This commit is contained in:
Xiaobin Lu 2009-10-23 18:44:33 -07:00
commit bfa076da18
28 changed files with 529 additions and 327 deletions

View File

@ -377,3 +377,11 @@ void ConcurrentG1Refine::clear_and_record_card_counts() {
_g1h->g1_policy()->record_cc_clear_time(elapsed * 1000.0);
#endif
}
void ConcurrentG1Refine::print_worker_threads_on(outputStream* st) const {
for (int i = 0; i < _n_threads; ++i) {
_threads[i]->print_on(st);
st->cr();
}
}

View File

@ -179,4 +179,6 @@ class ConcurrentG1Refine: public CHeapObj {
void clear_and_record_card_counts();
static size_t thread_num();
void print_worker_threads_on(outputStream* st) const;
};

View File

@ -204,8 +204,12 @@ void ConcurrentG1RefineThread::stop() {
if (G1TraceConcurrentRefinement) gclog_or_tty->print_cr("G1-Refine-stop");
}
void ConcurrentG1RefineThread::print() {
gclog_or_tty->print("\"Concurrent G1 Refinement Thread\" ");
Thread::print();
gclog_or_tty->cr();
void ConcurrentG1RefineThread::print() const {
print_on(tty);
}
void ConcurrentG1RefineThread::print_on(outputStream* st) const {
st->print("\"G1 Concurrent Refinement Thread#%d\" ", _worker_id);
Thread::print_on(st);
st->cr();
}

View File

@ -77,7 +77,8 @@ class ConcurrentG1RefineThread: public ConcurrentGCThread {
int worker_id_offset, int worker_id);
// Printing
void print();
void print() const;
void print_on(outputStream* st) const;
// Total virtual time so far.
double vtime_accum() { return _vtime_accum; }

