This commit is contained in:
Tim Bell 2009-11-02 22:23:50 -08:00
commit b20e230f81
48 changed files with 8245 additions and 65 deletions

View File

@ -286,11 +286,18 @@ JAVA_JAVA_java = \
java/util/concurrent/ExecutorService.java \
java/util/concurrent/ExecutorCompletionService.java \
java/util/concurrent/Executors.java \
java/util/concurrent/ForkJoinPool.java \
java/util/concurrent/ForkJoinTask.java \
java/util/concurrent/ForkJoinWorkerThread.java \
java/util/concurrent/Future.java \
java/util/concurrent/FutureTask.java \
java/util/concurrent/LinkedBlockingDeque.java \
java/util/concurrent/LinkedBlockingQueue.java \
java/util/concurrent/LinkedTransferQueue.java \
java/util/concurrent/Phaser.java \
java/util/concurrent/PriorityBlockingQueue.java \
java/util/concurrent/RecursiveAction.java \
java/util/concurrent/RecursiveTask.java \
java/util/concurrent/RejectedExecutionException.java \
java/util/concurrent/RejectedExecutionHandler.java \
java/util/concurrent/RunnableFuture.java \
@ -301,9 +308,11 @@ JAVA_JAVA_java = \
java/util/concurrent/Semaphore.java \
java/util/concurrent/SynchronousQueue.java \
java/util/concurrent/ThreadFactory.java \
java/util/concurrent/ThreadLocalRandom.java \
java/util/concurrent/ThreadPoolExecutor.java \
java/util/concurrent/TimeUnit.java \
java/util/concurrent/TimeoutException.java \
java/util/concurrent/TransferQueue.java \
java/util/concurrent/atomic/AtomicBoolean.java \
java/util/concurrent/atomic/AtomicInteger.java \
java/util/concurrent/atomic/AtomicIntegerArray.java \

View File

@ -256,9 +256,8 @@ public abstract class AbstractList<E> extends AbstractCollection<E> implements L
public boolean addAll(int index, Collection<? extends E> c) {
rangeCheckForAdd(index);
boolean modified = false;
Iterator<? extends E> e = c.iterator();
while (e.hasNext()) {
add(index++, e.next());
for (E e : c) {
add(index++, e);
modified = true;
}
return modified;

View File

@ -183,11 +183,9 @@ public abstract class AbstractQueue<E>
if (c == this)
throw new IllegalArgumentException();
boolean modified = false;
Iterator<? extends E> e = c.iterator();
while (e.hasNext()) {
if (add(e.next()))
for (E e : c)
if (add(e))
modified = true;
}
return modified;
}

View File

@ -448,11 +448,9 @@ public class HashMap<K,V>
}
private void putAllForCreate(Map<? extends K, ? extends V> m) {
for (Iterator<? extends Map.Entry<? extends K, ? extends V>> i = m.entrySet().iterator(); i.hasNext(); ) {
Map.Entry<? extends K, ? extends V> e = i.next();
for (Map.Entry<? extends K, ? extends V> e : m.entrySet())
putForCreate(e.getKey(), e.getValue());
}
}
/**
* Rehashes the contents of this map into a new array with a
@ -536,11 +534,9 @@ public class HashMap<K,V>
resize(newCapacity);
}
for (Iterator<? extends Map.Entry<? extends K, ? extends V>> i = m.entrySet().iterator(); i.hasNext(); ) {
Map.Entry<? extends K, ? extends V> e = i.next();
for (Map.Entry<? extends K, ? extends V> e : m.entrySet())
put(e.getKey(), e.getValue());
}
}
/**
* Removes the mapping for the specified key from this map if present.

View File

@ -280,8 +280,8 @@ public class HashSet<E>
s.writeInt(map.size());
// Write out all elements in the proper order.
for (Iterator i=map.keySet().iterator(); i.hasNext(); )
s.writeObject(i.next());
for (E e : map.keySet())
s.writeObject(e);
}
/**

View File

@ -50,6 +50,18 @@ import sun.misc.Unsafe;
* <p>
* Many applications will find the method {@link Math#random} simpler to use.
*
* <p>Instances of {@code java.util.Random} are threadsafe.
* However, the concurrent use of the same {@code java.util.Random}
* instance across threads may encounter contention and consequent
* poor performance. Consider instead using
* {@link java.util.concurrent.ThreadLocalRandom} in multithreaded
* designs.
*
* <p>Instances of {@code java.util.Random} are not cryptographically
* secure. Consider instead using {@link java.security.SecureRandom} to
* get a cryptographically secure pseudo-random number generator for use
* by security-sensitive applications.
*
* @author Frank Yellin
* @since 1.0
*/

View File

@ -218,8 +218,8 @@ public class ArrayBlockingQueue<E> extends AbstractQueue<E>
if (capacity < c.size())
throw new IllegalArgumentException();
for (Iterator<? extends E> it = c.iterator(); it.hasNext();)
add(it.next());
for (E e : c)
add(e);
}
/**

View File

@ -250,8 +250,8 @@ public class ConcurrentLinkedQueue<E> extends AbstractQueue<E>
* of its elements are null
*/
public ConcurrentLinkedQueue(Collection<? extends E> c) {
for (Iterator<? extends E> it = c.iterator(); it.hasNext();)
add(it.next());
for (E e : c)
add(e);
}
// Have to override just to update the javadoc

View File

@ -895,7 +895,7 @@ public class ConcurrentSkipListMap<K,V> extends AbstractMap<K,V>
if (n != null) {
Node<K,V> f = n.next;
if (n != b.next) // inconsistent read
break;;
break;
Object v = n.value;
if (v == null) { // n is deleted
n.helpDelete(b, f);

View File

@ -148,7 +148,8 @@ import java.util.concurrent.atomic.*;
*
* </pre>
*
* <p>Memory consistency effects: Actions in a thread prior to calling
* <p>Memory consistency effects: Until the count reaches
* zero, actions in a thread prior to calling
* {@code countDown()}
* <a href="package-summary.html#MemoryVisibility"><i>happen-before</i></a>
* actions following a successful return from a corresponding

View File

@ -332,8 +332,8 @@ public interface ExecutorService extends Executor {
* @param tasks the collection of tasks
* @return the result returned by one of the tasks
* @throws InterruptedException if interrupted while waiting
* @throws NullPointerException if tasks or any of its elements
* are <tt>null</tt>
* @throws NullPointerException if tasks or any element task
* subject to execution is <tt>null</tt>
* @throws IllegalArgumentException if tasks is empty
* @throws ExecutionException if no task successfully completes
* @throws RejectedExecutionException if tasks cannot be scheduled
@ -356,8 +356,8 @@ public interface ExecutorService extends Executor {
* @param unit the time unit of the timeout argument
* @return the result returned by one of the tasks.
* @throws InterruptedException if interrupted while waiting
* @throws NullPointerException if tasks, any of its elements, or
* unit are <tt>null</tt>
* @throws NullPointerException if tasks, or unit, or any element
* task subject to execution is <tt>null</tt>
* @throws TimeoutException if the given timeout elapses before
* any task successfully completes
* @throws ExecutionException if no task successfully completes

