This commit is contained in:
Jesper Wilhelmsson 2014-11-03 15:53:48 +01:00
commit b59b80b068
48 changed files with 510 additions and 1363 deletions

View File

@ -64,8 +64,8 @@ public class DefNewGeneration extends Generation {
} }
// Accessing spaces // Accessing spaces
public EdenSpace eden() { public ContiguousSpace eden() {
return (EdenSpace) VMObjectFactory.newObject(EdenSpace.class, edenSpaceField.getValue(addr)); return (ContiguousSpace) VMObjectFactory.newObject(ContiguousSpace.class, edenSpaceField.getValue(addr));
} }
public ContiguousSpace from() { public ContiguousSpace from() {

View File

@ -1,40 +0,0 @@
/*
* Copyright (c) 2000, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
package sun.jvm.hotspot.memory;
import java.util.*;
import sun.jvm.hotspot.debugger.*;
import sun.jvm.hotspot.runtime.*;
import sun.jvm.hotspot.types.*;
/** <P> Class EdenSpace describes eden-space in new
generation. (Currently it does not add any significant
functionality beyond ContiguousSpace.) */
public class EdenSpace extends ContiguousSpace {
public EdenSpace(Address addr) {
super(addr);
}
}

View File

@ -3513,7 +3513,7 @@ void TemplateTable::_new() {
Rtags = R3_ARG1, Rtags = R3_ARG1,
Rindex = R5_ARG3; Rindex = R5_ARG3;
const bool allow_shared_alloc = Universe::heap()->supports_inline_contig_alloc() && !CMSIncrementalMode; const bool allow_shared_alloc = Universe::heap()->supports_inline_contig_alloc();
// -------------------------------------------------------------------------- // --------------------------------------------------------------------------
// Check if fast case is possible. // Check if fast case is possible.

View File

@ -3196,7 +3196,7 @@ void MacroAssembler::eden_allocate(
assert(0 <= con_size_in_bytes && Assembler::is_simm13(con_size_in_bytes), "illegal object size"); assert(0 <= con_size_in_bytes && Assembler::is_simm13(con_size_in_bytes), "illegal object size");
assert((con_size_in_bytes & MinObjAlignmentInBytesMask) == 0, "object size is not multiple of alignment"); assert((con_size_in_bytes & MinObjAlignmentInBytesMask) == 0, "object size is not multiple of alignment");
if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) { if (!Universe::heap()->supports_inline_contig_alloc()) {
// No allocation in the shared eden. // No allocation in the shared eden.
ba(slow_case); ba(slow_case);
delayed()->nop(); delayed()->nop();
@ -3331,7 +3331,7 @@ void MacroAssembler::tlab_refill(Label& retry, Label& try_eden, Label& slow_case
assert_different_registers(top, t1, t2, t3, G4, G5 /* preserve G4 and G5 */); assert_different_registers(top, t1, t2, t3, G4, G5 /* preserve G4 and G5 */);
Label do_refill, discard_tlab; Label do_refill, discard_tlab;
if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) { if (!Universe::heap()->supports_inline_contig_alloc()) {
// No allocation in the shared eden. // No allocation in the shared eden.
ba(slow_case); ba(slow_case);
delayed()->nop(); delayed()->nop();

View File

@ -3309,7 +3309,7 @@ void TemplateTable::_new() {
// (creates a new TLAB, etc.) // (creates a new TLAB, etc.)
const bool allow_shared_alloc = const bool allow_shared_alloc =
Universe::heap()->supports_inline_contig_alloc() && !CMSIncrementalMode; Universe::heap()->supports_inline_contig_alloc();
if(UseTLAB) { if(UseTLAB) {
Register RoldTopValue = RallocatedObject; Register RoldTopValue = RallocatedObject;

View File

@ -2964,7 +2964,7 @@ void MacroAssembler::eden_allocate(Register obj,
Label& slow_case) { Label& slow_case) {
assert(obj == rax, "obj must be in rax, for cmpxchg"); assert(obj == rax, "obj must be in rax, for cmpxchg");
assert_different_registers(obj, var_size_in_bytes, t1); assert_different_registers(obj, var_size_in_bytes, t1);
if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) { if (!Universe::heap()->supports_inline_contig_alloc()) {
jmp(slow_case); jmp(slow_case);
} else { } else {
Register end = t1; Register end = t1;
@ -4437,7 +4437,7 @@ Register MacroAssembler::tlab_refill(Label& retry,
assert_different_registers(top, thread_reg, t1, t2, /* preserve: */ rbx, rdx); assert_different_registers(top, thread_reg, t1, t2, /* preserve: */ rbx, rdx);
Label do_refill, discard_tlab; Label do_refill, discard_tlab;
if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) { if (!Universe::heap()->supports_inline_contig_alloc()) {
// No allocation in the shared eden. // No allocation in the shared eden.
jmp(slow_case); jmp(slow_case);
} }

View File

@ -3214,7 +3214,7 @@ void TemplateTable::_new() {
// (creates a new TLAB, etc.) // (creates a new TLAB, etc.)
const bool allow_shared_alloc = const bool allow_shared_alloc =
Universe::heap()->supports_inline_contig_alloc() && !CMSIncrementalMode; Universe::heap()->supports_inline_contig_alloc();
const Register thread = rcx; const Register thread = rcx;
if (UseTLAB || allow_shared_alloc) { if (UseTLAB || allow_shared_alloc) {

View File

@ -3269,7 +3269,7 @@ void TemplateTable::_new() {
// (creates a new TLAB, etc.) // (creates a new TLAB, etc.)
const bool allow_shared_alloc = const bool allow_shared_alloc =
Universe::heap()->supports_inline_contig_alloc() && !CMSIncrementalMode; Universe::heap()->supports_inline_contig_alloc();
if (UseTLAB) { if (UseTLAB) {
__ movptr(rax, Address(r15_thread, in_bytes(JavaThread::tlab_top_offset()))); __ movptr(rax, Address(r15_thread, in_bytes(JavaThread::tlab_top_offset())));

View File

@ -7,7 +7,6 @@
-Xbootclasspath/p:<directories and zip/jar files separated by ;> -Xbootclasspath/p:<directories and zip/jar files separated by ;>
prepend in front of bootstrap class path prepend in front of bootstrap class path
-Xnoclassgc disable class garbage collection -Xnoclassgc disable class garbage collection
-Xincgc enable incremental garbage collection
-Xloggc:<file> log GC status to a file with time stamps -Xloggc:<file> log GC status to a file with time stamps
-Xbatch disable background compilation -Xbatch disable background compilation
-Xms<size> set initial Java heap size -Xms<size> set initial Java heap size

View File

@ -89,9 +89,3 @@ void ConcurrentMarkSweepPolicy::initialize_gc_policy_counters() {
_gc_policy_counters = new GCPolicyCounters("Copy:CMS", 2, 3); _gc_policy_counters = new GCPolicyCounters("Copy:CMS", 2, 3);
} }
} }
// Returns true if the incremental mode is enabled.
bool ConcurrentMarkSweepPolicy::has_soft_ended_eden()
{
return CMSIncrementalMode;
}

View File

@ -42,9 +42,6 @@ class ConcurrentMarkSweepPolicy : public GenCollectorPolicy {
virtual void initialize_size_policy(size_t init_eden_size, virtual void initialize_size_policy(size_t init_eden_size,
size_t init_promo_size, size_t init_promo_size,
size_t init_survivor_size); size_t init_survivor_size);
// Returns true if the incremental mode is enabled.
virtual bool has_soft_ended_eden();
}; };
#endif // SHARE_VM_GC_IMPLEMENTATION_CONCURRENTMARKSWEEP_CMSCOLLECTORPOLICY_HPP #endif // SHARE_VM_GC_IMPLEMENTATION_CONCURRENTMARKSWEEP_CMSCOLLECTORPOLICY_HPP

View File

@ -2083,17 +2083,13 @@ bool CompactibleFreeListSpace::should_concurrent_collect() const {
} }
// Support for compaction // Support for compaction
void CompactibleFreeListSpace::prepare_for_compaction(CompactPoint* cp) { void CompactibleFreeListSpace::prepare_for_compaction(CompactPoint* cp) {
SCAN_AND_FORWARD(cp,end,block_is_obj,block_size); scan_and_forward(this, cp);
// Prepare_for_compaction() uses the space between live objects // Prepare_for_compaction() uses the space between live objects
// so that later phase can skip dead space quickly. So verification // so that later phase can skip dead space quickly. So verification
// of the free lists doesn't work after. // of the free lists doesn't work after.
} }
#define obj_size(q) adjustObjectSize(oop(q)->size())
#define adjust_obj_size(s) adjustObjectSize(s)
void CompactibleFreeListSpace::adjust_pointers() { void CompactibleFreeListSpace::adjust_pointers() {
// In other versions of adjust_pointers(), a bail out // In other versions of adjust_pointers(), a bail out
// based on the amount of live data in the generation // based on the amount of live data in the generation
@ -2101,12 +2097,12 @@ void CompactibleFreeListSpace::adjust_pointers() {
// Cannot test used() == 0 here because the free lists have already // Cannot test used() == 0 here because the free lists have already
// been mangled by the compaction. // been mangled by the compaction.
SCAN_AND_ADJUST_POINTERS(adjust_obj_size); scan_and_adjust_pointers(this);
// See note about verification in prepare_for_compaction(). // See note about verification in prepare_for_compaction().
} }
void CompactibleFreeListSpace::compact() { void CompactibleFreeListSpace::compact() {
SCAN_AND_COMPACT(obj_size); scan_and_compact(this);
} }
// Fragmentation metric = 1 - [sum of (fbs**2) / (sum of fbs)**2] // Fragmentation metric = 1 - [sum of (fbs**2) / (sum of fbs)**2]

View File

@ -73,6 +73,13 @@ class CompactibleFreeListSpace: public CompactibleSpace {
friend class CMSCollector; friend class CMSCollector;
// Local alloc buffer for promotion into this space. // Local alloc buffer for promotion into this space.
friend class CFLS_LAB; friend class CFLS_LAB;
// Allow scan_and_* functions to call (private) overrides of the auxiliary functions on this class
template <typename SpaceType>
friend void CompactibleSpace::scan_and_adjust_pointers(SpaceType* space);
template <typename SpaceType>
friend void CompactibleSpace::scan_and_compact(SpaceType* space);
template <typename SpaceType>
friend void CompactibleSpace::scan_and_forward(SpaceType* space, CompactPoint* cp);
// "Size" of chunks of work (executed during parallel remark phases // "Size" of chunks of work (executed during parallel remark phases
// of CMS collection); this probably belongs in CMSCollector, although // of CMS collection); this probably belongs in CMSCollector, although
@ -288,6 +295,28 @@ class CompactibleFreeListSpace: public CompactibleSpace {
_bt.freed(start, size); _bt.freed(start, size);
} }
// Auxiliary functions for scan_and_{forward,adjust_pointers,compact} support.
// See comments for CompactibleSpace for more information.
inline HeapWord* scan_limit() const {
return end();
}
inline bool scanned_block_is_obj(const HeapWord* addr) const {
return CompactibleFreeListSpace::block_is_obj(addr); // Avoid virtual call
}
inline size_t scanned_block_size(const HeapWord* addr) const {
return CompactibleFreeListSpace::block_size(addr); // Avoid virtual call
}
inline size_t adjust_obj_size(size_t size) const {
return adjustObjectSize(size);
}
inline size_t obj_size(const HeapWord* addr) const {
return adjustObjectSize(oop(addr)->size());
}
protected: protected:
// Reset the indexed free list to its initial empty condition. // Reset the indexed free list to its initial empty condition.
void resetIndexedFreeListArray(); void resetIndexedFreeListArray();

