8255984: Shenandoah: "adaptive" heuristic is prone to missing load spikes
Reviewed-by: shade
This commit is contained in:
parent
fa75ad695c
commit
aac5c2a862
@ -27,14 +27,36 @@
|
||||
#include "gc/shenandoah/heuristics/shenandoahAdaptiveHeuristics.hpp"
|
||||
#include "gc/shenandoah/shenandoahCollectionSet.hpp"
|
||||
#include "gc/shenandoah/shenandoahFreeSet.hpp"
|
||||
#include "gc/shenandoah/shenandoahHeap.inline.hpp"
|
||||
#include "gc/shenandoah/shenandoahHeapRegion.inline.hpp"
|
||||
#include "logging/log.hpp"
|
||||
#include "logging/logTag.hpp"
|
||||
#include "utilities/quickSort.hpp"
|
||||
|
||||
// These constants are used to adjust the margin of error for the moving
|
||||
// average of the allocation rate and cycle time. The units are standard
|
||||
// deviations.
|
||||
const double ShenandoahAdaptiveHeuristics::FULL_PENALTY_SD = 0.2;
|
||||
const double ShenandoahAdaptiveHeuristics::DEGENERATE_PENALTY_SD = 0.1;
|
||||
|
||||
// These are used to decide if we want to make any adjustments at all
|
||||
// at the end of a successful concurrent cycle.
|
||||
const double ShenandoahAdaptiveHeuristics::LOWEST_EXPECTED_AVAILABLE_AT_END = -0.5;
|
||||
const double ShenandoahAdaptiveHeuristics::HIGHEST_EXPECTED_AVAILABLE_AT_END = 0.5;
|
||||
|
||||
// These values are the confidence interval expressed as standard deviations.
|
||||
// At the minimum confidence level, there is a 25% chance that the true value of
|
||||
// the estimate (average cycle time or allocation rate) is not more than
|
||||
// MINIMUM_CONFIDENCE standard deviations away from our estimate. Similarly, the
|
||||
// MAXIMUM_CONFIDENCE interval here means there is a one in a thousand chance
|
||||
// that the true value of our estimate is outside the interval. These are used
|
||||
// as bounds on the adjustments applied at the outcome of a GC cycle.
|
||||
const double ShenandoahAdaptiveHeuristics::MINIMUM_CONFIDENCE = 0.319; // 25%
|
||||
const double ShenandoahAdaptiveHeuristics::MAXIMUM_CONFIDENCE = 3.291; // 99.9%
|
||||
|
||||
ShenandoahAdaptiveHeuristics::ShenandoahAdaptiveHeuristics() :
|
||||
ShenandoahHeuristics() {}
|
||||
ShenandoahHeuristics(),
|
||||
_margin_of_error_sd(ShenandoahAdaptiveInitialConfidence),
|
||||
_spike_threshold_sd(ShenandoahAdaptiveInitialSpikeThreshold),
|
||||
_last_trigger(OTHER) { }
|
||||
|
||||
ShenandoahAdaptiveHeuristics::~ShenandoahAdaptiveHeuristics() {}
|
||||
|
||||
@ -98,20 +120,94 @@ void ShenandoahAdaptiveHeuristics::choose_collection_set_from_regiondata(Shenand
|
||||
|
||||
void ShenandoahAdaptiveHeuristics::record_cycle_start() {
|
||||
ShenandoahHeuristics::record_cycle_start();
|
||||
_allocation_rate.allocation_counter_reset();
|
||||
}
|
||||
|
||||
bool ShenandoahAdaptiveHeuristics::should_start_gc() const {
|
||||
void ShenandoahAdaptiveHeuristics::record_success_concurrent() {
|
||||
ShenandoahHeuristics::record_success_concurrent();
|
||||
|
||||
size_t available = ShenandoahHeap::heap()->free_set()->available();
|
||||
|
||||
_available.add(available);
|
||||
double z_score = 0.0;
|
||||
if (_available.sd() > 0) {
|
||||
z_score = (available - _available.avg()) / _available.sd();
|
||||
}
|
||||
|
||||
log_debug(gc, ergo)("Available: " SIZE_FORMAT " %sB, z-score=%.3f. Average available: %.1f %sB +/- %.1f %sB.",
|
||||
byte_size_in_proper_unit(available), proper_unit_for_byte_size(available),
|
||||
z_score,
|
||||
byte_size_in_proper_unit(_available.avg()), proper_unit_for_byte_size(_available.avg()),
|
||||
byte_size_in_proper_unit(_available.sd()), proper_unit_for_byte_size(_available.sd()));
|
||||
|
||||
// In the case when a concurrent GC cycle completes successfully but with an
|
||||
// unusually small amount of available memory we will adjust our trigger
|
||||
// parameters so that they are more likely to initiate a new cycle.
