8198523: Refactor BootstrapMethodInvoker to further avoid runtime type checks

Reviewed-by: psandoz
This commit is contained in:
Claes Redestad 2018-02-22 11:16:43 +01:00
parent cff8ccbcf7
commit ac45567657
2 changed files with 172 additions and 62 deletions

View File

@ -37,6 +37,7 @@ import static java.lang.invoke.MethodHandles.Lookup;
import static java.lang.invoke.MethodHandles.Lookup.IMPL_LOOKUP;
final class BootstrapMethodInvoker {
/**
* Factored code for invoking a bootstrap method for invokedynamic
* or a dynamic constant.
@ -76,14 +77,30 @@ final class BootstrapMethodInvoker {
bootstrapMethod = null;
}
try {
// As an optimization we special case various known BSMs,
// such as LambdaMetafactory::metafactory and
// StringConcatFactory::makeConcatWithConstants.
//
// By providing static type information or even invoking
// exactly, we avoid emitting code to perform runtime
// checking.
info = maybeReBox(info);
if (info == null) {
// VM is allowed to pass up a null meaning no BSM args
result = bootstrapMethod.invoke(caller, name, type);
result = invoke(bootstrapMethod, caller, name, type);
}
else if (!info.getClass().isArray()) {
// VM is allowed to pass up a single BSM arg directly
result = bootstrapMethod.invoke(caller, name, type, info);
// Call to StringConcatFactory::makeConcatWithConstants
// with empty constant arguments?
if (isStringConcatFactoryBSM(bootstrapMethod.type())) {
result = (CallSite)bootstrapMethod
.invokeExact(caller, name, (MethodType)type,
(String)info, new Object[0]);
} else {
result = invoke(bootstrapMethod, caller, name, type, info);
}
}
else if (info.getClass() == int[].class) {
// VM is allowed to pass up a pair {argc, index}
@ -103,67 +120,52 @@ final class BootstrapMethodInvoker {
// VM is allowed to pass up a full array of resolved BSM args
Object[] argv = (Object[]) info;
maybeReBoxElements(argv);
switch (argv.length) {
case 0:
result = bootstrapMethod.invoke(caller, name, type);
break;
case 1:
result = bootstrapMethod.invoke(caller, name, type,
argv[0]);
break;
case 2:
result = bootstrapMethod.invoke(caller, name, type,
argv[0], argv[1]);
break;
case 3:
// Special case the LambdaMetafactory::metafactory BSM
//
// By invoking exactly, we can avoid generating a number of
// classes on first (and subsequent) lambda initialization,
// most of which won't be shared with other invoke uses.
MethodType bsmType = bootstrapMethod.type();
if (isLambdaMetafactoryIndyBSM(bsmType)) {
if (isLambdaMetafactoryIndyBSM(bsmType) && argv.length == 3) {
result = (CallSite)bootstrapMethod
.invokeExact(caller, name, (MethodType)type, (MethodType)argv[0],
(MethodHandle)argv[1], (MethodType)argv[2]);
} else if (isLambdaMetafactoryCondyBSM(bsmType)) {
} else if (isLambdaMetafactoryCondyBSM(bsmType) && argv.length == 3) {
result = bootstrapMethod
.invokeExact(caller, name, (Class<?>)type, (MethodType)argv[0],
(MethodHandle)argv[1], (MethodType)argv[2]);
} else if (isStringConcatFactoryBSM(bsmType) && argv.length >= 1) {
String recipe = (String)argv[0];
Object[] shiftedArgs = Arrays.copyOfRange(argv, 1, argv.length);
result = (CallSite)bootstrapMethod.invokeExact(caller, name, (MethodType)type, recipe, shiftedArgs);
} else {
result = bootstrapMethod.invoke(caller, name, type,
switch (argv.length) {
case 0:
result = invoke(bootstrapMethod, caller, name, type);
break;
case 1:
result = invoke(bootstrapMethod, caller, name, type,
argv[0]);