View File

@ -167,16 +167,6 @@ class CMSTokenSyncWithLocks: public CMSTokenSync {
}; };
// Wrapper class to temporarily disable icms during a foreground cms collection.
class ICMSDisabler: public StackObj {
public:
// The ctor disables icms and wakes up the thread so it notices the change;
// the dtor re-enables icms. Note that the CMSCollector methods will check
// CMSIncrementalMode.
ICMSDisabler() { CMSCollector::disable_icms(); CMSCollector::start_icms(); }
~ICMSDisabler() { CMSCollector::enable_icms(); }
};
////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////
// Concurrent Mark-Sweep Generation ///////////////////////////// // Concurrent Mark-Sweep Generation /////////////////////////////
////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////
@ -363,7 +353,6 @@ CMSStats::CMSStats(ConcurrentMarkSweepGeneration* cms_gen, unsigned int alpha):
_cms_used_at_gc0_end = 0; _cms_used_at_gc0_end = 0;
_allow_duty_cycle_reduction = false; _allow_duty_cycle_reduction = false;
_valid_bits = 0; _valid_bits = 0;
_icms_duty_cycle = CMSIncrementalDutyCycle;
} }
double CMSStats::cms_free_adjustment_factor(size_t free) const { double CMSStats::cms_free_adjustment_factor(size_t free) const {
@ -442,86 +431,17 @@ double CMSStats::time_until_cms_start() const {
return work - deadline; return work - deadline;
} }
// Return a duty cycle based on old_duty_cycle and new_duty_cycle, limiting the
// amount of change to prevent wild oscillation.
unsigned int CMSStats::icms_damped_duty_cycle(unsigned int old_duty_cycle,
unsigned int new_duty_cycle) {
assert(old_duty_cycle <= 100, "bad input value");
assert(new_duty_cycle <= 100, "bad input value");
// Note: use subtraction with caution since it may underflow (values are
// unsigned). Addition is safe since we're in the range 0-100.
unsigned int damped_duty_cycle = new_duty_cycle;
if (new_duty_cycle < old_duty_cycle) {
const unsigned int largest_delta = MAX2(old_duty_cycle / 4, 5U);
if (new_duty_cycle + largest_delta < old_duty_cycle) {
damped_duty_cycle = old_duty_cycle - largest_delta;
}
} else if (new_duty_cycle > old_duty_cycle) {
const unsigned int largest_delta = MAX2(old_duty_cycle / 4, 15U);
if (new_duty_cycle > old_duty_cycle + largest_delta) {
damped_duty_cycle = MIN2(old_duty_cycle + largest_delta, 100U);
}
}
assert(damped_duty_cycle <= 100, "invalid duty cycle computed");
if (CMSTraceIncrementalPacing) {
gclog_or_tty->print(" [icms_damped_duty_cycle(%d,%d) = %d] ",
old_duty_cycle, new_duty_cycle, damped_duty_cycle);
}
return damped_duty_cycle;
}
unsigned int CMSStats::icms_update_duty_cycle_impl() {
assert(CMSIncrementalPacing && valid(),
"should be handled in icms_update_duty_cycle()");
double cms_time_so_far = cms_timer().seconds();
double scaled_duration = cms_duration_per_mb() * _cms_used_at_gc0_end / M;
double scaled_duration_remaining = fabsd(scaled_duration - cms_time_so_far);
// Avoid division by 0.
double time_until_full = MAX2(time_until_cms_gen_full(), 0.01);
double duty_cycle_dbl = 100.0 * scaled_duration_remaining / time_until_full;
unsigned int new_duty_cycle = MIN2((unsigned int)duty_cycle_dbl, 100U);
if (new_duty_cycle > _icms_duty_cycle) {
// Avoid very small duty cycles (1 or 2); 0 is allowed.
if (new_duty_cycle > 2) {
_icms_duty_cycle = icms_damped_duty_cycle(_icms_duty_cycle,
new_duty_cycle);
}
} else if (_allow_duty_cycle_reduction) {
// The duty cycle is reduced only once per cms cycle (see record_cms_end()).
new_duty_cycle = icms_damped_duty_cycle(_icms_duty_cycle, new_duty_cycle);
// Respect the minimum duty cycle.
unsigned int min_duty_cycle = (unsigned int)CMSIncrementalDutyCycleMin;
_icms_duty_cycle = MAX2(new_duty_cycle, min_duty_cycle);
}
if (PrintGCDetails || CMSTraceIncrementalPacing) {
gclog_or_tty->print(" icms_dc=%d ", _icms_duty_cycle);
}
_allow_duty_cycle_reduction = false;
return _icms_duty_cycle;
}
#ifndef PRODUCT #ifndef PRODUCT
void CMSStats::print_on(outputStream *st) const { void CMSStats::print_on(outputStream *st) const {
st->print(" gc0_alpha=%d,cms_alpha=%d", _gc0_alpha, _cms_alpha); st->print(" gc0_alpha=%d,cms_alpha=%d", _gc0_alpha, _cms_alpha);
st->print(",gc0_dur=%g,gc0_per=%g,gc0_promo=" SIZE_FORMAT, st->print(",gc0_dur=%g,gc0_per=%g,gc0_promo=" SIZE_FORMAT,
gc0_duration(), gc0_period(), gc0_promoted()); gc0_duration(), gc0_period(), gc0_promoted());
st->print(",cms_dur=%g,cms_dur_per_mb=%g,cms_per=%g,cms_alloc=" SIZE_FORMAT, st->print(",cms_dur=%g,cms_per=%g,cms_alloc=" SIZE_FORMAT,
cms_duration(), cms_duration_per_mb(), cms_duration(), cms_period(), cms_allocated());
cms_period(), cms_allocated());
st->print(",cms_since_beg=%g,cms_since_end=%g", st->print(",cms_since_beg=%g,cms_since_end=%g",
cms_time_since_begin(), cms_time_since_end()); cms_time_since_begin(), cms_time_since_end());
st->print(",cms_used_beg=" SIZE_FORMAT ",cms_used_end=" SIZE_FORMAT, st->print(",cms_used_beg=" SIZE_FORMAT ",cms_used_end=" SIZE_FORMAT,
_cms_used_at_gc0_begin, _cms_used_at_gc0_end); _cms_used_at_gc0_begin, _cms_used_at_gc0_end);
if (CMSIncrementalMode) {
st->print(",dc=%d", icms_duty_cycle());
}
if (valid()) { if (valid()) {
st->print(",promo_rate=%g,cms_alloc_rate=%g", st->print(",promo_rate=%g,cms_alloc_rate=%g",
@ -579,8 +499,6 @@ CMSCollector::CMSCollector(ConcurrentMarkSweepGeneration* cmsGen,
#endif #endif
_collection_count_start(0), _collection_count_start(0),
_verifying(false), _verifying(false),
_icms_start_limit(NULL),
_icms_stop_limit(NULL),
_verification_mark_bm(0, Mutex::leaf + 1, "CMS_verification_mark_bm_lock"), _verification_mark_bm(0, Mutex::leaf + 1, "CMS_verification_mark_bm_lock"),
_completed_initialization(false), _completed_initialization(false),
_collector_policy(cp), _collector_policy(cp),
@ -1116,137 +1034,6 @@ void CMSCollector::promoted(bool par, HeapWord* start,
} }
} }
static inline size_t percent_of_space(Space* space, HeapWord* addr)
{
size_t delta = pointer_delta(addr, space->bottom());
return (size_t)(delta * 100.0 / (space->capacity() / HeapWordSize));
}
void CMSCollector::icms_update_allocation_limits()
{
Generation* young = GenCollectedHeap::heap()->get_gen(0);
EdenSpace* eden = young->as_DefNewGeneration()->eden();
const unsigned int duty_cycle = stats().icms_update_duty_cycle();
if (CMSTraceIncrementalPacing) {
stats().print();
}
assert(duty_cycle <= 100, "invalid duty cycle");
if (duty_cycle != 0) {
// The duty_cycle is a percentage between 0 and 100; convert to words and
// then compute the offset from the endpoints of the space.
size_t free_words = eden->free() / HeapWordSize;
double free_words_dbl = (double)free_words;
size_t duty_cycle_words = (size_t)(free_words_dbl * duty_cycle / 100.0);
size_t offset_words = (free_words - duty_cycle_words) / 2;
_icms_start_limit = eden->top() + offset_words;
_icms_stop_limit = eden->end() - offset_words;
// The limits may be adjusted (shifted to the right) by
// CMSIncrementalOffset, to allow the application more mutator time after a
// young gen gc (when all mutators were stopped) and before CMS starts and
// takes away one or more cpus.
if (CMSIncrementalOffset != 0) {
double adjustment_dbl = free_words_dbl * CMSIncrementalOffset / 100.0;
size_t adjustment = (size_t)adjustment_dbl;
HeapWord* tmp_stop = _icms_stop_limit + adjustment;
if (tmp_stop > _icms_stop_limit && tmp_stop < eden->end()) {
_icms_start_limit += adjustment;
_icms_stop_limit = tmp_stop;
}
}
}
if (duty_cycle == 0 || (_icms_start_limit == _icms_stop_limit)) {
_icms_start_limit = _icms_stop_limit = eden->end();
}
// Install the new start limit.
eden->set_soft_end(_icms_start_limit);
if (CMSTraceIncrementalMode) {
gclog_or_tty->print(" icms alloc limits: "
PTR_FORMAT "," PTR_FORMAT
" (" SIZE_FORMAT "%%," SIZE_FORMAT "%%) ",
p2i(_icms_start_limit), p2i(_icms_stop_limit),
percent_of_space(eden, _icms_start_limit),
percent_of_space(eden, _icms_stop_limit));
if (Verbose) {
gclog_or_tty->print("eden: ");
eden->print_on(gclog_or_tty);
}
}
}
// Any changes here should try to maintain the invariant
// that if this method is called with _icms_start_limit
// and _icms_stop_limit both NULL, then it should return NULL
// and not notify the icms thread.
HeapWord*
CMSCollector::allocation_limit_reached(Space* space, HeapWord* top,
size_t word_size)
{
// A start_limit equal to end() means the duty cycle is 0, so treat that as a
// nop.
if (CMSIncrementalMode && _icms_start_limit != space->end()) {
if (top <= _icms_start_limit) {
if (CMSTraceIncrementalMode) {
space->print_on(gclog_or_tty);
gclog_or_tty->stamp();
gclog_or_tty->print_cr(" start limit top=" PTR_FORMAT
", new limit=" PTR_FORMAT
" (" SIZE_FORMAT "%%)",
p2i(top), p2i(_icms_stop_limit),
percent_of_space(space, _icms_stop_limit));
}
ConcurrentMarkSweepThread::start_icms();
assert(top < _icms_stop_limit, "Tautology");
if (word_size < pointer_delta(_icms_stop_limit, top)) {
return _icms_stop_limit;
}
// The allocation will cross both the _start and _stop limits, so do the
// stop notification also and return end().
if (CMSTraceIncrementalMode) {
space->print_on(gclog_or_tty);
gclog_or_tty->stamp();
gclog_or_tty->print_cr(" +stop limit top=" PTR_FORMAT
", new limit=" PTR_FORMAT
" (" SIZE_FORMAT "%%)",
p2i(top), p2i(space->end()),
percent_of_space(space, space->end()));
}
ConcurrentMarkSweepThread::stop_icms();
return space->end();
}
if (top <= _icms_stop_limit) {
if (CMSTraceIncrementalMode) {
space->print_on(gclog_or_tty);
gclog_or_tty->stamp();
gclog_or_tty->print_cr(" stop limit top=" PTR_FORMAT
", new limit=" PTR_FORMAT
" (" SIZE_FORMAT "%%)",
top, space->end(),
percent_of_space(space, space->end()));
}
ConcurrentMarkSweepThread::stop_icms();
return space->end();
}
if (CMSTraceIncrementalMode) {
space->print_on(gclog_or_tty);
gclog_or_tty->stamp();
gclog_or_tty->print_cr(" end limit top=" PTR_FORMAT
", new limit=" PTR_FORMAT,
top, NULL);
}
}
return NULL;
}
oop ConcurrentMarkSweepGeneration::promote(oop obj, size_t obj_size) { oop ConcurrentMarkSweepGeneration::promote(oop obj, size_t obj_size) {
assert(obj_size == (size_t)obj->size(), "bad obj_size passed in"); assert(obj_size == (size_t)obj->size(), "bad obj_size passed in");
// allocate, copy and if necessary update promoinfo -- // allocate, copy and if necessary update promoinfo --
@ -1289,14 +1076,6 @@ oop ConcurrentMarkSweepGeneration::promote(oop obj, size_t obj_size) {
} }
HeapWord*
ConcurrentMarkSweepGeneration::allocation_limit_reached(Space* space,
HeapWord* top,
size_t word_sz)
{
return collector()->allocation_limit_reached(space, top, word_sz);
}
// IMPORTANT: Notes on object size recognition in CMS. // IMPORTANT: Notes on object size recognition in CMS.
// --------------------------------------------------- // ---------------------------------------------------
// A block of storage in the CMS generation is always in // A block of storage in the CMS generation is always in
@ -1809,9 +1588,6 @@ void CMSCollector::acquire_control_and_collect(bool full,
// we want to do a foreground collection. // we want to do a foreground collection.
_foregroundGCIsActive = true; _foregroundGCIsActive = true;
// Disable incremental mode during a foreground collection.
ICMSDisabler icms_disabler;
// release locks and wait for a notify from the background collector // release locks and wait for a notify from the background collector
// releasing the locks in only necessary for phases which // releasing the locks in only necessary for phases which
// do yields to improve the granularity of the collection. // do yields to improve the granularity of the collection.
@ -2135,7 +1911,7 @@ void CMSCollector::do_mark_sweep_work(bool clear_all_soft_refs,
void CMSCollector::print_eden_and_survivor_chunk_arrays() { void CMSCollector::print_eden_and_survivor_chunk_arrays() {
DefNewGeneration* dng = _young_gen->as_DefNewGeneration(); DefNewGeneration* dng = _young_gen->as_DefNewGeneration();
EdenSpace* eden_space = dng->eden(); ContiguousSpace* eden_space = dng->eden();
ContiguousSpace* from_space = dng->from(); ContiguousSpace* from_space = dng->from();
ContiguousSpace* to_space = dng->to(); ContiguousSpace* to_space = dng->to();
// Eden // Eden
@ -2783,10 +2559,6 @@ void CMSCollector::gc_epilogue(bool full) {
// //
_cmsGen->update_counters(cms_used); _cmsGen->update_counters(cms_used);
if (CMSIncrementalMode) {
icms_update_allocation_limits();
}
bitMapLock()->unlock(); bitMapLock()->unlock();
releaseFreelistLocks(); releaseFreelistLocks();
@ -4272,12 +4044,10 @@ void CMSConcMarkingTask::coordinator_yield() {
assert_lock_strong(_bit_map_lock); assert_lock_strong(_bit_map_lock);
_bit_map_lock->unlock(); _bit_map_lock->unlock();
ConcurrentMarkSweepThread::desynchronize(true); ConcurrentMarkSweepThread::desynchronize(true);
ConcurrentMarkSweepThread::acknowledge_yield_request();
_collector->stopTimer(); _collector->stopTimer();
if (PrintCMSStatistics != 0) { if (PrintCMSStatistics != 0) {
_collector->incrementYields(); _collector->incrementYields();
} }
_collector->icms_wait();
// It is possible for whichever thread initiated the yield request // It is possible for whichever thread initiated the yield request
// not to get a chance to wake up and take the bitmap lock between // not to get a chance to wake up and take the bitmap lock between
@ -4307,7 +4077,6 @@ void CMSConcMarkingTask::coordinator_yield() {
ConcurrentMarkSweepThread::should_yield() && ConcurrentMarkSweepThread::should_yield() &&
!CMSCollector::foregroundGCIsActive(); ++i) { !CMSCollector::foregroundGCIsActive(); ++i) {
os::sleep(Thread::current(), 1, false); os::sleep(Thread::current(), 1, false);
ConcurrentMarkSweepThread::acknowledge_yield_request();
} }
ConcurrentMarkSweepThread::synchronize(true); ConcurrentMarkSweepThread::synchronize(true);
@ -5238,7 +5007,7 @@ class RemarkKlassClosure : public KlassClosure {
void CMSParMarkTask::work_on_young_gen_roots(uint worker_id, OopsInGenClosure* cl) { void CMSParMarkTask::work_on_young_gen_roots(uint worker_id, OopsInGenClosure* cl) {
DefNewGeneration* dng = _collector->_young_gen->as_DefNewGeneration(); DefNewGeneration* dng = _collector->_young_gen->as_DefNewGeneration();
EdenSpace* eden_space = dng->eden(); ContiguousSpace* eden_space = dng->eden();
ContiguousSpace* from_space = dng->from(); ContiguousSpace* from_space = dng->from();
ContiguousSpace* to_space = dng->to(); ContiguousSpace* to_space = dng->to();
@ -5410,7 +5179,7 @@ CMSParMarkTask::do_young_space_rescan(uint worker_id,
while (!pst->is_task_claimed(/* reference */ nth_task)) { while (!pst->is_task_claimed(/* reference */ nth_task)) {
// We claimed task # nth_task; compute its boundaries. // We claimed task # nth_task; compute its boundaries.
if (chunk_top == 0) { // no samples were taken if (chunk_top == 0) { // no samples were taken
assert(nth_task == 0 && n_tasks == 1, "Can have only 1 EdenSpace task"); assert(nth_task == 0 && n_tasks == 1, "Can have only 1 eden task");
start = space->bottom(); start = space->bottom();
end = space->top(); end = space->top();
} else if (nth_task == 0) { } else if (nth_task == 0) {
@ -5788,7 +5557,7 @@ void CMSCollector::do_remark_parallel() {
// process_roots (which currently doesn't know how to // process_roots (which currently doesn't know how to
// parallelize such a scan), but rather will be broken up into // parallelize such a scan), but rather will be broken up into
// a set of parallel tasks (via the sampling that the [abortable] // a set of parallel tasks (via the sampling that the [abortable]
// preclean phase did of EdenSpace, plus the [two] tasks of // preclean phase did of eden, plus the [two] tasks of
// scanning the [two] survivor spaces. Further fine-grain // scanning the [two] survivor spaces. Further fine-grain
// parallelization of the scanning of the survivor spaces // parallelization of the scanning of the survivor spaces
// themselves, and of precleaning of the younger gen itself // themselves, and of precleaning of the younger gen itself
@ -6474,19 +6243,16 @@ void CMSCollector::reset(bool asynch) {
assert_lock_strong(bitMapLock()); assert_lock_strong(bitMapLock());
bitMapLock()->unlock(); bitMapLock()->unlock();
ConcurrentMarkSweepThread::desynchronize(true); ConcurrentMarkSweepThread::desynchronize(true);
ConcurrentMarkSweepThread::acknowledge_yield_request();
stopTimer(); stopTimer();
if (PrintCMSStatistics != 0) { if (PrintCMSStatistics != 0) {
incrementYields(); incrementYields();
} }
icms_wait();
// See the comment in coordinator_yield() // See the comment in coordinator_yield()
for (unsigned i = 0; i < CMSYieldSleepCount && for (unsigned i = 0; i < CMSYieldSleepCount &&
ConcurrentMarkSweepThread::should_yield() && ConcurrentMarkSweepThread::should_yield() &&
!CMSCollector::foregroundGCIsActive(); ++i) { !CMSCollector::foregroundGCIsActive(); ++i) {
os::sleep(Thread::current(), 1, false); os::sleep(Thread::current(), 1, false);
ConcurrentMarkSweepThread::acknowledge_yield_request();
} }
ConcurrentMarkSweepThread::synchronize(true); ConcurrentMarkSweepThread::synchronize(true);
@ -6509,10 +6275,6 @@ void CMSCollector::reset(bool asynch) {
_collectorState = Idling; _collectorState = Idling;
} }
// Stop incremental mode after a cycle completes, so that any future cycles
// are triggered by allocation.
stop_icms();
NOT_PRODUCT( NOT_PRODUCT(
if (RotateCMSCollectionTypes) { if (RotateCMSCollectionTypes) {
_cmsGen->rotate_debug_collection_type(); _cmsGen->rotate_debug_collection_type();
@ -6964,12 +6726,10 @@ void MarkRefsIntoAndScanClosure::do_yield_work() {
_bit_map->lock()->unlock(); _bit_map->lock()->unlock();
_freelistLock->unlock(); _freelistLock->unlock();
ConcurrentMarkSweepThread::desynchronize(true); ConcurrentMarkSweepThread::desynchronize(true);
ConcurrentMarkSweepThread::acknowledge_yield_request();
_collector->stopTimer(); _collector->stopTimer();
if (PrintCMSStatistics != 0) { if (PrintCMSStatistics != 0) {
_collector->incrementYields(); _collector->incrementYields();
} }
_collector->icms_wait();
// See the comment in coordinator_yield() // See the comment in coordinator_yield()
for (unsigned i = 0; for (unsigned i = 0;
@ -6978,7 +6738,6 @@ void MarkRefsIntoAndScanClosure::do_yield_work() {
!CMSCollector::foregroundGCIsActive(); !CMSCollector::foregroundGCIsActive();
++i) { ++i) {
os::sleep(Thread::current(), 1, false); os::sleep(Thread::current(), 1, false);
ConcurrentMarkSweepThread::acknowledge_yield_request();
} }
ConcurrentMarkSweepThread::synchronize(true); ConcurrentMarkSweepThread::synchronize(true);
@ -7124,19 +6883,16 @@ void ScanMarkedObjectsAgainCarefullyClosure::do_yield_work() {
_bitMap->lock()->unlock(); _bitMap->lock()->unlock();
_freelistLock->unlock(); _freelistLock->unlock();
ConcurrentMarkSweepThread::desynchronize(true); ConcurrentMarkSweepThread::desynchronize(true);
ConcurrentMarkSweepThread::acknowledge_yield_request();
_collector->stopTimer(); _collector->stopTimer();
if (PrintCMSStatistics != 0) { if (PrintCMSStatistics != 0) {
_collector->incrementYields(); _collector->incrementYields();
} }
_collector->icms_wait();
// See the comment in coordinator_yield() // See the comment in coordinator_yield()
for (unsigned i = 0; i < CMSYieldSleepCount && for (unsigned i = 0; i < CMSYieldSleepCount &&
ConcurrentMarkSweepThread::should_yield() && ConcurrentMarkSweepThread::should_yield() &&
!CMSCollector::foregroundGCIsActive(); ++i) { !CMSCollector::foregroundGCIsActive(); ++i) {
os::sleep(Thread::current(), 1, false); os::sleep(Thread::current(), 1, false);
ConcurrentMarkSweepThread::acknowledge_yield_request();
} }
ConcurrentMarkSweepThread::synchronize(true); ConcurrentMarkSweepThread::synchronize(true);
@ -7196,19 +6952,16 @@ void SurvivorSpacePrecleanClosure::do_yield_work() {
// Relinquish the bit map lock // Relinquish the bit map lock
_bit_map->lock()->unlock(); _bit_map->lock()->unlock();
ConcurrentMarkSweepThread::desynchronize(true); ConcurrentMarkSweepThread::desynchronize(true);
ConcurrentMarkSweepThread::acknowledge_yield_request();
_collector->stopTimer(); _collector->stopTimer();
if (PrintCMSStatistics != 0) { if (PrintCMSStatistics != 0) {
_collector->incrementYields(); _collector->incrementYields();
} }
_collector->icms_wait();
// See the comment in coordinator_yield() // See the comment in coordinator_yield()
for (unsigned i = 0; i < CMSYieldSleepCount && for (unsigned i = 0; i < CMSYieldSleepCount &&
ConcurrentMarkSweepThread::should_yield() && ConcurrentMarkSweepThread::should_yield() &&
!CMSCollector::foregroundGCIsActive(); ++i) { !CMSCollector::foregroundGCIsActive(); ++i) {
os::sleep(Thread::current(), 1, false); os::sleep(Thread::current(), 1, false);
ConcurrentMarkSweepThread::acknowledge_yield_request();
} }
ConcurrentMarkSweepThread::synchronize(true); ConcurrentMarkSweepThread::synchronize(true);
@ -7354,19 +7107,16 @@ void MarkFromRootsClosure::do_yield_work() {
assert_lock_strong(_bitMap->lock()); assert_lock_strong(_bitMap->lock());
_bitMap->lock()->unlock(); _bitMap->lock()->unlock();
ConcurrentMarkSweepThread::desynchronize(true); ConcurrentMarkSweepThread::desynchronize(true);
ConcurrentMarkSweepThread::acknowledge_yield_request();
_collector->stopTimer(); _collector->stopTimer();
if (PrintCMSStatistics != 0) { if (PrintCMSStatistics != 0) {
_collector->incrementYields(); _collector->incrementYields();
} }
_collector->icms_wait();
// See the comment in coordinator_yield() // See the comment in coordinator_yield()
for (unsigned i = 0; i < CMSYieldSleepCount && for (unsigned i = 0; i < CMSYieldSleepCount &&
ConcurrentMarkSweepThread::should_yield() && ConcurrentMarkSweepThread::should_yield() &&
!CMSCollector::foregroundGCIsActive(); ++i) { !CMSCollector::foregroundGCIsActive(); ++i) {
os::sleep(Thread::current(), 1, false); os::sleep(Thread::current(), 1, false);
ConcurrentMarkSweepThread::acknowledge_yield_request();
} }
ConcurrentMarkSweepThread::synchronize(true); ConcurrentMarkSweepThread::synchronize(true);
@ -7388,7 +7138,7 @@ void MarkFromRootsClosure::scanOopsInOop(HeapWord* ptr) {
_finger = ptr + obj->size(); _finger = ptr + obj->size();
assert(_finger > ptr, "we just incremented it above"); assert(_finger > ptr, "we just incremented it above");
// On large heaps, it may take us some time to get through // On large heaps, it may take us some time to get through
// the marking phase (especially if running iCMS). During // the marking phase. During
// this time it's possible that a lot of mutations have // this time it's possible that a lot of mutations have
// accumulated in the card table and the mod union table -- // accumulated in the card table and the mod union table --
// these mutation records are redundant until we have // these mutation records are redundant until we have
@ -7505,7 +7255,7 @@ void Par_MarkFromRootsClosure::scan_oops_in_oop(HeapWord* ptr) {
_finger = ptr + obj->size(); _finger = ptr + obj->size();
assert(_finger > ptr, "we just incremented it above"); assert(_finger > ptr, "we just incremented it above");
// On large heaps, it may take us some time to get through // On large heaps, it may take us some time to get through
// the marking phase (especially if running iCMS). During // the marking phase. During
// this time it's possible that a lot of mutations have // this time it's possible that a lot of mutations have
// accumulated in the card table and the mod union table -- // accumulated in the card table and the mod union table --
// these mutation records are redundant until we have // these mutation records are redundant until we have
@ -7994,20 +7744,16 @@ void CMSPrecleanRefsYieldClosure::do_yield_work() {
bml->unlock(); bml->unlock();
ConcurrentMarkSweepThread::desynchronize(true); ConcurrentMarkSweepThread::desynchronize(true);
ConcurrentMarkSweepThread::acknowledge_yield_request();
_collector->stopTimer(); _collector->stopTimer();
if (PrintCMSStatistics != 0) { if (PrintCMSStatistics != 0) {
_collector->incrementYields(); _collector->incrementYields();
} }
_collector->icms_wait();
// See the comment in coordinator_yield() // See the comment in coordinator_yield()
for (unsigned i = 0; i < CMSYieldSleepCount && for (unsigned i = 0; i < CMSYieldSleepCount &&
ConcurrentMarkSweepThread::should_yield() && ConcurrentMarkSweepThread::should_yield() &&
!CMSCollector::foregroundGCIsActive(); ++i) { !CMSCollector::foregroundGCIsActive(); ++i) {
os::sleep(Thread::current(), 1, false); os::sleep(Thread::current(), 1, false);
ConcurrentMarkSweepThread::acknowledge_yield_request();
} }
ConcurrentMarkSweepThread::synchronize(true); ConcurrentMarkSweepThread::synchronize(true);
@ -8675,19 +8421,16 @@ void SweepClosure::do_yield_work(HeapWord* addr) {
_bitMap->lock()->unlock(); _bitMap->lock()->unlock();
_freelistLock->unlock(); _freelistLock->unlock();
ConcurrentMarkSweepThread::desynchronize(true); ConcurrentMarkSweepThread::desynchronize(true);
ConcurrentMarkSweepThread::acknowledge_yield_request();
_collector->stopTimer(); _collector->stopTimer();
if (PrintCMSStatistics != 0) { if (PrintCMSStatistics != 0) {
_collector->incrementYields(); _collector->incrementYields();
} }
_collector->icms_wait();
// See the comment in coordinator_yield() // See the comment in coordinator_yield()
for (unsigned i = 0; i < CMSYieldSleepCount && for (unsigned i = 0; i < CMSYieldSleepCount &&
ConcurrentMarkSweepThread::should_yield() && ConcurrentMarkSweepThread::should_yield() &&
!CMSCollector::foregroundGCIsActive(); ++i) { !CMSCollector::foregroundGCIsActive(); ++i) {
os::sleep(Thread::current(), 1, false); os::sleep(Thread::current(), 1, false);
ConcurrentMarkSweepThread::acknowledge_yield_request();
} }
ConcurrentMarkSweepThread::synchronize(true); ConcurrentMarkSweepThread::synchronize(true);