View File

@ -237,7 +237,7 @@ void CMMarkStack::par_push_arr(oop* ptr_arr, int n) {
_index = next_index;
for (int i = 0; i < n; i++) {
int ind = start + i;
guarantee(ind < _capacity, "By overflow test above.");
assert(ind < _capacity, "By overflow test above.");
_base[ind] = ptr_arr[i];
}
}
@ -310,12 +310,12 @@ MemRegion CMRegionStack::pop() {
if (res == index) {
MemRegion mr = _base[next_index];
if (mr.start() != NULL) {
tmp_guarantee_CM( mr.end() != NULL, "invariant" );
tmp_guarantee_CM( mr.word_size() > 0, "invariant" );
assert(mr.end() != NULL, "invariant");
assert(mr.word_size() > 0, "invariant");
return mr;
} else {
// that entry was invalidated... let's skip it
tmp_guarantee_CM( mr.end() == NULL, "invariant" );
assert(mr.end() == NULL, "invariant");
}
}
// Otherwise, we need to try again.
@ -328,10 +328,10 @@ bool CMRegionStack::invalidate_entries_into_cset() {
for (int i = 0; i < _oops_do_bound; ++i) {
MemRegion mr = _base[i];
if (mr.start() != NULL) {
tmp_guarantee_CM( mr.end() != NULL, "invariant");
tmp_guarantee_CM( mr.word_size() > 0, "invariant" );
assert(mr.end() != NULL, "invariant");
assert(mr.word_size() > 0, "invariant");
HeapRegion* hr = g1h->heap_region_containing(mr.start());
tmp_guarantee_CM( hr != NULL, "invariant" );
assert(hr != NULL, "invariant");
if (hr->in_collection_set()) {
// The region points into the collection set
_base[i] = MemRegion();
@ -339,7 +339,7 @@ bool CMRegionStack::invalidate_entries_into_cset() {
}
} else {
// that entry was invalidated... let's skip it
tmp_guarantee_CM( mr.end() == NULL, "invariant" );
assert(mr.end() == NULL, "invariant");
}
}
return result;
@ -542,8 +542,8 @@ ConcurrentMark::ConcurrentMark(ReservedSpace rs,
gclog_or_tty->print_cr("CL Sleep Factor %1.4lf", cleanup_sleep_factor());
#endif
guarantee( parallel_marking_threads() > 0, "peace of mind" );
_parallel_workers = new WorkGang("Parallel Marking Threads",
guarantee(parallel_marking_threads() > 0, "peace of mind");
_parallel_workers = new WorkGang("G1 Parallel Marking Threads",
(int) parallel_marking_threads(), false, true);
if (_parallel_workers == NULL)
vm_exit_during_initialization("Failed necessary allocation.");
@ -569,8 +569,7 @@ void ConcurrentMark::update_g1_committed(bool force) {
return;
MemRegion committed = _g1h->g1_committed();
tmp_guarantee_CM( committed.start() == _heap_start,
"start shouldn't change" );
assert(committed.start() == _heap_start, "start shouldn't change");
HeapWord* new_end = committed.end();
if (new_end > _heap_end) {
// The heap has been expanded.
@ -592,9 +591,10 @@ void ConcurrentMark::reset() {
_heap_start = committed.start();
_heap_end = committed.end();
guarantee( _heap_start != NULL &&
_heap_end != NULL &&
_heap_start < _heap_end, "heap bounds should look ok" );
// Separated the asserts so that we know which one fires.
assert(_heap_start != NULL, "heap bounds should look ok");
assert(_heap_end != NULL, "heap bounds should look ok");
assert(_heap_start < _heap_end, "heap bounds should look ok");
// reset all the marking data structures and any necessary flags
clear_marking_state();
@ -614,7 +614,7 @@ void ConcurrentMark::reset() {
}
void ConcurrentMark::set_phase(size_t active_tasks, bool concurrent) {
guarantee( active_tasks <= _max_task_num, "we should not have more" );
assert(active_tasks <= _max_task_num, "we should not have more");
_active_tasks = active_tasks;
// Need to update the three data structures below according to the
@ -634,8 +634,8 @@ void ConcurrentMark::set_phase(size_t active_tasks, bool concurrent) {
// We currently assume that the concurrent flag has been set to
// false before we start remark. At this point we should also be
// in a STW phase.
guarantee( !concurrent_marking_in_progress(), "invariant" );
guarantee( _finger == _heap_end, "only way to get here" );
assert(!concurrent_marking_in_progress(), "invariant");
assert(_finger == _heap_end, "only way to get here");
update_g1_committed(true);
}
}
@ -933,8 +933,8 @@ void ConcurrentMark::grayRoot(oop p) {
// initial-mark that the committed space is expanded during the
// pause without CM observing this change. So the assertions below
// is a bit conservative; but better than nothing.
tmp_guarantee_CM( _g1h->g1_committed().contains(addr),
"address should be within the heap bounds" );
assert(_g1h->g1_committed().contains(addr),
"address should be within the heap bounds");
if (!_nextMarkBitMap->isMarked(addr))
_nextMarkBitMap->parMark(addr);
@ -960,12 +960,15 @@ void ConcurrentMark::grayRegionIfNecessary(MemRegion mr) {
if (mr.start() < finger) {
// The finger is always heap region aligned and it is not possible
// for mr to span heap regions.
tmp_guarantee_CM( mr.end() <= finger, "invariant" );
assert(mr.end() <= finger, "invariant");
tmp_guarantee_CM( mr.start() <= mr.end() &&
_heap_start <= mr.start() &&
mr.end() <= _heap_end,
"region boundaries should fall within the committed space" );
// Separated the asserts so that we know which one fires.
assert(mr.start() <= mr.end(),
"region boundaries should fall within the committed space");
assert(_heap_start <= mr.start(),
"region boundaries should fall within the committed space");
assert(mr.end() <= _heap_end,
"region boundaries should fall within the committed space");
if (verbose_low())
gclog_or_tty->print_cr("[global] region ["PTR_FORMAT", "PTR_FORMAT") "
"below the finger, pushing it",
@ -1014,14 +1017,14 @@ private:
public:
void work(int worker_i) {
guarantee( Thread::current()->is_ConcurrentGC_thread(),
"this should only be done by a conc GC thread" );
assert(Thread::current()->is_ConcurrentGC_thread(),
"this should only be done by a conc GC thread");
double start_vtime = os::elapsedVTime();
ConcurrentGCThread::stsJoin();
guarantee( (size_t)worker_i < _cm->active_tasks(), "invariant" );
assert((size_t) worker_i < _cm->active_tasks(), "invariant");
CMTask* the_task = _cm->task(worker_i);
the_task->record_start_time();
if (!_cm->has_aborted()) {
@ -1059,7 +1062,7 @@ public:
} while (!_cm->has_aborted() && the_task->has_aborted());
}
the_task->record_end_time();
guarantee( !the_task->has_aborted() || _cm->has_aborted(), "invariant" );
guarantee(!the_task->has_aborted() || _cm->has_aborted(), "invariant");
ConcurrentGCThread::stsLeave();
@ -1182,8 +1185,7 @@ class CalcLiveObjectsClosure: public HeapRegionClosure {
void mark_card_num_range(intptr_t start_card_num, intptr_t last_card_num) {
for (intptr_t i = start_card_num; i <= last_card_num; i++) {
#if CARD_BM_TEST_MODE
guarantee(_card_bm->at(i - _bottom_card_num),
"Should already be set.");
guarantee(_card_bm->at(i - _bottom_card_num), "Should already be set.");
#else
_card_bm->par_at_put(i - _bottom_card_num, 1);
#endif
@ -1328,7 +1330,7 @@ public:
// In any case, we set the last card num.
last_card_num = obj_last_card_num;
marked_bytes += obj_sz * HeapWordSize;
marked_bytes += (size_t)obj_sz * HeapWordSize;
// Find the next marked object after this one.
start = _bm->getNextMarkedWordAddress(start + 1, nextTop);
_changed = true;
@ -1442,7 +1444,7 @@ public:
}
assert(calccl.complete(), "Shouldn't have yielded!");
guarantee( (size_t)i < _n_workers, "invariant" );
assert((size_t) i < _n_workers, "invariant");
_live_bytes[i] = calccl.tot_live();
_used_bytes[i] = calccl.tot_used();
}
@ -1774,14 +1776,14 @@ void ConcurrentMark::completeCleanup() {
hd->rem_set()->clear();
HeapRegion* next_hd = hd->next_from_unclean_list();
(void)list->pop();
guarantee(list->hd() == next_hd, "how not?");
assert(list->hd() == next_hd, "how not?");
_g1h->put_region_on_unclean_list(hd);
if (!hd->isHumongous()) {
// Add this to the _free_regions count by 1.
_g1h->finish_free_region_work(0, 0, 1, NULL);
}
hd = list->hd();
guarantee(hd == next_hd, "how not?");
assert(hd == next_hd, "how not?");
}
}
}
@ -1931,9 +1933,6 @@ void ConcurrentMark::checkpointRootsFinalWork() {
g1h->set_par_threads(n_workers);
g1h->workers()->run_task(&remarkTask);
g1h->set_par_threads(0);
SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
guarantee( satb_mq_set.completed_buffers_num() == 0, "invariant" );
} else {
G1CollectedHeap::StrongRootsScope srs(g1h);
// this is remark, so we'll use up all available threads
@ -1945,10 +1944,9 @@ void ConcurrentMark::checkpointRootsFinalWork() {
// active_workers will be fewer. The extra ones will just bail out
// immediately.
remarkTask.work(0);
SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
guarantee( satb_mq_set.completed_buffers_num() == 0, "invariant" );
}
SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
guarantee(satb_mq_set.completed_buffers_num() == 0, "invariant");
print_stats();
@ -1989,7 +1987,7 @@ public:
str = "outside G1 reserved";
else {
HeapRegion* hr = _g1h->heap_region_containing(obj);
guarantee( hr != NULL, "invariant" );
guarantee(hr != NULL, "invariant");
if (hr->obj_allocated_since_prev_marking(obj)) {
str = "over TAMS";
if (_bitmap->isMarked((HeapWord*) obj))
@ -2125,7 +2123,7 @@ void ConcurrentMark::deal_with_reference(oop obj) {
HeapWord* objAddr = (HeapWord*) obj;
assert(obj->is_oop_or_null(true /* ignore mark word */), "Error");
if (_g1h->is_in_g1_reserved(objAddr)) {
tmp_guarantee_CM( obj != NULL, "is_in_g1_reserved should ensure this" );
assert(obj != NULL, "is_in_g1_reserved should ensure this");
HeapRegion* hr = _g1h->heap_region_containing(obj);
if (_g1h->is_obj_ill(obj, hr)) {
if (verbose_high())
@ -2167,7 +2165,7 @@ void ConcurrentMark::drainAllSATBBuffers() {
satb_mq_set.iterate_closure_all_threads();
satb_mq_set.set_closure(NULL);
guarantee( satb_mq_set.completed_buffers_num() == 0, "invariant" );
assert(satb_mq_set.completed_buffers_num() == 0, "invariant");
}
void ConcurrentMark::markPrev(oop p) {
@ -2200,7 +2198,7 @@ ConcurrentMark::claim_region(int task_num) {
// _heap_end will not change underneath our feet; it only changes at
// yield points.
while (finger < _heap_end) {
tmp_guarantee_CM( _g1h->is_in_g1_reserved(finger), "invariant" );
assert(_g1h->is_in_g1_reserved(finger), "invariant");
// is the gap between reading the finger and doing the CAS too long?
@ -2222,7 +2220,7 @@ ConcurrentMark::claim_region(int task_num) {
// notice that _finger == end cannot be guaranteed here since,
// someone else might have moved the finger even further
guarantee( _finger >= end, "the finger should have moved forward" );
assert(_finger >= end, "the finger should have moved forward");
if (verbose_low())
gclog_or_tty->print_cr("[%d] we were successful with region = "
@ -2234,8 +2232,8 @@ ConcurrentMark::claim_region(int task_num) {
"returning it ", task_num, curr_region);
return curr_region;
} else {
tmp_guarantee_CM( limit == bottom,
"the region limit should be at bottom" );
assert(limit == bottom,
"the region limit should be at bottom");
if (verbose_low())
gclog_or_tty->print_cr("[%d] region "PTR_FORMAT" is empty, "
"returning NULL", task_num, curr_region);
@ -2244,7 +2242,7 @@ ConcurrentMark::claim_region(int task_num) {
return NULL;
}
} else {
guarantee( _finger > finger, "the finger should have moved forward" );
assert(_finger > finger, "the finger should have moved forward");
if (verbose_low())
gclog_or_tty->print_cr("[%d] somebody else moved the finger, "
"global finger = "PTR_FORMAT", "
@ -2282,7 +2280,7 @@ void ConcurrentMark::oops_do(OopClosure* cl) {
if (_regionStack.invalidate_entries_into_cset()) {
// otherwise, any gray objects copied during the evacuation pause
// might not be visited.
guarantee( _should_gray_objects, "invariant" );
assert(_should_gray_objects, "invariant");
}
}
@ -2637,6 +2635,10 @@ void ConcurrentMark::print_summary_info() {
cmThread()->vtime_count_accum());
}
void ConcurrentMark::print_worker_threads_on(outputStream* st) const {
_parallel_workers->print_worker_threads_on(st);
}
// Closures
// XXX: there seems to be a lot of code duplication here;
// should refactor and consolidate the shared code.
@ -2711,12 +2713,12 @@ public:
bool do_bit(size_t offset) {
HeapWord* addr = _nextMarkBitMap->offsetToHeapWord(offset);
tmp_guarantee_CM( _nextMarkBitMap->isMarked(addr), "invariant" );
tmp_guarantee_CM( addr < _cm->finger(), "invariant" );
assert(_nextMarkBitMap->isMarked(addr), "invariant");
assert( addr < _cm->finger(), "invariant");
if (_scanning_heap_region) {
statsOnly( _task->increase_objs_found_on_bitmap() );
tmp_guarantee_CM( addr >= _task->finger(), "invariant" );
assert(addr >= _task->finger(), "invariant");
// We move that task's local finger along.
_task->move_finger_to(addr);
} else {
@ -2761,8 +2763,9 @@ public:
virtual void do_oop( oop* p) { do_oop_work(p); }
template <class T> void do_oop_work(T* p) {
tmp_guarantee_CM( _g1h->is_in_g1_reserved((HeapWord*) p), "invariant" );
tmp_guarantee_CM( !_g1h->heap_region_containing((HeapWord*) p)->is_on_free_list(), "invariant" );
assert(_g1h->is_in_g1_reserved((HeapWord*) p), "invariant");
assert(!_g1h->heap_region_containing((HeapWord*) p)->is_on_free_list(),
"invariant");
oop obj = oopDesc::load_decode_heap_oop(p);
if (_cm->verbose_high())
@ -2779,8 +2782,11 @@ public:
};
void CMTask::setup_for_region(HeapRegion* hr) {
tmp_guarantee_CM( hr != NULL && !hr->continuesHumongous(),
"claim_region() should have filtered out continues humongous regions" );
// Separated the asserts so that we know which one fires.
assert(hr != NULL,
"claim_region() should have filtered out continues humongous regions");
assert(!hr->continuesHumongous(),
"claim_region() should have filtered out continues humongous regions");
if (_cm->verbose_low())
gclog_or_tty->print_cr("[%d] setting up for region "PTR_FORMAT,
@ -2808,9 +2814,9 @@ void CMTask::update_region_limit() {
// as the region is not supposed to be empty in the first place)
_finger = bottom;
} else if (limit >= _region_limit) {
tmp_guarantee_CM( limit >= _finger, "peace of mind" );
assert(limit >= _finger, "peace of mind");
} else {
tmp_guarantee_CM( limit < _region_limit, "only way to get here" );
assert(limit < _region_limit, "only way to get here");
// This can happen under some pretty unusual circumstances. An
// evacuation pause empties the region underneath our feet (NTAMS
// at bottom). We then do some allocation in the region (NTAMS
@ -2828,7 +2834,7 @@ void CMTask::update_region_limit() {
}
void CMTask::giveup_current_region() {
tmp_guarantee_CM( _curr_region != NULL, "invariant" );
assert(_curr_region != NULL, "invariant");
if (_cm->verbose_low())
gclog_or_tty->print_cr("[%d] giving up region "PTR_FORMAT,
_task_id, _curr_region);
@ -2846,7 +2852,7 @@ void CMTask::clear_region_fields() {
}
void CMTask::reset(CMBitMap* nextMarkBitMap) {
guarantee( nextMarkBitMap != NULL, "invariant" );