|
||||
// Conversely, when a GC cycle results in an above average amount of available
|
||||
// memory, we will adjust the trigger parameters to be less likely to initiate
|
||||
// a GC cycle.
|
||||
//
|
||||
// The z-score we've computed is in no way statistically related to the
|
||||
// trigger parameters, but it has the nice property that worse z-scores for
|
||||
// available memory indicate making larger adjustments to the trigger
|
||||
// parameters. It also results in fewer adjustments as the application
|
||||
// stabilizes.
|
||||
//
|
||||
// In order to avoid making endless and likely unnecessary adjustments to the
|
||||
// trigger parameters, the change in available memory (with respect to the
|
||||
// average) at the end of a cycle must be beyond these threshold values.
|
||||
if (z_score < LOWEST_EXPECTED_AVAILABLE_AT_END ||
|
||||
z_score > HIGHEST_EXPECTED_AVAILABLE_AT_END) {
|
||||
// The sign is flipped because a negative z-score indicates that the
|
||||
// available memory at the end of the cycle is below average. Positive
|
||||
// adjustments make the triggers more sensitive (i.e., more likely to fire).
|
||||
// The z-score also gives us a measure of just how far below normal. This
|
||||
// property allows us to adjust the trigger parameters proportionally.
|
||||
//
|
||||
// The `100` here is used to attenuate the size of our adjustments. This
|
||||
// number was chosen empirically. It also means the adjustments at the end of
|
||||
// a concurrent cycle are an order of magnitude smaller than the adjustments
|
||||
// made for a degenerated or full GC cycle (which themselves were also
|
||||
// chosen empirically).
|
||||
adjust_last_trigger_parameters(z_score / -100);
|
||||
}
|
||||
}
|
||||
|
||||
void ShenandoahAdaptiveHeuristics::record_success_degenerated() {
|
||||
ShenandoahHeuristics::record_success_degenerated();
|
||||
// Adjust both trigger's parameters in the case of a degenerated GC because
|
||||
// either of them should have triggered earlier to avoid this case.
|
||||
adjust_margin_of_error(DEGENERATE_PENALTY_SD);
|
||||
adjust_spike_threshold(DEGENERATE_PENALTY_SD);
|
||||
}
|
||||
|
||||
void ShenandoahAdaptiveHeuristics::record_success_full() {
|
||||
ShenandoahHeuristics::record_success_full();
|
||||
// Adjust both trigger's parameters in the case of a full GC because
|
||||
// either of them should have triggered earlier to avoid this case.
|
||||
adjust_margin_of_error(FULL_PENALTY_SD);
|
||||
adjust_spike_threshold(FULL_PENALTY_SD);
|
||||
}
|
||||
|
||||
static double saturate(double value, double min, double max) {
|
||||
return MAX2(MIN2(value, max), min);
|
||||
}
|
||||
|
||||
bool ShenandoahAdaptiveHeuristics::should_start_gc() {
|
||||
ShenandoahHeap* heap = ShenandoahHeap::heap();
|
||||
size_t max_capacity = heap->max_capacity();
|
||||
size_t capacity = heap->soft_max_capacity();
|
||||
size_t available = heap->free_set()->available();
|
||||
size_t allocated = heap->bytes_allocated_since_gc_start();
|
||||
|
||||
// Make sure the code below treats available without the soft tail.
|
||||
size_t soft_tail = max_capacity - capacity;
|
||||
available = (available > soft_tail) ? (available - soft_tail) : 0;
|
||||
|
||||
// Check if we are falling below the worst limit, time to trigger the GC, regardless of
|
||||
// anything else.
|
||||
// Track allocation rate even if we decide to start a cycle for other reasons.
