8256181: Remove Allocation of old generation on alternate memory devices functionality

Reviewed-by: ayang, iignatyev, iklam
This commit is contained in:
Thomas Schatzl 2020-11-12 14:05:50 +00:00
parent 4df8abc200
commit bd8693a084
50 changed files with 132 additions and 2311 deletions

View File

@ -4624,7 +4624,7 @@ jint os::init_2(void) {
// initialize thread priority policy // initialize thread priority policy
prio_init(); prio_init();
if (!FLAG_IS_DEFAULT(AllocateHeapAt) || !FLAG_IS_DEFAULT(AllocateOldGenAt)) { if (!FLAG_IS_DEFAULT(AllocateHeapAt)) {
set_coredump_filter(DAX_SHARED_BIT); set_coredump_filter(DAX_SHARED_BIT);
} }

View File

@ -36,9 +36,6 @@
#include "runtime/globals_extension.hpp" #include "runtime/globals_extension.hpp"
#include "runtime/java.hpp" #include "runtime/java.hpp"
static const double MaxRamFractionForYoung = 0.8;
size_t G1Arguments::MaxMemoryForYoung;
static size_t calculate_heap_alignment(size_t space_alignment) { static size_t calculate_heap_alignment(size_t space_alignment) {
size_t card_table_alignment = CardTableRS::ct_max_alignment_constraint(); size_t card_table_alignment = CardTableRS::ct_max_alignment_constraint();
size_t page_size = UseLargePages ? os::large_page_size() : os::vm_page_size(); size_t page_size = UseLargePages ? os::large_page_size() : os::vm_page_size();
@ -194,85 +191,15 @@ void G1Arguments::initialize() {
initialize_verification_types(); initialize_verification_types();
} }
static size_t calculate_reasonable_max_memory_for_young(FormatBuffer<100> &calc_str, double max_ram_fraction_for_young) {
julong phys_mem;
// If MaxRam is specified, we use that as maximum physical memory available.
if (FLAG_IS_DEFAULT(MaxRAM)) {
phys_mem = os::physical_memory();
calc_str.append("Physical_Memory");
} else {
phys_mem = (julong)MaxRAM;
calc_str.append("MaxRAM");
}
julong reasonable_max = phys_mem;
// If either MaxRAMFraction or MaxRAMPercentage is specified, we use them to calculate
// reasonable max size of young generation.
if (!FLAG_IS_DEFAULT(MaxRAMFraction)) {
reasonable_max = (julong)(phys_mem / MaxRAMFraction);
calc_str.append(" / MaxRAMFraction");
} else if (!FLAG_IS_DEFAULT(MaxRAMPercentage)) {
reasonable_max = (julong)((phys_mem * MaxRAMPercentage) / 100);
calc_str.append(" * MaxRAMPercentage / 100");
} else {
// We use our own fraction to calculate max size of young generation.
reasonable_max = phys_mem * max_ram_fraction_for_young;
calc_str.append(" * %0.2f", max_ram_fraction_for_young);
}
return (size_t)reasonable_max;
}
void G1Arguments::initialize_heap_flags_and_sizes() { void G1Arguments::initialize_heap_flags_and_sizes() {
if (AllocateOldGenAt != NULL) {
initialize_heterogeneous();
}
GCArguments::initialize_heap_flags_and_sizes(); GCArguments::initialize_heap_flags_and_sizes();
} }
void G1Arguments::initialize_heterogeneous() {
FormatBuffer<100> calc_str("");
MaxMemoryForYoung = calculate_reasonable_max_memory_for_young(calc_str, MaxRamFractionForYoung);
if (MaxNewSize > MaxMemoryForYoung) {
if (FLAG_IS_CMDLINE(MaxNewSize)) {
log_warning(gc, ergo)("Setting MaxNewSize to " SIZE_FORMAT " based on dram available (calculation = align(%s))",
MaxMemoryForYoung, calc_str.buffer());
} else {
log_info(gc, ergo)("Setting MaxNewSize to " SIZE_FORMAT " based on dram available (calculation = align(%s)). "
"Dram usage can be lowered by setting MaxNewSize to a lower value", MaxMemoryForYoung, calc_str.buffer());
}
MaxNewSize = MaxMemoryForYoung;
}
if (NewSize > MaxMemoryForYoung) {
if (FLAG_IS_CMDLINE(NewSize)) {
log_warning(gc, ergo)("Setting NewSize to " SIZE_FORMAT " based on dram available (calculation = align(%s))",
MaxMemoryForYoung, calc_str.buffer());
}
NewSize = MaxMemoryForYoung;
}
}
CollectedHeap* G1Arguments::create_heap() { CollectedHeap* G1Arguments::create_heap() {
return new G1CollectedHeap(); return new G1CollectedHeap();
} }
bool G1Arguments::is_heterogeneous_heap() {
return AllocateOldGenAt != NULL;
}
size_t G1Arguments::reasonable_max_memory_for_young() {
return MaxMemoryForYoung;
}
size_t G1Arguments::heap_reserved_size_bytes() { size_t G1Arguments::heap_reserved_size_bytes() {
return (is_heterogeneous_heap() ? 2 : 1) * MaxHeapSize;
}
size_t G1Arguments::heap_max_size_bytes() {
return MaxHeapSize; return MaxHeapSize;
} }

View File

@ -33,9 +33,6 @@ class CollectedHeap;
class G1Arguments : public GCArguments { class G1Arguments : public GCArguments {
friend class G1HeapVerifierTest; friend class G1HeapVerifierTest;
private:
static size_t MaxMemoryForYoung;
static void initialize_mark_stack_size(); static void initialize_mark_stack_size();
static void initialize_verification_types(); static void initialize_verification_types();
static void parse_verification_type(const char* type); static void parse_verification_type(const char* type);
@ -43,18 +40,12 @@ private:
virtual void initialize_alignments(); virtual void initialize_alignments();
virtual void initialize_heap_flags_and_sizes(); virtual void initialize_heap_flags_and_sizes();
void initialize_heterogeneous();
virtual void initialize(); virtual void initialize();
virtual size_t conservative_max_heap_alignment(); virtual size_t conservative_max_heap_alignment();
virtual CollectedHeap* create_heap(); virtual CollectedHeap* create_heap();
public: public:
// Heterogeneous heap support
static bool is_heterogeneous_heap();
static size_t reasonable_max_memory_for_young();
static size_t heap_reserved_size_bytes(); static size_t heap_reserved_size_bytes();
static size_t heap_max_size_bytes();
}; };
#endif // SHARE_GC_G1_G1ARGUMENTS_HPP #endif // SHARE_GC_G1_G1ARGUMENTS_HPP