guarantee(nextMarkBitMap != NULL, "invariant");
if (_cm->verbose_low())
gclog_or_tty->print_cr("[%d] resetting", _task_id);
@ -2912,7 +2918,7 @@ void CMTask::deal_with_reference(oop obj) {
HeapWord* objAddr = (HeapWord*) obj;
assert(obj->is_oop_or_null(true /* ignore mark word */), "Error");
if (_g1h->is_in_g1_reserved(objAddr)) {
tmp_guarantee_CM( obj != NULL, "is_in_g1_reserved should ensure this" );
assert(obj != NULL, "is_in_g1_reserved should ensure this");
HeapRegion* hr = _g1h->heap_region_containing(obj);
if (_g1h->is_obj_ill(obj, hr)) {
if (_cm->verbose_high())
@ -2973,10 +2979,11 @@ void CMTask::deal_with_reference(oop obj) {
void CMTask::push(oop obj) {
HeapWord* objAddr = (HeapWord*) obj;
tmp_guarantee_CM( _g1h->is_in_g1_reserved(objAddr), "invariant" );
tmp_guarantee_CM( !_g1h->heap_region_containing(objAddr)->is_on_free_list(), "invariant" );
tmp_guarantee_CM( !_g1h->is_obj_ill(obj), "invariant" );
tmp_guarantee_CM( _nextMarkBitMap->isMarked(objAddr), "invariant" );
assert(_g1h->is_in_g1_reserved(objAddr), "invariant");
assert(!_g1h->heap_region_containing(objAddr)->is_on_free_list(),
"invariant");
assert(!_g1h->is_obj_ill(obj), "invariant");
assert(_nextMarkBitMap->isMarked(objAddr), "invariant");
if (_cm->verbose_high())
gclog_or_tty->print_cr("[%d] pushing "PTR_FORMAT, _task_id, (void*) obj);
@ -2995,7 +3002,7 @@ void CMTask::push(oop obj) {
// stack, we should have definitely removed some entries from the
// local queue. So, there must be space on it.
bool success = _task_queue->push(obj);
tmp_guarantee_CM( success, "invariant" );
assert(success, "invariant");
}
statsOnly( int tmp_size = _task_queue->size();
@ -3005,9 +3012,9 @@ void CMTask::push(oop obj) {
}
void CMTask::reached_limit() {
tmp_guarantee_CM( _words_scanned >= _words_scanned_limit ||
_refs_reached >= _refs_reached_limit ,
"shouldn't have been called otherwise" );
assert(_words_scanned >= _words_scanned_limit ||
_refs_reached >= _refs_reached_limit ,
"shouldn't have been called otherwise");
regular_clock_call();
}
@ -3165,8 +3172,8 @@ void CMTask::get_entries_from_global_stack() {
oop buffer[global_stack_transfer_size];
int n;
_cm->mark_stack_pop(buffer, global_stack_transfer_size, &n);
tmp_guarantee_CM( n <= global_stack_transfer_size,
"we should not pop more than the given limit" );
assert(n <= global_stack_transfer_size,
"we should not pop more than the given limit");
if (n > 0) {
// yes, we did actually pop at least one entry
@ -3178,7 +3185,7 @@ void CMTask::get_entries_from_global_stack() {
bool success = _task_queue->push(buffer[i]);
// We only call this when the local queue is empty or under a
// given target limit. So, we do not expect this push to fail.
tmp_guarantee_CM( success, "invariant" );
assert(success, "invariant");
}
statsOnly( int tmp_size = _task_queue->size();
@ -3218,10 +3225,9 @@ void CMTask::drain_local_queue(bool partially) {
gclog_or_tty->print_cr("[%d] popped "PTR_FORMAT, _task_id,
(void*) obj);
tmp_guarantee_CM( _g1h->is_in_g1_reserved((HeapWord*) obj),
"invariant" );
tmp_guarantee_CM( !_g1h->heap_region_containing(obj)->is_on_free_list(),
"invariant" );
assert(_g1h->is_in_g1_reserved((HeapWord*) obj), "invariant" );
assert(!_g1h->heap_region_containing(obj)->is_on_free_list(),
"invariant");
scan_object(obj);
@ -3243,7 +3249,7 @@ void CMTask::drain_global_stack(bool partially) {
// We have a policy to drain the local queue before we attempt to
// drain the global stack.
tmp_guarantee_CM( partially || _task_queue->size() == 0, "invariant" );
assert(partially || _task_queue->size() == 0, "invariant");
// Decide what the target size is, depending whether we're going to
// drain it partially (so that other tasks can steal if they run out
@ -3324,9 +3330,9 @@ void CMTask::drain_satb_buffers() {
_draining_satb_buffers = false;
tmp_guarantee_CM( has_aborted() ||
concurrent() ||
satb_mq_set.completed_buffers_num() == 0, "invariant" );
assert(has_aborted() ||
concurrent() ||
satb_mq_set.completed_buffers_num() == 0, "invariant");
if (ParallelGCThreads > 0)
satb_mq_set.set_par_closure(_task_id, NULL);
@ -3342,8 +3348,8 @@ void CMTask::drain_region_stack(BitMapClosure* bc) {
if (has_aborted())
return;
tmp_guarantee_CM( _region_finger == NULL,
"it should be NULL when we're not scanning a region" );
assert(_region_finger == NULL,
"it should be NULL when we're not scanning a region");
if (!_cm->region_stack_empty()) {
if (_cm->verbose_low())
@ -3359,12 +3365,12 @@ void CMTask::drain_region_stack(BitMapClosure* bc) {
gclog_or_tty->print_cr("[%d] we are scanning region "
"["PTR_FORMAT", "PTR_FORMAT")",
_task_id, mr.start(), mr.end());
tmp_guarantee_CM( mr.end() <= _cm->finger(),
"otherwise the region shouldn't be on the stack" );
assert(mr.end() <= _cm->finger(),
"otherwise the region shouldn't be on the stack");
assert(!mr.is_empty(), "Only non-empty regions live on the region stack");
if (_nextMarkBitMap->iterate(bc, mr)) {
tmp_guarantee_CM( !has_aborted(),
"cannot abort the task without aborting the bitmap iteration" );
assert(!has_aborted(),
"cannot abort the task without aborting the bitmap iteration");
// We finished iterating over the region without aborting.
regular_clock_call();
@ -3376,14 +3382,14 @@ void CMTask::drain_region_stack(BitMapClosure* bc) {
statsOnly(if (mr.start() != NULL) ++_region_stack_pops );
}
} else {
guarantee( has_aborted(), "currently the only way to do so" );
assert(has_aborted(), "currently the only way to do so");
// The only way to abort the bitmap iteration is to return
// false from the do_bit() method. However, inside the
// do_bit() method we move the _region_finger to point to the
// object currently being looked at. So, if we bail out, we
// have definitely set _region_finger to something non-null.
guarantee( _region_finger != NULL, "invariant" );
assert(_region_finger != NULL, "invariant");
// The iteration was actually aborted. So now _region_finger
// points to the address of the object we last scanned. If we
@ -3412,13 +3418,6 @@ void CMTask::drain_region_stack(BitMapClosure* bc) {
_region_finger = NULL;
}
// We only push regions on the region stack during evacuation
// pauses. So if we come out the above iteration because we region
// stack is empty, it will remain empty until the next yield
// point. So, the guarantee below is safe.
guarantee( has_aborted() || _cm->region_stack_empty(),
"only way to exit the loop" );
if (_cm->verbose_low())
gclog_or_tty->print_cr("[%d] drained region stack, size = %d",
_task_id, _cm->region_stack_size());
@ -3576,21 +3575,21 @@ void CMTask::print_stats() {
*****************************************************************************/
void CMTask::do_marking_step(double time_target_ms) {
guarantee( time_target_ms >= 1.0, "minimum granularity is 1ms" );
guarantee( concurrent() == _cm->concurrent(), "they should be the same" );
assert(time_target_ms >= 1.0, "minimum granularity is 1ms");
assert(concurrent() == _cm->concurrent(), "they should be the same");
guarantee( concurrent() || _cm->region_stack_empty(),
"the region stack should have been cleared before remark" );
guarantee( _region_finger == NULL,
"this should be non-null only when a region is being scanned" );
assert(concurrent() || _cm->region_stack_empty(),
"the region stack should have been cleared before remark");
assert(_region_finger == NULL,
"this should be non-null only when a region is being scanned");
G1CollectorPolicy* g1_policy = _g1h->g1_policy();
guarantee( _task_queues != NULL, "invariant" );
guarantee( _task_queue != NULL, "invariant" );
guarantee( _task_queues->queue(_task_id) == _task_queue, "invariant" );
assert(_task_queues != NULL, "invariant");
assert(_task_queue != NULL, "invariant");
assert(_task_queues->queue(_task_id) == _task_queue, "invariant");
guarantee( !_claimed,
"only one thread should claim this task at any one time" );
assert(!_claimed,
"only one thread should claim this task at any one time");
// OK, this doesn't safeguard again all possible scenarios, as it is
// possible for two threads to set the _claimed flag at the same
@ -3661,9 +3660,8 @@ void CMTask::do_marking_step(double time_target_ms) {
do {
if (!has_aborted() && _curr_region != NULL) {
// This means that we're already holding on to a region.
tmp_guarantee_CM( _finger != NULL,
"if region is not NULL, then the finger "
"should not be NULL either" );
assert(_finger != NULL, "if region is not NULL, then the finger "
"should not be NULL either");
// We might have restarted this task after an evacuation pause
// which might have evacuated the region we're holding on to
@ -3695,13 +3693,13 @@ void CMTask::do_marking_step(double time_target_ms) {
giveup_current_region();
regular_clock_call();
} else {
guarantee( has_aborted(), "currently the only way to do so" );
assert(has_aborted(), "currently the only way to do so");
// The only way to abort the bitmap iteration is to return
// false from the do_bit() method. However, inside the
// do_bit() method we move the _finger to point to the
// object currently being looked at. So, if we bail out, we
// have definitely set _finger to something non-null.
guarantee( _finger != NULL, "invariant" );
assert(_finger != NULL, "invariant");
// Region iteration was actually aborted. So now _finger
// points to the address of the object we last scanned. If we
@ -3728,9 +3726,10 @@ void CMTask::do_marking_step(double time_target_ms) {
while (!has_aborted() && _curr_region == NULL && !_cm->out_of_regions()) {
// We are going to try to claim a new region. We should have
// given up on the previous one.
tmp_guarantee_CM( _curr_region == NULL &&
_finger == NULL &&
_region_limit == NULL, "invariant" );
// Separated the asserts so that we know which one fires.
assert(_curr_region == NULL, "invariant");
assert(_finger == NULL, "invariant");
assert(_region_limit == NULL, "invariant");
if (_cm->verbose_low())
gclog_or_tty->print_cr("[%d] trying to claim a new region", _task_id);
HeapRegion* claimed_region = _cm->claim_region(_task_id);
@ -3744,7 +3743,7 @@ void CMTask::do_marking_step(double time_target_ms) {
_task_id, claimed_region);
setup_for_region(claimed_region);
tmp_guarantee_CM( _curr_region == claimed_region, "invariant" );
assert(_curr_region == claimed_region, "invariant");
}
// It is important to call the regular clock here. It might take
// a while to claim a region if, for example, we hit a large
@ -3755,8 +3754,8 @@ void CMTask::do_marking_step(double time_target_ms) {
}
if (!has_aborted() && _curr_region == NULL) {
tmp_guarantee_CM( _cm->out_of_regions(),
"at this point we should be out of regions" );
assert(_cm->out_of_regions(),
"at this point we should be out of regions");
}
} while ( _curr_region != NULL && !has_aborted());
@ -3765,8 +3764,8 @@ void CMTask::do_marking_step(double time_target_ms) {
// tasks might be pushing objects to it concurrently. We also cannot
// check if the region stack is empty because if a thread is aborting
// it can push a partially done region back.
tmp_guarantee_CM( _cm->out_of_regions(),
"at this point we should be out of regions" );
assert(_cm->out_of_regions(),
"at this point we should be out of regions");
if (_cm->verbose_low())
gclog_or_tty->print_cr("[%d] all regions claimed", _task_id);
@ -3790,8 +3789,8 @@ void CMTask::do_marking_step(double time_target_ms) {
// tasks might be pushing objects to it concurrently. We also cannot
// check if the region stack is empty because if a thread is aborting
// it can push a partially done region back.
guarantee( _cm->out_of_regions() &&
_task_queue->size() == 0, "only way to reach here" );
assert(_cm->out_of_regions() && _task_queue->size() == 0,
"only way to reach here");
if (_cm->verbose_low())
gclog_or_tty->print_cr("[%d] starting to steal", _task_id);
@ -3807,8 +3806,8 @@ void CMTask::do_marking_step(double time_target_ms) {
statsOnly( ++_steals );
tmp_guarantee_CM( _nextMarkBitMap->isMarked((HeapWord*) obj),
"any stolen object should be marked" );
assert(_nextMarkBitMap->isMarked((HeapWord*) obj),
"any stolen object should be marked");
scan_object(obj);
// And since we're towards the end, let's totally drain the
@ -3828,8 +3827,9 @@ void CMTask::do_marking_step(double time_target_ms) {
// tasks might be concurrently pushing objects on it. We also cannot
// check if the region stack is empty because if a thread is aborting
// it can push a partially done region back.
guarantee( _cm->out_of_regions() &&
_task_queue->size() == 0, "only way to reach here" );
// Separated the asserts so that we know which one fires.
assert(_cm->out_of_regions(), "only way to reach here");
assert(_task_queue->size() == 0, "only way to reach here");
if (_cm->verbose_low())
gclog_or_tty->print_cr("[%d] starting termination protocol", _task_id);
@ -3849,7 +3849,7 @@ void CMTask::do_marking_step(double time_target_ms) {
if (_task_id == 0) {
// let's allow task 0 to do this
if (concurrent()) {
guarantee( _cm->concurrent_marking_in_progress(), "invariant" );
assert(_cm->concurrent_marking_in_progress(), "invariant");
// we need to set this to false before the next
// safepoint. This way we ensure that the marking phase
// doesn't observe any more heap expansions.
@ -3858,15 +3858,16 @@ void CMTask::do_marking_step(double time_target_ms) {
}
// We can now guarantee that the global stack is empty, since
// all other tasks have finished.
guarantee( _cm->out_of_regions() &&
_cm->region_stack_empty() &&
_cm->mark_stack_empty() &&
_task_queue->size() == 0 &&
!_cm->has_overflown() &&
!_cm->mark_stack_overflow() &&
!_cm->region_stack_overflow(),
"only way to reach here" );
// all other tasks have finished. We separated the guarantees so
// that, if a condition is false, we can immediately find out
// which one.
guarantee(_cm->out_of_regions(), "only way to reach here");
guarantee(_cm->region_stack_empty(), "only way to reach here");
guarantee(_cm->mark_stack_empty(), "only way to reach here");
guarantee(_task_queue->size() == 0, "only way to reach here");
guarantee(!_cm->has_overflown(), "only way to reach here");
guarantee(!_cm->mark_stack_overflow(), "only way to reach here");
guarantee(!_cm->region_stack_overflow(), "only way to reach here");
if (_cm->verbose_low())
gclog_or_tty->print_cr("[%d] all tasks terminated", _task_id);
@ -3961,8 +3962,8 @@ CMTask::CMTask(int task_id,
_task_queue(task_queue),
_task_queues(task_queues),
_oop_closure(NULL) {
guarantee( task_queue != NULL, "invariant" );
guarantee( task_queues != NULL, "invariant" );
guarantee(task_queue != NULL, "invariant");
guarantee(task_queues != NULL, "invariant");
statsOnly( _clock_due_to_scanning = 0;
_clock_due_to_marking = 0 );