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,827 @@
/*
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Sun designates this
* particular file as subject to the "Classpath" exception as provided
* by Sun in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
* CA 95054 USA or visit www.sun.com if you need additional information or
* have any questions.
*/
/*
* This file is available under and governed by the GNU General Public
* License version 2 only, as published by the Free Software Foundation.
* However, the following notice accompanied the original version of this
* file:
*
* Written by Doug Lea with assistance from members of JCP JSR-166
* Expert Group and released to the public domain, as explained at
* http://creativecommons.org/licenses/publicdomain
*/
package java.util.concurrent;
import java.util.Collection;
/**
* A thread managed by a {@link ForkJoinPool}. This class is
* subclassable solely for the sake of adding functionality -- there
* are no overridable methods dealing with scheduling or execution.
* However, you can override initialization and termination methods
* surrounding the main task processing loop. If you do create such a
* subclass, you will also need to supply a custom {@link
* ForkJoinPool.ForkJoinWorkerThreadFactory} to use it in a {@code
* ForkJoinPool}.
*
* @since 1.7
* @author Doug Lea
*/
public class ForkJoinWorkerThread extends Thread {
/*
* Algorithm overview:
*
* 1. Work-Stealing: Work-stealing queues are special forms of
* Deques that support only three of the four possible
* end-operations -- push, pop, and deq (aka steal), and only do
* so under the constraints that push and pop are called only from
* the owning thread, while deq may be called from other threads.
* (If you are unfamiliar with them, you probably want to read
* Herlihy and Shavit's book "The Art of Multiprocessor
* programming", chapter 16 describing these in more detail before
* proceeding.) The main work-stealing queue design is roughly
* similar to "Dynamic Circular Work-Stealing Deque" by David
* Chase and Yossi Lev, SPAA 2005
* (http://research.sun.com/scalable/pubs/index.html). The main
* difference ultimately stems from gc requirements that we null
* out taken slots as soon as we can, to maintain as small a
* footprint as possible even in programs generating huge numbers
* of tasks. To accomplish this, we shift the CAS arbitrating pop
* vs deq (steal) from being on the indices ("base" and "sp") to
* the slots themselves (mainly via method "casSlotNull()"). So,
* both a successful pop and deq mainly entail CAS'ing a non-null
* slot to null. Because we rely on CASes of references, we do
* not need tag bits on base or sp. They are simple ints as used
* in any circular array-based queue (see for example ArrayDeque).
* Updates to the indices must still be ordered in a way that
* guarantees that (sp - base) > 0 means the queue is empty, but
* otherwise may err on the side of possibly making the queue
* appear nonempty when a push, pop, or deq have not fully
* committed. Note that this means that the deq operation,
* considered individually, is not wait-free. One thief cannot
* successfully continue until another in-progress one (or, if
* previously empty, a push) completes. However, in the
* aggregate, we ensure at least probabilistic
* non-blockingness. If an attempted steal fails, a thief always
* chooses a different random victim target to try next. So, in
* order for one thief to progress, it suffices for any
* in-progress deq or new push on any empty queue to complete. One
* reason this works well here is that apparently-nonempty often
* means soon-to-be-stealable, which gives threads a chance to
* activate if necessary before stealing (see below).
*
* This approach also enables support for "async mode" where local
* task processing is in FIFO, not LIFO order; simply by using a
* version of deq rather than pop when locallyFifo is true (as set
* by the ForkJoinPool). This allows use in message-passing
* frameworks in which tasks are never joined.
*
* Efficient implementation of this approach currently relies on
* an uncomfortable amount of "Unsafe" mechanics. To maintain
* correct orderings, reads and writes of variable base require
* volatile ordering. Variable sp does not require volatile write
* but needs cheaper store-ordering on writes. Because they are
* protected by volatile base reads, reads of the queue array and
* its slots do not need volatile load semantics, but writes (in
* push) require store order and CASes (in pop and deq) require
* (volatile) CAS semantics. (See "Idempotent work stealing" by
* Michael, Saraswat, and Vechev, PPoPP 2009
* http://portal.acm.org/citation.cfm?id=1504186 for an algorithm
* with similar properties, but without support for nulling
* slots.) Since these combinations aren't supported using
* ordinary volatiles, the only way to accomplish these
* efficiently is to use direct Unsafe calls. (Using external
* AtomicIntegers and AtomicReferenceArrays for the indices and
* array is significantly slower because of memory locality and
* indirection effects.)
*
* Further, performance on most platforms is very sensitive to
* placement and sizing of the (resizable) queue array. Even
* though these queues don't usually become all that big, the
* initial size must be large enough to counteract cache
* contention effects across multiple queues (especially in the
* presence of GC cardmarking). Also, to improve thread-locality,
* queues are currently initialized immediately after the thread
* gets the initial signal to start processing tasks. However,
* all queue-related methods except pushTask are written in a way
* that allows them to instead be lazily allocated and/or disposed
* of when empty. All together, these low-level implementation
* choices produce as much as a factor of 4 performance
* improvement compared to naive implementations, and enable the
* processing of billions of tasks per second, sometimes at the
* expense of ugliness.
*
* 2. Run control: The primary run control is based on a global
* counter (activeCount) held by the pool. It uses an algorithm
* similar to that in Herlihy and Shavit section 17.6 to cause
* threads to eventually block when all threads declare they are
* inactive. For this to work, threads must be declared active
* when executing tasks, and before stealing a task. They must be
* inactive before blocking on the Pool Barrier (awaiting a new
* submission or other Pool event). In between, there is some free
* play which we take advantage of to avoid contention and rapid
* flickering of the global activeCount: If inactive, we activate
* only if a victim queue appears to be nonempty (see above).
* Similarly, a thread tries to inactivate only after a full scan
* of other threads. The net effect is that contention on
* activeCount is rarely a measurable performance issue. (There
* are also a few other cases where we scan for work rather than
* retry/block upon contention.)
*
* 3. Selection control. We maintain policy of always choosing to
* run local tasks rather than stealing, and always trying to
* steal tasks before trying to run a new submission. All steals
* are currently performed in randomly-chosen deq-order. It may be
* worthwhile to bias these with locality / anti-locality
* information, but doing this well probably requires more
* lower-level information from JVMs than currently provided.
*/
/**
* Capacity of work-stealing queue array upon initialization.
* Must be a power of two. Initial size must be at least 2, but is
* padded to minimize cache effects.
*/
private static final int INITIAL_QUEUE_CAPACITY = 1 << 13;
/**
* Maximum work-stealing queue array size. Must be less than or
* equal to 1 << 28 to ensure lack of index wraparound. (This
* is less than usual bounds, because we need leftshift by 3
* to be in int range).
*/
private static final int MAXIMUM_QUEUE_CAPACITY = 1 << 28;
/**
* The pool this thread works in. Accessed directly by ForkJoinTask.
*/
final ForkJoinPool pool;
/**
* The work-stealing queue array. Size must be a power of two.
* Initialized when thread starts, to improve memory locality.
*/
private ForkJoinTask<?>[] queue;
/**
* Index (mod queue.length) of next queue slot to push to or pop
* from. It is written only by owner thread, via ordered store.
* Both sp and base are allowed to wrap around on overflow, but
* (sp - base) still estimates size.
*/
private volatile int sp;
/**
* Index (mod queue.length) of least valid queue slot, which is
* always the next position to steal from if nonempty.
*/
private volatile int base;
/**
* Activity status. When true, this worker is considered active.
* Must be false upon construction. It must be true when executing
* tasks, and BEFORE stealing a task. It must be false before
* calling pool.sync.
*/
private boolean active;
/**
* Run state of this worker. Supports simple versions of the usual
* shutdown/shutdownNow control.
*/
private volatile int runState;
/**
* Seed for random number generator for choosing steal victims.
* Uses Marsaglia xorshift. Must be nonzero upon initialization.
*/
private int seed;
/**
* Number of steals, transferred to pool when idle
*/
private int stealCount;
/**
* Index of this worker in pool array. Set once by pool before
* running, and accessed directly by pool during cleanup etc.
*/
int poolIndex;
/**
* The last barrier event waited for. Accessed in pool callback
* methods, but only by current thread.
*/
long lastEventCount;
/**
* True if use local fifo, not default lifo, for local polling
*/
private boolean locallyFifo;
/**
* Creates a ForkJoinWorkerThread operating in the given pool.
*
* @param pool the pool this thread works in
* @throws NullPointerException if pool is null
*/
protected ForkJoinWorkerThread(ForkJoinPool pool) {
if (pool == null) throw new NullPointerException();
this.pool = pool;
// Note: poolIndex is set by pool during construction
// Remaining initialization is deferred to onStart
}
// Public access methods
/**
* Returns the pool hosting this thread.
*
* @return the pool
*/
public ForkJoinPool getPool() {
return pool;
}
/**
* Returns the index number of this thread in its pool. The
* returned value ranges from zero to the maximum number of
* threads (minus one) that have ever been created in the pool.
* This method may be useful for applications that track status or
* collect results per-worker rather than per-task.
*
* @return the index number
*/
public int getPoolIndex() {
return poolIndex;
}
/**
* Establishes local first-in-first-out scheduling mode for forked
* tasks that are never joined.
*
* @param async if true, use locally FIFO scheduling
*/
void setAsyncMode(boolean async) {
locallyFifo = async;
}
// Runstate management
// Runstate values. Order matters
private static final int RUNNING = 0;
private static final int SHUTDOWN = 1;
private static final int TERMINATING = 2;
private static final int TERMINATED = 3;
final boolean isShutdown() { return runState >= SHUTDOWN; }
final boolean isTerminating() { return runState >= TERMINATING; }
final boolean isTerminated() { return runState == TERMINATED; }
final boolean shutdown() { return transitionRunStateTo(SHUTDOWN); }
final boolean shutdownNow() { return transitionRunStateTo(TERMINATING); }
/**
* Transitions to at least the given state.
*
* @return {@code true} if not already at least at given state
*/
private boolean transitionRunStateTo(int state) {
for (;;) {
int s = runState;
if (s >= state)
return false;
if (UNSAFE.compareAndSwapInt(this, runStateOffset, s, state))
return true;
}
}
/**
* Tries to set status to active; fails on contention.
*/
private boolean tryActivate() {
if (!active) {
if (!pool.tryIncrementActiveCount())
return false;
active = true;
}
return true;
}
/**
* Tries to set status to inactive; fails on contention.
*/
private boolean tryInactivate() {
if (active) {
if (!pool.tryDecrementActiveCount())
return false;
active = false;
}
return true;
}
/**
* Computes next value for random victim probe. Scans don't
* require a very high quality generator, but also not a crummy
* one. Marsaglia xor-shift is cheap and works well.
*/
private static int xorShift(int r) {
r ^= (r << 13);
r ^= (r >>> 17);
return r ^ (r << 5);
}
// Lifecycle methods
/**
* This method is required to be public, but should never be
* called explicitly. It performs the main run loop to execute
* ForkJoinTasks.
*/
public void run() {
Throwable exception = null;
try {
onStart();
pool.sync(this); // await first pool event
mainLoop();
} catch (Throwable ex) {
exception = ex;
} finally {
onTermination(exception);
}
}
/**
* Executes tasks until shut down.
*/
private void mainLoop() {
while (!isShutdown()) {
ForkJoinTask<?> t = pollTask();
if (t != null || (t = pollSubmission()) != null)
t.quietlyExec();
else if (tryInactivate())
pool.sync(this);
}
}
/**
* Initializes internal state after construction but before
* processing any tasks. If you override this method, you must
* invoke super.onStart() at the beginning of the method.
* Initialization requires care: Most fields must have legal
* default values, to ensure that attempted accesses from other
* threads work correctly even before this thread starts
* processing tasks.
*/
protected void onStart() {
// Allocate while starting to improve chances of thread-local
// isolation
queue = new ForkJoinTask<?>[INITIAL_QUEUE_CAPACITY];
// Initial value of seed need not be especially random but
// should differ across workers and must be nonzero
int p = poolIndex + 1;
seed = p + (p << 8) + (p << 16) + (p << 24); // spread bits
}
/**
* Performs cleanup associated with termination of this worker
* thread. If you override this method, you must invoke
* {@code super.onTermination} at the end of the overridden method.
*
* @param exception the exception causing this thread to abort due
* to an unrecoverable error, or {@code null} if completed normally
*/
protected void onTermination(Throwable exception) {
// Execute remaining local tasks unless aborting or terminating
while (exception == null && pool.isProcessingTasks() && base != sp) {
try {
ForkJoinTask<?> t = popTask();
if (t != null)
t.quietlyExec();
} catch (Throwable ex) {
exception = ex;
}
}
// Cancel other tasks, transition status, notify pool, and
// propagate exception to uncaught exception handler
try {
do {} while (!tryInactivate()); // ensure inactive
cancelTasks();
runState = TERMINATED;
pool.workerTerminated(this);
} catch (Throwable ex) { // Shouldn't ever happen
if (exception == null) // but if so, at least rethrown
exception = ex;
} finally {
if (exception != null)
ForkJoinTask.rethrowException(exception);
}
}
// Intrinsics-based support for queue operations.
private static long slotOffset(int i) {
return ((long) i << qShift) + qBase;
}
/**
* Adds in store-order the given task at given slot of q to null.
* Caller must ensure q is non-null and index is in range.
*/
private static void setSlot(ForkJoinTask<?>[] q, int i,
ForkJoinTask<?> t) {
UNSAFE.putOrderedObject(q, slotOffset(i), t);
}
/**
* CAS given slot of q to null. Caller must ensure q is non-null
* and index is in range.
*/
private static boolean casSlotNull(ForkJoinTask<?>[] q, int i,
ForkJoinTask<?> t) {
return UNSAFE.compareAndSwapObject(q, slotOffset(i), t, null);
}
/**
* Sets sp in store-order.
*/
private void storeSp(int s) {
UNSAFE.putOrderedInt(this, spOffset, s);
}
// Main queue methods
/**
* Pushes a task. Called only by current thread.
*
* @param t the task. Caller must ensure non-null.
*/
final void pushTask(ForkJoinTask<?> t) {
ForkJoinTask<?>[] q = queue;
int mask = q.length - 1;
int s = sp;
setSlot(q, s & mask, t);
storeSp(++s);
if ((s -= base) == 1)
pool.signalWork();
else if (s >= mask)
growQueue();
}
/**
* Tries to take a task from the base of the queue, failing if
* either empty or contended.
*
* @return a task, or null if none or contended
*/
final ForkJoinTask<?> deqTask() {
ForkJoinTask<?> t;
ForkJoinTask<?>[] q;
int i;
int b;
if (sp != (b = base) &&
(q = queue) != null && // must read q after b
(t = q[i = (q.length - 1) & b]) != null &&
casSlotNull(q, i, t)) {
base = b + 1;
return t;
}
return null;
}
/**
* Tries to take a task from the base of own queue, activating if
* necessary, failing only if empty. Called only by current thread.
*
* @return a task, or null if none
*/
final ForkJoinTask<?> locallyDeqTask() {
int b;
while (sp != (b = base)) {
if (tryActivate()) {
ForkJoinTask<?>[] q = queue;
int i = (q.length - 1) & b;
ForkJoinTask<?> t = q[i];
if (t != null && casSlotNull(q, i, t)) {
base = b + 1;
return t;
}
}
}
return null;
}
/**
* Returns a popped task, or null if empty. Ensures active status
* if non-null. Called only by current thread.
*/
final ForkJoinTask<?> popTask() {
int s = sp;
while (s != base) {
if (tryActivate()) {
ForkJoinTask<?>[] q = queue;
int mask = q.length - 1;
int i = (s - 1) & mask;
ForkJoinTask<?> t = q[i];
if (t == null || !casSlotNull(q, i, t))
break;
storeSp(s - 1);
return t;
}
}
return null;
}
/**
* Specialized version of popTask to pop only if
* topmost element is the given task. Called only
* by current thread while active.
*
* @param t the task. Caller must ensure non-null.
*/
final boolean unpushTask(ForkJoinTask<?> t) {
ForkJoinTask<?>[] q = queue;
int mask = q.length - 1;
int s = sp - 1;
if (casSlotNull(q, s & mask, t)) {
storeSp(s);
return true;
}
return false;
}
/**
* Returns next task or null if empty or contended
*/
final ForkJoinTask<?> peekTask() {
ForkJoinTask<?>[] q = queue;
if (q == null)
return null;
int mask = q.length - 1;
int i = locallyFifo ? base : (sp - 1);
return q[i & mask];
}
/**
* Doubles queue array size. Transfers elements by emulating
* steals (deqs) from old array and placing, oldest first, into
* new array.
*/
private void growQueue() {
ForkJoinTask<?>[] oldQ = queue;
int oldSize = oldQ.length;
int newSize = oldSize << 1;
if (newSize > MAXIMUM_QUEUE_CAPACITY)
throw new RejectedExecutionException("Queue capacity exceeded");
ForkJoinTask<?>[] newQ = queue = new ForkJoinTask<?>[newSize];
int b = base;
int bf = b + oldSize;
int oldMask = oldSize - 1;
int newMask = newSize - 1;
do {
int oldIndex = b & oldMask;
ForkJoinTask<?> t = oldQ[oldIndex];
if (t != null && !casSlotNull(oldQ, oldIndex, t))
t = null;
setSlot(newQ, b & newMask, t);
} while (++b != bf);
pool.signalWork();
}
/**
* Tries to steal a task from another worker. Starts at a random
* index of workers array, and probes workers until finding one
* with non-empty queue or finding that all are empty. It
* randomly selects the first n probes. If these are empty, it
* resorts to a full circular traversal, which is necessary to
* accurately set active status by caller. Also restarts if pool
* events occurred since last scan, which forces refresh of
* workers array, in case barrier was associated with resize.
*
* This method must be both fast and quiet -- usually avoiding
* memory accesses that could disrupt cache sharing etc other than
* those needed to check for and take tasks. This accounts for,
* among other things, updating random seed in place without
* storing it until exit.
*
* @return a task, or null if none found
*/
private ForkJoinTask<?> scan() {
ForkJoinTask<?> t = null;
int r = seed; // extract once to keep scan quiet
ForkJoinWorkerThread[] ws; // refreshed on outer loop
int mask; // must be power 2 minus 1 and > 0
outer:do {
if ((ws = pool.workers) != null && (mask = ws.length - 1) > 0) {
int idx = r;
int probes = ~mask; // use random index while negative
for (;;) {
r = xorShift(r); // update random seed
ForkJoinWorkerThread v = ws[mask & idx];
if (v == null || v.sp == v.base) {
if (probes <= mask)
idx = (probes++ < 0) ? r : (idx + 1);
else
break;
}
else if (!tryActivate() || (t = v.deqTask()) == null)
continue outer; // restart on contention
else
break outer;
}
}
} while (pool.hasNewSyncEvent(this)); // retry on pool events
seed = r;
return t;
}
/**
* Gets and removes a local or stolen task.
*
* @return a task, if available
*/
final ForkJoinTask<?> pollTask() {
ForkJoinTask<?> t = locallyFifo ? locallyDeqTask() : popTask();
if (t == null && (t = scan()) != null)
++stealCount;
return t;
}
/**
* Gets a local task.
*
* @return a task, if available
*/
final ForkJoinTask<?> pollLocalTask() {
return locallyFifo ? locallyDeqTask() : popTask();
}
/**
* Returns a pool submission, if one exists, activating first.
*
* @return a submission, if available
*/
private ForkJoinTask<?> pollSubmission() {
ForkJoinPool p = pool;
while (p.hasQueuedSubmissions()) {
ForkJoinTask<?> t;
if (tryActivate() && (t = p.pollSubmission()) != null)
return t;
}
return null;
}
// Methods accessed only by Pool
/**
* Removes and cancels all tasks in queue. Can be called from any
* thread.
*/
final void cancelTasks() {
ForkJoinTask<?> t;
while (base != sp && (t = deqTask()) != null)
t.cancelIgnoringExceptions();
}
/**
* Drains tasks to given collection c.
*
* @return the number of tasks drained
*/
final int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
int n = 0;
ForkJoinTask<?> t;
while (base != sp && (t = deqTask()) != null) {
c.add(t);
++n;
}
return n;
}
/**
* Gets and clears steal count for accumulation by pool. Called
* only when known to be idle (in pool.sync and termination).
*/
final int getAndClearStealCount() {
int sc = stealCount;
stealCount = 0;
return sc;
}
/**
* Returns {@code true} if at least one worker in the given array
* appears to have at least one queued task.
*
* @param ws array of workers
*/
static boolean hasQueuedTasks(ForkJoinWorkerThread[] ws) {
if (ws != null) {
int len = ws.length;
for (int j = 0; j < 2; ++j) { // need two passes for clean sweep
for (int i = 0; i < len; ++i) {
ForkJoinWorkerThread w = ws[i];
if (w != null && w.sp != w.base)
return true;
}
}
}
return false;
}
// Support methods for ForkJoinTask
/**
* Returns an estimate of the number of tasks in the queue.
*/
final int getQueueSize() {
// suppress momentarily negative values
return Math.max(0, sp - base);
}
/**
* Returns an estimate of the number of tasks, offset by a
* function of number of idle workers.
*/
final int getEstimatedSurplusTaskCount() {
// The halving approximates weighting idle vs non-idle workers
return (sp - base) - (pool.getIdleThreadCount() >>> 1);
}
/**
* Scans, returning early if joinMe done.
*/
final ForkJoinTask<?> scanWhileJoining(ForkJoinTask<?> joinMe) {
ForkJoinTask<?> t = pollTask();
if (t != null && joinMe.status < 0 && sp == base) {
pushTask(t); // unsteal if done and this task would be stealable
t = null;
}
return t;
}
/**
* Runs tasks until {@code pool.isQuiescent()}.
*/
final void helpQuiescePool() {
for (;;) {
ForkJoinTask<?> t = pollTask();
if (t != null)
t.quietlyExec();
else if (tryInactivate() && pool.isQuiescent())
break;
}
do {} while (!tryActivate()); // re-activate on exit
}
// Unsafe mechanics
private static final sun.misc.Unsafe UNSAFE = sun.misc.Unsafe.getUnsafe();
private static final long spOffset =
objectFieldOffset("sp", ForkJoinWorkerThread.class);
private static final long runStateOffset =
objectFieldOffset("runState", ForkJoinWorkerThread.class);
private static final long qBase;
private static final int qShift;
static {
qBase = UNSAFE.arrayBaseOffset(ForkJoinTask[].class);
int s = UNSAFE.arrayIndexScale(ForkJoinTask[].class);
if ((s & (s-1)) != 0)
throw new Error("data type scale not a power of two");
qShift = 31 - Integer.numberOfLeadingZeros(s);
}
private static long objectFieldOffset(String field, Class<?> klazz) {
try {
return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
} catch (NoSuchFieldException e) {
// Convert Exception to corresponding Error
NoSuchFieldError error = new NoSuchFieldError(field);
error.initCause(e);
throw error;
}
}
}

