6997010: Consolidate java.security files into one file with modifications

Reviewed-by: mullan, erikj
This commit is contained in:
Weijun Wang 2014-08-11 11:11:55 +08:00
parent 5f5c882323
commit bbaf4bdb09
13 changed files with 340 additions and 2135 deletions

@ -335,30 +335,6 @@ COPY_FILES += $(JVMCFG)
##########################################################################################
PROPS_SRC := $(JDK_TOPDIR)/src/share/lib/security/java.security-$(OPENJDK_TARGET_OS)
PROPS_DST := $(JDK_OUTPUTDIR)/lib/security/java.security
ifndef OPENJDK
RESTRICTED_PKGS_SRC := $(JDK_TOPDIR)/src/closed/share/lib/security/restricted.pkgs
RESTRICTED_PKGS := $(shell $(CAT) $(RESTRICTED_PKGS_SRC) | $(TR) "\n" " ")
$(PROPS_DST): $(PROPS_SRC)
$(MKDIR) -p $(@D)
$(TOOL_ADDTORESTRICTEDPKGS) $^ $@.tmp $(RESTRICTED_PKGS)
$(MV) $@.tmp $@
else
$(PROPS_DST): $(PROPS_SRC)
$(call install-file)
endif
COPY_FILES += $(PROPS_DST)
##########################################################################################
POLICY_SRC := $(JDK_TOPDIR)/src/share/lib/security/java.policy
POLICY_DST := $(JDK_OUTPUTDIR)/lib/security/java.policy

@ -53,6 +53,9 @@ GENDATA += $(GENDATA_HTML32DTD)
include gendata/GendataBlacklistedCerts.gmk
GENDATA += $(GENDATA_BLACKLISTED_CERTS)
include gendata/GendataJavaSecurity.gmk
GENDATA += $(GENDATA_JAVA_SECURITY)
##########################################################################################
GENDATA_UNINAME := $(JDK_OUTPUTDIR)/classes/java/lang/uniName.dat

@ -90,6 +90,9 @@ TOOL_TZDB = $(JAVA_SMALL) -cp $(JDK_OUTPUTDIR)/btclasses \
TOOL_BLACKLISTED_CERTS = $(JAVA_SMALL) -cp $(JDK_OUTPUTDIR)/btclasses \
build.tools.blacklistedcertsconverter.BlacklistedCertsConverter
TOOL_MAKEJAVASECURITY = $(JAVA_SMALL) -cp $(JDK_OUTPUTDIR)/btclasses \
build.tools.makejavasecurity.MakeJavaSecurity
# TODO: There are references to the jdwpgen.jar in jdk/make/netbeans/jdwpgen/build.xml
# and nbproject/project.properties in the same dir. Needs to be looked at.
@ -121,9 +124,6 @@ TOOL_CHECKDEPS = $(JAVA_SMALL) -Xbootclasspath/p:$(INTERIM_LANGTOOLS_JAR) \
-cp $(JDK_OUTPUTDIR)/btclasses:$(JDK_OUTPUTDIR) \
build.tools.deps.CheckDeps
TOOL_ADDTORESTRICTEDPKGS = $(JAVA_SMALL) -cp $(JDK_OUTPUTDIR)/btclasses \
build.tools.addtorestrictedpkgs.AddToRestrictedPkgs
##########################################################################################
# Tools needed on solaris because OBJCOPY is broken.

@ -0,0 +1,38 @@
#
# Copyright (c) 2014, Oracle and/or its affiliates. All rights reserved.
# DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
#
# This code is free software; you can redistribute it and/or modify it
# under the terms of the GNU General Public License version 2 only, as
# published by the Free Software Foundation. Oracle designates this
# particular file as subject to the "Classpath" exception as provided
# by Oracle in the LICENSE file that accompanied this code.
#
# This code is distributed in the hope that it will be useful, but WITHOUT
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
# FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
# version 2 for more details (a copy is included in the LICENSE file that
# accompanied this code).
#
# You should have received a copy of the GNU General Public License version
# 2 along with this work; if not, write to the Free Software Foundation,
# Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
#
# Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
# or visit www.oracle.com if you need additional information or have any
# questions.
#
GENDATA_JAVA_SECURITY_SRC := $(JDK_TOPDIR)/src/share/lib/security/java.security
GENDATA_JAVA_SECURITY := $(JDK_OUTPUTDIR)/lib/security/java.security
ifndef OPENJDK
RESTRICTED_PKGS_SRC := $(JDK_TOPDIR)/src/closed/share/lib/security/restricted.pkgs
else
RESTRICTED_PKGS_SRC :=
endif
$(GENDATA_JAVA_SECURITY): $(BUILD_TOOLS) $(GENDATA_JAVA_SECURITY_SRC) $(RESTRICTED_PKGS_SRC)
$(ECHO) "Generating java.security"
$(MKDIR) -p $(@D)
$(TOOL_MAKEJAVASECURITY) $(GENDATA_JAVA_SECURITY_SRC) $@ $(OPENJDK_TARGET_OS) $(RESTRICTED_PKGS_SRC) || exit 1

@ -1,105 +0,0 @@
/*
* Copyright (c) 2013, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
package build.tools.addtorestrictedpkgs;
import java.io.*;
/**
* Adds additional packages to the package.access and package.definition
* security properties.
*/
public class AddToRestrictedPkgs {
private static final String PKG_ACC = "package.access";
private static final String PKG_DEF = "package.definition";
private static final int PKG_ACC_INDENT = 15;
private static final int PKG_DEF_INDENT = 19;
public static void main(String[] args) throws Exception {
if (args.length < 3) {
System.err.println("Usage: java AddToRestrictedPkgs " +
"[input java.security file name] " +
"[output java.security file name] " +
"[packages ...]");
System.exit(1);
}
try (FileReader fr = new FileReader(args[0]);
BufferedReader br = new BufferedReader(fr);
FileWriter fw = new FileWriter(args[1]);
BufferedWriter bw = new BufferedWriter(fw))
{
// parse the file line-by-line, looking for pkg access properties
String line = br.readLine();
while (line != null) {
if (line.startsWith(PKG_ACC)) {
writePackages(br, bw, line, PKG_ACC_INDENT, args);
} else if (line.startsWith(PKG_DEF)) {
writePackages(br, bw, line, PKG_DEF_INDENT, args);
} else {
writeLine(bw, line);
}
line = br.readLine();
}
bw.flush();
}
}
private static void writePackages(BufferedReader br, BufferedWriter bw,
String line, int numSpaces,
String[] args) throws IOException {
// parse property until EOL, not including line breaks
while (line.endsWith("\\")) {
writeLine(bw, line);
line = br.readLine();
}
// append comma and line-break to last package
writeLine(bw, line + ",\\");
// add new packages, one per line
for (int i = 2; i < args.length - 1; i++) {
indent(bw, numSpaces);
writeLine(bw, args[i] + ",\\");
}
indent(bw, numSpaces);
writeLine(bw, args[args.length - 1]);
}
private static void writeLine(BufferedWriter bw, String line)
throws IOException
{
bw.write(line);
bw.newLine();
}
private static void indent(BufferedWriter bw, int numSpaces)
throws IOException
{
for (int i = 0; i < numSpaces; i++) {
bw.append(' ');
}
}
}

@ -0,0 +1,168 @@
/*
* Copyright (c) 2013, 2014, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
package build.tools.makejavasecurity;
import java.io.*;
import java.nio.file.Files;
import java.nio.file.Paths;
import java.util.*;
/**
* Builds the java.security file, including
*
* 1. Adds additional packages to the package.access and
* package.definition security properties.
* 2. Filter out platform-unrelated parts
*
* In order to easily maintain platform-related entries, every item
* (including the last line) in package.access and package.definition
* MUST end with ',\'. A blank line MUST exist after the last line.
*/
public class MakeJavaSecurity {
private static final String PKG_ACC = "package.access";
private static final String PKG_DEF = "package.definition";
private static final int PKG_ACC_INDENT = 15;
private static final int PKG_DEF_INDENT = 19;
public static void main(String[] args) throws Exception {
if (args.length < 3) {
System.err.println("Usage: java MakeJavaSecurity " +
"[input java.security file name] " +
"[output java.security file name] " +
"[openjdk target os] " +
"[more restricted packages file name?]");
System.exit(1);
}
// more restricted packages
List<String> extraLines;
if (args.length == 4) {
extraLines = Files.readAllLines(Paths.get(args[3]));
} else {
extraLines = Collections.emptyList();
}
List<String> lines = new ArrayList<>();
// read raw java.security and add more restricted packages
try (FileReader fr = new FileReader(args[0]);
BufferedReader br = new BufferedReader(fr)) {
// looking for pkg access properties
String line = br.readLine();
while (line != null) {
if (line.startsWith(PKG_ACC)) {
addPackages(br, lines, line, PKG_ACC_INDENT, extraLines);
} else if (line.startsWith(PKG_DEF)) {
addPackages(br, lines, line, PKG_DEF_INDENT, extraLines);
} else {
lines.add(line);
}
line = br.readLine();
}
}
// Filter out platform-unrelated ones. We only support
// #ifdef, #ifndef, and #endif.
int mode = 0; // 0: out of block, 1: in match, 2: in non-match
Iterator<String> iter = lines.iterator();
while (iter.hasNext()) {
String line = iter.next();
if (line.startsWith("#endif")) {
mode = 0;
iter.remove();
} else if (line.startsWith("#ifdef ")) {
mode = line.endsWith(args[2])?1:2;
iter.remove();
} else if (line.startsWith("#ifndef ")) {
mode = line.endsWith(args[2])?2:1;
iter.remove();
} else {
if (mode == 2) iter.remove();
}
}
// Update .tbd to .1, .2, etc.
Map<String,Integer> count = new HashMap<>();
for (int i=0; i<lines.size(); i++) {
String line = lines.get(i);
int index = line.indexOf(".tbd");
if (index >= 0) {
String prefix = line.substring(0, index);
int n = count.getOrDefault(prefix, 1);
count.put(prefix, n+1);
lines.set(i, prefix + "." + n + line.substring(index+4));
}
}
// Clean up the last line of PKG_ACC and PKG_DEF blocks.
