Merge
This commit is contained in:
commit
c506cb0e5b
@ -209,7 +209,7 @@ void Canonicalizer::do_StoreField (StoreField* x) {
|
||||
// limit this optimization to current block
|
||||
if (value != NULL && in_current_block(conv)) {
|
||||
set_canonical(new StoreField(x->obj(), x->offset(), x->field(), value, x->is_static(),
|
||||
x->state_before(), x->is_loaded(), x->is_initialized()));
|
||||
x->state_before(), x->needs_patching()));
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
@ -1456,12 +1456,12 @@ void GraphBuilder::access_field(Bytecodes::Code code) {
|
||||
BasicType field_type = field->type()->basic_type();
|
||||
ValueType* type = as_ValueType(field_type);
|
||||
// call will_link again to determine if the field is valid.
|
||||
const bool is_loaded = holder->is_loaded() &&
|
||||
field->will_link(method()->holder(), code);
|
||||
const bool is_initialized = is_loaded && holder->is_initialized();
|
||||
const bool needs_patching = !holder->is_loaded() ||
|
||||
!field->will_link(method()->holder(), code) ||
|
||||
PatchALot;
|
||||
|
||||
ValueStack* state_before = NULL;
|
||||
if (!is_initialized || PatchALot) {
|
||||
if (!holder->is_initialized() || needs_patching) {
|
||||
// save state before instruction for debug info when
|
||||
// deoptimization happens during patching
|
||||
state_before = copy_state_before();
|
||||
@ -1469,10 +1469,6 @@ void GraphBuilder::access_field(Bytecodes::Code code) {
|
||||
|
||||
Value obj = NULL;
|
||||
if (code == Bytecodes::_getstatic || code == Bytecodes::_putstatic) {
|
||||
// commoning of class constants should only occur if the class is
|
||||
// fully initialized and resolved in this constant pool. The will_link test
|
||||
// above essentially checks if this class is resolved in this constant pool
|
||||
// so, the is_initialized flag should be suffiect.
|
||||
if (state_before != NULL) {
|
||||
// build a patching constant
|
||||
obj = new Constant(new ClassConstant(holder), state_before);
|
||||
@ -1482,7 +1478,7 @@ void GraphBuilder::access_field(Bytecodes::Code code) {
|
||||
}
|
||||
|
||||
|
||||
const int offset = is_loaded ? field->offset() : -1;
|
||||
const int offset = !needs_patching ? field->offset() : -1;
|
||||
switch (code) {
|
||||
case Bytecodes::_getstatic: {
|
||||
// check for compile-time constants, i.e., initialized static final fields
|
||||
@ -1509,7 +1505,7 @@ void GraphBuilder::access_field(Bytecodes::Code code) {
|
||||
state_before = copy_state_for_exception();
|
||||
}
|
||||
push(type, append(new LoadField(append(obj), offset, field, true,
|
||||
state_before, is_loaded, is_initialized)));
|
||||
state_before, needs_patching)));
|
||||
}
|
||||
break;
|
||||
}
|
||||
@ -1518,7 +1514,7 @@ void GraphBuilder::access_field(Bytecodes::Code code) {
|
||||
if (state_before == NULL) {
|
||||
state_before = copy_state_for_exception();
|
||||
}
|
||||
append(new StoreField(append(obj), offset, field, val, true, state_before, is_loaded, is_initialized));
|
||||
append(new StoreField(append(obj), offset, field, val, true, state_before, needs_patching));
|
||||
}
|
||||
break;
|
||||
case Bytecodes::_getfield :
|
||||
@ -1526,8 +1522,8 @@ void GraphBuilder::access_field(Bytecodes::Code code) {
|
||||
if (state_before == NULL) {
|
||||
state_before = copy_state_for_exception();
|
||||
}
|
||||
LoadField* load = new LoadField(apop(), offset, field, false, state_before, is_loaded, true);
|
||||
Value replacement = is_loaded ? _memory->load(load) : load;
|
||||
LoadField* load = new LoadField(apop(), offset, field, false, state_before, needs_patching);
|
||||
Value replacement = !needs_patching ? _memory->load(load) : load;
|
||||
if (replacement != load) {
|
||||
assert(replacement->is_linked() || !replacement->can_be_linked(), "should already by linked");
|
||||
push(type, replacement);
|
||||
@ -1542,8 +1538,8 @@ void GraphBuilder::access_field(Bytecodes::Code code) {
|
||||
if (state_before == NULL) {
|
||||
state_before = copy_state_for_exception();
|
||||
}
|
||||
StoreField* store = new StoreField(apop(), offset, field, val, false, state_before, is_loaded, true);
|
||||
if (is_loaded) store = _memory->store(store);
|
||||
StoreField* store = new StoreField(apop(), offset, field, val, false, state_before, needs_patching);
|
||||
if (!needs_patching) store = _memory->store(store);
|
||||
if (store != NULL) {
|
||||
append(store);
|
||||
}
|
||||
|
@ -323,8 +323,6 @@ class Instruction: public CompilationResourceObj {
|
||||
CanTrapFlag,
|
||||
DirectCompareFlag,
|
||||
IsEliminatedFlag,
|
||||
IsInitializedFlag,
|
||||
IsLoadedFlag,
|
||||
IsSafepointFlag,
|
||||
IsStaticFlag,
|
||||
IsStrictfpFlag,
|
||||
@ -693,7 +691,7 @@ BASE(AccessField, Instruction)
|
||||
public:
|
||||
// creation
|
||||
AccessField(Value obj, int offset, ciField* field, bool is_static,
|
||||
ValueStack* state_before, bool is_loaded, bool is_initialized)
|
||||
ValueStack* state_before, bool needs_patching)
|
||||
: Instruction(as_ValueType(field->type()->basic_type()), state_before)
|
||||
, _obj(obj)
|
||||
, _offset(offset)
|
||||
@ -701,16 +699,9 @@ BASE(AccessField, Instruction)
|
||||
, _explicit_null_check(NULL)
|
||||
{
|
||||
set_needs_null_check(!is_static);
|
||||
set_flag(IsLoadedFlag, is_loaded);
|
||||
set_flag(IsInitializedFlag, is_initialized);
|
||||
set_flag(IsStaticFlag, is_static);
|
||||
set_flag(NeedsPatchingFlag, needs_patching);
|
||||
ASSERT_VALUES
|
||||
if (!is_loaded || (PatchALot && !field->is_volatile())) {
|
||||
// need to patch if the holder wasn't loaded or we're testing
|
||||
// using PatchALot. Don't allow PatchALot for fields which are
|
||||
// known to be volatile they aren't patchable.
