This commit is contained in:
Yuri Nesterenko 2009-09-21 01:26:57 -07:00
commit 979ba581fe
744 changed files with 86328 additions and 13316 deletions

View File

@ -44,3 +44,5 @@ d22867c5f1b295a0a2b3b4bc8999a2676f6e20c3 jdk7-b64
eb24af1404aec8aa140c4cd4d13d2839b150dd41 jdk7-b67
bca2225b66d78c4bf4d9801f54cac7715a598650 jdk7-b68
1b662b1ed14eb4ae31d5138a36c433b13d941dc5 jdk7-b69
207f694795c448c17753eff1a2f50363106960c2 jdk7-b70
c5d39b6be65cba0effb5f466ea48fe43764d0e0c jdk7-b71

View File

@ -44,3 +44,5 @@ e01380cd1de4ce048b87d059d238e5ab5e341947 jdk7-b65
c4523c6f82048f420bf0d57c4cd47976753b7d2c jdk7-b67
e1b972ff53cd58f825791f8ed9b2deffd16e768c jdk7-b68
82e6c820c51ac27882b77755d42efefdbf1dcda0 jdk7-b69
175cb3fe615998d1004c6d3fd96e6d2e86b6772d jdk7-b70
4c36e9853dda27bdac5ef4839a610509fbe31d34 jdk7-b71

View File

@ -68,7 +68,6 @@
</li>
<li><a href="#zip">Zip and Unzip</a> </li>
<li><a href="#freetype">FreeType2 Fonts</a> </li>
<li><a href="#jibx">JIBX Libraries</a> </li>
<li>Linux and Solaris:
<ul>
<li><a href="#cups">CUPS Include files</a> </li>
@ -596,11 +595,6 @@
Install or upgrade the <a href="#freetype">FreeType development
package</a>.
</li>
<li>
Install the
<a href="#jibx">JIBX Libraries</a>, set
<tt><a href="#ALT_JIBX_LIBS_PATH">ALT_JIBX_LIBS_PATH</a></tt>.
</li>
<li>
Install
<a href="#ant">Ant</a>,
@ -669,11 +663,6 @@
<li>
Install the <a href="#xrender">XRender Include files</a>.
</li>
<li>
Install the
<a href="#jibx">JIBX Libraries</a>, set
<tt><a href="#ALT_JIBX_LIBS_PATH">ALT_JIBX_LIBS_PATH</a></tt>.
</li>
<li>
Install
<a href="#ant">Ant</a>,
@ -769,11 +758,6 @@
Install
<a href="#dxsdk">Microsoft DirectX SDK</a>.
</li>
<li>
Install the
<a href="#jibx">JIBX Libraries</a>, set
<tt><a href="#ALT_JIBX_LIBS_PATH">ALT_JIBX_LIBS_PATH</a></tt>.
</li>
<li>
Install
<a href="#ant">Ant</a>,
@ -903,27 +887,6 @@
fine for most JDK developers.
</blockquote>
<!-- ------------------------------------------------------ -->
<h4><a name="jibx">JIBX</a></h4>
<blockquote>
JIBX libraries version 1.1.5 is required for building the OpenJDK.
Namely, the following JAR files from the JIBX distribution package
are required:
<ul>
<li>bcel.jar
<li>jibx-bind.jar
<li>jibx-run.jar
<li>xpp3.jar
</ul>
<p>
You can download the package from the
<a href="http://jibx.sourceforge.net" target="_blank">JIBX site</a>.
<p>
You will need to set the
<tt><a href="#ALT_JIBX_LIBS_PATH">ALT_JIBX_LIBS_PATH</a></tt>
environment variable to refer to place where the JAR files,
above, are located.
</blockquote>
<!-- ------------------------------------------------------ -->
<h4><a name="compilers">Compilers</a></h4>
<blockquote>
<strong><a name="gcc">Linux gcc/binutils</a></strong>
@ -1496,12 +1459,6 @@
The default will refer to
<tt>jdk/src/share/lib/security/cacerts</tt>.
</dd>
<dt><tt><a name="ALT_JIBX_LIBS_PATH">ALT_JIBX_LIBS_PATH</a></tt></dt>
<dd>
The location of the <a href="#jibx">JIBX libraries</a> file.
The default value is
<tt>$(ALT_SLASH_JAVA)/devtools/share/jibx/lib</tt>.
</dd>
<dt><a name="ALT_CUPS_HEADERS_PATH"><tt>ALT_CUPS_HEADERS_PATH</tt></a> </dt>
<dd>
The location of the CUPS header files.

View File

@ -44,3 +44,5 @@ a821e059a961bcb02830280d51f6dd030425c066 jdk7-b66
a12ea7c7b497b4ba7830550095ef633bd6f43971 jdk7-b67
5182bcc9c60cac429d1f7988676cec7320752be3 jdk7-b68
8120d308ec4e805c5588b8d9372844d781c4112d jdk7-b69
175bd68779546078dbdb6dacd7f0aced79ed22b1 jdk7-b70
3f1ef7f899ea2aec189c4fb67e5c8fa374437c50 jdk7-b71

View File

@ -55,10 +55,21 @@ else
ADD_CLIENT_VM_OPTION = true
endif
endif
JAVA_JVM_FLAGS =
# Options for hotspot to turn off printing of options with fastdebug version
# and creating the hotspot.log file.
JAVA_HOTSPOT_DISABLE_PRINT_VMOPTIONS = \
-XX:-PrintVMOptions -XX:+UnlockDiagnosticVMOptions -XX:-LogVMOutput
# JVM options
JAVA_JVM_FLAGS = $(JAVA_HOTSPOT_DISABLE_PRINT_VMOPTIONS)
ifeq ($(ADD_CLIENT_VM_OPTION), true)
JAVA_JVM_FLAGS += -client
endif
ifdef USE_HOTSPOT_INTERPRETER_MODE
JAVA_JVM_FLAGS += -Xint
endif
# Various VM flags
JAVA_TOOLS_FLAGS = $(JAVA_JVM_FLAGS) $(JAVA_MEM_FLAGS)
@ -100,7 +111,10 @@ JAVACFLAGS =
ifeq ($(DEBUG_CLASSFILES),true)
JAVACFLAGS += -g
endif
ifeq ($(COMPILER_WARNINGS_FATAL), true)
ifeq ($(JAVAC_MAX_WARNINGS), true)
JAVACFLAGS += -Xlint:all
endif
ifeq ($(JAVAC_WARNINGS_FATAL), true)
JAVACFLAGS += -Werror
endif
@ -108,7 +122,8 @@ NO_PROPRIETARY_API_WARNINGS = -XDignore.symbol.file=true
JAVACFLAGS += $(NO_PROPRIETARY_API_WARNINGS)
# Add the source level
LANGUAGE_VERSION = -source 7
SOURCE_LANGUAGE_VERSION = 7
LANGUAGE_VERSION = -source $(SOURCE_LANGUAGE_VERSION)
JAVACFLAGS += $(LANGUAGE_VERSION)
# Add the class version we want
@ -176,10 +191,17 @@ endif
# The javac options supplied to the boot javac is limited. This compiler
# should only be used to build the 'make/tools' sources, which are not
# class files that end up in the classes directory.
ifeq ($(COMPILER_WARNINGS_FATAL), true)
ifeq ($(JAVAC_MAX_WARNINGS), true)
BOOT_JAVACFLAGS += -Xlint:all
endif
ifeq ($(JAVAC_WARNINGS_FATAL), true)
BOOT_JAVACFLAGS += -Werror
endif
BOOT_JAVACFLAGS += -encoding ascii
BOOT_SOURCE_LANGUAGE_VERSION = 6
BOOT_TARGET_CLASS_VERSION = 6
BOOT_JAVACFLAGS += -encoding ascii -source $(BOOT_SOURCE_LANGUAGE_VERSION) -target $(BOOT_TARGET_CLASS_VERSION)
BOOT_JAR_JFLAGS += $(JAR_JFLAGS)
BOOT_JAVA_CMD = $(BOOTDIR)/bin/java $(JAVA_TOOLS_FLAGS)
BOOT_JAVAC_CMD = $(BOOTDIR)/bin/javac $(JAVAC_JVM_FLAGS) $(BOOT_JAVACFLAGS)

View File

@ -44,3 +44,5 @@ ba313800759b678979434d6da8ed3bf49eb8bea4 jdk7-b65
18f526145aea355a9320b724373386fc2170f183 jdk7-b67
d07e68298d4e17ebf93d8299e43fcc3ded26472a jdk7-b68
54fd4d9232969ea6cd3d236e5ad276183bb0d423 jdk7-b69
0632c3e615a315ff11e2ab1d64f4d82ff9853461 jdk7-b70
50a95aa4a247f0cbbf66df285a8b1d78ffb153d9 jdk7-b71

View File

@ -48,6 +48,8 @@ if [ "$OS" = "Linux" ]; then
CPU=i386
fi
else
LD_AUDIT_32=$STARTDIR/../src/os/solaris/proc/`uname -p`/libsaproc_audit.so
export LD_AUDIT_32
SA_LIBPATH=$STARTDIR/../src/os/solaris/proc/`uname -p`:$STARTDIR/solaris/`uname -p`
OPTIONS="-Dsa.library.path=$SA_LIBPATH -Dsun.jvm.hotspot.debugger.useProcDebugger"
CPU=sparc

View File

@ -43,6 +43,8 @@ else
fi
fi
LD_AUDIT_64=$STARTDIR/../src/os/solaris/proc/$CPU/libsaproc_audit.so
export LD_AUDIT_64
SA_LIBPATH=$STARTDIR/../src/os/solaris/proc/$CPU:$STARTDIR/solaris/$CPU
OPTIONS="-Dsa.library.path=$SA_LIBPATH -Dsun.jvm.hotspot.debugger.useProcDebugger"

View File

@ -56,24 +56,28 @@ i386:: javahomecheck
@javah -classpath $(CLASSES_DIR) -jni sun.jvm.hotspot.debugger.proc.ProcDebuggerLocal
CC -G -KPIC -I${JAVA_HOME}/include -I${JAVA_HOME}/include/solaris saproc.cpp \
-M mapfile -o $@/libsaproc.so -ldemangle
CC -o $@/libsaproc_audit.so -G -Kpic -z defs saproc_audit.cpp -lmapmalloc -ldl -lc
amd64:: javahomecheck
$(MKDIRS) $@
@javah -classpath $(CLASSES_DIR) -jni sun.jvm.hotspot.debugger.proc.ProcDebuggerLocal
CC -G -KPIC -xarch=amd64 -I${JAVA_HOME}/include -I${JAVA_HOME}/include/solaris saproc.cpp \
-M mapfile -o $@/libsaproc.so -ldemangle
CC -xarch=amd64 -o $@/libsaproc_audit.so -G -Kpic -z defs saproc_audit.cpp -lmapmalloc -ldl -lc
sparc:: javahomecheck
$(MKDIRS) $@
@javah -classpath $(CLASSES_DIR) -jni sun.jvm.hotspot.debugger.proc.ProcDebuggerLocal
CC -G -KPIC -xarch=v8 -I${JAVA_HOME}/include -I${JAVA_HOME}/include/solaris saproc.cpp \
-M mapfile -o $@/libsaproc.so -ldemangle
CC -xarch=v8 -o $@/libsaproc_audit.so -G -Kpic -z defs saproc_audit.cpp -lmapmalloc -ldl -lc
sparcv9:: javahomecheck
$(MKDIRS) $@
@javah -classpath $(CLASSES_DIR) -jni sun.jvm.hotspot.debugger.proc.ProcDebuggerLocal
CC -G -KPIC -xarch=v9 -I${JAVA_HOME}/include -I${JAVA_HOME}/include/solaris saproc.cpp \
-M mapfile -o $@/libsaproc.so -ldemangle
CC -xarch=v9 -o $@/libsaproc_audit.so -G -Kpic -z defs saproc_audit.cpp -lmapmalloc -ldl -lc
clean::
$(RM) -rf sun_jvm_hotspot_debugger_proc_ProcDebuggerLocal.h

View File

@ -45,6 +45,8 @@ SUNWprivate_1.1 {
Java_sun_jvm_hotspot_debugger_proc_ProcDebuggerLocal_resume0;
Java_sun_jvm_hotspot_debugger_proc_ProcDebuggerLocal_suspend0;
Java_sun_jvm_hotspot_debugger_proc_ProcDebuggerLocal_writeBytesToProcess0;
# this is needed by saproc_audit.c to redirect opens in libproc.so
libsaproc_open;
local:
*;
};

View File

@ -214,11 +214,17 @@ static void init_alt_root() {
}
}
static int find_file_hook(const char * name, int elf_checksum) {
// This function is a complete substitute for the open system call
// since it's also used to override open calls from libproc to
// implement as a pathmap style facility for the SA. If libproc
// starts using other interfaces then this might have to extended to
// cover other calls.
extern "C" int libsaproc_open(const char * name, int oflag, ...) {
if (oflag == O_RDONLY) {
init_alt_root();
if (_libsaproc_debug) {
printf("libsaproc DEBUG: find_file_hook %s 0x%x\n", name, elf_checksum);
printf("libsaproc DEBUG: libsaproc_open %s\n", name);
}
if (alt_root_len > 0) {
@ -230,7 +236,7 @@ static int find_file_hook(const char * name, int elf_checksum) {
fd = open(alt_path, O_RDONLY);
if (fd >= 0) {
if (_libsaproc_debug) {
printf("libsaproc DEBUG: find_file_hook substituted %s\n", alt_path);
printf("libsaproc DEBUG: libsaproc_open substituted %s\n", alt_path);
}
return fd;
}
@ -241,22 +247,25 @@ static int find_file_hook(const char * name, int elf_checksum) {
fd = open(alt_path, O_RDONLY);
if (fd >= 0) {
if (_libsaproc_debug) {
printf("libsaproc DEBUG: find_file_hook substituted %s\n", alt_path);
printf("libsaproc DEBUG: libsaproc_open substituted %s\n", alt_path);
}
return fd;
}
}
}
return -1;
}
{
mode_t mode;
va_list ap;
va_start(ap, oflag);
mode = va_arg(ap, mode_t);
va_end(ap);
return open(name, oflag, mode);
}
}
static int pathmap_open(const char* name) {
int fd = open(name, O_RDONLY);
if (fd < 0) {
fd = find_file_hook(name, 0);
}
return fd;
}
static void * pathmap_dlopen(const char * name, int mode) {
init_alt_root();
@ -608,7 +617,7 @@ init_classsharing_workaround(void *cd, const prmap_t* pmap, const char* obj_name
print_debug("looking for %s\n", classes_jsa);
// open the classes[_g].jsa
int fd = pathmap_open(classes_jsa);
int fd = libsaproc_open(classes_jsa, O_RDONLY);
if (fd < 0) {
char errMsg[ERR_MSG_SIZE];
sprintf(errMsg, "can't open shared archive file %s", classes_jsa);
@ -1209,8 +1218,6 @@ JNIEXPORT jstring JNICALL Java_sun_jvm_hotspot_debugger_proc_ProcDebuggerLocal_d
return res;
}
typedef int (*find_file_hook_t)(const char *, int elf_checksum);
/*
* Class: sun_jvm_hotspot_debugger_proc_ProcDebuggerLocal
* Method: initIDs
@ -1230,16 +1237,6 @@ JNIEXPORT void JNICALL Java_sun_jvm_hotspot_debugger_proc_ProcDebuggerLocal_init
if (libproc_handle == 0)
THROW_NEW_DEBUGGER_EXCEPTION("can't load libproc.so, if you are using Solaris 5.7 or below, copy libproc.so from 5.8!");
// If possible, set shared object find file hook.
void (*set_hook)(find_file_hook_t) = (void(*)(find_file_hook_t))dlsym(libproc_handle, "Pset_find_file_hook");
if (set_hook) {
// we found find file hook symbol, set up our hook function.
set_hook(find_file_hook);
} else if (getenv(SA_ALTROOT)) {
printf("libsaproc WARNING: %s set, but can't set file hook. " \
"Did you use right version of libproc.so?\n", SA_ALTROOT);
}
p_ps_prochandle_ID = env->GetFieldID(clazz, "p_ps_prochandle", "J");
CHECK_EXCEPTION;

View File

@ -0,0 +1,98 @@
/*
* Copyright 2009 Sun Microsystems, Inc. All Rights Reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
* CA 95054 USA or visit www.sun.com if you need additional information or
* have any questions.
*
*/
#include <link.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <limits.h>
#include <varargs.h>
// This class sets up an interposer on open calls from libproc.so to
// support a pathmap facility in the SA.
static uintptr_t* libproc_cookie;
static uintptr_t* libc_cookie;
static uintptr_t* libsaproc_cookie;
uint_t
la_version(uint_t version)
{
return (LAV_CURRENT);
}
uint_t
la_objopen(Link_map * lmp, Lmid_t lmid, uintptr_t * cookie)
{
if (strstr(lmp->l_name, "/libproc.so") != NULL) {
libproc_cookie = cookie;
return LA_FLG_BINDFROM;
}
if (strstr(lmp->l_name, "/libc.so") != NULL) {
libc_cookie = cookie;
return LA_FLG_BINDTO;
}
if (strstr(lmp->l_name, "/libsaproc.so") != NULL) {
libsaproc_cookie = cookie;
return LA_FLG_BINDTO | LA_FLG_BINDFROM;
}
return 0;
}
#if defined(_LP64)
uintptr_t
la_symbind64(Elf64_Sym *symp, uint_t symndx, uintptr_t *refcook,
uintptr_t *defcook, uint_t *sb_flags, const char *sym_name)
#else
uintptr_t
la_symbind32(Elf32_Sym *symp, uint_t symndx, uintptr_t *refcook,
uintptr_t *defcook, uint_t *sb_flags)
#endif
{
#if !defined(_LP64)
const char *sym_name = (const char *)symp->st_name;
#endif
if (strcmp(sym_name, "open") == 0 && refcook == libproc_cookie) {
// redirect all open calls from libproc.so through libsaproc_open which will
// try the alternate library locations first.
void* handle = dlmopen(LM_ID_BASE, "libsaproc.so", RTLD_NOLOAD);
if (handle == NULL) {
fprintf(stderr, "libsaproc_audit.so: didn't find libsaproc.so during linking\n");
} else {
uintptr_t libsaproc_open = (uintptr_t)dlsym(handle, "libsaproc_open");
if (libsaproc_open == 0) {
fprintf(stderr, "libsaproc_audit.so: didn't find libsaproc_open during linking\n");
} else {
return libsaproc_open;
}
}
}
return symp->st_value;
}

View File

@ -1,5 +1,5 @@
/*
* Copyright 2000-2006 Sun Microsystems, Inc. All Rights Reserved.
* Copyright 2000-2009 Sun Microsystems, Inc. All Rights Reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -259,7 +259,7 @@ public class NMethod extends CodeBlob {
if (Assert.ASSERTS_ENABLED) {
Assert.that(pd != null, "scope must be present");
}
return new ScopeDesc(this, pd.getScopeDecodeOffset());
return new ScopeDesc(this, pd.getScopeDecodeOffset(), pd.getReexecute());
}
/** This is only for use by the debugging system, and is only
@ -291,7 +291,7 @@ public class NMethod extends CodeBlob {
public ScopeDesc getScopeDescNearDbg(Address pc) {
PCDesc pd = getPCDescNearDbg(pc);
if (pd == null) return null;
return new ScopeDesc(this, pd.getScopeDecodeOffset());
return new ScopeDesc(this, pd.getScopeDecodeOffset(), pd.getReexecute());
}
public Map/*<Address, PcDesc>*/ getSafepoints() {

View File

@ -1,5 +1,5 @@
/*
* Copyright 2000-2004 Sun Microsystems, Inc. All Rights Reserved.
* Copyright 2000-2009 Sun Microsystems, Inc. All Rights Reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -36,6 +36,7 @@ import sun.jvm.hotspot.types.*;
public class PCDesc extends VMObject {
private static CIntegerField pcOffsetField;
private static CIntegerField scopeDecodeOffsetField;
private static CIntegerField pcFlagsField;
static {
VM.registerVMInitializedObserver(new Observer() {
@ -50,6 +51,7 @@ public class PCDesc extends VMObject {
pcOffsetField = type.getCIntegerField("_pc_offset");
scopeDecodeOffsetField = type.getCIntegerField("_scope_decode_offset");
pcFlagsField = type.getCIntegerField("_flags");
}
public PCDesc(Address addr) {
@ -70,6 +72,12 @@ public class PCDesc extends VMObject {
return code.instructionsBegin().addOffsetTo(getPCOffset());
}
public boolean getReexecute() {
int flags = (int)pcFlagsField.getValue(addr);
return ((flags & 0x1)== 1); //first is the reexecute bit
}
public void print(NMethod code) {
printOn(System.out, code);
}
@ -82,6 +90,7 @@ public class PCDesc extends VMObject {
tty.print(" ");
sd.getMethod().printValueOn(tty);
tty.print(" @" + sd.getBCI());
tty.print(" reexecute=" + sd.getReexecute());
tty.println();
}
}

View File

@ -41,6 +41,7 @@ public class ScopeDesc {
private NMethod code;
private Method method;
private int bci;
private boolean reexecute;
/** Decoding offsets */
private int decodeOffset;
private int senderDecodeOffset;
@ -51,10 +52,11 @@ public class ScopeDesc {
private List objects; // ArrayList<ScopeValue>
public ScopeDesc(NMethod code, int decodeOffset) {
public ScopeDesc(NMethod code, int decodeOffset, boolean reexecute) {
this.code = code;
this.decodeOffset = decodeOffset;
this.objects = decodeObjectValues(DebugInformationRecorder.SERIALIZED_NULL);
this.reexecute = reexecute;
// Decode header
DebugInfoReadStream stream = streamAt(decodeOffset);
@ -68,10 +70,11 @@ public class ScopeDesc {
monitorsDecodeOffset = stream.readInt();
}
public ScopeDesc(NMethod code, int decodeOffset, int objectDecodeOffset) {
public ScopeDesc(NMethod code, int decodeOffset, int objectDecodeOffset, boolean reexecute) {
this.code = code;
this.decodeOffset = decodeOffset;
this.objects = decodeObjectValues(objectDecodeOffset);
this.reexecute = reexecute;
// Decode header
DebugInfoReadStream stream = streamAt(decodeOffset);
@ -88,6 +91,7 @@ public class ScopeDesc {
public NMethod getNMethod() { return code; }
public Method getMethod() { return method; }
public int getBCI() { return bci; }
public boolean getReexecute() { return reexecute;}
/** Returns a List&lt;ScopeValue&gt; */
public List getLocals() {
@ -115,7 +119,7 @@ public class ScopeDesc {
return null;
}
return new ScopeDesc(code, senderDecodeOffset);
return new ScopeDesc(code, senderDecodeOffset, false);
}
/** Returns where the scope was decoded */
@ -149,7 +153,8 @@ public class ScopeDesc {
public void printValueOn(PrintStream tty) {
tty.print("ScopeDesc for ");
method.printValueOn(tty);
tty.println(" @bci " + bci);
tty.print(" @bci " + bci);
tty.println(" reexecute=" + reexecute);
}
// FIXME: add more accessors
@ -157,7 +162,6 @@ public class ScopeDesc {
//--------------------------------------------------------------------------------
// Internals only below this point
//
private DebugInfoReadStream streamAt(int decodeOffset) {
return new DebugInfoReadStream(code, decodeOffset, objects);
}

View File

@ -176,19 +176,6 @@ public class CompactibleFreeListSpace extends CompactibleSpace {
for (; cur.lessThan(limit);) {
Address klassOop = cur.getAddressAt(addressSize);
// FIXME: need to do a better job here.
// can I use bitMap here?
if (klassOop == null) {
//Find the object size using Printezis bits and skip over
System.err.println("Finding object size using Printezis bits and skipping over...");
long size = collector().blockSizeUsingPrintezisBits(cur);
if (size == -1) {
System.err.println("Printezis bits not set...");
break;
}
cur = cur.addOffsetTo(adjustObjectSizeInBytes(size));
}
if (FreeChunk.indicatesFreeChunk(cur)) {
if (! cur.equals(regionStart)) {
res.add(new MemRegion(regionStart, cur));
@ -200,12 +187,21 @@ public class CompactibleFreeListSpace extends CompactibleSpace {
}
// note that fc.size() gives chunk size in heap words
cur = cur.addOffsetTo(chunkSize * addressSize);
System.err.println("Free chunk in CMS heap, size="+chunkSize * addressSize);
regionStart = cur;
} else if (klassOop != null) {
Oop obj = heap.newOop(cur.addOffsetToAsOopHandle(0));
long objectSize = obj.getObjectSize();
cur = cur.addOffsetTo(adjustObjectSizeInBytes(objectSize));
} else {
// FIXME: need to do a better job here.
// can I use bitMap here?
//Find the object size using Printezis bits and skip over
long size = collector().blockSizeUsingPrintezisBits(cur);
if (size == -1) {
System.err.println("Printezis bits not set...");
break;
}
cur = cur.addOffsetTo(adjustObjectSizeInBytes(size));
}
}
return res;

View File

@ -63,7 +63,7 @@ public class FreeChunk extends VMObject {
public long size() {
if (VM.getVM().isCompressedOopsEnabled()) {
Mark mark = new Mark(sizeField.getValue(addr));
Mark mark = new Mark(addr.addOffsetTo(sizeField.getOffset()));
return mark.getSize();
} else {
Address size = sizeField.getValue(addr);
@ -83,7 +83,7 @@ public class FreeChunk extends VMObject {
public boolean isFree() {
if (VM.getVM().isCompressedOopsEnabled()) {
Mark mark = new Mark(sizeField.getValue(addr));
Mark mark = new Mark(addr.addOffsetTo(sizeField.getOffset()));
return mark.isCmsFreeChunk();
} else {
Address prev = prevField.getValue(addr);

View File

@ -33,9 +33,9 @@
# Don't put quotes (fail windows build).
HOTSPOT_VM_COPYRIGHT=Copyright 2009
HS_MAJOR_VER=16
HS_MAJOR_VER=17
HS_MINOR_VER=0
HS_BUILD_NUMBER=07
HS_BUILD_NUMBER=01
JDK_MAJOR_VER=1
JDK_MINOR_VER=7

View File

@ -40,6 +40,10 @@ jprt.need.sibling.build=false
jprt.tools.default.release=${jprt.submit.release}
# Disable syncing the source after builds and tests are done.
jprt.sync.push=false
# Define the Solaris platforms we want for the various releases
jprt.my.solaris.sparc.jdk7=solaris_sparc_5.10
@ -306,7 +310,6 @@ jprt.my.windows.x64.test.targets = \
${jprt.my.windows.x64}-{product|fastdebug}-c2-GCBasher_ParallelGC, \
${jprt.my.windows.x64}-{product|fastdebug}-c2-GCBasher_ParNewGC, \
${jprt.my.windows.x64}-{product|fastdebug}-c2-GCBasher_CMS, \
${jprt.my.windows.x64}-{product|fastdebug}-c2-GCBasher_G1, \
${jprt.my.windows.x64}-{product|fastdebug}-c2-GCBasher_ParOldGC, \
${jprt.my.windows.x64}-{product|fastdebug}-c2-GCOld_default, \
${jprt.my.windows.x64}-{product|fastdebug}-c2-GCOld_SerialGC, \

View File

@ -1,5 +1,5 @@
/*
* Copyright 2000-2005 Sun Microsystems, Inc. All Rights Reserved.
* Copyright 2000-2009 Sun Microsystems, Inc. All Rights Reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -38,7 +38,7 @@ enum {
// registers
enum {
pd_nof_cpu_regs_frame_map = 32, // number of registers used during code emission
pd_nof_caller_save_cpu_regs_frame_map = 6, // number of cpu registers killed by calls
pd_nof_caller_save_cpu_regs_frame_map = 10, // number of cpu registers killed by calls
pd_nof_cpu_regs_reg_alloc = 20, // number of registers that are visible to register allocator
pd_nof_cpu_regs_linearscan = 32,// number of registers visible linear scan
pd_first_cpu_reg = 0,

View File

@ -320,6 +320,10 @@ void FrameMap::init () {
_caller_save_cpu_regs[3] = FrameMap::O3_opr;
_caller_save_cpu_regs[4] = FrameMap::O4_opr;
_caller_save_cpu_regs[5] = FrameMap::O5_opr;
_caller_save_cpu_regs[6] = FrameMap::G1_opr;
_caller_save_cpu_regs[7] = FrameMap::G3_opr;
_caller_save_cpu_regs[8] = FrameMap::G4_opr;
_caller_save_cpu_regs[9] = FrameMap::G5_opr;
for (int i = 0; i < nof_caller_save_fpu_regs; i++) {
_caller_save_fpu_regs[i] = LIR_OprFact::single_fpu(i);
}

View File

@ -749,6 +749,10 @@ void LIRGenerator::do_MathIntrinsic(Intrinsic* x) {
void LIRGenerator::do_ArrayCopy(Intrinsic* x) {
assert(x->number_of_arguments() == 5, "wrong type");
// Make all state_for calls early since they can emit code
CodeEmitInfo* info = state_for(x, x->state());
// Note: spill caller save before setting the item
LIRItem src (x->argument_at(0), this);
LIRItem src_pos (x->argument_at(1), this);
@ -767,7 +771,6 @@ void LIRGenerator::do_ArrayCopy(Intrinsic* x) {
ciArrayKlass* expected_type;
arraycopy_helper(x, &flags, &expected_type);
CodeEmitInfo* info = state_for(x, x->state());
__ arraycopy(src.result(), src_pos.result(), dst.result(), dst_pos.result(),
length.result(), rlock_callee_saved(T_INT),
expected_type, flags, info);
@ -878,6 +881,9 @@ void LIRGenerator::do_NewInstance(NewInstance* x) {
void LIRGenerator::do_NewTypeArray(NewTypeArray* x) {
// Evaluate state_for early since it may emit code
CodeEmitInfo* info = state_for(x, x->state());
LIRItem length(x->length(), this);
length.load_item();
@ -892,7 +898,6 @@ void LIRGenerator::do_NewTypeArray(NewTypeArray* x) {
__ oop2reg(ciTypeArrayKlass::make(elem_type)->encoding(), klass_reg);
CodeEmitInfo* info = state_for(x, x->state());
CodeStub* slow_path = new NewTypeArrayStub(klass_reg, len, reg, info);
__ allocate_array(reg, len, tmp1, tmp2, tmp3, tmp4, elem_type, klass_reg, slow_path);
@ -902,7 +907,8 @@ void LIRGenerator::do_NewTypeArray(NewTypeArray* x) {
void LIRGenerator::do_NewObjectArray(NewObjectArray* x) {
LIRItem length(x->length(), this);
// Evaluate state_for early since it may emit code.
CodeEmitInfo* info = state_for(x, x->state());
// in case of patching (i.e., object class is not yet loaded), we need to reexecute the instruction
// and therefore provide the state before the parameters have been consumed
CodeEmitInfo* patching_info = NULL;
@ -910,6 +916,7 @@ void LIRGenerator::do_NewObjectArray(NewObjectArray* x) {
patching_info = state_for(x, x->state_before());
}
LIRItem length(x->length(), this);
length.load_item();
const LIR_Opr reg = result_register_for(x->type());
@ -919,7 +926,6 @@ void LIRGenerator::do_NewObjectArray(NewObjectArray* x) {
LIR_Opr tmp4 = FrameMap::O1_oop_opr;
LIR_Opr klass_reg = FrameMap::G5_oop_opr;
LIR_Opr len = length.result();
CodeEmitInfo* info = state_for(x, x->state());
CodeStub* slow_path = new NewObjectArrayStub(klass_reg, len, reg, info);
ciObject* obj = (ciObject*) ciObjArrayKlass::make(x->klass());
@ -943,25 +949,22 @@ void LIRGenerator::do_NewMultiArray(NewMultiArray* x) {
items->at_put(i, size);
}
// need to get the info before, as the items may become invalid through item_free
// Evaluate state_for early since it may emit code.
CodeEmitInfo* patching_info = NULL;
if (!x->klass()->is_loaded() || PatchALot) {
patching_info = state_for(x, x->state_before());
// cannot re-use same xhandlers for multiple CodeEmitInfos, so
// clone all handlers
// clone all handlers. This is handled transparently in other
// places by the CodeEmitInfo cloning logic but is handled
// specially here because a stub isn't being used.
x->set_exception_handlers(new XHandlers(x->exception_handlers()));
}
CodeEmitInfo* info = state_for(x, x->state());
i = dims->length();
while (i-- > 0) {
LIRItem* size = items->at(i);
// if a patching_info was generated above then debug information for the state before
// the call is going to be emitted. The LIRGenerator calls above may have left some values
// in registers and that's been recorded in the CodeEmitInfo. In that case the items
// for those values can't simply be freed if they are registers because the values
// might be destroyed by store_stack_parameter. So in the case of patching, delay the
// freeing of the items that already were in registers
size->load_item();
store_stack_parameter (size->result(),
in_ByteSize(STACK_BIAS +
@ -972,8 +975,6 @@ void LIRGenerator::do_NewMultiArray(NewMultiArray* x) {
// This instruction can be deoptimized in the slow path : use
// O0 as result register.
const LIR_Opr reg = result_register_for(x->type());
CodeEmitInfo* info = state_for(x, x->state());
jobject2reg_with_patching(reg, x->klass(), patching_info);
LIR_Opr rank = FrameMap::O1_opr;
__ move(LIR_OprFact::intConst(x->rank()), rank);