|
||||
double rate = _allocation_rate.sample(allocated);
|
||||
_last_trigger = OTHER;
|
||||
|
||||
size_t min_threshold = capacity / 100 * ShenandoahMinFreeThreshold;
|
||||
if (available < min_threshold) {
|
||||
log_info(gc)("Trigger: Free (" SIZE_FORMAT "%s) is below minimum threshold (" SIZE_FORMAT "%s)",
|
||||
@ -120,7 +216,6 @@ bool ShenandoahAdaptiveHeuristics::should_start_gc() const {
|
||||
return true;
|
||||
}
|
||||
|
||||
// Check if are need to learn a bit about the application
|
||||
const size_t max_learn = ShenandoahLearningSteps;
|
||||
if (_gc_times_learned < max_learn) {
|
||||
size_t init_threshold = capacity / 100 * ShenandoahInitFreeThreshold;
|
||||
@ -136,7 +231,6 @@ bool ShenandoahAdaptiveHeuristics::should_start_gc() const {
|
||||
// Check if allocation headroom is still okay. This also factors in:
|
||||
// 1. Some space to absorb allocation spikes
|
||||
// 2. Accumulated penalties from Degenerated and Full GC
|
||||
|
||||
size_t allocation_headroom = available;
|
||||
|
||||
size_t spike_headroom = capacity / 100 * ShenandoahAllocSpikeFactor;
|
||||
@ -145,24 +239,127 @@ bool ShenandoahAdaptiveHeuristics::should_start_gc() const {
|
||||
allocation_headroom -= MIN2(allocation_headroom, spike_headroom);
|
||||
allocation_headroom -= MIN2(allocation_headroom, penalties);
|
||||
|
||||
// TODO: Allocation rate is way too averaged to be useful during state changes
|
||||
double avg_cycle_time = _gc_time_history->davg() + (_margin_of_error_sd * _gc_time_history->dsd());
|
||||
double avg_alloc_rate = _allocation_rate.upper_bound(_margin_of_error_sd);
|
||||
if (avg_cycle_time > allocation_headroom / avg_alloc_rate) {
|
||||
log_info(gc)("Trigger: Average GC time (%.2f ms) is above the time for average allocation rate (%.0f %sB/s) to deplete free headroom (" SIZE_FORMAT "%s) (margin of error = %.2f)",
|
||||
avg_cycle_time * 1000,
|
||||
byte_size_in_proper_unit(avg_alloc_rate), proper_unit_for_byte_size(avg_alloc_rate),
|
||||
byte_size_in_proper_unit(allocation_headroom), proper_unit_for_byte_size(allocation_headroom),
|
||||
_margin_of_error_sd);
|
||||
|
||||
double average_gc = _gc_time_history->avg();
|
||||
double time_since_last = time_since_last_gc();
|
||||
double allocation_rate = heap->bytes_allocated_since_gc_start() / time_since_last;
|
||||
|
||||
if (average_gc > allocation_headroom / allocation_rate) {
|
||||
log_info(gc)("Trigger: Average GC time (%.2f ms) is above the time for allocation rate (%.0f %sB/s) to deplete free headroom (" SIZE_FORMAT "%s)",
|
||||
average_gc * 1000,
|
||||
byte_size_in_proper_unit(allocation_rate), proper_unit_for_byte_size(allocation_rate),
|
||||
byte_size_in_proper_unit(allocation_headroom), proper_unit_for_byte_size(allocation_headroom));
|
||||
log_info(gc, ergo)("Free headroom: " SIZE_FORMAT "%s (free) - " SIZE_FORMAT "%s (spike) - " SIZE_FORMAT "%s (penalties) = " SIZE_FORMAT "%s",
|
||||
byte_size_in_proper_unit(available), proper_unit_for_byte_size(available),
|
||||
byte_size_in_proper_unit(spike_headroom), proper_unit_for_byte_size(spike_headroom),
|
||||
byte_size_in_proper_unit(penalties), proper_unit_for_byte_size(penalties),
|
||||
byte_size_in_proper_unit(allocation_headroom), proper_unit_for_byte_size(allocation_headroom));
|
||||
byte_size_in_proper_unit(available), proper_unit_for_byte_size(available),
|
||||
byte_size_in_proper_unit(spike_headroom), proper_unit_for_byte_size(spike_headroom),
|
||||
byte_size_in_proper_unit(penalties), proper_unit_for_byte_size(penalties),
|
||||
byte_size_in_proper_unit(allocation_headroom), proper_unit_for_byte_size(allocation_headroom));
|
||||
|