View File

@ -184,7 +184,7 @@ HeapRegion* G1CollectedHeap::new_region(size_t word_size,
"the only time we use this to allocate a humongous region is " "the only time we use this to allocate a humongous region is "
"when we are allocating a single humongous region"); "when we are allocating a single humongous region");
HeapRegion* res = _hrm->allocate_free_region(type, node_index); HeapRegion* res = _hrm.allocate_free_region(type, node_index);
if (res == NULL && do_expand && _expand_heap_after_alloc_failure) { if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
// Currently, only attempts to allocate GC alloc regions set // Currently, only attempts to allocate GC alloc regions set
@ -204,7 +204,7 @@ HeapRegion* G1CollectedHeap::new_region(size_t word_size,
// always expand the heap by an amount aligned to the heap // always expand the heap by an amount aligned to the heap
// region size, the free list should in theory not be empty. // region size, the free list should in theory not be empty.
// In either case allocate_free_region() will check for NULL. // In either case allocate_free_region() will check for NULL.
res = _hrm->allocate_free_region(type, node_index); res = _hrm.allocate_free_region(type, node_index);
} else { } else {
_expand_heap_after_alloc_failure = false; _expand_heap_after_alloc_failure = false;
} }
@ -346,12 +346,12 @@ HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size) {
uint obj_regions = (uint) humongous_obj_size_in_regions(word_size); uint obj_regions = (uint) humongous_obj_size_in_regions(word_size);
// Policy: First try to allocate a humongous object in the free list. // Policy: First try to allocate a humongous object in the free list.
HeapRegion* humongous_start = _hrm->allocate_humongous(obj_regions); HeapRegion* humongous_start = _hrm.allocate_humongous(obj_regions);
if (humongous_start == NULL) { if (humongous_start == NULL) {
// Policy: We could not find enough regions for the humongous object in the // Policy: We could not find enough regions for the humongous object in the
// free list. Look through the heap to find a mix of free and uncommitted regions. // free list. Look through the heap to find a mix of free and uncommitted regions.
// If so, expand the heap and allocate the humongous object. // If so, expand the heap and allocate the humongous object.
humongous_start = _hrm->expand_and_allocate_humongous(obj_regions); humongous_start = _hrm.expand_and_allocate_humongous(obj_regions);
if (humongous_start != NULL) { if (humongous_start != NULL) {
// We managed to find a region by expanding the heap. // We managed to find a region by expanding the heap.
log_debug(gc, ergo, heap)("Heap expansion (humongous allocation request). Allocation request: " SIZE_FORMAT "B", log_debug(gc, ergo, heap)("Heap expansion (humongous allocation request). Allocation request: " SIZE_FORMAT "B",
@ -545,7 +545,7 @@ void G1CollectedHeap::end_archive_alloc_range(GrowableArray<MemRegion>* ranges,
bool G1CollectedHeap::check_archive_addresses(MemRegion* ranges, size_t count) { bool G1CollectedHeap::check_archive_addresses(MemRegion* ranges, size_t count) {
assert(ranges != NULL, "MemRegion array NULL"); assert(ranges != NULL, "MemRegion array NULL");
assert(count != 0, "No MemRegions provided"); assert(count != 0, "No MemRegions provided");
MemRegion reserved = _hrm->reserved(); MemRegion reserved = _hrm.reserved();
for (size_t i = 0; i < count; i++) { for (size_t i = 0; i < count; i++) {
if (!reserved.contains(ranges[i].start()) || !reserved.contains(ranges[i].last())) { if (!reserved.contains(ranges[i].start()) || !reserved.contains(ranges[i].last())) {
return false; return false;
@ -562,7 +562,7 @@ bool G1CollectedHeap::alloc_archive_regions(MemRegion* ranges,
assert(count != 0, "No MemRegions provided"); assert(count != 0, "No MemRegions provided");
MutexLocker x(Heap_lock); MutexLocker x(Heap_lock);
MemRegion reserved = _hrm->reserved(); MemRegion reserved = _hrm.reserved();
HeapWord* prev_last_addr = NULL; HeapWord* prev_last_addr = NULL;
HeapRegion* prev_last_region = NULL; HeapRegion* prev_last_region = NULL;
@ -592,7 +592,7 @@ bool G1CollectedHeap::alloc_archive_regions(MemRegion* ranges,
// range ended, and adjust the start address so we don't try to allocate // range ended, and adjust the start address so we don't try to allocate
// the same region again. If the current range is entirely within that // the same region again. If the current range is entirely within that
// region, skip it, just adjusting the recorded top. // region, skip it, just adjusting the recorded top.
HeapRegion* start_region = _hrm->addr_to_region(start_address); HeapRegion* start_region = _hrm.addr_to_region(start_address);
if ((prev_last_region != NULL) && (start_region == prev_last_region)) { if ((prev_last_region != NULL) && (start_region == prev_last_region)) {
start_address = start_region->end(); start_address = start_region->end();
if (start_address > last_address) { if (start_address > last_address) {
@ -602,12 +602,12 @@ bool G1CollectedHeap::alloc_archive_regions(MemRegion* ranges,
} }
start_region->set_top(start_address); start_region->set_top(start_address);
curr_range = MemRegion(start_address, last_address + 1); curr_range = MemRegion(start_address, last_address + 1);
start_region = _hrm->addr_to_region(start_address); start_region = _hrm.addr_to_region(start_address);
} }
// Perform the actual region allocation, exiting if it fails. // Perform the actual region allocation, exiting if it fails.
// Then note how much new space we have allocated. // Then note how much new space we have allocated.
if (!_hrm->allocate_containing_regions(curr_range, &commits, workers())) { if (!_hrm.allocate_containing_regions(curr_range, &commits, workers())) {
return false; return false;
} }
increase_used(word_size * HeapWordSize); increase_used(word_size * HeapWordSize);
@ -619,8 +619,8 @@ bool G1CollectedHeap::alloc_archive_regions(MemRegion* ranges,
// Mark each G1 region touched by the range as archive, add it to // Mark each G1 region touched by the range as archive, add it to
// the old set, and set top. // the old set, and set top.
HeapRegion* curr_region = _hrm->addr_to_region(start_address); HeapRegion* curr_region = _hrm.addr_to_region(start_address);
HeapRegion* last_region = _hrm->addr_to_region(last_address); HeapRegion* last_region = _hrm.addr_to_region(last_address);
prev_last_region = last_region; prev_last_region = last_region;
while (curr_region != NULL) { while (curr_region != NULL) {
@ -637,7 +637,7 @@ bool G1CollectedHeap::alloc_archive_regions(MemRegion* ranges,
HeapRegion* next_region; HeapRegion* next_region;
if (curr_region != last_region) { if (curr_region != last_region) {
top = curr_region->end(); top = curr_region->end();
next_region = _hrm->next_region_in_heap(curr_region); next_region = _hrm.next_region_in_heap(curr_region);
} else { } else {
top = last_address + 1; top = last_address + 1;
next_region = NULL; next_region = NULL;
@ -653,7 +653,7 @@ void G1CollectedHeap::fill_archive_regions(MemRegion* ranges, size_t count) {
assert(!is_init_completed(), "Expect to be called at JVM init time"); assert(!is_init_completed(), "Expect to be called at JVM init time");
assert(ranges != NULL, "MemRegion array NULL"); assert(ranges != NULL, "MemRegion array NULL");
assert(count != 0, "No MemRegions provided"); assert(count != 0, "No MemRegions provided");
MemRegion reserved = _hrm->reserved(); MemRegion reserved = _hrm.reserved();
HeapWord *prev_last_addr = NULL; HeapWord *prev_last_addr = NULL;
HeapRegion* prev_last_region = NULL; HeapRegion* prev_last_region = NULL;
@ -673,8 +673,8 @@ void G1CollectedHeap::fill_archive_regions(MemRegion* ranges, size_t count) {
"Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT , "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
p2i(start_address), p2i(prev_last_addr)); p2i(start_address), p2i(prev_last_addr));
HeapRegion* start_region = _hrm->addr_to_region(start_address); HeapRegion* start_region = _hrm.addr_to_region(start_address);
HeapRegion* last_region = _hrm->addr_to_region(last_address); HeapRegion* last_region = _hrm.addr_to_region(last_address);
HeapWord* bottom_address = start_region->bottom(); HeapWord* bottom_address = start_region->bottom();
// Check for a range beginning in the same region in which the // Check for a range beginning in the same region in which the
@ -690,7 +690,7 @@ void G1CollectedHeap::fill_archive_regions(MemRegion* ranges, size_t count) {
guarantee(curr_region->is_archive(), guarantee(curr_region->is_archive(),
"Expected archive region at index %u", curr_region->hrm_index()); "Expected archive region at index %u", curr_region->hrm_index());
if (curr_region != last_region) { if (curr_region != last_region) {
curr_region = _hrm->next_region_in_heap(curr_region); curr_region = _hrm.next_region_in_heap(curr_region);
} else { } else {
curr_region = NULL; curr_region = NULL;
} }
@ -739,7 +739,7 @@ void G1CollectedHeap::dealloc_archive_regions(MemRegion* ranges, size_t count) {
assert(!is_init_completed(), "Expect to be called at JVM init time"); assert(!is_init_completed(), "Expect to be called at JVM init time");
assert(ranges != NULL, "MemRegion array NULL"); assert(ranges != NULL, "MemRegion array NULL");
assert(count != 0, "No MemRegions provided"); assert(count != 0, "No MemRegions provided");
MemRegion reserved = _hrm->reserved(); MemRegion reserved = _hrm.reserved();
HeapWord* prev_last_addr = NULL; HeapWord* prev_last_addr = NULL;
HeapRegion* prev_last_region = NULL; HeapRegion* prev_last_region = NULL;
size_t size_used = 0; size_t size_used = 0;
@ -761,8 +761,8 @@ void G1CollectedHeap::dealloc_archive_regions(MemRegion* ranges, size_t count) {
size_used += ranges[i].byte_size(); size_used += ranges[i].byte_size();
prev_last_addr = last_address; prev_last_addr = last_address;
HeapRegion* start_region = _hrm->addr_to_region(start_address); HeapRegion* start_region = _hrm.addr_to_region(start_address);
HeapRegion* last_region = _hrm->addr_to_region(last_address); HeapRegion* last_region = _hrm.addr_to_region(last_address);
// Check for ranges that start in the same G1 region in which the previous // Check for ranges that start in the same G1 region in which the previous
// range ended, and adjust the start address so we don't try to free // range ended, and adjust the start address so we don't try to free
@ -773,7 +773,7 @@ void G1CollectedHeap::dealloc_archive_regions(MemRegion* ranges, size_t count) {
if (start_address > last_address) { if (start_address > last_address) {
continue; continue;
} }
start_region = _hrm->addr_to_region(start_address); start_region = _hrm.addr_to_region(start_address);
} }
prev_last_region = last_region; prev_last_region = last_region;
@ -788,11 +788,11 @@ void G1CollectedHeap::dealloc_archive_regions(MemRegion* ranges, size_t count) {
curr_region->set_free(); curr_region->set_free();
curr_region->set_top(curr_region->bottom()); curr_region->set_top(curr_region->bottom());
if (curr_region != last_region) { if (curr_region != last_region) {
curr_region = _hrm->next_region_in_heap(curr_region); curr_region = _hrm.next_region_in_heap(curr_region);
} else { } else {
curr_region = NULL; curr_region = NULL;
} }
_hrm->shrink_at(curr_index, 1); _hrm.shrink_at(curr_index, 1);
uncommitted_regions++; uncommitted_regions++;
} }
} }
@ -1005,8 +1005,7 @@ void G1CollectedHeap::prepare_heap_for_full_collection() {
// after this full GC. // after this full GC.
abandon_collection_set(collection_set()); abandon_collection_set(collection_set());
hrm()->remove_all_free_regions(); _hrm.remove_all_free_regions();
hrm()->prepare_for_full_collection_start();
} }
void G1CollectedHeap::verify_before_full_collection(bool explicit_gc) { void G1CollectedHeap::verify_before_full_collection(bool explicit_gc) {
@ -1018,8 +1017,6 @@ void G1CollectedHeap::verify_before_full_collection(bool explicit_gc) {
} }
void G1CollectedHeap::prepare_heap_for_mutators() { void G1CollectedHeap::prepare_heap_for_mutators() {
hrm()->prepare_for_full_collection_end();
// Delete metaspaces for unloaded class loaders and clean up loader_data graph // Delete metaspaces for unloaded class loaders and clean up loader_data graph
ClassLoaderDataGraph::purge(/*at_safepoint*/true); ClassLoaderDataGraph::purge(/*at_safepoint*/true);
DEBUG_ONLY(MetaspaceUtils::verify();) DEBUG_ONLY(MetaspaceUtils::verify();)
@ -1058,7 +1055,7 @@ void G1CollectedHeap::abort_refinement() {
} }
void G1CollectedHeap::verify_after_full_collection() { void G1CollectedHeap::verify_after_full_collection() {
_hrm->verify_optional(); _hrm.verify_optional();
_verifier->verify_region_sets_optional(); _verifier->verify_region_sets_optional();
_verifier->verify_after_gc(G1HeapVerifier::G1VerifyFull); _verifier->verify_after_gc(G1HeapVerifier::G1VerifyFull);
@ -1234,7 +1231,7 @@ HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size) {
if (expand(expand_bytes, _workers)) { if (expand(expand_bytes, _workers)) {
_hrm->verify_optional(); _hrm.verify_optional();
_verifier->verify_region_sets_optional(); _verifier->verify_region_sets_optional();
return attempt_allocation_at_safepoint(word_size, return attempt_allocation_at_safepoint(word_size,
false /* expect_null_mutator_alloc_region */); false /* expect_null_mutator_alloc_region */);
@ -1259,7 +1256,7 @@ bool G1CollectedHeap::expand(size_t expand_bytes, WorkGang* pretouch_workers, do
uint regions_to_expand = (uint)(aligned_expand_bytes / HeapRegion::GrainBytes); uint regions_to_expand = (uint)(aligned_expand_bytes / HeapRegion::GrainBytes);
assert(regions_to_expand > 0, "Must expand by at least one region"); assert(regions_to_expand > 0, "Must expand by at least one region");
uint expanded_by = _hrm->expand_by(regions_to_expand, pretouch_workers); uint expanded_by = _hrm.expand_by(regions_to_expand, pretouch_workers);
if (expand_time_ms != NULL) { if (expand_time_ms != NULL) {
*expand_time_ms = (os::elapsedTime() - expand_heap_start_time_sec) * MILLIUNITS; *expand_time_ms = (os::elapsedTime() - expand_heap_start_time_sec) * MILLIUNITS;
} }
@ -1274,7 +1271,7 @@ bool G1CollectedHeap::expand(size_t expand_bytes, WorkGang* pretouch_workers, do
// The expansion of the virtual storage space was unsuccessful. // The expansion of the virtual storage space was unsuccessful.
// Let's see if it was because we ran out of swap. // Let's see if it was because we ran out of swap.
if (G1ExitOnExpansionFailure && if (G1ExitOnExpansionFailure &&
_hrm->available() >= regions_to_expand) { _hrm.available() >= regions_to_expand) {
// We had head room... // We had head room...
vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion"); vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
} }
@ -1283,10 +1280,10 @@ bool G1CollectedHeap::expand(size_t expand_bytes, WorkGang* pretouch_workers, do
} }
bool G1CollectedHeap::expand_single_region(uint node_index) { bool G1CollectedHeap::expand_single_region(uint node_index) {
uint expanded_by = _hrm->expand_on_preferred_node(node_index); uint expanded_by = _hrm.expand_on_preferred_node(node_index);
if (expanded_by == 0) { if (expanded_by == 0) {
assert(is_maximal_no_gc(), "Should be no regions left, available: %u", _hrm->available()); assert(is_maximal_no_gc(), "Should be no regions left, available: %u", _hrm.available());
log_debug(gc, ergo, heap)("Did not expand the heap (heap already fully expanded)"); log_debug(gc, ergo, heap)("Did not expand the heap (heap already fully expanded)");
return false; return false;
} }
@ -1302,7 +1299,7 @@ void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
HeapRegion::GrainBytes); HeapRegion::GrainBytes);
uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes); uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);
uint num_regions_removed = _hrm->shrink_by(num_regions_to_remove); uint num_regions_removed = _hrm.shrink_by(num_regions_to_remove);
size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes; size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
log_debug(gc, ergo, heap)("Shrink the heap. requested shrinking amount: " SIZE_FORMAT "B aligned shrinking amount: " SIZE_FORMAT "B attempted shrinking amount: " SIZE_FORMAT "B", log_debug(gc, ergo, heap)("Shrink the heap. requested shrinking amount: " SIZE_FORMAT "B aligned shrinking amount: " SIZE_FORMAT "B attempted shrinking amount: " SIZE_FORMAT "B",
@ -1325,11 +1322,11 @@ void G1CollectedHeap::shrink(size_t shrink_bytes) {
// Instead of tearing down / rebuilding the free lists here, we // Instead of tearing down / rebuilding the free lists here, we
// could instead use the remove_all_pending() method on free_list to // could instead use the remove_all_pending() method on free_list to
// remove only the ones that we need to remove. // remove only the ones that we need to remove.
hrm()->remove_all_free_regions(); _hrm.remove_all_free_regions();
shrink_helper(shrink_bytes); shrink_helper(shrink_bytes);
rebuild_region_sets(true /* free_list_only */); rebuild_region_sets(true /* free_list_only */);
_hrm->verify_optional(); _hrm.verify_optional();
_verifier->verify_region_sets_optional(); _verifier->verify_region_sets_optional();
} }
@ -1408,7 +1405,7 @@ G1CollectedHeap::G1CollectedHeap() :
_bot(NULL), _bot(NULL),
_listener(), _listener(),
_numa(G1NUMA::create()), _numa(G1NUMA::create()),
_hrm(NULL), _hrm(),
_allocator(NULL), _allocator(NULL),
_verifier(NULL), _verifier(NULL),
_summary_bytes_used(0), _summary_bytes_used(0),
@ -1428,7 +1425,7 @@ G1CollectedHeap::G1CollectedHeap() :
_survivor(), _survivor(),
_gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()), _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
_gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()), _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()),
_policy(G1Policy::create_policy(_gc_timer_stw)), _policy(new G1Policy(_gc_timer_stw)),
_heap_sizing_policy(NULL), _heap_sizing_policy(NULL),
_collection_set(this, _policy), _collection_set(this, _policy),
_hot_card_cache(NULL), _hot_card_cache(NULL),
@ -1603,12 +1600,12 @@ jint G1CollectedHeap::initialize() {
// Create space mappers. // Create space mappers.
size_t page_size = actual_reserved_page_size(heap_rs); size_t page_size = actual_reserved_page_size(heap_rs);
G1RegionToSpaceMapper* heap_storage = G1RegionToSpaceMapper* heap_storage =
G1RegionToSpaceMapper::create_heap_mapper(heap_rs, G1RegionToSpaceMapper::create_mapper(heap_rs,
heap_rs.size(), heap_rs.size(),
page_size, page_size,
HeapRegion::GrainBytes, HeapRegion::GrainBytes,
1, 1,
mtJavaHeap); mtJavaHeap);
if(heap_storage == NULL) { if(heap_storage == NULL) {
vm_shutdown_during_initialization("Could not initialize G1 heap"); vm_shutdown_during_initialization("Could not initialize G1 heap");
return JNI_ERR; return JNI_ERR;
@ -1644,9 +1641,7 @@ jint G1CollectedHeap::initialize() {
G1RegionToSpaceMapper* next_bitmap_storage = G1RegionToSpaceMapper* next_bitmap_storage =
create_aux_memory_mapper("Next Bitmap", bitmap_size, G1CMBitMap::heap_map_factor()); create_aux_memory_mapper("Next Bitmap", bitmap_size, G1CMBitMap::heap_map_factor());
_hrm = HeapRegionManager::create_manager(this); _hrm.initialize(heap_storage, prev_bitmap_storage, next_bitmap_storage, bot_storage, cardtable_storage, card_counts_storage);
_hrm->initialize(heap_storage, prev_bitmap_storage, next_bitmap_storage, bot_storage, cardtable_storage, card_counts_storage);
_card_table->initialize(cardtable_storage); _card_table->initialize(cardtable_storage);
// Do later initialization work for concurrent refinement. // Do later initialization work for concurrent refinement.
@ -1723,7 +1718,7 @@ jint G1CollectedHeap::initialize() {
// Here we allocate the dummy HeapRegion that is required by the // Here we allocate the dummy HeapRegion that is required by the
// G1AllocRegion class. // G1AllocRegion class.
HeapRegion* dummy_region = _hrm->get_dummy_region(); HeapRegion* dummy_region = _hrm.get_dummy_region();
// We'll re-use the same region whether the alloc region will // We'll re-use the same region whether the alloc region will
// require BOT updates or not and, if it doesn't, then a non-young // require BOT updates or not and, if it doesn't, then a non-young
@ -1842,11 +1837,11 @@ SoftRefPolicy* G1CollectedHeap::soft_ref_policy() {
} }
size_t G1CollectedHeap::capacity() const { size_t G1CollectedHeap::capacity() const {
return _hrm->length() * HeapRegion::GrainBytes; return _hrm.length() * HeapRegion::GrainBytes;
} }
size_t G1CollectedHeap::unused_committed_regions_in_bytes() const { size_t G1CollectedHeap::unused_committed_regions_in_bytes() const {
return _hrm->total_free_bytes(); return _hrm.total_free_bytes();
} }
void G1CollectedHeap::iterate_hcc_closure(G1CardTableEntryClosure* cl, uint worker_id) { void G1CollectedHeap::iterate_hcc_closure(G1CardTableEntryClosure* cl, uint worker_id) {
@ -1902,9 +1897,7 @@ bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
} }
bool G1CollectedHeap::should_upgrade_to_full_gc(GCCause::Cause cause) { bool G1CollectedHeap::should_upgrade_to_full_gc(GCCause::Cause cause) {
if (policy()->force_upgrade_to_full()) { if (should_do_concurrent_full_gc(_gc_cause)) {
return true;
} else if (should_do_concurrent_full_gc(_gc_cause)) {
return false; return false;
} else if (has_regions_left_for_allocation()) { } else if (has_regions_left_for_allocation()) {
return false; return false;
@ -2238,7 +2231,7 @@ bool G1CollectedHeap::try_collect(GCCause::Cause cause) {
} }
bool G1CollectedHeap::is_in(const void* p) const { bool G1CollectedHeap::is_in(const void* p) const {
return is_in_reserved(p) && _hrm->is_available(addr_to_region((HeapWord*)p)); return is_in_reserved(p) && _hrm.is_available(addr_to_region((HeapWord*)p));
} }
// Iteration functions. // Iteration functions.
@ -2291,18 +2284,18 @@ void G1CollectedHeap::keep_alive(oop obj) {
} }
void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const { void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
_hrm->iterate(cl); _hrm.iterate(cl);
} }
void G1CollectedHeap::heap_region_par_iterate_from_worker_offset(HeapRegionClosure* cl, void G1CollectedHeap::heap_region_par_iterate_from_worker_offset(HeapRegionClosure* cl,
HeapRegionClaimer *hrclaimer, HeapRegionClaimer *hrclaimer,
uint worker_id) const { uint worker_id) const {
_hrm->par_iterate(cl, hrclaimer, hrclaimer->offset_for_worker(worker_id)); _hrm.par_iterate(cl, hrclaimer, hrclaimer->offset_for_worker(worker_id));
} }
void G1CollectedHeap::heap_region_par_iterate_from_start(HeapRegionClosure* cl, void G1CollectedHeap::heap_region_par_iterate_from_start(HeapRegionClosure* cl,
HeapRegionClaimer *hrclaimer) const { HeapRegionClaimer *hrclaimer) const {
_hrm->par_iterate(cl, hrclaimer, 0); _hrm.par_iterate(cl, hrclaimer, 0);
} }
void G1CollectedHeap::collection_set_iterate_all(HeapRegionClosure* cl) { void G1CollectedHeap::collection_set_iterate_all(HeapRegionClosure* cl) {
@ -2369,10 +2362,6 @@ bool G1CollectedHeap::supports_concurrent_gc_breakpoints() const {
return true; return true;
} }
bool G1CollectedHeap::is_heterogeneous_heap() const {
return G1Arguments::is_heterogeneous_heap();
}
bool G1CollectedHeap::is_archived_object(oop object) const { bool G1CollectedHeap::is_archived_object(oop object) const {
return object != NULL && heap_region_containing(object)->is_archive(); return object != NULL && heap_region_containing(object)->is_archive();
} }
@ -2421,13 +2410,11 @@ void G1CollectedHeap::print_heap_regions() const {
void G1CollectedHeap::print_on(outputStream* st) const { void G1CollectedHeap::print_on(outputStream* st) const {
size_t heap_used = Heap_lock->owned_by_self() ? used() : used_unlocked(); size_t heap_used = Heap_lock->owned_by_self() ? used() : used_unlocked();
st->print(" %-20s", "garbage-first heap"); st->print(" %-20s", "garbage-first heap");
if (_hrm != NULL) { st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K", capacity()/K, heap_used/K);
capacity()/K, heap_used/K); st->print(" [" PTR_FORMAT ", " PTR_FORMAT ")",
st->print(" [" PTR_FORMAT ", " PTR_FORMAT ")", p2i(_hrm.reserved().start()),
p2i(_hrm->reserved().start()), p2i(_hrm.reserved().end()));
p2i(_hrm->reserved().end()));
}
st->cr(); st->cr();
st->print(" region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K); st->print(" region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
uint young_regions = young_regions_count(); uint young_regions = young_regions_count();
@ -2442,7 +2429,7 @@ void G1CollectedHeap::print_on(outputStream* st) const {
st->print(" remaining free region(s) on each NUMA node: "); st->print(" remaining free region(s) on each NUMA node: ");
const int* node_ids = _numa->node_ids(); const int* node_ids = _numa->node_ids();
for (uint node_index = 0; node_index < num_nodes; node_index++) { for (uint node_index = 0; node_index < num_nodes; node_index++) {
uint num_free_regions = (_hrm != NULL ? _hrm->num_free_regions(node_index) : 0); uint num_free_regions = _hrm.num_free_regions(node_index);
st->print("%d=%u ", node_ids[node_index], num_free_regions); st->print("%d=%u ", node_ids[node_index], num_free_regions);
} }
st->cr(); st->cr();
@ -2451,10 +2438,6 @@ void G1CollectedHeap::print_on(outputStream* st) const {
} }
void G1CollectedHeap::print_regions_on(outputStream* st) const { void G1CollectedHeap::print_regions_on(outputStream* st) const {
if (_hrm == NULL) {
return;
}
st->print_cr("Heap Regions: E=young(eden), S=young(survivor), O=old, " st->print_cr("Heap Regions: E=young(eden), S=young(survivor), O=old, "
"HS=humongous(starts), HC=humongous(continues), " "HS=humongous(starts), HC=humongous(continues), "
"CS=collection set, F=free, " "CS=collection set, F=free, "
@ -2468,10 +2451,8 @@ void G1CollectedHeap::print_extended_on(outputStream* st) const {
print_on(st); print_on(st);
// Print the per-region information. // Print the per-region information.
if (_hrm != NULL) { st->cr();
st->cr(); print_regions_on(st);
print_regions_on(st);
}
} }
void G1CollectedHeap::print_on_error(outputStream* st) const { void G1CollectedHeap::print_on_error(outputStream* st) const {
@ -3047,7 +3028,7 @@ void G1CollectedHeap::do_collection_pause_at_safepoint_helper(double target_paus
policy()->print_phases(); policy()->print_phases();
heap_transition.print(); heap_transition.print();
_hrm->verify_optional(); _hrm.verify_optional();
_verifier->verify_region_sets_optional(); _verifier->verify_region_sets_optional();
TASKQUEUE_STATS_ONLY(print_taskqueue_stats()); TASKQUEUE_STATS_ONLY(print_taskqueue_stats());
@ -4009,7 +3990,7 @@ void G1CollectedHeap::record_obj_copy_mem_stats() {
void G1CollectedHeap::free_region(HeapRegion* hr, FreeRegionList* free_list) { void G1CollectedHeap::free_region(HeapRegion* hr, FreeRegionList* free_list) {
assert(!hr->is_free(), "the region should not be free"); assert(!hr->is_free(), "the region should not be free");
assert(!hr->is_empty(), "the region should not be empty"); assert(!hr->is_empty(), "the region should not be empty");
assert(_hrm->is_available(hr->hrm_index()), "region should be committed"); assert(_hrm.is_available(hr->hrm_index()), "region should be committed");
if (G1VerifyBitmaps) { if (G1VerifyBitmaps) {
MemRegion mr(hr->bottom(), hr->end()); MemRegion mr(hr->bottom(), hr->end());
@ -4054,7 +4035,7 @@ void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) {
assert(list != NULL, "list can't be null"); assert(list != NULL, "list can't be null");
if (!list->is_empty()) { if (!list->is_empty()) {
MutexLocker x(FreeList_lock, Mutex::_no_safepoint_check_flag); MutexLocker x(FreeList_lock, Mutex::_no_safepoint_check_flag);
_hrm->insert_list_into_free_list(list); _hrm.insert_list_into_free_list(list);
} }
} }
@ -4335,7 +4316,7 @@ void G1CollectedHeap::free_collection_set(G1CollectionSet* collection_set, G1Eva
phase_times()->record_total_free_cset_time_ms((free_cset_end_time - free_cset_start_time).seconds() * 1000.0); phase_times()->record_total_free_cset_time_ms((free_cset_end_time - free_cset_start_time).seconds() * 1000.0);
// Now rebuild the free region list. // Now rebuild the free region list.
hrm()->rebuild_free_list(workers()); _hrm.rebuild_free_list(workers());
phase_times()->record_total_rebuild_freelist_time_ms((Ticks::now() - free_cset_end_time).seconds() * 1000.0); phase_times()->record_total_rebuild_freelist_time_ms((Ticks::now() - free_cset_end_time).seconds() * 1000.0);
collection_set->clear(); collection_set->clear();
@ -4638,7 +4619,7 @@ void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
_survivor.clear(); _survivor.clear();
} }
RebuildRegionSetsClosure cl(free_list_only, &_old_set, _hrm); RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_hrm);
heap_region_iterate(&cl); heap_region_iterate(&cl);
if (!free_list_only) { if (!free_list_only) {
@ -4755,14 +4736,14 @@ void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
HeapRegion* G1CollectedHeap::alloc_highest_free_region() { HeapRegion* G1CollectedHeap::alloc_highest_free_region() {
bool expanded = false; bool expanded = false;
uint index = _hrm->find_highest_free(&expanded); uint index = _hrm.find_highest_free(&expanded);
if (index != G1_NO_HRM_INDEX) { if (index != G1_NO_HRM_INDEX) {
if (expanded) { if (expanded) {
log_debug(gc, ergo, heap)("Attempt heap expansion (requested address range outside heap bounds). region size: " SIZE_FORMAT "B", log_debug(gc, ergo, heap)("Attempt heap expansion (requested address range outside heap bounds). region size: " SIZE_FORMAT "B",
HeapRegion::GrainWords * HeapWordSize); HeapRegion::GrainWords * HeapWordSize);
} }
return _hrm->allocate_free_regions_starting_at(index, 1); return _hrm.allocate_free_regions_starting_at(index, 1);
} }
return NULL; return NULL;
} }