// Not really necessary since a blank line follows.
boolean inBlock = false;
for (int i=0; i<lines.size(); i++) {
String line = lines.get(i);
if (line.startsWith(PKG_ACC) || line.startsWith(PKG_DEF)) {
inBlock = true;
}
if (inBlock) {
if (line.isEmpty()) {
String lastLine = lines.get(i-1);
lines.set(i-1, lastLine.substring(0, lastLine.length()-2));
inBlock = false;
}
}
}
Files.write(Paths.get(args[1]), lines);
}
private static void addPackages(BufferedReader br, List<String> lines,
String line, int numSpaces,
List<String> args) throws IOException {
// parse property until EOL, not including line breaks
boolean first = true;
while (!line.isEmpty()) {
if (!line.startsWith("#")) {
if (!line.endsWith(",\\") ||
(!first && line.contains("="))) {
throw new IOException("Invalid line: " + line);
}
}
lines.add(line);
line = br.readLine();
first = false;
}
// add new packages, one per line
for (String arg: args) {
if (arg.startsWith("#")) {
lines.add(arg);
} else {
lines.add(String.format("%"+numSpaces+"s", "") + arg + ",\\");
}
}
lines.add(line);
}
}

@ -65,16 +65,25 @@
#
# List of providers and their preference orders (see above):
#
security.provider.1=sun.security.provider.Sun
security.provider.2=sun.security.rsa.SunRsaSign
security.provider.3=sun.security.ec.SunEC
security.provider.4=com.sun.net.ssl.internal.ssl.Provider
security.provider.5=com.sun.crypto.provider.SunJCE
security.provider.6=sun.security.jgss.SunProvider
security.provider.7=com.sun.security.sasl.Provider
security.provider.8=org.jcp.xml.dsig.internal.dom.XMLDSigRI
security.provider.9=sun.security.smartcardio.SunPCSC
security.provider.10=sun.security.mscapi.SunMSCAPI
#ifdef solaris
security.provider.tbd=com.oracle.security.ucrypto.UcryptoProvider ${java.home}/lib/security/ucrypto-solaris.cfg
security.provider.tbd=sun.security.pkcs11.SunPKCS11 ${java.home}/lib/security/sunpkcs11-solaris.cfg
#endif
security.provider.tbd=sun.security.provider.Sun
security.provider.tbd=sun.security.rsa.SunRsaSign
security.provider.tbd=sun.security.ec.SunEC
security.provider.tbd=com.sun.net.ssl.internal.ssl.Provider
security.provider.tbd=com.sun.crypto.provider.SunJCE
security.provider.tbd=sun.security.jgss.SunProvider
security.provider.tbd=com.sun.security.sasl.Provider
security.provider.tbd=org.jcp.xml.dsig.internal.dom.XMLDSigRI
security.provider.tbd=sun.security.smartcardio.SunPCSC
#ifdef windows
security.provider.tbd=sun.security.mscapi.SunMSCAPI
#endif
#ifdef macosx
security.provider.tbd=apple.security.AppleProvider
#endif
#
# Sun Provider SecureRandom seed source.
@ -127,7 +136,12 @@ securerandom.source=file:/dev/random
# This is a comma-separated list of algorithm and/or algorithm:provider
# entries.
#
#ifdef windows
securerandom.strongAlgorithms=Windows-PRNG:SunMSCAPI,SHA1PRNG:SUN
#endif
#ifndef windows
securerandom.strongAlgorithms=NativePRNGBlocking:SUN
#endif
#
# Class to instantiate as the javax.security.auth.login.Configuration
@ -212,7 +226,9 @@ package.access=sun.,\
jdk.nashorn.internal.,\
jdk.nashorn.tools.,\
com.sun.activation.registries.,\
com.sun.java.accessibility.
#ifdef macosx
apple.,\
#endif
#
# List of comma-separated packages that start with or equal this string
@ -259,7 +275,9 @@ package.definition=sun.,\
jdk.nashorn.internal.,\
jdk.nashorn.tools.,\
com.sun.activation.registries.,\
com.sun.java.accessibility.
#ifdef macosx
apple.,\
#endif
#
# Determines whether this properties file can be appended to

@ -1,496 +0,0 @@
#
# This is the "master security properties file".
#
# An alternate java.security properties file may be specified
# from the command line via the system property
#
# -Djava.security.properties=<URL>
#
# This properties file appends to the master security properties file.
# If both properties files specify values for the same key, the value
# from the command-line properties file is selected, as it is the last
# one loaded.
#
# Also, if you specify
#
# -Djava.security.properties==<URL> (2 equals),
#
# then that properties file completely overrides the master security
# properties file.
#
# To disable the ability to specify an additional properties file from
# the command line, set the key security.overridePropertiesFile
# to false in the master security properties file. It is set to true
# by default.
# In this file, various security properties are set for use by
# java.security classes. This is where users can statically register
# Cryptography Package Providers ("providers" for short). The term
# "provider" refers to a package or set of packages that supply a
# concrete implementation of a subset of the cryptography aspects of
# the Java Security API. A provider may, for example, implement one or
# more digital signature algorithms or message digest algorithms.
#
# Each provider must implement a subclass of the Provider class.
# To register a provider in this master security properties file,
# specify the Provider subclass name and priority in the format
#
# security.provider.<n>=<className>
#
# This declares a provider, and specifies its preference
# order n. The preference order is the order in which providers are
# searched for requested algorithms (when no specific provider is
# requested). The order is 1-based; 1 is the most preferred, followed
# by 2, and so on.
#
# <className> must specify the subclass of the Provider class whose
# constructor sets the values of various properties that are required
# for the Java Security API to look up the algorithms or other
# facilities implemented by the provider.
#
# There must be at least one provider specification in java.security.
# There is a default provider that comes standard with the JDK. It
# is called the "SUN" provider, and its Provider subclass
# named Sun appears in the sun.security.provider package. Thus, the
# "SUN" provider is registered via the following:
#
# security.provider.1=sun.security.provider.Sun
#
# (The number 1 is used for the default provider.)
#
# Note: Providers can be dynamically registered instead by calls to
# either the addProvider or insertProviderAt method in the Security
# class.
#
# List of providers and their preference orders (see above):
#
security.provider.1=sun.security.provider.Sun
security.provider.2=sun.security.rsa.SunRsaSign
security.provider.3=sun.security.ec.SunEC
security.provider.4=com.sun.net.ssl.internal.ssl.Provider
security.provider.5=com.sun.crypto.provider.SunJCE
security.provider.6=sun.security.jgss.SunProvider
security.provider.7=com.sun.security.sasl.Provider
security.provider.8=org.jcp.xml.dsig.internal.dom.XMLDSigRI
security.provider.9=sun.security.smartcardio.SunPCSC
#
# Sun Provider SecureRandom seed source.
#
# Select the primary source of seed data for the "SHA1PRNG" and
# "NativePRNG" SecureRandom implementations in the "Sun" provider.
# (Other SecureRandom implementations might also use this property.)
#
# On Unix-like systems (for example, Solaris/Linux/MacOS), the
# "NativePRNG" and "SHA1PRNG" implementations obtains seed data from
# special device files such as file:/dev/random.
#
# On Windows systems, specifying the URLs "file:/dev/random" or
# "file:/dev/urandom" will enable the native Microsoft CryptoAPI seeding
# mechanism for SHA1PRNG.
#
# By default, an attempt is made to use the entropy gathering device
# specified by the "securerandom.source" Security property. If an
# exception occurs while accessing the specified URL:
#
# SHA1PRNG:
# the traditional system/thread activity algorithm will be used.
#
# NativePRNG:
# a default value of /dev/random will be used. If neither
# are available, the implementation will be disabled.
# "file" is the only currently supported protocol type.
#
# The entropy gathering device can also be specified with the System
# property "java.security.egd". For example:
#
# % java -Djava.security.egd=file:/dev/random MainClass
#
# Specifying this System property will override the
# "securerandom.source" Security property.
#
# In addition, if "file:/dev/random" or "file:/dev/urandom" is
# specified, the "NativePRNG" implementation will be more preferred than
# SHA1PRNG in the Sun provider.
#
securerandom.source=file:/dev/random
#
# A list of known strong SecureRandom implementations.
#
# To help guide applications in selecting a suitable strong
# java.security.SecureRandom implementation, Java distributions should
# indicate a list of known strong implementations using the property.
#
# This is a comma-separated list of algorithm and/or algorithm:provider
# entries.
#
securerandom.strongAlgorithms=NativePRNGBlocking:SUN
#
# Class to instantiate as the javax.security.auth.login.Configuration
# provider.
#
login.configuration.provider=sun.security.provider.ConfigFile
#
# Default login configuration file
#
#login.config.url.1=file:${user.home}/.java.login.config
#
# Class to instantiate as the system Policy. This is the name of the class
# that will be used as the Policy object.
#
policy.provider=sun.security.provider.PolicyFile
# The default is to have a single system-wide policy file,
# and a policy file in the user's home directory.
policy.url.1=file:${java.home}/lib/security/java.policy
policy.url.2=file:${user.home}/.java.policy
# whether or not we expand properties in the policy file
# if this is set to false, properties (${...}) will not be expanded in policy
# files.
policy.expandProperties=true
# whether or not we allow an extra policy to be passed on the command line
# with -Djava.security.policy=somefile. Comment out this line to disable
# this feature.
policy.allowSystemProperty=true
# whether or not we look into the IdentityScope for trusted Identities
# when encountering a 1.1 signed JAR file. If the identity is found
# and is trusted, we grant it AllPermission.
policy.ignoreIdentityScope=false
#
# Default keystore type.
#
keystore.type=jks
#
# List of comma-separated packages that start with or equal this string
# will cause a security exception to be thrown when
# passed to checkPackageAccess unless the
# corresponding RuntimePermission ("accessClassInPackage."+package) has
# been granted.
package.access=sun.,\
com.sun.xml.internal.,\
com.sun.imageio.,\
com.sun.istack.internal.,\
com.sun.jmx.,\
com.sun.media.sound.,\
com.sun.naming.internal.,\
com.sun.proxy.,\
com.sun.corba.se.,\
com.sun.org.apache.bcel.internal.,\
com.sun.org.apache.regexp.internal.,\
com.sun.org.apache.xerces.internal.,\
com.sun.org.apache.xpath.internal.,\
com.sun.org.apache.xalan.internal.extensions.,\
com.sun.org.apache.xalan.internal.lib.,\
com.sun.org.apache.xalan.internal.res.,\
com.sun.org.apache.xalan.internal.templates.,\
com.sun.org.apache.xalan.internal.utils.,\
com.sun.org.apache.xalan.internal.xslt.,\
com.sun.org.apache.xalan.internal.xsltc.cmdline.,\
com.sun.org.apache.xalan.internal.xsltc.compiler.,\
com.sun.org.apache.xalan.internal.xsltc.trax.,\
com.sun.org.apache.xalan.internal.xsltc.util.,\
com.sun.org.apache.xml.internal.res.,\
com.sun.org.apache.xml.internal.security.,\
com.sun.org.apache.xml.internal.serializer.utils.,\
com.sun.org.apache.xml.internal.utils.,\
com.sun.org.glassfish.,\
com.oracle.xmlns.internal.,\
com.oracle.webservices.internal.,\
org.jcp.xml.dsig.internal.,\
jdk.internal.,\
jdk.nashorn.internal.,\
jdk.nashorn.tools.