|
||||
set_flag(NeedsPatchingFlag, true);
|
||||
}
|
||||
// pin of all instructions with memory access
|
||||
pin();
|
||||
}
|
||||
@ -721,11 +712,14 @@ BASE(AccessField, Instruction)
|
||||
ciField* field() const { return _field; }
|
||||
BasicType field_type() const { return _field->type()->basic_type(); }
|
||||
bool is_static() const { return check_flag(IsStaticFlag); }
|
||||
bool is_loaded() const { return check_flag(IsLoadedFlag); }
|
||||
bool is_initialized() const { return check_flag(IsInitializedFlag); }
|
||||
NullCheck* explicit_null_check() const { return _explicit_null_check; }
|
||||
bool needs_patching() const { return check_flag(NeedsPatchingFlag); }
|
||||
|
||||
// Unresolved getstatic and putstatic can cause initialization.
|
||||
// Technically it occurs at the Constant that materializes the base
|
||||
// of the static fields but it's simpler to model it here.
|
||||
bool is_init_point() const { return is_static() && (needs_patching() || !_field->holder()->is_initialized()); }
|
||||
|
||||
// manipulation
|
||||
|
||||
// Under certain circumstances, if a previous NullCheck instruction
|
||||
@ -745,15 +739,15 @@ LEAF(LoadField, AccessField)
|
||||
public:
|
||||
// creation
|
||||
LoadField(Value obj, int offset, ciField* field, bool is_static,
|
||||
ValueStack* state_before, bool is_loaded, bool is_initialized)
|
||||
: AccessField(obj, offset, field, is_static, state_before, is_loaded, is_initialized)
|
||||
ValueStack* state_before, bool needs_patching)
|
||||
: AccessField(obj, offset, field, is_static, state_before, needs_patching)
|
||||
{}
|
||||
|
||||
ciType* declared_type() const;
|
||||
ciType* exact_type() const;
|
||||
|
||||
// generic
|
||||
HASHING2(LoadField, is_loaded() && !field()->is_volatile(), obj()->subst(), offset()) // cannot be eliminated if not yet loaded or if volatile
|
||||
HASHING2(LoadField, !needs_patching() && !field()->is_volatile(), obj()->subst(), offset()) // cannot be eliminated if needs patching or if volatile
|
||||
};
|
||||
|
||||
|
||||
@ -764,8 +758,8 @@ LEAF(StoreField, AccessField)
|
||||
public:
|
||||
// creation
|
||||
StoreField(Value obj, int offset, ciField* field, Value value, bool is_static,
|
||||
ValueStack* state_before, bool is_loaded, bool is_initialized)
|
||||
: AccessField(obj, offset, field, is_static, state_before, is_loaded, is_initialized)
|
||||
ValueStack* state_before, bool needs_patching)
|
||||
: AccessField(obj, offset, field, is_static, state_before, needs_patching)
|
||||
, _value(value)
|
||||
{
|
||||
set_flag(NeedsWriteBarrierFlag, as_ValueType(field_type())->is_object());
|
||||
|
@ -1559,9 +1559,7 @@ void LIRGenerator::do_StoreField(StoreField* x) {
|
||||
(info ? new CodeEmitInfo(info) : NULL));
|
||||
}
|
||||
|
||||
if (is_volatile) {
|
||||
assert(!needs_patching && x->is_loaded(),
|
||||
"how do we know it's volatile if it's not loaded");
|
||||
if (is_volatile && !needs_patching) {
|
||||
volatile_field_store(value.result(), address, info);
|
||||
} else {
|
||||
LIR_PatchCode patch_code = needs_patching ? lir_patch_normal : lir_patch_none;
|
||||
@ -1627,9 +1625,7 @@ void LIRGenerator::do_LoadField(LoadField* x) {
|
||||
address = generate_address(object.result(), x->offset(), field_type);
|
||||
}
|
||||
|
||||
if (is_volatile) {
|
||||
assert(!needs_patching && x->is_loaded(),
|
||||
"how do we know it's volatile if it's not loaded");
|
||||
if (is_volatile && !needs_patching) {
|
||||
volatile_field_load(address, reg, info);
|
||||
} else {
|
||||
LIR_PatchCode patch_code = needs_patching ? lir_patch_normal : lir_patch_none;
|
||||
|
@ -141,7 +141,8 @@ class ValueNumberingVisitor: public InstructionVisitor {
|
||||
|
||||
// visitor functions
|
||||
void do_StoreField (StoreField* x) {
|
||||
if (!x->is_initialized()) {
|
||||
if (x->is_init_point()) {
|
||||
// putstatic is an initialization point so treat it as a wide kill
|
||||
kill_memory();
|
||||
} else {
|
||||
kill_field(x->field());
|
||||
@ -159,7 +160,8 @@ class ValueNumberingVisitor: public InstructionVisitor {
|
||||
void do_Local (Local* x) { /* nothing to do */ }
|
||||
void do_Constant (Constant* x) { /* nothing to do */ }
|
||||
void do_LoadField (LoadField* x) {
|
||||
if (!x->is_initialized()) {
|
||||
if (x->is_init_point()) {
|
||||
// getstatic is an initialization point so treat it as a wide kill
|
||||
kill_memory();
|
||||
}
|
||||
}
|
||||
|
@ -939,9 +939,16 @@ void CodeCache::print_bounds(outputStream* st) {