View File

@ -356,7 +356,6 @@ class CMSStats VALUE_OBJ_CLASS_SPEC {
size_t _gc0_promoted; // bytes promoted per gc0 size_t _gc0_promoted; // bytes promoted per gc0
double _cms_duration; double _cms_duration;
double _cms_duration_pre_sweep; // time from initiation to start of sweep double _cms_duration_pre_sweep; // time from initiation to start of sweep
double _cms_duration_per_mb;
double _cms_period; double _cms_period;
size_t _cms_allocated; // bytes of direct allocation per gc0 period size_t _cms_allocated; // bytes of direct allocation per gc0 period
@ -383,17 +382,7 @@ class CMSStats VALUE_OBJ_CLASS_SPEC {
unsigned int _valid_bits; unsigned int _valid_bits;
unsigned int _icms_duty_cycle; // icms duty cycle (0-100).
protected: protected:
// Return a duty cycle that avoids wild oscillations, by limiting the amount
// of change between old_duty_cycle and new_duty_cycle (the latter is treated
// as a recommended value).
static unsigned int icms_damped_duty_cycle(unsigned int old_duty_cycle,
unsigned int new_duty_cycle);
unsigned int icms_update_duty_cycle_impl();
// In support of adjusting of cms trigger ratios based on history // In support of adjusting of cms trigger ratios based on history
// of concurrent mode failure. // of concurrent mode failure.
double cms_free_adjustment_factor(size_t free) const; double cms_free_adjustment_factor(size_t free) const;
@ -426,7 +415,6 @@ class CMSStats VALUE_OBJ_CLASS_SPEC {
size_t gc0_promoted() const { return _gc0_promoted; } size_t gc0_promoted() const { return _gc0_promoted; }
double cms_period() const { return _cms_period; } double cms_period() const { return _cms_period; }
double cms_duration() const { return _cms_duration; } double cms_duration() const { return _cms_duration; }
double cms_duration_per_mb() const { return _cms_duration_per_mb; }
size_t cms_allocated() const { return _cms_allocated; } size_t cms_allocated() const { return _cms_allocated; }
size_t cms_used_at_gc0_end() const { return _cms_used_at_gc0_end;} size_t cms_used_at_gc0_end() const { return _cms_used_at_gc0_end;}
@ -458,12 +446,6 @@ class CMSStats VALUE_OBJ_CLASS_SPEC {
// End of higher level statistics. // End of higher level statistics.
// Returns the cms incremental mode duty cycle, as a percentage (0-100).
unsigned int icms_duty_cycle() const { return _icms_duty_cycle; }
// Update the duty cycle and return the new value.
unsigned int icms_update_duty_cycle();
// Debugging. // Debugging.
void print_on(outputStream* st) const PRODUCT_RETURN; void print_on(outputStream* st) const PRODUCT_RETURN;
void print() const { print_on(gclog_or_tty); } void print() const { print_on(gclog_or_tty); }
@ -725,13 +707,6 @@ class CMSCollector: public CHeapObj<mtGC> {
// Timing, allocation and promotion statistics, used for scheduling. // Timing, allocation and promotion statistics, used for scheduling.
CMSStats _stats; CMSStats _stats;
// Allocation limits installed in the young gen, used only in
// CMSIncrementalMode. When an allocation in the young gen would cross one of
// these limits, the cms generation is notified and the cms thread is started
// or stopped, respectively.
HeapWord* _icms_start_limit;
HeapWord* _icms_stop_limit;
enum CMS_op_type { enum CMS_op_type {
CMS_op_checkpointRootsInitial, CMS_op_checkpointRootsInitial,
CMS_op_checkpointRootsFinal CMS_op_checkpointRootsFinal
@ -867,10 +842,6 @@ class CMSCollector: public CHeapObj<mtGC> {
// collector. // collector.
bool waitForForegroundGC(); bool waitForForegroundGC();
// Incremental mode triggering: recompute the icms duty cycle and set the
// allocation limits in the young gen.
void icms_update_allocation_limits();
size_t block_size_using_printezis_bits(HeapWord* addr) const; size_t block_size_using_printezis_bits(HeapWord* addr) const;
size_t block_size_if_printezis_bits(HeapWord* addr) const; size_t block_size_if_printezis_bits(HeapWord* addr) const;
HeapWord* next_card_start_after_block(HeapWord* addr) const; HeapWord* next_card_start_after_block(HeapWord* addr) const;
@ -928,9 +899,6 @@ class CMSCollector: public CHeapObj<mtGC> {
void promoted(bool par, HeapWord* start, void promoted(bool par, HeapWord* start,
bool is_obj_array, size_t obj_size); bool is_obj_array, size_t obj_size);
HeapWord* allocation_limit_reached(Space* space, HeapWord* top,
size_t word_size);
void getFreelistLocks() const; void getFreelistLocks() const;
void releaseFreelistLocks() const; void releaseFreelistLocks() const;
bool haveFreelistLocks() const; bool haveFreelistLocks() const;
@ -1001,14 +969,6 @@ class CMSCollector: public CHeapObj<mtGC> {
// Timers/stats for gc scheduling and incremental mode pacing. // Timers/stats for gc scheduling and incremental mode pacing.
CMSStats& stats() { return _stats; } CMSStats& stats() { return _stats; }
// Convenience methods that check whether CMSIncrementalMode is enabled and
// forward to the corresponding methods in ConcurrentMarkSweepThread.
static void start_icms();
static void stop_icms(); // Called at the end of the cms cycle.
static void disable_icms(); // Called before a foreground collection.
static void enable_icms(); // Called after a foreground collection.
void icms_wait(); // Called at yield points.
// Adaptive size policy // Adaptive size policy
AdaptiveSizePolicy* size_policy(); AdaptiveSizePolicy* size_policy();
@ -1211,9 +1171,6 @@ class ConcurrentMarkSweepGeneration: public CardGeneration {
return allocate(size, tlab); return allocate(size, tlab);
} }
// Incremental mode triggering.
HeapWord* allocation_limit_reached(Space* space, HeapWord* top,
size_t word_size);
// Used by CMSStats to track direct allocation. The value is sampled and // Used by CMSStats to track direct allocation. The value is sampled and
// reset after each young gen collection. // reset after each young gen collection.

View File

@ -234,36 +234,6 @@ inline void CMSBitMap::iterate(BitMapClosure* cl, HeapWord* left,
} }
} }
inline void CMSCollector::start_icms() {
if (CMSIncrementalMode) {
ConcurrentMarkSweepThread::start_icms();
}
}
inline void CMSCollector::stop_icms() {
if (CMSIncrementalMode) {
ConcurrentMarkSweepThread::stop_icms();
}
}
inline void CMSCollector::disable_icms() {
if (CMSIncrementalMode) {
ConcurrentMarkSweepThread::disable_icms();
}
}
inline void CMSCollector::enable_icms() {
if (CMSIncrementalMode) {
ConcurrentMarkSweepThread::enable_icms();
}
}
inline void CMSCollector::icms_wait() {
if (CMSIncrementalMode) {
cmsThread()->icms_wait();
}
}
inline void CMSCollector::save_sweep_limits() { inline void CMSCollector::save_sweep_limits() {
_cmsGen->save_sweep_limit(); _cmsGen->save_sweep_limit();
} }
@ -363,12 +333,6 @@ inline void CMSStats::record_cms_end() {
_cms_duration = AdaptiveWeightedAverage::exp_avg(_cms_duration, _cms_duration = AdaptiveWeightedAverage::exp_avg(_cms_duration,
cur_duration, _cms_alpha); cur_duration, _cms_alpha);
// Avoid division by 0.
const size_t cms_used_mb = MAX2(_cms_used_at_cms_begin / M, (size_t)1);
_cms_duration_per_mb = AdaptiveWeightedAverage::exp_avg(_cms_duration_per_mb,
cur_duration / cms_used_mb,
_cms_alpha);
_cms_end_time.update(); _cms_end_time.update();
_cms_alpha = _saved_alpha; _cms_alpha = _saved_alpha;
_allow_duty_cycle_reduction = true; _allow_duty_cycle_reduction = true;
@ -400,15 +364,6 @@ inline double CMSStats::cms_consumption_rate() const {
return (gc0_promoted() + cms_allocated()) / gc0_period(); return (gc0_promoted() + cms_allocated()) / gc0_period();
} }
inline unsigned int CMSStats::icms_update_duty_cycle() {
// Update the duty cycle only if pacing is enabled and the stats are valid
// (after at least one young gen gc and one cms cycle have completed).
if (CMSIncrementalPacing && valid()) {
return icms_update_duty_cycle_impl();
}
return _icms_duty_cycle;
}
inline void ConcurrentMarkSweepGeneration::save_sweep_limit() { inline void ConcurrentMarkSweepGeneration::save_sweep_limit() {
cmsSpace()->save_sweep_limit(); cmsSpace()->save_sweep_limit();
} }

