8258853: Support separate function declaration and definition with ENABLE_IF-based SFINAE

Add ENABLE_IF_SDEFN, unit tests

Reviewed-by: jrose, eosterlund
This commit is contained in:
Kim Barrett 2021-01-22 14:44:35 +00:00
parent 154e1d637e
commit a97f3c18d5
2 changed files with 97 additions and 12 deletions
src/hotspot/share/metaprogramming
test/hotspot/gtest/metaprogramming

@ -1,5 +1,5 @@
/*
* Copyright (c) 2017, 2020, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2017, 2021, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -35,9 +35,16 @@ template<bool cond, typename T = void>
using EnableIf = std::enable_if<cond, T>;
// ENABLE_IF(Condition...)
// ENABLE_IF_SDEFN(Condition...)
//
// This macro can be used in a function template parameter list to control
// the presence of that overload via SFINAE.
// The ENABLE_IF macro can be used in a function template parameter list to
// control the presence of that overload via SFINAE.
//
// When the declaration and definition of a function template are separate,
// only the declaration can use ENABLE_IF in the template parameter list.
// The definition should instead use ENABLE_IF_SDEFN with an _equivalent_
// (C++14 14.4 and 14.5.6.1) Condition for the corresponding template
// parameter. ("SDEFN" is short for "SEPARATE_DEFINITION".)
//
// Condition must be a constant expression whose value is convertible to
// bool. The Condition is captured as a variadic macro parameter so that it
@ -85,6 +92,14 @@ using EnableIf = std::enable_if<cond, T>;
// largely hidden using a macro, resulting in more readable uses of SFINAE
// for function templates.
//
// One of those details is that a function template definition that is
// separate from its declaration cannot have a default value. Thus,
// ENABLE_IF can't be used in such a definition. But the type expression in
// the separate definition must be equivalent (C++14 14.4 and 14.5.6.1) to
// that in the declation. The ENABLE_IF_SDEFN macro provides the common
// code for the separate definition that must match the corresponding
// declaration code at the token level.
//
// The Condition must be wrapped in parenthesis in the expansion. Otherwise,
// a '>' operator in the expression may be misinterpreted as the end of the
// template parameter list. But rather than simply wrapping in parenthesis,
@ -95,14 +110,34 @@ using EnableIf = std::enable_if<cond, T>;
// parameter. Such a Condition will be evaluated at template definition
// time, as part of template type checking. If Condition is false, that
// will result in a compile-time error rather than the desired SFINAE
// exclusion. A solution is to add a preceding dummy type template
// parameter defaulting to 'int' and use that as the result type for
// enable_if_t, thereby making it dependent. This situation is sufficiently
// rare that no additional macro support is provided for it; just use the
// underlying enable_if_t directly. (There is an automatic macro-based
// solution, but it involves the __COUNTER__ extension.)
// exclusion. This situation is sufficiently rare that no additional
// macro support is provided for it. (One solution is to add a new
// type parameter defaulted to the type being checked in Condition, and
// use that new parameter instead in Condition. There is an automatic
// macro-based solution, but it involves the __COUNTER__ extension.)
//
// Some references suggest a different approach to using a template
// parameter for SFINAE. An anonymous type parameter with a default type
// that uses std::enable_if can also be used in some cases, i.e.
//
// typename = std::enable_if_t<CONDITION>
//
// However, this doesn't work when there are overloads that need to be
// selected amongst via SFINAE. Two signatures that differ only in a
// template parameter default are not distinct overloads, they are multiple
// definitions of the same function.
//
// Some versions of gcc permit ENABLE_IF to be used in some separate
// definitions. Other toolchains reject such usage.
//
// The expansion of ENABLE_IF doesn't use ENABLE_IF_SDEFN (or both use a
// common helper) because of issues with the Visual Studio preprocessor's
// handling of variadic macros.
#define ENABLE_IF(...) \
std::enable_if_t<bool(__VA_ARGS__), int> = 0
#define ENABLE_IF_SDEFN(...) \
std::enable_if_t<bool(__VA_ARGS__), int>
#endif // SHARE_METAPROGRAMMING_ENABLEIF_HPP

@ -1,5 +1,5 @@
/*
* Copyright (c) 2017, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2017, 2021, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -23,11 +23,13 @@
*/
#include "precompiled.hpp"
#include "memory/allocation.hpp"
#include "memory/allStatic.hpp"
#include "metaprogramming/enableIf.hpp"
#include "utilities/debug.hpp"
#include <type_traits>
#include "unittest.hpp"
class EnableIfTest {
class EnableIfTest: AllStatic {
class A: AllStatic {
public:
template <bool condition>
@ -42,3 +44,51 @@ class EnableIfTest {
static const bool A_test_false_is_long = sizeof(A::test<false>()) == sizeof(long);
STATIC_ASSERT(A_test_false_is_long);
};
template<typename T, ENABLE_IF(std::is_integral<T>::value)>
static T sub1(T x) { return x - 1; }
TEST(TestEnableIf, one_decl_and_def) {
EXPECT_EQ(15, sub1(16));
}
template<typename T, ENABLE_IF(std::is_integral<T>::value)>
static T sub2(T x);
template<typename T, ENABLE_IF_SDEFN(std::is_integral<T>::value)>
T sub2(T x) { return x - 2; }
TEST(TestEnableIf, separate_decl_and_def) {
EXPECT_EQ(14, sub2(16));
}
template<typename T>
struct TestEnableIfNested {
template<typename U, ENABLE_IF(std::is_integral<U>::value)>
static U sub1(U x);
};
template<typename T>
template<typename U, ENABLE_IF_SDEFN(std::is_integral<U>::value)>
U TestEnableIfNested<T>::sub1(U x) { return x - 1; }
TEST(TestEnableIf, nested_separate_decl_and_def) {
EXPECT_EQ(15, TestEnableIfNested<void>::sub1(16));
}
// Demonstrate workaround for non-dependent condition.
template<typename T>
struct TestEnableIfNonDependent {
// Dependent is used to make the ENABLE_IF condition dependent on
// the type parameters for this function.
template<typename Dependent = T, ENABLE_IF(std::is_same<int, Dependent>::value)>
static T value() { return T{}; }
static int instantiate() { return 5; }
};
TEST(TestEnableIf, non_dependent) {
EXPECT_EQ(int{}, TestEnableIfNonDependent<int>::value());
// This fails to compile if the ENABLE_IF for value() directly uses
// T rather than indirectly via Dependent.
EXPECT_EQ(5, TestEnableIfNonDependent<void>::instantiate());
}