View File

@ -47,7 +47,6 @@
#include "gc/g1/g1YCTypes.hpp" #include "gc/g1/g1YCTypes.hpp"
#include "gc/g1/heapRegionManager.hpp" #include "gc/g1/heapRegionManager.hpp"
#include "gc/g1/heapRegionSet.hpp" #include "gc/g1/heapRegionSet.hpp"
#include "gc/g1/heterogeneousHeapRegionManager.hpp"
#include "gc/shared/barrierSet.hpp" #include "gc/shared/barrierSet.hpp"
#include "gc/shared/collectedHeap.hpp" #include "gc/shared/collectedHeap.hpp"
#include "gc/shared/gcHeapSummary.hpp" #include "gc/shared/gcHeapSummary.hpp"
@ -194,7 +193,7 @@ private:
G1NUMA* _numa; G1NUMA* _numa;
// The sequence of all heap regions in the heap. // The sequence of all heap regions in the heap.
HeapRegionManager* _hrm; HeapRegionManager _hrm;
// Manages all allocations with regions except humongous object allocations. // Manages all allocations with regions except humongous object allocations.
G1Allocator* _allocator; G1Allocator* _allocator;
@ -1016,8 +1015,6 @@ public:
inline G1GCPhaseTimes* phase_times() const; inline G1GCPhaseTimes* phase_times() const;
HeapRegionManager* hrm() const { return _hrm; }
const G1CollectionSet* collection_set() const { return &_collection_set; } const G1CollectionSet* collection_set() const { return &_collection_set; }
G1CollectionSet* collection_set() { return &_collection_set; } G1CollectionSet* collection_set() { return &_collection_set; }
@ -1063,7 +1060,7 @@ public:
// But G1CollectedHeap doesn't yet support this. // But G1CollectedHeap doesn't yet support this.
virtual bool is_maximal_no_gc() const { virtual bool is_maximal_no_gc() const {
return _hrm->available() == 0; return _hrm.available() == 0;
} }
// Returns whether there are any regions left in the heap for allocation. // Returns whether there are any regions left in the heap for allocation.
@ -1072,23 +1069,23 @@ public:
} }
// The current number of regions in the heap. // The current number of regions in the heap.
uint num_regions() const { return _hrm->length(); } uint num_regions() const { return _hrm.length(); }
// The max number of regions reserved for the heap. Except for static array // The max number of regions reserved for the heap. Except for static array
// sizing purposes you probably want to use max_regions(). // sizing purposes you probably want to use max_regions().
uint max_reserved_regions() const { return _hrm->reserved_length(); } uint max_reserved_regions() const { return _hrm.reserved_length(); }
// Max number of regions that can be committed. // Max number of regions that can be committed.
uint max_regions() const { return _hrm->max_length(); } uint max_regions() const { return _hrm.max_length(); }
// The number of regions that are completely free. // The number of regions that are completely free.
uint num_free_regions() const { return _hrm->num_free_regions(); } uint num_free_regions() const { return _hrm.num_free_regions(); }
// The number of regions that can be allocated into. // The number of regions that can be allocated into.
uint num_free_or_available_regions() const { return num_free_regions() + _hrm->available(); } uint num_free_or_available_regions() const { return num_free_regions() + _hrm.available(); }
MemoryUsage get_auxiliary_data_memory_usage() const { MemoryUsage get_auxiliary_data_memory_usage() const {
return _hrm->get_auxiliary_data_memory_usage(); return _hrm.get_auxiliary_data_memory_usage();
} }
// The number of regions that are not completely free. // The number of regions that are not completely free.
@ -1096,7 +1093,7 @@ public:
#ifdef ASSERT #ifdef ASSERT
bool is_on_master_free_list(HeapRegion* hr) { bool is_on_master_free_list(HeapRegion* hr) {
return _hrm->is_free(hr); return _hrm.is_free(hr);
} }
#endif // ASSERT #endif // ASSERT
@ -1151,7 +1148,7 @@ public:
inline G1HeapRegionAttr region_attr(uint idx) const; inline G1HeapRegionAttr region_attr(uint idx) const;
MemRegion reserved() const { MemRegion reserved() const {
return _hrm->reserved(); return _hrm.reserved();
} }
bool is_in_reserved(const void* addr) const { bool is_in_reserved(const void* addr) const {
@ -1414,7 +1411,6 @@ public:
// WhiteBox testing support. // WhiteBox testing support.
virtual bool supports_concurrent_gc_breakpoints() const; virtual bool supports_concurrent_gc_breakpoints() const;
bool is_heterogeneous_heap() const;
virtual WorkGang* safepoint_workers() { return _workers; } virtual WorkGang* safepoint_workers() { return _workers; }

View File

@ -64,13 +64,13 @@ size_t G1CollectedHeap::desired_plab_sz(G1HeapRegionAttr dest) {
// Inline functions for G1CollectedHeap // Inline functions for G1CollectedHeap
// Return the region with the given index. It assumes the index is valid. // Return the region with the given index. It assumes the index is valid.
inline HeapRegion* G1CollectedHeap::region_at(uint index) const { return _hrm->at(index); } inline HeapRegion* G1CollectedHeap::region_at(uint index) const { return _hrm.at(index); }
// Return the region with the given index, or NULL if unmapped. It assumes the index is valid. // Return the region with the given index, or NULL if unmapped. It assumes the index is valid.
inline HeapRegion* G1CollectedHeap::region_at_or_null(uint index) const { return _hrm->at_or_null(index); } inline HeapRegion* G1CollectedHeap::region_at_or_null(uint index) const { return _hrm.at_or_null(index); }
inline HeapRegion* G1CollectedHeap::next_region_in_humongous(HeapRegion* hr) const { inline HeapRegion* G1CollectedHeap::next_region_in_humongous(HeapRegion* hr) const {
return _hrm->next_region_in_humongous(hr); return _hrm.next_region_in_humongous(hr);
} }
inline uint G1CollectedHeap::addr_to_region(HeapWord* addr) const { inline uint G1CollectedHeap::addr_to_region(HeapWord* addr) const {
@ -81,7 +81,7 @@ inline uint G1CollectedHeap::addr_to_region(HeapWord* addr) const {
} }
inline HeapWord* G1CollectedHeap::bottom_addr_for_region(uint index) const { inline HeapWord* G1CollectedHeap::bottom_addr_for_region(uint index) const {
return _hrm->reserved().start() + index * HeapRegion::GrainWords; return _hrm.reserved().start() + index * HeapRegion::GrainWords;
} }
template <class T> template <class T>
@ -90,7 +90,7 @@ inline HeapRegion* G1CollectedHeap::heap_region_containing(const T addr) const {
assert(is_in_reserved((const void*) addr), assert(is_in_reserved((const void*) addr),
"Address " PTR_FORMAT " is outside of the heap ranging from [" PTR_FORMAT " to " PTR_FORMAT ")", "Address " PTR_FORMAT " is outside of the heap ranging from [" PTR_FORMAT " to " PTR_FORMAT ")",
p2i((void*)addr), p2i(reserved().start()), p2i(reserved().end())); p2i((void*)addr), p2i(reserved().start()), p2i(reserved().end()));
return _hrm->addr_to_region((HeapWord*)(void*) addr); return _hrm.addr_to_region((HeapWord*)(void*) addr);
} }
template <class T> template <class T>
@ -290,12 +290,12 @@ inline bool G1CollectedHeap::is_obj_dead_full(const oop obj) const {
} }
inline void G1CollectedHeap::set_humongous_reclaim_candidate(uint region, bool value) { inline void G1CollectedHeap::set_humongous_reclaim_candidate(uint region, bool value) {
assert(_hrm->at(region)->is_starts_humongous(), "Must start a humongous object"); assert(_hrm.at(region)->is_starts_humongous(), "Must start a humongous object");
_humongous_reclaim_candidates.set_candidate(region, value); _humongous_reclaim_candidates.set_candidate(region, value);
} }
inline bool G1CollectedHeap::is_humongous_reclaim_candidate(uint region) { inline bool G1CollectedHeap::is_humongous_reclaim_candidate(uint region) {
assert(_hrm->at(region)->is_starts_humongous(), "Must start a humongous object"); assert(_hrm.at(region)->is_starts_humongous(), "Must start a humongous object");
return _humongous_reclaim_candidates.is_candidate(region); return _humongous_reclaim_candidates.is_candidate(region);
} }

View File

@ -597,14 +597,14 @@ void G1HeapVerifier::verify_region_sets() {
assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */); assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
// First, check the explicit lists. // First, check the explicit lists.
_g1h->_hrm->verify(); _g1h->_hrm.verify();
// Finally, make sure that the region accounting in the lists is // Finally, make sure that the region accounting in the lists is
// consistent with what we see in the heap. // consistent with what we see in the heap.
VerifyRegionListsClosure cl(&_g1h->_old_set, &_g1h->_archive_set, &_g1h->_humongous_set, _g1h->_hrm); VerifyRegionListsClosure cl(&_g1h->_old_set, &_g1h->_archive_set, &_g1h->_humongous_set, &_g1h->_hrm);
_g1h->heap_region_iterate(&cl); _g1h->heap_region_iterate(&cl);
cl.verify_counts(&_g1h->_old_set, &_g1h->_archive_set, &_g1h->_humongous_set, _g1h->_hrm); cl.verify_counts(&_g1h->_old_set, &_g1h->_archive_set, &_g1h->_humongous_set, &_g1h->_hrm);
} }
void G1HeapVerifier::prepare_for_verify() { void G1HeapVerifier::prepare_for_verify() {
@ -845,7 +845,7 @@ public:
bool G1HeapVerifier::check_region_attr_table() { bool G1HeapVerifier::check_region_attr_table() {
G1CheckRegionAttrTableClosure cl; G1CheckRegionAttrTableClosure cl;
_g1h->_hrm->iterate(&cl); _g1h->_hrm.iterate(&cl);
return !cl.failures(); return !cl.failures();
} }
#endif // PRODUCT #endif // PRODUCT

View File

@ -1,58 +0,0 @@
/*
* Copyright (c) 2018, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "gc/g1/g1CollectedHeap.hpp"
#include "gc/g1/g1HeterogeneousHeapPolicy.hpp"
#include "gc/g1/g1Policy.hpp"
#include "gc/g1/heterogeneousHeapRegionManager.hpp"
G1HeterogeneousHeapPolicy::G1HeterogeneousHeapPolicy(STWGCTimer* gc_timer) :
G1Policy(gc_timer), _manager(NULL) {}
// We call the super class init(), after which we provision young_list_target_length() regions in dram.
void G1HeterogeneousHeapPolicy::init(G1CollectedHeap* g1h, G1CollectionSet* collection_set) {
G1Policy::init(g1h, collection_set);
_manager = HeterogeneousHeapRegionManager::manager();
_manager->adjust_dram_regions((uint)young_list_target_length(), G1CollectedHeap::heap()->workers());
}
// After a collection pause, young list target length is updated. So we need to make sure we have enough regions in dram for young gen.
void G1HeterogeneousHeapPolicy::record_collection_pause_end(double pause_time_ms, bool concurrent_operation_is_full_mark) {
G1Policy::record_collection_pause_end(pause_time_ms, concurrent_operation_is_full_mark);
_manager->adjust_dram_regions((uint)young_list_target_length(), G1CollectedHeap::heap()->workers());
}
// After a full collection, young list target length is updated. So we need to make sure we have enough regions in dram for young gen.
void G1HeterogeneousHeapPolicy::record_full_collection_end() {
G1Policy::record_full_collection_end();
_manager->adjust_dram_regions((uint)young_list_target_length(), G1CollectedHeap::heap()->workers());
}
bool G1HeterogeneousHeapPolicy::force_upgrade_to_full() {
if (_manager->has_borrowed_regions()) {
return true;
}
return false;
}

View File

@ -1,47 +0,0 @@
/*
* Copyright (c) 2018, 2019, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef SHARE_GC_G1_G1HETEROGENEOUSHEAPPOLICY_HPP
#define SHARE_GC_G1_G1HETEROGENEOUSHEAPPOLICY_HPP
#include "gc/g1/g1Policy.hpp"
#include "gc/g1/heterogeneousHeapRegionManager.hpp"
class G1HeterogeneousHeapPolicy : public G1Policy {
// Stash a pointer to the hrm.
HeterogeneousHeapRegionManager* _manager;
public:
G1HeterogeneousHeapPolicy(STWGCTimer* gc_timer);
// initialize policy
virtual void init(G1CollectedHeap* g1h, G1CollectionSet* collection_set);
// Record end of an evacuation pause.
virtual void record_collection_pause_end(double pause_time_ms, bool concurrent_operation_is_full_mark);
// Record the end of full collection.
virtual void record_full_collection_end();
virtual bool force_upgrade_to_full();
};
#endif // SHARE_GC_G1_G1HETEROGENEOUSHEAPPOLICY_HPP

View File

@ -1,51 +0,0 @@
/*
* Copyright (c) 2018, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "gc/g1/g1Arguments.hpp"
#include "gc/g1/g1HeterogeneousHeapYoungGenSizer.hpp"
#include "gc/g1/heapRegion.hpp"
G1HeterogeneousHeapYoungGenSizer::G1HeterogeneousHeapYoungGenSizer() : G1YoungGenSizer() {
// will be used later when min and max young size is calculated.
_max_young_length = (uint)(G1Arguments::reasonable_max_memory_for_young() / HeapRegion::GrainBytes);
}
// Since heap is sized potentially to larger value accounting for dram + nvdimm, we need to limit
// max young gen size to the available dram.
// Call parent class method first and then adjust sizes based on available dram
void G1HeterogeneousHeapYoungGenSizer::adjust_max_new_size(uint number_of_heap_regions) {
G1YoungGenSizer::adjust_max_new_size(number_of_heap_regions);
adjust_lengths_based_on_dram_memory();
}
void G1HeterogeneousHeapYoungGenSizer::heap_size_changed(uint new_number_of_heap_regions) {
G1YoungGenSizer::heap_size_changed(new_number_of_heap_regions);
adjust_lengths_based_on_dram_memory();
}
void G1HeterogeneousHeapYoungGenSizer::adjust_lengths_based_on_dram_memory() {
_min_desired_young_length = MIN2(_min_desired_young_length, _max_young_length);
_max_desired_young_length = MIN2(_max_desired_young_length, _max_young_length);
}

View File

@ -1,51 +0,0 @@
/*
* Copyright (c) 2018, 2019, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef SHARE_GC_G1_G1HETEROGENEOUSHEAPYOUNGGENSIZER_HPP
#define SHARE_GC_G1_G1HETEROGENEOUSHEAPYOUNGGENSIZER_HPP
#include "gc/g1/g1YoungGenSizer.hpp"
// This class prevents the size of young generation of G1 heap to exceed dram
// memory available. If set on command line, MaxRAM and MaxRAMFraction/MaxRAMPercentage
// are used to determine the maximum size that young generation can grow.
// Else we set the maximum size to 80% of dram available in the system.
class G1HeterogeneousHeapYoungGenSizer : public G1YoungGenSizer {
private:
// maximum no of regions that young generation can grow to. Calculated in constructor.
uint _max_young_length;
void adjust_lengths_based_on_dram_memory();
public:
G1HeterogeneousHeapYoungGenSizer();
// Calculate the maximum length of the young gen given the number of regions
// depending on the sizing algorithm.
virtual void adjust_max_new_size(uint number_of_heap_regions);
virtual void heap_size_changed(uint new_number_of_heap_regions);
};
#endif // SHARE_GC_G1_G1HETEROGENEOUSHEAPYOUNGGENSIZER_HPP

View File

@ -101,12 +101,6 @@ size_t G1PageBasedVirtualSpace::uncommitted_size() const {
return reserved_size() - committed_size(); return reserved_size() - committed_size();
} }
void G1PageBasedVirtualSpace::commit_and_set_special() {
commit_internal(addr_to_page_index(_low_boundary), addr_to_page_index(_high_boundary));
_special = true;
_dirty.initialize(reserved_size()/_page_size);
}
size_t G1PageBasedVirtualSpace::addr_to_page_index(char* addr) const { size_t G1PageBasedVirtualSpace::addr_to_page_index(char* addr) const {
return (addr - _low_boundary) / _page_size; return (addr - _low_boundary) / _page_size;
} }

View File

@ -134,8 +134,6 @@ class G1PageBasedVirtualSpace {
// Memory left to use/expand in this virtual space. // Memory left to use/expand in this virtual space.
size_t uncommitted_size() const; size_t uncommitted_size() const;
void commit_and_set_special();
bool contains(const void* p) const; bool contains(const void* p) const;
MemRegion reserved() { MemRegion reserved() {

View File

@ -33,7 +33,6 @@
#include "gc/g1/g1ConcurrentRefine.hpp" #include "gc/g1/g1ConcurrentRefine.hpp"
#include "gc/g1/g1ConcurrentRefineStats.hpp" #include "gc/g1/g1ConcurrentRefineStats.hpp"
#include "gc/g1/g1CollectionSetChooser.hpp" #include "gc/g1/g1CollectionSetChooser.hpp"
#include "gc/g1/g1HeterogeneousHeapPolicy.hpp"
#include "gc/g1/g1HotCardCache.hpp" #include "gc/g1/g1HotCardCache.hpp"
#include "gc/g1/g1IHOPControl.hpp" #include "gc/g1/g1IHOPControl.hpp"
#include "gc/g1/g1GCPhaseTimes.hpp" #include "gc/g1/g1GCPhaseTimes.hpp"
@ -68,7 +67,7 @@ G1Policy::G1Policy(STWGCTimer* gc_timer) :
_survivor_surv_rate_group(new G1SurvRateGroup()), _survivor_surv_rate_group(new G1SurvRateGroup()),
_reserve_factor((double) G1ReservePercent / 100.0), _reserve_factor((double) G1ReservePercent / 100.0),
_reserve_regions(0), _reserve_regions(0),
_young_gen_sizer(G1YoungGenSizer::create_gen_sizer()), _young_gen_sizer(),
_free_regions_at_end_of_collection(0), _free_regions_at_end_of_collection(0),
_rs_length(0), _rs_length(0),
_rs_length_prediction(0), _rs_length_prediction(0),
@ -88,15 +87,6 @@ G1Policy::G1Policy(STWGCTimer* gc_timer) :
G1Policy::~G1Policy() { G1Policy::~G1Policy() {
delete _ihop_control; delete _ihop_control;
delete _young_gen_sizer;
}
G1Policy* G1Policy::create_policy(STWGCTimer* gc_timer_stw) {
if (G1Arguments::is_heterogeneous_heap()) {
return new G1HeterogeneousHeapPolicy(gc_timer_stw);
} else {
return new G1Policy(gc_timer_stw);
}
} }
G1CollectorState* G1Policy::collector_state() const { return _g1h->collector_state(); } G1CollectorState* G1Policy::collector_state() const { return _g1h->collector_state(); }
@ -108,9 +98,9 @@ void G1Policy::init(G1CollectedHeap* g1h, G1CollectionSet* collection_set) {
assert(Heap_lock->owned_by_self(), "Locking discipline."); assert(Heap_lock->owned_by_self(), "Locking discipline.");
if (!use_adaptive_young_list_length()) { if (!use_adaptive_young_list_length()) {
_young_list_fixed_length = _young_gen_sizer->min_desired_young_length(); _young_list_fixed_length = _young_gen_sizer.min_desired_young_length();
} }
_young_gen_sizer->adjust_max_new_size(_g1h->max_regions()); _young_gen_sizer.adjust_max_new_size(_g1h->max_regions());
_free_regions_at_end_of_collection = _g1h->num_free_regions(); _free_regions_at_end_of_collection = _g1h->num_free_regions();
@ -184,7 +174,7 @@ void G1Policy::record_new_heap_size(uint new_number_of_regions) {
// smaller than 1.0) we'll get 1. // smaller than 1.0) we'll get 1.
_reserve_regions = (uint) ceil(reserve_regions_d); _reserve_regions = (uint) ceil(reserve_regions_d);
_young_gen_sizer->heap_size_changed(new_number_of_regions); _young_gen_sizer.heap_size_changed(new_number_of_regions);
_ihop_control->update_target_occupancy(new_number_of_regions * HeapRegion::GrainBytes); _ihop_control->update_target_occupancy(new_number_of_regions * HeapRegion::GrainBytes);
} }
@ -203,14 +193,14 @@ uint G1Policy::calculate_young_list_desired_min_length(uint base_min_length) con
} }
desired_min_length += base_min_length; desired_min_length += base_min_length;
// make sure we don't go below any user-defined minimum bound // make sure we don't go below any user-defined minimum bound
return MAX2(_young_gen_sizer->min_desired_young_length(), desired_min_length); return MAX2(_young_gen_sizer.min_desired_young_length(), desired_min_length);
} }
uint G1Policy::calculate_young_list_desired_max_length() const { uint G1Policy::calculate_young_list_desired_max_length() const {
// Here, we might want to also take into account any additional // Here, we might want to also take into account any additional
// constraints (i.e., user-defined minimum bound). Currently, we // constraints (i.e., user-defined minimum bound). Currently, we
// effectively don't set this bound. // effectively don't set this bound.
return _young_gen_sizer->max_desired_young_length(); return _young_gen_sizer.max_desired_young_length();
} }
uint G1Policy::update_young_list_max_and_target_length() { uint G1Policy::update_young_list_max_and_target_length() {
@ -976,7 +966,7 @@ bool G1Policy::can_expand_young_list() const {
} }
bool G1Policy::use_adaptive_young_list_length() const { bool G1Policy::use_adaptive_young_list_length() const {
return _young_gen_sizer->use_adaptive_young_list_length(); return _young_gen_sizer.use_adaptive_young_list_length();
} }
size_t G1Policy::desired_survivor_size(uint max_regions) const { size_t G1Policy::desired_survivor_size(uint max_regions) const {