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,179 @@
/*
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Sun designates this
* particular file as subject to the "Classpath" exception as provided
* by Sun in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
* CA 95054 USA or visit www.sun.com if you need additional information or
* have any questions.
*/
/*
* This file is available under and governed by the GNU General Public
* License version 2 only, as published by the Free Software Foundation.
* However, the following notice accompanied the original version of this
* file:
*
* Written by Doug Lea with assistance from members of JCP JSR-166
* Expert Group and released to the public domain, as explained at
* http://creativecommons.org/licenses/publicdomain
*/
package java.util.concurrent;
/**
* A recursive resultless {@link ForkJoinTask}. This class
* establishes conventions to parameterize resultless actions as
* {@code Void} {@code ForkJoinTask}s. Because {@code null} is the
* only valid value of type {@code Void}, methods such as join always
* return {@code null} upon completion.
*
* <p><b>Sample Usages.</b> Here is a sketch of a ForkJoin sort that
* sorts a given {@code long[]} array:
*
* <pre> {@code
* class SortTask extends RecursiveAction {
* final long[] array; final int lo; final int hi;
* SortTask(long[] array, int lo, int hi) {
* this.array = array; this.lo = lo; this.hi = hi;
* }
* protected void compute() {
* if (hi - lo < THRESHOLD)
* sequentiallySort(array, lo, hi);
* else {
* int mid = (lo + hi) >>> 1;
* invokeAll(new SortTask(array, lo, mid),
* new SortTask(array, mid, hi));
* merge(array, lo, hi);
* }
* }
* }}</pre>
*
* You could then sort {@code anArray} by creating {@code new
* SortTask(anArray, 0, anArray.length-1) } and invoking it in a
* ForkJoinPool. As a more concrete simple example, the following
* task increments each element of an array:
* <pre> {@code
* class IncrementTask extends RecursiveAction {
* final long[] array; final int lo; final int hi;
* IncrementTask(long[] array, int lo, int hi) {
* this.array = array; this.lo = lo; this.hi = hi;
* }
* protected void compute() {
* if (hi - lo < THRESHOLD) {
* for (int i = lo; i < hi; ++i)
* array[i]++;
* }
* else {
* int mid = (lo + hi) >>> 1;
* invokeAll(new IncrementTask(array, lo, mid),
* new IncrementTask(array, mid, hi));
* }
* }
* }}</pre>
*
* <p>The following example illustrates some refinements and idioms
* that may lead to better performance: RecursiveActions need not be
* fully recursive, so long as they maintain the basic
* divide-and-conquer approach. Here is a class that sums the squares
* of each element of a double array, by subdividing out only the
* right-hand-sides of repeated divisions by two, and keeping track of
* them with a chain of {@code next} references. It uses a dynamic
* threshold based on method {@code getSurplusQueuedTaskCount}, but
* counterbalances potential excess partitioning by directly
* performing leaf actions on unstolen tasks rather than further
* subdividing.
*
* <pre> {@code
* double sumOfSquares(ForkJoinPool pool, double[] array) {
* int n = array.length;
* Applyer a = new Applyer(array, 0, n, null);
* pool.invoke(a);
* return a.result;
* }
*
* class Applyer extends RecursiveAction {
* final double[] array;
* final int lo, hi;
* double result;
* Applyer next; // keeps track of right-hand-side tasks
* Applyer(double[] array, int lo, int hi, Applyer next) {
* this.array = array; this.lo = lo; this.hi = hi;
* this.next = next;
* }
*
* double atLeaf(int l, int h) {
* double sum = 0;
* for (int i = l; i < h; ++i) // perform leftmost base step
* sum += array[i] * array[i];
* return sum;
* }
*
* protected void compute() {
* int l = lo;
* int h = hi;
* Applyer right = null;
* while (h - l > 1 && getSurplusQueuedTaskCount() <= 3) {
* int mid = (l + h) >>> 1;
* right = new Applyer(array, mid, h, right);
* right.fork();
* h = mid;
* }
* double sum = atLeaf(l, h);
* while (right != null) {
* if (right.tryUnfork()) // directly calculate if not stolen
* sum += right.atLeaf(right.lo, right.hi);
* else {
* right.helpJoin();
* sum += right.result;
* }
* right = right.next;
* }
* result = sum;
* }
* }}</pre>
*
* @since 1.7
* @author Doug Lea
*/
public abstract class RecursiveAction extends ForkJoinTask<Void> {
private static final long serialVersionUID = 5232453952276485070L;
/**
* The main computation performed by this task.
*/
protected abstract void compute();
/**
* Always returns null.
*/
public final Void getRawResult() { return null; }
/**
* Requires null completion value.
*/
protected final void setRawResult(Void mustBeNull) { }
/**
* Implements execution conventions for RecursiveActions.
*/
protected final boolean exec() {
compute();
return true;
}
}