||||
_last_trigger = RATE;
|
||||
return true;
|
||||
}
|
||||
|
||||
bool is_spiking = _allocation_rate.is_spiking(rate, _spike_threshold_sd);
|
||||
if (is_spiking && avg_cycle_time > allocation_headroom / rate) {
|
||||
log_info(gc)("Trigger: Average GC time (%.2f ms) is above the time for instantaneous allocation rate (%.0f %sB/s) to deplete free headroom (" SIZE_FORMAT "%s) (spike threshold = %.2f)",
|
||||
avg_cycle_time * 1000,
|
||||
byte_size_in_proper_unit(rate), proper_unit_for_byte_size(rate),
|
||||
byte_size_in_proper_unit(allocation_headroom), proper_unit_for_byte_size(allocation_headroom),
|
||||
_spike_threshold_sd);
|
||||
_last_trigger = SPIKE;
|
||||
return true;
|
||||
}
|
||||
|
||||
return ShenandoahHeuristics::should_start_gc();
|
||||
}
|
||||
|
||||
void ShenandoahAdaptiveHeuristics::adjust_last_trigger_parameters(double amount) {
|
||||
switch (_last_trigger) {
|
||||
case RATE:
|
||||
adjust_margin_of_error(amount);
|
||||
break;
|
||||
case SPIKE:
|
||||
adjust_spike_threshold(amount);
|
||||
break;
|
||||
case OTHER:
|
||||
// nothing to adjust here.
|
||||
break;
|
||||
default:
|
||||
ShouldNotReachHere();
|
||||
}
|
||||
}
|
||||
|
||||
void ShenandoahAdaptiveHeuristics::adjust_margin_of_error(double amount) {
|
||||
_margin_of_error_sd = saturate(_margin_of_error_sd + amount, MINIMUM_CONFIDENCE, MAXIMUM_CONFIDENCE);
|
||||
log_debug(gc, ergo)("Margin of error now %.2f", _margin_of_error_sd);
|
||||
}
|
||||
|
||||
void ShenandoahAdaptiveHeuristics::adjust_spike_threshold(double amount) {
|
||||
_spike_threshold_sd = saturate(_spike_threshold_sd - amount, MINIMUM_CONFIDENCE, MAXIMUM_CONFIDENCE);
|
||||
log_debug(gc, ergo)("Spike threshold now: %.2f", _spike_threshold_sd);
|
||||
}
|
||||
|
||||
ShenandoahAllocationRate::ShenandoahAllocationRate() :
|
||||
_last_sample_time(os::elapsedTime()),
|
||||
_last_sample_value(0),
|
||||
_interval_sec(1.0 / ShenandoahAdaptiveSampleFrequencyHz),
|
||||
_rate(int(ShenandoahAdaptiveSampleSizeSeconds * ShenandoahAdaptiveSampleFrequencyHz), ShenandoahAdaptiveDecayFactor),
|
||||
_rate_avg(int(ShenandoahAdaptiveSampleSizeSeconds * ShenandoahAdaptiveSampleFrequencyHz), ShenandoahAdaptiveDecayFactor) {
|
||||
}
|
||||
|
||||
double ShenandoahAllocationRate::sample(size_t allocated) {
|
||||
double now = os::elapsedTime();
|
||||
double rate = 0.0;
|
||||
if (now - _last_sample_time > _interval_sec) {
|
||||
if (allocated >= _last_sample_value) {
|
||||
rate = instantaneous_rate(now, allocated);
|
||||
_rate.add(rate);
|
||||
_rate_avg.add(_rate.avg());
|
||||
}
|
||||
|
||||
_last_sample_time = now;
|
||||
_last_sample_value = allocated;
|
||||
}
|
||||
return rate;
|
||||
}
|
||||
|
||||
double ShenandoahAllocationRate::upper_bound(double sds) const {
|
||||
// Here we are using the standard deviation of the computed running
|
||||
// average, rather than the standard deviation of the samples that went
|
||||
// into the moving average. This is a much more stable value and is tied
|
||||
// to the actual statistic in use (moving average over samples of averages).
|
||||
return _rate.davg() + (sds * _rate_avg.dsd());
|
||||
}
|
||||
|
||||
void ShenandoahAllocationRate::allocation_counter_reset() {
|
||||
_last_sample_time = os::elapsedTime();
|
||||
_last_sample_value = 0;
|
||||
}
|
||||
|
||||
bool ShenandoahAllocationRate::is_spiking(double rate, double threshold) const {
|
||||
if (rate <= 0.0) {
|
||||
return false;
|
||||
}
|
||||
|
||||
double sd = _rate.sd();
|
||||
if (sd > 0) {
|
||||
// There is a small chance that that rate has already been sampled, but it
|
||||
// seems not to matter in practice.