View File

@ -49,7 +49,6 @@ class G1CollectionSetChooser;
class G1IHOPControl; class G1IHOPControl;
class G1Analytics; class G1Analytics;
class G1SurvivorRegions; class G1SurvivorRegions;
class G1YoungGenSizer;
class GCPolicyCounters; class GCPolicyCounters;
class STWGCTimer; class STWGCTimer;
@ -95,7 +94,7 @@ class G1Policy: public CHeapObj<mtGC> {
// for the first time during initialization. // for the first time during initialization.
uint _reserve_regions; uint _reserve_regions;
G1YoungGenSizer* _young_gen_sizer; G1YoungGenSizer _young_gen_sizer;
uint _free_regions_at_end_of_collection; uint _free_regions_at_end_of_collection;
@ -302,8 +301,6 @@ public:
virtual ~G1Policy(); virtual ~G1Policy();
static G1Policy* create_policy(STWGCTimer* gc_timer_stw);
G1CollectorState* collector_state() const; G1CollectorState* collector_state() const;
G1GCPhaseTimes* phase_times() const; G1GCPhaseTimes* phase_times() const;
@ -316,7 +313,7 @@ public:
// This should be called after the heap is resized. // This should be called after the heap is resized.
void record_new_heap_size(uint new_number_of_regions); void record_new_heap_size(uint new_number_of_regions);
virtual void init(G1CollectedHeap* g1h, G1CollectionSet* collection_set); void init(G1CollectedHeap* g1h, G1CollectionSet* collection_set);
void note_gc_start(); void note_gc_start();
@ -328,11 +325,11 @@ public:
// Record the start and end of an evacuation pause. // Record the start and end of an evacuation pause.
void record_collection_pause_start(double start_time_sec); void record_collection_pause_start(double start_time_sec);
virtual void record_collection_pause_end(double pause_time_ms, bool concurrent_operation_is_full_mark); void record_collection_pause_end(double pause_time_ms, bool concurrent_operation_is_full_mark);
// Record the start and end of a full collection. // Record the start and end of a full collection.
void record_full_collection_start(); void record_full_collection_start();
virtual void record_full_collection_end(); void record_full_collection_end();
// Must currently be called while the world is stopped. // Must currently be called while the world is stopped.
void record_concurrent_mark_init_end(); void record_concurrent_mark_init_end();
@ -449,10 +446,6 @@ public:
void update_max_gc_locker_expansion(); void update_max_gc_locker_expansion();
void update_survivors_policy(); void update_survivors_policy();
virtual bool force_upgrade_to_full() {
return false;
}
}; };
#endif // SHARE_GC_G1_G1POLICY_HPP #endif // SHARE_GC_G1_G1POLICY_HPP

View File

@ -26,15 +26,11 @@
#include "gc/g1/g1BiasedArray.hpp" #include "gc/g1/g1BiasedArray.hpp"
#include "gc/g1/g1NUMA.hpp" #include "gc/g1/g1NUMA.hpp"
#include "gc/g1/g1RegionToSpaceMapper.hpp" #include "gc/g1/g1RegionToSpaceMapper.hpp"
#include "logging/log.hpp"
#include "memory/allocation.inline.hpp" #include "memory/allocation.inline.hpp"
#include "memory/virtualspace.hpp" #include "memory/virtualspace.hpp"
#include "runtime/java.hpp"
#include "runtime/os.inline.hpp"
#include "services/memTracker.hpp" #include "services/memTracker.hpp"
#include "utilities/align.hpp" #include "utilities/align.hpp"
#include "utilities/bitMap.inline.hpp" #include "utilities/bitMap.inline.hpp"
#include "utilities/formatBuffer.hpp"
#include "utilities/powerOfTwo.hpp" #include "utilities/powerOfTwo.hpp"
G1RegionToSpaceMapper::G1RegionToSpaceMapper(ReservedSpace rs, G1RegionToSpaceMapper::G1RegionToSpaceMapper(ReservedSpace rs,
@ -212,144 +208,6 @@ void G1RegionToSpaceMapper::fire_on_commit(uint start_idx, size_t num_regions, b
} }
} }
static bool map_nvdimm_space(ReservedSpace rs) {
assert(AllocateOldGenAt != NULL, "");
int _backing_fd = os::create_file_for_heap(AllocateOldGenAt);
if (_backing_fd == -1) {
log_error(gc, init)("Could not create file for Old generation at location %s", AllocateOldGenAt);
return false;
}
// commit this memory in nv-dimm
char* ret = os::attempt_map_memory_to_file_at(rs.base(), rs.size(), _backing_fd);
if (ret != rs.base()) {
if (ret != NULL) {
os::unmap_memory(rs.base(), rs.size());
}
log_error(gc, init)("Error in mapping Old Gen to given AllocateOldGenAt = %s", AllocateOldGenAt);
os::close(_backing_fd);
return false;
}
os::close(_backing_fd);
return true;
}
G1RegionToHeteroSpaceMapper::G1RegionToHeteroSpaceMapper(ReservedSpace rs,
size_t actual_size,
size_t page_size,
size_t alloc_granularity,
size_t commit_factor,
MEMFLAGS type) :
G1RegionToSpaceMapper(rs, actual_size, page_size, alloc_granularity, commit_factor, type),
_rs(rs),
_dram_mapper(NULL),
_num_committed_dram(0),
_num_committed_nvdimm(0),
_start_index_of_dram(0),
_page_size(page_size),
_commit_factor(commit_factor),
_type(type) {
assert(actual_size == 2 * MaxHeapSize, "For 2-way heterogenuous heap, reserved space is two times MaxHeapSize");
}
bool G1RegionToHeteroSpaceMapper::initialize() {
// Since we need to re-map the reserved space - 'Xmx' to nv-dimm and 'Xmx' to dram, we need to release the reserved memory first.
// Because on some OSes (e.g. Windows) you cannot do a file mapping on memory reserved with regular mapping.
os::release_memory(_rs.base(), _rs.size());
// First half of size Xmx is for nv-dimm.
ReservedSpace rs_nvdimm = _rs.first_part(MaxHeapSize);
assert(rs_nvdimm.base() == _rs.base(), "We should get the same base address");
// Second half of reserved memory is mapped to dram.
ReservedSpace rs_dram = _rs.last_part(MaxHeapSize);
assert(rs_dram.size() == rs_nvdimm.size() && rs_nvdimm.size() == MaxHeapSize, "They all should be same");
// Reserve dram memory
char* base = os::attempt_reserve_memory_at(rs_dram.base(), rs_dram.size());
if (base != rs_dram.base()) {
if (base != NULL) {
os::release_memory(base, rs_dram.size());
}
log_error(gc, init)("Error in re-mapping memory on dram during G1 heterogenous memory initialization");
return false;
}
// We reserve and commit this entire space to NV-DIMM.
if (!map_nvdimm_space(rs_nvdimm)) {
log_error(gc, init)("Error in re-mapping memory to nv-dimm during G1 heterogenous memory initialization");
return false;
}
if (_region_granularity >= (_page_size * _commit_factor)) {
_dram_mapper = new G1RegionsLargerThanCommitSizeMapper(rs_dram, rs_dram.size(), _page_size, _region_granularity, _commit_factor, _type);
} else {
_dram_mapper = new G1RegionsSmallerThanCommitSizeMapper(rs_dram, rs_dram.size(), _page_size, _region_granularity, _commit_factor, _type);
}
_start_index_of_dram = (uint)(rs_nvdimm.size() / _region_granularity);
return true;
}
void G1RegionToHeteroSpaceMapper::commit_regions(uint start_idx, size_t num_regions, WorkGang* pretouch_gang) {
uint end_idx = (start_idx + (uint)num_regions - 1);
uint num_dram = end_idx >= _start_index_of_dram ? MIN2((end_idx - _start_index_of_dram + 1), (uint)num_regions) : 0;
uint num_nvdimm = (uint)num_regions - num_dram;
if (num_nvdimm > 0) {
// We do not need to commit nv-dimm regions, since they are committed in the beginning.
_num_committed_nvdimm += num_nvdimm;
}
if (num_dram > 0) {
_dram_mapper->commit_regions(start_idx > _start_index_of_dram ? (start_idx - _start_index_of_dram) : 0, num_dram, pretouch_gang);
_num_committed_dram += num_dram;
}
}
void G1RegionToHeteroSpaceMapper::uncommit_regions(uint start_idx, size_t num_regions) {
uint end_idx = (start_idx + (uint)num_regions - 1);
uint num_dram = end_idx >= _start_index_of_dram ? MIN2((end_idx - _start_index_of_dram + 1), (uint)num_regions) : 0;
uint num_nvdimm = (uint)num_regions - num_dram;
if (num_nvdimm > 0) {
// We do not uncommit memory for nv-dimm regions.
_num_committed_nvdimm -= num_nvdimm;
}
if (num_dram > 0) {
_dram_mapper->uncommit_regions(start_idx > _start_index_of_dram ? (start_idx - _start_index_of_dram) : 0, num_dram);
_num_committed_dram -= num_dram;
}
}
uint G1RegionToHeteroSpaceMapper::num_committed_dram() const {
return _num_committed_dram;
}
uint G1RegionToHeteroSpaceMapper::num_committed_nvdimm() const {
return _num_committed_nvdimm;
}
G1RegionToSpaceMapper* G1RegionToSpaceMapper::create_heap_mapper(ReservedSpace rs,
size_t actual_size,
size_t page_size,
size_t region_granularity,
size_t commit_factor,
MEMFLAGS type) {
if (AllocateOldGenAt != NULL) {
G1RegionToHeteroSpaceMapper* mapper = new G1RegionToHeteroSpaceMapper(rs, actual_size, page_size, region_granularity, commit_factor, type);
if (!mapper->initialize()) {
delete mapper;
return NULL;
}
return (G1RegionToSpaceMapper*)mapper;
} else {
return create_mapper(rs, actual_size, page_size, region_granularity, commit_factor, type);
}
}
G1RegionToSpaceMapper* G1RegionToSpaceMapper::create_mapper(ReservedSpace rs, G1RegionToSpaceMapper* G1RegionToSpaceMapper::create_mapper(ReservedSpace rs,
size_t actual_size, size_t actual_size,
size_t page_size, size_t page_size,
@ -362,7 +220,3 @@ G1RegionToSpaceMapper* G1RegionToSpaceMapper::create_mapper(ReservedSpace rs,
return new G1RegionsSmallerThanCommitSizeMapper(rs, actual_size, page_size, region_granularity, commit_factor, type); return new G1RegionsSmallerThanCommitSizeMapper(rs, actual_size, page_size, region_granularity, commit_factor, type);
} }
} }
void G1RegionToSpaceMapper::commit_and_set_special() {
_storage.commit_and_set_special();
}

View File

@ -68,7 +68,6 @@ class G1RegionToSpaceMapper : public CHeapObj<mtGC> {
virtual ~G1RegionToSpaceMapper() {} virtual ~G1RegionToSpaceMapper() {}
void commit_and_set_special();
virtual void commit_regions(uint start_idx, size_t num_regions = 1, WorkGang* pretouch_workers = NULL) = 0; virtual void commit_regions(uint start_idx, size_t num_regions = 1, WorkGang* pretouch_workers = NULL) = 0;
virtual void uncommit_regions(uint start_idx, size_t num_regions = 1) = 0; virtual void uncommit_regions(uint start_idx, size_t num_regions = 1) = 0;
@ -86,35 +85,6 @@ class G1RegionToSpaceMapper : public CHeapObj<mtGC> {
size_t region_granularity, size_t region_granularity,
size_t byte_translation_factor, size_t byte_translation_factor,
MEMFLAGS type); MEMFLAGS type);
static G1RegionToSpaceMapper* create_heap_mapper(ReservedSpace rs,
size_t actual_size,
size_t page_size,
size_t region_granularity,
size_t byte_translation_factor,
MEMFLAGS type);
}; };
// G1RegionToSpaceMapper implementation where
// part of space is mapped to dram and part to nv-dimm
class G1RegionToHeteroSpaceMapper : public G1RegionToSpaceMapper {
private:
ReservedSpace _rs;
G1RegionToSpaceMapper* _dram_mapper;
uint _num_committed_dram;
uint _num_committed_nvdimm;
uint _start_index_of_dram;
size_t _page_size;
size_t _commit_factor;
MEMFLAGS _type;
public:
G1RegionToHeteroSpaceMapper(ReservedSpace rs, size_t used_size, size_t page_size, size_t region_granularity, size_t commit_factor, MEMFLAGS type);
bool initialize();
uint num_committed_dram() const;
uint num_committed_nvdimm() const;
virtual void commit_regions(uint start_idx, size_t num_regions = 1, WorkGang* pretouch_workers = NULL);
virtual void uncommit_regions(uint start_idx, size_t num_regions = 1);
};
#endif // SHARE_GC_G1_G1REGIONTOSPACEMAPPER_HPP #endif // SHARE_GC_G1_G1REGIONTOSPACEMAPPER_HPP

View File

@ -24,7 +24,6 @@
#include "precompiled.hpp" #include "precompiled.hpp"
#include "gc/g1/g1Arguments.hpp" #include "gc/g1/g1Arguments.hpp"
#include "gc/g1/g1HeterogeneousHeapYoungGenSizer.hpp"
#include "gc/g1/g1YoungGenSizer.hpp" #include "gc/g1/g1YoungGenSizer.hpp"
#include "gc/g1/heapRegion.hpp" #include "gc/g1/heapRegion.hpp"
#include "logging/log.hpp" #include "logging/log.hpp"
@ -130,11 +129,3 @@ void G1YoungGenSizer::heap_size_changed(uint new_number_of_heap_regions) {
recalculate_min_max_young_length(new_number_of_heap_regions, &_min_desired_young_length, recalculate_min_max_young_length(new_number_of_heap_regions, &_min_desired_young_length,
&_max_desired_young_length); &_max_desired_young_length);
} }
G1YoungGenSizer* G1YoungGenSizer::create_gen_sizer() {
if (G1Arguments::is_heterogeneous_heap()) {
return new G1HeterogeneousHeapYoungGenSizer();
} else {
return new G1YoungGenSizer();
}
}

View File

@ -63,7 +63,7 @@
// //
// NewSize and MaxNewSize override NewRatio. So, NewRatio is ignored if it is // NewSize and MaxNewSize override NewRatio. So, NewRatio is ignored if it is
// combined with either NewSize or MaxNewSize. (A warning message is printed.) // combined with either NewSize or MaxNewSize. (A warning message is printed.)
class G1YoungGenSizer : public CHeapObj<mtGC> { class G1YoungGenSizer {
private: private:
enum SizerKind { enum SizerKind {
SizerDefaults, SizerDefaults,
@ -78,6 +78,9 @@ private:
// true otherwise. // true otherwise.
bool _use_adaptive_sizing; bool _use_adaptive_sizing;
uint _min_desired_young_length;
uint _max_desired_young_length;
uint calculate_default_min_length(uint new_number_of_heap_regions); uint calculate_default_min_length(uint new_number_of_heap_regions);
uint calculate_default_max_length(uint new_number_of_heap_regions); uint calculate_default_max_length(uint new_number_of_heap_regions);
@ -85,10 +88,6 @@ private:
// given the number of heap regions depending on the kind of sizing algorithm. // given the number of heap regions depending on the kind of sizing algorithm.
void recalculate_min_max_young_length(uint number_of_heap_regions, uint* min_young_length, uint* max_young_length); void recalculate_min_max_young_length(uint number_of_heap_regions, uint* min_young_length, uint* max_young_length);
protected:
uint _min_desired_young_length;
uint _max_desired_young_length;
public: public:
G1YoungGenSizer(); G1YoungGenSizer();
// Calculate the maximum length of the young gen given the number of regions // Calculate the maximum length of the young gen given the number of regions
@ -106,8 +105,6 @@ public:
bool use_adaptive_young_list_length() const { bool use_adaptive_young_list_length() const {
return _use_adaptive_sizing; return _use_adaptive_sizing;
} }
static G1YoungGenSizer* create_gen_sizer();
}; };
#endif // SHARE_GC_G1_G1YOUNGGENSIZER_HPP #endif // SHARE_GC_G1_G1YOUNGGENSIZER_HPP

View File

@ -302,16 +302,7 @@
"of getloadavg() at which G1 triggers a periodic GC. A load " \ "of getloadavg() at which G1 triggers a periodic GC. A load " \
"above this value cancels a given periodic GC. A value of zero " \ "above this value cancels a given periodic GC. A value of zero " \
"disables this check.") \ "disables this check.") \
range(0.0, (double)max_uintx) \ range(0.0, (double)max_uintx)
\
product(uintx, G1YoungExpansionBufferPercent, 10, EXPERIMENTAL, \
"When heterogenous heap is enabled by AllocateOldGenAt " \
"option, after every GC, young gen is re-sized which " \
"involves system calls to commit/uncommit memory. To " \
"reduce these calls, we keep a buffer of extra regions to " \
"absorb small changes in young gen length. This flag takes " \
"the buffer size as an percentage of young gen length") \
range(0, 100)
// end of GC_G1_FLAGS // end of GC_G1_FLAGS

View File

@ -30,7 +30,6 @@
#include "gc/g1/heapRegion.hpp" #include "gc/g1/heapRegion.hpp"
#include "gc/g1/heapRegionManager.inline.hpp" #include "gc/g1/heapRegionManager.inline.hpp"
#include "gc/g1/heapRegionSet.inline.hpp" #include "gc/g1/heapRegionSet.inline.hpp"
#include "gc/g1/heterogeneousHeapRegionManager.hpp"
#include "jfr/jfrEvents.hpp" #include "jfr/jfrEvents.hpp"
#include "logging/logStream.hpp" #include "logging/logStream.hpp"
#include "memory/allocation.hpp" #include "memory/allocation.hpp"
@ -77,13 +76,6 @@ HeapRegionManager::HeapRegionManager() :
_free_list("Free list", new MasterFreeRegionListChecker()) _free_list("Free list", new MasterFreeRegionListChecker())
{ } { }
HeapRegionManager* HeapRegionManager::create_manager(G1CollectedHeap* heap) {
if (G1Arguments::is_heterogeneous_heap()) {
return new HeterogeneousHeapRegionManager((uint)(G1Arguments::heap_max_size_bytes() / HeapRegion::GrainBytes) /*heap size as num of regions*/);
}
return new HeapRegionManager();
}
void HeapRegionManager::initialize(G1RegionToSpaceMapper* heap_storage, void HeapRegionManager::initialize(G1RegionToSpaceMapper* heap_storage,
G1RegionToSpaceMapper* prev_bitmap, G1RegionToSpaceMapper* prev_bitmap,
G1RegionToSpaceMapper* next_bitmap, G1RegionToSpaceMapper* next_bitmap,
@ -669,7 +661,7 @@ void HeapRegionManager::verify_optional() {
#endif // PRODUCT #endif // PRODUCT
HeapRegionClaimer::HeapRegionClaimer(uint n_workers) : HeapRegionClaimer::HeapRegionClaimer(uint n_workers) :
_n_workers(n_workers), _n_regions(G1CollectedHeap::heap()->_hrm->_allocated_heapregions_length), _claims(NULL) { _n_workers(n_workers), _n_regions(G1CollectedHeap::heap()->_hrm._allocated_heapregions_length), _claims(NULL) {
assert(n_workers > 0, "Need at least one worker."); assert(n_workers > 0, "Need at least one worker.");
uint* new_claims = NEW_C_HEAP_ARRAY(uint, _n_regions, mtGC); uint* new_claims = NEW_C_HEAP_ARRAY(uint, _n_regions, mtGC);
memset(new_claims, Unclaimed, sizeof(*_claims) * _n_regions); memset(new_claims, Unclaimed, sizeof(*_claims) * _n_regions);