View File

@ -8335,15 +8335,13 @@ void MacroAssembler::decode_heap_oop_not_null(Register r) {
// Cannot assert, unverified entry point counts instructions (see .ad file)
// vtableStubs also counts instructions in pd_code_size_limit.
// Also do not verify_oop as this is called by verify_oop.
if (Universe::narrow_oop_base() == NULL) {
if (Universe::narrow_oop_shift() != 0) {
assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
shlq(r, LogMinObjAlignmentInBytes);
}
} else {
assert (Address::times_8 == LogMinObjAlignmentInBytes &&
Address::times_8 == Universe::narrow_oop_shift(), "decode alg wrong");
// Don't use Shift since it modifies flags.
leaq(r, Address(r12_heapbase, r, Address::times_8, 0));
} else {
assert (Universe::narrow_oop_base() == NULL, "sanity");
}
}
@ -8358,6 +8356,7 @@ void MacroAssembler::decode_heap_oop_not_null(Register dst, Register src) {
Address::times_8 == Universe::narrow_oop_shift(), "decode alg wrong");
leaq(dst, Address(r12_heapbase, src, Address::times_8, 0));
} else if (dst != src) {
assert (Universe::narrow_oop_base() == NULL, "sanity");
movq(dst, src);
}
}

View File

@ -1047,16 +1047,17 @@ void LIRGenerator::do_NewMultiArray(NewMultiArray* x) {
items->at_put(i, size);
}
// need to get the info before, as the items may become invalid through item_free
// Evaluate state_for early since it may emit code.
CodeEmitInfo* patching_info = NULL;
if (!x->klass()->is_loaded() || PatchALot) {
patching_info = state_for(x, x->state_before());
// cannot re-use same xhandlers for multiple CodeEmitInfos, so
// clone all handlers.
// clone all handlers. This is handled transparently in other
// places by the CodeEmitInfo cloning logic but is handled
// specially here because a stub isn't being used.
x->set_exception_handlers(new XHandlers(x->exception_handlers()));
}
CodeEmitInfo* info = state_for(x, x->state());
i = dims->length();

View File

@ -2381,7 +2381,7 @@ void SharedRuntime::generate_deopt_blob() {
// Save everything in sight.
map = RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words);
map = RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false);
// Normal deoptimization
__ push(Deoptimization::Unpack_deopt);
__ jmp(cont);
@ -2392,7 +2392,7 @@ void SharedRuntime::generate_deopt_blob() {
// return address is the pc describes what bci to do re-execute at
// No need to update map as each call to save_live_registers will produce identical oopmap
(void) RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words);
(void) RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false);
__ push(Deoptimization::Unpack_reexecute);
__ jmp(cont);
@ -2428,7 +2428,7 @@ void SharedRuntime::generate_deopt_blob() {
// Save everything in sight.
// No need to update map as each call to save_live_registers will produce identical oopmap
(void) RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words);
(void) RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false);
// Now it is safe to overwrite any register
@ -2515,6 +2515,11 @@ void SharedRuntime::generate_deopt_blob() {
RegisterSaver::restore_result_registers(masm);
// Non standard control word may be leaked out through a safepoint blob, and we can
// deopt at a poll point with the non standard control word. However, we should make
// sure the control word is correct after restore_result_registers.
__ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
// All of the register save area has been popped of the stack. Only the
// return address remains.

View File

@ -1643,7 +1643,8 @@ inline hrtime_t oldgetTimeNanos() {
inline hrtime_t getTimeNanos() {
if (VM_Version::supports_cx8()) {
const hrtime_t now = gethrtime();
const hrtime_t prev = max_hrtime;
// Use atomic long load since 32-bit x86 uses 2 registers to keep long.
const hrtime_t prev = Atomic::load((volatile jlong*)&max_hrtime);
if (now <= prev) return prev; // same or retrograde time;
const hrtime_t obsv = Atomic::cmpxchg(now, (volatile jlong*)&max_hrtime, prev);
assert(obsv >= prev, "invariant"); // Monotonicity

View File

@ -616,12 +616,13 @@ julong os::available_memory() {
}
julong os::win32::available_memory() {
// FIXME: GlobalMemoryStatus() may return incorrect value if total memory
// is larger than 4GB
MEMORYSTATUS ms;
GlobalMemoryStatus(&ms);
// Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect
// value if total memory is larger than 4GB
MEMORYSTATUSEX ms;
ms.dwLength = sizeof(ms);
GlobalMemoryStatusEx(&ms);
return (julong)ms.dwAvailPhys;
return (julong)ms.ullAvailPhys;
}
julong os::physical_memory() {
@ -1579,16 +1580,17 @@ void os::print_memory_info(outputStream* st) {
st->print("Memory:");
st->print(" %dk page", os::vm_page_size()>>10);
// FIXME: GlobalMemoryStatus() may return incorrect value if total memory
// is larger than 4GB
MEMORYSTATUS ms;
GlobalMemoryStatus(&ms);
// Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect
// value if total memory is larger than 4GB
MEMORYSTATUSEX ms;
ms.dwLength = sizeof(ms);
GlobalMemoryStatusEx(&ms);
st->print(", physical %uk", os::physical_memory() >> 10);
st->print("(%uk free)", os::available_memory() >> 10);
st->print(", swap %uk", ms.dwTotalPageFile >> 10);
st->print("(%uk free)", ms.dwAvailPageFile >> 10);
st->print(", swap %uk", ms.ullTotalPageFile >> 10);
st->print("(%uk free)", ms.ullAvailPageFile >> 10);
st->cr();
}
@ -3135,11 +3137,13 @@ void os::win32::initialize_system_info() {
_processor_level = si.wProcessorLevel;
_processor_count = si.dwNumberOfProcessors;
MEMORYSTATUS ms;
MEMORYSTATUSEX ms;
ms.dwLength = sizeof(ms);
// also returns dwAvailPhys (free physical memory bytes), dwTotalVirtual, dwAvailVirtual,
// dwMemoryLoad (% of memory in use)
GlobalMemoryStatus(&ms);
_physical_memory = ms.dwTotalPhys;
GlobalMemoryStatusEx(&ms);
_physical_memory = ms.ullTotalPhys;
OSVERSIONINFO oi;
oi.dwOSVersionInfoSize = sizeof(OSVERSIONINFO);

View File

@ -46,6 +46,8 @@ inline void Atomic::dec (volatile jint* dest) { (void)add (-1, dest);
inline void Atomic::dec_ptr(volatile intptr_t* dest) { (void)add_ptr(-1, dest); }
inline void Atomic::dec_ptr(volatile void* dest) { (void)add_ptr(-1, dest); }
inline jlong Atomic::load(volatile jlong* src) { return *src; }
#ifdef _GNU_SOURCE
inline jint Atomic::add (jint add_value, volatile jint* dest) {

View File

@ -99,6 +99,8 @@ inline void* Atomic::cmpxchg_ptr(void* exchange_value, volatile void*
return (void*)_Atomic_cmpxchg_long((jlong)exchange_value, (volatile jlong*)dest, (jlong)compare_value, (int) os::is_MP());
}
inline jlong Atomic::load(volatile jlong* src) { return *src; }
#else // !AMD64
inline intptr_t Atomic::add_ptr(intptr_t add_value, volatile intptr_t* dest) {
@ -131,6 +133,15 @@ inline intptr_t Atomic::cmpxchg_ptr(intptr_t exchange_value, volatile intptr_t*
inline void* Atomic::cmpxchg_ptr(void* exchange_value, volatile void* dest, void* compare_value) {
return (void*)cmpxchg((jint)exchange_value, (volatile jint*)dest, (jint)compare_value);
}
extern "C" void _Atomic_load_long(volatile jlong* src, volatile jlong* dst);
inline jlong Atomic::load(volatile jlong* src) {
volatile jlong dest;
_Atomic_load_long(src, &dest);
return dest;
}
#endif // AMD64
#ifdef _GNU_SOURCE

View File

@ -97,6 +97,15 @@
popl %ebx
.end
// Support for void Atomic::load(volatile jlong* src, volatile jlong* dest).
.inline _Atomic_load_long,2
movl 0(%esp), %eax // src
fildll (%eax)
movl 4(%esp), %eax // dest
fistpll (%eax)
.end
// Support for OrderAccess::acquire()
.inline _OrderAccess_acquire,0
movl 0(%esp), %eax

View File

@ -208,6 +208,15 @@ int IRScope::top_scope_bci() const {
return scope->caller_bci();
}
bool IRScopeDebugInfo::should_reexecute() {
ciMethod* cur_method = scope()->method();
int cur_bci = bci();
if (cur_method != NULL && cur_bci != SynchronizationEntryBCI) {
Bytecodes::Code code = cur_method->java_code_at_bci(cur_bci);
return Interpreter::bytecode_should_reexecute(code);
} else
return false;
}
// Implementation of CodeEmitInfo
@ -253,7 +262,7 @@ CodeEmitInfo::CodeEmitInfo(CodeEmitInfo* info, bool lock_stack_only)
void CodeEmitInfo::record_debug_info(DebugInformationRecorder* recorder, int pc_offset) {
// record the safepoint before recording the debug info for enclosing scopes
recorder->add_safepoint(pc_offset, _oop_map->deep_copy());
_scope_debug_info->record_debug_info(recorder, pc_offset);
_scope_debug_info->record_debug_info(recorder, pc_offset, true/*topmost*/);
recorder->end_safepoint(pc_offset);
}

View File

@ -239,15 +239,20 @@ class IRScopeDebugInfo: public CompilationResourceObj {
GrowableArray<MonitorValue*>* monitors() { return _monitors; }
IRScopeDebugInfo* caller() { return _caller; }
void record_debug_info(DebugInformationRecorder* recorder, int pc_offset) {
//Whether we should reexecute this bytecode for deopt
bool should_reexecute();
void record_debug_info(DebugInformationRecorder* recorder, int pc_offset, bool topmost) {
if (caller() != NULL) {
// Order is significant: Must record caller first.
caller()->record_debug_info(recorder, pc_offset);
caller()->record_debug_info(recorder, pc_offset, false/*topmost*/);
}
DebugToken* locvals = recorder->create_scope_values(locals());
DebugToken* expvals = recorder->create_scope_values(expressions());
DebugToken* monvals = recorder->create_monitor_values(monitors());
recorder->describe_scope(pc_offset, scope()->method(), bci(), locvals, expvals, monvals);
// reexecute allowed only for the topmost frame
bool reexecute = topmost ? should_reexecute() : false;
recorder->describe_scope(pc_offset, scope()->method(), bci(), reexecute, locvals, expvals, monvals);
}
};

View File

@ -379,7 +379,8 @@ void LIR_Assembler::record_non_safepoint_debug_info() {
ValueStack* s = nth_oldest(vstack, n, s_bci);
if (s == NULL) break;
IRScope* scope = s->scope();
debug_info->describe_scope(pc_offset, scope->method(), s_bci);
//Always pass false for reexecute since these ScopeDescs are never used for deopt
debug_info->describe_scope(pc_offset, scope->method(), s_bci, false/*reexecute*/);
}
debug_info->end_non_safepoint(pc_offset);

View File

@ -219,24 +219,27 @@ ciObject* ciObjectFactory::get(oop key) {
ASSERT_IN_VM;
#ifdef ASSERT
if (CIObjectFactoryVerify) {
oop last = NULL;
for (int j = 0; j< _ci_objects->length(); j++) {
oop o = _ci_objects->at(j)->get_oop();
assert(last < o, "out of order");
last = o;
}
}
#endif // ASSERT
int len = _ci_objects->length();
int index = find(key, _ci_objects);
#ifdef ASSERT
if (CIObjectFactoryVerify) {
for (int i=0; i<_ci_objects->length(); i++) {
if (_ci_objects->at(i)->get_oop() == key) {
assert(index == i, " bad lookup");
}
}
}
#endif
if (!is_found_at(index, key, _ci_objects)) {
// Check in the non-perm area before putting it in the list.
NonPermObject* &bucket = find_non_perm(key);
if (bucket != NULL) {
@ -539,12 +542,14 @@ void ciObjectFactory::insert(int index, ciObject* obj, GrowableArray<ciObject*>*
objects->at_put(index, obj);
}
#ifdef ASSERT
if (CIObjectFactoryVerify) {
oop last = NULL;
for (int j = 0; j< objects->length(); j++) {
oop o = objects->at(j)->get_oop();
assert(last < o, "out of order");
last = o;
}
}
#endif // ASSERT
}

View File

@ -547,7 +547,6 @@ objArrayHandle ClassFileParser::parse_interfaces(constantPoolHandle cp,
int length,
Handle class_loader,
Handle protection_domain,
PerfTraceTime* vmtimer,
symbolHandle class_name,
TRAPS) {
ClassFileStream* cfs = stream();
@ -575,13 +574,11 @@ objArrayHandle ClassFileParser::parse_interfaces(constantPoolHandle cp,
guarantee_property(unresolved_klass->byte_at(0) != JVM_SIGNATURE_ARRAY,
"Bad interface name in class file %s", CHECK_(nullHandle));
vmtimer->suspend(); // do not count recursive loading twice
// Call resolve_super so classcircularity is checked
klassOop k = SystemDictionary::resolve_super_or_fail(class_name,
unresolved_klass, class_loader, protection_domain,
false, CHECK_(nullHandle));
interf = KlassHandle(THREAD, k);
vmtimer->resume();
if (LinkWellKnownClasses) // my super type is well known to me
cp->klass_at_put(interface_index, interf()); // eagerly resolve
@ -769,16 +766,16 @@ enum FieldAllocationType {
struct FieldAllocationCount {
int static_oop_count;
int static_byte_count;
int static_short_count;
int static_word_count;
int static_double_count;
int nonstatic_oop_count;
int nonstatic_byte_count;
int nonstatic_short_count;
int nonstatic_word_count;
int nonstatic_double_count;
unsigned int static_oop_count;
unsigned int static_byte_count;
unsigned int static_short_count;
unsigned int static_word_count;
unsigned int static_double_count;
unsigned int nonstatic_oop_count;
unsigned int nonstatic_byte_count;
unsigned int nonstatic_short_count;
unsigned int nonstatic_word_count;
unsigned int nonstatic_double_count;
};
typeArrayHandle ClassFileParser::parse_fields(constantPoolHandle cp, bool is_interface,
@ -2558,7 +2555,15 @@ instanceKlassHandle ClassFileParser::parseClassFile(symbolHandle name,
ClassFileStream* cfs = stream();
// Timing
PerfTraceTime vmtimer(ClassLoader::perf_accumulated_time());
assert(THREAD->is_Java_thread(), "must be a JavaThread");
JavaThread* jt = (JavaThread*) THREAD;
PerfClassTraceTime ctimer(ClassLoader::perf_class_parse_time(),
ClassLoader::perf_class_parse_selftime(),
NULL,
jt->get_thread_stat()->perf_recursion_counts_addr(),
jt->get_thread_stat()->perf_timers_addr(),
PerfClassTraceTime::PARSE_CLASS);
_has_finalizer = _has_empty_finalizer = _has_vanilla_constructor = false;
@ -2738,7 +2743,7 @@ instanceKlassHandle ClassFileParser::parseClassFile(symbolHandle name,
if (itfs_len == 0) {
local_interfaces = objArrayHandle(THREAD, Universe::the_empty_system_obj_array());
} else {
local_interfaces = parse_interfaces(cp, itfs_len, class_loader, protection_domain, &vmtimer, _class_name, CHECK_(nullHandle));
local_interfaces = parse_interfaces(cp, itfs_len, class_loader, protection_domain, _class_name, CHECK_(nullHandle));
}
// Fields (offsets are filled in later)
@ -2782,6 +2787,7 @@ instanceKlassHandle ClassFileParser::parseClassFile(symbolHandle name,
protection_domain,
true,
CHECK_(nullHandle));
KlassHandle kh (THREAD, k);
super_klass = instanceKlassHandle(THREAD, kh());
if (LinkWellKnownClasses) // my super class is well known to me
@ -2902,11 +2908,11 @@ instanceKlassHandle ClassFileParser::parseClassFile(symbolHandle name,
}
// end of "discovered" field compactibility fix
int nonstatic_double_count = fac.nonstatic_double_count;
int nonstatic_word_count = fac.nonstatic_word_count;
int nonstatic_short_count = fac.nonstatic_short_count;
int nonstatic_byte_count = fac.nonstatic_byte_count;
int nonstatic_oop_count = fac.nonstatic_oop_count;
unsigned int nonstatic_double_count = fac.nonstatic_double_count;
unsigned int nonstatic_word_count = fac.nonstatic_word_count;
unsigned int nonstatic_short_count = fac.nonstatic_short_count;
unsigned int nonstatic_byte_count = fac.nonstatic_byte_count;
unsigned int nonstatic_oop_count = fac.nonstatic_oop_count;
bool super_has_nonstatic_fields =
(super_klass() != NULL && super_klass->has_nonstatic_fields());
@ -2916,24 +2922,24 @@ instanceKlassHandle ClassFileParser::parseClassFile(symbolHandle name,
nonstatic_oop_count) != 0);
// Prepare list of oops for oop maps generation.
u2* nonstatic_oop_offsets;
u2* nonstatic_oop_length;
int nonstatic_oop_map_count = 0;
// Prepare list of oops for oop map generation.
int* nonstatic_oop_offsets;
unsigned int* nonstatic_oop_counts;
unsigned int nonstatic_oop_map_count = 0;
nonstatic_oop_offsets = NEW_RESOURCE_ARRAY_IN_THREAD(
THREAD, u2, nonstatic_oop_count+1);
nonstatic_oop_length = NEW_RESOURCE_ARRAY_IN_THREAD(
THREAD, u2, nonstatic_oop_count+1);
THREAD, int, nonstatic_oop_count + 1);
nonstatic_oop_counts = NEW_RESOURCE_ARRAY_IN_THREAD(
THREAD, unsigned int, nonstatic_oop_count + 1);
// Add fake fields for java.lang.Class instances (also see above).
// FieldsAllocationStyle and CompactFields values will be reset to default.
if(class_name() == vmSymbols::java_lang_Class() && class_loader.is_null()) {
java_lang_Class_fix_post(&next_nonstatic_field_offset);
nonstatic_oop_offsets[0] = (u2)first_nonstatic_field_offset;
int fake_oop_count = (( next_nonstatic_field_offset -
first_nonstatic_field_offset ) / heapOopSize);
nonstatic_oop_length [0] = (u2)fake_oop_count;
nonstatic_oop_offsets[0] = first_nonstatic_field_offset;
const uint fake_oop_count = (next_nonstatic_field_offset -
first_nonstatic_field_offset) / heapOopSize;
nonstatic_oop_counts[0] = fake_oop_count;
nonstatic_oop_map_count = 1;
nonstatic_oop_count -= fake_oop_count;
first_nonstatic_oop_offset = first_nonstatic_field_offset;
@ -3113,13 +3119,15 @@ instanceKlassHandle ClassFileParser::parseClassFile(symbolHandle name,
// Update oop maps
if( nonstatic_oop_map_count > 0 &&
nonstatic_oop_offsets[nonstatic_oop_map_count - 1] ==
(u2)(real_offset - nonstatic_oop_length[nonstatic_oop_map_count - 1] * heapOopSize) ) {
real_offset -
int(nonstatic_oop_counts[nonstatic_oop_map_count - 1]) *
heapOopSize ) {
// Extend current oop map
nonstatic_oop_length[nonstatic_oop_map_count - 1] += 1;
nonstatic_oop_counts[nonstatic_oop_map_count - 1] += 1;
} else {
// Create new oop map
nonstatic_oop_offsets[nonstatic_oop_map_count] = (u2)real_offset;
nonstatic_oop_length [nonstatic_oop_map_count] = 1;
nonstatic_oop_offsets[nonstatic_oop_map_count] = real_offset;
nonstatic_oop_counts [nonstatic_oop_map_count] = 1;
nonstatic_oop_map_count += 1;
if( first_nonstatic_oop_offset == 0 ) { // Undefined
first_nonstatic_oop_offset = real_offset;
@ -3176,8 +3184,10 @@ instanceKlassHandle ClassFileParser::parseClassFile(symbolHandle name,
assert(instance_size == align_object_size(align_size_up((instanceOopDesc::base_offset_in_bytes() + nonstatic_field_size*heapOopSize), wordSize) / wordSize), "consistent layout helper value");
// Size of non-static oop map blocks (in words) allocated at end of klass
int nonstatic_oop_map_size = compute_oop_map_size(super_klass, nonstatic_oop_map_count, first_nonstatic_oop_offset);
// Number of non-static oop map blocks allocated at end of klass.
const unsigned int total_oop_map_count =
compute_oop_map_count(super_klass, nonstatic_oop_map_count,
first_nonstatic_oop_offset);
// Compute reference type
ReferenceType rt;
@ -3188,14 +3198,15 @@ instanceKlassHandle ClassFileParser::parseClassFile(symbolHandle name,
}
// We can now create the basic klassOop for this klass
klassOop ik = oopFactory::new_instanceKlass(
vtable_size, itable_size,
static_field_size, nonstatic_oop_map_size,
klassOop ik = oopFactory::new_instanceKlass(vtable_size, itable_size,
static_field_size,
total_oop_map_count,
rt, CHECK_(nullHandle));
instanceKlassHandle this_klass (THREAD, ik);
assert(this_klass->static_field_size() == static_field_size &&
this_klass->nonstatic_oop_map_size() == nonstatic_oop_map_size, "sanity check");
assert(this_klass->static_field_size() == static_field_size, "sanity");
assert(this_klass->nonstatic_oop_map_count() == total_oop_map_count,
"sanity");
// Fill in information already parsed
this_klass->set_access_flags(access_flags);
@ -3276,7 +3287,7 @@ instanceKlassHandle ClassFileParser::parseClassFile(symbolHandle name,
klassItable::setup_itable_offset_table(this_klass);
// Do final class setup
fill_oop_maps(this_klass, nonstatic_oop_map_count, nonstatic_oop_offsets, nonstatic_oop_length);
fill_oop_maps(this_klass, nonstatic_oop_map_count, nonstatic_oop_offsets, nonstatic_oop_counts);
set_precomputed_flags(this_klass);
@ -3369,66 +3380,73 @@ instanceKlassHandle ClassFileParser::parseClassFile(symbolHandle name,
}
int ClassFileParser::compute_oop_map_size(instanceKlassHandle super, int nonstatic_oop_map_count, int first_nonstatic_oop_offset) {
int map_size = super.is_null() ? 0 : super->nonstatic_oop_map_size();
unsigned int
ClassFileParser::compute_oop_map_count(instanceKlassHandle super,
unsigned int nonstatic_oop_map_count,
int first_nonstatic_oop_offset) {
unsigned int map_count =
super.is_null() ? 0 : super->nonstatic_oop_map_count();
if (nonstatic_oop_map_count > 0) {
// We have oops to add to map
if (map_size == 0) {
map_size = nonstatic_oop_map_count;
if (map_count == 0) {
map_count = nonstatic_oop_map_count;
} else {
// Check whether we should add a new map block or whether the last one can be extended
OopMapBlock* first_map = super->start_of_nonstatic_oop_maps();
OopMapBlock* last_map = first_map + map_size - 1;
// Check whether we should add a new map block or whether the last one can
// be extended
OopMapBlock* const first_map = super->start_of_nonstatic_oop_maps();
OopMapBlock* const last_map = first_map + map_count - 1;
int next_offset = last_map->offset() + (last_map->length() * heapOopSize);
int next_offset = last_map->offset() + last_map->count() * heapOopSize;
if (next_offset == first_nonstatic_oop_offset) {
// There is no gap bettwen superklass's last oop field and first
// local oop field, merge maps.
nonstatic_oop_map_count -= 1;
} else {
// Superklass didn't end with a oop field, add extra maps
assert(next_offset<first_nonstatic_oop_offset, "just checking");
assert(next_offset < first_nonstatic_oop_offset, "just checking");
}
map_size += nonstatic_oop_map_count;
map_count += nonstatic_oop_map_count;
}
}
return map_size;
return map_count;
}
void ClassFileParser::fill_oop_maps(instanceKlassHandle k,
int nonstatic_oop_map_count,
u2* nonstatic_oop_offsets, u2* nonstatic_oop_length) {
unsigned int nonstatic_oop_map_count,
int* nonstatic_oop_offsets,
unsigned int* nonstatic_oop_counts) {
OopMapBlock* this_oop_map = k->start_of_nonstatic_oop_maps();
OopMapBlock* last_oop_map = this_oop_map + k->nonstatic_oop_map_size();
instanceKlass* super = k->superklass();
if (super != NULL) {
int super_oop_map_size = super->nonstatic_oop_map_size();
OopMapBlock* super_oop_map = super->start_of_nonstatic_oop_maps();
const instanceKlass* const super = k->superklass();
const unsigned int super_count = super ? super->nonstatic_oop_map_count() : 0;
if (super_count > 0) {
// Copy maps from superklass
while (super_oop_map_size-- > 0) {
OopMapBlock* super_oop_map = super->start_of_nonstatic_oop_maps();
for (unsigned int i = 0; i < super_count; ++i) {
*this_oop_map++ = *super_oop_map++;
}
}
if (nonstatic_oop_map_count > 0) {
if (this_oop_map + nonstatic_oop_map_count > last_oop_map) {
// Calculated in compute_oop_map_size() number of oop maps is less then
// collected oop maps since there is no gap between superklass's last oop
// field and first local oop field. Extend the last oop map copied
if (super_count + nonstatic_oop_map_count > k->nonstatic_oop_map_count()) {
// The counts differ because there is no gap between superklass's last oop
// field and the first local oop field. Extend the last oop map copied
// from the superklass instead of creating new one.
nonstatic_oop_map_count--;
nonstatic_oop_offsets++;
this_oop_map--;
this_oop_map->set_length(this_oop_map->length() + *nonstatic_oop_length++);
this_oop_map->set_count(this_oop_map->count() + *nonstatic_oop_counts++);
this_oop_map++;
}
assert((this_oop_map + nonstatic_oop_map_count) == last_oop_map, "just checking");
// Add new map blocks, fill them
while (nonstatic_oop_map_count-- > 0) {
this_oop_map->set_offset(*nonstatic_oop_offsets++);
this_oop_map->set_length(*nonstatic_oop_length++);
this_oop_map->set_count(*nonstatic_oop_counts++);
this_oop_map++;
}
assert(k->start_of_nonstatic_oop_maps() + k->nonstatic_oop_map_count() ==
this_oop_map, "sanity");
}
}

View File

@ -61,7 +61,6 @@ class ClassFileParser VALUE_OBJ_CLASS_SPEC {
int length,
Handle class_loader,
Handle protection_domain,
PerfTraceTime* vmtimer,
symbolHandle class_name,
TRAPS);
@ -126,10 +125,13 @@ class ClassFileParser VALUE_OBJ_CLASS_SPEC {
int runtime_invisible_annotations_length, TRAPS);
// Final setup
int compute_oop_map_size(instanceKlassHandle super, int nonstatic_oop_count,
unsigned int compute_oop_map_count(instanceKlassHandle super,
unsigned int nonstatic_oop_count,
int first_nonstatic_oop_offset);
void fill_oop_maps(instanceKlassHandle k, int nonstatic_oop_map_count,
u2* nonstatic_oop_offsets, u2* nonstatic_oop_length);
void fill_oop_maps(instanceKlassHandle k,
unsigned int nonstatic_oop_map_count,
int* nonstatic_oop_offsets,
unsigned int* nonstatic_oop_counts);
void set_precomputed_flags(instanceKlassHandle k);
objArrayHandle compute_transitive_interfaces(instanceKlassHandle super,
objArrayHandle local_ifs, TRAPS);