#
# List of comma-separated packages that start with or equal this string
# will cause a security exception to be thrown when
# passed to checkPackageDefinition unless the
# corresponding RuntimePermission ("defineClassInPackage."+package) has
# been granted.
#
# by default, none of the class loaders supplied with the JDK call
# checkPackageDefinition.
#
package.definition=sun.,\
com.sun.xml.internal.,\
com.sun.imageio.,\
com.sun.istack.internal.,\
com.sun.jmx.,\
com.sun.media.sound.,\
com.sun.naming.internal.,\
com.sun.proxy.,\
com.sun.corba.se.,\
com.sun.org.apache.bcel.internal.,\
com.sun.org.apache.regexp.internal.,\
com.sun.org.apache.xerces.internal.,\
com.sun.org.apache.xpath.internal.,\
com.sun.org.apache.xalan.internal.extensions.,\
com.sun.org.apache.xalan.internal.lib.,\
com.sun.org.apache.xalan.internal.res.,\
com.sun.org.apache.xalan.internal.templates.,\
com.sun.org.apache.xalan.internal.utils.,\
com.sun.org.apache.xalan.internal.xslt.,\
com.sun.org.apache.xalan.internal.xsltc.cmdline.,\
com.sun.org.apache.xalan.internal.xsltc.compiler.,\
com.sun.org.apache.xalan.internal.xsltc.trax.,\
com.sun.org.apache.xalan.internal.xsltc.util.,\
com.sun.org.apache.xml.internal.res.,\
com.sun.org.apache.xml.internal.security.,\
com.sun.org.apache.xml.internal.serializer.utils.,\
com.sun.org.apache.xml.internal.utils.,\
com.sun.org.glassfish.,\
com.oracle.xmlns.internal.,\
com.oracle.webservices.internal.,\
org.jcp.xml.dsig.internal.,\
jdk.internal.,\
jdk.nashorn.internal.,\
jdk.nashorn.tools.
#
# Determines whether this properties file can be appended to
# or overridden on the command line via -Djava.security.properties
#
security.overridePropertiesFile=true
#
# Determines the default key and trust manager factory algorithms for
# the javax.net.ssl package.
#
ssl.KeyManagerFactory.algorithm=SunX509
ssl.TrustManagerFactory.algorithm=PKIX
#
# The Java-level namelookup cache policy for successful lookups:
#
# any negative value: caching forever
# any positive value: the number of seconds to cache an address for
# zero: do not cache
#
# default value is forever (FOREVER). For security reasons, this
# caching is made forever when a security manager is set. When a security
# manager is not set, the default behavior in this implementation
# is to cache for 30 seconds.
#
# NOTE: setting this to anything other than the default value can have
# serious security implications. Do not set it unless
# you are sure you are not exposed to DNS spoofing attack.
#
#networkaddress.cache.ttl=-1
# The Java-level namelookup cache policy for failed lookups:
#
# any negative value: cache forever
# any positive value: the number of seconds to cache negative lookup results
# zero: do not cache
#
# In some Microsoft Windows networking environments that employ
# the WINS name service in addition to DNS, name service lookups
# that fail may take a noticeably long time to return (approx. 5 seconds).
# For this reason the default caching policy is to maintain these
# results for 10 seconds.
#
#
networkaddress.cache.negative.ttl=10
#
# Properties to configure OCSP for certificate revocation checking
#
# Enable OCSP
#
# By default, OCSP is not used for certificate revocation checking.
# This property enables the use of OCSP when set to the value "true".
#
# NOTE: SocketPermission is required to connect to an OCSP responder.
#
# Example,
# ocsp.enable=true
#
# Location of the OCSP responder
#
# By default, the location of the OCSP responder is determined implicitly
# from the certificate being validated. This property explicitly specifies
# the location of the OCSP responder. The property is used when the
# Authority Information Access extension (defined in RFC 3280) is absent
# from the certificate or when it requires overriding.
#
# Example,
# ocsp.responderURL=http://ocsp.example.net:80
#
# Subject name of the OCSP responder's certificate
#
# By default, the certificate of the OCSP responder is that of the issuer
# of the certificate being validated. This property identifies the certificate
# of the OCSP responder when the default does not apply. Its value is a string
# distinguished name (defined in RFC 2253) which identifies a certificate in
# the set of certificates supplied during cert path validation. In cases where
# the subject name alone is not sufficient to uniquely identify the certificate
# then both the "ocsp.responderCertIssuerName" and
# "ocsp.responderCertSerialNumber" properties must be used instead. When this
# property is set then those two properties are ignored.
#
# Example,
# ocsp.responderCertSubjectName="CN=OCSP Responder, O=XYZ Corp"
#
# Issuer name of the OCSP responder's certificate
#
# By default, the certificate of the OCSP responder is that of the issuer
# of the certificate being validated. This property identifies the certificate
# of the OCSP responder when the default does not apply. Its value is a string
# distinguished name (defined in RFC 2253) which identifies a certificate in
# the set of certificates supplied during cert path validation. When this
# property is set then the "ocsp.responderCertSerialNumber" property must also
# be set. When the "ocsp.responderCertSubjectName" property is set then this
# property is ignored.
#
# Example,
# ocsp.responderCertIssuerName="CN=Enterprise CA, O=XYZ Corp"
#
# Serial number of the OCSP responder's certificate
#
# By default, the certificate of the OCSP responder is that of the issuer
# of the certificate being validated. This property identifies the certificate
# of the OCSP responder when the default does not apply. Its value is a string
# of hexadecimal digits (colon or space separators may be present) which
# identifies a certificate in the set of certificates supplied during cert path
# validation. When this property is set then the "ocsp.responderCertIssuerName"
# property must also be set. When the "ocsp.responderCertSubjectName" property
# is set then this property is ignored.
#
# Example,
# ocsp.responderCertSerialNumber=2A:FF:00
#
# Policy for failed Kerberos KDC lookups:
#
# When a KDC is unavailable (network error, service failure, etc), it is
# put inside a blacklist and accessed less often for future requests. The
# value (case-insensitive) for this policy can be:
#
# tryLast
# KDCs in the blacklist are always tried after those not on the list.
#
# tryLess[:max_retries,timeout]
# KDCs in the blacklist are still tried by their order in the configuration,
# but with smaller max_retries and timeout values. max_retries and timeout
# are optional numerical parameters (default 1 and 5000, which means once
# and 5 seconds). Please notes that if any of the values defined here is
# more than what is defined in krb5.conf, it will be ignored.
#
# Whenever a KDC is detected as available, it is removed from the blacklist.
# The blacklist is reset when krb5.conf is reloaded. You can add
# refreshKrb5Config=true to a JAAS configuration file so that krb5.conf is
# reloaded whenever a JAAS authentication is attempted.
#
# Example,
# krb5.kdc.bad.policy = tryLast
# krb5.kdc.bad.policy = tryLess:2,2000
krb5.kdc.bad.policy = tryLast
# Algorithm restrictions for certification path (CertPath) processing
#
# In some environments, certain algorithms or key lengths may be undesirable
# for certification path building and validation. For example, "MD2" is
# generally no longer considered to be a secure hash algorithm. This section
# describes the mechanism for disabling algorithms based on algorithm name
# and/or key length. This includes algorithms used in certificates, as well
# as revocation information such as CRLs and signed OCSP Responses.
#
# The syntax of the disabled algorithm string is described as this Java
# BNF-style:
# DisabledAlgorithms:
# " DisabledAlgorithm { , DisabledAlgorithm } "
#
# DisabledAlgorithm:
# AlgorithmName [Constraint]
#
# AlgorithmName:
# (see below)
#
# Constraint:
# KeySizeConstraint
#
# KeySizeConstraint:
# keySize Operator DecimalInteger
#
# Operator:
# <= | < | == | != | >= | >
#
# DecimalInteger:
# DecimalDigits
#
# DecimalDigits:
# DecimalDigit {DecimalDigit}
#
# DecimalDigit: one of
# 1 2 3 4 5 6 7 8 9 0
#
# The "AlgorithmName" is the standard algorithm name of the disabled
# algorithm. See "Java Cryptography Architecture Standard Algorithm Name
# Documentation" for information about Standard Algorithm Names. Matching
# is performed using a case-insensitive sub-element matching rule. (For
# example, in "SHA1withECDSA" the sub-elements are "SHA1" for hashing and
# "ECDSA" for signatures.) If the assertion "AlgorithmName" is a
# sub-element of the certificate algorithm name, the algorithm will be
# rejected during certification path building and validation. For example,
# the assertion algorithm name "DSA" will disable all certificate algorithms
# that rely on DSA, such as NONEwithDSA, SHA1withDSA. However, the assertion
# will not disable algorithms related to "ECDSA".
#
# A "Constraint" provides further guidance for the algorithm being specified.
# The "KeySizeConstraint" requires a key of a valid size range if the
# "AlgorithmName" is of a key algorithm. The "DecimalInteger" indicates the
# key size specified in number of bits. For example, "RSA keySize <= 1024"
# indicates that any RSA key with key size less than or equal to 1024 bits
# should be disabled, and "RSA keySize < 1024, RSA keySize > 2048" indicates
# that any RSA key with key size less than 1024 or greater than 2048 should
# be disabled. Note that the "KeySizeConstraint" only makes sense to key
# algorithms.
#
# Note: This property is currently used by Oracle's PKIX implementation. It
# is not guaranteed to be examined and used by other implementations.
#
# Example:
# jdk.certpath.disabledAlgorithms=MD2, DSA, RSA keySize < 2048
#
#
jdk.certpath.disabledAlgorithms=MD2, MD5, RSA keySize < 1024
# Algorithm restrictions for Secure Socket Layer/Transport Layer Security
# (SSL/TLS) processing
#
# In some environments, certain algorithms or key lengths may be undesirable
# when using SSL/TLS. This section describes the mechanism for disabling
# algorithms during SSL/TLS security parameters negotiation, including cipher
# suites selection, peer authentication and key exchange mechanisms.
#
# For PKI-based peer authentication and key exchange mechanisms, this list
# of disabled algorithms will also be checked during certification path
# building and validation, including algorithms used in certificates, as
# well as revocation information such as CRLs and signed OCSP Responses.
# This is in addition to the jdk.certpath.disabledAlgorithms property above.
#
# See the specification of "jdk.certpath.disabledAlgorithms" for the
# syntax of the disabled algorithm string.
#
# Note: This property is currently used by Oracle's JSSE implementation.
# It is not guaranteed to be examined and used by other implementations.
#
# Example:
# jdk.tls.disabledAlgorithms=MD5, SHA1, DSA, RSA keySize < 2048