View File

@ -49,13 +49,6 @@ bool ConcurrentMarkSweepThread::_should_terminate = false;
int ConcurrentMarkSweepThread::_CMS_flag = CMS_nil; int ConcurrentMarkSweepThread::_CMS_flag = CMS_nil;
volatile jint ConcurrentMarkSweepThread::_pending_yields = 0; volatile jint ConcurrentMarkSweepThread::_pending_yields = 0;
volatile jint ConcurrentMarkSweepThread::_pending_decrements = 0;
volatile jint ConcurrentMarkSweepThread::_icms_disabled = 0;
volatile bool ConcurrentMarkSweepThread::_should_run = false;
// When icms is enabled, the icms thread is stopped until explicitly
// started.
volatile bool ConcurrentMarkSweepThread::_should_stop = true;
SurrogateLockerThread* SurrogateLockerThread*
ConcurrentMarkSweepThread::_slt = NULL; ConcurrentMarkSweepThread::_slt = NULL;
@ -99,7 +92,6 @@ ConcurrentMarkSweepThread::ConcurrentMarkSweepThread(CMSCollector* collector)
} }
} }
_sltMonitor = SLT_lock; _sltMonitor = SLT_lock;
assert(!CMSIncrementalMode || icms_is_enabled(), "Error");
} }
void ConcurrentMarkSweepThread::run() { void ConcurrentMarkSweepThread::run() {
@ -184,11 +176,6 @@ ConcurrentMarkSweepThread* ConcurrentMarkSweepThread::start(CMSCollector* collec
} }
void ConcurrentMarkSweepThread::stop() { void ConcurrentMarkSweepThread::stop() {
if (CMSIncrementalMode) {
// Disable incremental mode and wake up the thread so it notices the change.
disable_icms();
start_icms();
}
// it is ok to take late safepoints here, if needed // it is ok to take late safepoints here, if needed
{ {
MutexLockerEx x(Terminator_lock); MutexLockerEx x(Terminator_lock);
@ -387,15 +374,6 @@ void ConcurrentMarkSweepThread::wait_on_cms_lock_for_scavenge(long t_millis) {
void ConcurrentMarkSweepThread::sleepBeforeNextCycle() { void ConcurrentMarkSweepThread::sleepBeforeNextCycle() {
while (!_should_terminate) { while (!_should_terminate) {
if (CMSIncrementalMode) {
icms_wait();
if(CMSWaitDuration >= 0) {
// Wait until the next synchronous GC, a concurrent full gc
// request or a timeout, whichever is earlier.
wait_on_cms_lock_for_scavenge(CMSWaitDuration);
}
return;
} else {
if(CMSWaitDuration >= 0) { if(CMSWaitDuration >= 0) {
// Wait until the next synchronous GC, a concurrent full gc // Wait until the next synchronous GC, a concurrent full gc
// request or a timeout, whichever is earlier. // request or a timeout, whichever is earlier.
@ -404,7 +382,6 @@ void ConcurrentMarkSweepThread::sleepBeforeNextCycle() {
// Wait until any cms_lock event or check interval not to call shouldConcurrentCollect permanently // Wait until any cms_lock event or check interval not to call shouldConcurrentCollect permanently
wait_on_cms_lock(CMSCheckInterval); wait_on_cms_lock(CMSCheckInterval);
} }
}
// Check if we should start a CMS collection cycle // Check if we should start a CMS collection cycle
if (_collector->shouldConcurrentCollect()) { if (_collector->shouldConcurrentCollect()) {
return; return;
@ -414,42 +391,6 @@ void ConcurrentMarkSweepThread::sleepBeforeNextCycle() {
} }
} }
// Incremental CMS
void ConcurrentMarkSweepThread::start_icms() {
assert(UseConcMarkSweepGC && CMSIncrementalMode, "just checking");
MutexLockerEx x(iCMS_lock, Mutex::_no_safepoint_check_flag);
trace_state("start_icms");
_should_run = true;
iCMS_lock->notify_all();
}
void ConcurrentMarkSweepThread::stop_icms() {
assert(UseConcMarkSweepGC && CMSIncrementalMode, "just checking");
MutexLockerEx x(iCMS_lock, Mutex::_no_safepoint_check_flag);
if (!_should_stop) {
trace_state("stop_icms");
_should_stop = true;
_should_run = false;
asynchronous_yield_request();
iCMS_lock->notify_all();
}
}
void ConcurrentMarkSweepThread::icms_wait() {
assert(UseConcMarkSweepGC && CMSIncrementalMode, "just checking");
if (_should_stop && icms_is_enabled()) {
MutexLockerEx x(iCMS_lock, Mutex::_no_safepoint_check_flag);
trace_state("pause_icms");
_collector->stats().stop_cms_timer();
while(!_should_run && icms_is_enabled()) {
iCMS_lock->wait(Mutex::_no_safepoint_check_flag);
}
_collector->stats().start_cms_timer();
_should_stop = false;
trace_state("pause_icms end");
}
}
// Note: this method, although exported by the ConcurrentMarkSweepThread, // Note: this method, although exported by the ConcurrentMarkSweepThread,
// which is a non-JavaThread, can only be called by a JavaThread. // which is a non-JavaThread, can only be called by a JavaThread.
// Currently this is done at vm creation time (post-vm-init) by the // Currently this is done at vm creation time (post-vm-init) by the

View File

@ -64,20 +64,11 @@ class ConcurrentMarkSweepThread: public ConcurrentGCThread {
static bool clear_CMS_flag(int b) { return (_CMS_flag &= ~b) != 0; } static bool clear_CMS_flag(int b) { return (_CMS_flag &= ~b) != 0; }
void sleepBeforeNextCycle(); void sleepBeforeNextCycle();
// CMS thread should yield for a young gen collection, direct allocation, // CMS thread should yield for a young gen collection and direct allocations
// and iCMS activity.
static char _pad_1[64 - sizeof(jint)]; // prevent cache-line sharing static char _pad_1[64 - sizeof(jint)]; // prevent cache-line sharing
static volatile jint _pending_yields; static volatile jint _pending_yields;
static volatile jint _pending_decrements; // decrements to _pending_yields
static char _pad_2[64 - sizeof(jint)]; // prevent cache-line sharing static char _pad_2[64 - sizeof(jint)]; // prevent cache-line sharing
// Tracing messages, enabled by CMSTraceThreadState.
static inline void trace_state(const char* desc);
static volatile int _icms_disabled; // a counter to track #iCMS disable & enable
static volatile bool _should_run; // iCMS may run
static volatile bool _should_stop; // iCMS should stop
// debugging // debugging
void verify_ok_to_terminate() const PRODUCT_RETURN; void verify_ok_to_terminate() const PRODUCT_RETURN;
@ -135,44 +126,13 @@ class ConcurrentMarkSweepThread: public ConcurrentGCThread {
void wait_on_cms_lock_for_scavenge(long t_millis); void wait_on_cms_lock_for_scavenge(long t_millis);
// The CMS thread will yield during the work portion of its cycle // The CMS thread will yield during the work portion of its cycle
// only when requested to. Both synchronous and asychronous requests // only when requested to.
// are provided: // A synchronous request is used for young gen collections and
// (1) A synchronous request is used for young gen collections and
// for direct allocations. The requesting thread increments // for direct allocations. The requesting thread increments
// _pending_yields at the beginning of an operation, and decrements // _pending_yields at the beginning of an operation, and decrements
// _pending_yields when that operation is completed. // _pending_yields when that operation is completed.
// In turn, the CMS thread yields when _pending_yields is positive, // In turn, the CMS thread yields when _pending_yields is positive,
// and continues to yield until the value reverts to 0. // and continues to yield until the value reverts to 0.
// (2) An asynchronous request, on the other hand, is used by iCMS
// for the stop_icms() operation. A single yield satisfies all of
// the outstanding asynch yield requests, of which there may
// occasionally be several in close succession. To accomplish
// this, an asynch-requesting thread atomically increments both
// _pending_yields and _pending_decrements. An asynchr requesting
// thread does not wait and "acknowledge" completion of an operation
// and deregister the request, like the synchronous version described
// above does. In turn, after yielding, the CMS thread decrements both
// _pending_yields and _pending_decrements by the value seen in
// _pending_decrements before the decrement.
// NOTE: The above scheme is isomorphic to having two request counters,
// one for async requests and one for sync requests, and for the CMS thread
// to check the sum of the two counters to decide whether it should yield
// and to clear only the async counter when it yields. However, it turns out
// to be more efficient for CMS code to just check a single counter
// _pending_yields that holds the sum (of both sync and async requests), and
// a second counter _pending_decrements that only holds the async requests,
// for greater efficiency, since in a typical CMS run, there are many more
// potential (i.e. static) yield points than there are actual
// (i.e. dynamic) yields because of requests, which are few and far between.
//
// Note that, while "_pending_yields >= _pending_decrements" is an invariant,
// we cannot easily test that invariant, since the counters are manipulated via
// atomic instructions without explicit locking and we cannot read
// the two counters atomically together: one suggestion is to
// use (for example) 16-bit counters so as to be able to read the
// two counters atomically even on 32-bit platforms. Notice that
// the second assert in acknowledge_yield_request() below does indeed
// check a form of the above invariant, albeit indirectly.
static void increment_pending_yields() { static void increment_pending_yields() {
Atomic::inc(&_pending_yields); Atomic::inc(&_pending_yields);
@ -182,67 +142,9 @@ class ConcurrentMarkSweepThread: public ConcurrentGCThread {
Atomic::dec(&_pending_yields); Atomic::dec(&_pending_yields);
assert(_pending_yields >= 0, "can't be negative"); assert(_pending_yields >= 0, "can't be negative");
} }
static void asynchronous_yield_request() {
assert(CMSIncrementalMode, "Currently only used w/iCMS");
increment_pending_yields();
Atomic::inc(&_pending_decrements);
assert(_pending_decrements >= 0, "can't be negative");
}
static void acknowledge_yield_request() {
jint decrement = _pending_decrements;
if (decrement > 0) {
assert(CMSIncrementalMode, "Currently only used w/iCMS");
// Order important to preserve: _pending_yields >= _pending_decrements
Atomic::add(-decrement, &_pending_decrements);
Atomic::add(-decrement, &_pending_yields);
assert(_pending_decrements >= 0, "can't be negative");
assert(_pending_yields >= 0, "can't be negative");
}
}
static bool should_yield() { return _pending_yields > 0; } static bool should_yield() { return _pending_yields > 0; }
// CMS incremental mode.
static void start_icms(); // notify thread to start a quantum of work
static void stop_icms(); // request thread to stop working
void icms_wait(); // if asked to stop, wait until notified to start
// Incremental mode is enabled globally by the flag CMSIncrementalMode. It
// must also be enabled/disabled dynamically to allow foreground collections.
#define ICMS_ENABLING_ASSERT \
assert((CMSIncrementalMode && _icms_disabled >= 0) || \
(!CMSIncrementalMode && _icms_disabled <= 0), "Error")
static inline void enable_icms() {
ICMS_ENABLING_ASSERT;
Atomic::dec(&_icms_disabled);
}
static inline void disable_icms() {
ICMS_ENABLING_ASSERT;
Atomic::inc(&_icms_disabled);
}
static inline bool icms_is_disabled() {
ICMS_ENABLING_ASSERT;
return _icms_disabled > 0;
}
static inline bool icms_is_enabled() {
return !icms_is_disabled();
}
}; };
inline void ConcurrentMarkSweepThread::trace_state(const char* desc) {
if (CMSTraceThreadState) {
char buf[128];
TimeStamp& ts = gclog_or_tty->time_stamp();
if (!ts.is_updated()) {
ts.update();
}
jio_snprintf(buf, sizeof(buf), " [%.3f: CMSThread %s] ",
ts.seconds(), desc);
buf[sizeof(buf) - 1] = '\0';
gclog_or_tty->print("%s", buf);
}
}
// For scoped increment/decrement of (synchronous) yield requests // For scoped increment/decrement of (synchronous) yield requests
class CMSSynchronousYieldRequest: public StackObj { class CMSSynchronousYieldRequest: public StackObj {
public: public:

View File

@ -207,12 +207,6 @@ void VM_GenCollectFullConcurrent::doit() {
MutexLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag); MutexLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
assert(_full_gc_count_before <= gch->total_full_collections(), "Error"); assert(_full_gc_count_before <= gch->total_full_collections(), "Error");
if (gch->total_full_collections() == _full_gc_count_before) { if (gch->total_full_collections() == _full_gc_count_before) {
// Disable iCMS until the full collection is done, and
// remember that we did so.
CMSCollector::disable_icms();
_disabled_icms = true;
// In case CMS thread was in icms_wait(), wake it up.
CMSCollector::start_icms();
// Nudge the CMS thread to start a concurrent collection. // Nudge the CMS thread to start a concurrent collection.
CMSCollector::request_full_gc(_full_gc_count_before, _gc_cause); CMSCollector::request_full_gc(_full_gc_count_before, _gc_cause);
} else { } else {
@ -276,8 +270,4 @@ void VM_GenCollectFullConcurrent::doit_epilogue() {
FullGCCount_lock->wait(Mutex::_no_safepoint_check_flag); FullGCCount_lock->wait(Mutex::_no_safepoint_check_flag);
} }
} }
// Enable iCMS back if we disabled it earlier.
if (_disabled_icms) {
CMSCollector::enable_icms();
}
} }

View File

@ -128,13 +128,11 @@ class VM_CMS_Final_Remark: public VM_CMS_Operation {
// VM operation to invoke a concurrent collection of the heap as a // VM operation to invoke a concurrent collection of the heap as a
// GenCollectedHeap heap. // GenCollectedHeap heap.
class VM_GenCollectFullConcurrent: public VM_GC_Operation { class VM_GenCollectFullConcurrent: public VM_GC_Operation {
bool _disabled_icms;
public: public:
VM_GenCollectFullConcurrent(unsigned int gc_count_before, VM_GenCollectFullConcurrent(unsigned int gc_count_before,
unsigned int full_gc_count_before, unsigned int full_gc_count_before,
GCCause::Cause gc_cause) GCCause::Cause gc_cause)
: VM_GC_Operation(gc_count_before, gc_cause, full_gc_count_before, true /* full */), : VM_GC_Operation(gc_count_before, gc_cause, full_gc_count_before, true /* full */)
_disabled_icms(false)
{ {
assert(FullGCCount_lock != NULL, "Error"); assert(FullGCCount_lock != NULL, "Error");
assert(UseAsyncConcMarkSweepGC, "Else will hang caller"); assert(UseAsyncConcMarkSweepGC, "Else will hang caller");

View File

@ -180,9 +180,32 @@ class ClearBitmapHRClosure : public HeapRegionClosure {
} }
}; };
class ParClearNextMarkBitmapTask : public AbstractGangTask {
ClearBitmapHRClosure* _cl;
HeapRegionClaimer _hrclaimer;
bool _suspendible; // If the task is suspendible, workers must join the STS.
public:
ParClearNextMarkBitmapTask(ClearBitmapHRClosure *cl, uint n_workers, bool suspendible) :
_cl(cl), _suspendible(suspendible), AbstractGangTask("Parallel Clear Bitmap Task"), _hrclaimer(n_workers) {}
void work(uint worker_id) {
if (_suspendible) {
SuspendibleThreadSet::join();
}
G1CollectedHeap::heap()->heap_region_par_iterate(_cl, worker_id, &_hrclaimer);
if (_suspendible) {
SuspendibleThreadSet::leave();
}
}
};
void CMBitMap::clearAll() { void CMBitMap::clearAll() {
G1CollectedHeap* g1h = G1CollectedHeap::heap();
ClearBitmapHRClosure cl(NULL, this, false /* may_yield */); ClearBitmapHRClosure cl(NULL, this, false /* may_yield */);
G1CollectedHeap::heap()->heap_region_iterate(&cl); uint n_workers = g1h->workers()->active_workers();
ParClearNextMarkBitmapTask task(&cl, n_workers, false);
g1h->workers()->run_task(&task);
guarantee(cl.complete(), "Must have completed iteration."); guarantee(cl.complete(), "Must have completed iteration.");
return; return;
} }
@ -861,7 +884,8 @@ void ConcurrentMark::clearNextBitmap() {
guarantee(!g1h->mark_in_progress(), "invariant"); guarantee(!g1h->mark_in_progress(), "invariant");
ClearBitmapHRClosure cl(this, _nextMarkBitMap, true /* may_yield */); ClearBitmapHRClosure cl(this, _nextMarkBitMap, true /* may_yield */);
g1h->heap_region_iterate(&cl); ParClearNextMarkBitmapTask task(&cl, parallel_marking_threads(), true);
_parallel_workers->run_task(&task);
// Clear the liveness counting data. If the marking has been aborted, the abort() // Clear the liveness counting data. If the marking has been aborted, the abort()
// call already did that. // call already did that.