break;
case 2:
result = invoke(bootstrapMethod, caller, name, type,
argv[0], argv[1]);
break;
case 3:
result = invoke(bootstrapMethod, caller, name, type,
argv[0], argv[1], argv[2]);
}
break;
case 4:
result = bootstrapMethod.invoke(caller, name, type,
result = invoke(bootstrapMethod, caller, name, type,
argv[0], argv[1], argv[2], argv[3]);
break;
case 5:
result = bootstrapMethod.invoke(caller, name, type,
result = invoke(bootstrapMethod, caller, name, type,
argv[0], argv[1], argv[2], argv[3], argv[4]);
break;
case 6:
result = bootstrapMethod.invoke(caller, name, type,
result = invoke(bootstrapMethod, caller, name, type,
argv[0], argv[1], argv[2], argv[3], argv[4], argv[5]);
break;
default:
final int NON_SPREAD_ARG_COUNT = 3; // (caller, name, type)
final int MAX_SAFE_SIZE = MethodType.MAX_MH_ARITY / 2 - NON_SPREAD_ARG_COUNT;
if (argv.length >= MAX_SAFE_SIZE) {
// to be on the safe side, use invokeWithArguments which handles jumbo lists
Object[] newargv = new Object[NON_SPREAD_ARG_COUNT + argv.length];
newargv[0] = caller;
newargv[1] = name;
newargv[2] = type;
System.arraycopy(argv, 0, newargv, NON_SPREAD_ARG_COUNT, argv.length);
result = bootstrapMethod.invokeWithArguments(newargv);
break;
result = invokeWithManyArguments(bootstrapMethod, caller, name, type, argv);
}
MethodType invocationType = MethodType.genericMethodType(NON_SPREAD_ARG_COUNT + argv.length);
MethodHandle typedBSM = bootstrapMethod.asType(invocationType);
MethodHandle spreader = invocationType.invokers().spreadInvoker(NON_SPREAD_ARG_COUNT);
result = spreader.invokeExact(typedBSM, (Object) caller, (Object) name, type, argv);
}
}
if (resultType.isPrimitive()) {
@ -191,12 +193,114 @@ final class BootstrapMethodInvoker {
}
}
// If we don't provide static type information for type, we'll generate runtime
// checks. Let's try not to...
private static Object invoke(MethodHandle bootstrapMethod, Lookup caller,
String name, Object type) throws Throwable {
if (type instanceof Class) {
return bootstrapMethod.invoke(caller, name, (Class<?>)type);
} else {
return bootstrapMethod.invoke(caller, name, (MethodType)type);
}
}
private static Object invoke(MethodHandle bootstrapMethod, Lookup caller,
String name, Object type, Object arg0) throws Throwable {
if (type instanceof Class) {
return bootstrapMethod.invoke(caller, name, (Class<?>)type, arg0);
} else {
return bootstrapMethod.invoke(caller, name, (MethodType)type, arg0);
}
}
private static Object invoke(MethodHandle bootstrapMethod, Lookup caller, String name,
Object type, Object arg0, Object arg1) throws Throwable {
if (type instanceof Class) {
return bootstrapMethod.invoke(caller, name, (Class<?>)type, arg0, arg1);
} else {
return bootstrapMethod.invoke(caller, name, (MethodType)type, arg0, arg1);
}
}
private static Object invoke(MethodHandle bootstrapMethod, Lookup caller, String name,
Object type, Object arg0, Object arg1,
Object arg2) throws Throwable {
if (type instanceof Class) {
return bootstrapMethod.invoke(caller, name, (Class<?>)type, arg0, arg1, arg2);
} else {
return bootstrapMethod.invoke(caller, name, (MethodType)type, arg0, arg1, arg2);
}
}
private static Object invoke(MethodHandle bootstrapMethod, Lookup caller, String name,
Object type, Object arg0, Object arg1,
Object arg2, Object arg3) throws Throwable {
if (type instanceof Class) {
return bootstrapMethod.invoke(caller, name, (Class<?>)type, arg0, arg1, arg2, arg3);
} else {