@ -1,496 +0,0 @@
#
# This is the "master security properties file".
#
# An alternate java.security properties file may be specified
# from the command line via the system property
#
# -Djava.security.properties=<URL>
#
# This properties file appends to the master security properties file.
# If both properties files specify values for the same key, the value
# from the command-line properties file is selected, as it is the last
# one loaded.
#
# Also, if you specify
#
# -Djava.security.properties==<URL> (2 equals),
#
# then that properties file completely overrides the master security
# properties file.
#
# To disable the ability to specify an additional properties file from
# the command line, set the key security.overridePropertiesFile
# to false in the master security properties file. It is set to true
# by default.
# In this file, various security properties are set for use by
# java.security classes. This is where users can statically register
# Cryptography Package Providers ("providers" for short). The term
# "provider" refers to a package or set of packages that supply a
# concrete implementation of a subset of the cryptography aspects of
# the Java Security API. A provider may, for example, implement one or
# more digital signature algorithms or message digest algorithms.
#
# Each provider must implement a subclass of the Provider class.
# To register a provider in this master security properties file,
# specify the Provider subclass name and priority in the format
#
# security.provider.<n>=<className>
#
# This declares a provider, and specifies its preference
# order n. The preference order is the order in which providers are
# searched for requested algorithms (when no specific provider is
# requested). The order is 1-based; 1 is the most preferred, followed
# by 2, and so on.
#
# <className> must specify the subclass of the Provider class whose
# constructor sets the values of various properties that are required
# for the Java Security API to look up the algorithms or other
# facilities implemented by the provider.
#
# There must be at least one provider specification in java.security.
# There is a default provider that comes standard with the JDK. It
# is called the "SUN" provider, and its Provider subclass
# named Sun appears in the sun.security.provider package. Thus, the
# "SUN" provider is registered via the following:
#
# security.provider.1=sun.security.provider.Sun
#
# (The number 1 is used for the default provider.)
#
# Note: Providers can be dynamically registered instead by calls to
# either the addProvider or insertProviderAt method in the Security
# class.
#
# List of providers and their preference orders (see above):
#
security.provider.1=sun.security.provider.Sun
security.provider.2=sun.security.rsa.SunRsaSign
security.provider.3=sun.security.ec.SunEC
security.provider.4=com.sun.net.ssl.internal.ssl.Provider
security.provider.5=com.sun.crypto.provider.SunJCE
security.provider.6=sun.security.jgss.SunProvider
security.provider.7=com.sun.security.sasl.Provider
security.provider.8=org.jcp.xml.dsig.internal.dom.XMLDSigRI
security.provider.9=sun.security.smartcardio.SunPCSC
#
# Sun Provider SecureRandom seed source.
#
# Select the primary source of seed data for the "SHA1PRNG" and
# "NativePRNG" SecureRandom implementations in the "Sun" provider.
# (Other SecureRandom implementations might also use this property.)
#
# On Unix-like systems (for example, Solaris/Linux/MacOS), the
# "NativePRNG" and "SHA1PRNG" implementations obtains seed data from
# special device files such as file:/dev/random.
#
# On Windows systems, specifying the URLs "file:/dev/random" or
# "file:/dev/urandom" will enable the native Microsoft CryptoAPI seeding
# mechanism for SHA1PRNG.
#
# By default, an attempt is made to use the entropy gathering device
# specified by the "securerandom.source" Security property. If an
# exception occurs while accessing the specified URL:
#
# SHA1PRNG:
# the traditional system/thread activity algorithm will be used.
#
# NativePRNG:
# a default value of /dev/random will be used. If neither
# are available, the implementation will be disabled.
# "file" is the only currently supported protocol type.
#
# The entropy gathering device can also be specified with the System
# property "java.security.egd". For example:
#
# % java -Djava.security.egd=file:/dev/random MainClass
#
# Specifying this System property will override the
# "securerandom.source" Security property.
#
# In addition, if "file:/dev/random" or "file:/dev/urandom" is
# specified, the "NativePRNG" implementation will be more preferred than
# SHA1PRNG in the Sun provider.
#
securerandom.source=file:/dev/random
#
# A list of known strong SecureRandom implementations.
#
# To help guide applications in selecting a suitable strong
# java.security.SecureRandom implementation, Java distributions should
# indicate a list of known strong implementations using the property.
#
# This is a comma-separated list of algorithm and/or algorithm:provider
# entries.
#
securerandom.strongAlgorithms=NativePRNGBlocking:SUN
#
# Class to instantiate as the javax.security.auth.login.Configuration
# provider.
#
login.configuration.provider=sun.security.provider.ConfigFile
#
# Default login configuration file
#
#login.config.url.1=file:${user.home}/.java.login.config
#
# Class to instantiate as the system Policy. This is the name of the class
# that will be used as the Policy object.
#
policy.provider=sun.security.provider.PolicyFile
# The default is to have a single system-wide policy file,
# and a policy file in the user's home directory.
policy.url.1=file:${java.home}/lib/security/java.policy
policy.url.2=file:${user.home}/.java.policy
# whether or not we expand properties in the policy file
# if this is set to false, properties (${...}) will not be expanded in policy
# files.
policy.expandProperties=true
# whether or not we allow an extra policy to be passed on the command line
# with -Djava.security.policy=somefile. Comment out this line to disable
# this feature.
policy.allowSystemProperty=true
# whether or not we look into the IdentityScope for trusted Identities
# when encountering a 1.1 signed JAR file. If the identity is found
# and is trusted, we grant it AllPermission.
policy.ignoreIdentityScope=false
#
# Default keystore type.
#
keystore.type=jks
#
# List of comma-separated packages that start with or equal this string
# will cause a security exception to be thrown when
# passed to checkPackageAccess unless the
# corresponding RuntimePermission ("accessClassInPackage."+package) has
# been granted.
package.access=sun.,\
com.sun.xml.internal.,\
com.sun.imageio.,\
com.sun.istack.internal.,\
com.sun.jmx.,\
com.sun.media.sound.,\
com.sun.naming.internal.,\
com.sun.proxy.,\
com.sun.corba.se.,\
com.sun.org.apache.bcel.internal.,\
com.sun.org.apache.regexp.internal.,\
com.sun.org.apache.xerces.internal.,\
com.sun.org.apache.xpath.internal.,\
com.sun.org.apache.xalan.internal.extensions.,\
com.sun.org.apache.xalan.internal.lib.,\
com.sun.org.apache.xalan.internal.res.,\
com.sun.org.apache.xalan.internal.templates.,\
com.sun.org.apache.xalan.internal.utils.,\
com.sun.org.apache.xalan.internal.xslt.,\
com.sun.org.apache.xalan.internal.xsltc.cmdline.,\
com.sun.org.apache.xalan.internal.xsltc.compiler.,\
com.sun.org.apache.xalan.internal.xsltc.trax.,\
com.sun.org.apache.xalan.internal.xsltc.util.,\
com.sun.org.apache.xml.internal.res.,\
com.sun.org.apache.xml.internal.security.,\
com.sun.org.apache.xml.internal.serializer.utils.,\
com.sun.org.apache.xml.internal.utils.,\
com.sun.org.glassfish.,\
com.oracle.xmlns.internal.,\
com.oracle.webservices.internal.,\
org.jcp.xml.dsig.internal.,\
jdk.internal.,\
jdk.nashorn.internal.,\
jdk.nashorn.tools.,\
com.sun.activation.registries.
#
# List of comma-separated packages that start with or equal this string
# will cause a security exception to be thrown when
# passed to checkPackageDefinition unless the
# corresponding RuntimePermission ("defineClassInPackage."+package) has
# been granted.
#
# by default, none of the class loaders supplied with the JDK call
# checkPackageDefinition.
#
package.definition=sun.,\
com.sun.xml.internal.,\
com.sun.imageio.,\
com.sun.istack.internal.,\
com.sun.jmx.,\
com.sun.media.sound.,\
com.sun.naming.internal.,\
com.sun.proxy.,\
com.sun.corba.se.,\
com.sun.org.apache.bcel.internal.,\
com.sun.org.apache.regexp.internal.,\
com.sun.org.apache.xerces.internal.,\
com.sun.org.apache.xpath.internal.,\
com.sun.org.apache.xalan.internal.extensions.,\
com.sun.org.apache.xalan.internal.lib.,\
com.sun.org.apache.xalan.internal.res.,\
com.sun.org.apache.xalan.internal.templates.,\
com.sun.org.apache.xalan.internal.utils.,\
com.sun.org.apache.xalan.internal.xslt.,\
com.sun.org.apache.xalan.internal.xsltc.cmdline.,\
com.sun.org.apache.xalan.internal.xsltc.compiler.,\
com.sun.org.apache.xalan.internal.xsltc.trax.,\
com.sun.org.apache.xalan.internal.xsltc.util.,\
com.sun.org.apache.xml.internal.res.,\
com.sun.org.apache.xml.internal.security.,\
com.sun.org.apache.xml.internal.serializer.utils.,\
com.sun.org.apache.xml.internal.utils.,\
com.sun.org.glassfish.,\
com.oracle.xmlns.internal.,\
com.oracle.webservices.internal.,\
org.jcp.xml.dsig.internal.,\
jdk.internal.,\
jdk.nashorn.internal.,\
jdk.nashorn.tools.,\
com.sun.activation.registries.
