 : block->_freq;
// If it is not live, then this instruction is dead. Probably caused
// by spilling and rematerialization. Who cares why, yank this baby.
if( !liveout.member(r) && n->Opcode() != Op_SafePoint ) {
/*
* Remove dead node if it's not used.
* We only remove projection nodes if the node "defining" the projection is
* dead, for example on x86, if we have a dead Add node we remove its
* RFLAGS node.
*/
bool PhaseChaitin::remove_node_if_not_used(Block* b, uint location, Node* n, uint lid, IndexSet* liveout) {
Node* def = n->in(0);
if (!n->is_Proj() ||
// Could also be a flags-projection of a dead ADD or such.
(_lrg_map.live_range_id(def) && !liveout.member(_lrg_map.live_range_id(def)))) {
block->remove_node(j - 1);
if (lrgs(r)._def == n) {
lrgs(r)._def = 0;
(_lrg_map.live_range_id(def) && !liveout->member(_lrg_map.live_range_id(def)))) {
b->remove_node(location);
LRG& lrg = lrgs(lid);
if (lrg._def == n) {
lrg._def = 0;
}
n->disconnect_inputs(NULL, C);
_cfg.unmap_node_from_block(n);
n->replace_by(C->top());
// Since yanking a Node from block, high pressure moves up one
hrp_index[0]--;
hrp_index[1]--;
continue;
return true;
}
return false;
}
// Fat-projections kill many registers which cannot be used to
// hold live ranges.
if (lrgs(r)._fat_proj) {
// Count the int-only registers
RegMask itmp = lrgs(r).mask();
itmp.AND(*Matcher::idealreg2regmask[Op_RegI]);
int iregs = itmp.Size();
if (pressure[0]+iregs > block->_reg_pressure) {
block->_reg_pressure = pressure[0] + iregs;
/*
* When encountering a fat projection, we might go from a low to high to low
* (since the fat proj only lives at this instruction) going backwards in the
* block. If we find a low to high transition, we record it.
*/
void PhaseChaitin::check_for_high_pressure_transition_at_fatproj(uint& block_reg_pressure, uint location, LRG& lrg, Pressure& pressure, const int op_regtype) {
RegMask mask_tmp = lrg.mask();
mask_tmp.AND(*Matcher::idealreg2regmask[op_regtype]);
// this pressure is only valid at this instruction, i.e. we don't need to lower
// the register pressure since the fat proj was never live before (going backwards)
uint new_pressure = pressure._current_pressure + mask_tmp.Size();
if (new_pressure > pressure._final_pressure) {
pressure._final_pressure = new_pressure;
}
if (pressure[0] <= (uint)INTPRESSURE && pressure[0] + iregs > (uint)INTPRESSURE) {
hrp_index[0] = j - 1;
}
// Count the float-only registers
RegMask ftmp = lrgs(r).mask();
ftmp.AND(*Matcher::idealreg2regmask[Op_RegD]);
int fregs = ftmp.Size();
if (pressure[1] + fregs > block->_freg_pressure) {
block->_freg_pressure = pressure[1] + fregs;
}
if(pressure[1] <= (uint)FLOATPRESSURE && pressure[1]+fregs > (uint)FLOATPRESSURE) {
hrp_index[1] = j - 1;
// if we were at a low pressure and now at the fat proj is at high pressure, record the fat proj location
// as coming from a low to high (to low again)
if (pressure._current_pressure <= pressure._high_pressure_limit && new_pressure > pressure._high_pressure_limit) {
pressure._high_pressure_index = location;
}
}
} else { // Else it is live
// A DEF also ends 'area' partway through the block.
lrgs(r)._area -= cost;
assert(!(lrgs(r)._area < 0.0), "negative spill area" );
// Insure high score for immediate-use spill copies so they get a color
if( n->is_SpillCopy()
&& lrgs(r).is_singledef() // MultiDef live range can still split
&& n->outcnt() == 1 // and use must be in this block
&& _cfg.get_block_for_node(n->unique_out()) == block) {
// All single-use MachSpillCopy(s) that immediately precede their
// use must color early. If a longer live range steals their
// color, the spill copy will split and may push another spill copy
// further away resulting in an infinite spill-split-retry cycle.
// Assigning a zero area results in a high score() and a good
// location in the simplify list.
//
/*
* Insure high score for immediate-use spill copies so they get a color.
* All single-use MachSpillCopy(s) that immediately precede their
* use must color early. If a longer live range steals their
* color, the spill copy will split and may push another spill copy
* further away resulting in an infinite spill-split-retry cycle.