View File

@ -0,0 +1,97 @@
/*
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Sun designates this
* particular file as subject to the "Classpath" exception as provided
* by Sun in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
* CA 95054 USA or visit www.sun.com if you need additional information or
* have any questions.
*/
/*
* This file is available under and governed by the GNU General Public
* License version 2 only, as published by the Free Software Foundation.
* However, the following notice accompanied the original version of this
* file:
*
* Written by Doug Lea with assistance from members of JCP JSR-166
* Expert Group and released to the public domain, as explained at
* http://creativecommons.org/licenses/publicdomain
*/
package java.util.concurrent;
/**
* A recursive result-bearing {@link ForkJoinTask}.
*
* <p>For a classic example, here is a task computing Fibonacci numbers:
*
* <pre> {@code
* class Fibonacci extends RecursiveTask<Integer> {
* final int n;
* Fibonacci(int n) { this.n = n; }
* Integer compute() {
* if (n <= 1)
* return n;
* Fibonacci f1 = new Fibonacci(n - 1);
* f1.fork();
* Fibonacci f2 = new Fibonacci(n - 2);
* return f2.compute() + f1.join();
* }
* }}</pre>
*
* However, besides being a dumb way to compute Fibonacci functions
* (there is a simple fast linear algorithm that you'd use in
* practice), this is likely to perform poorly because the smallest
* subtasks are too small to be worthwhile splitting up. Instead, as
* is the case for nearly all fork/join applications, you'd pick some
* minimum granularity size (for example 10 here) for which you always
* sequentially solve rather than subdividing.
*
* @since 1.7
* @author Doug Lea
*/
public abstract class RecursiveTask<V> extends ForkJoinTask<V> {
private static final long serialVersionUID = 5232453952276485270L;
/**
* The result of the computation.
*/
V result;
/**
* The main computation performed by this task.
*/
protected abstract V compute();
public final V getRawResult() {
return result;
}
protected final void setRawResult(V value) {
result = value;
}
/**
* Implements execution conventions for RecursiveTask.
*/
protected final boolean exec() {
result = compute();
return true;
}
}

View File

@ -61,6 +61,14 @@ import java.util.*;
* causes tasks to be immediately removed from the work queue at
* time of cancellation.
*
* <p>Successive executions of a task scheduled via
* <code>scheduleAtFixedRate</code> or
* <code>scheduleWithFixedDelay</code> do not overlap. While different
* executions may be performed by different threads, the effects of
* prior executions <a
* href="package-summary.html#MemoryVisibility"><i>happen-before</i></a>
* those of subsequent ones.
*
* <p>While this class inherits from {@link ThreadPoolExecutor}, a few
* of the inherited tuning methods are not useful for it. In
* particular, because it acts as a fixed-sized pool using

View File

@ -0,0 +1,228 @@
/*
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Sun designates this
* particular file as subject to the "Classpath" exception as provided
* by Sun in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
* CA 95054 USA or visit www.sun.com if you need additional information or
* have any questions.
*/
/*
* This file is available under and governed by the GNU General Public
* License version 2 only, as published by the Free Software Foundation.
* However, the following notice accompanied the original version of this
* file:
*
* Written by Doug Lea with assistance from members of JCP JSR-166
* Expert Group and released to the public domain, as explained at
* http://creativecommons.org/licenses/publicdomain
*/
package java.util.concurrent;
import java.util.Random;
/**
* A random number generator isolated to the current thread. Like the
* global {@link java.util.Random} generator used by the {@link
* java.lang.Math} class, a {@code ThreadLocalRandom} is initialized
* with an internally generated seed that may not otherwise be
* modified. When applicable, use of {@code ThreadLocalRandom} rather
* than shared {@code Random} objects in concurrent programs will
* typically encounter much less overhead and contention. Use of
* {@code ThreadLocalRandom} is particularly appropriate when multiple
* tasks (for example, each a {@link ForkJoinTask}) use random numbers
* in parallel in thread pools.
*
* <p>Usages of this class should typically be of the form:
* {@code ThreadLocalRandom.current().nextX(...)} (where
* {@code X} is {@code Int}, {@code Long}, etc).
* When all usages are of this form, it is never possible to
* accidently share a {@code ThreadLocalRandom} across multiple threads.
*
* <p>This class also provides additional commonly used bounded random
* generation methods.
*
* @since 1.7
* @author Doug Lea
*/
public class ThreadLocalRandom extends Random {
// same constants as Random, but must be redeclared because private
private final static long multiplier = 0x5DEECE66DL;
private final static long addend = 0xBL;
private final static long mask = (1L << 48) - 1;
/**
* The random seed. We can't use super.seed.
*/
private long rnd;
/**
* Initialization flag to permit the first and only allowed call
* to setSeed (inside Random constructor) to succeed. We can't
* allow others since it would cause setting seed in one part of a
* program to unintentionally impact other usages by the thread.
*/
boolean initialized;
// Padding to help avoid memory contention among seed updates in
// different TLRs in the common case that they are located near
// each other.
private long pad0, pad1, pad2, pad3, pad4, pad5, pad6, pad7;
/**
* The actual ThreadLocal
*/
private static final ThreadLocal<ThreadLocalRandom> localRandom =
new ThreadLocal<ThreadLocalRandom>() {
protected ThreadLocalRandom initialValue() {
return new ThreadLocalRandom();
}
};
/**
* Constructor called only by localRandom.initialValue.
* We rely on the fact that the superclass no-arg constructor
* invokes setSeed exactly once to initialize.
*/
ThreadLocalRandom() {
super();
}
/**
* Returns the current thread's {@code ThreadLocalRandom}.
*
* @return the current thread's {@code ThreadLocalRandom}
*/
public static ThreadLocalRandom current() {
return localRandom.get();
}
/**
* Throws {@code UnsupportedOperationException}. Setting seeds in
* this generator is not supported.
*
* @throws UnsupportedOperationException always
*/
public void setSeed(long seed) {
if (initialized)
throw new UnsupportedOperationException();
initialized = true;
rnd = (seed ^ multiplier) & mask;
}
protected int next(int bits) {
rnd = (rnd * multiplier + addend) & mask;
return (int) (rnd >>> (48-bits));
}
/**
* Returns a pseudorandom, uniformly distributed value between the
* given least value (inclusive) and bound (exclusive).
*
* @param least the least value returned
* @param bound the upper bound (exclusive)
* @throws IllegalArgumentException if least greater than or equal
* to bound
* @return the next value
*/
public int nextInt(int least, int bound) {
if (least >= bound)
throw new IllegalArgumentException();
return nextInt(bound - least) + least;
}
/**
* Returns a pseudorandom, uniformly distributed value
* between 0 (inclusive) and the specified value (exclusive).
*
* @param n the bound on the random number to be returned. Must be
* positive.
* @return the next value
* @throws IllegalArgumentException if n is not positive
*/
public long nextLong(long n) {
if (n <= 0)
throw new IllegalArgumentException("n must be positive");
// Divide n by two until small enough for nextInt. On each
// iteration (at most 31 of them but usually much less),
// randomly choose both whether to include high bit in result
// (offset) and whether to continue with the lower vs upper
// half (which makes a difference only if odd).
long offset = 0;
while (n >= Integer.MAX_VALUE) {
int bits = next(2);
long half = n >>> 1;
long nextn = ((bits & 2) == 0) ? half : n - half;
if ((bits & 1) == 0)
offset += n - nextn;
n = nextn;
}
return offset + nextInt((int) n);
}
/**
* Returns a pseudorandom, uniformly distributed value between the
* given least value (inclusive) and bound (exclusive).
*
* @param least the least value returned
* @param bound the upper bound (exclusive)
* @return the next value
* @throws IllegalArgumentException if least greater than or equal
* to bound
*/
public long nextLong(long least, long bound) {
if (least >= bound)
throw new IllegalArgumentException();
return nextLong(bound - least) + least;
}
/**
* Returns a pseudorandom, uniformly distributed {@code double} value
* between 0 (inclusive) and the specified value (exclusive).
*
* @param n the bound on the random number to be returned. Must be
* positive.
* @return the next value
* @throws IllegalArgumentException if n is not positive
*/
public double nextDouble(double n) {
if (n <= 0)
throw new IllegalArgumentException("n must be positive");
return nextDouble() * n;
}
/**
* Returns a pseudorandom, uniformly distributed value between the
* given least value (inclusive) and bound (exclusive).
*
* @param least the least value returned
* @param bound the upper bound (exclusive)
* @return the next value
* @throws IllegalArgumentException if least greater than or equal
* to bound
*/
public double nextDouble(double least, double bound) {
if (least >= bound)
throw new IllegalArgumentException();
return nextDouble() * (bound - least) + least;
}
private static final long serialVersionUID = -5851777807851030925L;
}

View File

@ -0,0 +1,161 @@
/*
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Sun designates this
* particular file as subject to the "Classpath" exception as provided
* by Sun in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
* CA 95054 USA or visit www.sun.com if you need additional information or
* have any questions.
*/
/*
* This file is available under and governed by the GNU General Public
* License version 2 only, as published by the Free Software Foundation.
* However, the following notice accompanied the original version of this
* file:
*
* Written by Doug Lea with assistance from members of JCP JSR-166
* Expert Group and released to the public domain, as explained at
* http://creativecommons.org/licenses/publicdomain
*/
package java.util.concurrent;
/**
* A {@link BlockingQueue} in which producers may wait for consumers
* to receive elements. A {@code TransferQueue} may be useful for
* example in message passing applications in which producers
* sometimes (using method {@link #transfer}) await receipt of
* elements by consumers invoking {@code take} or {@code poll}, while
* at other times enqueue elements (via method {@code put}) without
* waiting for receipt.
* {@linkplain #tryTransfer(Object) Non-blocking} and
* {@linkplain #tryTransfer(Object,long,TimeUnit) time-out} versions of
* {@code tryTransfer} are also available.
* A {@code TransferQueue} may also be queried, via {@link
* #hasWaitingConsumer}, whether there are any threads waiting for
* items, which is a converse analogy to a {@code peek} operation.
*
* <p>Like other blocking queues, a {@code TransferQueue} may be
* capacity bounded. If so, an attempted transfer operation may
* initially block waiting for available space, and/or subsequently
* block waiting for reception by a consumer. Note that in a queue
* with zero capacity, such as {@link SynchronousQueue}, {@code put}
* and {@code transfer} are effectively synonymous.
*
* <p>This interface is a member of the
* <a href="{@docRoot}/../technotes/guides/collections/index.html">
* Java Collections Framework</a>.
*
* @since 1.7
* @author Doug Lea
* @param <E> the type of elements held in this collection
*/
public interface TransferQueue<E> extends BlockingQueue<E> {
/**
* Transfers the element to a waiting consumer immediately, if possible.
*
* <p>More precisely, transfers the specified element immediately
* if there exists a consumer already waiting to receive it (in
* {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
* otherwise returning {@code false} without enqueuing the element.
*
* @param e the element to transfer
* @return {@code true} if the element was transferred, else
* {@code false}
* @throws ClassCastException if the class of the specified element
* prevents it from being added to this queue
* @throws NullPointerException if the specified element is null
* @throws IllegalArgumentException if some property of the specified
* element prevents it from being added to this queue
*/
boolean tryTransfer(E e);
/**
* Transfers the element to a consumer, waiting if necessary to do so.
*
* <p>More precisely, transfers the specified element immediately
* if there exists a consumer already waiting to receive it (in
* {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
* else waits until the element is received by a consumer.
*
* @param e the element to transfer
* @throws InterruptedException if interrupted while waiting,
* in which case the element is not left enqueued
* @throws ClassCastException if the class of the specified element
* prevents it from being added to this queue
* @throws NullPointerException if the specified element is null
* @throws IllegalArgumentException if some property of the specified
* element prevents it from being added to this queue
*/
void transfer(E e) throws InterruptedException;
/**
* Transfers the element to a consumer if it is possible to do so
* before the timeout elapses.
*
* <p>More precisely, transfers the specified element immediately
* if there exists a consumer already waiting to receive it (in
* {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
* else waits until the element is received by a consumer,
* returning {@code false} if the specified wait time elapses
* before the element can be transferred.
*
* @param e the element to transfer
* @param timeout how long to wait before giving up, in units of
* {@code unit}
* @param unit a {@code TimeUnit} determining how to interpret the
* {@code timeout} parameter
* @return {@code true} if successful, or {@code false} if
* the specified waiting time elapses before completion,
* in which case the element is not left enqueued
* @throws InterruptedException if interrupted while waiting,
* in which case the element is not left enqueued
* @throws ClassCastException if the class of the specified element
* prevents it from being added to this queue
* @throws NullPointerException if the specified element is null
* @throws IllegalArgumentException if some property of the specified
* element prevents it from being added to this queue
*/
boolean tryTransfer(E e, long timeout, TimeUnit unit)
throws InterruptedException;
/**
* Returns {@code true} if there is at least one consumer waiting
* to receive an element via {@link #take} or
* timed {@link #poll(long,TimeUnit) poll}.
* The return value represents a momentary state of affairs.
*
* @return {@code true} if there is at least one waiting consumer
*/
boolean hasWaitingConsumer();
/**
* Returns an estimate of the number of consumers waiting to
* receive elements via {@link #take} or timed
* {@link #poll(long,TimeUnit) poll}. The return value is an
* approximation of a momentary state of affairs, that may be
* inaccurate if consumers have completed or given up waiting.
* The value may be useful for monitoring and heuristics, but
* not for synchronization control. Implementations of this
* method are likely to be noticeably slower than those for
* {@link #hasWaitingConsumer}.
*
* @return the number of consumers waiting to receive elements
*/
int getWaitingConsumerCount();
}