|
||||
_heap->high(),
|
||||
_heap->high_boundary());
|
||||
st->print_cr(" total_blobs=" UINT32_FORMAT " nmethods=" UINT32_FORMAT
|
||||
" adapters=" UINT32_FORMAT " free_code_cache=" SIZE_FORMAT
|
||||
" adapters=" UINT32_FORMAT " free_code_cache=" SIZE_FORMAT "Kb"
|
||||
" largest_free_block=" SIZE_FORMAT,
|
||||
CodeCache::nof_blobs(), CodeCache::nof_nmethods(),
|
||||
CodeCache::nof_adapters(), CodeCache::unallocated_capacity(),
|
||||
CodeCache::largest_free_block());
|
||||
nof_blobs(), nof_nmethods(), nof_adapters(),
|
||||
unallocated_capacity()/K, largest_free_block());
|
||||
}
|
||||
|
||||
void CodeCache::log_state(outputStream* st) {
|
||||
st->print(" total_blobs='" UINT32_FORMAT "' nmethods='" UINT32_FORMAT "'"
|
||||
" adapters='" UINT32_FORMAT "' free_code_cache='" SIZE_FORMAT "'"
|
||||
" largest_free_block='" SIZE_FORMAT "'",
|
||||
nof_blobs(), nof_nmethods(), nof_adapters(),
|
||||
unallocated_capacity(), largest_free_block());
|
||||
}
|
||||
|
@ -147,6 +147,7 @@ class CodeCache : AllStatic {
|
||||
static void verify(); // verifies the code cache
|
||||
static void print_trace(const char* event, CodeBlob* cb, int size = 0) PRODUCT_RETURN;
|
||||
static void print_bounds(outputStream* st); // Prints a summary of the bounds of the code cache
|
||||
static void log_state(outputStream* st);
|
||||
|
||||
// The full limits of the codeCache
|
||||
static address low_bound() { return (address) _heap->low_boundary(); }
|
||||
@ -159,7 +160,7 @@ class CodeCache : AllStatic {
|
||||
static size_t max_capacity() { return _heap->max_capacity(); }
|
||||
static size_t unallocated_capacity() { return _heap->unallocated_capacity(); }
|
||||
static size_t largest_free_block() { return _heap->largest_free_block(); }
|
||||
static bool needs_flushing() { return unallocated_capacity() < CodeCacheFlushingMinimumFreeSpace; }
|
||||
static bool needs_flushing() { return largest_free_block() < CodeCacheFlushingMinimumFreeSpace; }
|
||||
|
||||
static bool needs_cache_clean() { return _needs_cache_clean; }
|
||||
static void set_needs_cache_clean(bool v) { _needs_cache_clean = v; }
|
||||
|
@ -762,7 +762,7 @@ nmethod::nmethod(
|
||||
|
||||
void* nmethod::operator new(size_t size, int nmethod_size) {
|
||||
// Always leave some room in the CodeCache for I2C/C2I adapters
|
||||
if (CodeCache::unallocated_capacity() < CodeCacheMinimumFreeSpace) return NULL;
|
||||
if (CodeCache::largest_free_block() < CodeCacheMinimumFreeSpace) return NULL;
|
||||
return CodeCache::allocate(nmethod_size);
|
||||
}
|
||||
|
||||
@ -1881,7 +1881,7 @@ void nmethod::preserve_callee_argument_oops(frame fr, const RegisterMap *reg_map
|
||||
|
||||
|
||||
oop nmethod::embeddedOop_at(u_char* p) {
|
||||
RelocIterator iter(this, p, p + oopSize);
|
||||
RelocIterator iter(this, p, p + 1);
|
||||
while (iter.next())
|
||||
if (iter.type() == relocInfo::oop_type) {
|
||||
return iter.oop_reloc()->oop_value();
|
||||
|
@ -1364,7 +1364,7 @@ void CompileBroker::compiler_thread_loop() {
|
||||
// We need this HandleMark to avoid leaking VM handles.
|
||||
HandleMark hm(thread);
|
||||
|
||||
if (CodeCache::unallocated_capacity() < CodeCacheMinimumFreeSpace) {
|
||||
if (CodeCache::largest_free_block() < CodeCacheMinimumFreeSpace) {
|
||||
// the code cache is really full
|
||||
handle_full_code_cache();
|
||||
} else if (UseCodeCacheFlushing && CodeCache::needs_flushing()) {
|
||||
@ -1645,11 +1645,13 @@ void CompileBroker::handle_full_code_cache() {
|
||||
if (UseCompiler || AlwaysCompileLoopMethods ) {
|
||||
if (xtty != NULL) {
|
||||
xtty->begin_elem("code_cache_full");
|
||||
CodeCache::log_state(xtty);
|
||||
xtty->stamp();
|
||||
xtty->end_elem();
|
||||
}
|
||||
warning("CodeCache is full. Compiler has been disabled.");
|
||||
warning("Try increasing the code cache size using -XX:ReservedCodeCacheSize=");
|
||||
CodeCache::print_bounds(tty);
|
||||
#ifndef PRODUCT
|
||||
if (CompileTheWorld || ExitOnFullCodeCache) {
|
||||
before_exit(JavaThread::current());
|
||||
|
@ -316,12 +316,19 @@ size_t CodeHeap::allocated_capacity() const {
|
||||
}
|
||||
|
||||
size_t CodeHeap::largest_free_block() const {
|
||||
// First check unused space excluding free blocks.
|
||||
size_t free_sz = size(_free_segments);
|
||||
size_t unused = max_capacity() - allocated_capacity() - free_sz;
|
||||
if (unused >= free_sz)
|
||||
return unused;
|
||||
|
||||
// Now check largest free block.