* Assigning a zero area results in a high score() and a good
* location in the simplify list.
*/
void PhaseChaitin::assign_high_score_to_immediate_copies(Block* b, Node* n, LRG& lrg, uint next_inst, uint last_inst) {
if (n->is_SpillCopy() &&
lrg.is_singledef() && // A multi defined live range can still split
n->outcnt() == 1 && // and use must be in this block
_cfg.get_block_for_node(n->unique_out()) == b) {
Node* single_use = n->unique_out();
assert(block->find_node(single_use) >= j, "Use must be later in block");
assert(b->find_node(single_use) >= next_inst, "Use must be later in block");
// Use can be earlier in block if it is a Phi, but then I should be a MultiDef
// Find first non SpillCopy 'm' that follows the current instruction
// (j - 1) is index for current instruction 'n'
// (current_inst - 1) is index for current instruction 'n'
Node* m = n;
for (uint i = j; i <= last_inst && m->is_SpillCopy(); ++i) {
m = block->get_node(i);
for (uint i = next_inst; i <= last_inst && m->is_SpillCopy(); ++i) {
m = b->get_node(i);
}
if (m == single_use) {
lrgs(r)._area = 0.0;
lrg._area = 0.0;
}
}
}
// Remove from live-out set
if( liveout.remove(r) ) {
// Adjust register pressure.
// Capture last hi-to-lo pressure transition
lower_pressure(&lrgs(r), j - 1, block, pressure, hrp_index);
assert( pressure[0] == count_int_pressure (&liveout), "" );
assert( pressure[1] == count_float_pressure(&liveout), "" );
}
/*
* Copies do not define a new value and so do not interfere.
* Remove the copies source from the liveout set before interfering.
*/
void PhaseChaitin::remove_interference_from_copy(Block* b, uint location, uint lid_copy, IndexSet* liveout, double cost, Pressure& int_pressure, Pressure& float_pressure) {
if (liveout->remove(lid_copy)) {
LRG& lrg_copy = lrgs(lid_copy);
lrg_copy._area -= cost;
// Copies do not define a new value and so do not interfere.
// Remove the copies source from the liveout set before interfering.
uint idx = n->is_Copy();
if (idx) {
uint x = _lrg_map.live_range_id(n->in(idx));
if (liveout.remove(x)) {
lrgs(x)._area -= cost;
// Adjust register pressure.
lower_pressure(&lrgs(x), j - 1, block, pressure, hrp_index);
assert( pressure[0] == count_int_pressure (&liveout), "" );
assert( pressure[1] == count_float_pressure(&liveout), "" );
// Lower register pressure since copy and definition can share the same register
lower_pressure(b, location, lrg_copy, liveout, int_pressure, float_pressure);
}
}
} // End of if live or not
// Interfere with everything live. If the defined value must
// go in a particular register, just remove that register from
// all conflicting parties and avoid the interference.
// Make exclusions for rematerializable defs. Since rematerializable
// DEFs are not bound but the live range is, some uses must be bound.
// If we spill live range 'r', it can rematerialize at each use site
// according to its bindings.
const RegMask &rmask = lrgs(r).mask();
if( lrgs(r).is_bound() && !(n->rematerialize()) && rmask.is_NotEmpty() ) {
/*
* The defined value must go in a particular register. Remove that register from
* all conflicting parties and avoid the interference.
*/
void PhaseChaitin::remove_bound_register_from_interfering_live_ranges(LRG& lrg, IndexSet* liveout, uint& must_spill) {
// Check for common case
int r_size = lrgs(r).num_regs();
OptoReg::Name r_reg = (r_size == 1) ? rmask.find_first_elem() : OptoReg::Physical;
const RegMask& rm = lrg.mask();
int r_size = lrg.num_regs();
// Smear odd bits
IndexSetIterator elements(&liveout);
uint l;
while ((l = elements.next()) != 0) {
LRG &lrg = lrgs(l);
IndexSetIterator elements(liveout);
uint l = elements.next();
while (l != 0) {
LRG& interfering_lrg = lrgs(l);
// If 'l' must spill already, do not further hack his bits.
