8160651: StubRoutines::_dtan does not restore callee save register rbx

Pop rbx before leaving stub.

Reviewed-by: vlivanov, vdeshpande
This commit is contained in:
Tobias Hartmann 2016-07-04 09:14:02 +02:00
parent 037c3a6c39
commit 9ab5f632b5
2 changed files with 1 additions and 90 deletions

View File

@ -1060,7 +1060,7 @@ void MacroAssembler::fast_tan(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xm
bind(B1_4);
addq(rsp, 16);
pop(rbx);
}
#else
// The 32 bit code is at most SSE2 compliant

View File

@ -222,7 +222,6 @@ class LibraryCallKit : public GraphKit {
Node* round_double_node(Node* n);
bool runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName);
bool inline_math_native(vmIntrinsics::ID id);
bool inline_trig(vmIntrinsics::ID id);
bool inline_math(vmIntrinsics::ID id);
template <typename OverflowOp>
bool inline_math_overflow(Node* arg1, Node* arg2);
@ -1691,94 +1690,6 @@ bool LibraryCallKit::inline_math(vmIntrinsics::ID id) {
return true;
}
//------------------------------inline_trig----------------------------------
// Inline sin/cos/tan instructions, if possible. If rounding is required, do
// argument reduction which will turn into a fast/slow diamond.
bool LibraryCallKit::inline_trig(vmIntrinsics::ID id) {
Node* arg = round_double_node(argument(0));
Node* n = NULL;
n = _gvn.transform(n);
// Rounding required? Check for argument reduction!
if (Matcher::strict_fp_requires_explicit_rounding) {
static const double pi_4 = 0.7853981633974483;
static const double neg_pi_4 = -0.7853981633974483;
// pi/2 in 80-bit extended precision
// static const unsigned char pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0x3f,0x00,0x00,0x00,0x00,0x00,0x00};
// -pi/2 in 80-bit extended precision
// static const unsigned char neg_pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0xbf,0x00,0x00,0x00,0x00,0x00,0x00};
// Cutoff value for using this argument reduction technique
//static const double pi_2_minus_epsilon = 1.564660403643354;
//static const double neg_pi_2_plus_epsilon = -1.564660403643354;
// Pseudocode for sin:
// if (x <= Math.PI / 4.0) {
// if (x >= -Math.PI / 4.0) return fsin(x);
// if (x >= -Math.PI / 2.0) return -fcos(x + Math.PI / 2.0);
// } else {
// if (x <= Math.PI / 2.0) return fcos(x - Math.PI / 2.0);
// }
// return StrictMath.sin(x);
// Pseudocode for cos:
// if (x <= Math.PI / 4.0) {
// if (x >= -Math.PI / 4.0) return fcos(x);
// if (x >= -Math.PI / 2.0) return fsin(x + Math.PI / 2.0);
// } else {
// if (x <= Math.PI / 2.0) return -fsin(x - Math.PI / 2.0);
// }
// return StrictMath.cos(x);
// Actually, sticking in an 80-bit Intel value into C2 will be tough; it
// requires a special machine instruction to load it. Instead we'll try
// the 'easy' case. If we really need the extra range +/- PI/2 we'll
// probably do the math inside the SIN encoding.
// Make the merge point
RegionNode* r = new RegionNode(3);
Node* phi = new PhiNode(r, Type::DOUBLE);
// Flatten arg so we need only 1 test
Node *abs = _gvn.transform(new AbsDNode(arg));
// Node for PI/4 constant
Node *pi4 = makecon(TypeD::make(pi_4));
// Check PI/4 : abs(arg)
Node *cmp = _gvn.transform(new CmpDNode(pi4,abs));
// Check: If PI/4 < abs(arg) then go slow
Node *bol = _gvn.transform(new BoolNode( cmp, BoolTest::lt ));
// Branch either way
IfNode *iff = create_and_xform_if(control(),bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
set_control(opt_iff(r,iff));
// Set fast path result
phi->init_req(2, n);
// Slow path - non-blocking leaf call
Node* call = NULL;
switch (id) {
case vmIntrinsics::_dtan:
call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
CAST_FROM_FN_PTR(address, SharedRuntime::dtan),
"Tan", NULL, arg, top());
break;
}
assert(control()->in(0) == call, "");
Node* slow_result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
r->init_req(1, control());
phi->init_req(1, slow_result);
// Post-merge
set_control(_gvn.transform(r));
record_for_igvn(r);
n = _gvn.transform(phi);
C->set_has_split_ifs(true); // Has chance for split-if optimization
}
set_result(n);
return true;
}
//------------------------------runtime_math-----------------------------
bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) {
assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(),