View File

@ -170,8 +170,8 @@ import java.util.Date;
* <p>As interruption generally implies cancellation, and checks for
* interruption are often infrequent, an implementation can favor responding
* to an interrupt over normal method return. This is true even if it can be
* shown that the interrupt occurred after another action may have unblocked
* the thread. An implementation should document this behavior.
* shown that the interrupt occurred after another action that may have
* unblocked the thread. An implementation should document this behavior.
*
* @since 1.5
* @author Doug Lea

View File

@ -92,6 +92,13 @@
* assists in coordinating the processing of groups of
* asynchronous tasks.
*
* <p>Class {@link java.util.concurrent.ForkJoinPool} provides an
* Executor primarily designed for processing instances of {@link
* java.util.concurrent.ForkJoinTask} and its subclasses. These
* classes employ a work-stealing scheduler that attains high
* throughput for tasks conforming to restrictions that often hold in
* computation-intensive parallel processing.
*
* <h2>Queues</h2>
*
* The {@link java.util.concurrent.ConcurrentLinkedQueue} class
@ -110,6 +117,12 @@
* for producer-consumer, messaging, parallel tasking, and
* related concurrent designs.
*
* <p> Extended interface {@link java.util.concurrent.TransferQueue},
* and implementation {@link java.util.concurrent.LinkedTransferQueue}
* introduce a synchronous {@code transfer} method (along with related
* features) in which a producer may optionally block awaiting its
* consumer.
*
* <p>The {@link java.util.concurrent.BlockingDeque} interface
* extends {@code BlockingQueue} to support both FIFO and LIFO
* (stack-based) operations.
@ -136,15 +149,28 @@
*
* <h2>Synchronizers</h2>
*
* Four classes aid common special-purpose synchronization idioms.
* {@link java.util.concurrent.Semaphore} is a classic concurrency tool.
* {@link java.util.concurrent.CountDownLatch} is a very simple yet very
* common utility for blocking until a given number of signals, events,
* or conditions hold. A {@link java.util.concurrent.CyclicBarrier} is a
* resettable multiway synchronization point useful in some styles of
* parallel programming. An {@link java.util.concurrent.Exchanger} allows
* two threads to exchange objects at a rendezvous point, and is useful
* in several pipeline designs.
* Five classes aid common special-purpose synchronization idioms.
* <ul>
*
* <li>{@link java.util.concurrent.Semaphore} is a classic concurrency tool.
*
* <li>{@link java.util.concurrent.CountDownLatch} is a very simple yet
* very common utility for blocking until a given number of signals,
* events, or conditions hold.
*
* <li>A {@link java.util.concurrent.CyclicBarrier} is a resettable
* multiway synchronization point useful in some styles of parallel
* programming.
*
* <li>A {@link java.util.concurrent.Phaser} provides
* a more flexible form of barrier that may be used to control phased
* computation among multiple threads.
*
* <li>An {@link java.util.concurrent.Exchanger} allows two threads to
* exchange objects at a rendezvous point, and is useful in several
* pipeline designs.
*
* </ul>
*
* <h2>Concurrent Collections</h2>
*
@ -259,7 +285,8 @@
* in each thread <i>happen-before</i> those subsequent to the
* corresponding {@code exchange()} in another thread.
*
* <li>Actions prior to calling {@code CyclicBarrier.await}
* <li>Actions prior to calling {@code CyclicBarrier.await} and
* {@code Phaser.awaitAdvance} (as well as its variants)
* <i>happen-before</i> actions performed by the barrier action, and
* actions performed by the barrier action <i>happen-before</i> actions
* subsequent to a successful return from the corresponding {@code await}

View File

@ -178,10 +178,10 @@ public class BiggernYours {
new ConcurrentLinkedQueue() {
public int size() {return randomize(super.size());}});
// testCollections(
// new LinkedTransferQueue(),
// new LinkedTransferQueue() {
// public int size() {return randomize(super.size());}});
testCollections(
new LinkedTransferQueue(),
new LinkedTransferQueue() {
public int size() {return randomize(super.size());}});
testCollections(
new LinkedBlockingQueue(),

View File

@ -49,7 +49,7 @@ public class IteratorAtEnd {
testCollection(new LinkedBlockingQueue());
testCollection(new ArrayBlockingQueue(100));
testCollection(new ConcurrentLinkedQueue());
// testCollection(new LinkedTransferQueue());
testCollection(new LinkedTransferQueue());
testMap(new HashMap());
testMap(new Hashtable());

View File

@ -76,7 +76,7 @@ public class MOAT {
testCollection(new LinkedBlockingQueue<Integer>(20));
testCollection(new LinkedBlockingDeque<Integer>(20));
testCollection(new ConcurrentLinkedQueue<Integer>());
// testCollection(new LinkedTransferQueue<Integer>());
testCollection(new LinkedTransferQueue<Integer>());
testCollection(new ConcurrentSkipListSet<Integer>());
testCollection(Arrays.asList(new Integer(42)));
testCollection(Arrays.asList(1,2,3));

View File

@ -52,7 +52,7 @@ public class CheckedNull {
testMap(Collections.checkedMap(
new HashMap<String, String>(),
String.class, String.class));;
String.class, String.class));
}
ClassCastException cce(F f) {

View File

@ -234,7 +234,7 @@ public class RacingCollections {
List<Queue<Integer>> list =
new ArrayList<Queue<Integer>>(newConcurrentDeques());
list.add(new LinkedBlockingQueue<Integer>(10));
// list.add(new LinkedTransferQueue<Integer>());
list.add(new LinkedTransferQueue<Integer>());
return list;
}

View File

@ -69,7 +69,7 @@ public class RemoveContains {
test(new ArrayBlockingQueue<String>(10));
test(new LinkedBlockingQueue<String>(10));
test(new LinkedBlockingDeque<String>(10));
// test(new LinkedTransferQueue<String>());
test(new LinkedTransferQueue<String>());
test(new ArrayDeque<String>(10));
System.out.printf("%nPassed = %d, failed = %d%n%n", passed, failed);

View File

@ -119,12 +119,36 @@ public class CancelledProducerConsumerLoops {
}
}
static final class LTQasSQ<T> extends LinkedTransferQueue<T> {
LTQasSQ() { super(); }
public void put(T x) {
try { super.transfer(x); }
catch (InterruptedException ex) { throw new Error(); }
}
private final static long serialVersionUID = 42;
}
static final class HalfSyncLTQ<T> extends LinkedTransferQueue<T> {
HalfSyncLTQ() { super(); }
public void put(T x) {
if (ThreadLocalRandom.current().nextBoolean())
super.put(x);
else {
try { super.transfer(x); }
catch (InterruptedException ex) { throw new Error(); }
}
}
private final static long serialVersionUID = 42;
}
static void oneTest(int pairs, int iters) throws Exception {
oneRun(new ArrayBlockingQueue<Integer>(CAPACITY), pairs, iters);
oneRun(new LinkedBlockingQueue<Integer>(CAPACITY), pairs, iters);
oneRun(new LinkedBlockingDeque<Integer>(CAPACITY), pairs, iters);
// oneRun(new LinkedTransferQueue<Integer>(), pairs, iters);
oneRun(new LinkedTransferQueue<Integer>(), pairs, iters);
oneRun(new LTQasSQ<Integer>(), pairs, iters);
oneRun(new HalfSyncLTQ<Integer>(), pairs, iters);
oneRun(new SynchronousQueue<Integer>(), pairs, iters / 8);
/* PriorityBlockingQueue is unbounded

View File

@ -37,7 +37,7 @@ public class LastElement {
testQueue(new LinkedBlockingDeque<Integer>());
testQueue(new ArrayBlockingQueue<Integer>(10, true));
testQueue(new ArrayBlockingQueue<Integer>(10, false));
// testQueue(new LinkedTransferQueue<Integer>());
testQueue(new LinkedTransferQueue<Integer>());
System.out.printf("%nPassed = %d, failed = %d%n%n", passed, failed);
if (failed > 0) throw new Exception("Some tests failed");

View File

@ -87,11 +87,35 @@ public class MultipleProducersSingleConsumerLoops {
throw new Error();
}
static final class LTQasSQ<T> extends LinkedTransferQueue<T> {
LTQasSQ() { super(); }
public void put(T x) {
try { super.transfer(x); }
catch (InterruptedException ex) { throw new Error(); }
}
private final static long serialVersionUID = 42;
}
static final class HalfSyncLTQ<T> extends LinkedTransferQueue<T> {
HalfSyncLTQ() { super(); }
public void put(T x) {
if (ThreadLocalRandom.current().nextBoolean())
super.put(x);
else {
try { super.transfer(x); }
catch (InterruptedException ex) { throw new Error(); }
}
}
private final static long serialVersionUID = 42;
}
static void oneTest(int producers, int iters) throws Exception {
oneRun(new ArrayBlockingQueue<Integer>(CAPACITY), producers, iters);
oneRun(new LinkedBlockingQueue<Integer>(CAPACITY), producers, iters);
oneRun(new LinkedBlockingDeque<Integer>(CAPACITY), producers, iters);
// oneRun(new LinkedTransferQueue<Integer>(), producers, iters);
oneRun(new LinkedTransferQueue<Integer>(), producers, iters);
oneRun(new LTQasSQ<Integer>(), producers, iters);
oneRun(new HalfSyncLTQ<Integer>(), producers, iters);
// Don't run PBQ since can legitimately run out of memory
// if (print)