|
||||
size_t len = 0;
|
||||
for (FreeBlock* b = _freelist; b != NULL; b = b->link()) {
|
||||
if (b->length() > len)
|
||||
len = b->length();
|
||||
}
|
||||
return size(len);
|
||||
return MAX2(unused, size(len));
|
||||
}
|
||||
|
||||
// Free list management
|
||||
|
@ -103,6 +103,12 @@ methodOop methodKlass::allocate(constMethodHandle xconst,
|
||||
m->backedge_counter()->init();
|
||||
m->clear_number_of_breakpoints();
|
||||
|
||||
#ifdef TIERED
|
||||
m->set_rate(0);
|
||||
m->set_prev_event_count(0);
|
||||
m->set_prev_time(0);
|
||||
#endif
|
||||
|
||||
assert(m->is_parsable(), "must be parsable here.");
|
||||
assert(m->size() == size, "wrong size for object");
|
||||
// We should not publish an uprasable object's reference
|
||||
|
@ -84,6 +84,11 @@
|
||||
// | invocation_counter |
|
||||
// | backedge_counter |
|
||||
// |------------------------------------------------------|
|
||||
// | prev_time (tiered only, 64 bit wide) |
|
||||
// | |
|
||||
// |------------------------------------------------------|
|
||||
// | rate (tiered) |
|
||||
// |------------------------------------------------------|
|
||||
// | code (pointer) |
|
||||
// | i2i (pointer) |
|
||||
// | adapter (pointer) |
|
||||
@ -124,6 +129,11 @@ class methodOopDesc : public oopDesc {
|
||||
InvocationCounter _invocation_counter; // Incremented before each activation of the method - used to trigger frequency-based optimizations
|
||||
InvocationCounter _backedge_counter; // Incremented before each backedge taken - used to trigger frequencey-based optimizations
|
||||
|
||||
#ifdef TIERED
|
||||
jlong _prev_time; // Previous time the rate was acquired
|
||||
float _rate; // Events (invocation and backedge counter increments) per millisecond
|
||||
#endif
|
||||
|
||||
#ifndef PRODUCT
|
||||
int _compiled_invocation_count; // Number of nmethod invocations so far (for perf. debugging)
|
||||
#endif
|
||||
@ -304,6 +314,17 @@ class methodOopDesc : public oopDesc {
|
||||
InvocationCounter* invocation_counter() { return &_invocation_counter; }
|
||||
InvocationCounter* backedge_counter() { return &_backedge_counter; }
|
||||
|
||||
#ifdef TIERED
|
||||
// We are reusing interpreter_invocation_count as a holder for the previous event count!
|
||||
// We can do that since interpreter_invocation_count is not used in tiered.
|
||||
int prev_event_count() const { return _interpreter_invocation_count; }
|
||||
void set_prev_event_count(int count) { _interpreter_invocation_count = count; }
|
||||
jlong prev_time() const { return _prev_time; }
|
||||
void set_prev_time(jlong time) { _prev_time = time; }
|
||||
float rate() const { return _rate; }
|
||||
void set_rate(float rate) { _rate = rate; }
|
||||
#endif
|
||||
|
||||
int invocation_count();
|
||||
int backedge_count();
|
||||
|
||||
|
@ -1028,7 +1028,7 @@ void NonSafepointEmitter::emit_non_safepoint() {
|
||||
|
||||
// helper for Fill_buffer bailout logic
|
||||
static void turn_off_compiler(Compile* C) {
|
||||
if (CodeCache::unallocated_capacity() >= CodeCacheMinimumFreeSpace*10) {
|
||||
if (CodeCache::largest_free_block() >= CodeCacheMinimumFreeSpace*10) {
|
||||
// Do not turn off compilation if a single giant method has
|
||||
// blown the code cache size.
|
||||
C->record_failure("excessive request to CodeCache");
|
||||
|
@ -3386,7 +3386,22 @@ const Type *TypeAryPtr::xmeet( const Type *t ) const {
|
||||
instance_id = InstanceBot;
|
||||
tary = TypeAry::make(Type::BOTTOM, tary->_size);
|
||||
}
|
||||
} else // Non integral arrays.
|
||||
// Must fall to bottom if exact klasses in upper lattice
|
||||
// are not equal or super klass is exact.
|
||||
if ( above_centerline(ptr) && klass() != tap->klass() &&
|
||||
// meet with top[] and bottom[] are processed further down:
|
||||
tap ->_klass != NULL && this->_klass != NULL &&
|
||||
// both are exact and not equal:
|
||||
((tap ->_klass_is_exact && this->_klass_is_exact) ||
|
||||
// 'tap' is exact and super or unrelated:
|
||||
(tap ->_klass_is_exact && !tap->klass()->is_subtype_of(klass())) ||
|
||||
// 'this' is exact and super or unrelated:
|
||||
(this->_klass_is_exact && !klass()->is_subtype_of(tap->klass())))) {
|
||||
tary = TypeAry::make(Type::BOTTOM, tary->_size);
|
||||
return make( NotNull, NULL, tary, lazy_klass, false, off, InstanceBot );
|
||||
}
|
||||
|
||||
bool xk = false;
|
||||
switch (tap->ptr()) {
|
||||
case AnyNull:
|
||||
@ -3766,7 +3781,7 @@ ciKlass* TypeAryPtr::klass() const {
|
||||
// Oops, need to compute _klass and cache it
|
||||
ciKlass* k_ary = compute_klass();
|
||||
|
||||
if( this != TypeAryPtr::OOPS ) {
|
||||
if( this != TypeAryPtr::OOPS && this->dual() != TypeAryPtr::OOPS ) {
|
||||
// The _klass field acts as a cache of the underlying
|
||||
// ciKlass for this array type. In order to set the field,
|
||||
// we need to cast away const-ness.
|
||||
|
450
hotspot/src/share/vm/runtime/advancedThresholdPolicy.cpp
Normal file
450
hotspot/src/share/vm/runtime/advancedThresholdPolicy.cpp
Normal file
@ -0,0 +1,450 @@
|
||||
/*
|
||||
* Copyright (c) 2010, 2011 Oracle and/or its affiliates. All rights reserved.
|
||||
* ORACLE PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
|
||||
*/
|
||||
|
||||
#include "precompiled.hpp"
|
||||
#include "runtime/advancedThresholdPolicy.hpp"
|
||||
#include "runtime/simpleThresholdPolicy.inline.hpp"
|
||||
|
||||
#ifdef TIERED
|
||||
// Print an event.