View File

@ -48,9 +48,26 @@ static canonicalize_fn_t CanonicalizeEntry = NULL;
PerfCounter* ClassLoader::_perf_accumulated_time = NULL;
PerfCounter* ClassLoader::_perf_classes_inited = NULL;
PerfCounter* ClassLoader::_perf_class_init_time = NULL;
PerfCounter* ClassLoader::_perf_class_init_selftime = NULL;
PerfCounter* ClassLoader::_perf_classes_verified = NULL;
PerfCounter* ClassLoader::_perf_class_verify_time = NULL;
PerfCounter* ClassLoader::_perf_class_verify_selftime = NULL;
PerfCounter* ClassLoader::_perf_classes_linked = NULL;
PerfCounter* ClassLoader::_perf_class_link_time = NULL;
PerfCounter* ClassLoader::_perf_class_link_selftime = NULL;
PerfCounter* ClassLoader::_perf_class_parse_time = NULL;
PerfCounter* ClassLoader::_perf_class_parse_selftime = NULL;
PerfCounter* ClassLoader::_perf_sys_class_lookup_time = NULL;
PerfCounter* ClassLoader::_perf_shared_classload_time = NULL;
PerfCounter* ClassLoader::_perf_sys_classload_time = NULL;
PerfCounter* ClassLoader::_perf_app_classload_time = NULL;
PerfCounter* ClassLoader::_perf_app_classload_selftime = NULL;
PerfCounter* ClassLoader::_perf_app_classload_count = NULL;
PerfCounter* ClassLoader::_perf_define_appclasses = NULL;
PerfCounter* ClassLoader::_perf_define_appclass_time = NULL;
PerfCounter* ClassLoader::_perf_define_appclass_selftime = NULL;
PerfCounter* ClassLoader::_perf_app_classfile_bytes_read = NULL;
PerfCounter* ClassLoader::_perf_sys_classfile_bytes_read = NULL;
PerfCounter* ClassLoader::_sync_systemLoaderLockContentionRate = NULL;
PerfCounter* ClassLoader::_sync_nonSystemLoaderLockContentionRate = NULL;
PerfCounter* ClassLoader::_sync_JVMFindLoadedClassLockFreeCounter = NULL;
@ -152,6 +169,9 @@ ClassFileStream* ClassPathDirEntry::open_stream(const char* name) {
hpi::close(file_handle);
// construct ClassFileStream
if (num_read == (size_t)st.st_size) {
if (UsePerfData) {
ClassLoader::perf_sys_classfile_bytes_read()->inc(num_read);
}
return new ClassFileStream(buffer, st.st_size, _dir); // Resource allocated
}
}
@ -198,6 +218,9 @@ ClassFileStream* ClassPathZipEntry::open_stream(const char* name) {
buffer = NEW_RESOURCE_ARRAY(u1, filesize);
if (!(*ReadEntry)(_zip, entry, buffer, filename)) return NULL;
}
if (UsePerfData) {
ClassLoader::perf_sys_classfile_bytes_read()->inc(filesize);
}
// return result
return new ClassFileStream(buffer, filesize, _zip_name); // Resource allocated
}
@ -825,7 +848,9 @@ instanceKlassHandle ClassLoader::load_classfile(symbolHandle h_name, TRAPS) {
ClassFileStream* stream = NULL;
int classpath_index = 0;
{
PerfTraceTime vmtimer(perf_accumulated_time());
PerfClassTraceTime vmtimer(perf_sys_class_lookup_time(),
((JavaThread*) THREAD)->get_thread_stat()->perf_timers_addr(),
PerfClassTraceTime::CLASS_LOAD);
ClassPathEntry* e = _first_entry;
while (e != NULL) {
stream = e->open_stream(name);
@ -890,11 +915,29 @@ void ClassLoader::initialize() {
// jvmstat performance counters
NEWPERFTICKCOUNTER(_perf_accumulated_time, SUN_CLS, "time");
NEWPERFTICKCOUNTER(_perf_class_init_time, SUN_CLS, "classInitTime");
NEWPERFTICKCOUNTER(_perf_class_init_selftime, SUN_CLS, "classInitTime.self");
NEWPERFTICKCOUNTER(_perf_class_verify_time, SUN_CLS, "classVerifyTime");
NEWPERFTICKCOUNTER(_perf_class_verify_selftime, SUN_CLS, "classVerifyTime.self");
NEWPERFTICKCOUNTER(_perf_class_link_time, SUN_CLS, "classLinkedTime");
NEWPERFTICKCOUNTER(_perf_class_link_selftime, SUN_CLS, "classLinkedTime.self");
NEWPERFEVENTCOUNTER(_perf_classes_inited, SUN_CLS, "initializedClasses");
NEWPERFEVENTCOUNTER(_perf_classes_linked, SUN_CLS, "linkedClasses");
NEWPERFEVENTCOUNTER(_perf_classes_verified, SUN_CLS, "verifiedClasses");
NEWPERFTICKCOUNTER(_perf_class_parse_time, SUN_CLS, "parseClassTime");
NEWPERFTICKCOUNTER(_perf_class_parse_selftime, SUN_CLS, "parseClassTime.self");
NEWPERFTICKCOUNTER(_perf_sys_class_lookup_time, SUN_CLS, "lookupSysClassTime");
NEWPERFTICKCOUNTER(_perf_shared_classload_time, SUN_CLS, "sharedClassLoadTime");
NEWPERFTICKCOUNTER(_perf_sys_classload_time, SUN_CLS, "sysClassLoadTime");
NEWPERFTICKCOUNTER(_perf_app_classload_time, SUN_CLS, "appClassLoadTime");
NEWPERFTICKCOUNTER(_perf_app_classload_selftime, SUN_CLS, "appClassLoadTime.self");
NEWPERFEVENTCOUNTER(_perf_app_classload_count, SUN_CLS, "appClassLoadCount");
NEWPERFTICKCOUNTER(_perf_define_appclasses, SUN_CLS, "defineAppClasses");
NEWPERFTICKCOUNTER(_perf_define_appclass_time, SUN_CLS, "defineAppClassTime");
NEWPERFTICKCOUNTER(_perf_define_appclass_selftime, SUN_CLS, "defineAppClassTime.self");
NEWPERFBYTECOUNTER(_perf_app_classfile_bytes_read, SUN_CLS, "appClassBytes");
NEWPERFBYTECOUNTER(_perf_sys_classfile_bytes_read, SUN_CLS, "sysClassBytes");
// The following performance counters are added for measuring the impact
// of the bug fix of 6365597. They are mainly focused on finding out

View File

@ -149,9 +149,26 @@ class ClassLoader: AllStatic {
static PerfCounter* _perf_accumulated_time;
static PerfCounter* _perf_classes_inited;
static PerfCounter* _perf_class_init_time;
static PerfCounter* _perf_class_init_selftime;
static PerfCounter* _perf_classes_verified;
static PerfCounter* _perf_class_verify_time;
static PerfCounter* _perf_class_verify_selftime;
static PerfCounter* _perf_classes_linked;
static PerfCounter* _perf_class_link_time;
static PerfCounter* _perf_class_link_selftime;
static PerfCounter* _perf_class_parse_time;
static PerfCounter* _perf_class_parse_selftime;
static PerfCounter* _perf_sys_class_lookup_time;
static PerfCounter* _perf_shared_classload_time;
static PerfCounter* _perf_sys_classload_time;
static PerfCounter* _perf_app_classload_time;
static PerfCounter* _perf_app_classload_selftime;
static PerfCounter* _perf_app_classload_count;
static PerfCounter* _perf_define_appclasses;
static PerfCounter* _perf_define_appclass_time;
static PerfCounter* _perf_define_appclass_selftime;
static PerfCounter* _perf_app_classfile_bytes_read;
static PerfCounter* _perf_sys_classfile_bytes_read;
static PerfCounter* _sync_systemLoaderLockContentionRate;
static PerfCounter* _sync_nonSystemLoaderLockContentionRate;
@ -199,9 +216,26 @@ class ClassLoader: AllStatic {
static PerfCounter* perf_accumulated_time() { return _perf_accumulated_time; }
static PerfCounter* perf_classes_inited() { return _perf_classes_inited; }
static PerfCounter* perf_class_init_time() { return _perf_class_init_time; }
static PerfCounter* perf_class_init_selftime() { return _perf_class_init_selftime; }
static PerfCounter* perf_classes_verified() { return _perf_classes_verified; }
static PerfCounter* perf_class_verify_time() { return _perf_class_verify_time; }
static PerfCounter* perf_class_verify_selftime() { return _perf_class_verify_selftime; }
static PerfCounter* perf_classes_linked() { return _perf_classes_linked; }
static PerfCounter* perf_class_link_time() { return _perf_class_link_time; }
static PerfCounter* perf_class_link_selftime() { return _perf_class_link_selftime; }
static PerfCounter* perf_class_parse_time() { return _perf_class_parse_time; }
static PerfCounter* perf_class_parse_selftime() { return _perf_class_parse_selftime; }
static PerfCounter* perf_sys_class_lookup_time() { return _perf_sys_class_lookup_time; }
static PerfCounter* perf_shared_classload_time() { return _perf_shared_classload_time; }
static PerfCounter* perf_sys_classload_time() { return _perf_sys_classload_time; }
static PerfCounter* perf_app_classload_time() { return _perf_app_classload_time; }
static PerfCounter* perf_app_classload_selftime() { return _perf_app_classload_selftime; }
static PerfCounter* perf_app_classload_count() { return _perf_app_classload_count; }
static PerfCounter* perf_define_appclasses() { return _perf_define_appclasses; }
static PerfCounter* perf_define_appclass_time() { return _perf_define_appclass_time; }
static PerfCounter* perf_define_appclass_selftime() { return _perf_define_appclass_selftime; }
static PerfCounter* perf_app_classfile_bytes_read() { return _perf_app_classfile_bytes_read; }
static PerfCounter* perf_sys_classfile_bytes_read() { return _perf_sys_classfile_bytes_read; }
// Record how often system loader lock object is contended
static PerfCounter* sync_systemLoaderLockContentionRate() {
@ -307,3 +341,118 @@ class ClassLoader: AllStatic {
static int compile_the_world_counter() { return _compile_the_world_counter; }
#endif //PRODUCT
};
// PerfClassTraceTime is used to measure time for class loading related events.
// This class tracks cumulative time and exclusive time for specific event types.
// During the execution of one event, other event types (e.g. class loading and
// resolution) as well as recursive calls of the same event type could happen.
// Only one elapsed timer (cumulative) and one thread-local self timer (exclusive)
// (i.e. only one event type) are active at a time even multiple PerfClassTraceTime
// instances have been created as multiple events are happening.
class PerfClassTraceTime {
public:
enum {
CLASS_LOAD = 0,
PARSE_CLASS = 1,
CLASS_LINK = 2,
CLASS_VERIFY = 3,
CLASS_CLINIT = 4,
DEFINE_CLASS = 5,
EVENT_TYPE_COUNT = 6
};
protected:
// _t tracks time from initialization to destruction of this timer instance
// including time for all other event types, and recursive calls of this type.
// When a timer is called recursively, the elapsedTimer _t would not be used.
elapsedTimer _t;
PerfLongCounter* _timep;
PerfLongCounter* _selftimep;
PerfLongCounter* _eventp;
// pointer to thread-local recursion counter and timer array
// The thread_local timers track cumulative time for specific event types
// exclusive of time for other event types, but including recursive calls
// of the same type.
int* _recursion_counters;
elapsedTimer* _timers;
int _event_type;
int _prev_active_event;
public:
inline PerfClassTraceTime(PerfLongCounter* timep, /* counter incremented with inclusive time */
PerfLongCounter* selftimep, /* counter incremented with exclusive time */
PerfLongCounter* eventp, /* event counter */
int* recursion_counters, /* thread-local recursion counter array */
elapsedTimer* timers, /* thread-local timer array */
int type /* event type */ ) :
_timep(timep), _selftimep(selftimep), _eventp(eventp), _recursion_counters(recursion_counters), _timers(timers), _event_type(type) {
initialize();
}
inline PerfClassTraceTime(PerfLongCounter* timep, /* counter incremented with inclusive time */
elapsedTimer* timers, /* thread-local timer array */
int type /* event type */ ) :
_timep(timep), _selftimep(NULL), _eventp(NULL), _recursion_counters(NULL), _timers(timers), _event_type(type) {
initialize();
}
void initialize() {
if (!UsePerfData) return;
if (_eventp != NULL) {
// increment the event counter
_eventp->inc();
}
// stop the current active thread-local timer to measure inclusive time
_prev_active_event = -1;
for (int i=0; i < EVENT_TYPE_COUNT; i++) {
if (_timers[i].is_active()) {
assert(_prev_active_event == -1, "should have only one active timer");
_prev_active_event = i;
_timers[i].stop();
}
}
if (_recursion_counters == NULL || (_recursion_counters[_event_type])++ == 0) {
// start the inclusive timer if not recursively called
_t.start();
}
// start thread-local timer of the given event type
if (!_timers[_event_type].is_active()) {
_timers[_event_type].start();
}
}
inline void suspend() { _t.stop(); _timers[_event_type].stop(); }
inline void resume() { _t.start(); _timers[_event_type].start(); }
~PerfClassTraceTime() {
if (!UsePerfData) return;
// stop the thread-local timer as the event completes
// and resume the thread-local timer of the event next on the stack
_timers[_event_type].stop();
jlong selftime = _timers[_event_type].ticks();
if (_prev_active_event >= 0) {
_timers[_prev_active_event].start();
}
if (_recursion_counters != NULL && --(_recursion_counters[_event_type]) > 0) return;
// increment the counters only on the leaf call
_t.stop();
_timep->inc(_t.ticks());
if (_selftimep != NULL) {
_selftimep->inc(selftime);
}
// add all class loading related event selftime to the accumulated time counter
ClassLoader::perf_accumulated_time()->inc(selftime);
// reset the timer
_timers[_event_type].reset();
}
};

View File

@ -1306,13 +1306,18 @@ static instanceKlassHandle download_and_retry_class_load(
instanceKlassHandle SystemDictionary::load_instance_class(symbolHandle class_name, Handle class_loader, TRAPS) {
instanceKlassHandle nh = instanceKlassHandle(); // null Handle
if (class_loader.is_null()) {
// Search the shared system dictionary for classes preloaded into the
// shared spaces.
instanceKlassHandle k;
{
PerfTraceTime vmtimer(ClassLoader::perf_shared_classload_time());
k = load_shared_class(class_name, class_loader, THREAD);
}
if (k.is_null()) {
// Use VM class loader
PerfTraceTime vmtimer(ClassLoader::perf_sys_classload_time());
k = ClassLoader::load_classfile(class_name, CHECK_(nh));
}
@ -1334,6 +1339,16 @@ instanceKlassHandle SystemDictionary::load_instance_class(symbolHandle class_nam
// Use user specified class loader to load class. Call loadClass operation on class_loader.
ResourceMark rm(THREAD);
assert(THREAD->is_Java_thread(), "must be a JavaThread");
JavaThread* jt = (JavaThread*) THREAD;
PerfClassTraceTime vmtimer(ClassLoader::perf_app_classload_time(),
ClassLoader::perf_app_classload_selftime(),
ClassLoader::perf_app_classload_count(),
jt->get_thread_stat()->perf_recursion_counts_addr(),
jt->get_thread_stat()->perf_timers_addr(),
PerfClassTraceTime::CLASS_LOAD);
Handle s = java_lang_String::create_from_symbol(class_name, CHECK_(nh));
// Translate to external class name format, i.e., convert '/' chars to '.'
Handle string = java_lang_String::externalize_classname(s, CHECK_(nh));

View File

@ -1,5 +1,5 @@
/*
* Copyright 1997-2006 Sun Microsystems, Inc. All Rights Reserved.
* Copyright 1997-2009 Sun Microsystems, Inc. All Rights Reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it

View File

@ -1,5 +1,5 @@
/*
* Copyright 1998-2006 Sun Microsystems, Inc. All Rights Reserved.
* Copyright 1998-2009 Sun Microsystems, Inc. All Rights Reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -280,6 +280,7 @@ int DebugInformationRecorder::find_sharable_decode_offset(int stream_offset) {
void DebugInformationRecorder::describe_scope(int pc_offset,
ciMethod* method,
int bci,
bool reexecute,
DebugToken* locals,
DebugToken* expressions,
DebugToken* monitors) {
@ -291,6 +292,9 @@ void DebugInformationRecorder::describe_scope(int pc_offset,
int stream_offset = stream()->position();
last_pd->set_scope_decode_offset(stream_offset);
// Record reexecute bit into pcDesc
last_pd->set_should_reexecute(reexecute);
// serialize sender stream offest
stream()->write_int(sender_stream_offset);

View File

@ -87,6 +87,7 @@ class DebugInformationRecorder: public ResourceObj {
void describe_scope(int pc_offset,
ciMethod* method,
int bci,
bool reexecute,
DebugToken* locals = NULL,
DebugToken* expressions = NULL,
DebugToken* monitors = NULL);

View File

@ -1,5 +1,5 @@
/*
* Copyright 1997-2008 Sun Microsystems, Inc. All Rights Reserved.
* Copyright 1997-2009 Sun Microsystems, Inc. All Rights Reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -966,7 +966,7 @@ ScopeDesc* nmethod::scope_desc_at(address pc) {
PcDesc* pd = pc_desc_at(pc);
guarantee(pd != NULL, "scope must be present");
return new ScopeDesc(this, pd->scope_decode_offset(),
pd->obj_decode_offset());
pd->obj_decode_offset(), pd->should_reexecute());
}
@ -1079,6 +1079,10 @@ void nmethod::make_unloaded(BoolObjectClosure* is_alive, oop cause) {
this, (address)_method, (address)cause);
cause->klass()->print();
}
// Unlink the osr method, so we do not look this up again
if (is_osr_method()) {
invalidate_osr_method();
}
// If _method is already NULL the methodOop is about to be unloaded,
// so we don't have to break the cycle. Note that it is possible to
// have the methodOop live here, in case we unload the nmethod because
@ -1148,7 +1152,7 @@ void nmethod::make_not_entrant_or_zombie(int state) {
// will never be used anymore. That the nmethods only gets removed when class unloading
// happens, make life much simpler, since the nmethods are not just going to disappear
// out of the blue.
if (is_osr_only_method()) {
if (is_osr_method()) {
if (osr_entry_bci() != InvalidOSREntryBci) {
// only log this once
log_state_change(state);
@ -1520,6 +1524,17 @@ void nmethod::do_unloading(BoolObjectClosure* is_alive,
#endif // !PRODUCT
}
// This method is called twice during GC -- once while
// tracing the "active" nmethods on thread stacks during
// the (strong) marking phase, and then again when walking
// the code cache contents during the weak roots processing
// phase. The two uses are distinguished by means of the
// do_nmethods() method in the closure "f" below -- which
// answers "yes" in the first case, and "no" in the second
// case. We want to walk the weak roots in the nmethod
// only in the second case. The weak roots in the nmethod
// are the oops in the ExceptionCache and the InlineCache
// oops.
void nmethod::oops_do(OopClosure* f) {
// make sure the oops ready to receive visitors
assert(!is_zombie() && !is_unloaded(),
@ -1538,19 +1553,25 @@ void nmethod::oops_do(OopClosure* f) {
// Compiled code
f->do_oop((oop*) &_method);
if (!f->do_nmethods()) {
// weak roots processing phase -- update ExceptionCache oops
ExceptionCache* ec = exception_cache();
while(ec != NULL) {
f->do_oop((oop*)ec->exception_type_addr());
ec = ec->next();
}
} // Else strong roots phase -- skip oops in ExceptionCache
RelocIterator iter(this, low_boundary);
while (iter.next()) {
if (iter.type() == relocInfo::oop_type ) {
oop_Relocation* r = iter.oop_reloc();
// In this loop, we must only follow those oops directly embedded in
// the code. Other oops (oop_index>0) are seen as part of scopes_oops.
assert(1 == (r->oop_is_immediate()) + (r->oop_addr() >= oops_begin() && r->oop_addr() < oops_end()), "oop must be found in exactly one place");
assert(1 == (r->oop_is_immediate()) +
(r->oop_addr() >= oops_begin() && r->oop_addr() < oops_end()),
"oop must be found in exactly one place");
if (r->oop_is_immediate() && r->oop_value() != NULL) {
f->do_oop(r->oop_addr());
}
@ -1932,7 +1953,7 @@ void nmethod::verify_interrupt_point(address call_site) {
PcDesc* pd = pc_desc_at(ic->end_of_call());
assert(pd != NULL, "PcDesc must exist");
for (ScopeDesc* sd = new ScopeDesc(this, pd->scope_decode_offset(),
pd->obj_decode_offset());
pd->obj_decode_offset(), pd->should_reexecute());
!sd->is_top(); sd = sd->sender()) {
sd->verify();
}
@ -2181,7 +2202,7 @@ ScopeDesc* nmethod::scope_desc_in(address begin, address end) {
PcDesc* p = pc_desc_near(begin+1);
if (p != NULL && p->real_pc(this) <= end) {
return new ScopeDesc(this, p->scope_decode_offset(),
p->obj_decode_offset());
p->obj_decode_offset(), p->should_reexecute());
}
return NULL;
}

View File

@ -314,7 +314,6 @@ class nmethod : public CodeBlob {
bool is_java_method() const { return !method()->is_native(); }
bool is_native_method() const { return method()->is_native(); }
bool is_osr_method() const { return _entry_bci != InvocationEntryBci; }
bool is_osr_only_method() const { return is_osr_method(); }
bool is_compiled_by_c1() const;
bool is_compiled_by_c2() const;

View File

@ -1,5 +1,5 @@
/*
* Copyright 1997-2005 Sun Microsystems, Inc. All Rights Reserved.
* Copyright 1997-2009 Sun Microsystems, Inc. All Rights Reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -26,9 +26,11 @@
# include "incls/_pcDesc.cpp.incl"
PcDesc::PcDesc(int pc_offset, int scope_decode_offset, int obj_decode_offset) {
assert(sizeof(PcDescFlags) <= 4, "occupies more than a word");
_pc_offset = pc_offset;
_scope_decode_offset = scope_decode_offset;
_obj_decode_offset = obj_decode_offset;
_flags.word = 0;
}
address PcDesc::real_pc(const nmethod* code) const {
@ -50,6 +52,7 @@ void PcDesc::print(nmethod* code) {
tty->print(" ");
sd->method()->print_short_name(tty);
tty->print(" @%d", sd->bci());
tty->print(" reexecute=%s", sd->should_reexecute()?"true":"false");
tty->cr();
}
#endif

View File

@ -1,5 +1,5 @@
/*
* Copyright 1997-2005 Sun Microsystems, Inc. All Rights Reserved.
* Copyright 1997-2009 Sun Microsystems, Inc. All Rights Reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -34,6 +34,13 @@ class PcDesc VALUE_OBJ_CLASS_SPEC {
int _scope_decode_offset; // offset for scope in nmethod
int _obj_decode_offset;
union PcDescFlags {
int word;
struct {
unsigned int reexecute: 1;
} bits;
} _flags;
public:
int pc_offset() const { return _pc_offset; }
int scope_decode_offset() const { return _scope_decode_offset; }
@ -53,6 +60,10 @@ class PcDesc VALUE_OBJ_CLASS_SPEC {
upper_offset_limit = (unsigned int)-1 >> 1
};
// Flags
bool should_reexecute() const { return _flags.bits.reexecute; }
void set_should_reexecute(bool z) { _flags.bits.reexecute = z; }
// Returns the real pc
address real_pc(const nmethod* code) const;

View File

@ -1,5 +1,5 @@
/*
* Copyright 1997-2008 Sun Microsystems, Inc. All Rights Reserved.
* Copyright 1997-2009 Sun Microsystems, Inc. All Rights Reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -26,17 +26,19 @@
# include "incls/_scopeDesc.cpp.incl"
ScopeDesc::ScopeDesc(const nmethod* code, int decode_offset, int obj_decode_offset) {
ScopeDesc::ScopeDesc(const nmethod* code, int decode_offset, int obj_decode_offset, bool reexecute) {
_code = code;
_decode_offset = decode_offset;
_objects = decode_object_values(obj_decode_offset);
_reexecute = reexecute;
decode_body();
}
ScopeDesc::ScopeDesc(const nmethod* code, int decode_offset) {
ScopeDesc::ScopeDesc(const nmethod* code, int decode_offset, bool reexecute) {
_code = code;
_decode_offset = decode_offset;
_objects = decode_object_values(DebugInformationRecorder::serialized_null);
_reexecute = reexecute;
decode_body();
}
@ -45,6 +47,7 @@ ScopeDesc::ScopeDesc(const ScopeDesc* parent) {
_code = parent->_code;
_decode_offset = parent->_sender_decode_offset;
_objects = parent->_objects;
_reexecute = false; //reexecute only applies to the first scope
decode_body();
}
@ -66,6 +69,7 @@ void ScopeDesc::decode_body() {
_sender_decode_offset = stream->read_int();
_method = methodHandle((methodOop) stream->read_oop());
_bci = stream->read_bci();
// decode offsets for body and sender
_locals_decode_offset = stream->read_int();
_expressions_decode_offset = stream->read_int();
@ -170,6 +174,7 @@ void ScopeDesc::print_on(outputStream* st, PcDesc* pd) const {
st->print("ScopeDesc[%d]@" PTR_FORMAT " ", _decode_offset, _code->instructions_begin());
st->print_cr(" offset: %d", _decode_offset);
st->print_cr(" bci: %d", bci());
st->print_cr(" reexecute: %s", should_reexecute() ? "true" : "false");
st->print_cr(" locals: %d", _locals_decode_offset);
st->print_cr(" stack: %d", _expressions_decode_offset);
st->print_cr(" monitor: %d", _monitors_decode_offset);

View File

@ -1,5 +1,5 @@
/*
* Copyright 1997-2006 Sun Microsystems, Inc. All Rights Reserved.
* Copyright 1997-2009 Sun Microsystems, Inc. All Rights Reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -52,16 +52,17 @@ class SimpleScopeDesc : public StackObj {
class ScopeDesc : public ResourceObj {
public:
// Constructor
ScopeDesc(const nmethod* code, int decode_offset, int obj_decode_offset);
ScopeDesc(const nmethod* code, int decode_offset, int obj_decode_offset, bool reexecute);
// Calls above, giving default value of "serialized_null" to the
// "obj_decode_offset" argument. (We don't use a default argument to
// avoid a .hpp-.hpp dependency.)
ScopeDesc(const nmethod* code, int decode_offset);
ScopeDesc(const nmethod* code, int decode_offset, bool reexecute);
// JVM state
methodHandle method() const { return _method; }
int bci() const { return _bci; }
bool should_reexecute() const { return _reexecute; }
GrowableArray<ScopeValue*>* locals();
GrowableArray<ScopeValue*>* expressions();
@ -86,6 +87,7 @@ class ScopeDesc : public ResourceObj {
// JVM state
methodHandle _method;
int _bci;
bool _reexecute;
// Decoding offsets
int _decode_offset;

View File

@ -92,17 +92,50 @@ class MarkRefsIntoVerifyClosure: public OopsInGenClosure {
}
};
// The non-parallel version (the parallel version appears further below).
class PushAndMarkClosure: public OopClosure {
private:
// KlassRememberingOopClosure is used when marking of the permanent generation
// is being done. It adds fields to support revisiting of klasses
// for class unloading. _should_remember_klasses should be set to
// indicate if klasses should be remembered. Currently that is whenever
// CMS class unloading is turned on. The _revisit_stack is used
// to save the klasses for later processing.
class KlassRememberingOopClosure : public OopClosure {
protected:
CMSCollector* _collector;
CMSMarkStack* _revisit_stack;
bool const _should_remember_klasses;
public:
void check_remember_klasses() const PRODUCT_RETURN;
virtual const bool should_remember_klasses() const {
check_remember_klasses();
return _should_remember_klasses;
}
virtual void remember_klass(Klass* k);
KlassRememberingOopClosure(CMSCollector* collector,
ReferenceProcessor* rp,
CMSMarkStack* revisit_stack);
};
// Similar to KlassRememberingOopClosure for use when multiple
// GC threads will execute the closure.
class Par_KlassRememberingOopClosure : public KlassRememberingOopClosure {
public:
Par_KlassRememberingOopClosure(CMSCollector* collector,
ReferenceProcessor* rp,
CMSMarkStack* revisit_stack):
KlassRememberingOopClosure(collector, rp, revisit_stack) {}
virtual void remember_klass(Klass* k);
};
// The non-parallel version (the parallel version appears further below).
class PushAndMarkClosure: public KlassRememberingOopClosure {
private:
MemRegion _span;
CMSBitMap* _bit_map;
CMSBitMap* _mod_union_table;
CMSMarkStack* _mark_stack;
CMSMarkStack* _revisit_stack;
bool _concurrent_precleaning;
bool const _should_remember_klasses;
protected:
DO_OOP_WORK_DEFN
public:
@ -122,10 +155,12 @@ class PushAndMarkClosure: public OopClosure {
Prefetch::style prefetch_style() {
return Prefetch::do_read;
}
virtual const bool should_remember_klasses() const {
return _should_remember_klasses;
// In support of class unloading
virtual const bool should_remember_mdo() const {
return false;
// return _should_remember_klasses;
}
virtual void remember_klass(Klass* k);
virtual void remember_mdo(DataLayout* v);
};
// In the parallel case, the revisit stack, the bit map and the
@ -134,14 +169,11 @@ class PushAndMarkClosure: public OopClosure {
// synchronization (for instance, via CAS). The marking stack
// used in the non-parallel case above is here replaced with
// an OopTaskQueue structure to allow efficient work stealing.
class Par_PushAndMarkClosure: public OopClosure {
class Par_PushAndMarkClosure: public Par_KlassRememberingOopClosure {
private:
CMSCollector* _collector;
MemRegion _span;
CMSBitMap* _bit_map;
OopTaskQueue* _work_queue;
CMSMarkStack* _revisit_stack;
bool const _should_remember_klasses;
protected:
DO_OOP_WORK_DEFN
public:
@ -159,10 +191,12 @@ class Par_PushAndMarkClosure: public OopClosure {
Prefetch::style prefetch_style() {
return Prefetch::do_read;
}
virtual const bool should_remember_klasses() const {
return _should_remember_klasses;
// In support of class unloading
virtual const bool should_remember_mdo() const {
return false;
// return _should_remember_klasses;
}
virtual void remember_klass(Klass* k);
virtual void remember_mdo(DataLayout* v);
};
// The non-parallel version (the parallel version appears further below).
@ -201,6 +235,12 @@ class MarkRefsIntoAndScanClosure: public OopsInGenClosure {
void set_freelistLock(Mutex* m) {
_freelistLock = m;
}
virtual const bool should_remember_klasses() const {
return _pushAndMarkClosure.should_remember_klasses();
}
virtual void remember_klass(Klass* k) {
_pushAndMarkClosure.remember_klass(k);
}
private:
inline void do_yield_check();
@ -234,6 +274,16 @@ class Par_MarkRefsIntoAndScanClosure: public OopsInGenClosure {
inline void do_oop_nv(narrowOop* p) { Par_MarkRefsIntoAndScanClosure::do_oop_work(p); }
bool do_header() { return true; }
virtual const bool do_nmethods() const { return true; }
// When ScanMarkedObjectsAgainClosure is used,
// it passes [Par_]MarkRefsIntoAndScanClosure to oop_oop_iterate(),
// and this delegation is used.
virtual const bool should_remember_klasses() const {
return _par_pushAndMarkClosure.should_remember_klasses();
}
// See comment on should_remember_klasses() above.
virtual void remember_klass(Klass* k) {
_par_pushAndMarkClosure.remember_klass(k);
}
Prefetch::style prefetch_style() {
return Prefetch::do_read;
}
@ -243,17 +293,14 @@ class Par_MarkRefsIntoAndScanClosure: public OopsInGenClosure {
// This closure is used during the concurrent marking phase
// following the first checkpoint. Its use is buried in
// the closure MarkFromRootsClosure.
class PushOrMarkClosure: public OopClosure {
class PushOrMarkClosure: public KlassRememberingOopClosure {
private:
CMSCollector* _collector;
MemRegion _span;
CMSBitMap* _bitMap;
CMSMarkStack* _markStack;
CMSMarkStack* _revisitStack;
HeapWord* const _finger;
MarkFromRootsClosure* const
_parent;
bool const _should_remember_klasses;
protected:
DO_OOP_WORK_DEFN
public:
@ -268,10 +315,13 @@ class PushOrMarkClosure: public OopClosure {
virtual void do_oop(narrowOop* p);
inline void do_oop_nv(oop* p) { PushOrMarkClosure::do_oop_work(p); }
inline void do_oop_nv(narrowOop* p) { PushOrMarkClosure::do_oop_work(p); }
virtual const bool should_remember_klasses() const {
return _should_remember_klasses;
// In support of class unloading
virtual const bool should_remember_mdo() const {
return false;
// return _should_remember_klasses;
}
virtual void remember_klass(Klass* k);
virtual void remember_mdo(DataLayout* v);
// Deal with a stack overflow condition
void handle_stack_overflow(HeapWord* lost);
private:
@ -282,20 +332,17 @@ class PushOrMarkClosure: public OopClosure {
// This closure is used during the concurrent marking phase
// following the first checkpoint. Its use is buried in
// the closure Par_MarkFromRootsClosure.
class Par_PushOrMarkClosure: public OopClosure {
class Par_PushOrMarkClosure: public Par_KlassRememberingOopClosure {
private:
CMSCollector* _collector;
MemRegion _whole_span;
MemRegion _span; // local chunk
CMSBitMap* _bit_map;
OopTaskQueue* _work_queue;
CMSMarkStack* _overflow_stack;
CMSMarkStack* _revisit_stack;
HeapWord* const _finger;
HeapWord** const _global_finger_addr;
Par_MarkFromRootsClosure* const
_parent;
bool const _should_remember_klasses;
protected:
DO_OOP_WORK_DEFN
public:
@ -312,10 +359,13 @@ class Par_PushOrMarkClosure: public OopClosure {
virtual void do_oop(narrowOop* p);
inline void do_oop_nv(oop* p) { Par_PushOrMarkClosure::do_oop_work(p); }
inline void do_oop_nv(narrowOop* p) { Par_PushOrMarkClosure::do_oop_work(p); }
virtual const bool should_remember_klasses() const {
return _should_remember_klasses;
// In support of class unloading
virtual const bool should_remember_mdo() const {
return false;
// return _should_remember_klasses;
}
virtual void remember_klass(Klass* k);
virtual void remember_mdo(DataLayout* v);
// Deal with a stack overflow condition
void handle_stack_overflow(HeapWord* lost);
private:
@ -328,9 +378,8 @@ class Par_PushOrMarkClosure: public OopClosure {
// processing phase of the CMS final checkpoint step, as
// well as during the concurrent precleaning of the discovered
// reference lists.
class CMSKeepAliveClosure: public OopClosure {
class CMSKeepAliveClosure: public KlassRememberingOopClosure {
private:
CMSCollector* _collector;
const MemRegion _span;
CMSMarkStack* _mark_stack;
CMSBitMap* _bit_map;
@ -340,14 +389,7 @@ class CMSKeepAliveClosure: public OopClosure {
public:
CMSKeepAliveClosure(CMSCollector* collector, MemRegion span,
CMSBitMap* bit_map, CMSMarkStack* mark_stack,
bool cpc):
_collector(collector),
_span(span),
_bit_map(bit_map),
_mark_stack(mark_stack),
_concurrent_precleaning(cpc) {
assert(!_span.is_empty(), "Empty span could spell trouble");
}
CMSMarkStack* revisit_stack, bool cpc);
bool concurrent_precleaning() const { return _concurrent_precleaning; }
virtual void do_oop(oop* p);
virtual void do_oop(narrowOop* p);
@ -355,9 +397,8 @@ class CMSKeepAliveClosure: public OopClosure {
inline void do_oop_nv(narrowOop* p) { CMSKeepAliveClosure::do_oop_work(p); }
};
class CMSInnerParMarkAndPushClosure: public OopClosure {
class CMSInnerParMarkAndPushClosure: public Par_KlassRememberingOopClosure {
private:
CMSCollector* _collector;
MemRegion _span;
OopTaskQueue* _work_queue;
CMSBitMap* _bit_map;
@ -366,11 +407,8 @@ class CMSInnerParMarkAndPushClosure: public OopClosure {
public:
CMSInnerParMarkAndPushClosure(CMSCollector* collector,
MemRegion span, CMSBitMap* bit_map,
OopTaskQueue* work_queue):
_collector(collector),
_span(span),
_bit_map(bit_map),
_work_queue(work_queue) { }
CMSMarkStack* revisit_stack,
OopTaskQueue* work_queue);
virtual void do_oop(oop* p);
virtual void do_oop(narrowOop* p);
inline void do_oop_nv(oop* p) { CMSInnerParMarkAndPushClosure::do_oop_work(p); }
@ -380,9 +418,8 @@ class CMSInnerParMarkAndPushClosure: public OopClosure {
// A parallel (MT) version of the above, used when
// reference processing is parallel; the only difference
// is in the do_oop method.
class CMSParKeepAliveClosure: public OopClosure {
class CMSParKeepAliveClosure: public Par_KlassRememberingOopClosure {
private:
CMSCollector* _collector;
MemRegion _span;
OopTaskQueue* _work_queue;
CMSBitMap* _bit_map;
@ -394,7 +431,8 @@ class CMSParKeepAliveClosure: public OopClosure {
DO_OOP_WORK_DEFN
public:
CMSParKeepAliveClosure(CMSCollector* collector, MemRegion span,
CMSBitMap* bit_map, OopTaskQueue* work_queue);
CMSBitMap* bit_map, CMSMarkStack* revisit_stack,
OopTaskQueue* work_queue);
virtual void do_oop(oop* p);
virtual void do_oop(narrowOop* p);
inline void do_oop_nv(oop* p) { CMSParKeepAliveClosure::do_oop_work(p); }