View File

@ -135,7 +135,6 @@ class HeapRegionManager: public CHeapObj<mtGC> {
// Checks the G1MemoryNodeManager to see if this region is on the preferred node. // Checks the G1MemoryNodeManager to see if this region is on the preferred node.
bool is_on_preferred_index(uint region_index, uint preferred_node_index); bool is_on_preferred_index(uint region_index, uint preferred_node_index);
protected:
G1HeapRegionTable _regions; G1HeapRegionTable _regions;
G1RegionToSpaceMapper* _heap_mapper; G1RegionToSpaceMapper* _heap_mapper;
G1RegionToSpaceMapper* _prev_bitmap_mapper; G1RegionToSpaceMapper* _prev_bitmap_mapper;
@ -148,8 +147,8 @@ protected:
HeapRegion* new_heap_region(uint hrm_index); HeapRegion* new_heap_region(uint hrm_index);
// Humongous allocation helpers // Humongous allocation helpers
virtual HeapRegion* allocate_humongous_from_free_list(uint num_regions); HeapRegion* allocate_humongous_from_free_list(uint num_regions);
virtual HeapRegion* allocate_humongous_allow_expand(uint num_regions); HeapRegion* allocate_humongous_allow_expand(uint num_regions);
// Expand helper for cases when the regions to expand are well defined. // Expand helper for cases when the regions to expand are well defined.
void expand_exact(uint start, uint num_regions, WorkGang* pretouch_workers); void expand_exact(uint start, uint num_regions, WorkGang* pretouch_workers);
@ -162,25 +161,18 @@ public:
// Empty constructor, we'll initialize it with the initialize() method. // Empty constructor, we'll initialize it with the initialize() method.
HeapRegionManager(); HeapRegionManager();
static HeapRegionManager* create_manager(G1CollectedHeap* heap); void initialize(G1RegionToSpaceMapper* heap_storage,
G1RegionToSpaceMapper* prev_bitmap,
virtual void initialize(G1RegionToSpaceMapper* heap_storage, G1RegionToSpaceMapper* next_bitmap,
G1RegionToSpaceMapper* prev_bitmap, G1RegionToSpaceMapper* bot,
G1RegionToSpaceMapper* next_bitmap, G1RegionToSpaceMapper* cardtable,
G1RegionToSpaceMapper* bot, G1RegionToSpaceMapper* card_counts);
G1RegionToSpaceMapper* cardtable,
G1RegionToSpaceMapper* card_counts);
// Prepare heap regions before and after full collection.
// Nothing to be done in this class.
virtual void prepare_for_full_collection_start() {}
virtual void prepare_for_full_collection_end() {}
// Return the "dummy" region used for G1AllocRegion. This is currently a hardwired // Return the "dummy" region used for G1AllocRegion. This is currently a hardwired
// new HeapRegion that owns HeapRegion at index 0. Since at the moment we commit // new HeapRegion that owns HeapRegion at index 0. Since at the moment we commit
// the heap from the lowest address, this region (and its associated data // the heap from the lowest address, this region (and its associated data
// structures) are available and we do not need to check further. // structures) are available and we do not need to check further.
virtual HeapRegion* get_dummy_region() { return new_heap_region(0); } HeapRegion* get_dummy_region() { return new_heap_region(0); }
// Return the HeapRegion at the given index. Assume that the index // Return the HeapRegion at the given index. Assume that the index
// is valid. // is valid.
@ -213,7 +205,7 @@ public:
} }
// Allocate a free region with specific node index. If fails allocate with next node index. // Allocate a free region with specific node index. If fails allocate with next node index.
virtual HeapRegion* allocate_free_region(HeapRegionType type, uint requested_node_index); HeapRegion* allocate_free_region(HeapRegionType type, uint requested_node_index);
// Allocate a humongous object from the free list // Allocate a humongous object from the free list
HeapRegion* allocate_humongous(uint num_regions); HeapRegion* allocate_humongous(uint num_regions);
@ -251,7 +243,7 @@ public:
uint reserved_length() const { return (uint)_regions.length(); } uint reserved_length() const { return (uint)_regions.length(); }
// Return maximum number of regions that heap can expand to. // Return maximum number of regions that heap can expand to.
virtual uint max_length() const { return reserved_length(); } uint max_length() const { return reserved_length(); }
MemoryUsage get_auxiliary_data_memory_usage() const; MemoryUsage get_auxiliary_data_memory_usage() const;
@ -261,22 +253,22 @@ public:
// HeapRegions, or re-use existing ones. Returns the number of regions the // HeapRegions, or re-use existing ones. Returns the number of regions the
// sequence was expanded by. If a HeapRegion allocation fails, the resulting // sequence was expanded by. If a HeapRegion allocation fails, the resulting
// number of regions might be smaller than what's desired. // number of regions might be smaller than what's desired.
virtual uint expand_by(uint num_regions, WorkGang* pretouch_workers); uint expand_by(uint num_regions, WorkGang* pretouch_workers);
// Makes sure that the regions from start to start+num_regions-1 are available // Makes sure that the regions from start to start+num_regions-1 are available
// for allocation. Returns the number of regions that were committed to achieve // for allocation. Returns the number of regions that were committed to achieve
// this. // this.
virtual uint expand_at(uint start, uint num_regions, WorkGang* pretouch_workers); uint expand_at(uint start, uint num_regions, WorkGang* pretouch_workers);
// Try to expand on the given node index, returning the index of the new region. // Try to expand on the given node index, returning the index of the new region.
virtual uint expand_on_preferred_node(uint node_index); uint expand_on_preferred_node(uint node_index);
HeapRegion* next_region_in_heap(const HeapRegion* r) const; HeapRegion* next_region_in_heap(const HeapRegion* r) const;
// Find the highest free or uncommitted region in the reserved heap, // Find the highest free or uncommitted region in the reserved heap,
// and if uncommitted, commit it. If none are available, return G1_NO_HRM_INDEX. // and if uncommitted, commit it. If none are available, return G1_NO_HRM_INDEX.
// Set the 'expanded' boolean true if a new region was committed. // Set the 'expanded' boolean true if a new region was committed.
virtual uint find_highest_free(bool* expanded); uint find_highest_free(bool* expanded);
// Allocate the regions that contain the address range specified, committing the // Allocate the regions that contain the address range specified, committing the
// regions if necessary. Return false if any of the regions is already committed // regions if necessary. Return false if any of the regions is already committed
@ -291,13 +283,13 @@ public:
// Uncommit up to num_regions_to_remove regions that are completely free. // Uncommit up to num_regions_to_remove regions that are completely free.
// Return the actual number of uncommitted regions. // Return the actual number of uncommitted regions.
virtual uint shrink_by(uint num_regions_to_remove); uint shrink_by(uint num_regions_to_remove);
// Uncommit a number of regions starting at the specified index, which must be available, // Uncommit a number of regions starting at the specified index, which must be available,
// empty, and free. // empty, and free.
void shrink_at(uint index, size_t num_regions); void shrink_at(uint index, size_t num_regions);
virtual void verify(); void verify();
// Do some sanity checking. // Do some sanity checking.
void verify_optional() PRODUCT_RETURN; void verify_optional() PRODUCT_RETURN;

View File

@ -287,21 +287,6 @@ void FreeRegionList::remove_starting_at(HeapRegion* first, uint num_regions) {
verify_optional(); verify_optional();
} }
uint FreeRegionList::num_of_regions_in_range(uint start, uint end) const {
HeapRegion* cur = _head;
uint num = 0;
while (cur != NULL) {
uint index = cur->hrm_index();
if (index > end) {
break;
} else if (index >= start) {
num++;
}
cur = cur->next();
}
return num;
}
void FreeRegionList::verify() { void FreeRegionList::verify() {
// See comment in HeapRegionSetBase::verify() about MT safety and // See comment in HeapRegionSetBase::verify() about MT safety and
// verification. // verification.

View File

@ -234,8 +234,6 @@ public:
virtual void verify(); virtual void verify();
uint num_of_regions_in_range(uint start, uint end) const;
using HeapRegionSetBase::length; using HeapRegionSetBase::length;
uint length(uint node_index) const; uint length(uint node_index) const;
}; };

View File

@ -117,7 +117,7 @@ private:
_tag = tag; _tag = tag;
} }
// Private constructor used static constants // Private constructor used for static constants
HeapRegionType(Tag t) : _tag(t) { hrt_assert_is_valid(_tag); } HeapRegionType(Tag t) : _tag(t) { hrt_assert_is_valid(_tag); }
public: public:

View File

@ -1,533 +0,0 @@
/*
* Copyright (c) 2018, 2019, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "gc/g1/g1CollectedHeap.inline.hpp"
#include "gc/g1/g1ConcurrentRefine.hpp"
#include "gc/g1/heapRegion.hpp"
#include "gc/g1/heapRegionManager.inline.hpp"
#include "gc/g1/heapRegionSet.inline.hpp"
#include "gc/g1/heterogeneousHeapRegionManager.hpp"
#include "memory/allocation.hpp"
HeterogeneousHeapRegionManager* HeterogeneousHeapRegionManager::manager() {
G1CollectedHeap* g1h = G1CollectedHeap::heap();
assert(g1h != NULL, "Uninitialized access to HeterogeneousHeapRegionManager::manager()");
HeapRegionManager* hrm = g1h->hrm();
assert(hrm != NULL, "Uninitialized access to HeterogeneousHeapRegionManager::manager()");
return (HeterogeneousHeapRegionManager*)hrm;
}
void HeterogeneousHeapRegionManager::initialize(G1RegionToSpaceMapper* heap_storage,
G1RegionToSpaceMapper* prev_bitmap,
G1RegionToSpaceMapper* next_bitmap,
G1RegionToSpaceMapper* bot,
G1RegionToSpaceMapper* cardtable,
G1RegionToSpaceMapper* card_counts) {
HeapRegionManager::initialize(heap_storage, prev_bitmap, next_bitmap, bot, cardtable, card_counts);
// We commit bitmap for all regions during initialization and mark the bitmap space as special.
// This allows regions to be un-committed while concurrent-marking threads are accessing the bitmap concurrently.
_prev_bitmap_mapper->commit_and_set_special();
_next_bitmap_mapper->commit_and_set_special();
}
// expand_by() is called to grow the heap. We grow into nvdimm now.
// Dram regions are committed later as needed during mutator region allocation or
// when young list target length is determined after gc cycle.
uint HeterogeneousHeapRegionManager::expand_by(uint num_regions, WorkGang* pretouch_workers) {
uint num_regions_possible = total_regions_committed() >= max_length() ? 0 : max_length() - total_regions_committed();
uint num_expanded = expand_nvdimm(MIN2(num_regions, num_regions_possible), pretouch_workers);
return num_expanded;
}
// Expands heap starting from 'start' index. The question is should we expand from one memory (e.g. nvdimm) to another (e.g. dram).
// Looking at the code, expand_at() is called for humongous allocation where 'start' is in nv-dimm.
// So we only allocate regions in the same kind of memory as 'start'.
uint HeterogeneousHeapRegionManager::expand_at(uint start, uint num_regions, WorkGang* pretouch_workers) {
if (num_regions == 0) {
return 0;
}
uint target_num_regions = MIN2(num_regions, max_length() - total_regions_committed());
uint end = is_in_nvdimm(start) ? end_index_of_nvdimm() : end_index_of_dram();
uint num_expanded = expand_in_range(start, end, target_num_regions, pretouch_workers);
assert(total_regions_committed() <= max_length(), "must be");
return num_expanded;
}
// This function ensures that there are 'expected_num_regions' committed regions in dram.
// If new regions are committed, it un-commits that many regions from nv-dimm.
// If there are already more regions committed in dram, extra regions are un-committed.
void HeterogeneousHeapRegionManager::adjust_dram_regions(uint expected_num_regions, WorkGang* pretouch_workers) {
// Release back the extra regions allocated in evacuation failure scenario.
if(_no_borrowed_regions > 0) {
_no_borrowed_regions -= shrink_dram(_no_borrowed_regions);
_no_borrowed_regions -= shrink_nvdimm(_no_borrowed_regions);
}
if(expected_num_regions > free_list_dram_length()) {
// If we are going to expand DRAM, we expand a little more so that we can absorb small variations in Young gen sizing.
uint targeted_dram_regions = expected_num_regions * (1 + (double)G1YoungExpansionBufferPercent / 100);
uint to_be_made_available = targeted_dram_regions - free_list_dram_length();
#ifdef ASSERT
uint total_committed_before = total_regions_committed();
#endif
uint can_be_made_available = shrink_nvdimm(to_be_made_available);
uint ret = expand_dram(can_be_made_available, pretouch_workers);
#ifdef ASSERT
assert(ret == can_be_made_available, "should be equal");
assert(total_committed_before == total_regions_committed(), "invariant not met");
#endif
} else {
uint to_be_released = free_list_dram_length() - expected_num_regions;
// if number of extra DRAM regions is small, do not shrink.
if (to_be_released < expected_num_regions * G1YoungExpansionBufferPercent / 100) {
return;
}
#ifdef ASSERT
uint total_committed_before = total_regions_committed();
#endif
uint ret = shrink_dram(to_be_released);
assert(ret == to_be_released, "Should be able to shrink by given amount");
ret = expand_nvdimm(to_be_released, pretouch_workers);
#ifdef ASSERT
assert(ret == to_be_released, "Should be able to expand by given amount");
assert(total_committed_before == total_regions_committed(), "invariant not met");
#endif
}
}
uint HeterogeneousHeapRegionManager::total_regions_committed() const {
return num_committed_dram() + num_committed_nvdimm();
}
uint HeterogeneousHeapRegionManager::num_committed_dram() const {
// This class does not keep count of committed regions in dram and nv-dimm.
// G1RegionToHeteroSpaceMapper keeps this information.
return static_cast<G1RegionToHeteroSpaceMapper*>(_heap_mapper)->num_committed_dram();
}
uint HeterogeneousHeapRegionManager::num_committed_nvdimm() const {
// See comment for num_committed_dram()
return static_cast<G1RegionToHeteroSpaceMapper*>(_heap_mapper)->num_committed_nvdimm();
}
// Return maximum number of regions that heap can expand to.
uint HeterogeneousHeapRegionManager::max_length() const {
return _max_regions;
}
uint HeterogeneousHeapRegionManager::find_unavailable_in_range(uint start_idx, uint end_idx, uint* res_idx) const {
guarantee(res_idx != NULL, "checking");
guarantee(start_idx <= (reserved_length() + 1), "checking");
uint num_regions = 0;
uint cur = start_idx;
while (cur <= end_idx && is_available(cur)) {
cur++;
}
if (cur == end_idx + 1) {
return num_regions;
}
*res_idx = cur;
while (cur <= end_idx && !is_available(cur)) {
cur++;
}
num_regions = cur - *res_idx;
#ifdef ASSERT
for (uint i = *res_idx; i < (*res_idx + num_regions); i++) {
assert(!is_available(i), "just checking");
}
assert(cur == end_idx + 1 || num_regions == 0 || is_available(cur),
"The region at the current position %u must be available or at the end", cur);
#endif
return num_regions;
}
uint HeterogeneousHeapRegionManager::expand_dram(uint num_regions, WorkGang* pretouch_workers) {
return expand_in_range(start_index_of_dram(), end_index_of_dram(), num_regions, pretouch_workers);
}
uint HeterogeneousHeapRegionManager::expand_nvdimm(uint num_regions, WorkGang* pretouch_workers) {
return expand_in_range(start_index_of_nvdimm(), end_index_of_nvdimm(), num_regions, pretouch_workers);
}
// Follows same logic as expand_at() form HeapRegionManager.
uint HeterogeneousHeapRegionManager::expand_in_range(uint start, uint end, uint num_regions, WorkGang* pretouch_gang) {
uint so_far = 0;
uint chunk_start = 0;
uint num_last_found = 0;
while (so_far < num_regions &&
(num_last_found = find_unavailable_in_range(start, end, &chunk_start)) > 0) {
uint to_commit = MIN2(num_regions - so_far, num_last_found);
make_regions_available(chunk_start, to_commit, pretouch_gang);
so_far += to_commit;
start = chunk_start + to_commit + 1;
}
return so_far;
}
// Shrink in the range of indexes which are reserved for dram.
uint HeterogeneousHeapRegionManager::shrink_dram(uint num_regions, bool update_free_list) {
return shrink_in_range(start_index_of_dram(), end_index_of_dram(), num_regions, update_free_list);
}
// Shrink in the range of indexes which are reserved for nv-dimm.
uint HeterogeneousHeapRegionManager::shrink_nvdimm(uint num_regions, bool update_free_list) {
return shrink_in_range(start_index_of_nvdimm(), end_index_of_nvdimm(), num_regions, update_free_list);
}
// Find empty regions in given range, un-commit them and return the count.
uint HeterogeneousHeapRegionManager::shrink_in_range(uint start, uint end, uint num_regions, bool update_free_list) {
if (num_regions == 0) {
return 0;
}
uint so_far = 0;
uint idx_last_found = 0;
uint num_last_found;
while (so_far < num_regions &&
(num_last_found = find_empty_in_range_reverse(start, end, &idx_last_found)) > 0) {
uint to_uncommit = MIN2(num_regions - so_far, num_last_found);
if(update_free_list) {
_free_list.remove_starting_at(at(idx_last_found + num_last_found - to_uncommit), to_uncommit);
}
uncommit_regions(idx_last_found + num_last_found - to_uncommit, to_uncommit);
so_far += to_uncommit;
end = idx_last_found;
}
return so_far;
}
uint HeterogeneousHeapRegionManager::find_empty_in_range_reverse(uint start_idx, uint end_idx, uint* res_idx) {
guarantee(res_idx != NULL, "checking");
guarantee(start_idx < reserved_length(), "checking");
guarantee(end_idx < reserved_length(), "checking");
if(start_idx > end_idx) {
return 0;
}
uint num_regions_found = 0;
jlong cur = end_idx;
while (cur >= start_idx && !(is_available(cur) && at(cur)->is_empty())) {
cur--;
}
if (cur == start_idx - 1) {
return num_regions_found;
}
jlong old_cur = cur;
// cur indexes the first empty region
while (cur >= start_idx && is_available(cur) && at(cur)->is_empty()) {
cur--;
}
*res_idx = cur + 1;
num_regions_found = old_cur - cur;
#ifdef ASSERT
for (uint i = *res_idx; i < (*res_idx + num_regions_found); i++) {
assert(at(i)->is_empty(), "just checking");
}
#endif
return num_regions_found;
}
HeapRegion* HeterogeneousHeapRegionManager::allocate_free_region(HeapRegionType type, uint node_index) {
// We want to prevent mutators from proceeding when we have borrowed regions from the last collection. This
// will force a full collection to remedy the situation.
// Free region requests from GC threads can proceed.
if(type.is_eden() || type.is_humongous()) {
if(has_borrowed_regions()) {
return NULL;
}
}
// old and humongous regions are allocated from nv-dimm; eden and survivor regions are allocated from dram
// assumption: dram regions take higher indexes
bool from_nvdimm = (type.is_old() || type.is_humongous()) ? true : false;
bool from_head = from_nvdimm;
HeapRegion* hr = _free_list.remove_region(from_head);
if (hr != NULL && ( (from_nvdimm && !is_in_nvdimm(hr->hrm_index())) || (!from_nvdimm && !is_in_dram(hr->hrm_index())) ) ) {
_free_list.add_ordered(hr);
hr = NULL;
}
#ifdef ASSERT
uint total_committed_before = total_regions_committed();
#endif
if (hr == NULL) {
if (!from_nvdimm) {
uint ret = shrink_nvdimm(1);
if (ret == 1) {
ret = expand_dram(1, NULL);
assert(ret == 1, "We should be able to commit one region");
hr = _free_list.remove_region(from_head);
}
}
else { /*is_old*/
uint ret = shrink_dram(1);
if (ret == 1) {
ret = expand_nvdimm(1, NULL);
assert(ret == 1, "We should be able to commit one region");
hr = _free_list.remove_region(from_head);
}
}
}
#ifdef ASSERT
assert(total_committed_before == total_regions_committed(), "invariant not met");
#endif
// When an old region is requested (which happens during collection pause) and we can't find any empty region
// in the set of available regions (which is an evacuation failure scenario), we borrow (or pre-allocate) an unavailable region
// from nv-dimm. This region is used to evacuate surviving objects from eden, survivor or old.
if(hr == NULL && type.is_old()) {
hr = borrow_old_region_for_gc();
}
if (hr != NULL) {
assert(hr->next() == NULL, "Single region should not have next");
assert(is_available(hr->hrm_index()), "Must be committed");
}
return hr;
}
HeapRegion* HeterogeneousHeapRegionManager::allocate_humongous_from_free_list(uint num_regions) {
if (has_borrowed_regions()) {
return NULL;
}
uint candidate = find_contiguous(start_index_of_nvdimm(), end_index_of_nvdimm(), num_regions, true);
if (candidate == G1_NO_HRM_INDEX) {
return NULL;
}
return allocate_free_regions_starting_at(candidate, num_regions);
}
HeapRegion* HeterogeneousHeapRegionManager::allocate_humongous_allow_expand(uint num_regions) {
if (has_borrowed_regions()) {
return NULL;
}
uint candidate = find_contiguous(start_index_of_nvdimm(), end_index_of_nvdimm(), num_regions, false);
if (candidate == G1_NO_HRM_INDEX) {
return NULL;
}
expand_exact(candidate, num_regions, NULL);
return allocate_free_regions_starting_at(candidate, num_regions);
}
uint HeterogeneousHeapRegionManager::find_contiguous(size_t start, size_t end, size_t num, bool empty_only) {
uint found = 0;
size_t length_found = 0;
uint cur = (uint)start;
uint length_unavailable = 0;
while (length_found < num && cur <= end) {
HeapRegion* hr = _regions.get_by_index(cur);
if ((!empty_only && !is_available(cur)) || (is_available(cur) && hr != NULL && hr->is_empty())) {
// This region is a potential candidate for allocation into.
if (!is_available(cur)) {
if(shrink_dram(1) == 1) {
uint ret = expand_in_range(cur, cur, 1, NULL);
assert(ret == 1, "We should be able to expand at this index");
} else {
length_unavailable++;
}
}
length_found++;
}
else {
// This region is not a candidate. The next region is the next possible one.
found = cur + 1;
length_found = 0;
}
cur++;
}
if (length_found == num) {
for (uint i = found; i < (found + num); i++) {
HeapRegion* hr = _regions.get_by_index(i);
// sanity check
guarantee((!empty_only && !is_available(i)) || (is_available(i) && hr != NULL && hr->is_empty()),
"Found region sequence starting at " UINT32_FORMAT ", length " SIZE_FORMAT
" that is not empty at " UINT32_FORMAT ". Hr is " PTR_FORMAT, found, num, i, p2i(hr));
}
if (!empty_only && length_unavailable > (max_length() - total_regions_committed())) {
// if 'length_unavailable' number of regions will be made available, we will exceed max regions.
return G1_NO_HRM_INDEX;
}
return found;
}
else {
return G1_NO_HRM_INDEX;
}
}
uint HeterogeneousHeapRegionManager::find_highest_free(bool* expanded) {
// Loop downwards from the highest dram region index, looking for an
// entry which is either free or not yet committed. If not yet
// committed, expand_at that index.
uint curr = end_index_of_dram();
while (true) {
HeapRegion *hr = _regions.get_by_index(curr);
if (hr == NULL && !(total_regions_committed() < _max_regions)) {
uint res = shrink_nvdimm(1);
if (res == 1) {
res = expand_in_range(curr, curr, 1, NULL);
assert(res == 1, "We should be able to expand since shrink was successful");
*expanded = true;
return curr;
}
}
else {
if (hr->is_free()) {
*expanded = false;
return curr;
}
}
if (curr == start_index_of_dram()) {
return G1_NO_HRM_INDEX;
}
curr--;
}
}
// We need to override this since region 0 which serves are dummy region in base class may not be available here.
// This is a corner condition when either number of regions is small. When adaptive sizing is used, initial heap size
// could be just one region. This region is commited in dram to be used for young generation, leaving region 0 (which is in nvdimm)
// unavailable.
HeapRegion* HeterogeneousHeapRegionManager::get_dummy_region() {
uint curr = 0;
while (curr < _regions.length()) {
if (is_available(curr)) {
return new_heap_region(curr);
}
curr++;
}
assert(false, "We should always find a region available for dummy region");
return NULL;
}
// First shrink in dram, then in nv-dimm.
uint HeterogeneousHeapRegionManager::shrink_by(uint num_regions) {
// This call is made at end of full collection. Before making this call the region sets are tore down (tear_down_region_sets()).
// So shrink() calls below do not need to remove uncomitted regions from free list.
uint ret = shrink_dram(num_regions, false /* update_free_list */);
ret += shrink_nvdimm(num_regions - ret, false /* update_free_list */);
return ret;
}
void HeterogeneousHeapRegionManager::verify() {
HeapRegionManager::verify();
}
uint HeterogeneousHeapRegionManager::free_list_dram_length() const {
return _free_list.num_of_regions_in_range(start_index_of_dram(), end_index_of_dram());
}
uint HeterogeneousHeapRegionManager::free_list_nvdimm_length() const {
return _free_list.num_of_regions_in_range(start_index_of_nvdimm(), end_index_of_nvdimm());
}
bool HeterogeneousHeapRegionManager::is_in_nvdimm(uint index) const {
return index >= start_index_of_nvdimm() && index <= end_index_of_nvdimm();
}
bool HeterogeneousHeapRegionManager::is_in_dram(uint index) const {
return index >= start_index_of_dram() && index <= end_index_of_dram();
}
// We have to make sure full collection copies all surviving objects to NV-DIMM.
// We might not have enough regions in nvdimm_set, so we need to make more regions on NV-DIMM available for full collection.
// Note: by doing this we are breaking the in-variant that total number of committed regions is equal to current heap size.
// After full collection ends, we will re-establish this in-variant by freeing DRAM regions.
void HeterogeneousHeapRegionManager::prepare_for_full_collection_start() {
_total_commited_before_full_gc = total_regions_committed() - _no_borrowed_regions;
_no_borrowed_regions = 0;
expand_nvdimm(num_committed_dram(), NULL);
remove_all_free_regions();
}
// We need to bring back the total committed regions to before full collection start.
// Unless we are close to OOM, all regular (not pinned) regions in DRAM should be free.
// We shrink all free regions in DRAM and if needed from NV-DIMM (when there are pinned DRAM regions)
// If we can't bring back committed regions count to _total_commited_before_full_gc, we keep the extra count in _no_borrowed_regions.
// When this GC finishes, new regions won't be allocated since has_borrowed_regions() is true. VM will be forced to re-try GC
// with clear soft references followed by OOM error in worst case.
void HeterogeneousHeapRegionManager::prepare_for_full_collection_end() {
uint shrink_size = total_regions_committed() - _total_commited_before_full_gc;
uint so_far = 0;
uint idx_last_found = 0;
uint num_last_found;
uint end = (uint)_regions.length() - 1;
while (so_far < shrink_size &&
(num_last_found = find_empty_in_range_reverse(0, end, &idx_last_found)) > 0) {
uint to_uncommit = MIN2(shrink_size - so_far, num_last_found);
uncommit_regions(idx_last_found + num_last_found - to_uncommit, to_uncommit);
so_far += to_uncommit;
end = idx_last_found;
}
// See comment above the function.
_no_borrowed_regions = shrink_size - so_far;
}
uint HeterogeneousHeapRegionManager::start_index_of_dram() const { return _max_regions;}
uint HeterogeneousHeapRegionManager::end_index_of_dram() const { return 2*_max_regions - 1; }
uint HeterogeneousHeapRegionManager::start_index_of_nvdimm() const { return 0; }
uint HeterogeneousHeapRegionManager::end_index_of_nvdimm() const { return _max_regions - 1; }
// This function is called when there are no free nv-dimm regions.
// It borrows a region from the set of unavailable regions in nv-dimm for GC purpose.
HeapRegion* HeterogeneousHeapRegionManager::borrow_old_region_for_gc() {
assert(free_list_nvdimm_length() == 0, "this function should be called only when there are no nv-dimm regions in free list");
uint ret = expand_nvdimm(1, NULL);
if(ret != 1) {
return NULL;
}
HeapRegion* hr = _free_list.remove_region(true /*from_head*/);
assert(is_in_nvdimm(hr->hrm_index()), "allocated region should be in nv-dimm");
_no_borrowed_regions++;
return hr;
}
bool HeterogeneousHeapRegionManager::has_borrowed_regions() const {
return _no_borrowed_regions > 0;
}