|
||||
void AdvancedThresholdPolicy::print_specific(EventType type, methodHandle mh, methodHandle imh,
|
||||
int bci, CompLevel level) {
|
||||
tty->print(" rate: ");
|
||||
if (mh->prev_time() == 0) tty->print("n/a");
|
||||
else tty->print("%f", mh->rate());
|
||||
|
||||
tty->print(" k: %.2lf,%.2lf", threshold_scale(CompLevel_full_profile, Tier3LoadFeedback),
|
||||
threshold_scale(CompLevel_full_optimization, Tier4LoadFeedback));
|
||||
|
||||
}
|
||||
|
||||
void AdvancedThresholdPolicy::initialize() {
|
||||
// Turn on ergonomic compiler count selection
|
||||
if (FLAG_IS_DEFAULT(CICompilerCountPerCPU) && FLAG_IS_DEFAULT(CICompilerCount)) {
|
||||
FLAG_SET_DEFAULT(CICompilerCountPerCPU, true);
|
||||
}
|
||||
int count = CICompilerCount;
|
||||
if (CICompilerCountPerCPU) {
|
||||
// Simple log n seems to grow too slowly for tiered, try something faster: log n * log log n
|
||||
int log_cpu = log2_intptr(os::active_processor_count());
|
||||
int loglog_cpu = log2_intptr(MAX2(log_cpu, 1));
|
||||
count = MAX2(log_cpu * loglog_cpu, 1) * 3 / 2;
|
||||
}
|
||||
|
||||
set_c1_count(MAX2(count / 3, 1));
|
||||
set_c2_count(MAX2(count - count / 3, 1));
|
||||
|
||||
// Some inlining tuning
|
||||
#ifdef X86
|
||||
if (FLAG_IS_DEFAULT(InlineSmallCode)) {
|
||||
FLAG_SET_DEFAULT(InlineSmallCode, 2000);
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifdef SPARC
|
||||
if (FLAG_IS_DEFAULT(InlineSmallCode)) {
|
||||
FLAG_SET_DEFAULT(InlineSmallCode, 2500);
|
||||
}
|
||||
#endif
|
||||
|
||||
|
||||
set_start_time(os::javaTimeMillis());
|
||||
}
|
||||
|
||||
// update_rate() is called from select_task() while holding a compile queue lock.
|
||||
void AdvancedThresholdPolicy::update_rate(jlong t, methodOop m) {
|
||||
if (is_old(m)) {
|
||||
// We don't remove old methods from the queue,
|
||||
// so we can just zero the rate.
|
||||
m->set_rate(0);
|
||||
return;
|
||||
}
|
||||
|
||||
// We don't update the rate if we've just came out of a safepoint.
|
||||
// delta_s is the time since last safepoint in milliseconds.
|
||||
jlong delta_s = t - SafepointSynchronize::end_of_last_safepoint();
|
||||
jlong delta_t = t - (m->prev_time() != 0 ? m->prev_time() : start_time()); // milliseconds since the last measurement
|
||||
// How many events were there since the last time?
|
||||
int event_count = m->invocation_count() + m->backedge_count();
|
||||
int delta_e = event_count - m->prev_event_count();
|
||||
|
||||
// We should be running for at least 1ms.
|
||||
if (delta_s >= TieredRateUpdateMinTime) {
|
||||
// And we must've taken the previous point at least 1ms before.
|
||||
if (delta_t >= TieredRateUpdateMinTime && delta_e > 0) {
|
||||
m->set_prev_time(t);
|
||||
m->set_prev_event_count(event_count);
|
||||
m->set_rate((float)delta_e / (float)delta_t); // Rate is events per millisecond
|
||||
} else
|
||||
if (delta_t > TieredRateUpdateMaxTime && delta_e == 0) {
|
||||
// If nothing happened for 25ms, zero the rate. Don't modify prev values.
|
||||
m->set_rate(0);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Check if this method has been stale from a given number of milliseconds.
|
||||
// See select_task().
|
||||
bool AdvancedThresholdPolicy::is_stale(jlong t, jlong timeout, methodOop m) {
|
||||
jlong delta_s = t - SafepointSynchronize::end_of_last_safepoint();
|
||||
jlong delta_t = t - m->prev_time();
|
||||
if (delta_t > timeout && delta_s > timeout) {
|
||||
int event_count = m->invocation_count() + m->backedge_count();
|
||||
int delta_e = event_count - m->prev_event_count();
|
||||
// Return true if there were no events.
|
||||
return delta_e == 0;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
// We don't remove old methods from the compile queue even if they have
|
||||
// very low activity. See select_task().
|
||||
bool AdvancedThresholdPolicy::is_old(methodOop method) {
|
||||
return method->invocation_count() > 50000 || method->backedge_count() > 500000;
|
||||
}
|
||||
|
||||
double AdvancedThresholdPolicy::weight(methodOop method) {
|
||||
return (method->rate() + 1) * ((method->invocation_count() + 1) * (method->backedge_count() + 1));
|
||||
}
|
||||
|
||||
// Apply heuristics and return true if x should be compiled before y
|
||||
bool AdvancedThresholdPolicy::compare_methods(methodOop x, methodOop y) {
|
||||
if (x->highest_comp_level() > y->highest_comp_level()) {
|
||||
// recompilation after deopt
|
||||
return true;
|
||||
} else
|
||||
if (x->highest_comp_level() == y->highest_comp_level()) {
|
||||
if (weight(x) > weight(y)) {
|
||||
return true;
|
||||
}
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
// Is method profiled enough?
|
||||
bool AdvancedThresholdPolicy::is_method_profiled(methodOop method) {
|
||||
methodDataOop mdo = method->method_data();
|
||||
if (mdo != NULL) {
|
||||
int i = mdo->invocation_count_delta();
|
||||
int b = mdo->backedge_count_delta();
|
||||
return call_predicate_helper<CompLevel_full_profile>(i, b, 1);
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
// Called with the queue locked and with at least one element
|
||||
CompileTask* AdvancedThresholdPolicy::select_task(CompileQueue* compile_queue) {
|
||||
CompileTask *max_task = NULL;
|
||||
methodOop max_method;
|
||||
jlong t = os::javaTimeMillis();
|
||||
// Iterate through the queue and find a method with a maximum rate.
|
||||
for (CompileTask* task = compile_queue->first(); task != NULL;) {
|
||||
CompileTask* next_task = task->next();
|
||||
methodOop method = (methodOop)JNIHandles::resolve(task->method_handle());
|
||||
methodDataOop mdo = method->method_data();
|
||||
update_rate(t, method);
|
||||
if (max_task == NULL) {
|
||||
max_task = task;
|
||||
max_method = method;
|
||||
} else {
|
||||
// If a method has been stale for some time, remove it from the queue.