View File

@ -295,12 +295,6 @@ do { \
} while (0)
#endif // _MARKING_STATS_
// Some extra guarantees that I like to also enable in optimised mode
// when debugging. If you want to enable them, comment out the assert
// macro and uncomment out the guaratee macro
// #define tmp_guarantee_CM(expr, str) guarantee(expr, str)
#define tmp_guarantee_CM(expr, str) assert(expr, str)
typedef enum {
no_verbose = 0, // verbose turned off
stats_verbose, // only prints stats at the end of marking
@ -485,15 +479,15 @@ protected:
// Returns the task with the given id
CMTask* task(int id) {
guarantee( 0 <= id && id < (int) _active_tasks, "task id not within "
"active bounds" );
assert(0 <= id && id < (int) _active_tasks,
"task id not within active bounds");
return _tasks[id];
}
// Returns the task queue with the given id
CMTaskQueue* task_queue(int id) {
guarantee( 0 <= id && id < (int) _active_tasks, "task queue id not within "
"active bounds" );
assert(0 <= id && id < (int) _active_tasks,
"task queue id not within active bounds");
return (CMTaskQueue*) _task_queues->queue(id);
}
@ -723,6 +717,8 @@ public:
void print_summary_info();
void print_worker_threads_on(outputStream* st) const;
// The following indicate whether a given verbose level has been
// set. Notice that anything above stats is conditional to
// _MARKING_VERBOSE_ having been set to 1
@ -959,8 +955,7 @@ public:
// It scans an object and visits its children.
void scan_object(oop obj) {
tmp_guarantee_CM( _nextMarkBitMap->isMarked((HeapWord*) obj),
"invariant" );
assert(_nextMarkBitMap->isMarked((HeapWord*) obj), "invariant");
if (_cm->verbose_high())
gclog_or_tty->print_cr("[%d] we're scanning object "PTR_FORMAT,
@ -999,14 +994,13 @@ public:
// moves the local finger to a new location
inline void move_finger_to(HeapWord* new_finger) {
tmp_guarantee_CM( new_finger >= _finger && new_finger < _region_limit,
"invariant" );
assert(new_finger >= _finger && new_finger < _region_limit, "invariant");
_finger = new_finger;
}
// moves the region finger to a new location
inline void move_region_finger_to(HeapWord* new_finger) {
tmp_guarantee_CM( new_finger < _cm->finger(), "invariant" );
assert(new_finger < _cm->finger(), "invariant");
_region_finger = new_finger;
}