|
||||
double z_score = (rate - _rate.avg()) / sd;
|
||||
if (z_score > threshold) {
|
||||
return true;
|
||||
}
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
double ShenandoahAllocationRate::instantaneous_rate(size_t allocated) const {
|
||||
return instantaneous_rate(os::elapsedTime(), allocated);
|
||||
}
|
||||
|
||||
double ShenandoahAllocationRate::instantaneous_rate(double time, size_t allocated) const {
|
||||
size_t last_value = _last_sample_value;
|
||||
double last_time = _last_sample_time;
|
||||
size_t allocation_delta = (allocated > last_value) ? (allocated - last_value) : 0;
|
||||
double time_delta_sec = time - last_time;
|
||||
return (time_delta_sec > 0) ? (allocation_delta / time_delta_sec) : 0;
|
||||
}
|
||||
|
@ -29,6 +29,28 @@
|
||||
#include "gc/shenandoah/shenandoahPhaseTimings.hpp"
|
||||
#include "utilities/numberSeq.hpp"
|
||||
|
||||
class ShenandoahAllocationRate : public CHeapObj<mtGC> {
|
||||
public:
|
||||
explicit ShenandoahAllocationRate();
|
||||
void allocation_counter_reset();
|
||||
|
||||
double sample(size_t allocated);
|
||||
|
||||
double instantaneous_rate(size_t allocated) const;
|
||||
double upper_bound(double sds) const;
|
||||
bool is_spiking(double rate, double threshold) const;
|
||||
|
||||
private:
|
||||
|
||||
double instantaneous_rate(double time, size_t allocated) const;
|
||||
|
||||
double _last_sample_time;
|
||||
size_t _last_sample_value;
|
||||
double _interval_sec;
|
||||
TruncatedSeq _rate;
|
||||
TruncatedSeq _rate_avg;
|
||||
};
|
||||
|
||||
class ShenandoahAdaptiveHeuristics : public ShenandoahHeuristics {
|
||||
public:
|
||||
ShenandoahAdaptiveHeuristics();
|
||||
@ -40,12 +62,70 @@ public:
|
||||
size_t actual_free);
|
||||
|
||||
void record_cycle_start();
|
||||
void record_success_concurrent();
|
||||
void record_success_degenerated();
|
||||
void record_success_full();
|
||||
|
||||
virtual bool should_start_gc() const;
|
||||
virtual bool should_start_gc();
|
||||
|
||||
virtual const char* name() { return "Adaptive"; }
|
||||
virtual bool is_diagnostic() { return false; }
|
||||
virtual bool is_experimental() { return false; }
|
||||
|
||||
private:
|
||||
// These are used to adjust the margin of error and the spike threshold
|
||||
// in response to GC cycle outcomes. These values are shared, but the
|
||||
// margin of error and spike threshold trend in opposite directions.
|
||||
const static double FULL_PENALTY_SD;
|
||||
const static double DEGENERATE_PENALTY_SD;
|
||||
|
||||
const static double MINIMUM_CONFIDENCE;
|
||||
const static double MAXIMUM_CONFIDENCE;
|
||||
|
||||
const static double LOWEST_EXPECTED_AVAILABLE_AT_END;
|
||||
const static double HIGHEST_EXPECTED_AVAILABLE_AT_END;
|
||||
|
||||
friend class ShenandoahAllocationRate;
|
||||
|
||||
// Used to record the last trigger that signaled to start a GC.
|
||||
// This itself is used to decide whether or not to adjust the margin of
|
||||
// error for the average cycle time and allocation rate or the allocation
|
||||
// spike detection threshold.
|
||||
enum Trigger {
|
||||
SPIKE, RATE, OTHER
|
||||
};
|
||||
|
||||
void adjust_last_trigger_parameters(double amount);
|
||||
void adjust_margin_of_error(double amount);
|
||||
void adjust_spike_threshold(double amount);
|
||||
|
||||
ShenandoahAllocationRate _allocation_rate;
|
||||
|
||||
// The margin of error expressed in standard deviations to add to our
|
||||
// average cycle time and allocation rate. As this value increases we
|
||||
// tend to over estimate the rate at which mutators will deplete the
|
||||
// heap. In other words, erring on the side of caution will trigger more
|
||||
// concurrent GCs.