View File

@ -37,16 +37,34 @@ inline void Par_MarkRefsIntoAndScanClosure::trim_queue(uint max) {
}
}
inline void PushOrMarkClosure::remember_klass(Klass* k) {
if (!_revisitStack->push(oop(k))) {
#ifndef PRODUCT
void KlassRememberingOopClosure::check_remember_klasses() const {
assert(_should_remember_klasses == must_remember_klasses(),
"Should remember klasses in this context.");
}
#endif
void KlassRememberingOopClosure::remember_klass(Klass* k) {
if (!_revisit_stack->push(oop(k))) {
fatal("Revisit stack overflow in PushOrMarkClosure");
}
check_remember_klasses();
}
inline void Par_PushOrMarkClosure::remember_klass(Klass* k) {
inline void PushOrMarkClosure::remember_mdo(DataLayout* v) {
// TBD
}
void Par_KlassRememberingOopClosure::remember_klass(Klass* k) {
if (!_revisit_stack->par_push(oop(k))) {
fatal("Revisit stack overflow in PushOrMarkClosure");
fatal("Revisit stack overflow in Par_KlassRememberingOopClosure");
}
check_remember_klasses();
}
inline void Par_PushOrMarkClosure::remember_mdo(DataLayout* v) {
// TBD
}
inline void PushOrMarkClosure::do_yield_check() {

View File

@ -3499,6 +3499,7 @@ void CMSCollector::checkpointRootsInitialWork(bool asynch) {
ref_processor()->set_enqueuing_is_done(false);
{
// This is not needed. DEBUG_ONLY(RememberKlassesChecker imx(true);)
COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact;)
gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
gch->gen_process_strong_roots(_cmsGen->level(),
@ -3623,6 +3624,8 @@ bool CMSCollector::markFromRootsWork(bool asynch) {
verify_overflow_empty();
assert(_revisitStack.isEmpty(), "tabula rasa");
DEBUG_ONLY(RememberKlassesChecker cmx(CMSClassUnloadingEnabled);)
bool result = false;
if (CMSConcurrentMTEnabled && ParallelCMSThreads > 0) {
result = do_marking_mt(asynch);
@ -3958,24 +3961,24 @@ void CMSConcMarkingTask::do_scan_and_mark(int i, CompactibleFreeListSpace* sp) {
pst->all_tasks_completed();
}
class Par_ConcMarkingClosure: public OopClosure {
class Par_ConcMarkingClosure: public Par_KlassRememberingOopClosure {
private:
CMSCollector* _collector;
MemRegion _span;
CMSBitMap* _bit_map;
CMSMarkStack* _overflow_stack;
CMSMarkStack* _revisit_stack; // XXXXXX Check proper use
OopTaskQueue* _work_queue;
protected:
DO_OOP_WORK_DEFN
public:
Par_ConcMarkingClosure(CMSCollector* collector, OopTaskQueue* work_queue,
CMSBitMap* bit_map, CMSMarkStack* overflow_stack):
_collector(collector),
CMSBitMap* bit_map, CMSMarkStack* overflow_stack,
CMSMarkStack* revisit_stack):
Par_KlassRememberingOopClosure(collector, NULL, revisit_stack),
_span(_collector->_span),
_work_queue(work_queue),
_bit_map(bit_map),
_overflow_stack(overflow_stack) { } // need to initialize revisit stack etc.
_overflow_stack(overflow_stack)
{ }
virtual void do_oop(oop* p);
virtual void do_oop(narrowOop* p);
void trim_queue(size_t max);
@ -4063,8 +4066,9 @@ void CMSConcMarkingTask::do_work_steal(int i) {
oop obj_to_scan;
CMSBitMap* bm = &(_collector->_markBitMap);
CMSMarkStack* ovflw = &(_collector->_markStack);
CMSMarkStack* revisit = &(_collector->_revisitStack);
int* seed = _collector->hash_seed(i);
Par_ConcMarkingClosure cl(_collector, work_q, bm, ovflw);
Par_ConcMarkingClosure cl(_collector, work_q, bm, ovflw, revisit);
while (true) {
cl.trim_queue(0);
assert(work_q->size() == 0, "Should have been emptied above");
@ -4089,6 +4093,7 @@ void CMSConcMarkingTask::coordinator_yield() {
assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
"CMS thread should hold CMS token");
DEBUG_ONLY(RememberKlassesChecker mux(false);)
// First give up the locks, then yield, then re-lock
// We should probably use a constructor/destructor idiom to
// do this unlock/lock or modify the MutexUnlocker class to
@ -4165,6 +4170,8 @@ bool CMSCollector::do_marking_mt(bool asynch) {
// multi-threaded marking phase.
ReferenceProcessorMTMutator mt(ref_processor(), num_workers > 1);
DEBUG_ONLY(RememberKlassesChecker cmx(CMSClassUnloadingEnabled);)
conc_workers()->start_task(&tsk);
while (tsk.yielded()) {
tsk.coordinator_yield();
@ -4404,7 +4411,8 @@ size_t CMSCollector::preclean_work(bool clean_refs, bool clean_survivor) {
CMSPrecleanRefsYieldClosure yield_cl(this);
assert(rp->span().equals(_span), "Spans should be equal");
CMSKeepAliveClosure keep_alive(this, _span, &_markBitMap,
&_markStack, true /* preclean */);
&_markStack, &_revisitStack,
true /* preclean */);
CMSDrainMarkingStackClosure complete_trace(this,
_span, &_markBitMap, &_markStack,
&keep_alive, true /* preclean */);
@ -4424,6 +4432,7 @@ size_t CMSCollector::preclean_work(bool clean_refs, bool clean_survivor) {
bitMapLock());
startTimer();
sample_eden();
// The following will yield to allow foreground
// collection to proceed promptly. XXX YSR:
// The code in this method may need further
@ -4453,6 +4462,7 @@ size_t CMSCollector::preclean_work(bool clean_refs, bool clean_survivor) {
SurvivorSpacePrecleanClosure
sss_cl(this, _span, &_markBitMap, &_markStack,
&pam_cl, before_count, CMSYield);
DEBUG_ONLY(RememberKlassesChecker mx(CMSClassUnloadingEnabled);)
dng->from()->object_iterate_careful(&sss_cl);
dng->to()->object_iterate_careful(&sss_cl);
}
@ -4554,6 +4564,13 @@ size_t CMSCollector::preclean_mod_union_table(
verify_work_stacks_empty();
verify_overflow_empty();
// Turn off checking for this method but turn it back on
// selectively. There are yield points in this method
// but it is difficult to turn the checking off just around
// the yield points. It is simpler to selectively turn
// it on.
DEBUG_ONLY(RememberKlassesChecker mux(false);)
// strategy: starting with the first card, accumulate contiguous
// ranges of dirty cards; clear these cards, then scan the region
// covered by these cards.
@ -4582,6 +4599,7 @@ size_t CMSCollector::preclean_mod_union_table(
MemRegion dirtyRegion;
{
stopTimer();
// Potential yield point
CMSTokenSync ts(true);
startTimer();
sample_eden();
@ -4607,6 +4625,7 @@ size_t CMSCollector::preclean_mod_union_table(
assert(numDirtyCards > 0, "consistency check");
HeapWord* stop_point = NULL;
stopTimer();
// Potential yield point
CMSTokenSyncWithLocks ts(true, gen->freelistLock(),
bitMapLock());
startTimer();
@ -4614,6 +4633,7 @@ size_t CMSCollector::preclean_mod_union_table(
verify_work_stacks_empty();
verify_overflow_empty();
sample_eden();
DEBUG_ONLY(RememberKlassesChecker mx(CMSClassUnloadingEnabled);)
stop_point =
gen->cmsSpace()->object_iterate_careful_m(dirtyRegion, cl);
}
@ -4701,6 +4721,7 @@ size_t CMSCollector::preclean_card_table(ConcurrentMarkSweepGeneration* gen,
sample_eden();
verify_work_stacks_empty();
verify_overflow_empty();
DEBUG_ONLY(RememberKlassesChecker mx(CMSClassUnloadingEnabled);)
HeapWord* stop_point =
gen->cmsSpace()->object_iterate_careful_m(dirtyRegion, cl);
if (stop_point != NULL) {
@ -4800,6 +4821,7 @@ void CMSCollector::checkpointRootsFinalWork(bool asynch,
assert(haveFreelistLocks(), "must have free list locks");
assert_lock_strong(bitMapLock());
DEBUG_ONLY(RememberKlassesChecker fmx(CMSClassUnloadingEnabled);)
if (!init_mark_was_synchronous) {
// We might assume that we need not fill TLAB's when
// CMSScavengeBeforeRemark is set, because we may have just done
@ -4903,6 +4925,9 @@ void CMSCollector::checkpointRootsFinalWork(bool asynch,
_markStack._hit_limit = 0;
_markStack._failed_double = 0;
// Check that all the klasses have been checked
assert(_revisitStack.isEmpty(), "Not all klasses revisited");
if ((VerifyAfterGC || VerifyDuringGC) &&
GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
verify_after_remark();
@ -5574,9 +5599,13 @@ public:
void CMSRefProcTaskProxy::work(int i) {
assert(_collector->_span.equals(_span), "Inconsistency in _span");
CMSParKeepAliveClosure par_keep_alive(_collector, _span,
_mark_bit_map, work_queue(i));
_mark_bit_map,
&_collector->_revisitStack,
work_queue(i));
CMSParDrainMarkingStackClosure par_drain_stack(_collector, _span,
_mark_bit_map, work_queue(i));
_mark_bit_map,
&_collector->_revisitStack,
work_queue(i));
CMSIsAliveClosure is_alive_closure(_span, _mark_bit_map);
_task.work(i, is_alive_closure, par_keep_alive, par_drain_stack);
if (_task.marks_oops_alive()) {
@ -5604,12 +5633,13 @@ public:
};
CMSParKeepAliveClosure::CMSParKeepAliveClosure(CMSCollector* collector,
MemRegion span, CMSBitMap* bit_map, OopTaskQueue* work_queue):
_collector(collector),
MemRegion span, CMSBitMap* bit_map, CMSMarkStack* revisit_stack,
OopTaskQueue* work_queue):
Par_KlassRememberingOopClosure(collector, NULL, revisit_stack),
_span(span),
_bit_map(bit_map),
_work_queue(work_queue),
_mark_and_push(collector, span, bit_map, work_queue),
_mark_and_push(collector, span, bit_map, revisit_stack, work_queue),
_low_water_mark(MIN2((uint)(work_queue->max_elems()/4),
(uint)(CMSWorkQueueDrainThreshold * ParallelGCThreads)))
{ }
@ -5696,7 +5726,8 @@ void CMSCollector::refProcessingWork(bool asynch, bool clear_all_soft_refs) {
verify_work_stacks_empty();
CMSKeepAliveClosure cmsKeepAliveClosure(this, _span, &_markBitMap,
&_markStack, false /* !preclean */);
&_markStack, &_revisitStack,
false /* !preclean */);
CMSDrainMarkingStackClosure cmsDrainMarkingStackClosure(this,
_span, &_markBitMap, &_markStack,
&cmsKeepAliveClosure, false /* !preclean */);
@ -6531,6 +6562,7 @@ void MarkRefsIntoAndScanClosure::do_yield_work() {
assert_lock_strong(_freelistLock);
assert_lock_strong(_bit_map->lock());
// relinquish the free_list_lock and bitMaplock()
DEBUG_ONLY(RememberKlassesChecker mux(false);)
_bit_map->lock()->unlock();
_freelistLock->unlock();
ConcurrentMarkSweepThread::desynchronize(true);
@ -6703,6 +6735,7 @@ void ScanMarkedObjectsAgainCarefullyClosure::do_yield_work() {
"CMS thread should hold CMS token");
assert_lock_strong(_freelistLock);
assert_lock_strong(_bitMap->lock());
DEBUG_ONLY(RememberKlassesChecker mux(false);)
// relinquish the free_list_lock and bitMaplock()
_bitMap->lock()->unlock();
_freelistLock->unlock();
@ -6779,6 +6812,7 @@ void SurvivorSpacePrecleanClosure::do_yield_work() {
assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
"CMS thread should hold CMS token");
assert_lock_strong(_bit_map->lock());
DEBUG_ONLY(RememberKlassesChecker smx(false);)
// Relinquish the bit map lock
_bit_map->lock()->unlock();
ConcurrentMarkSweepThread::desynchronize(true);
@ -6941,6 +6975,7 @@ void MarkFromRootsClosure::do_yield_work() {
assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
"CMS thread should hold CMS token");
assert_lock_strong(_bitMap->lock());
DEBUG_ONLY(RememberKlassesChecker mux(false);)
_bitMap->lock()->unlock();
ConcurrentMarkSweepThread::desynchronize(true);
ConcurrentMarkSweepThread::acknowledge_yield_request();
@ -7295,15 +7330,12 @@ PushOrMarkClosure::PushOrMarkClosure(CMSCollector* collector,
CMSBitMap* bitMap, CMSMarkStack* markStack,
CMSMarkStack* revisitStack,
HeapWord* finger, MarkFromRootsClosure* parent) :
OopClosure(collector->ref_processor()),
_collector(collector),
KlassRememberingOopClosure(collector, collector->ref_processor(), revisitStack),
_span(span),
_bitMap(bitMap),
_markStack(markStack),
_revisitStack(revisitStack),
_finger(finger),
_parent(parent),
_should_remember_klasses(collector->should_unload_classes())
_parent(parent)
{ }
Par_PushOrMarkClosure::Par_PushOrMarkClosure(CMSCollector* collector,
@ -7315,18 +7347,17 @@ Par_PushOrMarkClosure::Par_PushOrMarkClosure(CMSCollector* collector,
HeapWord* finger,
HeapWord** global_finger_addr,
Par_MarkFromRootsClosure* parent) :
OopClosure(collector->ref_processor()),
_collector(collector),
Par_KlassRememberingOopClosure(collector,
collector->ref_processor(),
revisit_stack),
_whole_span(collector->_span),
_span(span),
_bit_map(bit_map),
_work_queue(work_queue),
_overflow_stack(overflow_stack),
_revisit_stack(revisit_stack),
_finger(finger),
_global_finger_addr(global_finger_addr),
_parent(parent),
_should_remember_klasses(collector->should_unload_classes())
_parent(parent)
{ }
// Assumes thread-safe access by callers, who are
@ -7456,6 +7487,14 @@ void Par_PushOrMarkClosure::do_oop(oop obj) {
void Par_PushOrMarkClosure::do_oop(oop* p) { Par_PushOrMarkClosure::do_oop_work(p); }
void Par_PushOrMarkClosure::do_oop(narrowOop* p) { Par_PushOrMarkClosure::do_oop_work(p); }
KlassRememberingOopClosure::KlassRememberingOopClosure(CMSCollector* collector,
ReferenceProcessor* rp,
CMSMarkStack* revisit_stack) :
OopClosure(rp),
_collector(collector),
_revisit_stack(revisit_stack),
_should_remember_klasses(collector->should_unload_classes()) {}
PushAndMarkClosure::PushAndMarkClosure(CMSCollector* collector,
MemRegion span,
ReferenceProcessor* rp,
@ -7464,15 +7503,12 @@ PushAndMarkClosure::PushAndMarkClosure(CMSCollector* collector,
CMSMarkStack* mark_stack,
CMSMarkStack* revisit_stack,
bool concurrent_precleaning):
OopClosure(rp),
_collector(collector),
KlassRememberingOopClosure(collector, rp, revisit_stack),
_span(span),
_bit_map(bit_map),
_mod_union_table(mod_union_table),
_mark_stack(mark_stack),
_revisit_stack(revisit_stack),
_concurrent_precleaning(concurrent_precleaning),
_should_remember_klasses(collector->should_unload_classes())
_concurrent_precleaning(concurrent_precleaning)
{
assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
}
@ -7540,13 +7576,10 @@ Par_PushAndMarkClosure::Par_PushAndMarkClosure(CMSCollector* collector,
CMSBitMap* bit_map,
OopTaskQueue* work_queue,
CMSMarkStack* revisit_stack):
OopClosure(rp),
_collector(collector),
Par_KlassRememberingOopClosure(collector, rp, revisit_stack),
_span(span),
_bit_map(bit_map),
_work_queue(work_queue),
_revisit_stack(revisit_stack),
_should_remember_klasses(collector->should_unload_classes())
_work_queue(work_queue)
{
assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
}
@ -7599,19 +7632,16 @@ void Par_PushAndMarkClosure::do_oop(oop obj) {
void Par_PushAndMarkClosure::do_oop(oop* p) { Par_PushAndMarkClosure::do_oop_work(p); }
void Par_PushAndMarkClosure::do_oop(narrowOop* p) { Par_PushAndMarkClosure::do_oop_work(p); }
void PushAndMarkClosure::remember_klass(Klass* k) {
if (!_revisit_stack->push(oop(k))) {
fatal("Revisit stack overflowed in PushAndMarkClosure");
}
void PushAndMarkClosure::remember_mdo(DataLayout* v) {
// TBD
}
void Par_PushAndMarkClosure::remember_klass(Klass* k) {
if (!_revisit_stack->par_push(oop(k))) {
fatal("Revist stack overflowed in Par_PushAndMarkClosure");
}
void Par_PushAndMarkClosure::remember_mdo(DataLayout* v) {
// TBD
}
void CMSPrecleanRefsYieldClosure::do_yield_work() {
DEBUG_ONLY(RememberKlassesChecker mux(false);)
Mutex* bml = _collector->bitMapLock();
assert_lock_strong(bml);
assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
@ -8302,6 +8332,19 @@ bool CMSIsAliveClosure::do_object_b(oop obj) {
(!_span.contains(addr) || _bit_map->isMarked(addr));
}
CMSKeepAliveClosure::CMSKeepAliveClosure( CMSCollector* collector,
MemRegion span,
CMSBitMap* bit_map, CMSMarkStack* mark_stack,
CMSMarkStack* revisit_stack, bool cpc):
KlassRememberingOopClosure(collector, NULL, revisit_stack),
_span(span),
_bit_map(bit_map),
_mark_stack(mark_stack),
_concurrent_precleaning(cpc) {
assert(!_span.is_empty(), "Empty span could spell trouble");
}
// CMSKeepAliveClosure: the serial version
void CMSKeepAliveClosure::do_oop(oop obj) {
HeapWord* addr = (HeapWord*)obj;
@ -8385,6 +8428,16 @@ void CMSParKeepAliveClosure::trim_queue(uint max) {
}
}
CMSInnerParMarkAndPushClosure::CMSInnerParMarkAndPushClosure(
CMSCollector* collector,
MemRegion span, CMSBitMap* bit_map,
CMSMarkStack* revisit_stack,
OopTaskQueue* work_queue):
Par_KlassRememberingOopClosure(collector, NULL, revisit_stack),
_span(span),
_bit_map(bit_map),
_work_queue(work_queue) { }
void CMSInnerParMarkAndPushClosure::do_oop(oop obj) {
HeapWord* addr = (HeapWord*)obj;
if (_span.contains(addr) &&

View File

@ -1790,12 +1790,13 @@ class CMSParDrainMarkingStackClosure: public VoidClosure {
public:
CMSParDrainMarkingStackClosure(CMSCollector* collector,
MemRegion span, CMSBitMap* bit_map,
CMSMarkStack* revisit_stack,
OopTaskQueue* work_queue):
_collector(collector),
_span(span),
_bit_map(bit_map),
_work_queue(work_queue),
_mark_and_push(collector, span, bit_map, work_queue) { }
_mark_and_push(collector, span, bit_map, revisit_stack, work_queue) { }
public:
void trim_queue(uint max);