View File

@ -286,10 +286,14 @@ void ConcurrentMarkThread::stop() {
}
}
void ConcurrentMarkThread::print() {
gclog_or_tty->print("\"Concurrent Mark GC Thread\" ");
Thread::print();
gclog_or_tty->cr();
void ConcurrentMarkThread::print() const {
print_on(tty);
}
void ConcurrentMarkThread::print_on(outputStream* st) const {
st->print("\"G1 Main Concurrent Mark GC Thread\" ");
Thread::print_on(st);
st->cr();
}
void ConcurrentMarkThread::sleepBeforeNextCycle() {

View File

@ -57,7 +57,8 @@ class ConcurrentMarkThread: public ConcurrentGCThread {
static SurrogateLockerThread* slt() { return _slt; }
// Printing
void print();
void print_on(outputStream* st) const;
void print() const;
// Total virtual time so far.
double vtime_accum();

View File

@ -157,10 +157,14 @@ void ConcurrentZFThread::stop() {
}
}
void ConcurrentZFThread::print() {
gclog_or_tty->print("\"Concurrent ZF Thread\" ");
Thread::print();
gclog_or_tty->cr();
void ConcurrentZFThread::print() const {
print_on(tty);
}
void ConcurrentZFThread::print_on(outputStream* st) const {
st->print("\"G1 Concurrent Zero-Fill Thread\" ");
Thread::print_on(st);
st->cr();
}

View File

@ -61,7 +61,8 @@ class ConcurrentZFThread: public ConcurrentGCThread {
virtual void run();
// Printing
void print();
void print_on(outputStream* st) const;
void print() const;
// Waits until "r" has been zero-filled. Requires caller to hold the
// ZF_mon.

View File

@ -2210,40 +2210,58 @@ private:
bool _allow_dirty;
bool _par;
bool _use_prev_marking;
bool _failures;
public:
// use_prev_marking == true -> use "prev" marking information,
// use_prev_marking == false -> use "next" marking information
VerifyRegionClosure(bool allow_dirty, bool par, bool use_prev_marking)
: _allow_dirty(allow_dirty),
_par(par),
_use_prev_marking(use_prev_marking) {}
_use_prev_marking(use_prev_marking),
_failures(false) {}
bool failures() {
return _failures;
}
bool doHeapRegion(HeapRegion* r) {
guarantee(_par || r->claim_value() == HeapRegion::InitialClaimValue,
"Should be unclaimed at verify points.");
if (!r->continuesHumongous()) {
VerifyObjsInRegionClosure not_dead_yet_cl(r, _use_prev_marking);
r->verify(_allow_dirty, _use_prev_marking);
r->object_iterate(&not_dead_yet_cl);
guarantee(r->max_live_bytes() >= not_dead_yet_cl.live_bytes(),
"More live objects than counted in last complete marking.");
bool failures = false;
r->verify(_allow_dirty, _use_prev_marking, &failures);
if (failures) {
_failures = true;
} else {
VerifyObjsInRegionClosure not_dead_yet_cl(r, _use_prev_marking);
r->object_iterate(&not_dead_yet_cl);
if (r->max_live_bytes() < not_dead_yet_cl.live_bytes()) {
gclog_or_tty->print_cr("["PTR_FORMAT","PTR_FORMAT"] "
"max_live_bytes "SIZE_FORMAT" "
"< calculated "SIZE_FORMAT,
r->bottom(), r->end(),
r->max_live_bytes(),
not_dead_yet_cl.live_bytes());
_failures = true;
}
}
}
return false;
return false; // stop the region iteration if we hit a failure
}
};
class VerifyRootsClosure: public OopsInGenClosure {
private:
G1CollectedHeap* _g1h;
bool _failures;
bool _use_prev_marking;
bool _failures;
public:
// use_prev_marking == true -> use "prev" marking information,
// use_prev_marking == false -> use "next" marking information
VerifyRootsClosure(bool use_prev_marking) :
_g1h(G1CollectedHeap::heap()),
_failures(false),
_use_prev_marking(use_prev_marking) { }
_use_prev_marking(use_prev_marking),
_failures(false) { }
bool failures() { return _failures; }
@ -2253,7 +2271,7 @@ public:
oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
if (_g1h->is_obj_dead_cond(obj, _use_prev_marking)) {
gclog_or_tty->print_cr("Root location "PTR_FORMAT" "
"points to dead obj "PTR_FORMAT, p, (void*) obj);
"points to dead obj "PTR_FORMAT, p, (void*) obj);
obj->print_on(gclog_or_tty);
_failures = true;
}
@ -2271,6 +2289,7 @@ private:
G1CollectedHeap* _g1h;
bool _allow_dirty;
bool _use_prev_marking;
bool _failures;
public:
// use_prev_marking == true -> use "prev" marking information,
@ -2280,13 +2299,21 @@ public:
AbstractGangTask("Parallel verify task"),
_g1h(g1h),
_allow_dirty(allow_dirty),
_use_prev_marking(use_prev_marking) { }
_use_prev_marking(use_prev_marking),
_failures(false) { }
bool failures() {
return _failures;
}
void work(int worker_i) {
HandleMark hm;
VerifyRegionClosure blk(_allow_dirty, true, _use_prev_marking);
_g1h->heap_region_par_iterate_chunked(&blk, worker_i,
HeapRegion::ParVerifyClaimValue);
if (blk.failures()) {
_failures = true;
}
}
};
@ -2307,6 +2334,7 @@ void G1CollectedHeap::verify(bool allow_dirty,
&rootsCl,
&blobsCl,
&rootsCl);
bool failures = rootsCl.failures();
rem_set()->invalidate(perm_gen()->used_region(), false);
if (!silent) { gclog_or_tty->print("heapRegions "); }
if (GCParallelVerificationEnabled && ParallelGCThreads > 1) {
@ -2318,6 +2346,9 @@ void G1CollectedHeap::verify(bool allow_dirty,
set_par_threads(n_workers);
workers()->run_task(&task);
set_par_threads(0);
if (task.failures()) {
failures = true;
}
assert(check_heap_region_claim_values(HeapRegion::ParVerifyClaimValue),
"sanity check");
@ -2329,10 +2360,23 @@ void G1CollectedHeap::verify(bool allow_dirty,
} else {
VerifyRegionClosure blk(allow_dirty, false, use_prev_marking);
_hrs->iterate(&blk);
if (blk.failures()) {
failures = true;
}
}
if (!silent) gclog_or_tty->print("remset ");
rem_set()->verify();
guarantee(!rootsCl.failures(), "should not have had failures");
if (failures) {
gclog_or_tty->print_cr("Heap:");
print_on(gclog_or_tty, true /* extended */);
gclog_or_tty->print_cr("");
if (VerifyDuringGC && G1VerifyConcMarkPrintReachable) {
concurrent_mark()->print_prev_bitmap_reachable();
}
gclog_or_tty->flush();
}
guarantee(!failures, "there should not have been any failures");
} else {
if (!silent) gclog_or_tty->print("(SKIPPING roots, heapRegions, remset) ");
}
@ -2374,6 +2418,7 @@ void G1CollectedHeap::print_on(outputStream* st, bool extended) const {
st->cr();
perm()->as_gen()->print_on(st);
if (extended) {
st->cr();
print_on_extended(st);
}
}
@ -2383,27 +2428,18 @@ void G1CollectedHeap::print_on_extended(outputStream* st) const {
_hrs->iterate(&blk);
}
class PrintOnThreadsClosure : public ThreadClosure {
outputStream* _st;
public:
PrintOnThreadsClosure(outputStream* st) : _st(st) { }
virtual void do_thread(Thread *t) {
t->print_on(_st);
}
};
void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
if (ParallelGCThreads > 0) {
workers()->print_worker_threads();
workers()->print_worker_threads_on(st);
}
st->print("\"G1 concurrent mark GC Thread\" ");
_cmThread->print();
_cmThread->print_on(st);
st->cr();
st->print("\"G1 concurrent refinement GC Threads\" ");
PrintOnThreadsClosure p(st);
_cg1r->threads_do(&p);
st->cr();
st->print("\"G1 zero-fill GC Thread\" ");
_cm->print_worker_threads_on(st);
_cg1r->print_worker_threads_on(st);
_czft->print_on(st);
st->cr();
}