View File

@ -1,146 +0,0 @@
/*
* Copyright (c) 2018, 2019, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef SHARE_GC_G1_HETEROGENEOUSHEAPREGIONMANAGER_HPP
#define SHARE_GC_G1_HETEROGENEOUSHEAPREGIONMANAGER_HPP
#include "gc/g1/heapRegionManager.hpp"
// This class manages heap regions on heterogenous memory comprising of dram and nv-dimm.
// Regions in dram (dram_set) are used for young objects and archive regions (CDS).
// Regions in nv-dimm (nvdimm_set) are used for old objects and humongous objects.
// At any point there are some regions committed on dram and some on nv-dimm with the following guarantees:
// 1. The total number of regions committed in dram and nv-dimm equals the current size of heap.
// 2. Consequently, total number of regions committed is less than or equal to Xmx.
// 3. To maintain the guarantee stated by 1., whenever one set grows (new regions committed), the other set shrinks (regions un-committed).
// 3a. If more dram regions are needed (young generation expansion), corresponding number of regions in nv-dimm are un-committed.
// 3b. When old generation or humongous set grows, and new regions need to be committed to nv-dimm, corresponding number of regions
// are un-committed in dram.
class HeterogeneousHeapRegionManager : public HeapRegionManager {
const uint _max_regions;
uint _max_dram_regions;
uint _max_nvdimm_regions;
uint _start_index_of_nvdimm;
uint _total_commited_before_full_gc;
uint _no_borrowed_regions;
uint total_regions_committed() const;
uint num_committed_dram() const;
uint num_committed_nvdimm() const;
// Similar to find_unavailable_from_idx() function from base class, difference is this function searches in range [start, end].
uint find_unavailable_in_range(uint start_idx, uint end_idx, uint* res_idx) const;
// Expand into dram. Maintains the invariant that total number of committed regions is less than current heap size.
uint expand_dram(uint num_regions, WorkGang* pretouch_workers);
// Expand into nv-dimm.
uint expand_nvdimm(uint num_regions, WorkGang* pretouch_workers);
// Expand by finding unavailable regions in [start, end] range.
uint expand_in_range(uint start, uint end, uint num_regions, WorkGang* pretouch_workers);
// Shrink dram set of regions.
uint shrink_dram(uint num_regions, bool update_free_list = true);
// Shrink nv-dimm set of regions.
uint shrink_nvdimm(uint num_regions, bool update_free_list = true);
// Shrink regions from [start, end] range.
uint shrink_in_range(uint start, uint end, uint num_regions, bool update_free_list = true);
// Similar to find_empty_from_idx_reverse() in base class. Only here it searches in a range.
uint find_empty_in_range_reverse(uint start_idx, uint end_idx, uint* res_idx);
// Similar to find_contiguous() in base class, with [start, end] range
uint find_contiguous(size_t start, size_t end, size_t num, bool empty_only);
// This function is called when there are no free nv-dimm regions.
// It borrows a region from the set of unavailable regions in nv-dimm for GC purpose.
HeapRegion* borrow_old_region_for_gc();
uint free_list_dram_length() const;
uint free_list_nvdimm_length() const;
// is region with given index in nv-dimm?
bool is_in_nvdimm(uint index) const;
bool is_in_dram(uint index) const;
public:
// Empty constructor, we'll initialize it with the initialize() method.
HeterogeneousHeapRegionManager(uint num_regions) : _max_regions(num_regions), _max_dram_regions(0),
_max_nvdimm_regions(0), _start_index_of_nvdimm(0),
_total_commited_before_full_gc(0), _no_borrowed_regions(0)
{}
static HeterogeneousHeapRegionManager* manager();
virtual void initialize(G1RegionToSpaceMapper* heap_storage,
G1RegionToSpaceMapper* prev_bitmap,
G1RegionToSpaceMapper* next_bitmap,
G1RegionToSpaceMapper* bot,
G1RegionToSpaceMapper* cardtable,
G1RegionToSpaceMapper* card_counts);
uint start_index_of_nvdimm() const;
uint start_index_of_dram() const;
uint end_index_of_nvdimm() const;
uint end_index_of_dram() const;
// Override.
HeapRegion* get_dummy_region();
// Adjust dram_set to provision 'expected_num_regions' regions.
void adjust_dram_regions(uint expected_num_regions, WorkGang* pretouch_workers);
// Prepare heap regions before and after full collection.
void prepare_for_full_collection_start();
void prepare_for_full_collection_end();
virtual HeapRegion* allocate_free_region(HeapRegionType type, uint node_index);
virtual HeapRegion* allocate_humongous_from_free_list(uint num_regions);
virtual HeapRegion* allocate_humongous_allow_expand(uint num_regions);
// Return maximum number of regions that heap can expand to.
uint max_length() const;
// Override. Expand in nv-dimm.
uint expand_by(uint num_regions, WorkGang* pretouch_workers);
// Override.
uint expand_at(uint start, uint num_regions, WorkGang* pretouch_workers);
// Overrides base class implementation to find highest free region in dram.
uint find_highest_free(bool* expanded);
// Override. This fuction is called to shrink the heap, we shrink in dram first then in nv-dimm.
uint shrink_by(uint num_regions_to_remove);
bool has_borrowed_regions() const;
void verify();
};
#endif // SHARE_GC_G1_HETEROGENEOUSHEAPREGIONMANAGER_HPP

View File

@ -55,7 +55,7 @@
nonstatic_field(HeapRegionManager, _regions, G1HeapRegionTable) \ nonstatic_field(HeapRegionManager, _regions, G1HeapRegionTable) \
\ \
volatile_nonstatic_field(G1CollectedHeap, _summary_bytes_used, size_t) \ volatile_nonstatic_field(G1CollectedHeap, _summary_bytes_used, size_t) \
nonstatic_field(G1CollectedHeap, _hrm, HeapRegionManager*) \ nonstatic_field(G1CollectedHeap, _hrm, HeapRegionManager) \
nonstatic_field(G1CollectedHeap, _g1mm, G1MonitoringSupport*) \ nonstatic_field(G1CollectedHeap, _g1mm, G1MonitoringSupport*) \
nonstatic_field(G1CollectedHeap, _old_set, HeapRegionSetBase) \ nonstatic_field(G1CollectedHeap, _old_set, HeapRegionSetBase) \
nonstatic_field(G1CollectedHeap, _archive_set, HeapRegionSetBase) \ nonstatic_field(G1CollectedHeap, _archive_set, HeapRegionSetBase) \

View File

@ -37,8 +37,6 @@
#include "utilities/defaultStream.hpp" #include "utilities/defaultStream.hpp"
#include "utilities/powerOfTwo.hpp" #include "utilities/powerOfTwo.hpp"
static const double MaxRamFractionForYoung = 0.8;
size_t ParallelArguments::conservative_max_heap_alignment() { size_t ParallelArguments::conservative_max_heap_alignment() {
return compute_heap_alignment(); return compute_heap_alignment();
} }
@ -116,10 +114,6 @@ void ParallelArguments::initialize_heap_flags_and_sizes_one_pass() {
} }
void ParallelArguments::initialize_heap_flags_and_sizes() { void ParallelArguments::initialize_heap_flags_and_sizes() {
if (is_heterogeneous_heap()) {
initialize_heterogeneous();
}
initialize_heap_flags_and_sizes_one_pass(); initialize_heap_flags_and_sizes_one_pass();
const size_t min_pages = 4; // 1 for eden + 1 for each survivor + 1 for old const size_t min_pages = 4; // 1 for eden + 1 for each survivor + 1 for old
@ -136,61 +130,6 @@ void ParallelArguments::initialize_heap_flags_and_sizes() {
} }
} }
// Check the available dram memory to limit NewSize and MaxNewSize before
// calling base class initialize_flags().
void ParallelArguments::initialize_heterogeneous() {
FormatBuffer<100> calc_str("");
julong phys_mem;
// If MaxRam is specified, we use that as maximum physical memory available.
if (FLAG_IS_DEFAULT(MaxRAM)) {
phys_mem = os::physical_memory();
calc_str.append("Physical_Memory");
} else {
phys_mem = (julong)MaxRAM;
calc_str.append("MaxRAM");
}
julong reasonable_max = phys_mem;
// If either MaxRAMFraction or MaxRAMPercentage is specified, we use them to calculate
// reasonable max size of young generation.
if (!FLAG_IS_DEFAULT(MaxRAMFraction)) {
reasonable_max = (julong)(phys_mem / MaxRAMFraction);
calc_str.append(" / MaxRAMFraction");
} else if (!FLAG_IS_DEFAULT(MaxRAMPercentage)) {
reasonable_max = (julong)((phys_mem * MaxRAMPercentage) / 100);
calc_str.append(" * MaxRAMPercentage / 100");
} else {
// We use our own fraction to calculate max size of young generation.
reasonable_max = phys_mem * MaxRamFractionForYoung;
calc_str.append(" * %0.2f", MaxRamFractionForYoung);
}
reasonable_max = align_up(reasonable_max, GenAlignment);
if (MaxNewSize > reasonable_max) {
if (FLAG_IS_CMDLINE(MaxNewSize)) {
log_warning(gc, ergo)("Setting MaxNewSize to " SIZE_FORMAT " based on dram available (calculation = align(%s))",
(size_t)reasonable_max, calc_str.buffer());
} else {
log_info(gc, ergo)("Setting MaxNewSize to " SIZE_FORMAT " based on dram available (calculation = align(%s)). "
"Dram usage can be lowered by setting MaxNewSize to a lower value", (size_t)reasonable_max, calc_str.buffer());
}
MaxNewSize = reasonable_max;
}
if (NewSize > reasonable_max) {
if (FLAG_IS_CMDLINE(NewSize)) {
log_warning(gc, ergo)("Setting NewSize to " SIZE_FORMAT " based on dram available (calculation = align(%s))",
(size_t)reasonable_max, calc_str.buffer());
}
NewSize = reasonable_max;
}
}
bool ParallelArguments::is_heterogeneous_heap() {
return AllocateOldGenAt != NULL;
}
size_t ParallelArguments::heap_reserved_size_bytes() { size_t ParallelArguments::heap_reserved_size_bytes() {
return MaxHeapSize; return MaxHeapSize;
} }

View File

@ -36,15 +36,12 @@ private:
virtual void initialize_heap_flags_and_sizes(); virtual void initialize_heap_flags_and_sizes();
void initialize_heap_flags_and_sizes_one_pass(); void initialize_heap_flags_and_sizes_one_pass();
void initialize_heterogeneous();
virtual void initialize(); virtual void initialize();
virtual size_t conservative_max_heap_alignment(); virtual size_t conservative_max_heap_alignment();
virtual CollectedHeap* create_heap(); virtual CollectedHeap* create_heap();
public: public:
// Heterogeneous heap support
static bool is_heterogeneous_heap();
static size_t heap_reserved_size_bytes(); static size_t heap_reserved_size_bytes();
static size_t heap_max_size_bytes(); static size_t heap_max_size_bytes();
}; };

View File

@ -83,8 +83,7 @@ jint ParallelScavengeHeap::initialize() {
assert(MinNewSize <= NewSize && NewSize <= MaxNewSize, "Parameter check"); assert(MinNewSize <= NewSize && NewSize <= MaxNewSize, "Parameter check");
// Layout the reserved space for the generations. // Layout the reserved space for the generations.
// If OldGen is allocated on nv-dimm, we need to split the reservation (this is required for windows). ReservedSpace old_rs = heap_rs.first_part(MaxOldSize);
ReservedSpace old_rs = heap_rs.first_part(MaxOldSize, ParallelArguments::is_heterogeneous_heap() /* split */);
ReservedSpace young_rs = heap_rs.last_part(MaxOldSize); ReservedSpace young_rs = heap_rs.last_part(MaxOldSize);
assert(young_rs.size() == MaxNewSize, "Didn't reserve all of the heap"); assert(young_rs.size() == MaxNewSize, "Didn't reserve all of the heap");
@ -123,8 +122,7 @@ jint ParallelScavengeHeap::initialize() {
GCTimeRatio GCTimeRatio
); );
assert(ParallelArguments::is_heterogeneous_heap() || assert((old_gen()->virtual_space()->high_boundary() ==
(old_gen()->virtual_space()->high_boundary() ==
young_gen()->virtual_space()->low_boundary()), young_gen()->virtual_space()->low_boundary()),
"Boundaries must meet"); "Boundaries must meet");
// initialize the policy counters - 2 collectors, 2 generations // initialize the policy counters - 2 collectors, 2 generations