|
||||
if (is_stale(t, TieredCompileTaskTimeout, method) && !is_old(method)) {
|
||||
if (PrintTieredEvents) {
|
||||
print_event(KILL, method, method, task->osr_bci(), (CompLevel)task->comp_level());
|
||||
}
|
||||
CompileTaskWrapper ctw(task); // Frees the task
|
||||
compile_queue->remove(task);
|
||||
method->clear_queued_for_compilation();
|
||||
task = next_task;
|
||||
continue;
|
||||
}
|
||||
|
||||
// Select a method with a higher rate
|
||||
if (compare_methods(method, max_method)) {
|
||||
max_task = task;
|
||||
max_method = method;
|
||||
}
|
||||
}
|
||||
task = next_task;
|
||||
}
|
||||
|
||||
if (max_task->comp_level() == CompLevel_full_profile && is_method_profiled(max_method)) {
|
||||
max_task->set_comp_level(CompLevel_limited_profile);
|
||||
if (PrintTieredEvents) {
|
||||
print_event(UPDATE, max_method, max_method, max_task->osr_bci(), (CompLevel)max_task->comp_level());
|
||||
}
|
||||
}
|
||||
|
||||
return max_task;
|
||||
}
|
||||
|
||||
double AdvancedThresholdPolicy::threshold_scale(CompLevel level, int feedback_k) {
|
||||
double queue_size = CompileBroker::queue_size(level);
|
||||
int comp_count = compiler_count(level);
|
||||
double k = queue_size / (feedback_k * comp_count) + 1;
|
||||
return k;
|
||||
}
|
||||
|
||||
// Call and loop predicates determine whether a transition to a higher
|
||||
// compilation level should be performed (pointers to predicate functions
|
||||
// are passed to common()).
|
||||
// Tier?LoadFeedback is basically a coefficient that determines of
|
||||
// how many methods per compiler thread can be in the queue before
|
||||
// the threshold values double.
|
||||
bool AdvancedThresholdPolicy::loop_predicate(int i, int b, CompLevel cur_level) {
|
||||
switch(cur_level) {
|
||||
case CompLevel_none:
|
||||
case CompLevel_limited_profile: {
|
||||
double k = threshold_scale(CompLevel_full_profile, Tier3LoadFeedback);
|
||||
return loop_predicate_helper<CompLevel_none>(i, b, k);
|
||||
}
|
||||
case CompLevel_full_profile: {
|
||||
double k = threshold_scale(CompLevel_full_optimization, Tier4LoadFeedback);
|
||||
return loop_predicate_helper<CompLevel_full_profile>(i, b, k);
|
||||
}
|
||||
default:
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
||||
bool AdvancedThresholdPolicy::call_predicate(int i, int b, CompLevel cur_level) {
|
||||
switch(cur_level) {
|
||||
case CompLevel_none:
|
||||
case CompLevel_limited_profile: {
|
||||
double k = threshold_scale(CompLevel_full_profile, Tier3LoadFeedback);
|
||||
return call_predicate_helper<CompLevel_none>(i, b, k);
|
||||
}
|
||||
case CompLevel_full_profile: {
|
||||
double k = threshold_scale(CompLevel_full_optimization, Tier4LoadFeedback);
|
||||
return call_predicate_helper<CompLevel_full_profile>(i, b, k);
|
||||
}
|
||||
default:
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
||||
// If a method is old enough and is still in the interpreter we would want to
|
||||
// start profiling without waiting for the compiled method to arrive.
|
||||
// We also take the load on compilers into the account.
|
||||
bool AdvancedThresholdPolicy::should_create_mdo(methodOop method, CompLevel cur_level) {
|
||||
if (cur_level == CompLevel_none &&
|
||||
CompileBroker::queue_size(CompLevel_full_optimization) <=
|
||||
Tier3DelayOn * compiler_count(CompLevel_full_optimization)) {
|
||||
int i = method->invocation_count();
|
||||
int b = method->backedge_count();
|
||||
double k = Tier0ProfilingStartPercentage / 100.0;
|
||||
return call_predicate_helper<CompLevel_none>(i, b, k) || loop_predicate_helper<CompLevel_none>(i, b, k);
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
// Create MDO if necessary.
|
||||
void AdvancedThresholdPolicy::create_mdo(methodHandle mh, TRAPS) {
|
||||
if (mh->is_native() || mh->is_abstract() || mh->is_accessor()) return;
|
||||
if (mh->method_data() == NULL) {
|
||||
methodOopDesc::build_interpreter_method_data(mh, THREAD);
|
||||
if (HAS_PENDING_EXCEPTION) {
|
||||
CLEAR_PENDING_EXCEPTION;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Method states:
|
||||
* 0 - interpreter (CompLevel_none)
|
||||
* 1 - pure C1 (CompLevel_simple)
|
||||
* 2 - C1 with invocation and backedge counting (CompLevel_limited_profile)
|
||||
* 3 - C1 with full profiling (CompLevel_full_profile)
|
||||
* 4 - C2 (CompLevel_full_optimization)
|
||||
*
|
||||
* Common state transition patterns:
|
||||
* a. 0 -> 3 -> 4.
|
||||
* The most common path. But note that even in this straightforward case
|
||||
* profiling can start at level 0 and finish at level 3.
|
||||
*
|
||||
* b. 0 -> 2 -> 3 -> 4.
|
||||
* This case occures when the load on C2 is deemed too high. So, instead of transitioning
|
||||
* into state 3 directly and over-profiling while a method is in the C2 queue we transition to
|
||||
* level 2 and wait until the load on C2 decreases. This path is disabled for OSRs.
|
||||
*
|
||||
* c. 0 -> (3->2) -> 4.
|
||||
* In this case we enqueue a method for compilation at level 3, but the C1 queue is long enough
|
||||
* to enable the profiling to fully occur at level 0. In this case we change the compilation level
|
||||
* of the method to 2, because it'll allow it to run much faster without full profiling while c2
|
||||
* is compiling.
|
||||
*
|
||||
* d. 0 -> 3 -> 1 or 0 -> 2 -> 1.
|
||||
* After a method was once compiled with C1 it can be identified as trivial and be compiled to
|
||||
* level 1. These transition can also occur if a method can't be compiled with C2 but can with C1.
|
||||
*
|
||||
* e. 0 -> 4.
|
||||
* This can happen if a method fails C1 compilation (it will still be profiled in the interpreter)
|
||||
* or because of a deopt that didn't require reprofiling (compilation won't happen in this case because
|
||||
* the compiled version already exists).
|
||||
*
|
||||
* Note that since state 0 can be reached from any other state via deoptimization different loops
|
||||
* are possible.
|
||||
*
|
||||
*/
|
||||
|
||||
// Common transition function. Given a predicate determines if a method should transition to another level.