View File

@ -992,11 +992,39 @@ public:
// Can a compiler initialize a new object without store barriers?
// This permission only extends from the creation of a new object
// via a TLAB up to the first subsequent safepoint.
// via a TLAB up to the first subsequent safepoint. If such permission
// is granted for this heap type, the compiler promises to call
// defer_store_barrier() below on any slow path allocation of
// a new object for which such initializing store barriers will
// have been elided. G1, like CMS, allows this, but should be
// ready to provide a compensating write barrier as necessary
// if that storage came out of a non-young region. The efficiency
// of this implementation depends crucially on being able to
// answer very efficiently in constant time whether a piece of
// storage in the heap comes from a young region or not.
// See ReduceInitialCardMarks.
virtual bool can_elide_tlab_store_barriers() const {
// Since G1's TLAB's may, on occasion, come from non-young regions
// as well. (Is there a flag controlling that? XXX)
return false;
return true;
}
bool is_in_young(oop obj) {
HeapRegion* hr = heap_region_containing(obj);
return hr != NULL && hr->is_young();
}
// We don't need barriers for initializing stores to objects
// in the young gen: for the SATB pre-barrier, there is no
// pre-value that needs to be remembered; for the remembered-set
// update logging post-barrier, we don't maintain remembered set
// information for young gen objects. Note that non-generational
// G1 does not have any "young" objects, should not elide
// the rs logging barrier and so should always answer false below.
// However, non-generational G1 (-XX:-G1Gen) appears to have
// bit-rotted so was not tested below.
virtual bool can_elide_initializing_store_barrier(oop new_obj) {
assert(G1Gen || !is_in_young(new_obj),
"Non-generational G1 should never return true below");
return is_in_young(new_obj);
}
// Can a compiler elide a store barrier when it writes

View File

@ -722,12 +722,13 @@ void HeapRegion::print_on(outputStream* st) const {
st->print(" F");
else
st->print(" ");
st->print(" %d", _gc_time_stamp);
st->print(" %5d", _gc_time_stamp);
G1OffsetTableContigSpace::print_on(st);
}
void HeapRegion::verify(bool allow_dirty) const {
verify(allow_dirty, /* use_prev_marking */ true);
bool dummy = false;
verify(allow_dirty, /* use_prev_marking */ true, /* failures */ &dummy);
}
#define OBJ_SAMPLE_INTERVAL 0
@ -736,8 +737,11 @@ void HeapRegion::verify(bool allow_dirty) const {
// This really ought to be commoned up into OffsetTableContigSpace somehow.
// We would need a mechanism to make that code skip dead objects.
void HeapRegion::verify(bool allow_dirty, bool use_prev_marking) const {
void HeapRegion::verify(bool allow_dirty,
bool use_prev_marking,
bool* failures) const {
G1CollectedHeap* g1 = G1CollectedHeap::heap();
*failures = false;
HeapWord* p = bottom();
HeapWord* prev_p = NULL;
int objs = 0;
@ -746,8 +750,14 @@ void HeapRegion::verify(bool allow_dirty, bool use_prev_marking) const {
while (p < top()) {
size_t size = oop(p)->size();
if (blocks == BLOCK_SAMPLE_INTERVAL) {
guarantee(p == block_start_const(p + (size/2)),
"check offset computation");
HeapWord* res = block_start_const(p + (size/2));
if (p != res) {
gclog_or_tty->print_cr("offset computation 1 for "PTR_FORMAT" and "
SIZE_FORMAT" returned "PTR_FORMAT,
p, size, res);
*failures = true;
return;
}
blocks = 0;
} else {
blocks++;
@ -755,11 +765,34 @@ void HeapRegion::verify(bool allow_dirty, bool use_prev_marking) const {
if (objs == OBJ_SAMPLE_INTERVAL) {
oop obj = oop(p);
if (!g1->is_obj_dead_cond(obj, this, use_prev_marking)) {
obj->verify();
vl_cl.set_containing_obj(obj);
obj->oop_iterate(&vl_cl);
if (G1MaxVerifyFailures >= 0
&& vl_cl.n_failures() >= G1MaxVerifyFailures) break;
if (obj->is_oop()) {
klassOop klass = obj->klass();
if (!klass->is_perm()) {
gclog_or_tty->print_cr("klass "PTR_FORMAT" of object "PTR_FORMAT" "
"not in perm", klass, obj);
*failures = true;
return;
} else if (!klass->is_klass()) {
gclog_or_tty->print_cr("klass "PTR_FORMAT" of object "PTR_FORMAT" "
"not a klass", klass, obj);
*failures = true;
return;
} else {
vl_cl.set_containing_obj(obj);
obj->oop_iterate(&vl_cl);
if (vl_cl.failures()) {
*failures = true;
}
if (G1MaxVerifyFailures >= 0 &&
vl_cl.n_failures() >= G1MaxVerifyFailures) {
return;
}
}
} else {
gclog_or_tty->print_cr(PTR_FORMAT" no an oop", obj);
*failures = true;
return;
}
}
objs = 0;
} else {
@ -771,21 +804,22 @@ void HeapRegion::verify(bool allow_dirty, bool use_prev_marking) const {
HeapWord* rend = end();
HeapWord* rtop = top();
if (rtop < rend) {
guarantee(block_start_const(rtop + (rend - rtop) / 2) == rtop,
"check offset computation");
HeapWord* res = block_start_const(rtop + (rend - rtop) / 2);
if (res != rtop) {
gclog_or_tty->print_cr("offset computation 2 for "PTR_FORMAT" and "
PTR_FORMAT" returned "PTR_FORMAT,
rtop, rend, res);
*failures = true;
return;
}
}
if (vl_cl.failures()) {
gclog_or_tty->print_cr("Heap:");
G1CollectedHeap::heap()->print_on(gclog_or_tty, true /* extended */);
gclog_or_tty->print_cr("");
if (p != top()) {
gclog_or_tty->print_cr("end of last object "PTR_FORMAT" "
"does not match top "PTR_FORMAT, p, top());
*failures = true;
return;
}
if (VerifyDuringGC &&
G1VerifyConcMarkPrintReachable &&
vl_cl.failures()) {
g1->concurrent_mark()->print_prev_bitmap_reachable();
}
guarantee(!vl_cl.failures(), "region verification failed");
guarantee(p == top(), "end of last object must match end of space");
}
// G1OffsetTableContigSpace code; copied from space.cpp. Hope this can go

View File

@ -569,13 +569,8 @@ class HeapRegion: public G1OffsetTableContigSpace {
// ever evacuated into this region. If we evacuate, allocate, and
// then evacuate we are in deep doodoo.
void note_end_of_copying() {
assert(top() >= _next_top_at_mark_start,
"Increase only");
// Survivor regions will be scanned on the start of concurrent
// marking.
if (!is_survivor()) {
_next_top_at_mark_start = top();
}
assert(top() >= _next_top_at_mark_start, "Increase only");
_next_top_at_mark_start = top();
}
// Returns "false" iff no object in the region was allocated when the
@ -798,7 +793,7 @@ class HeapRegion: public G1OffsetTableContigSpace {
// use_prev_marking == true. Currently, there is only one case where
// this is called with use_prev_marking == false, which is to verify
// the "next" marking information at the end of remark.
void verify(bool allow_dirty, bool use_prev_marking) const;
void verify(bool allow_dirty, bool use_prev_marking, bool *failures) const;
// Override; it uses the "prev" marking information
virtual void verify(bool allow_dirty) const;