View File

@ -63,12 +63,11 @@ public class OfferDrainToLoops {
test(new LinkedBlockingDeque());
test(new LinkedBlockingDeque(2000));
test(new ArrayBlockingQueue(2000));
// test(new LinkedTransferQueue());
test(new LinkedTransferQueue());
}
Random getRandom() {
return new Random();
// return ThreadLocalRandom.current();
return ThreadLocalRandom.current();
}
void test(final BlockingQueue q) throws Throwable {

View File

@ -46,7 +46,7 @@ public class PollMemoryLeak {
public static void main(String[] args) throws InterruptedException {
final BlockingQueue[] qs = {
new LinkedBlockingQueue(10),
// new LinkedTransferQueue(),
new LinkedTransferQueue(),
new ArrayBlockingQueue(10),
new SynchronousQueue(),
new SynchronousQueue(true),

View File

@ -87,11 +87,35 @@ public class ProducerConsumerLoops {
throw new Error();
}
static final class LTQasSQ<T> extends LinkedTransferQueue<T> {
LTQasSQ() { super(); }
public void put(T x) {
try { super.transfer(x); }
catch (InterruptedException ex) { throw new Error(); }
}
private final static long serialVersionUID = 42;
}
static final class HalfSyncLTQ<T> extends LinkedTransferQueue<T> {
HalfSyncLTQ() { super(); }
public void put(T x) {
if (ThreadLocalRandom.current().nextBoolean())
super.put(x);
else {
try { super.transfer(x); }
catch (InterruptedException ex) { throw new Error(); }
}
}
private final static long serialVersionUID = 42;
}
static void oneTest(int pairs, int iters) throws Exception {
oneRun(new ArrayBlockingQueue<Integer>(CAPACITY), pairs, iters);
oneRun(new LinkedBlockingQueue<Integer>(CAPACITY), pairs, iters);
oneRun(new LinkedBlockingDeque<Integer>(CAPACITY), pairs, iters);
// oneRun(new LinkedTransferQueue<Integer>(), pairs, iters);
oneRun(new LinkedTransferQueue<Integer>(), pairs, iters);
oneRun(new LTQasSQ<Integer>(), pairs, iters);
oneRun(new HalfSyncLTQ<Integer>(), pairs, iters);
oneRun(new PriorityBlockingQueue<Integer>(), pairs, iters);
oneRun(new SynchronousQueue<Integer>(), pairs, iters);

View File

@ -73,11 +73,35 @@ public class SingleProducerMultipleConsumerLoops {
throw new Error();
}
static final class LTQasSQ<T> extends LinkedTransferQueue<T> {
LTQasSQ() { super(); }
public void put(T x) {
try { super.transfer(x); }
catch (InterruptedException ex) { throw new Error(); }
}
private final static long serialVersionUID = 42;
}
static final class HalfSyncLTQ<T> extends LinkedTransferQueue<T> {
HalfSyncLTQ() { super(); }
public void put(T x) {
if (ThreadLocalRandom.current().nextBoolean())
super.put(x);
else {
try { super.transfer(x); }
catch (InterruptedException ex) { throw new Error(); }
}
}
private final static long serialVersionUID = 42;
}
static void oneTest(int consumers, int iters) throws Exception {
oneRun(new ArrayBlockingQueue<Integer>(CAPACITY), consumers, iters);
oneRun(new LinkedBlockingQueue<Integer>(CAPACITY), consumers, iters);
oneRun(new LinkedBlockingDeque<Integer>(CAPACITY), consumers, iters);
// oneRun(new LinkedTransferQueue<Integer>(), consumers, iters);
oneRun(new LinkedTransferQueue<Integer>(), consumers, iters);
oneRun(new LTQasSQ<Integer>(), consumers, iters);
oneRun(new HalfSyncLTQ<Integer>(), consumers, iters);
oneRun(new PriorityBlockingQueue<Integer>(), consumers, iters);
oneRun(new SynchronousQueue<Integer>(), consumers, iters);
if (print)

View File

@ -60,7 +60,7 @@ public class ConcurrentQueueLoops {
//queues.add(new ArrayBlockingQueue<Integer>(count, true));
queues.add(new LinkedBlockingQueue<Integer>());
queues.add(new LinkedBlockingDeque<Integer>());
// queues.add(new LinkedTransferQueue<Integer>());
queues.add(new LinkedTransferQueue<Integer>());
// Following additional implementations are available from:
// http://gee.cs.oswego.edu/dl/concurrency-interest/index.html

View File

@ -43,7 +43,7 @@ import java.util.concurrent.ConcurrentHashMap;
import java.util.concurrent.ConcurrentLinkedQueue;
import java.util.concurrent.LinkedBlockingDeque;
import java.util.concurrent.LinkedBlockingQueue;
// import java.util.concurrent.LinkedTransferQueue;
import java.util.concurrent.LinkedTransferQueue;
import java.util.concurrent.PriorityBlockingQueue;
import java.util.LinkedList;
import java.util.PriorityQueue;
@ -70,7 +70,7 @@ public class GCRetention {
queues.add(new PriorityBlockingQueue<Boolean>());
queues.add(new PriorityQueue<Boolean>());
queues.add(new LinkedList<Boolean>());
// queues.add(new LinkedTransferQueue<Boolean>());
queues.add(new LinkedTransferQueue<Boolean>());
// Following additional implementations are available from:
// http://gee.cs.oswego.edu/dl/concurrency-interest/index.html

View File

@ -49,7 +49,7 @@ public class IteratorWeakConsistency {
test(new LinkedBlockingDeque());
test(new LinkedBlockingDeque(20));
test(new ConcurrentLinkedQueue());
// test(new LinkedTransferQueue());
test(new LinkedTransferQueue());
// Other concurrent queues (e.g. ArrayBlockingQueue) do not
// currently have weakly consistent iterators.
// test(new ArrayBlockingQueue(20));

View File

@ -56,12 +56,11 @@ public class OfferRemoveLoops {
testQueue(new ArrayBlockingQueue(10));
testQueue(new PriorityBlockingQueue(10));
testQueue(new ConcurrentLinkedQueue());
// testQueue(new LinkedTransferQueue());
testQueue(new LinkedTransferQueue());
}
Random getRandom() {
return new Random();
// return ThreadLocalRandom.current();
return ThreadLocalRandom.current();
}
void testQueue(final Queue q) throws Throwable {

View File

@ -45,7 +45,7 @@ import java.util.concurrent.ConcurrentLinkedQueue;
import java.util.concurrent.CountDownLatch;
import java.util.concurrent.LinkedBlockingDeque;
import java.util.concurrent.LinkedBlockingQueue;
// import java.util.concurrent.LinkedTransferQueue;
import java.util.concurrent.LinkedTransferQueue;
import java.util.concurrent.atomic.AtomicLong;
import java.util.ArrayList;
import java.util.Collection;
@ -67,7 +67,7 @@ public class RemovePollRace {
queues.add(new ArrayBlockingQueue<Boolean>(count, true));
queues.add(new LinkedBlockingQueue<Boolean>());
queues.add(new LinkedBlockingDeque<Boolean>());
// queues.add(new LinkedTransferQueue<Boolean>());
queues.add(new LinkedTransferQueue<Boolean>());
// Following additional implementations are available from:
// http://gee.cs.oswego.edu/dl/concurrency-interest/index.html

View File

@ -0,0 +1,94 @@
/*
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
* CA 95054 USA or visit www.sun.com if you need additional information or
* have any questions.
*/
/*
* This file is available under and governed by the GNU General Public
* License version 2 only, as published by the Free Software Foundation.
* However, the following notice accompanied the original version of this
* file:
*
* Written by Doug Lea with assistance from members of JCP JSR-166
* Expert Group and released to the public domain, as explained at
* http://creativecommons.org/licenses/publicdomain
*/
/*
* @test
* @bug 6445158
* @summary tests for Phaser.arrive()
*/
import java.util.ArrayList;
import java.util.List;
import java.util.concurrent.Phaser;
import java.util.concurrent.ThreadLocalRandom;
import java.util.concurrent.atomic.AtomicInteger;
public class Arrive {
void test(String[] args) throws Throwable {
final int n = ThreadLocalRandom.current().nextInt(1, 10);
final int nthreads = n*3/2;
final Phaser startingGate = new Phaser(nthreads);
final Phaser phaser = new Phaser(n);
final List<Thread> threads = new ArrayList<Thread>();
final AtomicInteger count0 = new AtomicInteger(0);
final AtomicInteger count1 = new AtomicInteger(0);
final Runnable task = new Runnable() { public void run() {
equal(startingGate.getPhase(), 0);
startingGate.arriveAndAwaitAdvance();
equal(startingGate.getPhase(), 1);
int phase = phaser.arrive();
if (phase == 0)
count0.getAndIncrement();
else if (phase == 1)
count1.getAndIncrement();
else
fail();
}};
for (int i = 0; i < nthreads; i++)
threads.add(new Thread(task));
for (Thread thread : threads)
thread.start();
for (Thread thread : threads)
thread.join();
equal(count0.get(), n);
equal(count1.get(), nthreads-n);
equal(phaser.getPhase(), 1);
}
//--------------------- Infrastructure ---------------------------
volatile int passed = 0, failed = 0;
void pass() {passed++;}
void fail() {failed++; Thread.dumpStack();}
void fail(String msg) {System.err.println(msg); fail();}
void unexpected(Throwable t) {failed++; t.printStackTrace();}
void check(boolean cond) {if (cond) pass(); else fail();}
void equal(Object x, Object y) {
if (x == null ? y == null : x.equals(y)) pass();
else fail(x + " not equal to " + y);}
public static void main(String[] args) throws Throwable {
new Arrive().instanceMain(args);}
public void instanceMain(String[] args) throws Throwable {
try {test(args);} catch (Throwable t) {unexpected(t);}
System.out.printf("%nPassed = %d, failed = %d%n%n", passed, failed);
if (failed > 0) throw new AssertionError("Some tests failed");}
}