return bootstrapMethod.invoke(caller, name, (MethodType)type, arg0, arg1, arg2, arg3);
}
}
private static Object invoke(MethodHandle bootstrapMethod, Lookup caller,
String name, Object type, Object arg0, Object arg1,
Object arg2, Object arg3, Object arg4) throws Throwable {
if (type instanceof Class) {
return bootstrapMethod.invoke(caller, name, (Class<?>)type, arg0, arg1, arg2, arg3, arg4);
} else {
return bootstrapMethod.invoke(caller, name, (MethodType)type, arg0, arg1, arg2, arg3, arg4);
}
}
private static Object invoke(MethodHandle bootstrapMethod, Lookup caller,
String name, Object type, Object arg0, Object arg1,
Object arg2, Object arg3, Object arg4, Object arg5) throws Throwable {
if (type instanceof Class) {
return bootstrapMethod.invoke(caller, name, (Class<?>)type, arg0, arg1, arg2, arg3, arg4, arg5);
} else {
return bootstrapMethod.invoke(caller, name, (MethodType)type, arg0, arg1, arg2, arg3, arg4, arg5);
}
}
private static Object invokeWithManyArguments(MethodHandle bootstrapMethod, Lookup caller,
String name, Object type, Object[] argv) throws Throwable {
final int NON_SPREAD_ARG_COUNT = 3; // (caller, name, type)
final int MAX_SAFE_SIZE = MethodType.MAX_MH_ARITY / 2 - NON_SPREAD_ARG_COUNT;
if (argv.length >= MAX_SAFE_SIZE) {
// to be on the safe side, use invokeWithArguments which handles jumbo lists
Object[] newargv = new Object[NON_SPREAD_ARG_COUNT + argv.length];
newargv[0] = caller;
newargv[1] = name;
newargv[2] = type;
System.arraycopy(argv, 0, newargv, NON_SPREAD_ARG_COUNT, argv.length);
return bootstrapMethod.invokeWithArguments(newargv);
} else {
MethodType invocationType = MethodType.genericMethodType(NON_SPREAD_ARG_COUNT + argv.length);
MethodHandle typedBSM = bootstrapMethod.asType(invocationType);
MethodHandle spreader = invocationType.invokers().spreadInvoker(NON_SPREAD_ARG_COUNT);
return spreader.invokeExact(typedBSM, (Object) caller, (Object) name, type, argv);
}
}
private static final MethodType LMF_INDY_MT = MethodType.methodType(CallSite.class,
Lookup.class, String.class, MethodType.class, MethodType.class, MethodHandle.class, MethodType.class);
private static final MethodType LMF_CONDY_MT = MethodType.methodType(Object.class,
Lookup.class, String.class, Class.class, MethodType.class, MethodHandle.class, MethodType.class);
private static final MethodType SCF_MT = MethodType.methodType(CallSite.class,
Lookup.class, String.class, MethodType.class, String.class, Object[].class);
/**
* @return true iff the BSM method type exactly matches
* {@see java.lang.invoke.StringConcatFactory#makeConcatWithConstants(MethodHandles.Lookup,
* String,MethodType,String,Object...))}
*/
private static boolean isStringConcatFactoryBSM(MethodType bsmType) {
return bsmType == SCF_MT;
}
/**
* @return true iff the BSM method type exactly matches
* {@see java.lang.invoke.LambdaMetafactory#metafactory(

View File

@ -373,6 +373,12 @@ public final class StringConcatFactory {
}
}
// StringConcatFactory bootstrap methods are startup sensitive, and may be
// special cased in java.lang.invokeBootstrapMethodInvoker to ensure
// methods are invoked with exact type information to avoid generating
// code for runtime checks. Take care any changes or additions here are
// reflected there as appropriate.
/**
* Facilitates the creation of optimized String concatenation methods, that
* can be used to efficiently concatenate a known number of arguments of