View File

@ -314,41 +314,6 @@ bool ParallelScavengeHeap::is_in_reserved(const void* p) const {
return false;
}
// Static method
bool ParallelScavengeHeap::is_in_young(oop* p) {
ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
assert(heap->kind() == CollectedHeap::ParallelScavengeHeap,
"Must be ParallelScavengeHeap");
PSYoungGen* young_gen = heap->young_gen();
if (young_gen->is_in_reserved(p)) {
return true;
}
return false;
}
// Static method
bool ParallelScavengeHeap::is_in_old_or_perm(oop* p) {
ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
assert(heap->kind() == CollectedHeap::ParallelScavengeHeap,
"Must be ParallelScavengeHeap");
PSOldGen* old_gen = heap->old_gen();
PSPermGen* perm_gen = heap->perm_gen();
if (old_gen->is_in_reserved(p)) {
return true;
}
if (perm_gen->is_in_reserved(p)) {
return true;
}
return false;
}
// There are two levels of allocation policy here.
//
// When an allocation request fails, the requesting thread must invoke a VM
@ -764,6 +729,13 @@ void ParallelScavengeHeap::resize_all_tlabs() {
CollectedHeap::resize_all_tlabs();
}
bool ParallelScavengeHeap::can_elide_initializing_store_barrier(oop new_obj) {
// We don't need barriers for stores to objects in the
// young gen and, a fortiori, for initializing stores to
// objects therein.
return is_in_young(new_obj);
}
// This method is used by System.gc() and JVMTI.
void ParallelScavengeHeap::collect(GCCause::Cause cause) {
assert(!Heap_lock->owned_by_self(),

View File

@ -129,8 +129,8 @@ class ParallelScavengeHeap : public CollectedHeap {
return perm_gen()->is_in(p);
}
static bool is_in_young(oop *p); // reserved part
static bool is_in_old_or_perm(oop *p); // reserved part
inline bool is_in_young(oop p); // reserved part
inline bool is_in_old_or_perm(oop p); // reserved part
// Memory allocation. "gc_time_limit_was_exceeded" will
// be set to true if the adaptive size policy determine that
@ -191,6 +191,10 @@ class ParallelScavengeHeap : public CollectedHeap {
return true;
}
// Return true if we don't we need a store barrier for
// initializing stores to an object at this address.
virtual bool can_elide_initializing_store_barrier(oop new_obj);
// Can a compiler elide a store barrier when it writes
// a permanent oop into the heap? Applies when the compiler
// is storing x to the heap, where x->is_perm() is true.

View File

@ -41,3 +41,11 @@ inline void ParallelScavengeHeap::invoke_full_gc(bool maximum_compaction)
PSMarkSweep::invoke(maximum_compaction);
}
}
inline bool ParallelScavengeHeap::is_in_young(oop p) {
return young_gen()->is_in_reserved(p);
}
inline bool ParallelScavengeHeap::is_in_old_or_perm(oop p) {
return old_gen()->is_in_reserved(p) || perm_gen()->is_in_reserved(p);
}

View File

@ -137,6 +137,89 @@ HeapWord* CollectedHeap::allocate_from_tlab_slow(Thread* thread, size_t size) {
return obj;
}
void CollectedHeap::flush_deferred_store_barrier(JavaThread* thread) {
MemRegion deferred = thread->deferred_card_mark();
if (!deferred.is_empty()) {
{
// Verify that the storage points to a parsable object in heap
DEBUG_ONLY(oop old_obj = oop(deferred.start());)
assert(is_in(old_obj), "Not in allocated heap");
assert(!can_elide_initializing_store_barrier(old_obj),
"Else should have been filtered in defer_store_barrier()");
assert(!is_in_permanent(old_obj), "Sanity: not expected");
assert(old_obj->is_oop(true), "Not an oop");
assert(old_obj->is_parsable(), "Will not be concurrently parsable");
assert(deferred.word_size() == (size_t)(old_obj->size()),
"Mismatch: multiple objects?");
}
BarrierSet* bs = barrier_set();
assert(bs->has_write_region_opt(), "No write_region() on BarrierSet");
bs->write_region(deferred);
// "Clear" the deferred_card_mark field
thread->set_deferred_card_mark(MemRegion());
}
assert(thread->deferred_card_mark().is_empty(), "invariant");
}
// Helper for ReduceInitialCardMarks. For performance,
// compiled code may elide card-marks for initializing stores
// to a newly allocated object along the fast-path. We
// compensate for such elided card-marks as follows:
// (a) Generational, non-concurrent collectors, such as
// GenCollectedHeap(ParNew,DefNew,Tenured) and
// ParallelScavengeHeap(ParallelGC, ParallelOldGC)
// need the card-mark if and only if the region is
// in the old gen, and do not care if the card-mark
// succeeds or precedes the initializing stores themselves,
// so long as the card-mark is completed before the next
// scavenge. For all these cases, we can do a card mark
// at the point at which we do a slow path allocation
// in the old gen. For uniformity, however, we end
// up using the same scheme (see below) for all three
// cases (deferring the card-mark appropriately).
// (b) GenCollectedHeap(ConcurrentMarkSweepGeneration) requires
// in addition that the card-mark for an old gen allocated
// object strictly follow any associated initializing stores.
// In these cases, the memRegion remembered below is
// used to card-mark the entire region either just before the next
// slow-path allocation by this thread or just before the next scavenge or
// CMS-associated safepoint, whichever of these events happens first.
// (The implicit assumption is that the object has been fully
// initialized by this point, a fact that we assert when doing the
// card-mark.)
// (c) G1CollectedHeap(G1) uses two kinds of write barriers. When a
// G1 concurrent marking is in progress an SATB (pre-write-)barrier is
// is used to remember the pre-value of any store. Initializing
// stores will not need this barrier, so we need not worry about
// compensating for the missing pre-barrier here. Turning now
// to the post-barrier, we note that G1 needs a RS update barrier
// which simply enqueues a (sequence of) dirty cards which may
// optionally be refined by the concurrent update threads. Note
// that this barrier need only be applied to a non-young write,
// but, like in CMS, because of the presence of concurrent refinement
// (much like CMS' precleaning), must strictly follow the oop-store.
// Thus, using the same protocol for maintaining the intended
// invariants turns out, serendepitously, to be the same for all
// three collectors/heap types above.
//
// For each future collector, this should be reexamined with
// that specific collector in mind.
oop CollectedHeap::defer_store_barrier(JavaThread* thread, oop new_obj) {
// If a previous card-mark was deferred, flush it now.
flush_deferred_store_barrier(thread);
if (can_elide_initializing_store_barrier(new_obj)) {
// The deferred_card_mark region should be empty
// following the flush above.
assert(thread->deferred_card_mark().is_empty(), "Error");
} else {
// Remember info for the newly deferred store barrier
MemRegion deferred = MemRegion((HeapWord*)new_obj, new_obj->size());
assert(!deferred.is_empty(), "Error");
thread->set_deferred_card_mark(deferred);
}
return new_obj;
}
size_t CollectedHeap::filler_array_hdr_size() {
return size_t(arrayOopDesc::header_size(T_INT));
}
@ -225,16 +308,6 @@ void CollectedHeap::fill_with_objects(HeapWord* start, size_t words)
fill_with_object_impl(start, words);
}
oop CollectedHeap::new_store_barrier(oop new_obj) {
// %%% This needs refactoring. (It was imported from the server compiler.)
guarantee(can_elide_tlab_store_barriers(), "store barrier elision not supported");
BarrierSet* bs = this->barrier_set();
assert(bs->has_write_region_opt(), "Barrier set does not have write_region");
int new_size = new_obj->size();
bs->write_region(MemRegion((HeapWord*)new_obj, new_size));
return new_obj;
}
HeapWord* CollectedHeap::allocate_new_tlab(size_t size) {
guarantee(false, "thread-local allocation buffers not supported");
return NULL;

View File

@ -415,9 +415,14 @@ class CollectedHeap : public CHeapObj {
guarantee(false, "thread-local allocation buffers not supported");
return 0;
}
// Can a compiler initialize a new object without store barriers?
// This permission only extends from the creation of a new object
// via a TLAB up to the first subsequent safepoint.
// via a TLAB up to the first subsequent safepoint. If such permission
// is granted for this heap type, the compiler promises to call
// defer_store_barrier() below on any slow path allocation of
// a new object for which such initializing store barriers will
// have been elided.
virtual bool can_elide_tlab_store_barriers() const = 0;
// If a compiler is eliding store barriers for TLAB-allocated objects,
@ -425,8 +430,19 @@ class CollectedHeap : public CHeapObj {
// an object allocated anywhere. The compiler's runtime support
// promises to call this function on such a slow-path-allocated
// object before performing initializations that have elided
// store barriers. Returns new_obj, or maybe a safer copy thereof.
virtual oop new_store_barrier(oop new_obj);
// store barriers. Returns new_obj, or maybe a safer copy thereof.
virtual oop defer_store_barrier(JavaThread* thread, oop new_obj);
// Answers whether an initializing store to a new object currently
// allocated at the given address doesn't need a (deferred) store
// barrier. Returns "true" if it doesn't need an initializing
// store barrier; answers "false" if it does.
virtual bool can_elide_initializing_store_barrier(oop new_obj) = 0;
// If the CollectedHeap was asked to defer a store barrier above,
// this informs it to flush such a deferred store barrier to the
// remembered set.
virtual void flush_deferred_store_barrier(JavaThread* thread);
// Can a compiler elide a store barrier when it writes
// a permanent oop into the heap? Applies when the compiler

View File

@ -260,6 +260,20 @@ public:
return true;
}
// We don't need barriers for stores to objects in the
// young gen and, a fortiori, for initializing stores to
// objects therein. This applies to {DefNew,ParNew}+{Tenured,CMS}
// only and may need to be re-examined in case other
// kinds of collectors are implemented in the future.
virtual bool can_elide_initializing_store_barrier(oop new_obj) {
// We wanted to assert that:-
// assert(UseParNewGC || UseSerialGC || UseConcMarkSweepGC,
// "Check can_elide_initializing_store_barrier() for this collector");
// but unfortunately the flag UseSerialGC need not necessarily always
// be set when DefNew+Tenured are being used.
return is_in_youngest((void*)new_obj);
}
// Can a compiler elide a store barrier when it writes
// a permanent oop into the heap? Applies when the compiler
// is storing x to the heap, where x->is_perm() is true.