View File

@ -1,83 +0,0 @@
/*
* Copyright (c) 2018, 2019, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "gc/parallel/psFileBackedVirtualspace.hpp"
#include "memory/virtualspace.hpp"
#include "runtime/os.inline.hpp"
PSFileBackedVirtualSpace::PSFileBackedVirtualSpace(ReservedSpace rs, size_t alignment, const char* path) : PSVirtualSpace(rs, alignment),
_file_path(path), _fd(-1), _mapping_succeeded(false) {
assert(!rs.special(), "ReservedSpace passed to PSFileBackedVirtualSpace cannot be special");
}
bool PSFileBackedVirtualSpace::initialize() {
_fd = os::create_file_for_heap(_file_path);
if (_fd == -1) {
return false;
}
// We map the reserved space to a file at initialization.
char* ret = os::replace_existing_mapping_with_file_mapping(reserved_low_addr(), reserved_size(), _fd);
if (ret != reserved_low_addr()) {
os::close(_fd);
return false;
}
// _mapping_succeeded is false if we return before this point.
// expand calls later check value of this flag and return error if it is false.
_mapping_succeeded = true;
_special = true;
os::close(_fd);
return true;
}
bool PSFileBackedVirtualSpace::expand_by(size_t bytes) {
assert(special(), "Since entire space is committed at initialization, _special should always be true for PSFileBackedVirtualSpace");
// if mapping did not succeed during intialization return false
if (!_mapping_succeeded) {
return false;
}
return PSVirtualSpace::expand_by(bytes);
}
bool PSFileBackedVirtualSpace::shrink_by(size_t bytes) {
assert(special(), "Since entire space is committed at initialization, _special should always be true for PSFileBackedVirtualSpace");
return PSVirtualSpace::shrink_by(bytes);
}
size_t PSFileBackedVirtualSpace::expand_into(PSVirtualSpace* space, size_t bytes) {
// not supported. Since doing this will change page mapping which will lead to large TLB penalties.
assert(false, "expand_into() should not be called for PSFileBackedVirtualSpace");
return 0;
}
void PSFileBackedVirtualSpace::release() {
os::close(_fd);
_fd = -1;
_file_path = NULL;
PSVirtualSpace::release();
}

View File

@ -1,44 +0,0 @@
/*
* Copyright (c) 2018, 2019, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef SHARE_GC_PARALLEL_PSFILEBACKEDVIRTUALSPACE_HPP
#define SHARE_GC_PARALLEL_PSFILEBACKEDVIRTUALSPACE_HPP
#include "gc/parallel/psVirtualspace.hpp"
class PSFileBackedVirtualSpace : public PSVirtualSpace {
private:
const char* _file_path;
int _fd;
bool _mapping_succeeded;
public:
PSFileBackedVirtualSpace(ReservedSpace rs, size_t alignment, const char* file_path);
bool initialize();
bool expand_by(size_t bytes);
bool shrink_by(size_t bytes);
size_t expand_into(PSVirtualSpace* space, size_t bytes);
void release();
};
#endif // SHARE_GC_PARALLEL_PSFILEBACKEDVIRTUALSPACE_HPP

View File

@ -28,7 +28,6 @@
#include "gc/parallel/parallelScavengeHeap.hpp" #include "gc/parallel/parallelScavengeHeap.hpp"
#include "gc/parallel/psAdaptiveSizePolicy.hpp" #include "gc/parallel/psAdaptiveSizePolicy.hpp"
#include "gc/parallel/psCardTable.hpp" #include "gc/parallel/psCardTable.hpp"
#include "gc/parallel/psFileBackedVirtualspace.hpp"
#include "gc/parallel/psOldGen.hpp" #include "gc/parallel/psOldGen.hpp"
#include "gc/shared/cardTableBarrierSet.hpp" #include "gc/shared/cardTableBarrierSet.hpp"
#include "gc/shared/gcLocker.hpp" #include "gc/shared/gcLocker.hpp"
@ -62,14 +61,7 @@ void PSOldGen::initialize_virtual_space(ReservedSpace rs,
size_t initial_size, size_t initial_size,
size_t alignment) { size_t alignment) {
if(ParallelArguments::is_heterogeneous_heap()) { _virtual_space = new PSVirtualSpace(rs, alignment);
_virtual_space = new PSFileBackedVirtualSpace(rs, alignment, AllocateOldGenAt);
if (!(static_cast <PSFileBackedVirtualSpace*>(_virtual_space))->initialize()) {
vm_exit_during_initialization("Could not map space for PSOldGen at given AllocateOldGenAt path");
}
} else {
_virtual_space = new PSVirtualSpace(rs, alignment);
}
if (!_virtual_space->expand_by(initial_size)) { if (!_virtual_space->expand_by(initial_size)) {
vm_exit_during_initialization("Could not reserve enough space for " vm_exit_during_initialization("Could not reserve enough space for "
"object heap"); "object heap");

View File

@ -30,7 +30,6 @@
#include "runtime/arguments.hpp" #include "runtime/arguments.hpp"
#include "runtime/globals.hpp" #include "runtime/globals.hpp"
#include "runtime/globals_extension.hpp" #include "runtime/globals_extension.hpp"
#include "utilities/defaultStream.hpp"
#include "utilities/macros.hpp" #include "utilities/macros.hpp"
size_t HeapAlignment = 0; size_t HeapAlignment = 0;
@ -59,15 +58,6 @@ void GCArguments::initialize() {
// If class unloading is disabled, also disable concurrent class unloading. // If class unloading is disabled, also disable concurrent class unloading.
FLAG_SET_CMDLINE(ClassUnloadingWithConcurrentMark, false); FLAG_SET_CMDLINE(ClassUnloadingWithConcurrentMark, false);
} }
if (!FLAG_IS_DEFAULT(AllocateOldGenAt)) {
// CompressedOops not supported when AllocateOldGenAt is set.
LP64_ONLY(FLAG_SET_DEFAULT(UseCompressedOops, false));
LP64_ONLY(FLAG_SET_DEFAULT(UseCompressedClassPointers, false));
// When AllocateOldGenAt is set, we cannot use largepages for entire heap memory.
// Only young gen which is allocated in dram can use large pages, but we currently don't support that.
FLAG_SET_DEFAULT(UseLargePages, false);
}
} }
void GCArguments::initialize_heap_sizes() { void GCArguments::initialize_heap_sizes() {
@ -94,21 +84,6 @@ size_t GCArguments::compute_heap_alignment() {
return alignment; return alignment;
} }
bool GCArguments::check_args_consistency() {
bool status = true;
if (!FLAG_IS_DEFAULT(AllocateHeapAt) && !FLAG_IS_DEFAULT(AllocateOldGenAt)) {
jio_fprintf(defaultStream::error_stream(),
"AllocateHeapAt and AllocateOldGenAt cannot be used together.\n");
status = false;
}
if (!FLAG_IS_DEFAULT(AllocateOldGenAt) && (UseSerialGC || UseEpsilonGC || UseZGC)) {
jio_fprintf(defaultStream::error_stream(),
"AllocateOldGenAt is not supported for selected GC.\n");
status = false;
}
return status;
}
#ifdef ASSERT #ifdef ASSERT
void GCArguments::assert_flags() { void GCArguments::assert_flags() {
assert(InitialHeapSize <= MaxHeapSize, "Ergonomics decided on incompatible initial and maximum heap sizes"); assert(InitialHeapSize <= MaxHeapSize, "Ergonomics decided on incompatible initial and maximum heap sizes");

View File

@ -56,8 +56,6 @@ public:
void initialize_heap_sizes(); void initialize_heap_sizes();
static size_t compute_heap_alignment(); static size_t compute_heap_alignment();
static bool check_args_consistency();
}; };
#endif // SHARE_GC_SHARED_GCARGUMENTS_HPP #endif // SHARE_GC_SHARED_GCARGUMENTS_HPP

View File

@ -97,7 +97,6 @@
#include "gc/g1/g1ConcurrentMark.hpp" #include "gc/g1/g1ConcurrentMark.hpp"
#include "gc/g1/g1ConcurrentMarkThread.inline.hpp" #include "gc/g1/g1ConcurrentMarkThread.inline.hpp"
#include "gc/g1/heapRegionRemSet.hpp" #include "gc/g1/heapRegionRemSet.hpp"
#include "gc/g1/heterogeneousHeapRegionManager.hpp"
#endif // INCLUDE_G1GC #endif // INCLUDE_G1GC
#if INCLUDE_PARALLELGC #if INCLUDE_PARALLELGC
#include "gc/parallel/parallelScavengeHeap.inline.hpp" #include "gc/parallel/parallelScavengeHeap.inline.hpp"
@ -507,115 +506,6 @@ WB_END
#endif // INCLUDE_G1GC #endif // INCLUDE_G1GC
#if INCLUDE_G1GC || INCLUDE_PARALLELGC
WB_ENTRY(jlong, WB_DramReservedStart(JNIEnv* env, jobject o))
#if INCLUDE_G1GC
if (UseG1GC) {
G1CollectedHeap* g1h = G1CollectedHeap::heap();
HeapWord* base = g1h->reserved().start();
if (g1h->is_heterogeneous_heap()) {
uint start_region = HeterogeneousHeapRegionManager::manager()->start_index_of_dram();
return (jlong)(base + start_region * HeapRegion::GrainBytes);
} else {
return (jlong)base;
}
}
#endif // INCLUDE_G1GC
#if INCLUDE_PARALLELGC
if (UseParallelGC) {
ParallelScavengeHeap* ps_heap = ParallelScavengeHeap::heap();
if (AllocateOldGenAt != NULL) {
MemRegion reserved = ps_heap->young_gen()->reserved();
return (jlong)reserved.start();
} else {
return (jlong)ps_heap->base();
}
}
#endif // INCLUDE_PARALLELGC
THROW_MSG_0(vmSymbols::java_lang_UnsupportedOperationException(), "WB_DramReservedStart: enabled only for G1 and Parallel GC");
WB_END
WB_ENTRY(jlong, WB_DramReservedEnd(JNIEnv* env, jobject o))
#if INCLUDE_G1GC
if (UseG1GC) {
G1CollectedHeap* g1h = G1CollectedHeap::heap();
HeapWord* base = g1h->reserved().start();
if (g1h->is_heterogeneous_heap()) {
uint end_region = HeterogeneousHeapRegionManager::manager()->end_index_of_dram();
return (jlong)(base + (end_region + 1) * HeapRegion::GrainBytes - 1);
} else {
return (jlong)base + G1Arguments::heap_max_size_bytes();
}
}
#endif // INCLUDE_G1GC
#if INCLUDE_PARALLELGC
if (UseParallelGC) {
ParallelScavengeHeap* ps_heap = ParallelScavengeHeap::heap();
if (AllocateOldGenAt != NULL) {
MemRegion reserved = ps_heap->young_gen()->reserved();
return (jlong)reserved.end();
} else {
return (jlong)ps_heap->reserved_region().end();
}
}
#endif // INCLUDE_PARALLELGC
THROW_MSG_0(vmSymbols::java_lang_UnsupportedOperationException(), "WB_DramReservedEnd: enabled only for G1 and Parallel GC");
WB_END
WB_ENTRY(jlong, WB_NvdimmReservedStart(JNIEnv* env, jobject o))
#if INCLUDE_G1GC
if (UseG1GC) {
G1CollectedHeap* g1h = G1CollectedHeap::heap();
if (g1h->is_heterogeneous_heap()) {
uint start_region = HeterogeneousHeapRegionManager::manager()->start_index_of_nvdimm();
return (jlong)(g1h->reserved().start() + start_region * HeapRegion::GrainBytes);
} else {
THROW_MSG_0(vmSymbols::java_lang_UnsupportedOperationException(), "WB_NvdimmReservedStart: Old gen is not allocated on NV-DIMM using AllocateOldGenAt flag");
}
}
#endif // INCLUDE_G1GC
#if INCLUDE_PARALLELGC
if (UseParallelGC) {
ParallelScavengeHeap* ps_heap = ParallelScavengeHeap::heap();
if (AllocateOldGenAt != NULL) {
MemRegion reserved = ps_heap->old_gen()->reserved();
return (jlong)reserved.start();
} else {
THROW_MSG_0(vmSymbols::java_lang_UnsupportedOperationException(), "WB_NvdimmReservedStart: Old gen is not allocated on NV-DIMM using AllocateOldGenAt flag");
}
}
#endif // INCLUDE_PARALLELGC
THROW_MSG_0(vmSymbols::java_lang_UnsupportedOperationException(), "WB_NvdimmReservedStart: enabled only for G1 and Parallel GC");
WB_END
WB_ENTRY(jlong, WB_NvdimmReservedEnd(JNIEnv* env, jobject o))
#if INCLUDE_G1GC
if (UseG1GC) {
G1CollectedHeap* g1h = G1CollectedHeap::heap();
if (g1h->is_heterogeneous_heap()) {
uint end_region = HeterogeneousHeapRegionManager::manager()->start_index_of_nvdimm();
return (jlong)(g1h->reserved().start() + (end_region + 1) * HeapRegion::GrainBytes - 1);
} else {
THROW_MSG_0(vmSymbols::java_lang_UnsupportedOperationException(), "WB_NvdimmReservedEnd: Old gen is not allocated on NV-DIMM using AllocateOldGenAt flag");
}
}
#endif // INCLUDE_G1GC
#if INCLUDE_PARALLELGC
if (UseParallelGC) {
ParallelScavengeHeap* ps_heap = ParallelScavengeHeap::heap();
if (AllocateOldGenAt != NULL) {
MemRegion reserved = ps_heap->old_gen()->reserved();
return (jlong)reserved.end();
} else {
THROW_MSG_0(vmSymbols::java_lang_UnsupportedOperationException(), "WB_NvdimmReservedEnd: Old gen is not allocated on NV-DIMM using AllocateOldGenAt flag");
}
}
#endif // INCLUDE_PARALLELGC
THROW_MSG_0(vmSymbols::java_lang_UnsupportedOperationException(), "WB_NvdimmReservedEnd: enabled only for G1 and Parallel GC");
WB_END
#endif // INCLUDE_G1GC || INCLUDE_PARALLELGC
#if INCLUDE_PARALLELGC #if INCLUDE_PARALLELGC
WB_ENTRY(jlong, WB_PSVirtualSpaceAlignment(JNIEnv* env, jobject o)) WB_ENTRY(jlong, WB_PSVirtualSpaceAlignment(JNIEnv* env, jobject o))
@ -2418,12 +2308,6 @@ static JNINativeMethod methods[] = {
{CC"g1MemoryNodeIds", CC"()[I", (void*)&WB_G1MemoryNodeIds }, {CC"g1MemoryNodeIds", CC"()[I", (void*)&WB_G1MemoryNodeIds },
{CC"g1GetMixedGCInfo", CC"(I)[J", (void*)&WB_G1GetMixedGCInfo }, {CC"g1GetMixedGCInfo", CC"(I)[J", (void*)&WB_G1GetMixedGCInfo },
#endif // INCLUDE_G1GC #endif // INCLUDE_G1GC
#if INCLUDE_G1GC || INCLUDE_PARALLELGC
{CC"dramReservedStart", CC"()J", (void*)&WB_DramReservedStart },
{CC"dramReservedEnd", CC"()J", (void*)&WB_DramReservedEnd },
{CC"nvdimmReservedStart", CC"()J", (void*)&WB_NvdimmReservedStart },
{CC"nvdimmReservedEnd", CC"()J", (void*)&WB_NvdimmReservedEnd },
#endif // INCLUDE_G1GC || INCLUDE_PARALLELGC
#if INCLUDE_PARALLELGC #if INCLUDE_PARALLELGC
{CC"psVirtualSpaceAlignment",CC"()J", (void*)&WB_PSVirtualSpaceAlignment}, {CC"psVirtualSpaceAlignment",CC"()J", (void*)&WB_PSVirtualSpaceAlignment},
{CC"psHeapGenerationAlignment",CC"()J", (void*)&WB_PSHeapGenerationAlignment}, {CC"psHeapGenerationAlignment",CC"()J", (void*)&WB_PSHeapGenerationAlignment},

View File

@ -2161,8 +2161,6 @@ bool Arguments::check_vm_args_consistency() {
} }
#endif #endif
status = status && GCArguments::check_args_consistency();
return status; return status;
} }
@ -4080,7 +4078,6 @@ jint Arguments::parse(const JavaVMInitArgs* initial_cmd_args) {
#if defined(AIX) #if defined(AIX)
UNSUPPORTED_OPTION_NULL(AllocateHeapAt); UNSUPPORTED_OPTION_NULL(AllocateHeapAt);
UNSUPPORTED_OPTION_NULL(AllocateOldGenAt);
#endif #endif
#ifndef PRODUCT #ifndef PRODUCT

View File

@ -2470,12 +2470,6 @@ const intx ObjectAlignmentInBytes = 8;
"Path to the directoy where a temporary file will be created " \ "Path to the directoy where a temporary file will be created " \
"to use as the backing store for Java Heap.") \ "to use as the backing store for Java Heap.") \
\ \
product(ccstr, AllocateOldGenAt, NULL, EXPERIMENTAL, \
"Path to the directoy where a temporary file will be " \
"created to use as the backing store for old generation." \
"File of size Xmx is pre-allocated for performance reason, so" \
"we need that much space available") \
\
develop(int, VerifyMetaspaceInterval, DEBUG_ONLY(500) NOT_DEBUG(0), \ develop(int, VerifyMetaspaceInterval, DEBUG_ONLY(500) NOT_DEBUG(0), \
"Run periodic metaspace verifications (0 - none, " \ "Run periodic metaspace verifications (0 - none, " \
"1 - always, >1 every nth interval)") \ "1 - always, >1 every nth interval)") \

View File

@ -48,7 +48,7 @@ import sun.jvm.hotspot.tools.HeapSummary;
public class G1CollectedHeap extends CollectedHeap { public class G1CollectedHeap extends CollectedHeap {
// HeapRegionManager _hrm; // HeapRegionManager _hrm;
static private AddressField hrmField; static private long hrmFieldOffset;
// MemRegion _g1_reserved; // MemRegion _g1_reserved;
static private long g1ReservedFieldOffset; static private long g1ReservedFieldOffset;
// size_t _summary_bytes_used; // size_t _summary_bytes_used;
@ -73,7 +73,7 @@ public class G1CollectedHeap extends CollectedHeap {
static private synchronized void initialize(TypeDataBase db) { static private synchronized void initialize(TypeDataBase db) {
Type type = db.lookupType("G1CollectedHeap"); Type type = db.lookupType("G1CollectedHeap");
hrmField = type.getAddressField("_hrm"); hrmFieldOffset = type.getField("_hrm").getOffset();
summaryBytesUsedField = type.getCIntegerField("_summary_bytes_used"); summaryBytesUsedField = type.getCIntegerField("_summary_bytes_used");
g1mmField = type.getAddressField("_g1mm"); g1mmField = type.getAddressField("_g1mm");
oldSetFieldOffset = type.getField("_old_set").getOffset(); oldSetFieldOffset = type.getField("_old_set").getOffset();
@ -94,9 +94,9 @@ public class G1CollectedHeap extends CollectedHeap {
} }
public HeapRegionManager hrm() { public HeapRegionManager hrm() {
Address hrmAddr = hrmField.getValue(addr); Address hrmAddr = addr.addOffsetTo(hrmFieldOffset);
return (HeapRegionManager) VMObjectFactory.newObject(HeapRegionManager.class, return (HeapRegionManager) VMObjectFactory.newObject(HeapRegionManager.class,
hrmAddr); hrmAddr);
} }
public G1MonitoringSupport g1mm() { public G1MonitoringSupport g1mm() {