|
||||
CompLevel AdvancedThresholdPolicy::common(Predicate p, methodOop method, CompLevel cur_level) {
|
||||
if (is_trivial(method)) return CompLevel_simple;
|
||||
|
||||
CompLevel next_level = cur_level;
|
||||
int i = method->invocation_count();
|
||||
int b = method->backedge_count();
|
||||
|
||||
switch(cur_level) {
|
||||
case CompLevel_none:
|
||||
// If we were at full profile level, would we switch to full opt?
|
||||
if (common(p, method, CompLevel_full_profile) == CompLevel_full_optimization) {
|
||||
next_level = CompLevel_full_optimization;
|
||||
} else if ((this->*p)(i, b, cur_level)) {
|
||||
// C1-generated fully profiled code is about 30% slower than the limited profile
|
||||
// code that has only invocation and backedge counters. The observation is that
|
||||
// if C2 queue is large enough we can spend too much time in the fully profiled code
|
||||
// while waiting for C2 to pick the method from the queue. To alleviate this problem
|
||||
// we introduce a feedback on the C2 queue size. If the C2 queue is sufficiently long
|
||||
// we choose to compile a limited profiled version and then recompile with full profiling
|
||||
// when the load on C2 goes down.
|
||||
if (CompileBroker::queue_size(CompLevel_full_optimization) >
|
||||
Tier3DelayOn * compiler_count(CompLevel_full_optimization)) {
|
||||
next_level = CompLevel_limited_profile;
|
||||
} else {
|
||||
next_level = CompLevel_full_profile;
|
||||
}
|
||||
}
|
||||
break;
|
||||
case CompLevel_limited_profile:
|
||||
if (is_method_profiled(method)) {
|
||||
// Special case: we got here because this method was fully profiled in the interpreter.
|
||||
next_level = CompLevel_full_optimization;
|
||||
} else {
|
||||
methodDataOop mdo = method->method_data();
|
||||
if (mdo != NULL) {
|
||||
if (mdo->would_profile()) {
|
||||
if (CompileBroker::queue_size(CompLevel_full_optimization) <=
|
||||
Tier3DelayOff * compiler_count(CompLevel_full_optimization) &&
|
||||
(this->*p)(i, b, cur_level)) {
|
||||
next_level = CompLevel_full_profile;
|
||||
}
|
||||
} else {
|
||||
next_level = CompLevel_full_optimization;
|
||||
}
|
||||
}
|
||||
}
|
||||
break;
|
||||
case CompLevel_full_profile:
|
||||
{
|
||||
methodDataOop mdo = method->method_data();
|
||||
if (mdo != NULL) {
|
||||
if (mdo->would_profile()) {
|
||||
int mdo_i = mdo->invocation_count_delta();
|
||||
int mdo_b = mdo->backedge_count_delta();
|
||||
if ((this->*p)(mdo_i, mdo_b, cur_level)) {
|
||||
next_level = CompLevel_full_optimization;
|
||||
}
|
||||
} else {
|
||||
next_level = CompLevel_full_optimization;
|
||||
}
|
||||
}
|
||||
}
|
||||
break;
|
||||
}
|
||||
return next_level;
|
||||
}
|
||||
|
||||
// Determine if a method should be compiled with a normal entry point at a different level.
|
||||
CompLevel AdvancedThresholdPolicy::call_event(methodOop method, CompLevel cur_level) {
|
||||
CompLevel osr_level = (CompLevel) method->highest_osr_comp_level();
|
||||
CompLevel next_level = common(&AdvancedThresholdPolicy::call_predicate, method, cur_level);
|
||||
|
||||
// If OSR method level is greater than the regular method level, the levels should be
|
||||
// equalized by raising the regular method level in order to avoid OSRs during each
|
||||
// invocation of the method.
|
||||
if (osr_level == CompLevel_full_optimization && cur_level == CompLevel_full_profile) {
|
||||
methodDataOop mdo = method->method_data();
|
||||
guarantee(mdo != NULL, "MDO should not be NULL");
|
||||
if (mdo->invocation_count() >= 1) {
|
||||
next_level = CompLevel_full_optimization;
|
||||
}
|
||||
} else {
|
||||
next_level = MAX2(osr_level, next_level);
|
||||
}
|
||||
|
||||
return next_level;
|
||||
}
|
||||
|
||||
// Determine if we should do an OSR compilation of a given method.
|
||||
CompLevel AdvancedThresholdPolicy::loop_event(methodOop method, CompLevel cur_level) {
|
||||
if (cur_level == CompLevel_none) {
|
||||
// If there is a live OSR method that means that we deopted to the interpreter
|
||||
// for the transition.
|
||||
CompLevel osr_level = (CompLevel)method->highest_osr_comp_level();
|
||||
if (osr_level > CompLevel_none) {
|
||||
return osr_level;
|
||||
}
|
||||
}
|
||||
return common(&AdvancedThresholdPolicy::loop_predicate, method, cur_level);
|
||||
}
|
||||
|
||||
// Update the rate and submit compile
|
||||
void AdvancedThresholdPolicy::submit_compile(methodHandle mh, int bci, CompLevel level, TRAPS) {
|
||||
int hot_count = (bci == InvocationEntryBci) ? mh->invocation_count() : mh->backedge_count();
|
||||
update_rate(os::javaTimeMillis(), mh());
|
||||
CompileBroker::compile_method(mh, bci, level, mh, hot_count, "tiered", THREAD);
|
||||
}
|
||||
|
||||
|
||||
// Handle the invocation event.
|
||||
void AdvancedThresholdPolicy::method_invocation_event(methodHandle mh, methodHandle imh,
|
||||
CompLevel level, TRAPS) {
|
||||
if (should_create_mdo(mh(), level)) {
|
||||
create_mdo(mh, THREAD);
|
||||
}
|
||||
if (is_compilation_enabled() && !CompileBroker::compilation_is_in_queue(mh, InvocationEntryBci)) {
|
||||
CompLevel next_level = call_event(mh(), level);
|
||||
if (next_level != level) {
|
||||
compile(mh, InvocationEntryBci, next_level, THREAD);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Handle the back branch event. Notice that we can compile the method
|
||||
// with a regular entry from here.
|
||||
void AdvancedThresholdPolicy::method_back_branch_event(methodHandle mh, methodHandle imh,
|
||||
int bci, CompLevel level, TRAPS) {
|
||||
if (should_create_mdo(mh(), level)) {
|
||||
create_mdo(mh, THREAD);
|
||||
}
|
||||
|
||||
// If the method is already compiling, quickly bail out.