View File

@ -0,0 +1,407 @@
/*
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
* CA 95054 USA or visit www.sun.com if you need additional information or
* have any questions.
*/
/*
* This file is available under and governed by the GNU General Public
* License version 2 only, as published by the Free Software Foundation.
* However, the following notice accompanied the original version of this
* file:
*
* Written by Doug Lea with assistance from members of JCP JSR-166
* Expert Group and released to the public domain, as explained at
* http://creativecommons.org/licenses/publicdomain
*/
/*
* @test
* @bug 6445158
* @summary Basic tests for Phaser
* @author Chris Hegarty
*/
import java.util.Iterator;
import java.util.LinkedList;
import java.util.concurrent.Phaser;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.TimeoutException;
import java.util.concurrent.atomic.AtomicInteger;
import static java.util.concurrent.TimeUnit.*;
public class Basic {
private static void checkTerminated(final Phaser phaser) {
check(phaser.isTerminated());
int unarriverParties = phaser.getUnarrivedParties();
int registeredParties = phaser.getRegisteredParties();
equal(phaser.arrive(), -1);
equal(phaser.arriveAndDeregister(), -1);
equal(phaser.arriveAndAwaitAdvance(), -1);
equal(phaser.bulkRegister(10), -1);
equal(phaser.getPhase(), -1);
equal(phaser.register(), -1);
try {
equal(phaser.awaitAdvanceInterruptibly(0), -1);
equal(phaser.awaitAdvanceInterruptibly(0, 10, SECONDS), -1);
} catch (Exception ie) {
unexpected(ie);
}
equal(phaser.getUnarrivedParties(), unarriverParties);
equal(phaser.getRegisteredParties(), registeredParties);
}
private static void checkResult(Arriver a, Class<? extends Throwable> c) {
Throwable t = a.result();
if (! ((t == null && c == null) || (c != null && c.isInstance(t)))) {
// t.printStackTrace();
fail("Mismatch in thread " +
a.getName() + ": " +
t + ", " +
(c == null ? "<null>" : c.getName()));
} else {
pass();
}
}
//----------------------------------------------------------------
// Mechanism to get all test threads into "running" mode.
//----------------------------------------------------------------
private static Phaser atTheStartingGate = new Phaser(3);
private static void toTheStartingGate() {
try {
boolean expectNextPhase = false;
if (atTheStartingGate.getUnarrivedParties() == 1) {
expectNextPhase = true;
}
int phase = atTheStartingGate.getPhase();
equal(phase, atTheStartingGate.arrive());
int AwaitPhase = atTheStartingGate.awaitAdvanceInterruptibly(phase,
10,
SECONDS);
if (expectNextPhase) check(AwaitPhase == (phase + 1));
pass();
} catch (Throwable t) {
unexpected(t);
// reset(atTheStartingGate);
throw new Error(t);
}
}
//----------------------------------------------------------------
// Convenience methods for creating threads that call arrive,
// awaitAdvance, arriveAndAwaitAdvance, awaitAdvanceInterruptibly
//----------------------------------------------------------------
private static abstract class Arriver extends Thread {
static AtomicInteger count = new AtomicInteger(1);
Arriver() {
this("Arriver");
}
Arriver(String name) {
this.setName(name + ":" + count.getAndIncrement());
this.setDaemon(true);
}
private volatile Throwable result;
private volatile int phase;
protected void result(Throwable result) { this.result = result; }
public Throwable result() { return this.result; }
protected void phase(int phase) { this.phase = phase; }
public int phase() { return this.phase; }
}
private static abstract class Awaiter extends Arriver {
Awaiter() { super("Awaiter"); }
Awaiter(String name) { super(name); }
}
private static Arriver arriver(final Phaser phaser) {
return new Arriver() { public void run() {
toTheStartingGate();
try { phase(phaser.arrive()); }
catch (Throwable result) { result(result); }}};
}
private static AtomicInteger cycleArriveAwaitAdvance = new AtomicInteger(1);
private static Awaiter awaiter(final Phaser phaser) {
return new Awaiter() { public void run() {
toTheStartingGate();
try {
if (cycleArriveAwaitAdvance.getAndIncrement() % 2 == 0)
phase(phaser.awaitAdvance(phaser.arrive()));
else
phase(phaser.arriveAndAwaitAdvance());
} catch (Throwable result) { result(result); }}};
}
private static Awaiter awaiter(final Phaser phaser,
final long timeout,
final TimeUnit unit) {
return new Awaiter("InterruptibleWaiter") { public void run() {
toTheStartingGate();
try {
if (timeout < 0)
phase(phaser.awaitAdvanceInterruptibly(phaser.arrive()));
else
phase(phaser.awaitAdvanceInterruptibly(phaser.arrive(),
timeout,
unit));
} catch (Throwable result) { result(result); }}};
}
// Returns an infinite lazy list of all possible arriver/awaiter combinations.
private static Iterator<Arriver> arriverIterator(final Phaser phaser) {
return new Iterator<Arriver>() {
int i = 0;
public boolean hasNext() { return true; }
public Arriver next() {
switch ((i++)&7) {
case 0: case 4:
return arriver(phaser);
case 1: case 5:
return awaiter(phaser);
case 2: case 6: case 7:
return awaiter(phaser, -1, SECONDS);
default:
return awaiter(phaser, 10, SECONDS); }}
public void remove() {throw new UnsupportedOperationException();}};
}
// Returns an infinite lazy list of all possible awaiter only combinations.
private static Iterator<Awaiter> awaiterIterator(final Phaser phaser) {
return new Iterator<Awaiter>() {
int i = 0;
public boolean hasNext() { return true; }
public Awaiter next() {
switch ((i++)&7) {
case 1: case 4: case 7:
return awaiter(phaser);
case 2: case 5:
return awaiter(phaser, -1, SECONDS);
default:
return awaiter(phaser, 10, SECONDS); }}
public void remove() {throw new UnsupportedOperationException();}};
}
private static void realMain(String[] args) throws Throwable {
Thread.currentThread().setName("mainThread");
//----------------------------------------------------------------
// Normal use
//----------------------------------------------------------------
try {
Phaser phaser = new Phaser(3);
equal(phaser.getRegisteredParties(), 3);
equal(phaser.getArrivedParties(), 0);
equal(phaser.getPhase(), 0);
check(phaser.getRoot().equals(phaser));
equal(phaser.getParent(), null);
check(!phaser.isTerminated());
Iterator<Arriver> arrivers = arriverIterator(phaser);
int phase = 0;
for (int i = 0; i < 10; i++) {
equal(phaser.getPhase(), phase++);
Arriver a1 = arrivers.next(); a1.start();
Arriver a2 = arrivers.next(); a2.start();
toTheStartingGate();
phaser.arriveAndAwaitAdvance();
a1.join();
a2.join();
checkResult(a1, null);
checkResult(a2, null);
check(!phaser.isTerminated());
equal(phaser.getRegisteredParties(), 3);
equal(phaser.getArrivedParties(), 0);
}
} catch (Throwable t) { unexpected(t); }
//----------------------------------------------------------------
// One thread interrupted
//----------------------------------------------------------------
try {
Phaser phaser = new Phaser(3);
Iterator<Arriver> arrivers = arriverIterator(phaser);
int phase = phaser.getPhase();
for (int i = 0; i < 4; i++) {
check(phaser.getPhase() == phase);
Awaiter a1 = awaiter(phaser, 10, SECONDS); a1.start();
Arriver a2 = arrivers.next(); a2.start();
toTheStartingGate();
a1.interrupt();
a1.join();
phaser.arriveAndAwaitAdvance();
a2.join();
checkResult(a1, InterruptedException.class);
checkResult(a2, null);
check(!phaser.isTerminated());
equal(phaser.getRegisteredParties(), 3);
equal(phaser.getArrivedParties(), 0);
phase++;
}
} catch (Throwable t) { unexpected(t); }
//----------------------------------------------------------------
// Phaser is terminated while threads are waiting
//----------------------------------------------------------------
try {
Phaser phaser = new Phaser(3);
Iterator<Awaiter> awaiters = awaiterIterator(phaser);
for (int i = 0; i < 4; i++) {
Arriver a1 = awaiters.next(); a1.start();
Arriver a2 = awaiters.next(); a2.start();
toTheStartingGate();
while (phaser.getArrivedParties() < 2) Thread.yield();
phaser.forceTermination();
a1.join();
a2.join();
check(a1.phase == -1);
check(a2.phase == -1);
int arrivedParties = phaser.getArrivedParties();
checkTerminated(phaser);
equal(phaser.getArrivedParties(), arrivedParties);
}
} catch (Throwable t) { unexpected(t); }
//----------------------------------------------------------------
// Adds new unarrived parties to this phaser
//----------------------------------------------------------------
try {
Phaser phaser = new Phaser(1);
Iterator<Arriver> arrivers = arriverIterator(phaser);
LinkedList<Arriver> arriverList = new LinkedList<Arriver>();
int phase = phaser.getPhase();
for (int i = 1; i < 5; i++) {
atTheStartingGate = new Phaser(1+(3*i));
check(phaser.getPhase() == phase);
// register 3 more
phaser.register(); phaser.register(); phaser.register();
for (int z=0; z<(3*i); z++) {
arriverList.add(arrivers.next());
}
for (Arriver arriver : arriverList)
arriver.start();
toTheStartingGate();
phaser.arriveAndAwaitAdvance();
for (Arriver arriver : arriverList) {
arriver.join();
checkResult(arriver, null);
}
equal(phaser.getRegisteredParties(), 1 + (3*i));
equal(phaser.getArrivedParties(), 0);
arriverList.clear();
phase++;
}
atTheStartingGate = new Phaser(3);
} catch (Throwable t) { unexpected(t); }
//----------------------------------------------------------------
// One thread timed out
//----------------------------------------------------------------
try {
Phaser phaser = new Phaser(3);
Iterator<Arriver> arrivers = arriverIterator(phaser);
for (long timeout : new long[] { 0L, 5L }) {
for (int i = 0; i < 2; i++) {
Awaiter a1 = awaiter(phaser, timeout, SECONDS); a1.start();
Arriver a2 = arrivers.next(); a2.start();
toTheStartingGate();
a1.join();
checkResult(a1, TimeoutException.class);
phaser.arrive();
a2.join();
checkResult(a2, null);
check(!phaser.isTerminated());
}
}
} catch (Throwable t) { unexpected(t); }
//----------------------------------------------------------------
// Barrier action completed normally
//----------------------------------------------------------------
try {
final AtomicInteger count = new AtomicInteger(0);
final Phaser[] kludge = new Phaser[1];
Phaser phaser = new Phaser(3) {
@Override
protected boolean onAdvance(int phase, int registeredParties) {
int countPhase = count.getAndIncrement();
equal(countPhase, phase);
equal(kludge[0].getPhase(), phase);
equal(kludge[0].getRegisteredParties(), registeredParties);
if (phase >= 3)
return true; // terminate
return false;
}
};
kludge[0] = phaser;
equal(phaser.getRegisteredParties(), 3);
Iterator<Awaiter> awaiters = awaiterIterator(phaser);
for (int i = 0; i < 4; i++) {
Awaiter a1 = awaiters.next(); a1.start();
Awaiter a2 = awaiters.next(); a2.start();
toTheStartingGate();
while (phaser.getArrivedParties() < 2) Thread.yield();
phaser.arrive();
a1.join();
a2.join();
checkResult(a1, null);
checkResult(a2, null);
equal(count.get(), i+1);
if (i < 3) {
check(!phaser.isTerminated());
equal(phaser.getRegisteredParties(), 3);
equal(phaser.getArrivedParties(), 0);
equal(phaser.getUnarrivedParties(), 3);
equal(phaser.getPhase(), count.get());
} else
checkTerminated(phaser);
}
} catch (Throwable t) { unexpected(t); }
}
//--------------------- Infrastructure ---------------------------
static volatile int passed = 0, failed = 0;
static void pass() {passed++;}
static void fail() {failed++; Thread.dumpStack();}
static void fail(String msg) {System.out.println(msg); fail();}
static void unexpected(Throwable t) {failed++; t.printStackTrace();}
static void check(boolean cond) {if (cond) pass(); else fail();}
static void equal(Object x, Object y) {
if (x == null ? y == null : x.equals(y)) pass();
else fail(x + " not equal to " + y);}
public static void main(String[] args) throws Throwable {
try {realMain(args);} catch (Throwable t) {unexpected(t);}
System.out.printf("%nPassed = %d, failed = %d%n%n", passed, failed);
if (failed > 0) throw new AssertionError("Some tests failed");}
}

View File

@ -20,6 +20,17 @@
* have any questions.
*/
/*
* This file is available under and governed by the GNU General Public
* License version 2 only, as published by the Free Software Foundation.
* However, the following notice accompanied the original version of this
* file:
*
* Written by Doug Lea with assistance from members of JCP JSR-166
* Expert Group and released to the public domain, as explained at
* http://creativecommons.org/licenses/publicdomain
*/
/*
* @test
* @bug 6725789