// He'll get some interferences and be forced to spill later.
if( lrg._must_spill ) continue;
if (interfering_lrg._must_spill) {
l = elements.next();
continue;
}
// Remove bound register(s) from 'l's choices
RegMask old = lrg.mask();
uint old_size = lrg.mask_size();
// Remove the bits from LRG 'r' from LRG 'l' so 'l' no
// longer interferes with 'r'. If 'l' requires aligned
RegMask old = interfering_lrg.mask();
uint old_size = interfering_lrg.mask_size();
// Remove the bits from LRG 'rm' from LRG 'l' so 'l' no
// longer interferes with 'rm'. If 'l' requires aligned
// adjacent pairs, subtract out bit pairs.
assert(!lrg._is_vector || !lrg._fat_proj, "sanity");
if (lrg.num_regs() > 1 && !lrg._fat_proj) {
RegMask r2mask = rmask;
assert(!interfering_lrg._is_vector || !interfering_lrg._fat_proj, "sanity");
if (interfering_lrg.num_regs() > 1 && !interfering_lrg._fat_proj) {
RegMask r2mask = rm;
// Leave only aligned set of bits.
r2mask.smear_to_sets(lrg.num_regs());
r2mask.smear_to_sets(interfering_lrg.num_regs());
// It includes vector case.
lrg.SUBTRACT( r2mask );
lrg.compute_set_mask_size();
} else if( r_size != 1 ) { // fat proj
lrg.SUBTRACT( rmask );
lrg.compute_set_mask_size();
} else { // Common case: size 1 bound removal
if( lrg.mask().Member(r_reg) ) {
lrg.Remove(r_reg);
lrg.set_mask_size(lrg.mask().is_AllStack() ? LRG::AllStack_size : old_size - 1);
interfering_lrg.SUBTRACT(r2mask);
interfering_lrg.compute_set_mask_size();
} else if (r_size != 1) {
// fat proj
interfering_lrg.SUBTRACT(rm);
interfering_lrg.compute_set_mask_size();
} else {
// Common case: size 1 bound removal
OptoReg::Name r_reg = rm.find_first_elem();
if (interfering_lrg.mask().Member(r_reg)) {
interfering_lrg.Remove(r_reg);
interfering_lrg.set_mask_size(interfering_lrg.mask().is_AllStack() ? LRG::AllStack_size : old_size - 1);
}
}
// If 'l' goes completely dry, it must spill.
if( lrg.not_free() ) {
// Give 'l' some kind of reasonable mask, so he picks up
if (interfering_lrg.not_free()) {
// Give 'l' some kind of reasonable mask, so it picks up
// interferences (and will spill later).
lrg.set_mask( old );
lrg.set_mask_size(old_size);
interfering_lrg.set_mask(old);
interfering_lrg.set_mask_size(old_size);
must_spill++;
lrg._must_spill = 1;
lrg.set_reg(OptoReg::Name(LRG::SPILL_REG));
interfering_lrg._must_spill = 1;
interfering_lrg.set_reg(OptoReg::Name(LRG::SPILL_REG));
}
l = elements.next();
}
}
} // End of if bound
// Now interference with everything that is live and has
// compatible register sets.
interfere_with_live(r,&liveout);
/*
* Start loop at 1 (skip control edge) for most Nodes. SCMemProj's might be the
* sole use of a StoreLConditional. While StoreLConditionals set memory (the
* SCMemProj use) they also def flags; if that flag def is unused the allocator
* sees a flag-setting instruction with no use of the flags and assumes it's
* dead. This keeps the (useless) flag-setting behavior alive while also
* keeping the (useful) memory update effect.
*/
void PhaseChaitin::add_input_to_liveout(Block* b, Node* n, IndexSet* liveout, double cost, Pressure& int_pressure, Pressure& float_pressure) {
JVMState* jvms = n->jvms();
uint debug_start = jvms ? jvms->debug_start() : 999999;
} // End of if normal register-allocated value
for (uint k = ((n->Opcode() == Op_SCMemProj) ? 0:1); k < n->req(); k++) {
Node* def = n->in(k);
uint lid = _lrg_map.live_range_id(def);
if (!lid) {
continue;
}
LRG& lrg = lrgs(lid);
// No use-side cost for spilling debug info
if (k < debug_start) {
// A USE costs twice block frequency (once for the Load, once
// for a Load-delay). Rematerialized uses only cost once.