|
||||
double _margin_of_error_sd;
|
||||
|
||||
// The allocation spike threshold is expressed in standard deviations.
|
||||
// If the standard deviation of the most recent sample of the allocation
|
||||
// rate exceeds this threshold, a GC cycle is started. As this value
|
||||
// decreases the sensitivity to allocation spikes increases. In other
|
||||
// words, lowering the spike threshold will tend to increase the number
|
||||
// of concurrent GCs.
|
||||
double _spike_threshold_sd;
|
||||
|
||||
// Remember which trigger is responsible for the last GC cycle. When the
|
||||
// outcome of the cycle is evaluated we will adjust the parameters for the
|
||||
// corresponding triggers. Note that successful outcomes will raise
|
||||
// the spike threshold and lower the margin of error.
|
||||
Trigger _last_trigger;
|
||||
|
||||
// Keep track of the available memory at the end of a GC cycle. This
|
||||
// establishes what is 'normal' for the application and is used as a
|
||||
// source of feedback to adjust trigger parameters.
|
||||
TruncatedSeq _available;
|
||||
};
|
||||
|
||||
#endif // SHARE_GC_SHENANDOAH_HEURISTICS_SHENANDOAHADAPTIVEHEURISTICS_HPP
|
||||
|
@ -56,7 +56,7 @@ void ShenandoahAggressiveHeuristics::choose_collection_set_from_regiondata(Shena
|
||||
}
|
||||
}
|
||||
|
||||
bool ShenandoahAggressiveHeuristics::should_start_gc() const {
|
||||
bool ShenandoahAggressiveHeuristics::should_start_gc() {
|
||||
log_info(gc)("Trigger: Start next cycle immediately");
|
||||
return true;
|
||||
}
|
||||
|
@ -35,7 +35,7 @@ public:
|
||||
RegionData* data, size_t size,
|
||||
size_t free);
|
||||
|
||||
virtual bool should_start_gc() const;
|
||||
virtual bool should_start_gc();
|
||||
|
||||
virtual bool should_unload_classes();
|
||||
|
||||
|
@ -44,7 +44,7 @@ ShenandoahCompactHeuristics::ShenandoahCompactHeuristics() : ShenandoahHeuristic
|
||||
SHENANDOAH_ERGO_OVERRIDE_DEFAULT(ShenandoahGarbageThreshold, 10);
|
||||
}
|
||||
|
||||
bool ShenandoahCompactHeuristics::should_start_gc() const {
|
||||
bool ShenandoahCompactHeuristics::should_start_gc() {
|
||||
ShenandoahHeap* heap = ShenandoahHeap::heap();
|
||||
|
||||
size_t max_capacity = heap->max_capacity();
|
||||
|
@ -31,7 +31,7 @@ class ShenandoahCompactHeuristics : public ShenandoahHeuristics {
|
||||
public:
|
||||
ShenandoahCompactHeuristics();
|
||||
|
||||
virtual bool should_start_gc() const;
|
||||
virtual bool should_start_gc();
|
||||
|
||||
virtual void choose_collection_set_from_regiondata(ShenandoahCollectionSet* cset,
|
||||
RegionData* data, size_t size,
|
||||
|
@ -50,7 +50,7 @@ ShenandoahHeuristics::ShenandoahHeuristics() :
|
||||
_last_cycle_end(0),
|
||||
_gc_times_learned(0),
|
||||
_gc_time_penalties(0),
|
||||
_gc_time_history(new TruncatedSeq(5)),
|
||||
_gc_time_history(new TruncatedSeq(10, ShenandoahAdaptiveDecayFactor)),
|
||||
_metaspace_oom()
|
||||
{
|
||||
// No unloading during concurrent mark? Communicate that to heuristics
|
||||
@ -182,7 +182,7 @@ void ShenandoahHeuristics::record_cycle_end() {
|
||||
_last_cycle_end = os::elapsedTime();
|
||||
}
|
||||
|
||||
bool ShenandoahHeuristics::should_start_gc() const {
|
||||
bool ShenandoahHeuristics::should_start_gc() {
|
||||
// Perform GC to cleanup metaspace
|
||||
if (has_metaspace_oom()) {
|
||||
// Some of vmTestbase/metaspace tests depend on following line to count GC cycles
|
||||
|
@ -104,7 +104,7 @@ public:
|
||||
|
||||
virtual void record_cycle_end();
|
||||
|
||||
virtual bool should_start_gc() const;
|
||||
virtual bool should_start_gc();
|
||||
|
||||
virtual bool should_degenerate_cycle();
|
||||
|
||||
|
@ -31,7 +31,7 @@
|
||||
#include "logging/log.hpp"
|
||||
#include "logging/logTag.hpp"
|
||||
|
||||
bool ShenandoahPassiveHeuristics::should_start_gc() const {
|
||||
bool ShenandoahPassiveHeuristics::should_start_gc() {
|
||||
// Never do concurrent GCs.