View File

@ -280,7 +280,6 @@ void ConcurrentMarkThread::run() {
// We may have aborted just before the remark. Do not bother clearing the // We may have aborted just before the remark. Do not bother clearing the
// bitmap then, as it has been done during mark abort. // bitmap then, as it has been done during mark abort.
if (!cm()->has_aborted()) { if (!cm()->has_aborted()) {
SuspendibleThreadSetJoiner sts;
_cm->clearNextBitmap(); _cm->clearNextBitmap();
} else { } else {
assert(!G1VerifyBitmaps || _cm->nextMarkBitmapIsClear(), "Next mark bitmap must be clear"); assert(!G1VerifyBitmaps || _cm->nextMarkBitmapIsClear(), "Next mark bitmap must be clear");

View File

@ -1248,7 +1248,7 @@ public:
// The same as above but assume that the caller holds the Heap_lock. // The same as above but assume that the caller holds the Heap_lock.
void collect_locked(GCCause::Cause cause); void collect_locked(GCCause::Cause cause);
virtual void copy_allocation_context_stats(const jint* contexts, virtual bool copy_allocation_context_stats(const jint* contexts,
jlong* totals, jlong* totals,
jbyte* accuracy, jbyte* accuracy,
jint len); jint len);

View File

@ -25,8 +25,9 @@
#include "precompiled.hpp" #include "precompiled.hpp"
#include "gc_implementation/g1/g1CollectedHeap.hpp" #include "gc_implementation/g1/g1CollectedHeap.hpp"
void G1CollectedHeap::copy_allocation_context_stats(const jint* contexts, bool G1CollectedHeap::copy_allocation_context_stats(const jint* contexts,
jlong* totals, jlong* totals,
jbyte* accuracy, jbyte* accuracy,
jint len) { jint len) {
return false;
} }

View File

@ -1585,34 +1585,22 @@ public:
} }
}; };
uint G1CollectorPolicy::calculate_parallel_work_chunk_size(uint n_workers, uint n_regions) {
assert(n_workers > 0, "Active gc workers should be greater than 0");
const uint overpartition_factor = 4;
const uint min_chunk_size = MAX2(n_regions / n_workers, 1U);
return MAX2(n_regions / (n_workers * overpartition_factor), min_chunk_size);
}
void void
G1CollectorPolicy::record_concurrent_mark_cleanup_end(int no_of_gc_threads) { G1CollectorPolicy::record_concurrent_mark_cleanup_end(uint n_workers) {
_collectionSetChooser->clear(); _collectionSetChooser->clear();
uint region_num = _g1->num_regions(); uint n_regions = _g1->num_regions();
const uint OverpartitionFactor = 4; uint chunk_size = calculate_parallel_work_chunk_size(n_workers, n_regions);
uint WorkUnit; _collectionSetChooser->prepare_for_par_region_addition(n_regions, chunk_size);
// The use of MinChunkSize = 8 in the original code ParKnownGarbageTask par_known_garbage_task(_collectionSetChooser, chunk_size, n_workers);
// causes some assertion failures when the total number of _g1->workers()->run_task(&par_known_garbage_task);
// region is less than 8. The code here tries to fix that.
// Should the original code also be fixed?
if (no_of_gc_threads > 0) {
const uint MinWorkUnit = MAX2(region_num / no_of_gc_threads, 1U);
WorkUnit = MAX2(region_num / (no_of_gc_threads * OverpartitionFactor),
MinWorkUnit);
} else {
assert(no_of_gc_threads > 0,
"The active gc workers should be greater than 0");
// In a product build do something reasonable to avoid a crash.
const uint MinWorkUnit = MAX2(region_num / (uint) ParallelGCThreads, 1U);
WorkUnit =
MAX2(region_num / (uint) (ParallelGCThreads * OverpartitionFactor),
MinWorkUnit);
}
_collectionSetChooser->prepare_for_par_region_addition(_g1->num_regions(),
WorkUnit);
ParKnownGarbageTask parKnownGarbageTask(_collectionSetChooser, WorkUnit, (uint) no_of_gc_threads);
_g1->workers()->run_task(&parKnownGarbageTask);
_collectionSetChooser->sort_regions(); _collectionSetChooser->sort_regions();

View File

@ -612,6 +612,10 @@ private:
uint desired_min_length, uint desired_min_length,
uint desired_max_length); uint desired_max_length);
// Calculate and return chunk size (in number of regions) for parallel
// concurrent mark cleanup.
uint calculate_parallel_work_chunk_size(uint n_workers, uint n_regions);
// Check whether a given young length (young_length) fits into the // Check whether a given young length (young_length) fits into the
// given target pause time and whether the prediction for the amount // given target pause time and whether the prediction for the amount
// of objects to be copied for the given length will fit into the // of objects to be copied for the given length will fit into the
@ -687,7 +691,7 @@ public:
// Record start, end, and completion of cleanup. // Record start, end, and completion of cleanup.
void record_concurrent_mark_cleanup_start(); void record_concurrent_mark_cleanup_start();
void record_concurrent_mark_cleanup_end(int no_of_gc_threads); void record_concurrent_mark_cleanup_end(uint n_workers);
void record_concurrent_mark_cleanup_completed(); void record_concurrent_mark_cleanup_completed();
// Records the information about the heap size for reporting in // Records the information about the heap size for reporting in

View File

@ -960,6 +960,10 @@ void HeapRegion::verify() const {
verify(VerifyOption_G1UsePrevMarking, /* failures */ &dummy); verify(VerifyOption_G1UsePrevMarking, /* failures */ &dummy);
} }
void HeapRegion::prepare_for_compaction(CompactPoint* cp) {
scan_and_forward(this, cp);
}
// G1OffsetTableContigSpace code; copied from space.cpp. Hope this can go // G1OffsetTableContigSpace code; copied from space.cpp. Hope this can go
// away eventually. // away eventually.
@ -1043,12 +1047,6 @@ void G1OffsetTableContigSpace::object_iterate(ObjectClosure* blk) {
} }
} }
#define block_is_always_obj(q) true
void G1OffsetTableContigSpace::prepare_for_compaction(CompactPoint* cp) {
SCAN_AND_FORWARD(cp, top, block_is_always_obj, block_size);
}
#undef block_is_always_obj
G1OffsetTableContigSpace:: G1OffsetTableContigSpace::
G1OffsetTableContigSpace(G1BlockOffsetSharedArray* sharedOffsetArray, G1OffsetTableContigSpace(G1BlockOffsetSharedArray* sharedOffsetArray,
MemRegion mr) : MemRegion mr) :

View File

@ -187,8 +187,6 @@ class G1OffsetTableContigSpace: public CompactibleSpace {
HeapWord* block_start(const void* p); HeapWord* block_start(const void* p);
HeapWord* block_start_const(const void* p) const; HeapWord* block_start_const(const void* p) const;
void prepare_for_compaction(CompactPoint* cp);
// Add offset table update. // Add offset table update.
virtual HeapWord* allocate(size_t word_size); virtual HeapWord* allocate(size_t word_size);
HeapWord* par_allocate(size_t word_size); HeapWord* par_allocate(size_t word_size);
@ -210,6 +208,9 @@ class G1OffsetTableContigSpace: public CompactibleSpace {
class HeapRegion: public G1OffsetTableContigSpace { class HeapRegion: public G1OffsetTableContigSpace {
friend class VMStructs; friend class VMStructs;
// Allow scan_and_forward to call (private) overrides for auxiliary functions on this class
template <typename SpaceType>
friend void CompactibleSpace::scan_and_forward(SpaceType* space, CompactPoint* cp);
private: private:
// The remembered set for this region. // The remembered set for this region.
@ -219,6 +220,20 @@ class HeapRegion: public G1OffsetTableContigSpace {
G1BlockOffsetArrayContigSpace* offsets() { return &_offsets; } G1BlockOffsetArrayContigSpace* offsets() { return &_offsets; }
// Auxiliary functions for scan_and_forward support.
// See comments for CompactibleSpace for more information.
inline HeapWord* scan_limit() const {
return top();
}
inline bool scanned_block_is_obj(const HeapWord* addr) const {
return true; // Always true, since scan_limit is top
}
inline size_t scanned_block_size(const HeapWord* addr) const {
return HeapRegion::block_size(addr); // Avoid virtual call
}
protected: protected:
// The index of this region in the heap region sequence. // The index of this region in the heap region sequence.
uint _hrm_index; uint _hrm_index;
@ -340,6 +355,9 @@ class HeapRegion: public G1OffsetTableContigSpace {
// and the amount of unallocated words if called on top() // and the amount of unallocated words if called on top()
size_t block_size(const HeapWord* p) const; size_t block_size(const HeapWord* p) const;
// Override for scan_and_forward support.
void prepare_for_compaction(CompactPoint* cp);
inline HeapWord* par_allocate_no_bot_updates(size_t word_size); inline HeapWord* par_allocate_no_bot_updates(size_t word_size);
inline HeapWord* allocate_no_bot_updates(size_t word_size); inline HeapWord* allocate_no_bot_updates(size_t word_size);

View File

@ -27,6 +27,7 @@
#include "gc_implementation/shared/markSweep.hpp" #include "gc_implementation/shared/markSweep.hpp"
#include "gc_interface/collectedHeap.hpp" #include "gc_interface/collectedHeap.hpp"
#include "oops/markOop.inline.hpp"
#include "utilities/stack.inline.hpp" #include "utilities/stack.inline.hpp"
#include "utilities/macros.hpp" #include "utilities/macros.hpp"
#if INCLUDE_ALL_GCS #if INCLUDE_ALL_GCS

View File

@ -644,10 +644,13 @@ class CollectedHeap : public CHeapObj<mtInternal> {
// For each context in contexts, set the corresponding entries in the totals // For each context in contexts, set the corresponding entries in the totals
// and accuracy arrays to the current values held by the statistics. Each // and accuracy arrays to the current values held by the statistics. Each
// array should be of length len. // array should be of length len.
virtual void copy_allocation_context_stats(const jint* contexts, // Returns true if there are more stats available.
virtual bool copy_allocation_context_stats(const jint* contexts,
jlong* totals, jlong* totals,
jbyte* accuracy, jbyte* accuracy,
jint len) { } jint len) {
return false;
}
/////////////// Unit tests /////////////// /////////////// Unit tests ///////////////

View File

@ -189,11 +189,6 @@ class CollectorPolicy : public CHeapObj<mtGC> {
return CollectorPolicy::CollectorPolicyKind; return CollectorPolicy::CollectorPolicyKind;
} }
// Returns true if a collector has eden space with soft end.
virtual bool has_soft_ended_eden() {
return false;
}
// Do any updates required to global flags that are due to heap initialization // Do any updates required to global flags that are due to heap initialization
// changes // changes
virtual void post_heap_initialize() = 0; virtual void post_heap_initialize() = 0;

View File

@ -194,11 +194,7 @@ DefNewGeneration::DefNewGeneration(ReservedSpace rs,
(HeapWord*)_virtual_space.high()); (HeapWord*)_virtual_space.high());
Universe::heap()->barrier_set()->resize_covered_region(cmr); Universe::heap()->barrier_set()->resize_covered_region(cmr);
if (GenCollectedHeap::heap()->collector_policy()->has_soft_ended_eden()) { _eden_space = new ContiguousSpace();
_eden_space = new ConcEdenSpace(this);
} else {
_eden_space = new EdenSpace(this);
}
_from_space = new ContiguousSpace(); _from_space = new ContiguousSpace();
_to_space = new ContiguousSpace(); _to_space = new ContiguousSpace();
@ -1038,38 +1034,12 @@ HeapWord* DefNewGeneration::allocate(size_t word_size,
if (CMSEdenChunksRecordAlways && _next_gen != NULL) { if (CMSEdenChunksRecordAlways && _next_gen != NULL) {
_next_gen->sample_eden_chunk(); _next_gen->sample_eden_chunk();
} }
return result;
}
do {
HeapWord* old_limit = eden()->soft_end();
if (old_limit < eden()->end()) {
// Tell the next generation we reached a limit.
HeapWord* new_limit =
next_gen()->allocation_limit_reached(eden(), eden()->top(), word_size);
if (new_limit != NULL) {
Atomic::cmpxchg_ptr(new_limit, eden()->soft_end_addr(), old_limit);
} else { } else {
assert(eden()->soft_end() == eden()->end(),
"invalid state after allocation_limit_reached returned null");
}
} else {
// The allocation failed and the soft limit is equal to the hard limit,
// there are no reasons to do an attempt to allocate
assert(old_limit == eden()->end(), "sanity check");
break;
}
// Try to allocate until succeeded or the soft limit can't be adjusted
result = eden()->par_allocate(word_size);
} while (result == NULL);
// If the eden is full and the last collection bailed out, we are running // If the eden is full and the last collection bailed out, we are running
// out of heap space, and we try to allocate the from-space, too. // out of heap space, and we try to allocate the from-space, too.
// allocate_from_space can't be inlined because that would introduce a // allocate_from_space can't be inlined because that would introduce a
// circular dependency at compile time. // circular dependency at compile time.
if (result == NULL) {
result = allocate_from_space(word_size); result = allocate_from_space(word_size);
} else if (CMSEdenChunksRecordAlways && _next_gen != NULL) {
_next_gen->sample_eden_chunk();
} }
return result; return result;
} }
@ -1083,11 +1053,6 @@ HeapWord* DefNewGeneration::par_allocate(size_t word_size,
return res; return res;
} }
void DefNewGeneration::gc_prologue(bool full) {
// Ensure that _end and _soft_end are the same in eden space.
eden()->set_soft_end(eden()->end());
}
size_t DefNewGeneration::tlab_capacity() const { size_t DefNewGeneration::tlab_capacity() const {
return eden()->capacity(); return eden()->capacity();
} }

View File

@ -32,7 +32,6 @@
#include "memory/generation.inline.hpp" #include "memory/generation.inline.hpp"
#include "utilities/stack.hpp" #include "utilities/stack.hpp"
class EdenSpace;
class ContiguousSpace; class ContiguousSpace;
class ScanClosure; class ScanClosure;
class STWGCTimer; class STWGCTimer;
@ -132,7 +131,7 @@ protected:
void adjust_desired_tenuring_threshold(); void adjust_desired_tenuring_threshold();
// Spaces // Spaces
EdenSpace* _eden_space; ContiguousSpace* _eden_space;
ContiguousSpace* _from_space; ContiguousSpace* _from_space;
ContiguousSpace* _to_space; ContiguousSpace* _to_space;
@ -214,7 +213,7 @@ protected:
virtual Generation::Name kind() { return Generation::DefNew; } virtual Generation::Name kind() { return Generation::DefNew; }
// Accessing spaces // Accessing spaces
EdenSpace* eden() const { return _eden_space; } ContiguousSpace* eden() const { return _eden_space; }
ContiguousSpace* from() const { return _from_space; } ContiguousSpace* from() const { return _from_space; }
ContiguousSpace* to() const { return _to_space; } ContiguousSpace* to() const { return _to_space; }
@ -282,8 +281,6 @@ protected:
HeapWord* par_allocate(size_t word_size, bool is_tlab); HeapWord* par_allocate(size_t word_size, bool is_tlab);
// Prologue & Epilogue
virtual void gc_prologue(bool full);
virtual void gc_epilogue(bool full); virtual void gc_epilogue(bool full);
// Save the tops for eden, from, and to // Save the tops for eden, from, and to

View File

@ -265,14 +265,6 @@ class Generation: public CHeapObj<mtGC> {
// Like "allocate", but performs any necessary locking internally. // Like "allocate", but performs any necessary locking internally.
virtual HeapWord* par_allocate(size_t word_size, bool is_tlab) = 0; virtual HeapWord* par_allocate(size_t word_size, bool is_tlab) = 0;
// A 'younger' gen has reached an allocation limit, and uses this to notify
// the next older gen. The return value is a new limit, or NULL if none. The
// caller must do the necessary locking.
virtual HeapWord* allocation_limit_reached(Space* space, HeapWord* top,
size_t word_size) {
return NULL;
}
// Some generation may offer a region for shared, contiguous allocation, // Some generation may offer a region for shared, contiguous allocation,
// via inlined code (by exporting the address of the top and end fields // via inlined code (by exporting the address of the top and end fields
// defining the extent of the contiguous allocation region.) // defining the extent of the contiguous allocation region.)