View File

@ -25,11 +25,21 @@
#include "incls/_precompiled.incl"
#include "incls/_concurrentG1Refine.cpp.incl"
// Possible sizes for the card counts cache: odd primes that roughly double in size.
// (See jvmtiTagMap.cpp).
int ConcurrentG1Refine::_cc_cache_sizes[] = {
16381, 32771, 76831, 150001, 307261,
614563, 1228891, 2457733, 4915219, 9830479,
19660831, 39321619, 78643219, 157286461, -1
};
ConcurrentG1Refine::ConcurrentG1Refine() :
_card_counts(NULL), _cur_card_count_histo(NULL), _cum_card_count_histo(NULL),
_card_counts(NULL), _card_epochs(NULL),
_n_card_counts(0), _max_n_card_counts(0),
_cache_size_index(0), _expand_card_counts(false),
_hot_cache(NULL),
_def_use_cache(false), _use_cache(false),
_n_periods(0), _total_cards(0), _total_travs(0),
_n_periods(0),
_threads(NULL), _n_threads(0)
{
if (G1ConcRefine) {
@ -57,32 +67,51 @@ size_t ConcurrentG1Refine::thread_num() {
}
void ConcurrentG1Refine::init() {
if (G1ConcRSLogCacheSize > 0 || G1ConcRSCountTraversals) {
G1CollectedHeap* g1h = G1CollectedHeap::heap();
_n_card_counts =
(unsigned) (g1h->g1_reserved_obj_bytes() >> CardTableModRefBS::card_shift);
_card_counts = NEW_C_HEAP_ARRAY(unsigned char, _n_card_counts);
for (size_t i = 0; i < _n_card_counts; i++) _card_counts[i] = 0;
ModRefBarrierSet* bs = g1h->mr_bs();
guarantee(bs->is_a(BarrierSet::CardTableModRef), "Precondition");
CardTableModRefBS* ctbs = (CardTableModRefBS*)bs;
_ct_bot = ctbs->byte_for_const(g1h->reserved_region().start());
if (G1ConcRSCountTraversals) {
_cur_card_count_histo = NEW_C_HEAP_ARRAY(unsigned, 256);
_cum_card_count_histo = NEW_C_HEAP_ARRAY(unsigned, 256);
for (int i = 0; i < 256; i++) {
_cur_card_count_histo[i] = 0;
_cum_card_count_histo[i] = 0;
}
}
}
if (G1ConcRSLogCacheSize > 0) {
_g1h = G1CollectedHeap::heap();
_max_n_card_counts =
(unsigned) (_g1h->g1_reserved_obj_bytes() >> CardTableModRefBS::card_shift);
size_t max_card_num = ((size_t)1 << (sizeof(unsigned)*BitsPerByte-1)) - 1;
guarantee(_max_n_card_counts < max_card_num, "card_num representation");
int desired = _max_n_card_counts / InitialCacheFraction;
for (_cache_size_index = 0;
_cc_cache_sizes[_cache_size_index] >= 0; _cache_size_index++) {
if (_cc_cache_sizes[_cache_size_index] >= desired) break;
}
_cache_size_index = MAX2(0, (_cache_size_index - 1));
int initial_size = _cc_cache_sizes[_cache_size_index];
if (initial_size < 0) initial_size = _max_n_card_counts;
// Make sure we don't go bigger than we will ever need
_n_card_counts = MIN2((unsigned) initial_size, _max_n_card_counts);
_card_counts = NEW_C_HEAP_ARRAY(CardCountCacheEntry, _n_card_counts);
_card_epochs = NEW_C_HEAP_ARRAY(CardEpochCacheEntry, _n_card_counts);
Copy::fill_to_bytes(&_card_counts[0],
_n_card_counts * sizeof(CardCountCacheEntry));
Copy::fill_to_bytes(&_card_epochs[0], _n_card_counts * sizeof(CardEpochCacheEntry));
ModRefBarrierSet* bs = _g1h->mr_bs();
guarantee(bs->is_a(BarrierSet::CardTableModRef), "Precondition");
_ct_bs = (CardTableModRefBS*)bs;
_ct_bot = _ct_bs->byte_for_const(_g1h->reserved_region().start());
_def_use_cache = true;
_use_cache = true;
_hot_cache_size = (1 << G1ConcRSLogCacheSize);
_hot_cache = NEW_C_HEAP_ARRAY(jbyte*, _hot_cache_size);
_n_hot = 0;
_hot_cache_idx = 0;
// For refining the cards in the hot cache in parallel
int n_workers = (ParallelGCThreads > 0 ?
_g1h->workers()->total_workers() : 1);
_hot_cache_par_chunk_size = MAX2(1, _hot_cache_size / n_workers);
_hot_cache_par_claimed_idx = 0;
}
}
@ -95,15 +124,11 @@ void ConcurrentG1Refine::stop() {
}
ConcurrentG1Refine::~ConcurrentG1Refine() {
if (G1ConcRSLogCacheSize > 0 || G1ConcRSCountTraversals) {
assert(_card_counts != NULL, "Logic");
FREE_C_HEAP_ARRAY(unsigned char, _card_counts);
assert(_cur_card_count_histo != NULL, "Logic");
FREE_C_HEAP_ARRAY(unsigned, _cur_card_count_histo);
assert(_cum_card_count_histo != NULL, "Logic");
FREE_C_HEAP_ARRAY(unsigned, _cum_card_count_histo);
}
if (G1ConcRSLogCacheSize > 0) {
assert(_card_counts != NULL, "Logic");
FREE_C_HEAP_ARRAY(CardCountCacheEntry, _card_counts);
assert(_card_epochs != NULL, "Logic");
FREE_C_HEAP_ARRAY(CardEpochCacheEntry, _card_epochs);
assert(_hot_cache != NULL, "Logic");
FREE_C_HEAP_ARRAY(jbyte*, _hot_cache);
}
@ -123,165 +148,232 @@ void ConcurrentG1Refine::threads_do(ThreadClosure *tc) {
}
}
int ConcurrentG1Refine::add_card_count(jbyte* card_ptr) {
size_t card_num = (card_ptr - _ct_bot);
guarantee(0 <= card_num && card_num < _n_card_counts, "Bounds");
unsigned char cnt = _card_counts[card_num];
if (cnt < 255) _card_counts[card_num]++;
return cnt;
_total_travs++;
bool ConcurrentG1Refine::is_young_card(jbyte* card_ptr) {
HeapWord* start = _ct_bs->addr_for(card_ptr);
HeapRegion* r = _g1h->heap_region_containing(start);
if (r != NULL && r->is_young()) {
return true;
}
// This card is not associated with a heap region
// so can't be young.
return false;
}
jbyte* ConcurrentG1Refine::cache_insert(jbyte* card_ptr) {
int count = add_card_count(card_ptr);
// Count previously unvisited cards.
if (count == 0) _total_cards++;
// We'll assume a traversal unless we store it in the cache.
if (count < G1ConcRSHotCardLimit) {
_total_travs++;
jbyte* ConcurrentG1Refine::add_card_count(jbyte* card_ptr, int* count, bool* defer) {
unsigned new_card_num = ptr_2_card_num(card_ptr);
unsigned bucket = hash(new_card_num);
assert(0 <= bucket && bucket < _n_card_counts, "Bounds");
CardCountCacheEntry* count_ptr = &_card_counts[bucket];
CardEpochCacheEntry* epoch_ptr = &_card_epochs[bucket];
// We have to construct a new entry if we haven't updated the counts
// during the current period, or if the count was updated for a
// different card number.
unsigned int new_epoch = (unsigned int) _n_periods;
julong new_epoch_entry = make_epoch_entry(new_card_num, new_epoch);
while (true) {
// Fetch the previous epoch value
julong prev_epoch_entry = epoch_ptr->_value;
julong cas_res;
if (extract_epoch(prev_epoch_entry) != new_epoch) {
// This entry has not yet been updated during this period.
// Note: we update the epoch value atomically to ensure
// that there is only one winner that updates the cached
// card_ptr value even though all the refine threads share
// the same epoch value.
cas_res = (julong) Atomic::cmpxchg((jlong) new_epoch_entry,
(volatile jlong*)&epoch_ptr->_value,
(jlong) prev_epoch_entry);
if (cas_res == prev_epoch_entry) {
// We have successfully won the race to update the
// epoch and card_num value. Make it look like the
// count and eviction count were previously cleared.
count_ptr->_count = 1;
count_ptr->_evict_count = 0;
*count = 0;
// We can defer the processing of card_ptr
*defer = true;
return card_ptr;
}
// Otherwise, it's hot.
// We did not win the race to update the epoch field, so some other
// thread must have done it. The value that gets returned by CAS
// should be the new epoch value.
assert(extract_epoch(cas_res) == new_epoch, "unexpected epoch");
// We could 'continue' here or just re-read the previous epoch value
prev_epoch_entry = epoch_ptr->_value;
}
// The epoch entry for card_ptr has been updated during this period.
unsigned old_card_num = extract_card_num(prev_epoch_entry);
// The card count that will be returned to caller
*count = count_ptr->_count;
// Are we updating the count for the same card?
if (new_card_num == old_card_num) {
// Same card - just update the count. We could have more than one
// thread racing to update count for the current card. It should be
// OK not to use a CAS as the only penalty should be some missed
// increments of the count which delays identifying the card as "hot".
if (*count < max_jubyte) count_ptr->_count++;
// We can defer the processing of card_ptr
*defer = true;
return card_ptr;
}
// Different card - evict old card info
if (count_ptr->_evict_count < max_jubyte) count_ptr->_evict_count++;
if (count_ptr->_evict_count > G1CardCountCacheExpandThreshold) {
// Trigger a resize the next time we clear
_expand_card_counts = true;
}
cas_res = (julong) Atomic::cmpxchg((jlong) new_epoch_entry,
(volatile jlong*)&epoch_ptr->_value,
(jlong) prev_epoch_entry);
if (cas_res == prev_epoch_entry) {
// We successfully updated the card num value in the epoch entry
count_ptr->_count = 0; // initialize counter for new card num
// Even though the region containg the card at old_card_num was not
// in the young list when old_card_num was recorded in the epoch
// cache it could have been added to the free list and subsequently
// added to the young list in the intervening time. If the evicted
// card is in a young region just return the card_ptr and the evicted
// card will not be cleaned. See CR 6817995.
jbyte* old_card_ptr = card_num_2_ptr(old_card_num);
if (is_young_card(old_card_ptr)) {
*count = 0;
// We can defer the processing of card_ptr
*defer = true;
return card_ptr;
}
// We do not want to defer processing of card_ptr in this case
// (we need to refine old_card_ptr and card_ptr)
*defer = false;
return old_card_ptr;
}
// Someone else beat us - try again.
}
}
jbyte* ConcurrentG1Refine::cache_insert(jbyte* card_ptr, bool* defer) {
int count;
jbyte* cached_ptr = add_card_count(card_ptr, &count, defer);
assert(cached_ptr != NULL, "bad cached card ptr");
assert(!is_young_card(cached_ptr), "shouldn't get a card in young region");
// The card pointer we obtained from card count cache is not hot
// so do not store it in the cache; return it for immediate
// refining.
if (count < G1ConcRSHotCardLimit) {
return cached_ptr;
}
// Otherwise, the pointer we got from the _card_counts is hot.
jbyte* res = NULL;
MutexLockerEx x(HotCardCache_lock, Mutex::_no_safepoint_check_flag);
if (_n_hot == _hot_cache_size) {
_total_travs++;
res = _hot_cache[_hot_cache_idx];
_n_hot--;
}
// Now _n_hot < _hot_cache_size, and we can insert at _hot_cache_idx.
_hot_cache[_hot_cache_idx] = card_ptr;
_hot_cache[_hot_cache_idx] = cached_ptr;
_hot_cache_idx++;
if (_hot_cache_idx == _hot_cache_size) _hot_cache_idx = 0;
_n_hot++;
if (res != NULL) {
// Even though the region containg res was not in the young list
// when it was recorded in the hot cache it could have been added
// to the free list and subsequently added to the young list in
// the intervening time. If res is in a young region, return NULL
// so that res is not cleaned. See CR 6817995.
if (is_young_card(res)) {
res = NULL;
}
}
return res;
}
void ConcurrentG1Refine::clean_up_cache(int worker_i, G1RemSet* g1rs) {
assert(!use_cache(), "cache should be disabled");
int start_ind = _hot_cache_idx-1;
for (int i = 0; i < _n_hot; i++) {
int ind = start_ind - i;
if (ind < 0) ind = ind + _hot_cache_size;
jbyte* entry = _hot_cache[ind];
int start_idx;
while ((start_idx = _hot_cache_par_claimed_idx) < _n_hot) { // read once
int end_idx = start_idx + _hot_cache_par_chunk_size;
if (start_idx ==
Atomic::cmpxchg(end_idx, &_hot_cache_par_claimed_idx, start_idx)) {
// The current worker has successfully claimed the chunk [start_idx..end_idx)
end_idx = MIN2(end_idx, _n_hot);
for (int i = start_idx; i < end_idx; i++) {
jbyte* entry = _hot_cache[i];
if (entry != NULL) {
g1rs->concurrentRefineOneCard(entry, worker_i);
}
}
_n_hot = 0;
_hot_cache_idx = 0;
}
}
}
void ConcurrentG1Refine::expand_card_count_cache() {
if (_n_card_counts < _max_n_card_counts) {
int new_idx = _cache_size_index+1;
int new_size = _cc_cache_sizes[new_idx];
if (new_size < 0) new_size = _max_n_card_counts;
// Make sure we don't go bigger than we will ever need
new_size = MIN2((unsigned) new_size, _max_n_card_counts);
// Expand the card count and card epoch tables
if (new_size > (int)_n_card_counts) {
// We can just free and allocate a new array as we're
// not interested in preserving the contents
assert(_card_counts != NULL, "Logic!");
assert(_card_epochs != NULL, "Logic!");
FREE_C_HEAP_ARRAY(CardCountCacheEntry, _card_counts);
FREE_C_HEAP_ARRAY(CardEpochCacheEntry, _card_epochs);
_n_card_counts = new_size;
_card_counts = NEW_C_HEAP_ARRAY(CardCountCacheEntry, _n_card_counts);
_card_epochs = NEW_C_HEAP_ARRAY(CardEpochCacheEntry, _n_card_counts);
_cache_size_index = new_idx;
}
}
}
void ConcurrentG1Refine::clear_and_record_card_counts() {
if (G1ConcRSLogCacheSize == 0 && !G1ConcRSCountTraversals) return;
if (G1ConcRSLogCacheSize == 0) return;
#ifndef PRODUCT
double start = os::elapsedTime();
#endif
if (_expand_card_counts) {
expand_card_count_cache();
_expand_card_counts = false;
// Only need to clear the epochs.
Copy::fill_to_bytes(&_card_epochs[0], _n_card_counts * sizeof(CardEpochCacheEntry));
}
int this_epoch = (int) _n_periods;
assert((this_epoch+1) <= max_jint, "to many periods");
// Update epoch
_n_periods++;
if (G1ConcRSCountTraversals) {
for (size_t i = 0; i < _n_card_counts; i++) {
unsigned char bucket = _card_counts[i];
_cur_card_count_histo[bucket]++;
_card_counts[i] = 0;
}
gclog_or_tty->print_cr("Card counts:");
for (int i = 0; i < 256; i++) {
if (_cur_card_count_histo[i] > 0) {
gclog_or_tty->print_cr(" %3d: %9d", i, _cur_card_count_histo[i]);
_cum_card_count_histo[i] += _cur_card_count_histo[i];
_cur_card_count_histo[i] = 0;
}
}
} else {
assert(G1ConcRSLogCacheSize > 0, "Logic");
Copy::fill_to_words((HeapWord*)(&_card_counts[0]),
_n_card_counts / HeapWordSize);
}
}
void
ConcurrentG1Refine::
print_card_count_histo_range(unsigned* histo, int from, int to,
float& cum_card_pct,
float& cum_travs_pct) {
unsigned cards = 0;
unsigned travs = 0;
guarantee(to <= 256, "Precondition");
for (int i = from; i < to-1; i++) {
cards += histo[i];
travs += histo[i] * i;
}
if (to == 256) {
unsigned histo_card_sum = 0;
unsigned histo_trav_sum = 0;
for (int i = 1; i < 255; i++) {
histo_trav_sum += histo[i] * i;
}
cards += histo[255];
// correct traversals for the last one.
unsigned travs_255 = (unsigned) (_total_travs - histo_trav_sum);
travs += travs_255;
} else {
cards += histo[to-1];
travs += histo[to-1] * (to-1);
}
float fperiods = (float)_n_periods;
float f_tot_cards = (float)_total_cards/fperiods;
float f_tot_travs = (float)_total_travs/fperiods;
if (cards > 0) {
float fcards = (float)cards/fperiods;
float ftravs = (float)travs/fperiods;
if (to == 256) {
gclog_or_tty->print(" %4d- %10.2f%10.2f", from, fcards, ftravs);
} else {
gclog_or_tty->print(" %4d-%4d %10.2f%10.2f", from, to-1, fcards, ftravs);
}
float pct_cards = fcards*100.0/f_tot_cards;
cum_card_pct += pct_cards;
float pct_travs = ftravs*100.0/f_tot_travs;
cum_travs_pct += pct_travs;
gclog_or_tty->print_cr("%10.2f%10.2f%10.2f%10.2f",
pct_cards, cum_card_pct,
pct_travs, cum_travs_pct);
}
}
void ConcurrentG1Refine::print_final_card_counts() {
if (!G1ConcRSCountTraversals) return;
gclog_or_tty->print_cr("Did %d total traversals of %d distinct cards.",
_total_travs, _total_cards);
float fperiods = (float)_n_periods;
gclog_or_tty->print_cr(" This is an average of %8.2f traversals, %8.2f cards, "
"per collection.", (float)_total_travs/fperiods,
(float)_total_cards/fperiods);
gclog_or_tty->print_cr(" This is an average of %8.2f traversals/distinct "
"dirty card.\n",
_total_cards > 0 ?
(float)_total_travs/(float)_total_cards : 0.0);
gclog_or_tty->print_cr("Histogram:\n\n%10s %10s%10s%10s%10s%10s%10s",
"range", "# cards", "# travs", "% cards", "(cum)",
"% travs", "(cum)");
gclog_or_tty->print_cr("------------------------------------------------------------"
"-------------");
float cum_cards_pct = 0.0;
float cum_travs_pct = 0.0;
for (int i = 1; i < 10; i++) {
print_card_count_histo_range(_cum_card_count_histo, i, i+1,
cum_cards_pct, cum_travs_pct);
}
for (int i = 10; i < 100; i += 10) {
print_card_count_histo_range(_cum_card_count_histo, i, i+10,
cum_cards_pct, cum_travs_pct);
}
print_card_count_histo_range(_cum_card_count_histo, 100, 150,
cum_cards_pct, cum_travs_pct);
print_card_count_histo_range(_cum_card_count_histo, 150, 200,
cum_cards_pct, cum_travs_pct);
print_card_count_histo_range(_cum_card_count_histo, 150, 255,
cum_cards_pct, cum_travs_pct);
print_card_count_histo_range(_cum_card_count_histo, 255, 256,
cum_cards_pct, cum_travs_pct);
#ifndef PRODUCT
double elapsed = os::elapsedTime() - start;
_g1h->g1_policy()->record_cc_clear_time(elapsed * 1000.0);
#endif
}

View File

@ -29,29 +29,117 @@ class G1RemSet;
class ConcurrentG1Refine: public CHeapObj {
ConcurrentG1RefineThread** _threads;
int _n_threads;
// The cache for card refinement.
bool _use_cache;
bool _def_use_cache;
size_t _n_periods;
size_t _total_cards;
size_t _total_travs;
unsigned char* _card_counts;
size_t _n_periods; // Used as clearing epoch
// An evicting cache of the number of times each card
// is accessed. Reduces, but does not eliminate, the amount
// of duplicated processing of dirty cards.
enum SomePrivateConstants {
epoch_bits = 32,
card_num_shift = epoch_bits,
epoch_mask = AllBits,
card_num_mask = AllBits,
// The initial cache size is approximately this fraction
// of a maximal cache (i.e. the size needed for all cards
// in the heap)
InitialCacheFraction = 512
};
const static julong card_num_mask_in_place =
(julong) card_num_mask << card_num_shift;
typedef struct {
julong _value; // | card_num | epoch |
} CardEpochCacheEntry;
julong make_epoch_entry(unsigned int card_num, unsigned int epoch) {
assert(0 <= card_num && card_num < _max_n_card_counts, "Bounds");
assert(0 <= epoch && epoch <= _n_periods, "must be");
return ((julong) card_num << card_num_shift) | epoch;
}
unsigned int extract_epoch(julong v) {
return (v & epoch_mask);
}
unsigned int extract_card_num(julong v) {
return (v & card_num_mask_in_place) >> card_num_shift;
}
typedef struct {
unsigned char _count;
unsigned char _evict_count;
} CardCountCacheEntry;
CardCountCacheEntry* _card_counts;
CardEpochCacheEntry* _card_epochs;
// The current number of buckets in the card count cache
unsigned _n_card_counts;
// The max number of buckets required for the number of
// cards for the entire reserved heap
unsigned _max_n_card_counts;
// Possible sizes of the cache: odd primes that roughly double in size.
// (See jvmtiTagMap.cpp).
static int _cc_cache_sizes[];
// The index in _cc_cache_sizes corresponding to the size of
// _card_counts.
int _cache_size_index;
bool _expand_card_counts;
const jbyte* _ct_bot;
unsigned* _cur_card_count_histo;
unsigned* _cum_card_count_histo;
jbyte** _hot_cache;
int _hot_cache_size;
int _n_hot;
int _hot_cache_idx;
// Returns the count of this card after incrementing it.
int add_card_count(jbyte* card_ptr);
int _hot_cache_par_chunk_size;
volatile int _hot_cache_par_claimed_idx;
// Needed to workaround 6817995
CardTableModRefBS* _ct_bs;
G1CollectedHeap* _g1h;
// Expands the array that holds the card counts to the next size up
void expand_card_count_cache();
// hash a given key (index of card_ptr) with the specified size
static unsigned int hash(size_t key, int size) {
return (unsigned int) key % size;
}
// hash a given key (index of card_ptr)
unsigned int hash(size_t key) {
return hash(key, _n_card_counts);
}
unsigned ptr_2_card_num(jbyte* card_ptr) {
return (unsigned) (card_ptr - _ct_bot);
}
jbyte* card_num_2_ptr(unsigned card_num) {
return (jbyte*) (_ct_bot + card_num);
}
// Returns the count of this card after incrementing it.
jbyte* add_card_count(jbyte* card_ptr, int* count, bool* defer);
// Returns true if this card is in a young region
bool is_young_card(jbyte* card_ptr);
void print_card_count_histo_range(unsigned* histo, int from, int to,
float& cum_card_pct,
float& cum_travs_pct);
public:
ConcurrentG1Refine();
~ConcurrentG1Refine();
@ -65,11 +153,16 @@ class ConcurrentG1Refine: public CHeapObj {
// If this is the first entry for the slot, writes into the cache and
// returns NULL. If it causes an eviction, returns the evicted pointer.
// Otherwise, its a cache hit, and returns NULL.
jbyte* cache_insert(jbyte* card_ptr);
jbyte* cache_insert(jbyte* card_ptr, bool* defer);
// Process the cached entries.
void clean_up_cache(int worker_i, G1RemSet* g1rs);
// Set up for parallel processing of the cards in the hot cache
void clear_hot_cache_claimed_index() {
_hot_cache_par_claimed_idx = 0;
}
// Discard entries in the hot cache.
void clear_hot_cache() {
_hot_cache_idx = 0; _n_hot = 0;
@ -84,7 +177,6 @@ class ConcurrentG1Refine: public CHeapObj {
}
void clear_and_record_card_counts();
void print_final_card_counts();
static size_t thread_num();
};

View File

@ -39,7 +39,6 @@ ConcurrentG1RefineThread(ConcurrentG1Refine* cg1r, ConcurrentG1RefineThread *nex
_next(next),
_cg1r(cg1r),
_vtime_accum(0.0),
_co_tracker(G1CRGroup),
_interval_ms(5.0)
{
create_and_start();
@ -76,9 +75,6 @@ void ConcurrentG1RefineThread::run() {
_vtime_start = os::elapsedVTime();
wait_for_universe_init();
_co_tracker.enable();
_co_tracker.start();
while (!_should_terminate) {
DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
// Wait for completed log buffers to exist.
@ -104,17 +100,17 @@ void ConcurrentG1RefineThread::run() {
double start_vtime_sec; // only used when G1SmoothConcRefine is on
int prev_buffer_num; // only used when G1SmoothConcRefine is on
// This thread activation threshold
int threshold = DCQBarrierProcessCompletedThreshold * _worker_id;
int threshold = G1UpdateBufferQueueProcessingThreshold * _worker_id;
// Next thread activation threshold
int next_threshold = threshold + DCQBarrierProcessCompletedThreshold;
int deactivation_threshold = MAX2<int>(threshold - DCQBarrierProcessCompletedThreshold / 2, 0);
int next_threshold = threshold + G1UpdateBufferQueueProcessingThreshold;
int deactivation_threshold = MAX2<int>(threshold - G1UpdateBufferQueueProcessingThreshold / 2, 0);
if (G1SmoothConcRefine) {
lower_limit = 0;
start_vtime_sec = os::elapsedVTime();
prev_buffer_num = (int) dcqs.completed_buffers_num();
} else {
lower_limit = DCQBarrierProcessCompletedThreshold / 4; // For now.
lower_limit = G1UpdateBufferQueueProcessingThreshold / 4; // For now.
}
while (dcqs.apply_closure_to_completed_buffer(_worker_id + _worker_id_offset, lower_limit)) {
double end_vtime_sec;
@ -147,7 +143,6 @@ void ConcurrentG1RefineThread::run() {
}
break;
}
_co_tracker.update(false);
// Check if we need to activate the next thread.
if (curr_buffer_num > next_threshold && _next != NULL && !_next->is_active()) {
@ -168,7 +163,6 @@ void ConcurrentG1RefineThread::run() {
}
n_logs++;
}
_co_tracker.update(false);
_sts.leave();
if (os::supports_vtime()) {
@ -177,9 +171,6 @@ void ConcurrentG1RefineThread::run() {
_vtime_accum = 0.0;
}
}
_sts.join();
_co_tracker.update(true);
_sts.leave();
assert(_should_terminate, "just checking");
terminate();

View File

@ -51,7 +51,6 @@ class ConcurrentG1RefineThread: public ConcurrentGCThread {
private:
ConcurrentG1Refine* _cg1r;
COTracker _co_tracker;
double _interval_ms;
void decreaseInterval(int processing_time_ms) {

View File

@ -433,8 +433,7 @@ ConcurrentMark::ConcurrentMark(ReservedSpace rs,
_total_counting_time(0.0),
_total_rs_scrub_time(0.0),
_parallel_workers(NULL),
_cleanup_co_tracker(G1CLGroup)
_parallel_workers(NULL)
{
CMVerboseLevel verbose_level =
(CMVerboseLevel) G1MarkingVerboseLevel;
@ -823,18 +822,6 @@ void ConcurrentMark::checkpointRootsInitialPost() {
// when marking is on. So, it's also called at the end of the
// initial-mark pause to update the heap end, if the heap expands
// during it. No need to call it here.
guarantee( !_cleanup_co_tracker.enabled(), "invariant" );
size_t max_marking_threads =
MAX2((size_t) 1, parallel_marking_threads());
for (int i = 0; i < (int)_max_task_num; ++i) {
_tasks[i]->enable_co_tracker();
if (i < (int) max_marking_threads)
_tasks[i]->reset_co_tracker(marking_task_overhead());
else
_tasks[i]->reset_co_tracker(0.0);
}
}
// Checkpoint the roots into this generation from outside
@ -845,7 +832,6 @@ void ConcurrentMark::checkpointRootsInitial() {
G1CollectedHeap* g1h = G1CollectedHeap::heap();
double start = os::elapsedTime();
GCOverheadReporter::recordSTWStart(start);
G1CollectorPolicy* g1p = G1CollectedHeap::heap()->g1_policy();
g1p->record_concurrent_mark_init_start();
@ -876,7 +862,6 @@ void ConcurrentMark::checkpointRootsInitial() {
// Statistics.
double end = os::elapsedTime();
_init_times.add((end - start) * 1000.0);
GCOverheadReporter::recordSTWEnd(end);
g1p->record_concurrent_mark_init_end();
}
@ -1035,7 +1020,6 @@ public:
guarantee( (size_t)worker_i < _cm->active_tasks(), "invariant" );
CMTask* the_task = _cm->task(worker_i);
the_task->start_co_tracker();
the_task->record_start_time();
if (!_cm->has_aborted()) {
do {
@ -1061,8 +1045,6 @@ public:
double end_time2_sec = os::elapsedTime();
double elapsed_time2_sec = end_time2_sec - start_time_sec;
the_task->update_co_tracker();
#if 0
gclog_or_tty->print_cr("CM: elapsed %1.4lf ms, sleep %1.4lf ms, "
"overhead %1.4lf",
@ -1079,7 +1061,6 @@ public:
ConcurrentGCThread::stsLeave();
double end_vtime = os::elapsedVTime();
the_task->update_co_tracker(true);
_cm->update_accum_task_vtime(worker_i, end_vtime - start_vtime);
}
@ -1133,7 +1114,6 @@ void ConcurrentMark::checkpointRootsFinal(bool clear_all_soft_refs) {
g1p->record_concurrent_mark_remark_start();
double start = os::elapsedTime();
GCOverheadReporter::recordSTWStart(start);
checkpointRootsFinalWork();
@ -1173,11 +1153,6 @@ void ConcurrentMark::checkpointRootsFinal(bool clear_all_soft_refs) {
_remark_weak_ref_times.add((now - mark_work_end) * 1000.0);
_remark_times.add((now - start) * 1000.0);
GCOverheadReporter::recordSTWEnd(now);
for (int i = 0; i < (int)_max_task_num; ++i)
_tasks[i]->disable_co_tracker();
_cleanup_co_tracker.enable();
_cleanup_co_tracker.reset(cleanup_task_overhead());
g1p->record_concurrent_mark_remark_end();
}
@ -1188,7 +1163,6 @@ class CalcLiveObjectsClosure: public HeapRegionClosure {
CMBitMapRO* _bm;
ConcurrentMark* _cm;
COTracker* _co_tracker;
bool _changed;
bool _yield;
size_t _words_done;
@ -1216,12 +1190,10 @@ class CalcLiveObjectsClosure: public HeapRegionClosure {
public:
CalcLiveObjectsClosure(bool final,
CMBitMapRO *bm, ConcurrentMark *cm,
BitMap* region_bm, BitMap* card_bm,
COTracker* co_tracker) :
BitMap* region_bm, BitMap* card_bm) :
_bm(bm), _cm(cm), _changed(false), _yield(true),
_words_done(0), _tot_live(0), _tot_used(0),
_region_bm(region_bm), _card_bm(card_bm),
_final(final), _co_tracker(co_tracker),
_region_bm(region_bm), _card_bm(card_bm),_final(final),
_regions_done(0), _start_vtime_sec(0.0)
{
_bottom_card_num =
@ -1265,9 +1237,6 @@ public:
}
bool doHeapRegion(HeapRegion* hr) {
if (_co_tracker != NULL)
_co_tracker->update();
if (!_final && _regions_done == 0)
_start_vtime_sec = os::elapsedVTime();
@ -1396,12 +1365,6 @@ public:
if (elapsed_vtime_sec > (10.0 / 1000.0)) {
jlong sleep_time_ms =
(jlong) (elapsed_vtime_sec * _cm->cleanup_sleep_factor() * 1000.0);
#if 0
gclog_or_tty->print_cr("CL: elapsed %1.4lf ms, sleep %1.4lf ms, "
"overhead %1.4lf",
elapsed_vtime_sec * 1000.0, (double) sleep_time_ms,
_co_tracker->concOverhead(os::elapsedTime()));
#endif
os::sleep(Thread::current(), sleep_time_ms, false);
_start_vtime_sec = end_vtime_sec;
}
@ -1421,15 +1384,11 @@ public:
void ConcurrentMark::calcDesiredRegions() {
guarantee( _cleanup_co_tracker.enabled(), "invariant" );
_cleanup_co_tracker.start();
_region_bm.clear();
_card_bm.clear();
CalcLiveObjectsClosure calccl(false /*final*/,
nextMarkBitMap(), this,
&_region_bm, &_card_bm,
&_cleanup_co_tracker);
&_region_bm, &_card_bm);
G1CollectedHeap *g1h = G1CollectedHeap::heap();
g1h->heap_region_iterate(&calccl);
@ -1437,8 +1396,6 @@ void ConcurrentMark::calcDesiredRegions() {
calccl.reset();
g1h->heap_region_iterate(&calccl);
} while (calccl.changed());
_cleanup_co_tracker.update(true);
}
class G1ParFinalCountTask: public AbstractGangTask {
@ -1472,8 +1429,7 @@ public:
void work(int i) {
CalcLiveObjectsClosure calccl(true /*final*/,
_bm, _g1h->concurrent_mark(),
_region_bm, _card_bm,
NULL /* CO tracker */);
_region_bm, _card_bm);
calccl.no_yield();
if (ParallelGCThreads > 0) {
_g1h->heap_region_par_iterate_chunked(&calccl, i,
@ -1663,13 +1619,10 @@ void ConcurrentMark::cleanup() {
/* prev marking */ true);
}
_cleanup_co_tracker.disable();
G1CollectorPolicy* g1p = G1CollectedHeap::heap()->g1_policy();
g1p->record_concurrent_mark_cleanup_start();
double start = os::elapsedTime();
GCOverheadReporter::recordSTWStart(start);
// Do counting once more with the world stopped for good measure.
G1ParFinalCountTask g1_par_count_task(g1h, nextMarkBitMap(),
@ -1774,7 +1727,6 @@ void ConcurrentMark::cleanup() {
// Statistics.
double end = os::elapsedTime();
_cleanup_times.add((end - start) * 1000.0);
GCOverheadReporter::recordSTWEnd(end);
// G1CollectedHeap::heap()->print();
// gclog_or_tty->print_cr("HEAP GC TIME STAMP : %d",
@ -2401,7 +2353,7 @@ class CSMarkOopClosure: public OopClosure {
// Now process this portion of this one.
int lim = MIN2(next_arr_ind, len);
for (int j = arr_ind; j < lim; j++) {
do_oop(aobj->obj_at_addr<T>(j));
do_oop(aobj->objArrayOopDesc::obj_at_addr<T>(j));
}
} else {
@ -2625,24 +2577,6 @@ void ConcurrentMark::registerCSetRegion(HeapRegion* hr) {
_should_gray_objects = true;
}
void ConcurrentMark::disable_co_trackers() {
if (has_aborted()) {
if (_cleanup_co_tracker.enabled())
_cleanup_co_tracker.disable();
for (int i = 0; i < (int)_max_task_num; ++i) {
CMTask* task = _tasks[i];
if (task->co_tracker_enabled())
task->disable_co_tracker();
}
} else {
guarantee( !_cleanup_co_tracker.enabled(), "invariant" );
for (int i = 0; i < (int)_max_task_num; ++i) {
CMTask* task = _tasks[i];
guarantee( !task->co_tracker_enabled(), "invariant" );
}
}
}
// abandon current marking iteration due to a Full GC
void ConcurrentMark::abort() {
// Clear all marks to force marking thread to do nothing
@ -4018,7 +3952,6 @@ CMTask::CMTask(int task_id,
CMTaskQueue* task_queue,
CMTaskQueueSet* task_queues)
: _g1h(G1CollectedHeap::heap()),
_co_tracker(G1CMGroup),
_task_id(task_id), _cm(cm),
_claimed(false),
_nextMarkBitMap(NULL), _hash_seed(17),

View File

@ -407,8 +407,6 @@ protected:
// verbose level
CMVerboseLevel _verbose_level;
COTracker _cleanup_co_tracker;
// These two fields are used to implement the optimisation that
// avoids pushing objects on the global/region stack if there are
// no collection set regions above the lowest finger.
@ -720,8 +718,6 @@ public:
// Called to abort the marking cycle after a Full GC takes palce.
void abort();
void disable_co_trackers();
// This prints the global/local fingers. It is used for debugging.
NOT_PRODUCT(void print_finger();)
@ -773,9 +769,6 @@ private:
// number of calls to this task
int _calls;
// concurrent overhead over a single CPU for this task
COTracker _co_tracker;
// when the virtual timer reaches this time, the marking step should
// exit
double _time_target_ms;
@ -928,27 +921,6 @@ public:
void set_concurrent(bool concurrent) { _concurrent = concurrent; }
void enable_co_tracker() {
guarantee( !_co_tracker.enabled(), "invariant" );
_co_tracker.enable();
}
void disable_co_tracker() {
guarantee( _co_tracker.enabled(), "invariant" );
_co_tracker.disable();
}
bool co_tracker_enabled() {
return _co_tracker.enabled();
}
void reset_co_tracker(double starting_conc_overhead = 0.0) {
_co_tracker.reset(starting_conc_overhead);
}
void start_co_tracker() {
_co_tracker.start();
}
void update_co_tracker(bool force_end = false) {
_co_tracker.update(force_end);
}
// The main method of this class which performs a marking step
// trying not to exceed the given duration. However, it might exit
// prematurely, according to some conditions (i.e. SATB buffers are

View File

@ -260,10 +260,6 @@ void ConcurrentMarkThread::run() {
}
}
_sts.join();
_cm->disable_co_trackers();
_sts.leave();
// we now want to allow clearing of the marking bitmap to be
// suspended by a collection pause.
_sts.join();

View File

@ -35,8 +35,7 @@ int ConcurrentZFThread::_zf_waits = 0;
int ConcurrentZFThread::_regions_filled = 0;
ConcurrentZFThread::ConcurrentZFThread() :
ConcurrentGCThread(),
_co_tracker(G1ZFGroup)
ConcurrentGCThread()
{
create_and_start();
}
@ -71,8 +70,6 @@ void ConcurrentZFThread::run() {
Thread* thr_self = Thread::current();
_vtime_start = os::elapsedVTime();
wait_for_universe_init();
_co_tracker.enable();
_co_tracker.start();
G1CollectedHeap* g1 = G1CollectedHeap::heap();
_sts.join();
@ -135,10 +132,7 @@ void ConcurrentZFThread::run() {
}
_vtime_accum = (os::elapsedVTime() - _vtime_start);
_sts.join();
_co_tracker.update();
}
_co_tracker.update(false);
_sts.leave();
assert(_should_terminate, "just checking");