#
# Determines whether this properties file can be appended to
# or overridden on the command line via -Djava.security.properties
#
security.overridePropertiesFile=true
#
# Determines the default key and trust manager factory algorithms for
# the javax.net.ssl package.
#
ssl.KeyManagerFactory.algorithm=SunX509
ssl.TrustManagerFactory.algorithm=PKIX
#
# The Java-level namelookup cache policy for successful lookups:
#
# any negative value: caching forever
# any positive value: the number of seconds to cache an address for
# zero: do not cache
#
# default value is forever (FOREVER). For security reasons, this
# caching is made forever when a security manager is set. When a security
# manager is not set, the default behavior in this implementation
# is to cache for 30 seconds.
#
# NOTE: setting this to anything other than the default value can have
# serious security implications. Do not set it unless
# you are sure you are not exposed to DNS spoofing attack.
#
#networkaddress.cache.ttl=-1
# The Java-level namelookup cache policy for failed lookups:
#
# any negative value: cache forever
# any positive value: the number of seconds to cache negative lookup results
# zero: do not cache
#
# In some Microsoft Windows networking environments that employ
# the WINS name service in addition to DNS, name service lookups
# that fail may take a noticeably long time to return (approx. 5 seconds).
# For this reason the default caching policy is to maintain these
# results for 10 seconds.
#
#
networkaddress.cache.negative.ttl=10
#
# Properties to configure OCSP for certificate revocation checking
#
# Enable OCSP
#
# By default, OCSP is not used for certificate revocation checking.
# This property enables the use of OCSP when set to the value "true".
#
# NOTE: SocketPermission is required to connect to an OCSP responder.
#
# Example,
# ocsp.enable=true
#
# Location of the OCSP responder
#
# By default, the location of the OCSP responder is determined implicitly
# from the certificate being validated. This property explicitly specifies
# the location of the OCSP responder. The property is used when the
# Authority Information Access extension (defined in RFC 3280) is absent
# from the certificate or when it requires overriding.
#
# Example,
# ocsp.responderURL=http://ocsp.example.net:80
#
# Subject name of the OCSP responder's certificate
#
# By default, the certificate of the OCSP responder is that of the issuer
# of the certificate being validated. This property identifies the certificate
# of the OCSP responder when the default does not apply. Its value is a string
# distinguished name (defined in RFC 2253) which identifies a certificate in
# the set of certificates supplied during cert path validation. In cases where
# the subject name alone is not sufficient to uniquely identify the certificate
# then both the "ocsp.responderCertIssuerName" and
# "ocsp.responderCertSerialNumber" properties must be used instead. When this
# property is set then those two properties are ignored.
#
# Example,
# ocsp.responderCertSubjectName="CN=OCSP Responder, O=XYZ Corp"
#
# Issuer name of the OCSP responder's certificate
#
# By default, the certificate of the OCSP responder is that of the issuer
# of the certificate being validated. This property identifies the certificate
# of the OCSP responder when the default does not apply. Its value is a string
# distinguished name (defined in RFC 2253) which identifies a certificate in
# the set of certificates supplied during cert path validation. When this
# property is set then the "ocsp.responderCertSerialNumber" property must also
# be set. When the "ocsp.responderCertSubjectName" property is set then this
# property is ignored.
#
# Example,
# ocsp.responderCertIssuerName="CN=Enterprise CA, O=XYZ Corp"
#
# Serial number of the OCSP responder's certificate
#
# By default, the certificate of the OCSP responder is that of the issuer
# of the certificate being validated. This property identifies the certificate
# of the OCSP responder when the default does not apply. Its value is a string
# of hexadecimal digits (colon or space separators may be present) which
# identifies a certificate in the set of certificates supplied during cert path
# validation. When this property is set then the "ocsp.responderCertIssuerName"
# property must also be set. When the "ocsp.responderCertSubjectName" property
# is set then this property is ignored.
#
# Example,
# ocsp.responderCertSerialNumber=2A:FF:00
#
# Policy for failed Kerberos KDC lookups:
#
# When a KDC is unavailable (network error, service failure, etc), it is
# put inside a blacklist and accessed less often for future requests. The
# value (case-insensitive) for this policy can be:
#
# tryLast
# KDCs in the blacklist are always tried after those not on the list.
#
# tryLess[:max_retries,timeout]
# KDCs in the blacklist are still tried by their order in the configuration,
# but with smaller max_retries and timeout values. max_retries and timeout
# are optional numerical parameters (default 1 and 5000, which means once
# and 5 seconds). Please notes that if any of the values defined here is
# more than what is defined in krb5.conf, it will be ignored.
#
# Whenever a KDC is detected as available, it is removed from the blacklist.
# The blacklist is reset when krb5.conf is reloaded. You can add
# refreshKrb5Config=true to a JAAS configuration file so that krb5.conf is
# reloaded whenever a JAAS authentication is attempted.
#
# Example,
# krb5.kdc.bad.policy = tryLast
# krb5.kdc.bad.policy = tryLess:2,2000
krb5.kdc.bad.policy = tryLast
# Algorithm restrictions for certification path (CertPath) processing
#
# In some environments, certain algorithms or key lengths may be undesirable
# for certification path building and validation. For example, "MD2" is
# generally no longer considered to be a secure hash algorithm. This section
# describes the mechanism for disabling algorithms based on algorithm name
# and/or key length. This includes algorithms used in certificates, as well
# as revocation information such as CRLs and signed OCSP Responses.
#
# The syntax of the disabled algorithm string is described as this Java
# BNF-style:
# DisabledAlgorithms:
# " DisabledAlgorithm { , DisabledAlgorithm } "
#
# DisabledAlgorithm:
# AlgorithmName [Constraint]
#
# AlgorithmName:
# (see below)
#
# Constraint:
# KeySizeConstraint
#
# KeySizeConstraint:
# keySize Operator DecimalInteger
#
# Operator:
# <= | < | == | != | >= | >
#
# DecimalInteger:
# DecimalDigits
#
# DecimalDigits:
# DecimalDigit {DecimalDigit}
#
# DecimalDigit: one of
# 1 2 3 4 5 6 7 8 9 0
#
# The "AlgorithmName" is the standard algorithm name of the disabled
# algorithm. See "Java Cryptography Architecture Standard Algorithm Name
# Documentation" for information about Standard Algorithm Names. Matching
# is performed using a case-insensitive sub-element matching rule. (For
# example, in "SHA1withECDSA" the sub-elements are "SHA1" for hashing and
# "ECDSA" for signatures.) If the assertion "AlgorithmName" is a
# sub-element of the certificate algorithm name, the algorithm will be
# rejected during certification path building and validation. For example,
# the assertion algorithm name "DSA" will disable all certificate algorithms
# that rely on DSA, such as NONEwithDSA, SHA1withDSA. However, the assertion
# will not disable algorithms related to "ECDSA".
#
# A "Constraint" provides further guidance for the algorithm being specified.
# The "KeySizeConstraint" requires a key of a valid size range if the
# "AlgorithmName" is of a key algorithm. The "DecimalInteger" indicates the
# key size specified in number of bits. For example, "RSA keySize <= 1024"
# indicates that any RSA key with key size less than or equal to 1024 bits
# should be disabled, and "RSA keySize < 1024, RSA keySize > 2048" indicates
# that any RSA key with key size less than 1024 or greater than 2048 should
# be disabled. Note that the "KeySizeConstraint" only makes sense to key
# algorithms.
#
# Note: This property is currently used by Oracle's PKIX implementation. It
# is not guaranteed to be examined and used by other implementations.
#
# Example:
# jdk.certpath.disabledAlgorithms=MD2, DSA, RSA keySize < 2048
#
#
jdk.certpath.disabledAlgorithms=MD2, MD5, RSA keySize < 1024
# Algorithm restrictions for Secure Socket Layer/Transport Layer Security
# (SSL/TLS) processing
#
# In some environments, certain algorithms or key lengths may be undesirable
# when using SSL/TLS. This section describes the mechanism for disabling
# algorithms during SSL/TLS security parameters negotiation, including cipher
# suites selection, peer authentication and key exchange mechanisms.
#
# For PKI-based peer authentication and key exchange mechanisms, this list
# of disabled algorithms will also be checked during certification path
# building and validation, including algorithms used in certificates, as
# well as revocation information such as CRLs and signed OCSP Responses.
# This is in addition to the jdk.certpath.disabledAlgorithms property above.
#
# See the specification of "jdk.certpath.disabledAlgorithms" for the
# syntax of the disabled algorithm string.
#
# Note: This property is currently used by Oracle's JSSE implementation.
# It is not guaranteed to be examined and used by other implementations.
#
# Example:
# jdk.tls.disabledAlgorithms=MD5, SHA1, DSA, RSA keySize < 2048