View File

@ -438,52 +438,8 @@ bool CompactibleSpace::insert_deadspace(size_t& allowed_deadspace_words,
} }
} }
#define block_is_always_obj(q) true
#define obj_size(q) oop(q)->size()
#define adjust_obj_size(s) s
void CompactibleSpace::prepare_for_compaction(CompactPoint* cp) {
SCAN_AND_FORWARD(cp, end, block_is_obj, block_size);
}
// Faster object search.
void ContiguousSpace::prepare_for_compaction(CompactPoint* cp) { void ContiguousSpace::prepare_for_compaction(CompactPoint* cp) {
SCAN_AND_FORWARD(cp, top, block_is_always_obj, obj_size); scan_and_forward(this, cp);
}
void Space::adjust_pointers() {
// adjust all the interior pointers to point at the new locations of objects
// Used by MarkSweep::mark_sweep_phase3()
// First check to see if there is any work to be done.
if (used() == 0) {
return; // Nothing to do.
}
// Otherwise...
HeapWord* q = bottom();
HeapWord* t = end();
debug_only(HeapWord* prev_q = NULL);
while (q < t) {
if (oop(q)->is_gc_marked()) {
// q is alive
// point all the oops to the new location
size_t size = oop(q)->adjust_pointers();
debug_only(prev_q = q);
q += size;
} else {
// q is not a live object. But we're not in a compactible space,
// So we don't have live ranges.
debug_only(prev_q = q);
q += block_size(q);
assert(q > prev_q, "we should be moving forward through memory");
}
}
assert(q == t, "just checking");
} }
void CompactibleSpace::adjust_pointers() { void CompactibleSpace::adjust_pointers() {
@ -492,11 +448,11 @@ void CompactibleSpace::adjust_pointers() {
return; // Nothing to do. return; // Nothing to do.
} }
SCAN_AND_ADJUST_POINTERS(adjust_obj_size); scan_and_adjust_pointers(this);
} }
void CompactibleSpace::compact() { void CompactibleSpace::compact() {
SCAN_AND_COMPACT(obj_size); scan_and_compact(this);
} }
void Space::print_short() const { print_short_on(tty); } void Space::print_short() const { print_short_on(tty); }
@ -684,13 +640,12 @@ size_t ContiguousSpace::block_size(const HeapWord* p) const {
} }
// This version requires locking. // This version requires locking.
inline HeapWord* ContiguousSpace::allocate_impl(size_t size, inline HeapWord* ContiguousSpace::allocate_impl(size_t size) {
HeapWord* const end_value) {
assert(Heap_lock->owned_by_self() || assert(Heap_lock->owned_by_self() ||
(SafepointSynchronize::is_at_safepoint() && Thread::current()->is_VM_thread()), (SafepointSynchronize::is_at_safepoint() && Thread::current()->is_VM_thread()),
"not locked"); "not locked");
HeapWord* obj = top(); HeapWord* obj = top();
if (pointer_delta(end_value, obj) >= size) { if (pointer_delta(end(), obj) >= size) {
HeapWord* new_top = obj + size; HeapWord* new_top = obj + size;
set_top(new_top); set_top(new_top);
assert(is_aligned(obj) && is_aligned(new_top), "checking alignment"); assert(is_aligned(obj) && is_aligned(new_top), "checking alignment");
@ -701,11 +656,10 @@ inline HeapWord* ContiguousSpace::allocate_impl(size_t size,
} }
// This version is lock-free. // This version is lock-free.
inline HeapWord* ContiguousSpace::par_allocate_impl(size_t size, inline HeapWord* ContiguousSpace::par_allocate_impl(size_t size) {
HeapWord* const end_value) {
do { do {
HeapWord* obj = top(); HeapWord* obj = top();
if (pointer_delta(end_value, obj) >= size) { if (pointer_delta(end(), obj) >= size) {
HeapWord* new_top = obj + size; HeapWord* new_top = obj + size;
HeapWord* result = (HeapWord*)Atomic::cmpxchg_ptr(new_top, top_addr(), obj); HeapWord* result = (HeapWord*)Atomic::cmpxchg_ptr(new_top, top_addr(), obj);
// result can be one of two: // result can be one of two:
@ -744,12 +698,12 @@ HeapWord* ContiguousSpace::allocate_aligned(size_t size) {
// Requires locking. // Requires locking.
HeapWord* ContiguousSpace::allocate(size_t size) { HeapWord* ContiguousSpace::allocate(size_t size) {
return allocate_impl(size, end()); return allocate_impl(size);
} }
// Lock-free. // Lock-free.
HeapWord* ContiguousSpace::par_allocate(size_t size) { HeapWord* ContiguousSpace::par_allocate(size_t size) {
return par_allocate_impl(size, end()); return par_allocate_impl(size);
} }
void ContiguousSpace::allocate_temporary_filler(int factor) { void ContiguousSpace::allocate_temporary_filler(int factor) {
@ -784,49 +738,6 @@ void ContiguousSpace::allocate_temporary_filler(int factor) {
} }
} }
void EdenSpace::clear(bool mangle_space) {
ContiguousSpace::clear(mangle_space);
set_soft_end(end());
}
// Requires locking.
HeapWord* EdenSpace::allocate(size_t size) {
return allocate_impl(size, soft_end());
}
// Lock-free.
HeapWord* EdenSpace::par_allocate(size_t size) {
return par_allocate_impl(size, soft_end());
}
HeapWord* ConcEdenSpace::par_allocate(size_t size)
{
do {
// The invariant is top() should be read before end() because
// top() can't be greater than end(), so if an update of _soft_end
// occurs between 'end_val = end();' and 'top_val = top();' top()
// also can grow up to the new end() and the condition
// 'top_val > end_val' is true. To ensure the loading order
// OrderAccess::loadload() is required after top() read.
HeapWord* obj = top();
OrderAccess::loadload();
if (pointer_delta(*soft_end_addr(), obj) >= size) {
HeapWord* new_top = obj + size;
HeapWord* result = (HeapWord*)Atomic::cmpxchg_ptr(new_top, top_addr(), obj);
// result can be one of two:
// the old top value: the exchange succeeded
// otherwise: the new value of the top is returned.
if (result == obj) {
assert(is_aligned(obj) && is_aligned(new_top), "checking alignment");
return obj;
}
} else {
return NULL;
}
} while (true);
}
HeapWord* OffsetTableContigSpace::initialize_threshold() { HeapWord* OffsetTableContigSpace::initialize_threshold() {
return _offsets.initialize_threshold(); return _offsets.initialize_threshold();
} }

View File

@ -41,19 +41,6 @@
// implementations for keeping track of free and used space, // implementations for keeping track of free and used space,
// for iterating over objects and free blocks, etc. // for iterating over objects and free blocks, etc.
// Here's the Space hierarchy:
//
// - Space -- an abstract base class describing a heap area
// - CompactibleSpace -- a space supporting compaction
// - CompactibleFreeListSpace -- (used for CMS generation)
// - ContiguousSpace -- a compactible space in which all free space
// is contiguous
// - EdenSpace -- contiguous space used as nursery
// - ConcEdenSpace -- contiguous space with a 'soft end safe' allocation
// - OffsetTableContigSpace -- contiguous space with a block offset array
// that allows "fast" block_start calls
// - TenuredSpace -- (used for TenuredGeneration)
// Forward decls. // Forward decls.
class Space; class Space;
class BlockOffsetArray; class BlockOffsetArray;
@ -238,7 +225,7 @@ class Space: public CHeapObj<mtGC> {
// Mark-sweep-compact support: all spaces can update pointers to objects // Mark-sweep-compact support: all spaces can update pointers to objects
// moving as a part of compaction. // moving as a part of compaction.
virtual void adjust_pointers(); virtual void adjust_pointers() = 0;
// PrintHeapAtGC support // PrintHeapAtGC support
virtual void print() const; virtual void print() const;
@ -339,7 +326,36 @@ public:
// necessarily, a space that is normally contiguous. But, for example, a // necessarily, a space that is normally contiguous. But, for example, a
// free-list-based space whose normal collection is a mark-sweep without // free-list-based space whose normal collection is a mark-sweep without
// compaction could still support compaction in full GC's. // compaction could still support compaction in full GC's.
//
// The compaction operations are implemented by the
// scan_and_{adjust_pointers,compact,forward} function templates.
// The following are, non-virtual, auxiliary functions used by these function templates:
// - scan_limit()
// - scanned_block_is_obj()
// - scanned_block_size()
// - adjust_obj_size()
// - obj_size()
// These functions are to be used exclusively by the scan_and_* function templates,
// and must be defined for all (non-abstract) subclasses of CompactibleSpace.
//
// NOTE: Any subclasses to CompactibleSpace wanting to change/define the behavior
// in any of the auxiliary functions must also override the corresponding
// prepare_for_compaction/adjust_pointers/compact functions using them.
// If not, such changes will not be used or have no effect on the compaction operations.
//
// This translates to the following dependencies:
// Overrides/definitions of
// - scan_limit
// - scanned_block_is_obj
// - scanned_block_size
// require override/definition of prepare_for_compaction().
// Similar dependencies exist between
// - adjust_obj_size and adjust_pointers()
// - obj_size and compact().
//
// Additionally, this also means that changes to block_size() or block_is_obj() that
// should be effective during the compaction operations must provide a corresponding
// definition of scanned_block_size/scanned_block_is_obj respectively.
class CompactibleSpace: public Space { class CompactibleSpace: public Space {
friend class VMStructs; friend class VMStructs;
friend class CompactibleFreeListSpace; friend class CompactibleFreeListSpace;
@ -347,6 +363,15 @@ private:
HeapWord* _compaction_top; HeapWord* _compaction_top;
CompactibleSpace* _next_compaction_space; CompactibleSpace* _next_compaction_space;
// Auxiliary functions for scan_and_{forward,adjust_pointers,compact} support.
inline size_t adjust_obj_size(size_t size) const {
return size;
}
inline size_t obj_size(const HeapWord* addr) const {
return oop(addr)->size();
}
public: public:
CompactibleSpace() : CompactibleSpace() :
_compaction_top(NULL), _next_compaction_space(NULL) {} _compaction_top(NULL), _next_compaction_space(NULL) {}
@ -390,7 +415,7 @@ public:
// "cp->compaction_space" up-to-date. Offset tables may be updated in // "cp->compaction_space" up-to-date. Offset tables may be updated in
// this phase as if the final copy had occurred; if so, "cp->threshold" // this phase as if the final copy had occurred; if so, "cp->threshold"
// indicates when the next such action should be taken. // indicates when the next such action should be taken.
virtual void prepare_for_compaction(CompactPoint* cp); virtual void prepare_for_compaction(CompactPoint* cp) = 0;
// MarkSweep support phase3 // MarkSweep support phase3
virtual void adjust_pointers(); virtual void adjust_pointers();
// MarkSweep support phase4 // MarkSweep support phase4
@ -449,6 +474,25 @@ protected:
// words remaining after this operation. // words remaining after this operation.
bool insert_deadspace(size_t& allowed_deadspace_words, HeapWord* q, bool insert_deadspace(size_t& allowed_deadspace_words, HeapWord* q,
size_t word_len); size_t word_len);
// Below are template functions for scan_and_* algorithms (avoiding virtual calls).
// The space argument should be a subclass of CompactibleSpace, implementing
// scan_limit(), scanned_block_is_obj(), and scanned_block_size(),
// and possibly also overriding obj_size(), and adjust_obj_size().
// These functions should avoid virtual calls whenever possible.
// Frequently calls adjust_obj_size().
template <class SpaceType>
static inline void scan_and_adjust_pointers(SpaceType* space);
// Frequently calls obj_size().
template <class SpaceType>
static inline void scan_and_compact(SpaceType* space);
// Frequently calls scanned_block_is_obj() and scanned_block_size().
// Requires the scan_limit() function.
template <class SpaceType>
static inline void scan_and_forward(SpaceType* space, CompactPoint* cp);
}; };
class GenSpaceMangler; class GenSpaceMangler;
@ -458,6 +502,25 @@ class GenSpaceMangler;
class ContiguousSpace: public CompactibleSpace { class ContiguousSpace: public CompactibleSpace {
friend class OneContigSpaceCardGeneration; friend class OneContigSpaceCardGeneration;
friend class VMStructs; friend class VMStructs;
// Allow scan_and_forward function to call (private) overrides for auxiliary functions on this class
template <typename SpaceType>
friend void CompactibleSpace::scan_and_forward(SpaceType* space, CompactPoint* cp);
private:
// Auxiliary functions for scan_and_forward support.
// See comments for CompactibleSpace for more information.
inline HeapWord* scan_limit() const {
return top();
}
inline bool scanned_block_is_obj(const HeapWord* addr) const {
return true; // Always true, since scan_limit is top
}
inline size_t scanned_block_size(const HeapWord* addr) const {
return oop(addr)->size();
}
protected: protected:
HeapWord* _top; HeapWord* _top;
HeapWord* _concurrent_iteration_safe_limit; HeapWord* _concurrent_iteration_safe_limit;
@ -467,8 +530,8 @@ class ContiguousSpace: public CompactibleSpace {
GenSpaceMangler* mangler() { return _mangler; } GenSpaceMangler* mangler() { return _mangler; }
// Allocation helpers (return NULL if full). // Allocation helpers (return NULL if full).
inline HeapWord* allocate_impl(size_t word_size, HeapWord* end_value); inline HeapWord* allocate_impl(size_t word_size);
inline HeapWord* par_allocate_impl(size_t word_size, HeapWord* end_value); inline HeapWord* par_allocate_impl(size_t word_size);
public: public:
ContiguousSpace(); ContiguousSpace();
@ -622,7 +685,6 @@ class ContiguousSpace: public CompactibleSpace {
// Used to increase collection frequency. "factor" of 0 means entire // Used to increase collection frequency. "factor" of 0 means entire
// space. // space.
void allocate_temporary_filler(int factor); void allocate_temporary_filler(int factor);
}; };
@ -685,56 +747,6 @@ public:
{} {}
}; };
// Class EdenSpace describes eden-space in new generation.
class DefNewGeneration;
class EdenSpace : public ContiguousSpace {
friend class VMStructs;
private:
DefNewGeneration* _gen;
// _soft_end is used as a soft limit on allocation. As soft limits are
// reached, the slow-path allocation code can invoke other actions and then
// adjust _soft_end up to a new soft limit or to end().
HeapWord* _soft_end;
public:
EdenSpace(DefNewGeneration* gen) :
_gen(gen), _soft_end(NULL) {}
// Get/set just the 'soft' limit.
HeapWord* soft_end() { return _soft_end; }
HeapWord** soft_end_addr() { return &_soft_end; }
void set_soft_end(HeapWord* value) { _soft_end = value; }
// Override.
void clear(bool mangle_space);
// Set both the 'hard' and 'soft' limits (_end and _soft_end).
void set_end(HeapWord* value) {
set_soft_end(value);
ContiguousSpace::set_end(value);
}
// Allocation (return NULL if full)
HeapWord* allocate(size_t word_size);
HeapWord* par_allocate(size_t word_size);
};
// Class ConcEdenSpace extends EdenSpace for the sake of safe
// allocation while soft-end is being modified concurrently
class ConcEdenSpace : public EdenSpace {
public:
ConcEdenSpace(DefNewGeneration* gen) : EdenSpace(gen) { }
// Allocation (return NULL if full)
HeapWord* par_allocate(size_t word_size);
};
// A ContigSpace that Supports an efficient "block_start" operation via // A ContigSpace that Supports an efficient "block_start" operation via
// a BlockOffsetArray (whose BlockOffsetSharedArray may be shared with // a BlockOffsetArray (whose BlockOffsetSharedArray may be shared with
// other spaces.) This is the abstract base class for old generation // other spaces.) This is the abstract base class for old generation