View File

@ -42,8 +42,6 @@ class ConcurrentZFThread: public ConcurrentGCThread {
// Number of regions CFZ thread fills.
static int _regions_filled;
COTracker _co_tracker;
double _vtime_start; // Initial virtual time.
// These are static because the "print_summary_info" method is, and

View File

@ -80,8 +80,8 @@ void DirtyCardQueueSet::initialize(Monitor* cbl_mon, Mutex* fl_lock,
int max_completed_queue,
Mutex* lock, PtrQueueSet* fl_owner) {
PtrQueueSet::initialize(cbl_mon, fl_lock, max_completed_queue, fl_owner);
set_buffer_size(DCQBarrierQueueBufferSize);
set_process_completed_threshold(DCQBarrierProcessCompletedThreshold);
set_buffer_size(G1UpdateBufferSize);
set_process_completed_threshold(G1UpdateBufferQueueProcessingThreshold);
_shared_dirty_card_queue.set_lock(lock);
_free_ids = new FreeIdSet((int) num_par_ids(), _cbl_mon);

View File

@ -25,6 +25,8 @@
#include "incls/_precompiled.incl"
#include "incls/_g1CollectedHeap.cpp.incl"
size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
// turn it on so that the contents of the young list (scan-only /
// to-be-collected) are printed at "strategic" points before / during
// / after the collection --- this is useful for debugging
@ -927,7 +929,6 @@ void G1CollectedHeap::do_collection(bool full, bool clear_all_soft_refs,
TraceTime t(full ? "Full GC (System.gc())" : "Full GC", PrintGC, true, gclog_or_tty);
double start = os::elapsedTime();
GCOverheadReporter::recordSTWStart(start);
g1_policy()->record_full_collection_start();
gc_prologue(true);
@ -1049,7 +1050,6 @@ void G1CollectedHeap::do_collection(bool full, bool clear_all_soft_refs,
}
double end = os::elapsedTime();
GCOverheadReporter::recordSTWEnd(end);
g1_policy()->record_full_collection_end();
#ifdef TRACESPINNING
@ -1396,6 +1396,9 @@ G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
if (_process_strong_tasks == NULL || !_process_strong_tasks->valid()) {
vm_exit_during_initialization("Failed necessary allocation.");
}
_humongous_object_threshold_in_words = HeapRegion::GrainWords / 2;
int n_queues = MAX2((int)ParallelGCThreads, 1);
_task_queues = new RefToScanQueueSet(n_queues);
@ -1548,9 +1551,10 @@ jint G1CollectedHeap::initialize() {
const size_t max_region_idx = ((size_t)1 << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
const size_t cards_per_region = HeapRegion::GrainBytes >> CardTableModRefBS::card_shift;
size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
guarantee(cards_per_region < max_cards_per_region, "too many cards per region");
guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
guarantee((size_t) HeapRegion::CardsPerRegion < max_cards_per_region,
"too many cards per region");
_bot_shared = new G1BlockOffsetSharedArray(_reserved,
heap_word_size(init_byte_size));
@ -1591,7 +1595,7 @@ jint G1CollectedHeap::initialize() {
JavaThread::dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
DirtyCardQ_FL_lock,
G1DirtyCardQueueMax,
G1UpdateBufferQueueMaxLength,
Shared_DirtyCardQ_lock);
if (G1DeferredRSUpdate) {
@ -1610,9 +1614,6 @@ jint G1CollectedHeap::initialize() {
// Do later initialization work for concurrent refinement.
_cg1r->init();
const char* group_names[] = { "CR", "ZF", "CM", "CL" };
GCOverheadReporter::initGCOverheadReporter(4, group_names);
return JNI_OK;
}
@ -1637,6 +1638,9 @@ size_t G1CollectedHeap::capacity() const {
void G1CollectedHeap::iterate_dirty_card_closure(bool concurrent,
int worker_i) {
// Clean cards in the hot card cache
concurrent_g1_refine()->clean_up_cache(worker_i, g1_rem_set());
DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
int n_completed_buffers = 0;
while (dcqs.apply_closure_to_completed_buffer(worker_i, 0, true)) {
@ -1645,9 +1649,6 @@ void G1CollectedHeap::iterate_dirty_card_closure(bool concurrent,
g1_policy()->record_update_rs_processed_buffers(worker_i,
(double) n_completed_buffers);
dcqs.clear_n_completed_buffers();
// Finish up the queue...
if (worker_i == 0) concurrent_g1_refine()->clean_up_cache(worker_i,
g1_rem_set());
assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
}
@ -2414,8 +2415,6 @@ void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
}
void G1CollectedHeap::print_tracing_info() const {
concurrent_g1_refine()->print_final_card_counts();
// We'll overload this to mean "trace GC pause statistics."
if (TraceGen0Time || TraceGen1Time) {
// The "G1CollectorPolicy" is keeping track of these stats, so delegate
@ -2433,8 +2432,6 @@ void G1CollectedHeap::print_tracing_info() const {
}
g1_policy()->print_yg_surv_rate_info();
GCOverheadReporter::printGCOverhead();
SpecializationStats::print();
}
@ -2671,7 +2668,6 @@ G1CollectedHeap::do_collection_pause_at_safepoint() {
// The elapsed time induced by the start time below deliberately elides
// the possible verification above.
double start_time_sec = os::elapsedTime();
GCOverheadReporter::recordSTWStart(start_time_sec);
size_t start_used_bytes = used();
g1_policy()->record_collection_pause_start(start_time_sec,
@ -2749,8 +2745,6 @@ G1CollectedHeap::do_collection_pause_at_safepoint() {
_in_cset_fast_test = NULL;
_in_cset_fast_test_base = NULL;
release_gc_alloc_regions(false /* totally */);
cleanup_surviving_young_words();
if (g1_policy()->in_young_gc_mode()) {
@ -2800,7 +2794,6 @@ G1CollectedHeap::do_collection_pause_at_safepoint() {
double end_time_sec = os::elapsedTime();
double pause_time_ms = (end_time_sec - start_time_sec) * MILLIUNITS;
g1_policy()->record_pause_time_ms(pause_time_ms);
GCOverheadReporter::recordSTWEnd(end_time_sec);
g1_policy()->record_collection_pause_end(abandoned);
assert(regions_accounted_for(), "Region leakage.");
@ -2845,6 +2838,11 @@ G1CollectedHeap::do_collection_pause_at_safepoint() {
if (PrintHeapAtGC) {
Universe::print_heap_after_gc();
}
if (G1SummarizeRSetStats &&
(G1SummarizeRSetStatsPeriod > 0) &&
(total_collections() % G1SummarizeRSetStatsPeriod == 0)) {
g1_rem_set()->print_summary_info();
}
}
void G1CollectedHeap::set_gc_alloc_region(int purpose, HeapRegion* r) {
@ -4106,6 +4104,8 @@ void G1CollectedHeap::evacuate_collection_set() {
g1_rem_set()->prepare_for_oops_into_collection_set_do();
concurrent_g1_refine()->set_use_cache(false);
concurrent_g1_refine()->clear_hot_cache_claimed_index();
int n_workers = (ParallelGCThreads > 0 ? workers()->total_workers() : 1);
set_par_threads(n_workers);
G1ParTask g1_par_task(this, n_workers, _task_queues);
@ -4136,8 +4136,10 @@ void G1CollectedHeap::evacuate_collection_set() {
G1KeepAliveClosure keep_alive(this);
JNIHandles::weak_oops_do(&is_alive, &keep_alive);
}
release_gc_alloc_regions(false /* totally */);
g1_rem_set()->cleanup_after_oops_into_collection_set_do();
concurrent_g1_refine()->clear_hot_cache();
concurrent_g1_refine()->set_use_cache(true);
finalize_for_evac_failure();
@ -4268,12 +4270,18 @@ void G1CollectedHeap::dirtyCardsForYoungRegions(CardTableModRefBS* ct_bs, HeapRe
class G1ParCleanupCTTask : public AbstractGangTask {
CardTableModRefBS* _ct_bs;
G1CollectedHeap* _g1h;
HeapRegion* volatile _so_head;
HeapRegion* volatile _su_head;
public:
G1ParCleanupCTTask(CardTableModRefBS* ct_bs,
G1CollectedHeap* g1h) :
G1CollectedHeap* g1h,
HeapRegion* scan_only_list,
HeapRegion* survivor_list) :
AbstractGangTask("G1 Par Cleanup CT Task"),
_ct_bs(ct_bs),
_g1h(g1h)
_g1h(g1h),
_so_head(scan_only_list),
_su_head(survivor_list)
{ }
void work(int i) {
@ -4281,22 +4289,64 @@ public:
while (r = _g1h->pop_dirty_cards_region()) {
clear_cards(r);
}
// Redirty the cards of the scan-only and survivor regions.
dirty_list(&this->_so_head);
dirty_list(&this->_su_head);
}
void clear_cards(HeapRegion* r) {
// Cards for Survivor and Scan-Only regions will be dirtied later.
if (!r->is_scan_only() && !r->is_survivor()) {
_ct_bs->clear(MemRegion(r->bottom(), r->end()));
}
}
void dirty_list(HeapRegion* volatile * head_ptr) {
HeapRegion* head;
do {
// Pop region off the list.
head = *head_ptr;
if (head != NULL) {
HeapRegion* r = (HeapRegion*)
Atomic::cmpxchg_ptr(head->get_next_young_region(), head_ptr, head);
if (r == head) {
assert(!r->isHumongous(), "Humongous regions shouldn't be on survivor list");
_ct_bs->dirty(MemRegion(r->bottom(), r->end()));
}
}
} while (*head_ptr != NULL);
}
};
#ifndef PRODUCT
class G1VerifyCardTableCleanup: public HeapRegionClosure {
CardTableModRefBS* _ct_bs;
public:
G1VerifyCardTableCleanup(CardTableModRefBS* ct_bs)
: _ct_bs(ct_bs)
{ }
virtual bool doHeapRegion(HeapRegion* r)
{
MemRegion mr(r->bottom(), r->end());
if (r->is_scan_only() || r->is_survivor()) {
_ct_bs->verify_dirty_region(mr);
} else {
_ct_bs->verify_clean_region(mr);
}
return false;
}
};
#endif
void G1CollectedHeap::cleanUpCardTable() {
CardTableModRefBS* ct_bs = (CardTableModRefBS*) (barrier_set());
double start = os::elapsedTime();
// Iterate over the dirty cards region list.
G1ParCleanupCTTask cleanup_task(ct_bs, this);
G1ParCleanupCTTask cleanup_task(ct_bs, this,
_young_list->first_scan_only_region(),
_young_list->first_survivor_region());
if (ParallelGCThreads > 0) {
set_par_threads(workers()->total_workers());
workers()->run_task(&cleanup_task);
@ -4312,18 +4362,22 @@ void G1CollectedHeap::cleanUpCardTable() {
}
r->set_next_dirty_cards_region(NULL);
}
}
// now, redirty the cards of the scan-only and survivor regions
// (it seemed faster to do it this way, instead of iterating over
// all regions and then clearing / dirtying as appropriate)
dirtyCardsForYoungRegions(ct_bs, _young_list->first_scan_only_region());
dirtyCardsForYoungRegions(ct_bs, _young_list->first_survivor_region());
}
double elapsed = os::elapsedTime() - start;
g1_policy()->record_clear_ct_time( elapsed * 1000.0);
#ifndef PRODUCT
if (G1VerifyCTCleanup || VerifyAfterGC) {
G1VerifyCardTableCleanup cleanup_verifier(ct_bs);
heap_region_iterate(&cleanup_verifier);
}
#endif
}
void G1CollectedHeap::do_collection_pause_if_appropriate(size_t word_size) {
if (g1_policy()->should_do_collection_pause(word_size)) {
do_collection_pause();
@ -5016,7 +5070,7 @@ bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
return hr->is_in(p);
}
}
#endif // PRODUCT
#endif // !PRODUCT
void G1CollectedHeap::g1_unimplemented() {
// Unimplemented();

View File

@ -167,16 +167,11 @@ class G1CollectedHeap : public SharedHeap {
friend class G1MarkSweep;
private:
enum SomePrivateConstants {
VeryLargeInBytes = HeapRegion::GrainBytes/2,
VeryLargeInWords = VeryLargeInBytes/HeapWordSize,
MinHeapDeltaBytes = 10 * HeapRegion::GrainBytes, // FIXME
NumAPIs = HeapRegion::MaxAge
};
// The one and only G1CollectedHeap, so static functions can find it.
static G1CollectedHeap* _g1h;
static size_t _humongous_object_threshold_in_words;
// Storage for the G1 heap (excludes the permanent generation).
VirtualSpace _g1_storage;
MemRegion _g1_reserved;
@ -859,7 +854,7 @@ public:
return _g1_committed;
}
NOT_PRODUCT( bool is_in_closed_subset(const void* p) const; )
NOT_PRODUCT(bool is_in_closed_subset(const void* p) const;)
// Dirty card table entries covering a list of young regions.
void dirtyCardsForYoungRegions(CardTableModRefBS* ct_bs, HeapRegion* list);
@ -1021,7 +1016,7 @@ public:
// Returns "true" iff the given word_size is "very large".
static bool isHumongous(size_t word_size) {
return word_size >= VeryLargeInWords;
return word_size >= _humongous_object_threshold_in_words;
}
// Update mod union table with the set of dirty cards.

View File

@ -94,7 +94,14 @@ G1CollectorPolicy::G1CollectorPolicy() :
_summary(new Summary()),
_abandoned_summary(new AbandonedSummary()),
#ifndef PRODUCT
_cur_clear_ct_time_ms(0.0),
_min_clear_cc_time_ms(-1.0),
_max_clear_cc_time_ms(-1.0),
_cur_clear_cc_time_ms(0.0),
_cum_clear_cc_time_ms(0.0),
_num_cc_clears(0L),
#endif
_region_num_young(0),
_region_num_tenured(0),
@ -194,6 +201,11 @@ G1CollectorPolicy::G1CollectorPolicy() :
_survivors_age_table(true)
{
// Set up the region size and associated fields. Given that the
// policy is created before the heap, we have to set this up here,
// so it's done as soon as possible.
HeapRegion::setup_heap_region_size(Arguments::min_heap_size());
_recent_prev_end_times_for_all_gcs_sec->add(os::elapsedTime());
_prev_collection_pause_end_ms = os::elapsedTime() * 1000.0;
@ -986,8 +998,6 @@ void G1CollectorPolicy::record_full_collection_end() {
double full_gc_time_sec = end_sec - _cur_collection_start_sec;
double full_gc_time_ms = full_gc_time_sec * 1000.0;
checkpoint_conc_overhead();
_all_full_gc_times_ms->add(full_gc_time_ms);
update_recent_gc_times(end_sec, full_gc_time_ms);
@ -1157,7 +1167,6 @@ void G1CollectorPolicy::record_concurrent_mark_init_end() {
double end_time_sec = os::elapsedTime();
double elapsed_time_ms = (end_time_sec - _mark_init_start_sec) * 1000.0;
_concurrent_mark_init_times_ms->add(elapsed_time_ms);
checkpoint_conc_overhead();
record_concurrent_mark_init_end_pre(elapsed_time_ms);
_mmu_tracker->add_pause(_mark_init_start_sec, end_time_sec, true);
@ -1171,7 +1180,6 @@ void G1CollectorPolicy::record_concurrent_mark_remark_start() {
void G1CollectorPolicy::record_concurrent_mark_remark_end() {
double end_time_sec = os::elapsedTime();
double elapsed_time_ms = (end_time_sec - _mark_remark_start_sec)*1000.0;
checkpoint_conc_overhead();
_concurrent_mark_remark_times_ms->add(elapsed_time_ms);
_cur_mark_stop_world_time_ms += elapsed_time_ms;
_prev_collection_pause_end_ms += elapsed_time_ms;
@ -1203,7 +1211,6 @@ record_concurrent_mark_cleanup_end_work1(size_t freed_bytes,
// The important thing about this is that it includes "os::elapsedTime".
void G1CollectorPolicy::record_concurrent_mark_cleanup_end_work2() {
checkpoint_conc_overhead();
double end_time_sec = os::elapsedTime();
double elapsed_time_ms = (end_time_sec - _mark_cleanup_start_sec)*1000.0;
_concurrent_mark_cleanup_times_ms->add(elapsed_time_ms);
@ -1418,8 +1425,6 @@ void G1CollectorPolicy::record_collection_pause_end(bool abandoned) {
}
#endif // PRODUCT
checkpoint_conc_overhead();
if (in_young_gc_mode()) {
last_pause_included_initial_mark = _should_initiate_conc_mark;
if (last_pause_included_initial_mark)
@ -1648,6 +1653,15 @@ void G1CollectorPolicy::record_collection_pause_end(bool abandoned) {
print_stats(1, "Object Copying", obj_copy_time);
}
}
#ifndef PRODUCT
print_stats(1, "Cur Clear CC", _cur_clear_cc_time_ms);
print_stats(1, "Cum Clear CC", _cum_clear_cc_time_ms);
print_stats(1, "Min Clear CC", _min_clear_cc_time_ms);
print_stats(1, "Max Clear CC", _max_clear_cc_time_ms);
if (_num_cc_clears > 0) {
print_stats(1, "Avg Clear CC", _cum_clear_cc_time_ms / ((double)_num_cc_clears));
}
#endif
print_stats(1, "Other", other_time_ms);
for (int i = 0; i < _aux_num; ++i) {
if (_cur_aux_times_set[i]) {
@ -2509,19 +2523,6 @@ region_num_to_mbs(int length) {
}
#endif // PRODUCT
void
G1CollectorPolicy::checkpoint_conc_overhead() {
double conc_overhead = 0.0;
if (G1AccountConcurrentOverhead)
conc_overhead = COTracker::totalPredConcOverhead();
_mmu_tracker->update_conc_overhead(conc_overhead);
#if 0
gclog_or_tty->print(" CO %1.4lf TARGET %1.4lf",
conc_overhead, _mmu_tracker->max_gc_time());
#endif
}
size_t G1CollectorPolicy::max_regions(int purpose) {
switch (purpose) {
case GCAllocForSurvived:

View File

@ -92,9 +92,7 @@ protected:
int _parallel_gc_threads;
enum SomePrivateConstants {
NumPrevPausesForHeuristics = 10,
NumPrevGCsForHeuristics = 10,
NumAPIs = HeapRegion::MaxAge
NumPrevPausesForHeuristics = 10
};
G1MMUTracker* _mmu_tracker;
@ -112,7 +110,6 @@ protected:
return 8*M;
}
double _cur_collection_start_sec;
size_t _cur_collection_pause_used_at_start_bytes;
size_t _cur_collection_pause_used_regions_at_start;
@ -122,6 +119,15 @@ protected:
double _cur_clear_ct_time_ms;
bool _satb_drain_time_set;
#ifndef PRODUCT
// Card Table Count Cache stats
double _min_clear_cc_time_ms; // min
double _max_clear_cc_time_ms; // max
double _cur_clear_cc_time_ms; // clearing time during current pause
double _cum_clear_cc_time_ms; // cummulative clearing time
jlong _num_cc_clears; // number of times the card count cache has been cleared
#endif
double _cur_CH_strong_roots_end_sec;
double _cur_CH_strong_roots_dur_ms;
double _cur_G1_strong_roots_end_sec;
@ -931,6 +937,18 @@ public:
_cur_aux_times_ms[i] += ms;
}
#ifndef PRODUCT
void record_cc_clear_time(double ms) {
if (_min_clear_cc_time_ms < 0.0 || ms <= _min_clear_cc_time_ms)
_min_clear_cc_time_ms = ms;
if (_max_clear_cc_time_ms < 0.0 || ms >= _max_clear_cc_time_ms)
_max_clear_cc_time_ms = ms;
_cur_clear_cc_time_ms = ms;
_cum_clear_cc_time_ms += ms;
_num_cc_clears++;
}
#endif
// Record the fact that "bytes" bytes allocated in a region.
void record_before_bytes(size_t bytes);
void record_after_bytes(size_t bytes);
@ -961,8 +979,6 @@ public:
void set_should_initiate_conc_mark() { _should_initiate_conc_mark = true; }
void unset_should_initiate_conc_mark(){ _should_initiate_conc_mark = false; }
void checkpoint_conc_overhead();
// If an expansion would be appropriate, because recent GC overhead had
// exceeded the desired limit, return an amount to expand by.
virtual size_t expansion_amount();

View File

@ -37,21 +37,7 @@
G1MMUTracker::G1MMUTracker(double time_slice, double max_gc_time) :
_time_slice(time_slice),
_max_gc_time(max_gc_time),
_conc_overhead_time_sec(0.0) { }
void
G1MMUTracker::update_conc_overhead(double conc_overhead) {
double conc_overhead_time_sec = _time_slice * conc_overhead;
if (conc_overhead_time_sec > 0.9 * _max_gc_time) {
// We are screwed, as we only seem to have <10% of the soft
// real-time goal available for pauses. Let's admit defeat and
// allow something more generous as a pause target.
conc_overhead_time_sec = 0.75 * _max_gc_time;
}
_conc_overhead_time_sec = conc_overhead_time_sec;
}
_max_gc_time(max_gc_time) { }
G1MMUTrackerQueue::G1MMUTrackerQueue(double time_slice, double max_gc_time) :
G1MMUTracker(time_slice, max_gc_time),
@ -128,7 +114,7 @@ double G1MMUTrackerQueue::longest_pause_internal(double current_time) {
while( 1 ) {
double gc_time =
calculate_gc_time(current_time + target_time) + _conc_overhead_time_sec;
calculate_gc_time(current_time + target_time);
double diff = target_time + gc_time - _max_gc_time;
if (!is_double_leq_0(diff)) {
target_time -= diff;

View File

@ -33,19 +33,15 @@ protected:
double _time_slice;
double _max_gc_time; // this is per time slice
double _conc_overhead_time_sec;
public:
G1MMUTracker(double time_slice, double max_gc_time);
void update_conc_overhead(double conc_overhead);
virtual void add_pause(double start, double end, bool gc_thread) = 0;
virtual double longest_pause(double current_time) = 0;
virtual double when_sec(double current_time, double pause_time) = 0;
double max_gc_time() {
return _max_gc_time - _conc_overhead_time_sec;
return _max_gc_time;
}
inline bool now_max_gc(double current_time) {

View File

@ -102,9 +102,14 @@ void G1MarkSweep::allocate_stacks() {
GenMarkSweep::_marking_stack =
new (ResourceObj::C_HEAP) GrowableArray<oop>(4000, true);
size_t size = SystemDictionary::number_of_classes() * 2;
int size = SystemDictionary::number_of_classes() * 2;
GenMarkSweep::_revisit_klass_stack =
new (ResourceObj::C_HEAP) GrowableArray<Klass*>((int)size, true);
new (ResourceObj::C_HEAP) GrowableArray<Klass*>(size, true);
// (#klass/k)^2 for k ~ 10 appears a better fit, but this will have to do
// for now until we have a chance to work out a more optimal setting.
GenMarkSweep::_revisit_mdo_stack =
new (ResourceObj::C_HEAP) GrowableArray<DataLayout*>(size*2, true);
}
void G1MarkSweep::mark_sweep_phase1(bool& marked_for_unloading,
@ -146,6 +151,11 @@ void G1MarkSweep::mark_sweep_phase1(bool& marked_for_unloading,
assert(GenMarkSweep::_marking_stack->is_empty(),
"stack should be empty by now");
// Visit memoized MDO's and clear any unmarked weak refs
GenMarkSweep::follow_mdo_weak_refs();
assert(GenMarkSweep::_marking_stack->is_empty(), "just drained");
// Visit symbol and interned string tables and delete unmarked oops
SymbolTable::unlink(&GenMarkSweep::is_alive);
StringTable::unlink(&GenMarkSweep::is_alive);

View File

@ -676,61 +676,12 @@ void HRInto_G1RemSet::scrub_par(BitMap* region_bm, BitMap* card_bm,
static IntHistogram out_of_histo(50, 50);
void HRInto_G1RemSet::concurrentRefineOneCard(jbyte* card_ptr, int worker_i) {
// If the card is no longer dirty, nothing to do.
if (*card_ptr != CardTableModRefBS::dirty_card_val()) return;
void HRInto_G1RemSet::concurrentRefineOneCard_impl(jbyte* card_ptr, int worker_i) {
// Construct the region representing the card.
HeapWord* start = _ct_bs->addr_for(card_ptr);
// And find the region containing it.
HeapRegion* r = _g1->heap_region_containing(start);
if (r == NULL) {
guarantee(_g1->is_in_permanent(start), "Or else where?");
return; // Not in the G1 heap (might be in perm, for example.)
}
// Why do we have to check here whether a card is on a young region,
// given that we dirty young regions and, as a result, the
// post-barrier is supposed to filter them out and never to enqueue
// them? When we allocate a new region as the "allocation region" we
// actually dirty its cards after we release the lock, since card
// dirtying while holding the lock was a performance bottleneck. So,
// as a result, it is possible for other threads to actually
// allocate objects in the region (after the acquire the lock)
// before all the cards on the region are dirtied. This is unlikely,
// and it doesn't happen often, but it can happen. So, the extra
// check below filters out those cards.
if (r->is_young()) {
return;
}
// While we are processing RSet buffers during the collection, we
// actually don't want to scan any cards on the collection set,
// since we don't want to update remebered sets with entries that
// point into the collection set, given that live objects from the
// collection set are about to move and such entries will be stale
// very soon. This change also deals with a reliability issue which
// involves scanning a card in the collection set and coming across
// an array that was being chunked and looking malformed. Note,
// however, that if evacuation fails, we have to scan any objects
// that were not moved and create any missing entries.
if (r->in_collection_set()) {
return;
}
// Should we defer it?
if (_cg1r->use_cache()) {
card_ptr = _cg1r->cache_insert(card_ptr);
// If it was not an eviction, nothing to do.
if (card_ptr == NULL) return;
// OK, we have to reset the card start, region, etc.
start = _ct_bs->addr_for(card_ptr);
r = _g1->heap_region_containing(start);
if (r == NULL) {
guarantee(_g1->is_in_permanent(start), "Or else where?");
return; // Not in the G1 heap (might be in perm, for example.)
}
guarantee(!r->is_young(), "It was evicted in the current minor cycle.");
}
assert(r != NULL, "unexpected null");
HeapWord* end = _ct_bs->addr_for(card_ptr + 1);
MemRegion dirtyRegion(start, end);
@ -774,6 +725,106 @@ void HRInto_G1RemSet::concurrentRefineOneCard(jbyte* card_ptr, int worker_i) {
}
}
void HRInto_G1RemSet::concurrentRefineOneCard(jbyte* card_ptr, int worker_i) {
// If the card is no longer dirty, nothing to do.
if (*card_ptr != CardTableModRefBS::dirty_card_val()) return;
// Construct the region representing the card.
HeapWord* start = _ct_bs->addr_for(card_ptr);
// And find the region containing it.
HeapRegion* r = _g1->heap_region_containing(start);
if (r == NULL) {
guarantee(_g1->is_in_permanent(start), "Or else where?");
return; // Not in the G1 heap (might be in perm, for example.)
}
// Why do we have to check here whether a card is on a young region,
// given that we dirty young regions and, as a result, the
// post-barrier is supposed to filter them out and never to enqueue
// them? When we allocate a new region as the "allocation region" we
// actually dirty its cards after we release the lock, since card
// dirtying while holding the lock was a performance bottleneck. So,
// as a result, it is possible for other threads to actually
// allocate objects in the region (after the acquire the lock)
// before all the cards on the region are dirtied. This is unlikely,
// and it doesn't happen often, but it can happen. So, the extra
// check below filters out those cards.
if (r->is_young()) {
return;
}
// While we are processing RSet buffers during the collection, we
// actually don't want to scan any cards on the collection set,
// since we don't want to update remebered sets with entries that
// point into the collection set, given that live objects from the
// collection set are about to move and such entries will be stale
// very soon. This change also deals with a reliability issue which
// involves scanning a card in the collection set and coming across
// an array that was being chunked and looking malformed. Note,
// however, that if evacuation fails, we have to scan any objects
// that were not moved and create any missing entries.
if (r->in_collection_set()) {
return;
}
// Should we defer processing the card?
//
// Previously the result from the insert_cache call would be
// either card_ptr (implying that card_ptr was currently "cold"),
// null (meaning we had inserted the card ptr into the "hot"
// cache, which had some headroom), or a "hot" card ptr
// extracted from the "hot" cache.
//
// Now that the _card_counts cache in the ConcurrentG1Refine
// instance is an evicting hash table, the result we get back
// could be from evicting the card ptr in an already occupied
// bucket (in which case we have replaced the card ptr in the
// bucket with card_ptr and "defer" is set to false). To avoid
// having a data structure (updates to which would need a lock)
// to hold these unprocessed dirty cards, we need to immediately
// process card_ptr. The actions needed to be taken on return
// from cache_insert are summarized in the following table:
//
// res defer action
// --------------------------------------------------------------
// null false card evicted from _card_counts & replaced with
// card_ptr; evicted ptr added to hot cache.
// No need to process res; immediately process card_ptr
//
// null true card not evicted from _card_counts; card_ptr added
// to hot cache.
// Nothing to do.
//
// non-null false card evicted from _card_counts & replaced with
// card_ptr; evicted ptr is currently "cold" or
// caused an eviction from the hot cache.
// Immediately process res; process card_ptr.
//
// non-null true card not evicted from _card_counts; card_ptr is
// currently cold, or caused an eviction from hot
// cache.
// Immediately process res; no need to process card_ptr.
jbyte* res = card_ptr;
bool defer = false;
if (_cg1r->use_cache()) {
jbyte* res = _cg1r->cache_insert(card_ptr, &defer);
if (res != NULL && (res != card_ptr || defer)) {
start = _ct_bs->addr_for(res);
r = _g1->heap_region_containing(start);
if (r == NULL) {
assert(_g1->is_in_permanent(start), "Or else where?");
} else {
guarantee(!r->is_young(), "It was evicted in the current minor cycle.");
// Process card pointer we get back from the hot card cache
concurrentRefineOneCard_impl(res, worker_i);
}
}
}
if (!defer) {
concurrentRefineOneCard_impl(card_ptr, worker_i);
}
}
class HRRSStatsIter: public HeapRegionClosure {
size_t _occupied;
size_t _total_mem_sz;

View File

@ -157,6 +157,10 @@ protected:
}
}
// The routine that performs the actual work of refining a dirty
// card.
void concurrentRefineOneCard_impl(jbyte* card_ptr, int worker_i);
protected:
template <class T> void write_ref_nv(HeapRegion* from, T* p);
template <class T> void par_write_ref_nv(HeapRegion* from, T* p, int tid);