View File

@ -76,7 +76,6 @@ requires.properties= \
vm.compiler2.enabled \ vm.compiler2.enabled \
vm.musl \ vm.musl \
docker.support \ docker.support \
test.vm.gc.nvdimm \
jdk.containerized jdk.containerized
# Minimum jtreg version # Minimum jtreg version

View File

@ -42,8 +42,7 @@ hotspot_compiler_all_gcs = \
-compiler/graalunit -compiler/graalunit
hotspot_gc = \ hotspot_gc = \
gc \ gc
-gc/nvdimm
# By design this group should include ALL tests under runtime sub-directory # By design this group should include ALL tests under runtime sub-directory
hotspot_runtime = \ hotspot_runtime = \
@ -66,7 +65,6 @@ hotspot_misc = \
-:hotspot_gc \ -:hotspot_gc \
-:hotspot_runtime \ -:hotspot_runtime \
-:hotspot_serviceability \ -:hotspot_serviceability \
-gc/nvdimm \
-:hotspot_containers -:hotspot_containers
hotspot_native_sanity = \ hotspot_native_sanity = \
@ -203,8 +201,7 @@ tier1_gc_2 = \
-gc/logging/TestUnifiedLoggingSwitchStress.java \ -gc/logging/TestUnifiedLoggingSwitchStress.java \
-gc/stress \ -gc/stress \
-gc/metaspace/CompressedClassSpaceSizeInJmapHeap.java \ -gc/metaspace/CompressedClassSpaceSizeInJmapHeap.java \
-gc/shenandoah \ -gc/shenandoah
-gc/nvdimm
gc_epsilon = \ gc_epsilon = \
gc/epsilon/ \ gc/epsilon/ \

View File

@ -1,67 +0,0 @@
/*
* Copyright (c) 2018, 2020, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
package gc.nvdimm;
/* @test TestAllocateOldGenAt.java
* @summary Test to check allocation of Java Heap with AllocateOldGenAt option
* @requires vm.gc=="null" & os.family != "aix"
* @requires test.vm.gc.nvdimm
* @library /test/lib
* @modules java.base/jdk.internal.misc
* @run driver gc.nvdimm.TestAllocateOldGenAt
*/
import jdk.test.lib.JDKToolFinder;
import jdk.test.lib.process.ProcessTools;
import jdk.test.lib.process.OutputAnalyzer;
import java.util.ArrayList;
import java.util.Collections;
public class TestAllocateOldGenAt {
private static String[] commonFlags;
public static void main(String args[]) throws Exception {
String test_dir = System.getProperty("test.dir", ".");
commonFlags = new String[] {
"-XX:+UnlockExperimentalVMOptions",
"-XX:AllocateOldGenAt=" + test_dir,
"-Xmx32m",
"-Xms32m",
"-version"};
runTest("-XX:+UseG1GC");
runTest("-XX:+UseParallelGC");
}
private static void runTest(String... extraFlags) throws Exception {
ArrayList<String> flags = new ArrayList<>();
Collections.addAll(flags, commonFlags);
Collections.addAll(flags, extraFlags);
ProcessBuilder pb = ProcessTools.createTestJvm(flags);
OutputAnalyzer output = new OutputAnalyzer(pb.start());
output.shouldHaveExitValue(0);
}
}

View File

@ -1,95 +0,0 @@
/*
* Copyright (c) 2018, 2020, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
package gc.nvdimm;
/* @test TestAllocateOldGenAtError.java
* @summary Test to check correct handling of non-existent directory passed to AllocateOldGenAt option
* @requires vm.gc=="null" & os.family != "aix"
* @requires test.vm.gc.nvdimm
* @library /test/lib
* @modules java.base/jdk.internal.misc
* @run driver gc.nvdimm.TestAllocateOldGenAtError
*/
import java.io.File;
import jdk.test.lib.JDKToolFinder;
import jdk.test.lib.process.ProcessTools;
import jdk.test.lib.process.OutputAnalyzer;
import java.util.ArrayList;
import java.util.Collections;
import java.util.UUID;
public class TestAllocateOldGenAtError {
private static String[] commonFlags;
public static void main(String args[]) throws Exception {
String test_dir = System.getProperty("test.dir", ".");
File f = null;
do {
f = new File(test_dir, UUID.randomUUID().toString());
} while(f.exists());
commonFlags = new String[] {
"-XX:+UnlockExperimentalVMOptions",
"-XX:AllocateOldGenAt=" + f.getName(),
"-Xlog:gc+heap=info",
"-Xmx32m",
"-Xms32m",
"-version"};
testG1();
testParallelOld();
}
private static void testG1() throws Exception {
System.out.println("Testing G1 GC");
OutputAnalyzer output = runTest("-XX:+UseG1GC");
output.shouldContain("Could not initialize G1 heap");
output.shouldContain("Error occurred during initialization of VM");
output.shouldNotHaveExitValue(0);
}
private static void testParallelOld() throws Exception {
System.out.println("Testing Parallel GC");
OutputAnalyzer output = runTest("-XX:+UseParallelGC");
output.shouldContain("Error occurred during initialization of VM");
output.shouldNotHaveExitValue(0);
}
private static OutputAnalyzer runTest(String... extraFlags) throws Exception {
ArrayList<String> flags = new ArrayList<>();
Collections.addAll(flags, commonFlags);
Collections.addAll(flags, extraFlags);
ProcessBuilder pb = ProcessTools.createTestJvm(flags);
OutputAnalyzer output = new OutputAnalyzer(pb.start());
return output;
}
}

View File

@ -1,73 +0,0 @@
/*
* Copyright (c) 2018, 2020, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
package gc.nvdimm;
/* @test TestAllocateOldGenAtMultiple.java
* @summary Test to check allocation of Java Heap with AllocateOldGenAt option. Has multiple sub-tests to cover different code paths.
* @requires vm.gc=="null" & os.family != "aix"
* @requires test.vm.gc.nvdimm
* @library /test/lib
* @modules java.base/jdk.internal.misc
* @requires vm.bits == "64"
* @run driver gc.nvdimm.TestAllocateOldGenAtMultiple
*/
import jdk.test.lib.JDKToolFinder;
import jdk.test.lib.process.ProcessTools;
import jdk.test.lib.process.OutputAnalyzer;
import java.util.ArrayList;
import java.util.Collections;
public class TestAllocateOldGenAtMultiple {
public static void main(String args[]) throws Exception {
ArrayList<String> flags = new ArrayList<>();
String test_dir = System.getProperty("test.dir", ".");
// Extra flags for each of the sub-tests
String[][] extraFlagsList = {
{"-Xmx32m", "-Xms32m", "-XX:+UseCompressedOops"}, // 1. With compressedoops enabled.
{"-Xmx32m", "-Xms32m", "-XX:-UseCompressedOops"}, // 2. With compressedoops disabled.
{"-Xmx32m", "-Xms32m", "-XX:HeapBaseMinAddress=3g"}, // 3. With user specified HeapBaseMinAddress.
{"-Xmx4g", "-Xms4g"}, // 4. With larger heap size (UnscaledNarrowOop not possible).
{"-Xmx4g", "-Xms4g", "-XX:+UseLargePages"}, // 5. Set UseLargePages.
{"-Xmx4g", "-Xms4g", "-XX:+UseNUMA"} // 6. Set UseNUMA.
};
for (String[] extraFlags : extraFlagsList) {
flags.clear();
// Add extra flags specific to the sub-test.
Collections.addAll(flags, extraFlags);
// Add common flags
Collections.addAll(flags, new String[] {"-XX:+UnlockExperimentalVMOptions",
"-XX:AllocateOldGenAt=" + test_dir,
"-version"});
ProcessBuilder pb = ProcessTools.createTestJvm(flags);
OutputAnalyzer output = new OutputAnalyzer(pb.start());
System.out.println("Output:\n" + output.getOutput());
output.shouldHaveExitValue(0);
}
}
}

View File

@ -1,109 +0,0 @@
/*
* Copyright (c) 2018, 2020, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
package gc.nvdimm;
/*
* @test TestHumongousObjectsOnNvdimm
* @summary Check that humongous objects reside in nv-dimm
* @library /test/lib /
* @requires vm.gc=="null" & os.family != "aix"
* @requires test.vm.gc.nvdimm
* @build sun.hotspot.WhiteBox
* @run driver ClassFileInstaller sun.hotspot.WhiteBox
* @run driver gc.nvdimm.TestHumongousObjectsOnNvdimm
*/
import jdk.test.lib.process.OutputAnalyzer;
import jdk.test.lib.process.ProcessTools;
import jdk.test.lib.Asserts;
import sun.hotspot.WhiteBox;
import java.util.ArrayList;
import java.util.Collections;
import gc.testlibrary.Helpers;
/**
* Test spawns HumongousObjectTest in a separate VM and expects that it
* completes without a RuntimeException.
*/
public class TestHumongousObjectsOnNvdimm {
private static String[] commonFlags;
public static void main(String args[]) throws Exception {
commonFlags = new String[] {
"-Xbootclasspath/a:.",
"-XX:+UnlockExperimentalVMOptions",
"-XX:+UnlockDiagnosticVMOptions",
"-XX:+WhiteBoxAPI",
"-XX:AllocateOldGenAt=" + System.getProperty("test.dir", "."),
"-Xms10M", "-Xmx10M",
"-XX:G1HeapRegionSize=1m"
};
// Test with G1 GC
runTest("-XX:+UseG1GC");
}
private static void runTest(String... extraFlags) throws Exception {
ArrayList<String> flags = new ArrayList<>();
Collections.addAll(flags, commonFlags);
Collections.addAll(flags, extraFlags);
flags.add(HumongousObjectTest.class.getName());
ProcessBuilder pb = ProcessTools.createTestJvm(flags);
OutputAnalyzer output = new OutputAnalyzer(pb.start());
output.shouldHaveExitValue(0);
}
}
/**
* This class tests that a humongous object resides in NVDIMM.
*/
class HumongousObjectTest {
private static final WhiteBox WB = WhiteBox.getWhiteBox();
private static void validateObject(Object o) {
Asserts.assertTrue(WB.isObjectInOldGen(o),
"Object is supposed to be in OldGen");
long obj_addr = WB.getObjectAddress(o);
long nvdimm_heap_start = WB.nvdimmReservedStart();
long nvdimm_heap_end = WB.nvdimmReservedEnd();
Asserts.assertTrue(WB.g1BelongsToHumongousRegion(obj_addr), "Object address should be in Humongous set");
Asserts.assertTrue(obj_addr >= nvdimm_heap_start && obj_addr < nvdimm_heap_end,
"Humongous object does not reside in NVDIMM");
}
public static void main(String args[]) throws Exception {
// allocate an humongous object
int byteArrayMemoryOverhead = Helpers.detectByteArrayAllocationOverhead();
int MinByteArrayHumongousSize = (WB.g1RegionSize() / 2) - byteArrayMemoryOverhead + 1;
byte[] obj = new byte[MinByteArrayHumongousSize];
validateObject(obj);
}
}

View File

@ -1,109 +0,0 @@
/*
* Copyright (c) 2018, 2020, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
package gc.nvdimm;
/*
* @test TestOldObjectsOnNvdimm
* @summary Check that objects in old generation reside in dram.
* @requires vm.gc=="null" & os.family != "aix"
* @requires test.vm.gc.nvdimm
* @library /test/lib
* @build sun.hotspot.WhiteBox
* @run driver ClassFileInstaller sun.hotspot.WhiteBox
* @run driver gc.nvdimm.TestOldObjectsOnNvdimm
*/
import jdk.test.lib.process.OutputAnalyzer;
import jdk.test.lib.process.ProcessTools;
import jdk.test.lib.Asserts;
import sun.hotspot.WhiteBox;
import java.util.ArrayList;
import java.util.Collections;
/*
* Test spawns OldObjectTest in a separate VM and expects that it
* completes without a RuntimeException.
*/
public class TestOldObjectsOnNvdimm {
public static final int ALLOCATION_SIZE = 100;
private static String[] commonFlags;
public static void main(String args[]) throws Exception {
commonFlags = new String[] {
"-Xbootclasspath/a:.",
"-XX:+UnlockExperimentalVMOptions",
"-XX:+UnlockDiagnosticVMOptions",
"-XX:+WhiteBoxAPI",
"-XX:AllocateOldGenAt=" + System.getProperty("test.dir", "."),
"-Xms10M", "-Xmx10M",
"-XX:MaxTenuringThreshold=1" // Promote objects to Old Gen
};
runTest("-XX:+UseG1GC");
runTest("-XX:+UseParallelGC");
}
private static void runTest(String... extraFlags) throws Exception {
ArrayList<String> flags = new ArrayList<>();
Collections.addAll(flags, commonFlags);
Collections.addAll(flags, extraFlags);
flags.add(OldObjectTest.class.getName());
ProcessBuilder pb = ProcessTools.createTestJvm(flags);
OutputAnalyzer output = new OutputAnalyzer(pb.start());
System.out.println(output.getStdout());
output.shouldHaveExitValue(0);
}
}
/*
* This class tests that object is in Old generation after tenuring and resides in NVDIMM.
* The necessary condition for this test is running in VM with the following flags:
* -XX:AllocateOldGenAt=, -XX:MaxTenuringThreshold=1
*/
class OldObjectTest {
private static final WhiteBox WB = WhiteBox.getWhiteBox();
private static void validateOldObject(Object o) {
Asserts.assertTrue(WB.isObjectInOldGen(o),
"Object is supposed to be in OldGen");
long oldObj_addr = WB.getObjectAddress(o);
long nvdimm_heap_start = WB.nvdimmReservedStart();
long nvdimm_heap_end = WB.nvdimmReservedEnd();
Asserts.assertTrue(oldObj_addr >= nvdimm_heap_start && oldObj_addr <= nvdimm_heap_end,
"Old object does not reside in NVDIMM");
}
public static void main(String args[]) throws Exception {
// allocate an object and perform Young GCs to promote it to Old
byte[] oldObj = new byte[TestOldObjectsOnNvdimm.ALLOCATION_SIZE];
WB.youngGC();
WB.youngGC();
validateOldObject(oldObj);
}
}

View File

@ -1,113 +0,0 @@
/*
* Copyright (c) 2018, 2020, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
package gc.nvdimm;
/*
* @test TestYoungObjectsOnDram
* @summary Check that objects in young generation reside in dram.
* @requires vm.gc=="null" & os.family != "aix"
* @requires test.vm.gc.nvdimm
* @library /test/lib
* @build sun.hotspot.WhiteBox
* @run driver ClassFileInstaller sun.hotspot.WhiteBox
* @run driver gc.nvdimm.TestYoungObjectsOnDram
*/
import jdk.test.lib.process.OutputAnalyzer;
import jdk.test.lib.process.ProcessTools;
import jdk.test.lib.Asserts;
import sun.hotspot.WhiteBox;
import java.util.ArrayList;
import java.util.Collections;
/**
* Test spawns YoungObjectTest in a separate VM and expects that it
* completes without a RuntimeException.
*/
public class TestYoungObjectsOnDram {
public static final int ALLOCATION_SIZE = 100;
private static String[] commonFlags;
public static void main(String args[]) throws Exception {
commonFlags = new String[] {
"-Xbootclasspath/a:.",
"-XX:+UnlockExperimentalVMOptions",
"-XX:+UnlockDiagnosticVMOptions",
"-XX:+WhiteBoxAPI",
"-XX:AllocateOldGenAt=" + System.getProperty("test.dir", "."),
"-XX:SurvivorRatio=1", // Survivor-to-eden ratio is 1:1
"-Xms10M", "-Xmx10M",
"-XX:InitialTenuringThreshold=15" // avoid promotion of objects to Old Gen
};
runTest("-XX:+UseG1GC");
runTest("-XX:+UseParallelGC");
}
private static void runTest(String... extraFlags) throws Exception {
ArrayList<String> flags = new ArrayList<>();
Collections.addAll(flags, commonFlags);
Collections.addAll(flags, extraFlags);
flags.add(YoungObjectTest.class.getName());
ProcessBuilder pb = ProcessTools.createTestJvm(flags);
OutputAnalyzer output = new OutputAnalyzer(pb.start());
System.out.println(output.getStdout());
output.shouldHaveExitValue(0);
}
}
/**
* This class tests that newly created object is in Young generation and resides in DRAM.
* The necessary condition for this test is running in VM with the following flags:
* -XX:AllocateOldGenAt=, -XX:InitialTenuringThreshold=15, -XX:SurvivorRatio=1
*/
class YoungObjectTest {
private static final WhiteBox WB = WhiteBox.getWhiteBox();
private static void validateYoungObject(Object o) {
Asserts.assertTrue(!WB.isObjectInOldGen(o),
"Object is supposed to be in YoungGen");
long youngObj_addr = WB.getObjectAddress(o);
long dram_heap_start = WB.dramReservedStart();
long dram_heap_end = WB.dramReservedEnd();
Asserts.assertTrue(youngObj_addr >= dram_heap_start && youngObj_addr <= dram_heap_end,
"Young object does not reside in DRAM");
}
public static void main(String args[]) throws Exception {
// allocate an object
byte[] youngObj = new byte[TestYoungObjectsOnDram.ALLOCATION_SIZE];
validateYoungObject(youngObj);
// Start a Young GC and check that object is still in DRAM.
// We have used -XX:InitialTenuringThreshold=15 to invoke this test
WB.youngGC();
validateYoungObject(youngObj);
}
}

View File

@ -117,7 +117,6 @@ public class VMProps implements Callable<Map<String, String>> {
map.put("docker.support", this::dockerSupport); map.put("docker.support", this::dockerSupport);
map.put("vm.musl", this::isMusl); map.put("vm.musl", this::isMusl);
map.put("release.implementor", this::implementor); map.put("release.implementor", this::implementor);
map.put("test.vm.gc.nvdimm", this::isNvdimmTestEnabled);
map.put("jdk.containerized", this::jdkContainerized); map.put("jdk.containerized", this::jdkContainerized);
vmGC(map); // vm.gc.X = true/false vmGC(map); // vm.gc.X = true/false
vmOptFinalFlags(map); vmOptFinalFlags(map);
@ -541,11 +540,6 @@ public class VMProps implements Callable<Map<String, String>> {
} }
} }
private String isNvdimmTestEnabled() {
String isEnabled = System.getenv("TEST_VM_GC_NVDIMM");
return "" + "true".equalsIgnoreCase(isEnabled);
}
private String jdkContainerized() { private String jdkContainerized() {
String isEnabled = System.getenv("TEST_JDK_CONTAINERIZED"); String isEnabled = System.getenv("TEST_JDK_CONTAINERIZED");
return "" + "true".equalsIgnoreCase(isEnabled); return "" + "true".equalsIgnoreCase(isEnabled);

View File

@ -189,10 +189,6 @@ public class WhiteBox {
public native long g1NumMaxRegions(); public native long g1NumMaxRegions();
public native long g1NumFreeRegions(); public native long g1NumFreeRegions();
public native int g1RegionSize(); public native int g1RegionSize();
public native long dramReservedStart();
public native long dramReservedEnd();
public native long nvdimmReservedStart();
public native long nvdimmReservedEnd();
public native MemoryUsage g1AuxiliaryMemoryUsage(); public native MemoryUsage g1AuxiliaryMemoryUsage();
private native Object[] parseCommandLine0(String commandline, char delim, DiagnosticCommand[] args); private native Object[] parseCommandLine0(String commandline, char delim, DiagnosticCommand[] args);
public Object[] parseCommandLine(String commandline, char delim, DiagnosticCommand[] args) { public Object[] parseCommandLine(String commandline, char delim, DiagnosticCommand[] args) {