View File

@ -25,6 +25,9 @@
#ifndef SHARE_VM_MEMORY_SPACE_INLINE_HPP #ifndef SHARE_VM_MEMORY_SPACE_INLINE_HPP
#define SHARE_VM_MEMORY_SPACE_INLINE_HPP #define SHARE_VM_MEMORY_SPACE_INLINE_HPP
#include "gc_implementation/shared/liveRange.hpp"
#include "gc_implementation/shared/markSweep.inline.hpp"
#include "gc_implementation/shared/spaceDecorator.hpp"
#include "gc_interface/collectedHeap.hpp" #include "gc_interface/collectedHeap.hpp"
#include "memory/space.hpp" #include "memory/space.hpp"
#include "memory/universe.hpp" #include "memory/universe.hpp"
@ -35,272 +38,6 @@ inline HeapWord* Space::block_start(const void* p) {
return block_start_const(p); return block_start_const(p);
} }
#define SCAN_AND_FORWARD(cp,scan_limit,block_is_obj,block_size) { \
/* Compute the new addresses for the live objects and store it in the mark \
* Used by universe::mark_sweep_phase2() \
*/ \
HeapWord* compact_top; /* This is where we are currently compacting to. */ \
\
/* We're sure to be here before any objects are compacted into this \
* space, so this is a good time to initialize this: \
*/ \
set_compaction_top(bottom()); \
\
if (cp->space == NULL) { \
assert(cp->gen != NULL, "need a generation"); \
assert(cp->threshold == NULL, "just checking"); \
assert(cp->gen->first_compaction_space() == this, "just checking"); \
cp->space = cp->gen->first_compaction_space(); \
compact_top = cp->space->bottom(); \
cp->space->set_compaction_top(compact_top); \
cp->threshold = cp->space->initialize_threshold(); \
} else { \
compact_top = cp->space->compaction_top(); \
} \
\
/* We allow some amount of garbage towards the bottom of the space, so \
* we don't start compacting before there is a significant gain to be made.\
* Occasionally, we want to ensure a full compaction, which is determined \
* by the MarkSweepAlwaysCompactCount parameter. \
*/ \
uint invocations = MarkSweep::total_invocations(); \
bool skip_dead = ((invocations % MarkSweepAlwaysCompactCount) != 0); \
\
size_t allowed_deadspace = 0; \
if (skip_dead) { \
const size_t ratio = allowed_dead_ratio(); \
allowed_deadspace = (capacity() * ratio / 100) / HeapWordSize; \
} \
\
HeapWord* q = bottom(); \
HeapWord* t = scan_limit(); \
\
HeapWord* end_of_live= q; /* One byte beyond the last byte of the last \
live object. */ \
HeapWord* first_dead = end();/* The first dead object. */ \
LiveRange* liveRange = NULL; /* The current live range, recorded in the \
first header of preceding free area. */ \
_first_dead = first_dead; \
\
const intx interval = PrefetchScanIntervalInBytes; \
\
while (q < t) { \
assert(!block_is_obj(q) || \
oop(q)->mark()->is_marked() || oop(q)->mark()->is_unlocked() || \
oop(q)->mark()->has_bias_pattern(), \
"these are the only valid states during a mark sweep"); \
if (block_is_obj(q) && oop(q)->is_gc_marked()) { \
/* prefetch beyond q */ \
Prefetch::write(q, interval); \
size_t size = block_size(q); \
compact_top = cp->space->forward(oop(q), size, cp, compact_top); \
q += size; \
end_of_live = q; \
} else { \
/* run over all the contiguous dead objects */ \
HeapWord* end = q; \
do { \
/* prefetch beyond end */ \
Prefetch::write(end, interval); \
end += block_size(end); \
} while (end < t && (!block_is_obj(end) || !oop(end)->is_gc_marked()));\
\
/* see if we might want to pretend this object is alive so that \
* we don't have to compact quite as often. \
*/ \
if (allowed_deadspace > 0 && q == compact_top) { \
size_t sz = pointer_delta(end, q); \
if (insert_deadspace(allowed_deadspace, q, sz)) { \
compact_top = cp->space->forward(oop(q), sz, cp, compact_top); \
q = end; \
end_of_live = end; \
continue; \
} \
} \
\
/* otherwise, it really is a free region. */ \
\
/* for the previous LiveRange, record the end of the live objects. */ \
if (liveRange) { \
liveRange->set_end(q); \
} \
\
/* record the current LiveRange object. \
* liveRange->start() is overlaid on the mark word. \
*/ \
liveRange = (LiveRange*)q; \
liveRange->set_start(end); \
liveRange->set_end(end); \
\
/* see if this is the first dead region. */ \
if (q < first_dead) { \
first_dead = q; \
} \
\
/* move on to the next object */ \
q = end; \
} \
} \
\
assert(q == t, "just checking"); \
if (liveRange != NULL) { \
liveRange->set_end(q); \
} \
_end_of_live = end_of_live; \
if (end_of_live < first_dead) { \
first_dead = end_of_live; \
} \
_first_dead = first_dead; \
\
/* save the compaction_top of the compaction space. */ \
cp->space->set_compaction_top(compact_top); \
}
#define SCAN_AND_ADJUST_POINTERS(adjust_obj_size) { \
/* adjust all the interior pointers to point at the new locations of objects \
* Used by MarkSweep::mark_sweep_phase3() */ \
\
HeapWord* q = bottom(); \
HeapWord* t = _end_of_live; /* Established by "prepare_for_compaction". */ \
\
assert(_first_dead <= _end_of_live, "Stands to reason, no?"); \
\
if (q < t && _first_dead > q && \
!oop(q)->is_gc_marked()) { \
/* we have a chunk of the space which hasn't moved and we've \
* reinitialized the mark word during the previous pass, so we can't \
* use is_gc_marked for the traversal. */ \
HeapWord* end = _first_dead; \
\
while (q < end) { \
/* I originally tried to conjoin "block_start(q) == q" to the \
* assertion below, but that doesn't work, because you can't \
* accurately traverse previous objects to get to the current one \
* after their pointers have been \
* updated, until the actual compaction is done. dld, 4/00 */ \
assert(block_is_obj(q), \
"should be at block boundaries, and should be looking at objs"); \
\
/* point all the oops to the new location */ \
size_t size = oop(q)->adjust_pointers(); \
size = adjust_obj_size(size); \
\
q += size; \
} \
\
if (_first_dead == t) { \
q = t; \
} else { \
/* $$$ This is funky. Using this to read the previously written \
* LiveRange. See also use below. */ \
q = (HeapWord*)oop(_first_dead)->mark()->decode_pointer(); \
} \
} \
\
const intx interval = PrefetchScanIntervalInBytes; \
\
debug_only(HeapWord* prev_q = NULL); \
while (q < t) { \
/* prefetch beyond q */ \
Prefetch::write(q, interval); \
if (oop(q)->is_gc_marked()) { \
/* q is alive */ \
/* point all the oops to the new location */ \
size_t size = oop(q)->adjust_pointers(); \
size = adjust_obj_size(size); \
debug_only(prev_q = q); \
q += size; \
} else { \
/* q is not a live object, so its mark should point at the next \
* live object */ \
debug_only(prev_q = q); \
q = (HeapWord*) oop(q)->mark()->decode_pointer(); \
assert(q > prev_q, "we should be moving forward through memory"); \
} \
} \
\
assert(q == t, "just checking"); \
}
#define SCAN_AND_COMPACT(obj_size) { \
/* Copy all live objects to their new location \
* Used by MarkSweep::mark_sweep_phase4() */ \
\
HeapWord* q = bottom(); \
HeapWord* const t = _end_of_live; \
debug_only(HeapWord* prev_q = NULL); \
\
if (q < t && _first_dead > q && \
!oop(q)->is_gc_marked()) { \
debug_only( \
/* we have a chunk of the space which hasn't moved and we've reinitialized \
* the mark word during the previous pass, so we can't use is_gc_marked for \
* the traversal. */ \
HeapWord* const end = _first_dead; \
\
while (q < end) { \
size_t size = obj_size(q); \
assert(!oop(q)->is_gc_marked(), \
"should be unmarked (special dense prefix handling)"); \
debug_only(prev_q = q); \
q += size; \
} \
) /* debug_only */ \
\
if (_first_dead == t) { \
q = t; \
} else { \
/* $$$ Funky */ \
q = (HeapWord*) oop(_first_dead)->mark()->decode_pointer(); \
} \
} \
\
const intx scan_interval = PrefetchScanIntervalInBytes; \
const intx copy_interval = PrefetchCopyIntervalInBytes; \
while (q < t) { \
if (!oop(q)->is_gc_marked()) { \
/* mark is pointer to next marked oop */ \
debug_only(prev_q = q); \
q = (HeapWord*) oop(q)->mark()->decode_pointer(); \
assert(q > prev_q, "we should be moving forward through memory"); \
} else { \
/* prefetch beyond q */ \
Prefetch::read(q, scan_interval); \
\
/* size and destination */ \
size_t size = obj_size(q); \
HeapWord* compaction_top = (HeapWord*)oop(q)->forwardee(); \
\
/* prefetch beyond compaction_top */ \
Prefetch::write(compaction_top, copy_interval); \
\
/* copy object and reinit its mark */ \
assert(q != compaction_top, "everything in this pass should be moving"); \
Copy::aligned_conjoint_words(q, compaction_top, size); \
oop(compaction_top)->init_mark(); \
assert(oop(compaction_top)->klass() != NULL, "should have a class"); \
\
debug_only(prev_q = q); \
q += size; \
} \
} \
\
/* Let's remember if we were empty before we did the compaction. */ \
bool was_empty = used_region().is_empty(); \
/* Reset space after compaction is complete */ \
reset_after_compaction(); \
/* We do this clear, below, since it has overloaded meanings for some */ \
/* space subtypes. For example, OffsetTableContigSpace's that were */ \
/* compacted into will have had their offset table thresholds updated */ \
/* continuously, but those that weren't need to have their thresholds */ \
/* re-initialized. Also mangles unused area for debugging. */ \
if (used_region().is_empty()) { \
if (!was_empty) clear(SpaceDecorator::Mangle); \
} else { \
if (ZapUnusedHeapArea) mangle_unused_area(); \
} \
}
inline HeapWord* OffsetTableContigSpace::allocate(size_t size) { inline HeapWord* OffsetTableContigSpace::allocate(size_t size) {
HeapWord* res = ContiguousSpace::allocate(size); HeapWord* res = ContiguousSpace::allocate(size);
if (res != NULL) { if (res != NULL) {
@ -334,4 +71,263 @@ OffsetTableContigSpace::block_start_const(const void* p) const {
return _offsets.block_start(p); return _offsets.block_start(p);
} }
template <class SpaceType>
inline void CompactibleSpace::scan_and_forward(SpaceType* space, CompactPoint* cp) {
// Compute the new addresses for the live objects and store it in the mark
// Used by universe::mark_sweep_phase2()
HeapWord* compact_top; // This is where we are currently compacting to.
// We're sure to be here before any objects are compacted into this
// space, so this is a good time to initialize this:
space->set_compaction_top(space->bottom());
if (cp->space == NULL) {
assert(cp->gen != NULL, "need a generation");
assert(cp->threshold == NULL, "just checking");
assert(cp->gen->first_compaction_space() == space, "just checking");
cp->space = cp->gen->first_compaction_space();
compact_top = cp->space->bottom();
cp->space->set_compaction_top(compact_top);
cp->threshold = cp->space->initialize_threshold();
} else {
compact_top = cp->space->compaction_top();
}
// We allow some amount of garbage towards the bottom of the space, so
// we don't start compacting before there is a significant gain to be made.
// Occasionally, we want to ensure a full compaction, which is determined
// by the MarkSweepAlwaysCompactCount parameter.
uint invocations = MarkSweep::total_invocations();
bool skip_dead = ((invocations % MarkSweepAlwaysCompactCount) != 0);
size_t allowed_deadspace = 0;
if (skip_dead) {
const size_t ratio = space->allowed_dead_ratio();
allowed_deadspace = (space->capacity() * ratio / 100) / HeapWordSize;
}
HeapWord* q = space->bottom();
HeapWord* t = space->scan_limit();
HeapWord* end_of_live= q; // One byte beyond the last byte of the last
// live object.
HeapWord* first_dead = space->end(); // The first dead object.
LiveRange* liveRange = NULL; // The current live range, recorded in the
// first header of preceding free area.
space->_first_dead = first_dead;
const intx interval = PrefetchScanIntervalInBytes;
while (q < t) {
assert(!space->scanned_block_is_obj(q) ||
oop(q)->mark()->is_marked() || oop(q)->mark()->is_unlocked() ||
oop(q)->mark()->has_bias_pattern(),
"these are the only valid states during a mark sweep");
if (space->scanned_block_is_obj(q) && oop(q)->is_gc_marked()) {
// prefetch beyond q
Prefetch::write(q, interval);
size_t size = space->scanned_block_size(q);
compact_top = cp->space->forward(oop(q), size, cp, compact_top);
q += size;
end_of_live = q;
} else {
// run over all the contiguous dead objects
HeapWord* end = q;
do {
// prefetch beyond end
Prefetch::write(end, interval);
end += space->scanned_block_size(end);
} while (end < t && (!space->scanned_block_is_obj(end) || !oop(end)->is_gc_marked()));
// see if we might want to pretend this object is alive so that
// we don't have to compact quite as often.
if (allowed_deadspace > 0 && q == compact_top) {
size_t sz = pointer_delta(end, q);
if (space->insert_deadspace(allowed_deadspace, q, sz)) {
compact_top = cp->space->forward(oop(q), sz, cp, compact_top);
q = end;
end_of_live = end;
continue;
}
}
// otherwise, it really is a free region.
// for the previous LiveRange, record the end of the live objects.
if (liveRange) {
liveRange->set_end(q);
}
// record the current LiveRange object.
// liveRange->start() is overlaid on the mark word.
liveRange = (LiveRange*)q;
liveRange->set_start(end);
liveRange->set_end(end);
// see if this is the first dead region.
if (q < first_dead) {
first_dead = q;
}
// move on to the next object
q = end;
}
}
assert(q == t, "just checking");
if (liveRange != NULL) {
liveRange->set_end(q);
}
space->_end_of_live = end_of_live;
if (end_of_live < first_dead) {
first_dead = end_of_live;
}
space->_first_dead = first_dead;
// save the compaction_top of the compaction space.
cp->space->set_compaction_top(compact_top);
}
template <class SpaceType>
inline void CompactibleSpace::scan_and_adjust_pointers(SpaceType* space) {
// adjust all the interior pointers to point at the new locations of objects
// Used by MarkSweep::mark_sweep_phase3()
HeapWord* q = space->bottom();
HeapWord* t = space->_end_of_live; // Established by "prepare_for_compaction".
assert(space->_first_dead <= space->_end_of_live, "Stands to reason, no?");
if (q < t && space->_first_dead > q && !oop(q)->is_gc_marked()) {
// we have a chunk of the space which hasn't moved and we've
// reinitialized the mark word during the previous pass, so we can't
// use is_gc_marked for the traversal.
HeapWord* end = space->_first_dead;
while (q < end) {
// I originally tried to conjoin "block_start(q) == q" to the
// assertion below, but that doesn't work, because you can't
// accurately traverse previous objects to get to the current one
// after their pointers have been
// updated, until the actual compaction is done. dld, 4/00
assert(space->block_is_obj(q), "should be at block boundaries, and should be looking at objs");
// point all the oops to the new location
size_t size = oop(q)->adjust_pointers();
size = space->adjust_obj_size(size);
q += size;
}
if (space->_first_dead == t) {
q = t;
} else {
// $$$ This is funky. Using this to read the previously written
// LiveRange. See also use below.
q = (HeapWord*)oop(space->_first_dead)->mark()->decode_pointer();
}
}
const intx interval = PrefetchScanIntervalInBytes;
debug_only(HeapWord* prev_q = NULL);
while (q < t) {
// prefetch beyond q
Prefetch::write(q, interval);
if (oop(q)->is_gc_marked()) {
// q is alive
// point all the oops to the new location
size_t size = oop(q)->adjust_pointers();
size = space->adjust_obj_size(size);
debug_only(prev_q = q);
q += size;
} else {
// q is not a live object, so its mark should point at the next
// live object
debug_only(prev_q = q);
q = (HeapWord*) oop(q)->mark()->decode_pointer();
assert(q > prev_q, "we should be moving forward through memory");
}
}
assert(q == t, "just checking");
}
template <class SpaceType>
inline void CompactibleSpace::scan_and_compact(SpaceType* space) {
// Copy all live objects to their new location
// Used by MarkSweep::mark_sweep_phase4()
HeapWord* q = space->bottom();
HeapWord* const t = space->_end_of_live;
debug_only(HeapWord* prev_q = NULL);
if (q < t && space->_first_dead > q && !oop(q)->is_gc_marked()) {
#ifdef ASSERT // Debug only
// we have a chunk of the space which hasn't moved and we've reinitialized
// the mark word during the previous pass, so we can't use is_gc_marked for
// the traversal.
HeapWord* const end = space->_first_dead;
while (q < end) {
size_t size = space->obj_size(q);
assert(!oop(q)->is_gc_marked(), "should be unmarked (special dense prefix handling)");
prev_q = q;
q += size;
}
#endif
if (space->_first_dead == t) {
q = t;
} else {
// $$$ Funky
q = (HeapWord*) oop(space->_first_dead)->mark()->decode_pointer();
}
}
const intx scan_interval = PrefetchScanIntervalInBytes;
const intx copy_interval = PrefetchCopyIntervalInBytes;
while (q < t) {
if (!oop(q)->is_gc_marked()) {
// mark is pointer to next marked oop
debug_only(prev_q = q);
q = (HeapWord*) oop(q)->mark()->decode_pointer();
assert(q > prev_q, "we should be moving forward through memory");
} else {
// prefetch beyond q
Prefetch::read(q, scan_interval);
// size and destination
size_t size = space->obj_size(q);
HeapWord* compaction_top = (HeapWord*)oop(q)->forwardee();
// prefetch beyond compaction_top
Prefetch::write(compaction_top, copy_interval);
// copy object and reinit its mark
assert(q != compaction_top, "everything in this pass should be moving");
Copy::aligned_conjoint_words(q, compaction_top, size);
oop(compaction_top)->init_mark();
assert(oop(compaction_top)->klass() != NULL, "should have a class");
debug_only(prev_q = q);
q += size;
}
}
// Let's remember if we were empty before we did the compaction.
bool was_empty = space->used_region().is_empty();
// Reset space after compaction is complete
space->reset_after_compaction();
// We do this clear, below, since it has overloaded meanings for some
// space subtypes. For example, OffsetTableContigSpace's that were
// compacted into will have had their offset table thresholds updated
// continuously, but those that weren't need to have their thresholds
// re-initialized. Also mangles unused area for debugging.
if (space->used_region().is_empty()) {
if (!was_empty) space->clear(SpaceDecorator::Mangle);
} else {
if (ZapUnusedHeapArea) space->mangle_unused_area();
}
}
#endif // SHARE_VM_MEMORY_SPACE_INLINE_HPP #endif // SHARE_VM_MEMORY_SPACE_INLINE_HPP

View File

@ -1197,8 +1197,7 @@ void PhaseMacroExpand::expand_allocate_common(
} }
if (C->env()->dtrace_alloc_probes() || if (C->env()->dtrace_alloc_probes() ||
!UseTLAB && (!Universe::heap()->supports_inline_contig_alloc() || !UseTLAB && (!Universe::heap()->supports_inline_contig_alloc())) {
(UseConcMarkSweepGC && CMSIncrementalMode))) {
// Force slow-path allocation // Force slow-path allocation
always_slow = true; always_slow = true;
initial_slow_test = NULL; initial_slow_test = NULL;