lrg._cost += (def->rematerialize() ? b->_freq : (b->_freq * 2));
}
if (liveout->insert(lid)) {
// Newly live things assumed live from here to top of block
lrg._area += cost;
raise_pressure(b, lrg, int_pressure, float_pressure);
assert(int_pressure._current_pressure == count_int_pressure(liveout), "the int pressure is incorrect");
assert(float_pressure._current_pressure == count_float_pressure(liveout), "the float pressure is incorrect");
}
assert(!(lrg._area < 0.0), "negative spill area" );
}
}
/*
* If we run off the top of the block with high pressure just record that the
* whole block is high pressure. (Even though we might have a transition
* lower down in the block)
*/
void PhaseChaitin::check_for_high_pressure_block(Pressure& pressure) {
// current pressure now means the pressure before the first instruction in the block
// (since we have stepped through all instructions backwards)
if (pressure._current_pressure > pressure._high_pressure_limit) {
pressure._high_pressure_index = 0;
}
}
/*
* Compute high pressure indice; avoid landing in the middle of projnodes
* and set the high pressure index for the block
*/
void PhaseChaitin::adjust_high_pressure_index(Block* b, uint& block_hrp_index, Pressure& pressure) {
uint i = pressure._high_pressure_index;
if (i < b->number_of_nodes() && i < b->end_idx() + 1) {
Node* cur = b->get_node(i);
while (cur->is_Proj() || (cur->is_MachNullCheck()) || cur->is_Catch()) {
cur = b->get_node(--i);
}
}
block_hrp_index = i;
}
/* Build an interference graph:
* That is, if 2 live ranges are simultaneously alive but in their acceptable
* register sets do not overlap, then they do not interfere. The IFG is built
* by a single reverse pass over each basic block. Starting with the known
* live-out set, we remove things that get defined and add things that become
* live (essentially executing one pass of a standard LIVE analysis). Just
* before a Node defines a value (and removes it from the live-ness set) that
* value is certainly live. The defined value interferes with everything
* currently live. The value is then removed from the live-ness set and it's
* inputs are added to the live-ness set.
* Compute register pressure for each block:
* We store the biggest register pressure for each block and also the first
* low to high register pressure transition within the block (if any).
*/
uint PhaseChaitin::build_ifg_physical( ResourceArea *a ) {
NOT_PRODUCT(Compile::TracePhase t3("buildIFG", &_t_buildIFGphysical, TimeCompiler);)
uint must_spill = 0;
for (uint i = 0; i < _cfg.number_of_blocks(); i++) {
Block* block = _cfg.get_block(i);
// Clone (rather than smash in place) the liveout info, so it is alive
// for the "collect_gc_info" phase later.
IndexSet liveout(_live->live(block));
uint first_inst = first_nonphi_index(block);
uint last_inst = block->end_idx();
move_exception_node_up(block, first_inst, last_inst);
Pressure int_pressure(last_inst + 1, INTPRESSURE);
Pressure float_pressure(last_inst + 1, FLOATPRESSURE);
block->_reg_pressure = 0;
block->_freg_pressure = 0;
int inst_count = last_inst - first_inst;
double cost = (inst_count <= 0) ? 0.0 : block->_freq * double(inst_count);
assert(!(cost < 0.0), "negative spill cost" );
compute_initial_block_pressure(block, &liveout, int_pressure, float_pressure, cost);
for (uint location = last_inst; location > 0; location--) {
Node* n = block->get_node(location);
uint lid = _lrg_map.live_range_id(n);
if(lid) {
LRG& lrg = lrgs(lid);
// A DEF normally costs block frequency; rematerialized values are
// removed from the DEF sight, so LOWER costs here.
lrg._cost += n->rematerialize() ? 0 : block->_freq;
if (!liveout.member(lid) && n->Opcode() != Op_SafePoint) {
if (remove_node_if_not_used(block, location, n, lid, &liveout)) {
float_pressure._high_pressure_index--;
int_pressure._high_pressure_index--;
continue;
}
if (lrg._fat_proj) {
check_for_high_pressure_transition_at_fatproj(block->_reg_pressure, location, lrg, int_pressure, Op_RegI);
check_for_high_pressure_transition_at_fatproj(block->_freg_pressure, location, lrg, float_pressure, Op_RegD);
}
} else {
// A live range ends at its definition, remove the remaining area.
lrg._area -= cost;
assert(lrg._area >= 0.0, "negative spill area" );
assign_high_score_to_immediate_copies(block, n, lrg, location + 1, last_inst);
if (liveout.remove(lid)) {
lower_pressure(block, location, lrg, &liveout, int_pressure, float_pressure);
}
uint copy_idx = n->is_Copy();
if (copy_idx) {
uint lid_copy = _lrg_map.live_range_id(n->in(copy_idx));
remove_interference_from_copy(block, location, lid_copy, &liveout, cost, int_pressure, float_pressure);
}
}
// Since rematerializable DEFs are not bound but the live range is,
// some uses must be bound. If we spill live range 'r', it can
// rematerialize at each use site according to its bindings.
if (lrg.is_bound() && !n->rematerialize() && lrg.mask().is_NotEmpty()) {
remove_bound_register_from_interfering_live_ranges(lrg, &liveout, must_spill);
}
interfere_with_live(lid, &liveout);
}
// Area remaining in the block
inst_count--;
cost = (inst_count <= 0) ? 0.0 : block->_freq * double(inst_count);
// Make all inputs live
if( !n->is_Phi() ) { // Phi function uses come from prior block
JVMState* jvms = n->jvms();
uint debug_start = jvms ? jvms->debug_start() : 999999;
// Start loop at 1 (skip control edge) for most Nodes.