View File

@ -37,11 +37,7 @@
develop(intx, G1MarkingOverheadPercent, 0, \
"Overhead of concurrent marking") \
\
develop(bool, G1AccountConcurrentOverhead, false, \
"Whether soft real-time compliance in G1 will take into account" \
"concurrent overhead") \
\
product(intx, G1YoungGenSize, 0, \
product(uintx, G1YoungGenSize, 0, \
"Size of the G1 young generation, 0 is the adaptive policy") \
\
develop(bool, G1Gen, true, \
@ -74,6 +70,12 @@
diagnostic(bool, G1SummarizeRSetStats, false, \
"Summarize remembered set processing info") \
\
diagnostic(intx, G1SummarizeRSetStatsPeriod, 0, \
"The period (in number of GCs) at which we will generate " \
"update buffer processing info " \
"(0 means do not periodically generate this info); " \
"it also requires -XX:+G1SummarizeRSetStats") \
\
diagnostic(bool, G1SummarizeZFStats, false, \
"Summarize zero-filling info") \
\
@ -167,17 +169,20 @@
develop(bool, G1DisablePostBarrier, false, \
"Disable generation of post-barrier (i.e., RS barrier) ") \
\
product(intx, G1DirtyCardQueueMax, 30, \
"Maximum number of completed RS buffers before mutator threads " \
"start processing them.") \
product(intx, G1UpdateBufferSize, 256, \
"Size of an update buffer") \
\
product(intx, G1UpdateBufferQueueProcessingThreshold, 5, \
"Number of enqueued update buffers that will " \
"trigger concurrent processing") \
\
product(intx, G1UpdateBufferQueueMaxLength, 30, \
"Maximum number of enqueued update buffers before mutator " \
"threads start processing new ones instead of enqueueing them") \
\
develop(intx, G1ConcRSLogCacheSize, 10, \
"Log base 2 of the length of conc RS hot-card cache.") \
\
develop(bool, G1ConcRSCountTraversals, false, \
"If true, gather data about the number of times CR traverses " \
"cards ") \
\
develop(intx, G1ConcRSHotCardLimit, 4, \
"The threshold that defines (>=) a hot card.") \
\
@ -241,6 +246,9 @@
"If non-0 is the size of the G1 survivor space, " \
"otherwise SurvivorRatio is used to determine the size") \
\
product(uintx, G1HeapRegionSize, 0, \
"Size of the G1 regions.") \
\
experimental(bool, G1ParallelRSetUpdatingEnabled, false, \
"Enables the parallelization of remembered set updating " \
"during evacuation pauses") \
@ -251,6 +259,13 @@
\
product(uintx, G1ParallelRSetThreads, 0, \
"If non-0 is the number of parallel rem set update threads, " \
"otherwise the value is determined ergonomically.")
"otherwise the value is determined ergonomically.") \
\
develop(intx, G1CardCountCacheExpandThreshold, 16, \
"Expand the card count cache if the number of collisions for " \
"a particular entry exceeds this value.") \
\
develop(bool, G1VerifyCTCleanup, false, \
"Verify card table cleanup.")
G1_FLAGS(DECLARE_DEVELOPER_FLAG, DECLARE_PD_DEVELOPER_FLAG, DECLARE_PRODUCT_FLAG, DECLARE_PD_PRODUCT_FLAG, DECLARE_DIAGNOSTIC_FLAG, DECLARE_EXPERIMENTAL_FLAG, DECLARE_NOTPRODUCT_FLAG, DECLARE_MANAGEABLE_FLAG, DECLARE_PRODUCT_RW_FLAG)

View File

@ -25,6 +25,12 @@
#include "incls/_precompiled.incl"
#include "incls/_heapRegion.cpp.incl"
int HeapRegion::LogOfHRGrainBytes = 0;
int HeapRegion::LogOfHRGrainWords = 0;
int HeapRegion::GrainBytes = 0;
int HeapRegion::GrainWords = 0;
int HeapRegion::CardsPerRegion = 0;
HeapRegionDCTOC::HeapRegionDCTOC(G1CollectedHeap* g1,
HeapRegion* hr, OopClosure* cl,
CardTableModRefBS::PrecisionStyle precision,
@ -231,6 +237,73 @@ void HeapRegionDCTOC::walk_mem_region_with_cl(MemRegion mr,
}
}
// Minimum region size; we won't go lower than that.
// We might want to decrease this in the future, to deal with small
// heaps a bit more efficiently.
#define MIN_REGION_SIZE ( 1024 * 1024 )
// Maximum region size; we don't go higher than that. There's a good
// reason for having an upper bound. We don't want regions to get too
// large, otherwise cleanup's effectiveness would decrease as there
// will be fewer opportunities to find totally empty regions after
// marking.
#define MAX_REGION_SIZE ( 32 * 1024 * 1024 )
// The automatic region size calculation will try to have around this
// many regions in the heap (based on the min heap size).
#define TARGET_REGION_NUMBER 2048
void HeapRegion::setup_heap_region_size(uintx min_heap_size) {
// region_size in bytes
uintx region_size = G1HeapRegionSize;
if (FLAG_IS_DEFAULT(G1HeapRegionSize)) {
// We base the automatic calculation on the min heap size. This
// can be problematic if the spread between min and max is quite
// wide, imagine -Xms128m -Xmx32g. But, if we decided it based on
// the max size, the region size might be way too large for the
// min size. Either way, some users might have to set the region
// size manually for some -Xms / -Xmx combos.
region_size = MAX2(min_heap_size / TARGET_REGION_NUMBER,
(uintx) MIN_REGION_SIZE);
}
int region_size_log = log2_long((jlong) region_size);
// Recalculate the region size to make sure it's a power of
// 2. This means that region_size is the largest power of 2 that's
// <= what we've calculated so far.
region_size = 1 << region_size_log;
// Now make sure that we don't go over or under our limits.
if (region_size < MIN_REGION_SIZE) {
region_size = MIN_REGION_SIZE;
} else if (region_size > MAX_REGION_SIZE) {
region_size = MAX_REGION_SIZE;
}
// And recalculate the log.
region_size_log = log2_long((jlong) region_size);
// Now, set up the globals.
guarantee(LogOfHRGrainBytes == 0, "we should only set it once");
LogOfHRGrainBytes = region_size_log;
guarantee(LogOfHRGrainWords == 0, "we should only set it once");
LogOfHRGrainWords = LogOfHRGrainBytes - LogHeapWordSize;
guarantee(GrainBytes == 0, "we should only set it once");
// The cast to int is safe, given that we've bounded region_size by
// MIN_REGION_SIZE and MAX_REGION_SIZE.
GrainBytes = (int) region_size;
guarantee(GrainWords == 0, "we should only set it once");
GrainWords = GrainBytes >> LogHeapWordSize;
guarantee(1 << LogOfHRGrainWords == GrainWords, "sanity");
guarantee(CardsPerRegion == 0, "we should only set it once");
CardsPerRegion = GrainBytes >> CardTableModRefBS::card_shift;
}
void HeapRegion::reset_after_compaction() {
G1OffsetTableContigSpace::reset_after_compaction();
// After a compaction the mark bitmap is invalid, so we must

View File

@ -297,15 +297,24 @@ class HeapRegion: public G1OffsetTableContigSpace {
HeapRegion(G1BlockOffsetSharedArray* sharedOffsetArray,
MemRegion mr, bool is_zeroed);
enum SomePublicConstants {
// HeapRegions are GrainBytes-aligned
// and have sizes that are multiples of GrainBytes.
LogOfHRGrainBytes = 20,
LogOfHRGrainWords = LogOfHRGrainBytes - LogHeapWordSize,
GrainBytes = 1 << LogOfHRGrainBytes,
GrainWords = 1 <<LogOfHRGrainWords,
MaxAge = 2, NoOfAges = MaxAge+1
};
static int LogOfHRGrainBytes;
static int LogOfHRGrainWords;
// The normal type of these should be size_t. However, they used to
// be members of an enum before and they are assumed by the
// compilers to be ints. To avoid going and fixing all their uses,
// I'm declaring them as ints. I'm not anticipating heap region
// sizes to reach anywhere near 2g, so using an int here is safe.
static int GrainBytes;
static int GrainWords;
static int CardsPerRegion;
// It sets up the heap region size (GrainBytes / GrainWords), as
// well as other related fields that are based on the heap region
// size (LogOfHRGrainBytes / LogOfHRGrainWords /
// CardsPerRegion). All those fields are considered constant
// throughout the JVM's execution, therefore they should only be set
// up once during initialization time.
static void setup_heap_region_size(uintx min_heap_size);
enum ClaimValues {
InitialClaimValue = 0,

View File

@ -57,10 +57,6 @@ class PerRegionTable: public CHeapObj {
#endif // _MSC_VER
enum SomePrivateConstants {
CardsPerRegion = HeapRegion::GrainBytes >> CardTableModRefBS::card_shift
};
protected:
// We need access in order to union things into the base table.
BitMap* bm() { return &_bm; }
@ -76,7 +72,7 @@ protected:
#if PRT_COUNT_OCCUPIED
_occupied(0),
#endif
_bm(CardsPerRegion, false /* in-resource-area */)
_bm(HeapRegion::CardsPerRegion, false /* in-resource-area */)
{}
static void free(PerRegionTable* prt) {
@ -144,7 +140,8 @@ protected:
CardIdx_t from_card = (CardIdx_t)
hw_offset >> (CardTableModRefBS::card_shift - LogHeapWordSize);
assert(0 <= from_card && from_card < CardsPerRegion, "Must be in range.");
assert(0 <= from_card && from_card < HeapRegion::CardsPerRegion,
"Must be in range.");
add_card_work(from_card, par);
}
}
@ -631,7 +628,7 @@ void OtherRegionsTable::add_reference(OopOrNarrowOopStar from, int tid) {
uintptr_t(from_hr->bottom())
>> CardTableModRefBS::card_shift;
CardIdx_t card_index = from_card - from_hr_bot_card_index;
assert(0 <= card_index && card_index < PosParPRT::CardsPerRegion,
assert(0 <= card_index && card_index < HeapRegion::CardsPerRegion,
"Must be in range.");
if (G1HRRSUseSparseTable &&
_sparse_table.add_card(from_hrs_ind, card_index)) {
@ -922,7 +919,7 @@ size_t OtherRegionsTable::occ_fine() const {
}
size_t OtherRegionsTable::occ_coarse() const {
return (_n_coarse_entries * PosParPRT::CardsPerRegion);
return (_n_coarse_entries * HeapRegion::CardsPerRegion);
}
size_t OtherRegionsTable::occ_sparse() const {
@ -1049,7 +1046,8 @@ bool OtherRegionsTable::contains_reference_locked(OopOrNarrowOopStar from) const
uintptr_t(hr->bottom()) >> CardTableModRefBS::card_shift;
assert(from_card >= hr_bot_card_index, "Inv");
CardIdx_t card_index = from_card - hr_bot_card_index;
assert(0 <= card_index && card_index < PosParPRT::CardsPerRegion, "Must be in range.");
assert(0 <= card_index && card_index < HeapRegion::CardsPerRegion,
"Must be in range.");
return _sparse_table.contains_card(hr_ind, card_index);
}
@ -1176,7 +1174,7 @@ void HeapRegionRemSetIterator::initialize(const HeapRegionRemSet* hrrs) {
_is = Sparse;
// Set these values so that we increment to the first region.
_coarse_cur_region_index = -1;
_coarse_cur_region_cur_card = (PosParPRT::CardsPerRegion-1);;
_coarse_cur_region_cur_card = (HeapRegion::CardsPerRegion-1);;
_cur_region_cur_card = 0;
@ -1195,7 +1193,7 @@ bool HeapRegionRemSetIterator::coarse_has_next(size_t& card_index) {
// Go to the next card.
_coarse_cur_region_cur_card++;
// Was the last the last card in the current region?
if (_coarse_cur_region_cur_card == PosParPRT::CardsPerRegion) {
if (_coarse_cur_region_cur_card == HeapRegion::CardsPerRegion) {
// Yes: find the next region. This may leave _coarse_cur_region_index
// Set to the last index, in which case there are no more coarse
// regions.
@ -1232,7 +1230,7 @@ bool HeapRegionRemSetIterator::fine_has_next(size_t& card_index) {
_fine_cur_prt->_bm.get_next_one_offset(_cur_region_cur_card + 1);
}
while (!fine_has_next()) {
if (_cur_region_cur_card == PosParPRT::CardsPerRegion) {
if (_cur_region_cur_card == (size_t) HeapRegion::CardsPerRegion) {
_cur_region_cur_card = 0;
_fine_cur_prt = _fine_cur_prt->next();
}
@ -1255,7 +1253,7 @@ bool HeapRegionRemSetIterator::fine_has_next(size_t& card_index) {
bool HeapRegionRemSetIterator::fine_has_next() {
return
_fine_cur_prt != NULL &&
_cur_region_cur_card < PosParPRT::CardsPerRegion;
_cur_region_cur_card < (size_t) HeapRegion::CardsPerRegion;
}
bool HeapRegionRemSetIterator::has_next(size_t& card_index) {

View File

@ -347,7 +347,7 @@ CardIdx_t /* RSHashTable:: */ RSHashTableIter::find_first_card_in_list() {
size_t /* RSHashTable:: */ RSHashTableIter::compute_card_ind(CardIdx_t ci) {
return
_heap_bot_card_ind
+ (_rsht->entry(_bl_ind)->r_ind() * CardsPerRegion)
+ (_rsht->entry(_bl_ind)->r_ind() * HeapRegion::CardsPerRegion)
+ ci;
}

View File

@ -172,10 +172,6 @@ class RSHashTableIter VALUE_OBJ_CLASS_SPEC {
RSHashTable* _rsht;
size_t _heap_bot_card_ind;
enum SomePrivateConstants {
CardsPerRegion = HeapRegion::GrainBytes >> CardTableModRefBS::card_shift
};
// If the bucket list pointed to by _bl_ind contains a card, sets
// _bl_ind to the index of that entry, and returns the card.
// Otherwise, returns SparseEntry::NullEntry.

View File

@ -145,6 +145,7 @@ concurrentMarkSweepGeneration.cpp genOopClosures.inline.hpp
concurrentMarkSweepGeneration.cpp globals_extension.hpp
concurrentMarkSweepGeneration.cpp handles.inline.hpp
concurrentMarkSweepGeneration.cpp isGCActiveMark.hpp
concurrentMarkSweepGeneration.cpp iterator.hpp
concurrentMarkSweepGeneration.cpp java.hpp
concurrentMarkSweepGeneration.cpp jvmtiExport.hpp
concurrentMarkSweepGeneration.cpp oop.inline.hpp

View File

@ -45,11 +45,14 @@ concurrentG1Refine.cpp concurrentG1Refine.hpp
concurrentG1Refine.cpp concurrentG1RefineThread.hpp
concurrentG1Refine.cpp copy.hpp
concurrentG1Refine.cpp g1CollectedHeap.inline.hpp
concurrentG1Refine.cpp g1CollectorPolicy.hpp
concurrentG1Refine.cpp g1RemSet.hpp
concurrentG1Refine.cpp space.inline.hpp
concurrentG1Refine.cpp heapRegionSeq.inline.hpp
concurrentG1Refine.hpp globalDefinitions.hpp
concurrentG1Refine.hpp allocation.hpp
concurrentG1Refine.hpp cardTableModRefBS.hpp
concurrentG1Refine.hpp thread.hpp
concurrentG1RefineThread.cpp concurrentG1Refine.hpp
@ -61,14 +64,12 @@ concurrentG1RefineThread.cpp mutexLocker.hpp
concurrentG1RefineThread.cpp resourceArea.hpp
concurrentG1RefineThread.hpp concurrentGCThread.hpp
concurrentG1RefineThread.hpp coTracker.hpp
concurrentMark.cpp concurrentMark.hpp
concurrentMark.cpp concurrentMarkThread.inline.hpp
concurrentMark.cpp g1CollectedHeap.inline.hpp
concurrentMark.cpp g1CollectorPolicy.hpp
concurrentMark.cpp g1RemSet.hpp
concurrentMark.cpp gcOverheadReporter.hpp
concurrentMark.cpp genOopClosures.inline.hpp
concurrentMark.cpp heapRegionRemSet.hpp
concurrentMark.cpp heapRegionSeq.inline.hpp
@ -79,7 +80,6 @@ concurrentMark.cpp referencePolicy.hpp
concurrentMark.cpp resourceArea.hpp
concurrentMark.cpp symbolTable.hpp
concurrentMark.hpp coTracker.hpp
concurrentMark.hpp heapRegion.hpp
concurrentMark.hpp taskqueue.hpp
@ -104,7 +104,6 @@ concurrentZFThread.cpp mutexLocker.hpp
concurrentZFThread.cpp space.inline.hpp
concurrentZFThread.hpp concurrentGCThread.hpp
concurrentZFThread.hpp coTracker.hpp
dirtyCardQueue.cpp atomic.hpp
dirtyCardQueue.cpp dirtyCardQueue.hpp
@ -144,7 +143,6 @@ g1CollectedHeap.cpp g1RemSet.inline.hpp
g1CollectedHeap.cpp g1OopClosures.inline.hpp
g1CollectedHeap.cpp genOopClosures.inline.hpp
g1CollectedHeap.cpp gcLocker.inline.hpp
g1CollectedHeap.cpp gcOverheadReporter.hpp
g1CollectedHeap.cpp generationSpec.hpp
g1CollectedHeap.cpp heapRegionRemSet.hpp
g1CollectedHeap.cpp heapRegionSeq.inline.hpp
@ -167,6 +165,7 @@ g1CollectedHeap.inline.hpp g1CollectedHeap.hpp
g1CollectedHeap.inline.hpp heapRegionSeq.hpp
g1CollectedHeap.inline.hpp taskqueue.hpp
g1CollectorPolicy.cpp arguments.hpp
g1CollectorPolicy.cpp concurrentG1Refine.hpp
g1CollectorPolicy.cpp concurrentMark.hpp
g1CollectorPolicy.cpp concurrentMarkThread.inline.hpp

View File

@ -253,10 +253,11 @@ psParallelCompact.cpp gcCause.hpp
psParallelCompact.cpp gcLocker.inline.hpp
psParallelCompact.cpp gcTaskManager.hpp
psParallelCompact.cpp isGCActiveMark.hpp
psParallelCompact.cpp management.hpp
psParallelCompact.cpp memoryService.hpp
psParallelCompact.cpp methodDataOop.hpp
psParallelCompact.cpp oop.inline.hpp
psParallelCompact.cpp oop.pcgc.inline.hpp
psParallelCompact.cpp memoryService.hpp
psParallelCompact.cpp management.hpp
psParallelCompact.cpp parallelScavengeHeap.inline.hpp
psParallelCompact.cpp pcTasks.hpp
psParallelCompact.cpp psMarkSweep.hpp

View File

@ -35,12 +35,6 @@ concurrentGCThread.cpp systemDictionary.hpp
concurrentGCThread.hpp thread.hpp
coTracker.hpp globalDefinitions.hpp
coTracker.hpp numberSeq.hpp
coTracker.cpp coTracker.hpp
coTracker.cpp os.hpp
allocationStats.cpp allocationStats.hpp
allocationStats.cpp ostream.hpp
@ -54,13 +48,6 @@ gcAdaptivePolicyCounters.hpp gcPolicyCounters.hpp
gcAdaptivePolicyCounters.cpp resourceArea.hpp
gcAdaptivePolicyCounters.cpp gcAdaptivePolicyCounters.hpp
gcOverheadReporter.cpp allocation.inline.hpp
gcOverheadReporter.cpp concurrentGCThread.hpp
gcOverheadReporter.cpp coTracker.hpp
gcOverheadReporter.cpp gcOverheadReporter.hpp
gcOverheadReporter.cpp ostream.hpp
gcOverheadReporter.cpp thread_<os_family>.inline.hpp
gSpaceCounters.cpp generation.hpp
gSpaceCounters.cpp resourceArea.hpp
gSpaceCounters.cpp gSpaceCounters.hpp

View File

@ -58,7 +58,6 @@ void MarkFromRootsTask::do_it(GCTaskManager* manager, uint which) {
PrintGCDetails && TraceParallelOldGCTasks, true, gclog_or_tty));
ParCompactionManager* cm =
ParCompactionManager::gc_thread_compaction_manager(which);
// cm->allocate_stacks();
assert(cm->stacks_have_been_allocated(),
"Stack space has not been allocated");
PSParallelCompact::MarkAndPushClosure mark_and_push_closure(cm);
@ -129,7 +128,6 @@ void RefProcTaskProxy::do_it(GCTaskManager* manager, uint which)
PrintGCDetails && TraceParallelOldGCTasks, true, gclog_or_tty));
ParCompactionManager* cm =
ParCompactionManager::gc_thread_compaction_manager(which);
// cm->allocate_stacks();
assert(cm->stacks_have_been_allocated(),
"Stack space has not been allocated");
PSParallelCompact::MarkAndPushClosure mark_and_push_closure(cm);

View File

@ -61,12 +61,16 @@ ParCompactionManager::ParCompactionManager() :
int size =
(SystemDictionary::number_of_classes() * 2) * 2 / ParallelGCThreads;
_revisit_klass_stack = new (ResourceObj::C_HEAP) GrowableArray<Klass*>(size, true);
// From some experiments (#klass/k)^2 for k = 10 seems a better fit, but this will
// have to do for now until we are able to investigate a more optimal setting.
_revisit_mdo_stack = new (ResourceObj::C_HEAP) GrowableArray<DataLayout*>(size*2, true);
}
ParCompactionManager::~ParCompactionManager() {
delete _overflow_stack;
delete _revisit_klass_stack;
delete _revisit_mdo_stack;
// _manager_array and _stack_array are statics
// shared with all instances of ParCompactionManager
// should not be deallocated.
@ -195,6 +199,7 @@ ParCompactionManager::gc_thread_compaction_manager(int index) {
void ParCompactionManager::reset() {
for(uint i=0; i<ParallelGCThreads+1; i++) {
manager_array(i)->revisit_klass_stack()->clear();
manager_array(i)->revisit_mdo_stack()->clear();
}
}
@ -296,6 +301,7 @@ void ParCompactionManager::drain_region_stacks() {
#ifdef ASSERT
bool ParCompactionManager::stacks_have_been_allocated() {
return (revisit_klass_stack()->data_addr() != NULL);
return (revisit_klass_stack()->data_addr() != NULL &&
revisit_mdo_stack()->data_addr() != NULL);
}
#endif

View File

@ -93,6 +93,7 @@ class ParCompactionManager : public CHeapObj {
#if 1 // does this happen enough to need a per thread stack?
GrowableArray<Klass*>* _revisit_klass_stack;
GrowableArray<DataLayout*>* _revisit_mdo_stack;
#endif
static ParMarkBitMap* _mark_bitmap;
@ -154,6 +155,7 @@ class ParCompactionManager : public CHeapObj {
#if 1
// Probably stays as a growable array
GrowableArray<Klass*>* revisit_klass_stack() { return _revisit_klass_stack; }
GrowableArray<DataLayout*>* revisit_mdo_stack() { return _revisit_mdo_stack; }
#endif
// Save oop for later processing. Must not fail.

View File

@ -482,6 +482,9 @@ void PSMarkSweep::allocate_stacks() {
int size = SystemDictionary::number_of_classes() * 2;
_revisit_klass_stack = new (ResourceObj::C_HEAP) GrowableArray<Klass*>(size, true);
// (#klass/k)^2, for k ~ 10 appears a better setting, but this will have to do for
// now until we investigate a more optimal setting.
_revisit_mdo_stack = new (ResourceObj::C_HEAP) GrowableArray<DataLayout*>(size*2, true);
}
@ -495,6 +498,7 @@ void PSMarkSweep::deallocate_stacks() {
delete _marking_stack;
delete _revisit_klass_stack;
delete _revisit_mdo_stack;
}
void PSMarkSweep::mark_sweep_phase1(bool clear_all_softrefs) {
@ -540,6 +544,10 @@ void PSMarkSweep::mark_sweep_phase1(bool clear_all_softrefs) {
follow_weak_klass_links();
assert(_marking_stack->is_empty(), "just drained");
// Visit memoized mdo's and clear unmarked weak refs
follow_mdo_weak_refs();
assert(_marking_stack->is_empty(), "just drained");
// Visit symbol and interned string tables and delete unmarked oops
SymbolTable::unlink(is_alive_closure());
StringTable::unlink(is_alive_closure());

View File

@ -2378,7 +2378,10 @@ void PSParallelCompact::marking_phase(ParCompactionManager* cm,
// Update subklass/sibling/implementor links of live klasses
// revisit_klass_stack is used in follow_weak_klass_links().
follow_weak_klass_links(cm);
follow_weak_klass_links();
// Revisit memoized MDO's and clear any unmarked weak refs
follow_mdo_weak_refs();
// Visit symbol and interned string tables and delete unmarked oops
SymbolTable::unlink(is_alive_closure());
@ -2721,17 +2724,25 @@ void PSParallelCompact::follow_stack(ParCompactionManager* cm) {
}
void
PSParallelCompact::follow_weak_klass_links(ParCompactionManager* serial_cm) {
PSParallelCompact::follow_weak_klass_links() {
// All klasses on the revisit stack are marked at this point.
// Update and follow all subklass, sibling and implementor links.
for (uint i = 0; i < ParallelGCThreads+1; i++) {
if (PrintRevisitStats) {
gclog_or_tty->print_cr("#classes in system dictionary = %d", SystemDictionary::number_of_classes());
}
for (uint i = 0; i < ParallelGCThreads + 1; i++) {
ParCompactionManager* cm = ParCompactionManager::manager_array(i);
KeepAliveClosure keep_alive_closure(cm);
for (int i = 0; i < cm->revisit_klass_stack()->length(); i++) {
cm->revisit_klass_stack()->at(i)->follow_weak_klass_links(
int length = cm->revisit_klass_stack()->length();
if (PrintRevisitStats) {
gclog_or_tty->print_cr("Revisit klass stack[%d] length = %d", i, length);
}
for (int j = 0; j < length; j++) {
cm->revisit_klass_stack()->at(j)->follow_weak_klass_links(
is_alive_closure(),
&keep_alive_closure);
}
// revisit_klass_stack is cleared in reset()
follow_stack(cm);
}
}
@ -2741,6 +2752,35 @@ PSParallelCompact::revisit_weak_klass_link(ParCompactionManager* cm, Klass* k) {
cm->revisit_klass_stack()->push(k);
}
#if ( defined(COMPILER1) || defined(COMPILER2) )
void PSParallelCompact::revisit_mdo(ParCompactionManager* cm, DataLayout* p) {
cm->revisit_mdo_stack()->push(p);
}
void PSParallelCompact::follow_mdo_weak_refs() {
// All strongly reachable oops have been marked at this point;
// we can visit and clear any weak references from MDO's which
// we memoized during the strong marking phase.
if (PrintRevisitStats) {
gclog_or_tty->print_cr("#classes in system dictionary = %d", SystemDictionary::number_of_classes());
}
for (uint i = 0; i < ParallelGCThreads + 1; i++) {
ParCompactionManager* cm = ParCompactionManager::manager_array(i);
GrowableArray<DataLayout*>* rms = cm->revisit_mdo_stack();
int length = rms->length();
if (PrintRevisitStats) {
gclog_or_tty->print_cr("Revisit MDO stack[%d] length = %d", i, length);
}
for (int j = 0; j < length; j++) {
rms->at(j)->follow_weak_refs(is_alive_closure());
}
// revisit_mdo_stack is cleared in reset()
follow_stack(cm);
}
}
#endif // ( COMPILER1 || COMPILER2 )
#ifdef VALIDATE_MARK_SWEEP
void PSParallelCompact::track_adjusted_pointer(void* p, bool isroot) {

View File

@ -901,7 +901,8 @@ class PSParallelCompact : AllStatic {
static void marking_phase(ParCompactionManager* cm,
bool maximum_heap_compaction);
static void follow_stack(ParCompactionManager* cm);
static void follow_weak_klass_links(ParCompactionManager* cm);
static void follow_weak_klass_links();
static void follow_mdo_weak_refs();
template <class T> static inline void adjust_pointer(T* p, bool is_root);
static void adjust_root_pointer(oop* p) { adjust_pointer(p, true); }
@ -1221,6 +1222,9 @@ class PSParallelCompact : AllStatic {
// Update subklass/sibling/implementor links at end of marking.
static void revisit_weak_klass_link(ParCompactionManager* cm, Klass* k);
// Clear unmarked oops in MDOs at the end of marking.
static void revisit_mdo(ParCompactionManager* cm, DataLayout* p);
#ifndef PRODUCT
// Debugging support.
static const char* space_names[last_space_id];

View File

@ -1,189 +0,0 @@
/*
* Copyright 2001-2007 Sun Microsystems, Inc. All Rights Reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
* CA 95054 USA or visit www.sun.com if you need additional information or
* have any questions.
*
*/
# include "incls/_precompiled.incl"
# include "incls/_coTracker.cpp.incl"
COTracker* COTracker::_head = NULL;
double COTracker::_cpu_number = -1.0;
void
COTracker::resetPeriod(double now_sec, double vnow_sec) {
guarantee( _enabled, "invariant" );
_period_start_time_sec = now_sec;
_period_start_vtime_sec = vnow_sec;
}
void
COTracker::setConcOverhead(double time_stamp_sec,
double conc_overhead) {
guarantee( _enabled, "invariant" );
_conc_overhead = conc_overhead;
_time_stamp_sec = time_stamp_sec;
if (conc_overhead > 0.001)
_conc_overhead_seq.add(conc_overhead);
}
void
COTracker::reset(double starting_conc_overhead) {
guarantee( _enabled, "invariant" );
double now_sec = os::elapsedTime();
setConcOverhead(now_sec, starting_conc_overhead);
}
void
COTracker::start() {
guarantee( _enabled, "invariant" );
resetPeriod(os::elapsedTime(), os::elapsedVTime());
}
void
COTracker::update(bool force_end) {
assert( _enabled, "invariant" );
double end_time_sec = os::elapsedTime();
double elapsed_time_sec = end_time_sec - _period_start_time_sec;
if (force_end || elapsed_time_sec > _update_period_sec) {
// reached the end of the period
double end_vtime_sec = os::elapsedVTime();
double elapsed_vtime_sec = end_vtime_sec - _period_start_vtime_sec;
double conc_overhead = elapsed_vtime_sec / elapsed_time_sec;
setConcOverhead(end_time_sec, conc_overhead);
resetPeriod(end_time_sec, end_vtime_sec);
}
}
void
COTracker::updateForSTW(double start_sec, double end_sec) {
if (!_enabled)
return;
// During a STW pause, no concurrent GC thread has done any
// work. So, we can safely adjust the start of the current period by
// adding the duration of the STW pause to it, so that the STW pause
// doesn't affect the reading of the concurrent overhead (it's
// basically like excluding the time of the STW pause from the
// concurrent overhead calculation).
double stw_duration_sec = end_sec - start_sec;
guarantee( stw_duration_sec > 0.0, "invariant" );
if (outOfDate(start_sec))
_conc_overhead = 0.0;
else
_time_stamp_sec = end_sec;
_period_start_time_sec += stw_duration_sec;
_conc_overhead_seq = NumberSeq();
guarantee( os::elapsedTime() > _period_start_time_sec, "invariant" );
}
double
COTracker::predConcOverhead() {
if (_enabled) {
// tty->print(" %1.2lf", _conc_overhead_seq.maximum());
return _conc_overhead_seq.maximum();
} else {
// tty->print(" DD");
return 0.0;
}
}
void
COTracker::resetPred() {
_conc_overhead_seq = NumberSeq();
}
COTracker::COTracker(int group)
: _enabled(false),
_group(group),
_period_start_time_sec(-1.0),
_period_start_vtime_sec(-1.0),
_conc_overhead(-1.0),
_time_stamp_sec(-1.0),
_next(NULL) {
// GCOverheadReportingPeriodMS indicates how frequently the
// concurrent overhead will be recorded by the GC Overhead
// Reporter. We want to take readings less often than that. If we
// took readings more often than some of them might be lost.
_update_period_sec = ((double) GCOverheadReportingPeriodMS) / 1000.0 * 1.25;
_next = _head;
_head = this;
if (_cpu_number < 0.0)
_cpu_number = (double) os::processor_count();
}
// statics
void
COTracker::updateAllForSTW(double start_sec, double end_sec) {
for (COTracker* curr = _head; curr != NULL; curr = curr->_next) {
curr->updateForSTW(start_sec, end_sec);
}
}
double
COTracker::totalConcOverhead(double now_sec) {
double total_conc_overhead = 0.0;
for (COTracker* curr = _head; curr != NULL; curr = curr->_next) {
double conc_overhead = curr->concOverhead(now_sec);
total_conc_overhead += conc_overhead;
}
return total_conc_overhead;
}
double
COTracker::totalConcOverhead(double now_sec,
size_t group_num,
double* co_per_group) {
double total_conc_overhead = 0.0;
for (size_t i = 0; i < group_num; ++i)
co_per_group[i] = 0.0;
for (COTracker* curr = _head; curr != NULL; curr = curr->_next) {
size_t group = curr->_group;
assert( 0 <= group && group < group_num, "invariant" );
double conc_overhead = curr->concOverhead(now_sec);
co_per_group[group] += conc_overhead;
total_conc_overhead += conc_overhead;
}
return total_conc_overhead;
}
double
COTracker::totalPredConcOverhead() {
double total_pred_conc_overhead = 0.0;
for (COTracker* curr = _head; curr != NULL; curr = curr->_next) {
total_pred_conc_overhead += curr->predConcOverhead();
curr->resetPred();
}
return total_pred_conc_overhead / _cpu_number;
}