@ -1,499 +0,0 @@
#
# This is the "master security properties file".
#
# An alternate java.security properties file may be specified
# from the command line via the system property
#
# -Djava.security.properties=<URL>
#
# This properties file appends to the master security properties file.
# If both properties files specify values for the same key, the value
# from the command-line properties file is selected, as it is the last
# one loaded.
#
# Also, if you specify
#
# -Djava.security.properties==<URL> (2 equals),
#
# then that properties file completely overrides the master security
# properties file.
#
# To disable the ability to specify an additional properties file from
# the command line, set the key security.overridePropertiesFile
# to false in the master security properties file. It is set to true
# by default.
# In this file, various security properties are set for use by
# java.security classes. This is where users can statically register
# Cryptography Package Providers ("providers" for short). The term
# "provider" refers to a package or set of packages that supply a
# concrete implementation of a subset of the cryptography aspects of
# the Java Security API. A provider may, for example, implement one or
# more digital signature algorithms or message digest algorithms.
#
# Each provider must implement a subclass of the Provider class.
# To register a provider in this master security properties file,
# specify the Provider subclass name and priority in the format
#
# security.provider.<n>=<className>
#
# This declares a provider, and specifies its preference
# order n. The preference order is the order in which providers are
# searched for requested algorithms (when no specific provider is
# requested). The order is 1-based; 1 is the most preferred, followed
# by 2, and so on.
#
# <className> must specify the subclass of the Provider class whose
# constructor sets the values of various properties that are required
# for the Java Security API to look up the algorithms or other
# facilities implemented by the provider.
#
# There must be at least one provider specification in java.security.
# There is a default provider that comes standard with the JDK. It
# is called the "SUN" provider, and its Provider subclass
# named Sun appears in the sun.security.provider package. Thus, the
# "SUN" provider is registered via the following:
#
# security.provider.1=sun.security.provider.Sun
#
# (The number 1 is used for the default provider.)
#
# Note: Providers can be dynamically registered instead by calls to
# either the addProvider or insertProviderAt method in the Security
# class.
#
# List of providers and their preference orders (see above):
#
security.provider.1=sun.security.provider.Sun
security.provider.2=sun.security.rsa.SunRsaSign
security.provider.3=sun.security.ec.SunEC
security.provider.4=com.sun.net.ssl.internal.ssl.Provider
security.provider.5=com.sun.crypto.provider.SunJCE
security.provider.6=sun.security.jgss.SunProvider
security.provider.7=com.sun.security.sasl.Provider
security.provider.8=org.jcp.xml.dsig.internal.dom.XMLDSigRI
security.provider.9=sun.security.smartcardio.SunPCSC
security.provider.10=apple.security.AppleProvider
#
# Sun Provider SecureRandom seed source.
#
# Select the primary source of seed data for the "SHA1PRNG" and
# "NativePRNG" SecureRandom implementations in the "Sun" provider.
# (Other SecureRandom implementations might also use this property.)
#
# On Unix-like systems (for example, Solaris/Linux/MacOS), the
# "NativePRNG" and "SHA1PRNG" implementations obtains seed data from
# special device files such as file:/dev/random.
#
# On Windows systems, specifying the URLs "file:/dev/random" or
# "file:/dev/urandom" will enable the native Microsoft CryptoAPI seeding
# mechanism for SHA1PRNG.
#
# By default, an attempt is made to use the entropy gathering device
# specified by the "securerandom.source" Security property. If an
# exception occurs while accessing the specified URL:
#
# SHA1PRNG:
# the traditional system/thread activity algorithm will be used.
#
# NativePRNG:
# a default value of /dev/random will be used. If neither
# are available, the implementation will be disabled.
# "file" is the only currently supported protocol type.
#
# The entropy gathering device can also be specified with the System
# property "java.security.egd". For example:
#
# % java -Djava.security.egd=file:/dev/random MainClass
#
# Specifying this System property will override the
# "securerandom.source" Security property.
#
# In addition, if "file:/dev/random" or "file:/dev/urandom" is
# specified, the "NativePRNG" implementation will be more preferred than
# SHA1PRNG in the Sun provider.
#
securerandom.source=file:/dev/random
#
# A list of known strong SecureRandom implementations.
#
# To help guide applications in selecting a suitable strong
# java.security.SecureRandom implementation, Java distributions should
# indicate a list of known strong implementations using the property.
#
# This is a comma-separated list of algorithm and/or algorithm:provider
# entries.
#
securerandom.strongAlgorithms=NativePRNGBlocking:SUN
#
# Class to instantiate as the javax.security.auth.login.Configuration
# provider.
#
login.configuration.provider=sun.security.provider.ConfigFile
#
# Default login configuration file
#
#login.config.url.1=file:${user.home}/.java.login.config
#
# Class to instantiate as the system Policy. This is the name of the class
# that will be used as the Policy object.
#
policy.provider=sun.security.provider.PolicyFile
# The default is to have a single system-wide policy file,
# and a policy file in the user's home directory.
policy.url.1=file:${java.home}/lib/security/java.policy
policy.url.2=file:${user.home}/.java.policy
# whether or not we expand properties in the policy file
# if this is set to false, properties (${...}) will not be expanded in policy
# files.
policy.expandProperties=true
# whether or not we allow an extra policy to be passed on the command line
# with -Djava.security.policy=somefile. Comment out this line to disable
# this feature.
policy.allowSystemProperty=true
# whether or not we look into the IdentityScope for trusted Identities
# when encountering a 1.1 signed JAR file. If the identity is found
# and is trusted, we grant it AllPermission.
policy.ignoreIdentityScope=false
#
# Default keystore type.
#
keystore.type=jks
#
# List of comma-separated packages that start with or equal this string
# will cause a security exception to be thrown when
# passed to checkPackageAccess unless the
# corresponding RuntimePermission ("accessClassInPackage."+package) has
# been granted.
package.access=sun.,\
com.sun.xml.internal.,\
com.sun.imageio.,\
com.sun.istack.internal.,\
com.sun.jmx.,\
com.sun.media.sound.,\
com.sun.naming.internal.,\
com.sun.proxy.,\
com.sun.corba.se.,\
com.sun.org.apache.bcel.internal.,\
com.sun.org.apache.regexp.internal.,\
com.sun.org.apache.xerces.internal.,\
com.sun.org.apache.xpath.internal.,\
com.sun.org.apache.xalan.internal.extensions.,\
com.sun.org.apache.xalan.internal.lib.,\
com.sun.org.apache.xalan.internal.res.,\
com.sun.org.apache.xalan.internal.templates.,\
com.sun.org.apache.xalan.internal.utils.,\
com.sun.org.apache.xalan.internal.xslt.,\
com.sun.org.apache.xalan.internal.xsltc.cmdline.,\
com.sun.org.apache.xalan.internal.xsltc.compiler.,\
com.sun.org.apache.xalan.internal.xsltc.trax.,\
com.sun.org.apache.xalan.internal.xsltc.util.,\
com.sun.org.apache.xml.internal.res.,\
com.sun.org.apache.xml.internal.security.,\
com.sun.org.apache.xml.internal.serializer.utils.,\
com.sun.org.apache.xml.internal.utils.,\
com.sun.org.glassfish.,\
com.oracle.xmlns.internal.,\
com.oracle.webservices.internal.,\
org.jcp.xml.dsig.internal.,\
jdk.internal.,\
jdk.nashorn.internal.,\
jdk.nashorn.tools.,\
com.sun.activation.registries.,\
apple.
#
# List of comma-separated packages that start with or equal this string
# will cause a security exception to be thrown when
# passed to checkPackageDefinition unless the
# corresponding RuntimePermission ("defineClassInPackage."+package) has
# been granted.
#
# by default, none of the class loaders supplied with the JDK call
# checkPackageDefinition.
#
package.definition=sun.,\
com.sun.xml.internal.,\
com.sun.imageio.,\
com.sun.istack.internal.,\
com.sun.jmx.,\
com.sun.media.sound.,\
com.sun.naming.internal.,\
com.sun.proxy.,\
com.sun.corba.se.,\
com.sun.org.apache.bcel.internal.,\
com.sun.org.apache.regexp.internal.,\
com.sun.org.apache.xerces.internal.,\
com.sun.org.apache.xpath.internal.,\
com.sun.org.apache.xalan.internal.extensions.,\
com.sun.org.apache.xalan.internal.lib.,\
com.sun.org.apache.xalan.internal.res.,\
com.sun.org.apache.xalan.internal.templates.,\
com.sun.org.apache.xalan.internal.utils.,\
com.sun.org.apache.xalan.internal.xslt.,\
com.sun.org.apache.xalan.internal.xsltc.cmdline.,\
com.sun.org.apache.xalan.internal.xsltc.compiler.,\
com.sun.org.apache.xalan.internal.xsltc.trax.,\
com.sun.org.apache.xalan.internal.xsltc.util.,\
com.sun.org.apache.xml.internal.res.,\
com.sun.org.apache.xml.internal.security.,\
com.sun.org.apache.xml.internal.serializer.utils.,\
com.sun.org.apache.xml.internal.utils.,\
com.sun.org.glassfish.,\
com.oracle.xmlns.internal.,\
com.oracle.webservices.internal.,\
org.jcp.xml.dsig.internal.,\
jdk.internal.,\
jdk.nashorn.internal.,\
jdk.nashorn.tools.,\
com.sun.activation.registries.,\
apple.