View File

@ -1777,7 +1777,7 @@ void Arguments::set_g1_gc_flags() {
#ifdef ASSERT #ifdef ASSERT
static bool verify_serial_gc_flags() { static bool verify_serial_gc_flags() {
return (UseSerialGC && return (UseSerialGC &&
!(UseParNewGC || (UseConcMarkSweepGC || CMSIncrementalMode) || UseG1GC || !(UseParNewGC || (UseConcMarkSweepGC) || UseG1GC ||
UseParallelGC || UseParallelOldGC)); UseParallelGC || UseParallelOldGC));
} }
#endif // ASSERT #endif // ASSERT
@ -2191,10 +2191,6 @@ void Arguments::check_deprecated_gcs() {
warning("Using the ParNew young collector with the Serial old collector is deprecated " warning("Using the ParNew young collector with the Serial old collector is deprecated "
"and will likely be removed in a future release"); "and will likely be removed in a future release");
} }
if (CMSIncrementalMode) {
warning("Using incremental CMS is deprecated and will likely be removed in a future release");
}
} }
void Arguments::check_deprecated_gc_flags() { void Arguments::check_deprecated_gc_flags() {
@ -2316,31 +2312,8 @@ bool Arguments::check_vm_args_consistency() {
status = status && ArgumentsExt::check_gc_consistency_user(); status = status && ArgumentsExt::check_gc_consistency_user();
status = status && check_stack_pages(); status = status && check_stack_pages();
if (CMSIncrementalMode) {
if (!UseConcMarkSweepGC) {
jio_fprintf(defaultStream::error_stream(),
"error: invalid argument combination.\n"
"The CMS collector (-XX:+UseConcMarkSweepGC) must be "
"selected in order\nto use CMSIncrementalMode.\n");
status = false;
} else {
status = status && verify_percentage(CMSIncrementalDutyCycle,
"CMSIncrementalDutyCycle");
status = status && verify_percentage(CMSIncrementalDutyCycleMin,
"CMSIncrementalDutyCycleMin");
status = status && verify_percentage(CMSIncrementalSafetyFactor, status = status && verify_percentage(CMSIncrementalSafetyFactor,
"CMSIncrementalSafetyFactor"); "CMSIncrementalSafetyFactor");
status = status && verify_percentage(CMSIncrementalOffset,
"CMSIncrementalOffset");
status = status && verify_percentage(CMSExpAvgFactor,
"CMSExpAvgFactor");
// If it was not set on the command line, set
// CMSInitiatingOccupancyFraction to 1 so icms can initiate cycles early.
if (CMSInitiatingOccupancyFraction < 0) {
FLAG_SET_DEFAULT(CMSInitiatingOccupancyFraction, 1);
}
}
}
// CMS space iteration, which FLSVerifyAllHeapreferences entails, // CMS space iteration, which FLSVerifyAllHeapreferences entails,
// insists that we hold the requisite locks so that the iteration is // insists that we hold the requisite locks so that the iteration is
@ -2874,14 +2847,6 @@ jint Arguments::parse_each_vm_init_arg(const JavaVMInitArgs* args,
// -Xnoclassgc // -Xnoclassgc
} else if (match_option(option, "-Xnoclassgc", &tail)) { } else if (match_option(option, "-Xnoclassgc", &tail)) {
FLAG_SET_CMDLINE(bool, ClassUnloading, false); FLAG_SET_CMDLINE(bool, ClassUnloading, false);
// -Xincgc: i-CMS
} else if (match_option(option, "-Xincgc", &tail)) {
FLAG_SET_CMDLINE(bool, UseConcMarkSweepGC, true);
FLAG_SET_CMDLINE(bool, CMSIncrementalMode, true);
// -Xnoincgc: no i-CMS
} else if (match_option(option, "-Xnoincgc", &tail)) {
FLAG_SET_CMDLINE(bool, UseConcMarkSweepGC, false);
FLAG_SET_CMDLINE(bool, CMSIncrementalMode, false);
// -Xconcgc // -Xconcgc
} else if (match_option(option, "-Xconcgc", &tail)) { } else if (match_option(option, "-Xconcgc", &tail)) {
FLAG_SET_CMDLINE(bool, UseConcMarkSweepGC, true); FLAG_SET_CMDLINE(bool, UseConcMarkSweepGC, true);
@ -3711,7 +3676,6 @@ void Arguments::set_shared_spaces_flags() {
#if !INCLUDE_ALL_GCS #if !INCLUDE_ALL_GCS
static void force_serial_gc() { static void force_serial_gc() {
FLAG_SET_DEFAULT(UseSerialGC, true); FLAG_SET_DEFAULT(UseSerialGC, true);
FLAG_SET_DEFAULT(CMSIncrementalMode, false); // special CMS suboption
UNSUPPORTED_GC_OPTION(UseG1GC); UNSUPPORTED_GC_OPTION(UseG1GC);
UNSUPPORTED_GC_OPTION(UseParallelGC); UNSUPPORTED_GC_OPTION(UseParallelGC);
UNSUPPORTED_GC_OPTION(UseParallelOldGC); UNSUPPORTED_GC_OPTION(UseParallelOldGC);

View File

@ -1638,30 +1638,10 @@ class CommandLineFlags {
"The maximum size of young gen chosen by default per GC worker " \ "The maximum size of young gen chosen by default per GC worker " \
"thread available") \ "thread available") \
\ \
product(bool, CMSIncrementalMode, false, \
"Whether CMS GC should operate in \"incremental\" mode") \
\
product(uintx, CMSIncrementalDutyCycle, 10, \
"Percentage (0-100) of CMS incremental mode duty cycle. If " \
"CMSIncrementalPacing is enabled, then this is just the initial " \
"value.") \
\
product(bool, CMSIncrementalPacing, true, \
"Whether the CMS incremental mode duty cycle should be " \
"automatically adjusted") \
\
product(uintx, CMSIncrementalDutyCycleMin, 0, \
"Minimum percentage (0-100) of the CMS incremental duty cycle " \
"used when CMSIncrementalPacing is enabled") \
\
product(uintx, CMSIncrementalSafetyFactor, 10, \ product(uintx, CMSIncrementalSafetyFactor, 10, \
"Percentage (0-100) used to add conservatism when computing the " \ "Percentage (0-100) used to add conservatism when computing the " \
"duty cycle") \ "duty cycle") \
\ \
product(uintx, CMSIncrementalOffset, 0, \
"Percentage (0-100) by which the CMS incremental mode duty cycle "\
"is shifted to the right within the period between young GCs") \
\
product(uintx, CMSExpAvgFactor, 50, \ product(uintx, CMSExpAvgFactor, 50, \
"Percentage (0-100) used to weight the current sample when " \ "Percentage (0-100) used to weight the current sample when " \
"computing exponential averages for CMS statistics") \ "computing exponential averages for CMS statistics") \
@ -1720,15 +1700,6 @@ class CommandLineFlags {
"Skip block flux-rate sampling for an epoch unless inter-sweep " \ "Skip block flux-rate sampling for an epoch unless inter-sweep " \
"duration exceeds this threshold in milliseconds") \ "duration exceeds this threshold in milliseconds") \
\ \
develop(bool, CMSTraceIncrementalMode, false, \
"Trace CMS incremental mode") \
\
develop(bool, CMSTraceIncrementalPacing, false, \
"Trace CMS incremental mode pacing computation") \
\
develop(bool, CMSTraceThreadState, false, \
"Trace the CMS thread state (enable the trace_state() method)") \
\
product(bool, CMSClassUnloadingEnabled, true, \ product(bool, CMSClassUnloadingEnabled, true, \
"Whether class unloading enabled when using CMS GC") \ "Whether class unloading enabled when using CMS GC") \
\ \

View File

@ -72,7 +72,6 @@ Monitor* Threads_lock = NULL;
Monitor* CGC_lock = NULL; Monitor* CGC_lock = NULL;
Monitor* STS_lock = NULL; Monitor* STS_lock = NULL;
Monitor* SLT_lock = NULL; Monitor* SLT_lock = NULL;
Monitor* iCMS_lock = NULL;
Monitor* FullGCCount_lock = NULL; Monitor* FullGCCount_lock = NULL;
Monitor* CMark_lock = NULL; Monitor* CMark_lock = NULL;
Mutex* CMRegionStack_lock = NULL; Mutex* CMRegionStack_lock = NULL;
@ -175,9 +174,6 @@ void mutex_init() {
def(CGC_lock , Monitor, special, true ); // coordinate between fore- and background GC def(CGC_lock , Monitor, special, true ); // coordinate between fore- and background GC
def(STS_lock , Monitor, leaf, true ); def(STS_lock , Monitor, leaf, true );
if (UseConcMarkSweepGC) {
def(iCMS_lock , Monitor, special, true ); // CMS incremental mode start/stop notification
}
if (UseConcMarkSweepGC || UseG1GC) { if (UseConcMarkSweepGC || UseG1GC) {
def(FullGCCount_lock , Monitor, leaf, true ); // in support of ExplicitGCInvokesConcurrent def(FullGCCount_lock , Monitor, leaf, true ); // in support of ExplicitGCInvokesConcurrent
} }

View File

@ -66,7 +66,6 @@ extern Monitor* CGC_lock; // used for coordination betwee
// fore- & background GC threads. // fore- & background GC threads.
extern Monitor* STS_lock; // used for joining/leaving SuspendibleThreadSet. extern Monitor* STS_lock; // used for joining/leaving SuspendibleThreadSet.
extern Monitor* SLT_lock; // used in CMS GC for acquiring PLL extern Monitor* SLT_lock; // used in CMS GC for acquiring PLL
extern Monitor* iCMS_lock; // CMS incremental mode start/stop notification
extern Monitor* FullGCCount_lock; // in support of "concurrent" full gc extern Monitor* FullGCCount_lock; // in support of "concurrent" full gc
extern Monitor* CMark_lock; // used for concurrent mark thread coordination extern Monitor* CMark_lock; // used for concurrent mark thread coordination
extern Mutex* CMRegionStack_lock; // used for protecting accesses to the CM region stack extern Mutex* CMRegionStack_lock; // used for protecting accesses to the CM region stack

View File

@ -527,12 +527,10 @@ typedef TwoOopHashtable<Symbol*, mtClass> SymbolTwoOopHashtable;
nonstatic_field(DefNewGeneration, _next_gen, Generation*) \ nonstatic_field(DefNewGeneration, _next_gen, Generation*) \
nonstatic_field(DefNewGeneration, _tenuring_threshold, uint) \ nonstatic_field(DefNewGeneration, _tenuring_threshold, uint) \
nonstatic_field(DefNewGeneration, _age_table, ageTable) \ nonstatic_field(DefNewGeneration, _age_table, ageTable) \
nonstatic_field(DefNewGeneration, _eden_space, EdenSpace*) \ nonstatic_field(DefNewGeneration, _eden_space, ContiguousSpace*) \
nonstatic_field(DefNewGeneration, _from_space, ContiguousSpace*) \ nonstatic_field(DefNewGeneration, _from_space, ContiguousSpace*) \
nonstatic_field(DefNewGeneration, _to_space, ContiguousSpace*) \ nonstatic_field(DefNewGeneration, _to_space, ContiguousSpace*) \
\ \
nonstatic_field(EdenSpace, _gen, DefNewGeneration*) \
\
nonstatic_field(Generation, _reserved, MemRegion) \ nonstatic_field(Generation, _reserved, MemRegion) \
nonstatic_field(Generation, _virtual_space, VirtualSpace) \ nonstatic_field(Generation, _virtual_space, VirtualSpace) \
nonstatic_field(Generation, _level, int) \ nonstatic_field(Generation, _level, int) \
@ -1490,7 +1488,6 @@ typedef TwoOopHashtable<Symbol*, mtClass> SymbolTwoOopHashtable;
declare_toplevel_type(BitMap) \ declare_toplevel_type(BitMap) \
declare_type(CompactibleSpace, Space) \ declare_type(CompactibleSpace, Space) \
declare_type(ContiguousSpace, CompactibleSpace) \ declare_type(ContiguousSpace, CompactibleSpace) \
declare_type(EdenSpace, ContiguousSpace) \
declare_type(OffsetTableContigSpace, ContiguousSpace) \ declare_type(OffsetTableContigSpace, ContiguousSpace) \
declare_type(TenuredSpace, OffsetTableContigSpace) \ declare_type(TenuredSpace, OffsetTableContigSpace) \
declare_toplevel_type(BarrierSet) \ declare_toplevel_type(BarrierSet) \
@ -1532,7 +1529,6 @@ typedef TwoOopHashtable<Symbol*, mtClass> SymbolTwoOopHashtable;
declare_toplevel_type(CollectedHeap*) \ declare_toplevel_type(CollectedHeap*) \
declare_toplevel_type(ContiguousSpace*) \ declare_toplevel_type(ContiguousSpace*) \
declare_toplevel_type(DefNewGeneration*) \ declare_toplevel_type(DefNewGeneration*) \
declare_toplevel_type(EdenSpace*) \
declare_toplevel_type(GenCollectedHeap*) \ declare_toplevel_type(GenCollectedHeap*) \
declare_toplevel_type(Generation*) \ declare_toplevel_type(Generation*) \
declare_toplevel_type(GenerationSpec**) \ declare_toplevel_type(GenerationSpec**) \

View File

@ -175,11 +175,8 @@ needs_full_vm_compact1 = \
gc/g1/TestShrinkToOneRegion.java \ gc/g1/TestShrinkToOneRegion.java \
gc/metaspace/G1AddMetaspaceDependency.java \ gc/metaspace/G1AddMetaspaceDependency.java \
gc/startup_warnings/TestCMS.java \ gc/startup_warnings/TestCMS.java \
gc/startup_warnings/TestCMSIncrementalMode.java \
gc/startup_warnings/TestCMSNoIncrementalMode.java \
gc/startup_warnings/TestDefaultMaxRAMFraction.java \ gc/startup_warnings/TestDefaultMaxRAMFraction.java \
gc/startup_warnings/TestDefNewCMS.java \ gc/startup_warnings/TestDefNewCMS.java \
gc/startup_warnings/TestIncGC.java \
gc/startup_warnings/TestParallelGC.java \ gc/startup_warnings/TestParallelGC.java \
gc/startup_warnings/TestParallelScavengeSerialOld.java \ gc/startup_warnings/TestParallelScavengeSerialOld.java \
gc/startup_warnings/TestParNewCMS.java \ gc/startup_warnings/TestParNewCMS.java \
@ -274,8 +271,6 @@ needs_cmsgc = \
gc/class_unloading/TestCMSClassUnloadingEnabledHWM.java \ gc/class_unloading/TestCMSClassUnloadingEnabledHWM.java \
gc/concurrentMarkSweep/ \ gc/concurrentMarkSweep/ \
gc/startup_warnings/TestCMS.java \ gc/startup_warnings/TestCMS.java \
gc/startup_warnings/TestCMSIncrementalMode.java \
gc/startup_warnings/TestCMSNoIncrementalMode.java \
gc/startup_warnings/TestDefNewCMS.java \ gc/startup_warnings/TestDefNewCMS.java \
gc/startup_warnings/TestParNewCMS.java gc/startup_warnings/TestParNewCMS.java

View File

@ -279,8 +279,7 @@ public class TestShrinkAuxiliaryData {
"-XX:\\+UseConcMarkSweepGC", "-XX:\\+UseConcMarkSweepGC",
"-XX:\\+UseParallelOldGC", "-XX:\\+UseParallelOldGC",
"-XX:\\+UseParNewGC", "-XX:\\+UseParNewGC",
"-Xconcgc", "-Xconcgc"
"-Xincgc"
}; };
} }
} }

View File

@ -1,46 +0,0 @@
/*
* Copyright (c) 2013, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
/*
* @test TestCMSIncrementalMode
* @key gc
* @bug 8006398
* @summary Test that the deprecated CMSIncrementalMode print a warning message
* @library /testlibrary
*/
import com.oracle.java.testlibrary.OutputAnalyzer;
import com.oracle.java.testlibrary.ProcessTools;
public class TestCMSIncrementalMode {
public static void main(String args[]) throws Exception {
ProcessBuilder pb = ProcessTools.createJavaProcessBuilder("-XX:+UseConcMarkSweepGC", "-XX:+CMSIncrementalMode", "-version");
OutputAnalyzer output = new OutputAnalyzer(pb.start());
output.shouldContain("warning: Using incremental CMS is deprecated and will likely be removed in a future release");
output.shouldNotContain("error");
output.shouldHaveExitValue(0);
}
}

View File

@ -1,45 +0,0 @@
/*
* Copyright (c) 2013, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
/*
* @test TestCMSNoIncrementalMode
* @key gc
* @bug 8006398
* @summary Test that CMS with incremental mode turned off does not print a warning message
* @library /testlibrary
*/
import com.oracle.java.testlibrary.OutputAnalyzer;
import com.oracle.java.testlibrary.ProcessTools;
public class TestCMSNoIncrementalMode {
public static void main(String args[]) throws Exception {
ProcessBuilder pb = ProcessTools.createJavaProcessBuilder("-XX:+UseConcMarkSweepGC", "-XX:-CMSIncrementalMode", "-version");
OutputAnalyzer output = new OutputAnalyzer(pb.start());
output.shouldNotContain("deprecated");
output.shouldNotContain("error");
output.shouldHaveExitValue(0);
}
}

View File

@ -1,46 +0,0 @@
/*
* Copyright (c) 2013, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
/*
* @test TestIncGC
* @key gc
* @bug 8006398
* @summary Test that the deprecated -Xincgc print a warning message
* @library /testlibrary
*/
import com.oracle.java.testlibrary.OutputAnalyzer;
import com.oracle.java.testlibrary.ProcessTools;
public class TestIncGC {
public static void main(String args[]) throws Exception {
ProcessBuilder pb = ProcessTools.createJavaProcessBuilder("-Xincgc", "-version");
OutputAnalyzer output = new OutputAnalyzer(pb.start());
output.shouldContain("warning: Using incremental CMS is deprecated and will likely be removed in a future release");
output.shouldNotContain("error");
output.shouldHaveExitValue(0);
}
}