View File

@ -1,181 +0,0 @@
/*
* Copyright 2001-2007 Sun Microsystems, Inc. All Rights Reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
* CA 95054 USA or visit www.sun.com if you need additional information or
* have any questions.
*
*/
// COTracker keeps track of the concurrent overhead of a GC thread.
// A thread that needs to be tracked must, itself, start up its
// tracker with the start() method and then call the update() method
// at regular intervals. What the tracker does is to calculate the
// concurrent overhead of a process at a given update period. The
// tracker starts and when is detects that it has exceeded the given
// period, it calculates the duration of the period in wall-clock time
// and the duration of the period in vtime (i.e. how much time the
// concurrent processes really took up during this period). The ratio
// of the latter over the former is the concurrent overhead of that
// process for that period over a single CPU. This overhead is stored
// on the tracker, "timestamped" with the wall-clock time of the end
// of the period. When the concurrent overhead of this process needs
// to be queried, this last "reading" provides a good approximation
// (we assume that the concurrent overhead of a particular thread
// stays largely constant over time). The timestamp is necessary to
// detect when the process has stopped working and the recorded
// reading hasn't been updated for some time.
// Each concurrent GC thread is considered to be part of a "group"
// (i.e. any available concurrent marking threads are part of the
// "concurrent marking thread group"). A COTracker is associated with
// a single group at construction-time. It's up to each collector to
// decide how groups will be mapped to such an id (ids should start
// from 0 and be consecutive; there's a hardcoded max group num
// defined on the GCOverheadTracker class). The notion of a group has
// been introduced to be able to identify how much overhead was
// imposed by each group, instead of getting a single value that
// covers all concurrent overhead.
class COTracker {
private:
// It indicates whether this tracker is enabled or not. When the
// tracker is disabled, then it returns 0.0 as the latest concurrent
// overhead and several methods (reset, start, and update) are not
// supposed to be called on it. This enabling / disabling facility
// is really provided to make a bit more explicit in the code when a
// particulary tracker of a processes that doesn't run all the time
// (e.g. concurrent marking) is supposed to be used and not it's not.
bool _enabled;
// The ID of the group associated with this tracker.
int _group;
// The update period of the tracker. A new value for the concurrent
// overhead of the associated process will be made at intervals no
// smaller than this.
double _update_period_sec;
// The start times (both wall-block time and vtime) of the current
// interval.
double _period_start_time_sec;
double _period_start_vtime_sec;
// Number seq of the concurrent overhead readings within a period
NumberSeq _conc_overhead_seq;
// The latest reading of the concurrent overhead (over a single CPU)
// imposed by the associated concurrent thread, made available at
// the indicated wall-clock time.
double _conc_overhead;
double _time_stamp_sec;
// The number of CPUs that the host machine has (for convenience
// really, as we'd have to keep translating it into a double)
static double _cpu_number;
// Fields that keep a list of all trackers created. This is useful,
// since it allows us to sum up the concurrent overhead without
// having to write code for a specific collector to broadcast a
// request to all its concurrent processes.
COTracker* _next;
static COTracker* _head;
// It indicates that a new period is starting by updating the
// _period_start_time_sec and _period_start_vtime_sec fields.
void resetPeriod(double now_sec, double vnow_sec);
// It updates the latest concurrent overhead reading, taken at a
// given wall-clock time.
void setConcOverhead(double time_stamp_sec, double conc_overhead);
// It determines whether the time stamp of the latest concurrent
// overhead reading is out of date or not.
bool outOfDate(double now_sec) {
// The latest reading is considered out of date, if it was taken
// 1.2x the update period.
return (now_sec - _time_stamp_sec) > 1.2 * _update_period_sec;
}
public:
// The constructor which associates the tracker with a group ID.
COTracker(int group);
// Methods to enable / disable the tracker and query whether it is enabled.
void enable() { _enabled = true; }
void disable() { _enabled = false; }
bool enabled() { return _enabled; }
// It resets the tracker and sets concurrent overhead reading to be
// the given parameter and the associated time stamp to be now.
void reset(double starting_conc_overhead = 0.0);
// The tracker starts tracking. IT should only be called from the
// concurrent thread that is tracked by this tracker.
void start();
// It updates the tracker and, if the current period is longer than
// the update period, the concurrent overhead reading will be
// updated. force_end being true indicates that it's the last call
// to update() by this process before the tracker is disabled (the
// tracker can be re-enabled later if necessary). It should only be
// called from the concurrent thread that is tracked by this tracker
// and while the thread has joined the STS.
void update(bool force_end = false);
// It adjusts the contents of the tracker to take into account a STW
// pause.
void updateForSTW(double start_sec, double end_sec);
// It returns the last concurrent overhead reading over a single
// CPU. If the reading is out of date, or the tracker is disabled,
// it returns 0.0.
double concCPUOverhead(double now_sec) {
if (!_enabled || outOfDate(now_sec))
return 0.0;
else
return _conc_overhead;
}
// It returns the last concurrent overhead reading over all CPUs
// that the host machine has. If the reading is out of date, or the
// tracker is disabled, it returns 0.0.
double concOverhead(double now_sec) {
return concCPUOverhead(now_sec) / _cpu_number;
}
double predConcOverhead();
void resetPred();
// statics
// It notifies all trackers about a STW pause.
static void updateAllForSTW(double start_sec, double end_sec);
// It returns the sum of the concurrent overhead readings of all
// available (and enabled) trackers for the given time stamp. The
// overhead is over all the CPUs of the host machine.
static double totalConcOverhead(double now_sec);
// Like the previous method, but it also sums up the overheads per
// group number. The length of the co_per_group array must be at
// least as large group_num
static double totalConcOverhead(double now_sec,
size_t group_num,
double* co_per_group);
static double totalPredConcOverhead();
};

View File

@ -1,179 +0,0 @@
/*
* Copyright 2001-2007 Sun Microsystems, Inc. All Rights Reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
* CA 95054 USA or visit www.sun.com if you need additional information or
* have any questions.
*
*/
# include "incls/_precompiled.incl"
# include "incls/_gcOverheadReporter.cpp.incl"
class COReportingThread : public ConcurrentGCThread {
private:
GCOverheadReporter* _reporter;
public:
COReportingThread(GCOverheadReporter* reporter) : _reporter(reporter) {
guarantee( _reporter != NULL, "precondition" );
create_and_start();
}
virtual void run() {
initialize_in_thread();
wait_for_universe_init();
int period_ms = GCOverheadReportingPeriodMS;
while ( true ) {
os::sleep(Thread::current(), period_ms, false);
_sts.join();
double now_sec = os::elapsedTime();
_reporter->collect_and_record_conc_overhead(now_sec);
_sts.leave();
}
terminate();
}
};
GCOverheadReporter* GCOverheadReporter::_reporter = NULL;
GCOverheadReporter::GCOverheadReporter(size_t group_num,
const char* group_names[],
size_t length)
: _group_num(group_num), _prev_end_sec(0.0) {
guarantee( 0 <= group_num && group_num <= MaxGCOverheadGroupNum,
"precondition" );
_base = NEW_C_HEAP_ARRAY(GCOverheadReporterEntry, length);
_top = _base + length;
_curr = _base;
for (size_t i = 0; i < group_num; ++i) {
guarantee( group_names[i] != NULL, "precondition" );
_group_names[i] = group_names[i];
}
}
void
GCOverheadReporter::add(double start_sec, double end_sec,
double* conc_overhead,
double stw_overhead) {
assert( _curr <= _top, "invariant" );
if (_curr == _top) {
guarantee( false, "trace full" );
return;
}
_curr->_start_sec = start_sec;
_curr->_end_sec = end_sec;
for (size_t i = 0; i < _group_num; ++i) {
_curr->_conc_overhead[i] =
(conc_overhead != NULL) ? conc_overhead[i] : 0.0;
}
_curr->_stw_overhead = stw_overhead;
++_curr;
}
void
GCOverheadReporter::collect_and_record_conc_overhead(double end_sec) {
double start_sec = _prev_end_sec;
guarantee( end_sec > start_sec, "invariant" );
double conc_overhead[MaxGCOverheadGroupNum];
COTracker::totalConcOverhead(end_sec, _group_num, conc_overhead);
add_conc_overhead(start_sec, end_sec, conc_overhead);
_prev_end_sec = end_sec;
}
void
GCOverheadReporter::record_stw_start(double start_sec) {
guarantee( start_sec > _prev_end_sec, "invariant" );
collect_and_record_conc_overhead(start_sec);
}
void
GCOverheadReporter::record_stw_end(double end_sec) {
double start_sec = _prev_end_sec;
COTracker::updateAllForSTW(start_sec, end_sec);
add_stw_overhead(start_sec, end_sec, 1.0);
_prev_end_sec = end_sec;
}
void
GCOverheadReporter::print() const {
tty->print_cr("");
tty->print_cr("GC Overhead (%d entries)", _curr - _base);
tty->print_cr("");
GCOverheadReporterEntry* curr = _base;
while (curr < _curr) {
double total = curr->_stw_overhead;
for (size_t i = 0; i < _group_num; ++i)
total += curr->_conc_overhead[i];
tty->print("OVERHEAD %12.8lf %12.8lf ",
curr->_start_sec, curr->_end_sec);
for (size_t i = 0; i < _group_num; ++i)
tty->print("%s %12.8lf ", _group_names[i], curr->_conc_overhead[i]);
tty->print_cr("STW %12.8lf TOT %12.8lf", curr->_stw_overhead, total);
++curr;
}
tty->print_cr("");
}
// statics
void
GCOverheadReporter::initGCOverheadReporter(size_t group_num,
const char* group_names[]) {
guarantee( _reporter == NULL, "should only be called once" );
guarantee( 0 <= group_num && group_num <= MaxGCOverheadGroupNum,
"precondition" );
guarantee( group_names != NULL, "pre-condition" );
if (GCOverheadReporting) {
_reporter = new GCOverheadReporter(group_num, group_names);
new COReportingThread(_reporter);
}
}
void
GCOverheadReporter::recordSTWStart(double start_sec) {
if (_reporter != NULL)
_reporter->record_stw_start(start_sec);
}
void
GCOverheadReporter::recordSTWEnd(double end_sec) {
if (_reporter != NULL)
_reporter->record_stw_end(end_sec);
}
void
GCOverheadReporter::printGCOverhead() {
if (_reporter != NULL)
_reporter->print();
}

View File

@ -1,141 +0,0 @@
/*
* Copyright 2001-2007 Sun Microsystems, Inc. All Rights Reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
* CA 95054 USA or visit www.sun.com if you need additional information or
* have any questions.
*
*/
// Keeps track of the GC overhead (both concurrent and STW). It stores
// it in a large array and then prints it to tty at the end of the
// execution.
// See coTracker.hpp for the explanation on what groups are.
// Let's set a maximum number of concurrent overhead groups, to
// statically allocate any arrays we need and not to have to
// malloc/free them. This is just a bit more convenient.
enum {
MaxGCOverheadGroupNum = 4
};
typedef struct {
double _start_sec;
double _end_sec;
double _conc_overhead[MaxGCOverheadGroupNum];
double _stw_overhead;
} GCOverheadReporterEntry;
class GCOverheadReporter {
friend class COReportingThread;
private:
enum PrivateConstants {
DefaultReporterLength = 128 * 1024
};
// Reference to the single instance of this class.
static GCOverheadReporter* _reporter;
// These three references point to the array that contains the GC
// overhead entries (_base is the base of the array, _top is the
// address passed the last entry of the array, _curr is the next
// entry to be used).
GCOverheadReporterEntry* _base;
GCOverheadReporterEntry* _top;
GCOverheadReporterEntry* _curr;
// The number of concurrent overhead groups.
size_t _group_num;
// The wall-clock time of the end of the last recorded period of GC
// overhead.
double _prev_end_sec;
// Names for the concurrent overhead groups.
const char* _group_names[MaxGCOverheadGroupNum];
// Add a new entry to the large array. conc_overhead being NULL is
// equivalent to an array full of 0.0s. conc_overhead should have a
// length of at least _group_num.
void add(double start_sec, double end_sec,
double* conc_overhead,
double stw_overhead);
// Add an entry that represents concurrent GC overhead.
// conc_overhead must be at least of length _group_num.
// conc_overhead being NULL is equivalent to an array full of 0.0s.
void add_conc_overhead(double start_sec, double end_sec,
double* conc_overhead) {
add(start_sec, end_sec, conc_overhead, 0.0);
}
// Add an entry that represents STW GC overhead.
void add_stw_overhead(double start_sec, double end_sec,
double stw_overhead) {
add(start_sec, end_sec, NULL, stw_overhead);
}
// It records the start of a STW pause (i.e. it records the
// concurrent overhead up to that point)
void record_stw_start(double start_sec);
// It records the end of a STW pause (i.e. it records the overhead
// associated with the pause and adjusts all the trackers to reflect
// the pause)
void record_stw_end(double end_sec);
// It queries all the trackers of their concurrent overhead and
// records it.
void collect_and_record_conc_overhead(double end_sec);
// It prints the contents of the GC overhead array
void print() const;
// Constructor. The same preconditions for group_num and group_names
// from initGCOverheadReporter apply here too.
GCOverheadReporter(size_t group_num,
const char* group_names[],
size_t length = DefaultReporterLength);
public:
// statics
// It initialises the GCOverheadReporter and launches the concurrent
// overhead reporting thread. Both actions happen only if the
// GCOverheadReporting parameter is set. The length of the
// group_names array should be >= group_num and group_num should be
// <= MaxGCOverheadGroupNum. Entries group_namnes[0..group_num-1]
// should not be NULL.
static void initGCOverheadReporter(size_t group_num,
const char* group_names[]);
// The following three are provided for convenience and they are
// wrappers around record_stw_start(start_sec), record_stw_end(end_sec),
// and print(). Each of these checks whether GC overhead reporting
// is on (i.e. _reporter != NULL) and, if it is, calls the
// corresponding method. Saves from repeating this pattern again and
// again from the places where they need to be called.
static void recordSTWStart(double start_sec);
static void recordSTWEnd(double end_sec);
static void printGCOverhead();
};

View File

@ -27,6 +27,7 @@
GrowableArray<oop>* MarkSweep::_marking_stack = NULL;
GrowableArray<Klass*>* MarkSweep::_revisit_klass_stack = NULL;
GrowableArray<DataLayout*>* MarkSweep::_revisit_mdo_stack = NULL;
GrowableArray<oop>* MarkSweep::_preserved_oop_stack = NULL;
GrowableArray<markOop>* MarkSweep::_preserved_mark_stack= NULL;
@ -62,12 +63,37 @@ void MarkSweep::revisit_weak_klass_link(Klass* k) {
void MarkSweep::follow_weak_klass_links() {
// All klasses on the revisit stack are marked at this point.
// Update and follow all subklass, sibling and implementor links.
if (PrintRevisitStats) {
gclog_or_tty->print_cr("#classes in system dictionary = %d", SystemDictionary::number_of_classes());
gclog_or_tty->print_cr("Revisit klass stack length = %d", _revisit_klass_stack->length());
}
for (int i = 0; i < _revisit_klass_stack->length(); i++) {
_revisit_klass_stack->at(i)->follow_weak_klass_links(&is_alive,&keep_alive);
}
follow_stack();
}
#if ( defined(COMPILER1) || defined(COMPILER2) )
void MarkSweep::revisit_mdo(DataLayout* p) {
_revisit_mdo_stack->push(p);
}
void MarkSweep::follow_mdo_weak_refs() {
// All strongly reachable oops have been marked at this point;
// we can visit and clear any weak references from MDO's which
// we memoized during the strong marking phase.
assert(_marking_stack->is_empty(), "Marking stack should be empty");
if (PrintRevisitStats) {
gclog_or_tty->print_cr("#classes in system dictionary = %d", SystemDictionary::number_of_classes());
gclog_or_tty->print_cr("Revisit MDO stack length = %d", _revisit_mdo_stack->length());
}
for (int i = 0; i < _revisit_mdo_stack->length(); i++) {
_revisit_mdo_stack->at(i)->follow_weak_refs(&is_alive);
}
follow_stack();
}
#endif // ( COMPILER1 || COMPILER2 )
MarkSweep::FollowRootClosure MarkSweep::follow_root_closure;
void MarkSweep::FollowRootClosure::do_oop(oop* p) { follow_root(p); }

View File

@ -23,6 +23,7 @@
*/
class ReferenceProcessor;
class DataLayout;
// MarkSweep takes care of global mark-compact garbage collection for a
// GenCollectedHeap using a four-phase pointer forwarding algorithm. All
@ -65,6 +66,8 @@ class MarkSweep : AllStatic {
virtual void do_oop(oop* p);
virtual void do_oop(narrowOop* p);
virtual const bool do_nmethods() const { return true; }
virtual const bool should_remember_mdo() const { return true; }
virtual void remember_mdo(DataLayout* p) { MarkSweep::revisit_mdo(p); }
};
class FollowStackClosure: public VoidClosure {
@ -103,6 +106,7 @@ class MarkSweep : AllStatic {
friend class KeepAliveClosure;
friend class VM_MarkSweep;
friend void marksweep_init();
friend class DataLayout;
//
// Vars
@ -112,6 +116,8 @@ class MarkSweep : AllStatic {
static GrowableArray<oop>* _marking_stack;
// Stack for live klasses to revisit at end of marking phase
static GrowableArray<Klass*>* _revisit_klass_stack;
// Set (stack) of MDO's to revisit at end of marking phase
static GrowableArray<DataLayout*>* _revisit_mdo_stack;
// Space for storing/restoring mark word
static GrowableArray<markOop>* _preserved_mark_stack;
@ -157,6 +163,10 @@ class MarkSweep : AllStatic {
// Class unloading. Update subklass/sibling/implementor links at end of marking phase.
static void follow_weak_klass_links();
// Class unloading. Clear weak refs in MDO's (ProfileData)
// at the end of the marking phase.
static void follow_mdo_weak_refs();
// Debugging
static void trace(const char* msg) PRODUCT_RETURN;
@ -213,7 +223,10 @@ class MarkSweep : AllStatic {
#endif
// Call backs for class unloading
static void revisit_weak_klass_link(Klass* k); // Update subklass/sibling/implementor links at end of marking.
// Update subklass/sibling/implementor links at end of marking.
static void revisit_weak_klass_link(Klass* k);
// For weak refs clearing in MDO's
static void revisit_mdo(DataLayout* p);
};
class PreservedMark VALUE_OBJ_CLASS_SPEC {

View File

@ -239,6 +239,9 @@ class CollectedHeap : public CHeapObj {
return p == NULL || is_in_closed_subset(p);
}
// XXX is_permanent() and is_in_permanent() should be better named
// to distinguish one from the other.
// Returns "TRUE" if "p" is allocated as "permanent" data.
// If the heap does not use "permanent" data, returns the same
// value is_in_reserved() would return.
@ -247,13 +250,17 @@ class CollectedHeap : public CHeapObj {
// space). If you need the more conservative answer use is_permanent().
virtual bool is_in_permanent(const void *p) const = 0;
bool is_in_permanent_or_null(const void *p) const {
return p == NULL || is_in_permanent(p);
}
// Returns "TRUE" if "p" is in the committed area of "permanent" data.
// If the heap does not use "permanent" data, returns the same
// value is_in() would return.
virtual bool is_permanent(const void *p) const = 0;
bool is_in_permanent_or_null(const void *p) const {
return p == NULL || is_in_permanent(p);
bool is_permanent_or_null(const void *p) const {
return p == NULL || is_permanent(p);
}
// Returns "TRUE" if "p" is a method oop in the

View File

@ -409,8 +409,6 @@ codeBlob.cpp c1_Runtime1.hpp
compileBroker.cpp c1_Compiler.hpp
frame.hpp c1_Defs.hpp
frame_<arch>.cpp c1_Runtime1.hpp
globals.cpp c1_globals.hpp
@ -433,8 +431,6 @@ os_<os_family>.cpp c1_Runtime1.hpp
os_<os_arch>.cpp c1_Runtime1.hpp
registerMap.hpp c1_Defs.hpp
safepoint.cpp c1_globals.hpp
sharedRuntime.cpp c1_Runtime1.hpp

View File

@ -872,6 +872,7 @@ classFileParser.cpp signature.hpp
classFileParser.cpp symbolOop.hpp
classFileParser.cpp symbolTable.hpp
classFileParser.cpp systemDictionary.hpp
classFileParser.cpp threadService.hpp
classFileParser.cpp timer.hpp
classFileParser.cpp universe.inline.hpp
classFileParser.cpp verificationType.hpp
@ -924,6 +925,7 @@ classLoader.cpp os_<os_family>.inline.hpp
classLoader.cpp symbolOop.hpp
classLoader.cpp systemDictionary.hpp
classLoader.cpp threadCritical.hpp
classLoader.cpp threadService.hpp
classLoader.cpp timer.hpp
classLoader.cpp universe.inline.hpp
classLoader.cpp vmSymbols.hpp
@ -2682,6 +2684,7 @@ markOop.inline.hpp klassOop.hpp
markOop.inline.hpp markOop.hpp
markSweep.cpp compileBroker.hpp
markSweep.cpp methodDataOop.hpp
markSweep.hpp collectedHeap.hpp
@ -4019,6 +4022,7 @@ systemDictionary.cpp placeholders.hpp
systemDictionary.cpp resolutionErrors.hpp
systemDictionary.cpp signature.hpp
systemDictionary.cpp systemDictionary.hpp
systemDictionary.cpp threadService.hpp
systemDictionary.cpp typeArrayKlass.hpp
systemDictionary.cpp vmSymbols.hpp

View File

@ -122,11 +122,15 @@ class AbstractInterpreter: AllStatic {
static int size_top_interpreter_activation(methodOop method);
// Deoptimization support
static address continuation_for(methodOop method,
// Compute the entry address for continuation after
static address deopt_continue_after_entry(methodOop method,
address bcp,
int callee_parameters,
bool is_top_frame,
bool& use_next_mdp);
bool is_top_frame);
// Compute the entry address for reexecution
static address deopt_reexecute_entry(methodOop method, address bcp);
// Deoptimization should reexecute this bytecode
static bool bytecode_should_reexecute(Bytecodes::Code code);
// share implementation of size_activation and layout_activation:
static int size_activation(methodOop method,

View File

@ -284,76 +284,19 @@ static BasicType constant_pool_type(methodOop method, int index) {
//------------------------------------------------------------------------------------------------------------------------
// Deoptimization support
// If deoptimization happens, this method returns the point where to continue in
// interpreter. For calls (invokexxxx, newxxxx) the continuation is at next
// bci and the top of stack is in eax/edx/FPU tos.
// For putfield/getfield, put/getstatic, the continuation is at the same
// bci and the TOS is on stack.
// Note: deopt_entry(type, 0) means reexecute bytecode
// deopt_entry(type, length) means continue at next bytecode
address AbstractInterpreter::continuation_for(methodOop method, address bcp, int callee_parameters, bool is_top_frame, bool& use_next_mdp) {
// If deoptimization happens, this function returns the point of next bytecode to continue execution
address AbstractInterpreter::deopt_continue_after_entry(methodOop method, address bcp, int callee_parameters, bool is_top_frame) {
assert(method->contains(bcp), "just checkin'");
Bytecodes::Code code = Bytecodes::java_code_at(bcp);
assert(!Interpreter::bytecode_should_reexecute(code), "should not reexecute");
int bci = method->bci_from(bcp);
int length = -1; // initial value for debugging
// compute continuation length
length = Bytecodes::length_at(bcp);
// compute result type
BasicType type = T_ILLEGAL;
// when continuing after a compiler safepoint, re-execute the bytecode
// (an invoke is continued after the safepoint)
use_next_mdp = true;
switch (code) {
case Bytecodes::_lookupswitch:
case Bytecodes::_tableswitch:
case Bytecodes::_fast_binaryswitch:
case Bytecodes::_fast_linearswitch:
// recompute condtional expression folded into _if<cond>
case Bytecodes::_lcmp :
case Bytecodes::_fcmpl :
case Bytecodes::_fcmpg :
case Bytecodes::_dcmpl :
case Bytecodes::_dcmpg :
case Bytecodes::_ifnull :
case Bytecodes::_ifnonnull :
case Bytecodes::_goto :
case Bytecodes::_goto_w :
case Bytecodes::_ifeq :
case Bytecodes::_ifne :
case Bytecodes::_iflt :
case Bytecodes::_ifge :
case Bytecodes::_ifgt :
case Bytecodes::_ifle :
case Bytecodes::_if_icmpeq :
case Bytecodes::_if_icmpne :
case Bytecodes::_if_icmplt :
case Bytecodes::_if_icmpge :
case Bytecodes::_if_icmpgt :
case Bytecodes::_if_icmple :
case Bytecodes::_if_acmpeq :
case Bytecodes::_if_acmpne :
// special cases
case Bytecodes::_getfield :
case Bytecodes::_putfield :
case Bytecodes::_getstatic :
case Bytecodes::_putstatic :
case Bytecodes::_aastore :
// reexecute the operation and TOS value is on stack
assert(is_top_frame, "must be top frame");
use_next_mdp = false;
return Interpreter::deopt_entry(vtos, 0);
break;
#ifdef COMPILER1
case Bytecodes::_athrow :
assert(is_top_frame, "must be top frame");
use_next_mdp = false;
return Interpreter::rethrow_exception_entry();
break;
#endif /* COMPILER1 */
case Bytecodes::_invokevirtual :
case Bytecodes::_invokespecial :
case Bytecodes::_invokestatic :
@ -392,6 +335,70 @@ address AbstractInterpreter::continuation_for(methodOop method, address bcp, int
: Interpreter::return_entry(as_TosState(type), length);
}
// If deoptimization happens, this function returns the point where the interpreter reexecutes
// the bytecode.
// Note: Bytecodes::_athrow is a special case in that it does not return
// Interpreter::deopt_entry(vtos, 0) like others
address AbstractInterpreter::deopt_reexecute_entry(methodOop method, address bcp) {
assert(method->contains(bcp), "just checkin'");
Bytecodes::Code code = Bytecodes::java_code_at(bcp);
#ifdef COMPILER1
if(code == Bytecodes::_athrow ) {
return Interpreter::rethrow_exception_entry();
}
#endif /* COMPILER1 */
return Interpreter::deopt_entry(vtos, 0);
}
// If deoptimization happens, the interpreter should reexecute these bytecodes.
// This function mainly helps the compilers to set up the reexecute bit.
bool AbstractInterpreter::bytecode_should_reexecute(Bytecodes::Code code) {
switch (code) {
case Bytecodes::_lookupswitch:
case Bytecodes::_tableswitch:
case Bytecodes::_fast_binaryswitch:
case Bytecodes::_fast_linearswitch:
// recompute condtional expression folded into _if<cond>
case Bytecodes::_lcmp :
case Bytecodes::_fcmpl :
case Bytecodes::_fcmpg :
case Bytecodes::_dcmpl :
case Bytecodes::_dcmpg :
case Bytecodes::_ifnull :
case Bytecodes::_ifnonnull :
case Bytecodes::_goto :
case Bytecodes::_goto_w :
case Bytecodes::_ifeq :
case Bytecodes::_ifne :
case Bytecodes::_iflt :
case Bytecodes::_ifge :
case Bytecodes::_ifgt :
case Bytecodes::_ifle :
case Bytecodes::_if_icmpeq :
case Bytecodes::_if_icmpne :
case Bytecodes::_if_icmplt :
case Bytecodes::_if_icmpge :
case Bytecodes::_if_icmpgt :
case Bytecodes::_if_icmple :
case Bytecodes::_if_acmpeq :
case Bytecodes::_if_acmpne :
// special cases
case Bytecodes::_getfield :
case Bytecodes::_putfield :
case Bytecodes::_getstatic :
case Bytecodes::_putstatic :
case Bytecodes::_aastore :
#ifdef COMPILER1
//special case of reexecution
case Bytecodes::_athrow :
#endif
return true;
default:
return false;
}
}
void AbstractInterpreterGenerator::bang_stack_shadow_pages(bool native_call) {
// Quick & dirty stack overflow checking: bang the stack & handle trap.
// Note that we do the banging after the frame is setup, since the exception

View File

@ -849,8 +849,25 @@ static void trace_osr_request(methodHandle method, nmethod* osr, int bci) {
}
#endif // !PRODUCT
nmethod* InterpreterRuntime::frequency_counter_overflow(JavaThread* thread, address branch_bcp) {
nmethod* nm = frequency_counter_overflow_inner(thread, branch_bcp);
assert(branch_bcp != NULL || nm == NULL, "always returns null for non OSR requests");
if (branch_bcp != NULL && nm != NULL) {
// This was a successful request for an OSR nmethod. Because
// frequency_counter_overflow_inner ends with a safepoint check,
// nm could have been unloaded so look it up again. It's unsafe
// to examine nm directly since it might have been freed and used
// for something else.
frame fr = thread->last_frame();
methodOop method = fr.interpreter_frame_method();
int bci = method->bci_from(fr.interpreter_frame_bcp());
nm = method->lookup_osr_nmethod_for(bci);
}
return nm;
}
IRT_ENTRY(nmethod*,
InterpreterRuntime::frequency_counter_overflow(JavaThread* thread, address branch_bcp))
InterpreterRuntime::frequency_counter_overflow_inner(JavaThread* thread, address branch_bcp))
// use UnlockFlagSaver to clear and restore the _do_not_unlock_if_synchronized
// flag, in case this method triggers classloading which will call into Java.
UnlockFlagSaver fs(thread);
@ -923,7 +940,6 @@ IRT_ENTRY(nmethod*,
}
BiasedLocking::revoke(objects_to_revoke);
}
return osr_nm;
}
}

View File

@ -49,6 +49,9 @@ class InterpreterRuntime: AllStatic {
static ConstantPoolCacheEntry* cache_entry(JavaThread *thread) { return cache_entry_at(thread, Bytes::get_native_u2(bcp(thread) + 1)); }
static void note_trap(JavaThread *thread, int reason, TRAPS);
// Inner work method for Interpreter's frequency counter overflow
static nmethod* frequency_counter_overflow_inner(JavaThread* thread, address branch_bcp);
public:
// Constants
static void ldc (JavaThread* thread, bool wide);

Some files were not shown because too many files have changed in this diff Show More