#
# Determines whether this properties file can be appended to
# or overridden on the command line via -Djava.security.properties
#
security.overridePropertiesFile=true
#
# Determines the default key and trust manager factory algorithms for
# the javax.net.ssl package.
#
ssl.KeyManagerFactory.algorithm=SunX509
ssl.TrustManagerFactory.algorithm=PKIX
#
# The Java-level namelookup cache policy for successful lookups:
#
# any negative value: caching forever
# any positive value: the number of seconds to cache an address for
# zero: do not cache
#
# default value is forever (FOREVER). For security reasons, this
# caching is made forever when a security manager is set. When a security
# manager is not set, the default behavior in this implementation
# is to cache for 30 seconds.
#
# NOTE: setting this to anything other than the default value can have
# serious security implications. Do not set it unless
# you are sure you are not exposed to DNS spoofing attack.
#
#networkaddress.cache.ttl=-1
# The Java-level namelookup cache policy for failed lookups:
#
# any negative value: cache forever
# any positive value: the number of seconds to cache negative lookup results
# zero: do not cache
#
# In some Microsoft Windows networking environments that employ
# the WINS name service in addition to DNS, name service lookups
# that fail may take a noticeably long time to return (approx. 5 seconds).
# For this reason the default caching policy is to maintain these
# results for 10 seconds.
#
#
networkaddress.cache.negative.ttl=10
#
# Properties to configure OCSP for certificate revocation checking
#
# Enable OCSP
#
# By default, OCSP is not used for certificate revocation checking.
# This property enables the use of OCSP when set to the value "true".
#
# NOTE: SocketPermission is required to connect to an OCSP responder.
#
# Example,
# ocsp.enable=true
#
# Location of the OCSP responder
#
# By default, the location of the OCSP responder is determined implicitly
# from the certificate being validated. This property explicitly specifies
# the location of the OCSP responder. The property is used when the
# Authority Information Access extension (defined in RFC 3280) is absent
# from the certificate or when it requires overriding.
#
# Example,
# ocsp.responderURL=http://ocsp.example.net:80
#
# Subject name of the OCSP responder's certificate
#
# By default, the certificate of the OCSP responder is that of the issuer
# of the certificate being validated. This property identifies the certificate
# of the OCSP responder when the default does not apply. Its value is a string
# distinguished name (defined in RFC 2253) which identifies a certificate in
# the set of certificates supplied during cert path validation. In cases where
# the subject name alone is not sufficient to uniquely identify the certificate
# then both the "ocsp.responderCertIssuerName" and
# "ocsp.responderCertSerialNumber" properties must be used instead. When this
# property is set then those two properties are ignored.
#
# Example,
# ocsp.responderCertSubjectName="CN=OCSP Responder, O=XYZ Corp"
#
# Issuer name of the OCSP responder's certificate
#
# By default, the certificate of the OCSP responder is that of the issuer
# of the certificate being validated. This property identifies the certificate
# of the OCSP responder when the default does not apply. Its value is a string
# distinguished name (defined in RFC 2253) which identifies a certificate in
# the set of certificates supplied during cert path validation. When this
# property is set then the "ocsp.responderCertSerialNumber" property must also
# be set. When the "ocsp.responderCertSubjectName" property is set then this
# property is ignored.
#
# Example,
# ocsp.responderCertIssuerName="CN=Enterprise CA, O=XYZ Corp"
#
# Serial number of the OCSP responder's certificate
#
# By default, the certificate of the OCSP responder is that of the issuer
# of the certificate being validated. This property identifies the certificate
# of the OCSP responder when the default does not apply. Its value is a string
# of hexadecimal digits (colon or space separators may be present) which
# identifies a certificate in the set of certificates supplied during cert path
# validation. When this property is set then the "ocsp.responderCertIssuerName"
# property must also be set. When the "ocsp.responderCertSubjectName" property
# is set then this property is ignored.
#
# Example,
# ocsp.responderCertSerialNumber=2A:FF:00
#
# Policy for failed Kerberos KDC lookups:
#
# When a KDC is unavailable (network error, service failure, etc), it is
# put inside a blacklist and accessed less often for future requests. The
# value (case-insensitive) for this policy can be:
#
# tryLast
# KDCs in the blacklist are always tried after those not on the list.
#
# tryLess[:max_retries,timeout]
# KDCs in the blacklist are still tried by their order in the configuration,
# but with smaller max_retries and timeout values. max_retries and timeout
# are optional numerical parameters (default 1 and 5000, which means once
# and 5 seconds). Please notes that if any of the values defined here is
# more than what is defined in krb5.conf, it will be ignored.
#
# Whenever a KDC is detected as available, it is removed from the blacklist.
# The blacklist is reset when krb5.conf is reloaded. You can add
# refreshKrb5Config=true to a JAAS configuration file so that krb5.conf is
# reloaded whenever a JAAS authentication is attempted.
#
# Example,
# krb5.kdc.bad.policy = tryLast
# krb5.kdc.bad.policy = tryLess:2,2000
krb5.kdc.bad.policy = tryLast
# Algorithm restrictions for certification path (CertPath) processing
#
# In some environments, certain algorithms or key lengths may be undesirable
# for certification path building and validation. For example, "MD2" is
# generally no longer considered to be a secure hash algorithm. This section
# describes the mechanism for disabling algorithms based on algorithm name
# and/or key length. This includes algorithms used in certificates, as well
# as revocation information such as CRLs and signed OCSP Responses.
#
# The syntax of the disabled algorithm string is described as this Java
# BNF-style:
# DisabledAlgorithms:
# " DisabledAlgorithm { , DisabledAlgorithm } "
#
# DisabledAlgorithm:
# AlgorithmName [Constraint]
#
# AlgorithmName:
# (see below)
#
# Constraint:
# KeySizeConstraint
#
# KeySizeConstraint:
# keySize Operator DecimalInteger
#
# Operator:
# <= | < | == | != | >= | >
#
# DecimalInteger:
# DecimalDigits
#
# DecimalDigits:
# DecimalDigit {DecimalDigit}
#
# DecimalDigit: one of
# 1 2 3 4 5 6 7 8 9 0
#
# The "AlgorithmName" is the standard algorithm name of the disabled
# algorithm. See "Java Cryptography Architecture Standard Algorithm Name
# Documentation" for information about Standard Algorithm Names. Matching
# is performed using a case-insensitive sub-element matching rule. (For
# example, in "SHA1withECDSA" the sub-elements are "SHA1" for hashing and
# "ECDSA" for signatures.) If the assertion "AlgorithmName" is a
# sub-element of the certificate algorithm name, the algorithm will be
# rejected during certification path building and validation. For example,
# the assertion algorithm name "DSA" will disable all certificate algorithms
# that rely on DSA, such as NONEwithDSA, SHA1withDSA. However, the assertion
# will not disable algorithms related to "ECDSA".
#
# A "Constraint" provides further guidance for the algorithm being specified.
# The "KeySizeConstraint" requires a key of a valid size range if the
# "AlgorithmName" is of a key algorithm. The "DecimalInteger" indicates the
# key size specified in number of bits. For example, "RSA keySize <= 1024"
# indicates that any RSA key with key size less than or equal to 1024 bits
# should be disabled, and "RSA keySize < 1024, RSA keySize > 2048" indicates
# that any RSA key with key size less than 1024 or greater than 2048 should
# be disabled. Note that the "KeySizeConstraint" only makes sense to key
# algorithms.
#
# Note: This property is currently used by Oracle's PKIX implementation. It
# is not guaranteed to be examined and used by other implementations.
#
# Example:
# jdk.certpath.disabledAlgorithms=MD2, DSA, RSA keySize < 2048
#
#
jdk.certpath.disabledAlgorithms=MD2, MD5, RSA keySize < 1024
# Algorithm restrictions for Secure Socket Layer/Transport Layer Security
# (SSL/TLS) processing
#
# In some environments, certain algorithms or key lengths may be undesirable
# when using SSL/TLS. This section describes the mechanism for disabling
# algorithms during SSL/TLS security parameters negotiation, including cipher
# suites selection, peer authentication and key exchange mechanisms.
#
# For PKI-based peer authentication and key exchange mechanisms, this list
# of disabled algorithms will also be checked during certification path
# building and validation, including algorithms used in certificates, as
# well as revocation information such as CRLs and signed OCSP Responses.
# This is in addition to the jdk.certpath.disabledAlgorithms property above.
#
# See the specification of "jdk.certpath.disabledAlgorithms" for the
# syntax of the disabled algorithm string.
#
# Note: This property is currently used by Oracle's JSSE implementation.
# It is not guaranteed to be examined and used by other implementations.
#
# Example:
# jdk.tls.disabledAlgorithms=MD5, SHA1, DSA, RSA keySize < 2048

@ -1,498 +0,0 @@
#
# This is the "master security properties file".
#
# An alternate java.security properties file may be specified
# from the command line via the system property
#
# -Djava.security.properties=<URL>
#
# This properties file appends to the master security properties file.
# If both properties files specify values for the same key, the value
# from the command-line properties file is selected, as it is the last
# one loaded.
#
# Also, if you specify
#
# -Djava.security.properties==<URL> (2 equals),
#
# then that properties file completely overrides the master security
# properties file.
#
# To disable the ability to specify an additional properties file from
# the command line, set the key security.overridePropertiesFile
# to false in the master security properties file. It is set to true
# by default.
# In this file, various security properties are set for use by
# java.security classes. This is where users can statically register
# Cryptography Package Providers ("providers" for short). The term
# "provider" refers to a package or set of packages that supply a
# concrete implementation of a subset of the cryptography aspects of
# the Java Security API. A provider may, for example, implement one or
# more digital signature algorithms or message digest algorithms.
#
# Each provider must implement a subclass of the Provider class.
# To register a provider in this master security properties file,
# specify the Provider subclass name and priority in the format
#
# security.provider.<n>=<className>
#
# This declares a provider, and specifies its preference
# order n. The preference order is the order in which providers are
# searched for requested algorithms (when no specific provider is
# requested). The order is 1-based; 1 is the most preferred, followed
# by 2, and so on.
#
# <className> must specify the subclass of the Provider class whose
# constructor sets the values of various properties that are required
# for the Java Security API to look up the algorithms or other
# facilities implemented by the provider.
#
# There must be at least one provider specification in java.security.
# There is a default provider that comes standard with the JDK. It
# is called the "SUN" provider, and its Provider subclass
# named Sun appears in the sun.security.provider package. Thus, the
# "SUN" provider is registered via the following:
#
# security.provider.1=sun.security.provider.Sun
#
# (The number 1 is used for the default provider.)
#
# Note: Providers can be dynamically registered instead by calls to
# either the addProvider or insertProviderAt method in the Security
# class.
#
# List of providers and their preference orders (see above):
#
security.provider.1=com.oracle.security.ucrypto.UcryptoProvider ${java.home}/lib/security/ucrypto-solaris.cfg
security.provider.2=sun.security.pkcs11.SunPKCS11 ${java.home}/lib/security/sunpkcs11-solaris.cfg
security.provider.3=sun.security.provider.Sun
security.provider.4=sun.security.rsa.SunRsaSign
security.provider.5=sun.security.ec.SunEC
security.provider.6=com.sun.net.ssl.internal.ssl.Provider
security.provider.7=com.sun.crypto.provider.SunJCE
security.provider.8=sun.security.jgss.SunProvider
security.provider.9=com.sun.security.sasl.Provider
security.provider.10=org.jcp.xml.dsig.internal.dom.XMLDSigRI
security.provider.11=sun.security.smartcardio.SunPCSC
#
# Sun Provider SecureRandom seed source.
#
# Select the primary source of seed data for the "SHA1PRNG" and
# "NativePRNG" SecureRandom implementations in the "Sun" provider.
# (Other SecureRandom implementations might also use this property.)
#
# On Unix-like systems (for example, Solaris/Linux/MacOS), the
# "NativePRNG" and "SHA1PRNG" implementations obtains seed data from
# special device files such as file:/dev/random.
#
# On Windows systems, specifying the URLs "file:/dev/random" or
# "file:/dev/urandom" will enable the native Microsoft CryptoAPI seeding
# mechanism for SHA1PRNG.
#
# By default, an attempt is made to use the entropy gathering device
# specified by the "securerandom.source" Security property. If an
# exception occurs while accessing the specified URL:
#
# SHA1PRNG:
# the traditional system/thread activity algorithm will be used.
#
# NativePRNG:
# a default value of /dev/random will be used. If neither
# are available, the implementation will be disabled.
# "file" is the only currently supported protocol type.
#
# The entropy gathering device can also be specified with the System
# property "java.security.egd". For example:
#
# % java -Djava.security.egd=file:/dev/random MainClass
#
# Specifying this System property will override the
# "securerandom.source" Security property.
#
# In addition, if "file:/dev/random" or "file:/dev/urandom" is
# specified, the "NativePRNG" implementation will be more preferred than
# SHA1PRNG in the Sun provider.
#
securerandom.source=file:/dev/random
#
# A list of known strong SecureRandom implementations.
#
# To help guide applications in selecting a suitable strong
# java.security.SecureRandom implementation, Java distributions should
# indicate a list of known strong implementations using the property.
#
# This is a comma-separated list of algorithm and/or algorithm:provider
# entries.
#
securerandom.strongAlgorithms=NativePRNGBlocking:SUN
#
# Class to instantiate as the javax.security.auth.login.Configuration
# provider.
#
login.configuration.provider=sun.security.provider.ConfigFile
#
# Default login configuration file
#
#login.config.url.1=file:${user.home}/.java.login.config
#
# Class to instantiate as the system Policy. This is the name of the class
# that will be used as the Policy object.
#
policy.provider=sun.security.provider.PolicyFile
# The default is to have a single system-wide policy file,
# and a policy file in the user's home directory.
policy.url.1=file:${java.home}/lib/security/java.policy
policy.url.2=file:${user.home}/.java.policy
# whether or not we expand properties in the policy file
# if this is set to false, properties (${...}) will not be expanded in policy
# files.
policy.expandProperties=true
# whether or not we allow an extra policy to be passed on the command line
# with -Djava.security.policy=somefile. Comment out this line to disable
# this feature.
policy.allowSystemProperty=true
# whether or not we look into the IdentityScope for trusted Identities
# when encountering a 1.1 signed JAR file. If the identity is found
# and is trusted, we grant it AllPermission.
policy.ignoreIdentityScope=false
#
# Default keystore type.
#
keystore.type=jks
#
# List of comma-separated packages that start with or equal this string
# will cause a security exception to be thrown when
# passed to checkPackageAccess unless the
# corresponding RuntimePermission ("accessClassInPackage."+package) has
# been granted.
package.access=sun.,\
com.sun.xml.internal.,\
com.sun.imageio.,\
com.sun.istack.internal.,\
com.sun.jmx.,\
com.sun.media.sound.,\
com.sun.naming.internal.,\
com.sun.proxy.,\
com.sun.corba.se.,\
com.sun.org.apache.bcel.internal.,\
com.sun.org.apache.regexp.internal.,\
com.sun.org.apache.xerces.internal.,\
com.sun.org.apache.xpath.internal.,\
com.sun.org.apache.xalan.internal.extensions.,\
com.sun.org.apache.xalan.internal.lib.,\
com.sun.org.apache.xalan.internal.res.,\
com.sun.org.apache.xalan.internal.templates.,\
com.sun.org.apache.xalan.internal.utils.,\
com.sun.org.apache.xalan.internal.xslt.,\
com.sun.org.apache.xalan.internal.xsltc.cmdline.,\
com.sun.org.apache.xalan.internal.xsltc.compiler.,\
com.sun.org.apache.xalan.internal.xsltc.trax.,\
com.sun.org.apache.xalan.internal.xsltc.util.,\
com.sun.org.apache.xml.internal.res.,\
com.sun.org.apache.xml.internal.security.,\
com.sun.org.apache.xml.internal.serializer.utils.,\
com.sun.org.apache.xml.internal.utils.,\
com.sun.org.glassfish.,\
com.oracle.xmlns.internal.,\
com.oracle.webservices.internal.,\
org.jcp.xml.dsig.internal.,\
jdk.internal.,\
jdk.nashorn.internal.,\
jdk.nashorn.tools.,\
com.sun.activation.registries.
#
# List of comma-separated packages that start with or equal this string
# will cause a security exception to be thrown when
# passed to checkPackageDefinition unless the
# corresponding RuntimePermission ("defineClassInPackage."+package) has
# been granted.
#
# by default, none of the class loaders supplied with the JDK call
# checkPackageDefinition.
#
package.definition=sun.,\
com.sun.xml.internal.,\
com.sun.imageio.,\
com.sun.istack.internal.,\
com.sun.jmx.,\
com.sun.media.sound.,\
com.sun.naming.internal.,\
com.sun.proxy.,\
com.sun.corba.se.,\
com.sun.org.apache.bcel.internal.,\
com.sun.org.apache.regexp.internal.,\
com.sun.org.apache.xerces.internal.,\
com.sun.org.apache.xpath.internal.,\
com.sun.org.apache.xalan.internal.extensions.,\
com.sun.org.apache.xalan.internal.lib.,\
com.sun.org.apache.xalan.internal.res.,\
com.sun.org.apache.xalan.internal.templates.,\
com.sun.org.apache.xalan.internal.utils.,\
com.sun.org.apache.xalan.internal.xslt.,\
com.sun.org.apache.xalan.internal.xsltc.cmdline.,\
com.sun.org.apache.xalan.internal.xsltc.compiler.,\
com.sun.org.apache.xalan.internal.xsltc.trax.,\
com.sun.org.apache.xalan.internal.xsltc.util.,\
com.sun.org.apache.xml.internal.res.,\
com.sun.org.apache.xml.internal.security.,\
com.sun.org.apache.xml.internal.serializer.utils.,\
com.sun.org.apache.xml.internal.utils.,\
com.sun.org.glassfish.,\
com.oracle.xmlns.internal.,\
com.oracle.webservices.internal.,\
org.jcp.xml.dsig.internal.,\
jdk.internal.,\
jdk.nashorn.internal.,\
jdk.nashorn.tools.,\
com.sun.activation.registries.