View File

@ -3186,6 +3186,15 @@ void GraphKit::write_barrier_post(Node* oop_store,
return;
}
if (use_ReduceInitialCardMarks()
&& obj == just_allocated_object(control())) {
// We can skip marks on a freshly-allocated object in Eden.
// Keep this code in sync with maybe_defer_card_mark() in runtime.cpp.
// That routine informs GC to take appropriate compensating steps
// so as to make this card-mark elision safe.
return;
}
if (!use_precise) {
// All card marks for a (non-array) instance are in one place:
adr = obj;

View File

@ -4160,13 +4160,13 @@ bool LibraryCallKit::inline_native_clone(bool is_virtual) {
result_mem ->set_req(_objArray_path, reset_memory());
}
}
// We can dispense with card marks if we know the allocation
// comes out of eden (TLAB)... In fact, ReduceInitialCardMarks
// causes the non-eden paths to simulate a fresh allocation,
// insofar that no further card marks are required to initialize
// the object.
// Otherwise, there are no card marks to worry about.
// (We can dispense with card marks if we know the allocation
// comes out of eden (TLAB)... In fact, ReduceInitialCardMarks
// causes the non-eden paths to take compensating steps to
// simulate a fresh allocation, so that no further
// card marks are required in compiled code to initialize
// the object.)
if (!stopped()) {
copy_to_clone(obj, alloc_obj, obj_size, true, false);

View File

@ -143,18 +143,20 @@ const char* OptoRuntime::stub_name(address entry) {
// We failed the fast-path allocation. Now we need to do a scavenge or GC
// and try allocation again.
void OptoRuntime::do_eager_card_mark(JavaThread* thread) {
void OptoRuntime::maybe_defer_card_mark(JavaThread* thread) {
// After any safepoint, just before going back to compiled code,
// we perform a card mark. This lets the compiled code omit
// card marks for initialization of new objects.
// Keep this code consistent with GraphKit::store_barrier.
// we inform the GC that we will be doing initializing writes to
// this object in the future without emitting card-marks, so
// GC may take any compensating steps.
// NOTE: Keep this code consistent with GraphKit::store_barrier.
oop new_obj = thread->vm_result();
if (new_obj == NULL) return;
assert(Universe::heap()->can_elide_tlab_store_barriers(),
"compiler must check this first");
new_obj = Universe::heap()->new_store_barrier(new_obj);
// GC may decide to give back a safer copy of new_obj.
new_obj = Universe::heap()->defer_store_barrier(thread, new_obj);
thread->set_vm_result(new_obj);
}
@ -197,8 +199,8 @@ JRT_BLOCK_ENTRY(void, OptoRuntime::new_instance_C(klassOopDesc* klass, JavaThrea
JRT_BLOCK_END;
if (GraphKit::use_ReduceInitialCardMarks()) {
// do them now so we don't have to do them on the fast path
do_eager_card_mark(thread);
// inform GC that we won't do card marks for initializing writes.
maybe_defer_card_mark(thread);
}
JRT_END
@ -236,8 +238,8 @@ JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_C(klassOopDesc* array_type, int len
JRT_BLOCK_END;
if (GraphKit::use_ReduceInitialCardMarks()) {
// do them now so we don't have to do them on the fast path
do_eager_card_mark(thread);
// inform GC that we won't do card marks for initializing writes.
maybe_defer_card_mark(thread);
}
JRT_END

View File

@ -133,8 +133,8 @@ class OptoRuntime : public AllStatic {
// Allocate storage for a objArray or typeArray
static void new_array_C(klassOopDesc* array_klass, int len, JavaThread *thread);
// Post-allocation step for implementing ReduceInitialCardMarks:
static void do_eager_card_mark(JavaThread* thread);
// Post-slow-path-allocation step for implementing ReduceInitialCardMarks:
static void maybe_defer_card_mark(JavaThread* thread);
// Allocate storage for a multi-dimensional arrays
// Note: needs to be fixed for arbitrary number of dimensions

View File

@ -1213,6 +1213,7 @@ JavaThread::JavaThread(bool is_attaching) :
{
initialize();
_is_attaching = is_attaching;
assert(_deferred_card_mark.is_empty(), "Default MemRegion ctor");
}
bool JavaThread::reguard_stack(address cur_sp) {
@ -2318,6 +2319,10 @@ void JavaThread::gc_prologue() {
void JavaThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
// Flush deferred store-barriers, if any, associated with
// initializing stores done by this JavaThread in the current epoch.
Universe::heap()->flush_deferred_store_barrier(this);
// The ThreadProfiler oops_do is done from FlatProfiler::oops_do
// since there may be more than one thread using each ThreadProfiler.

View File

@ -684,8 +684,13 @@ class JavaThread: public Thread {
methodOop _callee_target;
// Oop results of VM runtime calls
oop _vm_result; // Used to pass back an oop result into Java code, GC-preserved
oop _vm_result_2; // Used to pass back an oop result into Java code, GC-preserved
oop _vm_result; // Used to pass back an oop result into Java code, GC-preserved
oop _vm_result_2; // Used to pass back an oop result into Java code, GC-preserved
// See ReduceInitialCardMarks: this holds the precise space interval of
// the most recent slow path allocation for which compiled code has
// elided card-marks for performance along the fast-path.
MemRegion _deferred_card_mark;
MonitorChunk* _monitor_chunks; // Contains the off stack monitors
// allocated during deoptimization
@ -1082,6 +1087,9 @@ class JavaThread: public Thread {
oop vm_result_2() const { return _vm_result_2; }
void set_vm_result_2 (oop x) { _vm_result_2 = x; }
MemRegion deferred_card_mark() const { return _deferred_card_mark; }
void set_deferred_card_mark(MemRegion mr) { _deferred_card_mark = mr; }
// Exception handling for compiled methods
oop exception_oop() const { return _exception_oop; }
int exception_stack_size() const { return _exception_stack_size; }

View File

@ -207,7 +207,7 @@ bool GenericTaskQueue<E>::push_slow(E t, uint dirty_n_elems) {
// Actually means 0, so do the push.
uint localBot = _bottom;
_elems[localBot] = t;
_bottom = increment_index(localBot);
OrderAccess::release_store(&_bottom, increment_index(localBot));
return true;
}
return false;
@ -465,19 +465,7 @@ public:
#endif
};
#define SIMPLE_STACK 0
template<class E> inline bool GenericTaskQueue<E>::push(E t) {
#if SIMPLE_STACK
uint localBot = _bottom;
if (_bottom < max_elems()) {
_elems[localBot] = t;
_bottom = localBot + 1;
return true;
} else {
return false;
}
#else
uint localBot = _bottom;
assert((localBot >= 0) && (localBot < N), "_bottom out of range.");
idx_t top = _age.top();
@ -485,23 +473,14 @@ template<class E> inline bool GenericTaskQueue<E>::push(E t) {
assert((dirty_n_elems >= 0) && (dirty_n_elems < N), "n_elems out of range.");
if (dirty_n_elems < max_elems()) {
_elems[localBot] = t;
_bottom = increment_index(localBot);
OrderAccess::release_store(&_bottom, increment_index(localBot));
return true;
} else {
return push_slow(t, dirty_n_elems);
}
#endif
}
template<class E> inline bool GenericTaskQueue<E>::pop_local(E& t) {
#if SIMPLE_STACK
uint localBot = _bottom;
assert(localBot > 0, "precondition.");
localBot--;
t = _elems[localBot];
_bottom = localBot;
return true;
#else
uint localBot = _bottom;
// This value cannot be N-1. That can only occur as a result of
// the assignment to bottom in this method. If it does, this method
@ -529,7 +508,6 @@ template<class E> inline bool GenericTaskQueue<E>::pop_local(E& t) {
// path.
return pop_local_slow(localBot, _age.get());
}
#endif
}
typedef oop Task;

View File

@ -3,7 +3,7 @@
@bug 6845368
@summary ensure gc updates references > 64K bytes from the start of the obj
@author John Coomes
@run main/othervm -Xmx64m bigobj
@run main/othervm/timeout=720 -Xmx64m bigobj
*/
// Allocate an object with a block of reference fields that starts more