// SCMemProj's might be the sole use of a StoreLConditional.
// While StoreLConditionals set memory (the SCMemProj use)
// they also def flags; if that flag def is unused the
// allocator sees a flag-setting instruction with no use of
// the flags and assumes it's dead. This keeps the (useless)
// flag-setting behavior alive while also keeping the (useful)
// memory update effect.
for (uint k = ((n->Opcode() == Op_SCMemProj) ? 0:1); k < n->req(); k++) {
Node *def = n->in(k);
uint x = _lrg_map.live_range_id(def);
if (!x) {
continue;
}
LRG &lrg = lrgs(x);
// No use-side cost for spilling debug info
if (k < debug_start) {
// A USE costs twice block frequency (once for the Load, once
// for a Load-delay). Rematerialized uses only cost once.
lrg._cost += (def->rematerialize() ? block->_freq : (block->_freq + block->_freq));
}
// It is live now
if (liveout.insert(x)) {
// Newly live things assumed live from here to top of block
lrg._area += cost;
// Adjust register pressure
if (lrg.mask().is_UP() && lrg.mask_size()) {
if (lrg._is_float || lrg._is_vector) {
pressure[1] += lrg.reg_pressure();
if (pressure[1] > block->_freg_pressure) {
block->_freg_pressure = pressure[1];
}
} else if( lrg.mask().overlap(*Matcher::idealreg2regmask[Op_RegI]) ) {
pressure[0] += lrg.reg_pressure();
if (pressure[0] > block->_reg_pressure) {
block->_reg_pressure = pressure[0];
}
}
}
assert( pressure[0] == count_int_pressure (&liveout), "" );
assert( pressure[1] == count_float_pressure(&liveout), "" );
}
assert(!(lrg._area < 0.0), "negative spill area" );
}
}
} // End of reverse pass over all instructions in block
// If we run off the top of the block with high pressure and
// never see a hi-to-low pressure transition, just record that
// the whole block is high pressure.
if (pressure[0] > (uint)INTPRESSURE) {
hrp_index[0] = 0;
if (pressure[0] > block->_reg_pressure) {
block->_reg_pressure = pressure[0];
}
}
if (pressure[1] > (uint)FLOATPRESSURE) {
hrp_index[1] = 0;
if (pressure[1] > block->_freg_pressure) {
block->_freg_pressure = pressure[1];
if (!n->is_Phi()) {
add_input_to_liveout(block, n, &liveout, cost, int_pressure, float_pressure);
}
}
// Compute high pressure indice; avoid landing in the middle of projnodes
j = hrp_index[0];
if (j < block->number_of_nodes() && j < block->end_idx() + 1) {
Node* cur = block->get_node(j);
while (cur->is_Proj() || (cur->is_MachNullCheck()) || cur->is_Catch()) {
j--;
cur = block->get_node(j);
}
}
block->_ihrp_index = j;
j = hrp_index[1];
if (j < block->number_of_nodes() && j < block->end_idx() + 1) {
Node* cur = block->get_node(j);
while (cur->is_Proj() || (cur->is_MachNullCheck()) || cur->is_Catch()) {
j--;
cur = block->get_node(j);
}
}
block->_fhrp_index = j;
check_for_high_pressure_block(int_pressure);
check_for_high_pressure_block(float_pressure);
adjust_high_pressure_index(block, block->_ihrp_index, int_pressure);
adjust_high_pressure_index(block, block->_fhrp_index, float_pressure);
// set the final_pressure as the register pressure for the block
block->_reg_pressure = int_pressure._final_pressure;
block->_freg_pressure = float_pressure._final_pressure;
#ifndef PRODUCT
// Gather Register Pressure Statistics
if (PrintOptoStatistics) {
if (block->_reg_pressure > (uint)INTPRESSURE || block->_freg_pressure > (uint)FLOATPRESSURE) {
if (block->_reg_pressure > int_pressure._high_pressure_limit || block->_freg_pressure > float_pressure._high_pressure_limit) {
_high_pressure++;
} else {
_low_pressure++;
}
}
#endif
} // End of for all blocks
}
return must_spill;
}