|
||||
return false;
|
||||
}
|
||||
|
@ -29,7 +29,7 @@
|
||||
|
||||
class ShenandoahPassiveHeuristics : public ShenandoahHeuristics {
|
||||
public:
|
||||
virtual bool should_start_gc() const;
|
||||
virtual bool should_start_gc();
|
||||
|
||||
virtual bool should_unload_classes();
|
||||
|
||||
|
@ -39,7 +39,7 @@ ShenandoahStaticHeuristics::ShenandoahStaticHeuristics() : ShenandoahHeuristics(
|
||||
|
||||
ShenandoahStaticHeuristics::~ShenandoahStaticHeuristics() {}
|
||||
|
||||
bool ShenandoahStaticHeuristics::should_start_gc() const {
|
||||
bool ShenandoahStaticHeuristics::should_start_gc() {
|
||||
ShenandoahHeap* heap = ShenandoahHeap::heap();
|
||||
|
||||
size_t max_capacity = heap->max_capacity();
|
||||
|
@ -33,7 +33,7 @@ public:
|
||||
|
||||
virtual ~ShenandoahStaticHeuristics();
|
||||
|
||||
virtual bool should_start_gc() const;
|
||||
virtual bool should_start_gc();
|
||||
|
||||
virtual void choose_collection_set_from_regiondata(ShenandoahCollectionSet* cset,
|
||||
RegionData* data, size_t size,
|
||||
|
@ -127,6 +127,34 @@
|
||||
"to 100 effectively disables the shortcut.") \
|
||||
range(0,100) \
|
||||
\
|
||||
product(uintx, ShenandoahAdaptiveSampleFrequencyHz, 10, EXPERIMENTAL, \
|
||||
"The number of times per second to update the allocation rate " \
|
||||
"moving average.") \
|
||||
\
|
||||
product(uintx, ShenandoahAdaptiveSampleSizeSeconds, 10, EXPERIMENTAL, \
|
||||
"The size of the moving window over which the average " \
|
||||
"allocation rate is maintained. The total number of samples " \
|
||||
"is the product of this number and the sample frequency.") \
|
||||
\
|
||||
product(double, ShenandoahAdaptiveInitialConfidence, 1.8, EXPERIMENTAL, \
|
||||
"The number of standard deviations used to determine an initial " \
|
||||
"margin of error for the average cycle time and average " \
|
||||
"allocation rate. Increasing this value will cause the " \
|
||||
"heuristic to initiate more concurrent cycles." ) \
|
||||
\
|
||||
product(double, ShenandoahAdaptiveInitialSpikeThreshold, 1.8, EXPERIMENTAL, \
|
||||
"If the most recently sampled allocation rate is more than " \
|
||||
"this many standard deviations away from the moving average, " \
|
||||
"then a cycle is initiated. This value controls how sensitive " \
|
||||
"the heuristic is to allocation spikes. Decreasing this number " \
|
||||
"increases the sensitivity. ") \
|
||||
\
|
||||
product(double, ShenandoahAdaptiveDecayFactor, 0.5, EXPERIMENTAL, \
|
||||
"The decay factor (alpha) used for values in the weighted " \
|
||||
"moving average of cycle time and allocation rate. " \
|
||||
"Larger values give more weight to recent values.") \
|
||||
range(0,1.0) \
|
||||
\
|
||||
product(uintx, ShenandoahGuaranteedGCInterval, 5*60*1000, EXPERIMENTAL, \
|
||||
"Many heuristics would guarantee a concurrent GC cycle at " \
|
||||
"least with this interval. This is useful when large idle " \
|
||||
|
Loading…
x
Reference in New Issue
Block a user