#
# Determines whether this properties file can be appended to
# or overridden on the command line via -Djava.security.properties
#
security.overridePropertiesFile=true
#
# Determines the default key and trust manager factory algorithms for
# the javax.net.ssl package.
#
ssl.KeyManagerFactory.algorithm=SunX509
ssl.TrustManagerFactory.algorithm=PKIX
#
# The Java-level namelookup cache policy for successful lookups:
#
# any negative value: caching forever
# any positive value: the number of seconds to cache an address for
# zero: do not cache
#
# default value is forever (FOREVER). For security reasons, this
# caching is made forever when a security manager is set. When a security
# manager is not set, the default behavior in this implementation
# is to cache for 30 seconds.
#
# NOTE: setting this to anything other than the default value can have
# serious security implications. Do not set it unless
# you are sure you are not exposed to DNS spoofing attack.
#
#networkaddress.cache.ttl=-1
# The Java-level namelookup cache policy for failed lookups:
#
# any negative value: cache forever
# any positive value: the number of seconds to cache negative lookup results
# zero: do not cache
#
# In some Microsoft Windows networking environments that employ
# the WINS name service in addition to DNS, name service lookups
# that fail may take a noticeably long time to return (approx. 5 seconds).
# For this reason the default caching policy is to maintain these
# results for 10 seconds.
#
#
networkaddress.cache.negative.ttl=10
#
# Properties to configure OCSP for certificate revocation checking
#
# Enable OCSP
#
# By default, OCSP is not used for certificate revocation checking.
# This property enables the use of OCSP when set to the value "true".
#
# NOTE: SocketPermission is required to connect to an OCSP responder.
#
# Example,
# ocsp.enable=true
#
# Location of the OCSP responder
#
# By default, the location of the OCSP responder is determined implicitly
# from the certificate being validated. This property explicitly specifies
# the location of the OCSP responder. The property is used when the
# Authority Information Access extension (defined in RFC 3280) is absent
# from the certificate or when it requires overriding.
#
# Example,
# ocsp.responderURL=http://ocsp.example.net:80
#
# Subject name of the OCSP responder's certificate
#
# By default, the certificate of the OCSP responder is that of the issuer
# of the certificate being validated. This property identifies the certificate
# of the OCSP responder when the default does not apply. Its value is a string
# distinguished name (defined in RFC 2253) which identifies a certificate in
# the set of certificates supplied during cert path validation. In cases where
# the subject name alone is not sufficient to uniquely identify the certificate
# then both the "ocsp.responderCertIssuerName" and
# "ocsp.responderCertSerialNumber" properties must be used instead. When this
# property is set then those two properties are ignored.
#
# Example,
# ocsp.responderCertSubjectName="CN=OCSP Responder, O=XYZ Corp"
#
# Issuer name of the OCSP responder's certificate
#
# By default, the certificate of the OCSP responder is that of the issuer
# of the certificate being validated. This property identifies the certificate
# of the OCSP responder when the default does not apply. Its value is a string
# distinguished name (defined in RFC 2253) which identifies a certificate in
# the set of certificates supplied during cert path validation. When this
# property is set then the "ocsp.responderCertSerialNumber" property must also
# be set. When the "ocsp.responderCertSubjectName" property is set then this
# property is ignored.
#
# Example,
# ocsp.responderCertIssuerName="CN=Enterprise CA, O=XYZ Corp"
#
# Serial number of the OCSP responder's certificate
#
# By default, the certificate of the OCSP responder is that of the issuer
# of the certificate being validated. This property identifies the certificate
# of the OCSP responder when the default does not apply. Its value is a string
# of hexadecimal digits (colon or space separators may be present) which
# identifies a certificate in the set of certificates supplied during cert path
# validation. When this property is set then the "ocsp.responderCertIssuerName"
# property must also be set. When the "ocsp.responderCertSubjectName" property
# is set then this property is ignored.
#
# Example,
# ocsp.responderCertSerialNumber=2A:FF:00
#
# Policy for failed Kerberos KDC lookups:
#
# When a KDC is unavailable (network error, service failure, etc), it is
# put inside a blacklist and accessed less often for future requests. The
# value (case-insensitive) for this policy can be:
#
# tryLast
# KDCs in the blacklist are always tried after those not on the list.
#
# tryLess[:max_retries,timeout]
# KDCs in the blacklist are still tried by their order in the configuration,
# but with smaller max_retries and timeout values. max_retries and timeout
# are optional numerical parameters (default 1 and 5000, which means once
# and 5 seconds). Please notes that if any of the values defined here is
# more than what is defined in krb5.conf, it will be ignored.
#
# Whenever a KDC is detected as available, it is removed from the blacklist.
# The blacklist is reset when krb5.conf is reloaded. You can add
# refreshKrb5Config=true to a JAAS configuration file so that krb5.conf is
# reloaded whenever a JAAS authentication is attempted.
#
# Example,
# krb5.kdc.bad.policy = tryLast
# krb5.kdc.bad.policy = tryLess:2,2000
krb5.kdc.bad.policy = tryLast
# Algorithm restrictions for certification path (CertPath) processing
#
# In some environments, certain algorithms or key lengths may be undesirable
# for certification path building and validation. For example, "MD2" is
# generally no longer considered to be a secure hash algorithm. This section
# describes the mechanism for disabling algorithms based on algorithm name
# and/or key length. This includes algorithms used in certificates, as well
# as revocation information such as CRLs and signed OCSP Responses.
#
# The syntax of the disabled algorithm string is described as this Java
# BNF-style:
# DisabledAlgorithms:
# " DisabledAlgorithm { , DisabledAlgorithm } "
#
# DisabledAlgorithm:
# AlgorithmName [Constraint]
#
# AlgorithmName:
# (see below)
#
# Constraint:
# KeySizeConstraint
#
# KeySizeConstraint:
# keySize Operator DecimalInteger
#
# Operator:
# <= | < | == | != | >= | >
#
# DecimalInteger:
# DecimalDigits
#
# DecimalDigits:
# DecimalDigit {DecimalDigit}
#
# DecimalDigit: one of
# 1 2 3 4 5 6 7 8 9 0
#
# The "AlgorithmName" is the standard algorithm name of the disabled
# algorithm. See "Java Cryptography Architecture Standard Algorithm Name
# Documentation" for information about Standard Algorithm Names. Matching
# is performed using a case-insensitive sub-element matching rule. (For
# example, in "SHA1withECDSA" the sub-elements are "SHA1" for hashing and
# "ECDSA" for signatures.) If the assertion "AlgorithmName" is a
# sub-element of the certificate algorithm name, the algorithm will be
# rejected during certification path building and validation. For example,
# the assertion algorithm name "DSA" will disable all certificate algorithms
# that rely on DSA, such as NONEwithDSA, SHA1withDSA. However, the assertion
# will not disable algorithms related to "ECDSA".
#
# A "Constraint" provides further guidance for the algorithm being specified.
# The "KeySizeConstraint" requires a key of a valid size range if the
# "AlgorithmName" is of a key algorithm. The "DecimalInteger" indicates the
# key size specified in number of bits. For example, "RSA keySize <= 1024"
# indicates that any RSA key with key size less than or equal to 1024 bits
# should be disabled, and "RSA keySize < 1024, RSA keySize > 2048" indicates
# that any RSA key with key size less than 1024 or greater than 2048 should
# be disabled. Note that the "KeySizeConstraint" only makes sense to key
# algorithms.
#
# Note: This property is currently used by Oracle's PKIX implementation. It
# is not guaranteed to be examined and used by other implementations.
#
# Example:
# jdk.certpath.disabledAlgorithms=MD2, DSA, RSA keySize < 2048
#
#
jdk.certpath.disabledAlgorithms=MD2, MD5, RSA keySize < 1024
# Algorithm restrictions for Secure Socket Layer/Transport Layer Security
# (SSL/TLS) processing
#
# In some environments, certain algorithms or key lengths may be undesirable
# when using SSL/TLS. This section describes the mechanism for disabling
# algorithms during SSL/TLS security parameters negotiation, including cipher
# suites selection, peer authentication and key exchange mechanisms.
#
# For PKI-based peer authentication and key exchange mechanisms, this list
# of disabled algorithms will also be checked during certification path
# building and validation, including algorithms used in certificates, as
# well as revocation information such as CRLs and signed OCSP Responses.
# This is in addition to the jdk.certpath.disabledAlgorithms property above.
#
# See the specification of "jdk.certpath.disabledAlgorithms" for the
# syntax of the disabled algorithm string.
#
# Note: This property is currently used by Oracle's JSSE implementation.
# It is not guaranteed to be examined and used by other implementations.
#
# Example:
# jdk.tls.disabledAlgorithms=MD5, SHA1, DSA, RSA keySize < 2048

@ -92,8 +92,6 @@ public class CheckPackageAccess {
String osName = System.getProperty("os.name");
if (osName.contains("OS X")) {
pkgs.add("apple."); // add apple package for OS X
} else if (osName.startsWith("Windows")) {
pkgs.add("com.sun.java.accessibility.");
}
List<String> jspkgs =

@ -0,0 +1,98 @@
/*
* Copyright (c) 2014, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
/*
* @test
* @bug 6997010
* @summary Consolidate java.security files into one file with modifications
*/
import java.security.Provider;
import java.security.Security;
import java.util.ArrayList;
import java.util.Iterator;
import java.util.List;
/*
* The main benefit of this test is to catch merge errors or other types
* of issues where one or more of the security providers are accidentally
* removed. This is why the known security providers have to
* be explicitly listed below.
*/
public class CheckSecurityProvider {
public static void main(String[] args) throws Exception {
String os = System.getProperty("os.name");
/*
* This array should be updated whenever new security providers
* are added to the the java.security file.
* NOTE: it should be in the same order as the java.security file
*/
List<String> expected = new ArrayList<>();
if (os.equals("SunOS")) {
if (!isOpenJDKOnly()) {
expected.add("com.oracle.security.ucrypto.UcryptoProvider");
}
expected.add("sun.security.pkcs11.SunPKCS11");
}
expected.add("sun.security.provider.Sun");
expected.add("sun.security.rsa.SunRsaSign");
expected.add("sun.security.ec.SunEC");
expected.add("com.sun.net.ssl.internal.ssl.Provider");
expected.add("com.sun.crypto.provider.SunJCE");
expected.add("sun.security.jgss.SunProvider");
expected.add("com.sun.security.sasl.Provider");
expected.add("org.jcp.xml.dsig.internal.dom.XMLDSigRI");
expected.add("sun.security.smartcardio.SunPCSC");
if (os.startsWith("Windows")) {
expected.add("sun.security.mscapi.SunMSCAPI");
}
if (os.contains("OS X")) {
expected.add("apple.security.AppleProvider");
}
Iterator<String> iter = expected.iterator();
for (Provider p: Security.getProviders()) {
if (!iter.hasNext()) {
throw new Exception("Less expected");
}
String n1 = iter.next();
String n2 = p.getClass().getName();
if (!n1.equals(n2)) {
throw new Exception("Expected " + n1 + ", actual " + n2);
}
}
if (iter.hasNext()) {
throw new Exception("More expected");
}
}
// Copied from CheckPackageAccess.java in the same directory
private static boolean isOpenJDKOnly() {
String prop = System.getProperty("java.runtime.name");
return prop != null && prop.startsWith("OpenJDK");
}
}