View File

@ -0,0 +1,265 @@
/*
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
* CA 95054 USA or visit www.sun.com if you need additional information or
* have any questions.
*/
/*
* This file is available under and governed by the GNU General Public
* License version 2 only, as published by the Free Software Foundation.
* However, the following notice accompanied the original version of this
* file:
*
* Written by Doug Lea with assistance from members of JCP JSR-166
* Expert Group and released to the public domain, as explained at
* http://creativecommons.org/licenses/publicdomain
*/
/*
* @test
* @bug 6865571
* @summary Numerical Integration using fork/join
* @run main Integrate reps=1 forkPolicy=dynamic
* @run main Integrate reps=1 forkPolicy=serial
* @run main Integrate reps=1 forkPolicy=fork
*/
import java.util.concurrent.ForkJoinPool;
import java.util.concurrent.RecursiveAction;
/**
* Sample program using Gaussian Quadrature for numerical integration.
* This version uses a simplified hardwired function. Inspired by a
* <A href="http://www.cs.uga.edu/~dkl/filaments/dist.html">
* Filaments</A> demo program.
*/
public final class Integrate {
static final double errorTolerance = 1.0e-11;
/** for time conversion */
static final long NPS = (1000L * 1000 * 1000);
static final int SERIAL = -1;
static final int DYNAMIC = 0;
static final int FORK = 1;
// the function to integrate
static double computeFunction(double x) {
return (x * x + 1.0) * x;
}
static final double start = 0.0;
static final double end = 1536.0;
/*
* The number of recursive calls for
* integrate from start to end.
* (Empirically determined)
*/
static final int calls = 263479047;
static String keywordValue(String[] args, String keyword) {
for (String arg : args)
if (arg.startsWith(keyword))
return arg.substring(keyword.length() + 1);
return null;
}
static int intArg(String[] args, String keyword, int defaultValue) {
String val = keywordValue(args, keyword);
return (val == null) ? defaultValue : Integer.parseInt(val);
}
static int policyArg(String[] args, String keyword, int defaultPolicy) {
String val = keywordValue(args, keyword);
if (val == null) return defaultPolicy;
if (val.equals("dynamic")) return DYNAMIC;
if (val.equals("serial")) return SERIAL;
if (val.equals("fork")) return FORK;
throw new Error();
}
/**
* Usage: Integrate [procs=N] [reps=N] forkPolicy=serial|dynamic|fork
*/
public static void main(String[] args) throws Exception {
final int procs = intArg(args, "procs",
Runtime.getRuntime().availableProcessors());
final int forkPolicy = policyArg(args, "forkPolicy", DYNAMIC);
ForkJoinPool g = new ForkJoinPool(procs);
System.out.println("Integrating from " + start + " to " + end +
" forkPolicy = " + forkPolicy);
long lastTime = System.nanoTime();
for (int reps = intArg(args, "reps", 10); reps > 0; reps--) {
double a;
if (forkPolicy == SERIAL)
a = SQuad.computeArea(g, start, end);
else if (forkPolicy == FORK)
a = FQuad.computeArea(g, start, end);
else
a = DQuad.computeArea(g, start, end);
long now = System.nanoTime();
double s = (double) (now - lastTime) / NPS;
lastTime = now;
System.out.printf("Calls/sec: %12d", (long) (calls / s));
System.out.printf(" Time: %7.3f", s);
System.out.printf(" Area: %12.1f", a);
System.out.println();
}
System.out.println(g);
g.shutdown();
}
// Sequential version
static final class SQuad extends RecursiveAction {
static double computeArea(ForkJoinPool pool, double l, double r) {
SQuad q = new SQuad(l, r, 0);
pool.invoke(q);
return q.area;
}
final double left; // lower bound
final double right; // upper bound
double area;
SQuad(double l, double r, double a) {
this.left = l; this.right = r; this.area = a;
}
public final void compute() {
double l = left;
double r = right;
area = recEval(l, r, (l * l + 1.0) * l, (r * r + 1.0) * r, area);
}
static final double recEval(double l, double r, double fl,
double fr, double a) {
double h = (r - l) * 0.5;
double c = l + h;
double fc = (c * c + 1.0) * c;
double hh = h * 0.5;
double al = (fl + fc) * hh;
double ar = (fr + fc) * hh;
double alr = al + ar;
if (Math.abs(alr - a) <= errorTolerance)
return alr;
else
return recEval(c, r, fc, fr, ar) + recEval(l, c, fl, fc, al);
}
}
//....................................
// ForkJoin version
static final class FQuad extends RecursiveAction {
static double computeArea(ForkJoinPool pool, double l, double r) {
FQuad q = new FQuad(l, r, 0);
pool.invoke(q);
return q.area;
}
final double left; // lower bound
final double right; // upper bound
double area;
FQuad(double l, double r, double a) {
this.left = l; this.right = r; this.area = a;
}
public final void compute() {
double l = left;
double r = right;
area = recEval(l, r, (l * l + 1.0) * l, (r * r + 1.0) * r, area);
}
static final double recEval(double l, double r, double fl,
double fr, double a) {
double h = (r - l) * 0.5;
double c = l + h;
double fc = (c * c + 1.0) * c;
double hh = h * 0.5;
double al = (fl + fc) * hh;
double ar = (fr + fc) * hh;
double alr = al + ar;
if (Math.abs(alr - a) <= errorTolerance)
return alr;
FQuad q = new FQuad(l, c, al);
q.fork();
ar = recEval(c, r, fc, fr, ar);
if (!q.tryUnfork()) {
q.quietlyHelpJoin();
return ar + q.area;
}
return ar + recEval(l, c, fl, fc, al);
}
}
// ...........................
// Version using on-demand Fork
static final class DQuad extends RecursiveAction {
static double computeArea(ForkJoinPool pool, double l, double r) {
DQuad q = new DQuad(l, r, 0);
pool.invoke(q);
return q.area;
}
final double left; // lower bound
final double right; // upper bound
double area;
DQuad(double l, double r, double a) {
this.left = l; this.right = r; this.area = a;
}
public final void compute() {
double l = left;
double r = right;
area = recEval(l, r, (l * l + 1.0) * l, (r * r + 1.0) * r, area);
}
static final double recEval(double l, double r, double fl,
double fr, double a) {
double h = (r - l) * 0.5;
double c = l + h;
double fc = (c * c + 1.0) * c;
double hh = h * 0.5;
double al = (fl + fc) * hh;
double ar = (fr + fc) * hh;
double alr = al + ar;
if (Math.abs(alr - a) <= errorTolerance)
return alr;
DQuad q = null;
if (getSurplusQueuedTaskCount() <= 3)
(q = new DQuad(l, c, al)).fork();
ar = recEval(c, r, fc, fr, ar);
if (q != null && !q.tryUnfork()) {
q.quietlyHelpJoin();
return ar + q.area;
}
return ar + recEval(l, c, fl, fc, al);
}
}
}

View File

@ -0,0 +1,174 @@
/*
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
* CA 95054 USA or visit www.sun.com if you need additional information or
* have any questions.
*/
/*
* This file is available under and governed by the GNU General Public
* License version 2 only, as published by the Free Software Foundation.
* However, the following notice accompanied the original version of this
* file:
*
* Written by Doug Lea with assistance from members of JCP JSR-166
* Expert Group and released to the public domain, as explained at
* http://creativecommons.org/licenses/publicdomain
*/
/*
* @test
* @bug 6865571
* @summary Solve NQueens using fork/join
* @run main NQueensCS maxBoardSize=11 reps=1
* @run main NQueensCS maxBoardSize=11 reps=1 procs=8
*/
import java.util.Arrays;
import java.util.concurrent.ForkJoinPool;
import java.util.concurrent.RecursiveAction;
public class NQueensCS extends RecursiveAction {
static long lastStealCount;
static int boardSize;
static final int[] expectedSolutions = new int[] {
0, 1, 0, 0, 2, 10, 4, 40, 92, 352, 724, 2680, 14200,
73712, 365596, 2279184, 14772512, 95815104, 666090624
}; // see http://www.durangobill.com/N_Queens.html
static String keywordValue(String[] args, String keyword) {
for (String arg : args)
if (arg.startsWith(keyword))
return arg.substring(keyword.length() + 1);
return null;
}
static int intArg(String[] args, String keyword, int defaultValue) {
String val = keywordValue(args, keyword);
return (val == null) ? defaultValue : Integer.parseInt(val);
}
/** for time conversion */
static final long NPS = (1000L * 1000L * 1000L);
/**
* Usage: NQueensCS [minBoardSize=N] [maxBoardSize=N] [procs=N] [reps=N]
*/
public static void main(String[] args) throws Exception {
// Board sizes too small: hard to measure well.
// Board sizes too large: take too long to run.
final int minBoardSize = intArg(args, "minBoardSize", 8);
final int maxBoardSize = intArg(args, "maxBoardSize", 15);
final int procs = intArg(args, "procs", 0);
for (int reps = intArg(args, "reps", 10); reps > 0; reps--) {
ForkJoinPool g = (procs == 0) ?
new ForkJoinPool() :
new ForkJoinPool(procs);
lastStealCount = g.getStealCount();
for (int i = minBoardSize; i <= maxBoardSize; i++)
test(g, i);
System.out.println(g);
g.shutdown();
}
}
static void test(ForkJoinPool g, int i) throws Exception {
boardSize = i;
int ps = g.getParallelism();
long start = System.nanoTime();
NQueensCS task = new NQueensCS(new int[0]);
g.invoke(task);
int solutions = task.solutions;
long time = System.nanoTime() - start;
double secs = (double) time / NPS;
if (solutions != expectedSolutions[i])
throw new Error();
System.out.printf("NQueensCS %3d", i);
System.out.printf(" Time: %7.3f", secs);
long sc = g.getStealCount();
long ns = sc - lastStealCount;
lastStealCount = sc;
System.out.printf(" Steals/t: %5d", ns/ps);
System.out.println();
}
// Boards are represented as arrays where each cell
// holds the column number of the queen in that row
final int[] sofar;
NQueensCS nextSubtask; // to link subtasks
int solutions;
NQueensCS(int[] a) {
this.sofar = a;
}
public final void compute() {
NQueensCS subtasks;
int bs = boardSize;
if (sofar.length >= bs)
solutions = 1;
else if ((subtasks = explore(sofar, bs)) != null)
solutions = processSubtasks(subtasks);
}
private static NQueensCS explore(int[] array, int bs) {
int row = array.length;
NQueensCS s = null; // subtask list
outer:
for (int q = 0; q < bs; ++q) {
for (int i = 0; i < row; i++) {
int p = array[i];
if (q == p || q == p - (row - i) || q == p + (row - i))
continue outer; // attacked
}
NQueensCS first = s; // lag forks to ensure 1 kept
if (first != null)
first.fork();
int[] next = Arrays.copyOf(array, row+1);
next[row] = q;
NQueensCS subtask = new NQueensCS(next);
subtask.nextSubtask = first;
s = subtask;
}
return s;
}
private static int processSubtasks(NQueensCS s) {
// Always run first the task held instead of forked
s.compute();
int ns = s.solutions;
s = s.nextSubtask;
// Then the unstolen ones
while (s != null && s.tryUnfork()) {
s.compute();
ns += s.solutions;
s = s.nextSubtask;
}
// Then wait for the stolen ones
while (s != null) {
s.join();
ns += s.solutions;
s = s.nextSubtask;
}
return ns;
}
}

View File

@ -115,7 +115,7 @@ public final class CancelledLockLoops {
finally {
lock.unlock();
}
if (completed != 2)
if (c != 2)
throw new Error("Completed != 2");
int r = result;
if (r == 0) // avoid overoptimization

View File

@ -30,6 +30,7 @@
* Expert Group and released to the public domain, as explained at
* http://creativecommons.org/licenses/publicdomain
*/
import java.util.*;
import java.util.concurrent.*;
import java.util.concurrent.locks.*;