|
||||
if (is_compilation_enabled() && !CompileBroker::compilation_is_in_queue(mh, bci)) {
|
||||
// Use loop event as an opportinity to also check there's been
|
||||
// enough calls.
|
||||
CompLevel cur_level = comp_level(mh());
|
||||
CompLevel next_level = call_event(mh(), cur_level);
|
||||
CompLevel next_osr_level = loop_event(mh(), level);
|
||||
if (next_osr_level == CompLevel_limited_profile) {
|
||||
next_osr_level = CompLevel_full_profile; // OSRs are supposed to be for very hot methods.
|
||||
}
|
||||
next_level = MAX2(next_level,
|
||||
next_osr_level < CompLevel_full_optimization ? next_osr_level : cur_level);
|
||||
bool is_compiling = false;
|
||||
if (next_level != cur_level) {
|
||||
compile(mh, InvocationEntryBci, next_level, THREAD);
|
||||
is_compiling = true;
|
||||
}
|
||||
|
||||
// Do the OSR version
|
||||
if (!is_compiling && next_osr_level != level) {
|
||||
compile(mh, bci, next_osr_level, THREAD);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif // TIERED
|
207
hotspot/src/share/vm/runtime/advancedThresholdPolicy.hpp
Normal file
207
hotspot/src/share/vm/runtime/advancedThresholdPolicy.hpp
Normal file
@ -0,0 +1,207 @@
|
||||
/*
|
||||
* Copyright (c) 2010, 2011 Oracle and/or its affiliates. All rights reserved.
|
||||
* ORACLE PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
|
||||
*/
|
||||
|
||||
#ifndef SHARE_VM_RUNTIME_ADVANCEDTHRESHOLDPOLICY_HPP
|
||||
#define SHARE_VM_RUNTIME_ADVANCEDTHRESHOLDPOLICY_HPP
|
||||
|
||||
#include "runtime/simpleThresholdPolicy.hpp"
|
||||
|
||||
#ifdef TIERED
|
||||
class CompileTask;
|
||||
class CompileQueue;
|
||||
|
||||
/*
|
||||
* The system supports 5 execution levels:
|
||||
* * level 0 - interpreter
|
||||
* * level 1 - C1 with full optimization (no profiling)
|
||||
* * level 2 - C1 with invocation and backedge counters
|
||||
* * level 3 - C1 with full profiling (level 2 + MDO)
|
||||
* * level 4 - C2
|
||||
*
|
||||
* Levels 0, 2 and 3 periodically notify the runtime about the current value of the counters
|
||||
* (invocation counters and backedge counters). The frequency of these notifications is
|
||||
* different at each level. These notifications are used by the policy to decide what transition
|
||||
* to make.
|
||||
*
|
||||
* Execution starts at level 0 (interpreter), then the policy can decide either to compile the
|
||||
* method at level 3 or level 2. The decision is based on the following factors:
|
||||
* 1. The length of the C2 queue determines the next level. The observation is that level 2
|
||||
* is generally faster than level 3 by about 30%, therefore we would want to minimize the time
|
||||
* a method spends at level 3. We should only spend the time at level 3 that is necessary to get
|
||||
* adequate profiling. So, if the C2 queue is long enough it is more beneficial to go first to
|
||||
* level 2, because if we transitioned to level 3 we would be stuck there until our C2 compile
|
||||
* request makes its way through the long queue. When the load on C2 recedes we are going to
|
||||
* recompile at level 3 and start gathering profiling information.
|
||||
* 2. The length of C1 queue is used to dynamically adjust the thresholds, so as to introduce
|
||||
* additional filtering if the compiler is overloaded. The rationale is that by the time a
|
||||
* method gets compiled it can become unused, so it doesn't make sense to put too much onto the
|
||||
* queue.
|
||||
*
|
||||
* After profiling is completed at level 3 the transition is made to level 4. Again, the length
|
||||
* of the C2 queue is used as a feedback to adjust the thresholds.
|
||||
*
|
||||
* After the first C1 compile some basic information is determined about the code like the number
|
||||
* of the blocks and the number of the loops. Based on that it can be decided that a method
|
||||
* is trivial and compiling it with C1 will yield the same code. In this case the method is
|
||||
* compiled at level 1 instead of 4.
|
||||
*
|
||||
* We also support profiling at level 0. If C1 is slow enough to produce the level 3 version of
|
||||
* the code and the C2 queue is sufficiently small we can decide to start profiling in the
|
||||
* interpreter (and continue profiling in the compiled code once the level 3 version arrives).
|
||||
* If the profiling at level 0 is fully completed before level 3 version is produced, a level 2
|
||||
* version is compiled instead in order to run faster waiting for a level 4 version.
|
||||
*
|
||||
* Compile queues are implemented as priority queues - for each method in the queue we compute
|
||||
* the event rate (the number of invocation and backedge counter increments per unit of time).
|
||||
* When getting an element off the queue we pick the one with the largest rate. Maintaining the
|
||||
* rate also allows us to remove stale methods (the ones that got on the queue but stopped
|
||||
* being used shortly after that).
|
||||
*/
|
||||
|
||||
/* Command line options:
|
||||
* - Tier?InvokeNotifyFreqLog and Tier?BackedgeNotifyFreqLog control the frequency of method
|
||||
* invocation and backedge notifications. Basically every n-th invocation or backedge a mutator thread
|
||||
* makes a call into the runtime.
|
||||
*
|
||||
* - Tier?CompileThreshold, Tier?BackEdgeThreshold, Tier?MinInvocationThreshold control
|
||||
* compilation thresholds.
|
||||
* Level 2 thresholds are not used and are provided for option-compatibility and potential future use.
|
||||
* Other thresholds work as follows:
|
||||
*
|
||||
* Transition from interpreter (level 0) to C1 with full profiling (level 3) happens when
|
||||
* the following predicate is true (X is the level):
|
||||
*
|
||||
* i > TierXInvocationThreshold * s || (i > TierXMinInvocationThreshold * s && i + b > TierXCompileThreshold * s),
|
||||
*
|
||||
* where $i$ is the number of method invocations, $b$ number of backedges and $s$ is the scaling
|
||||
* coefficient that will be discussed further.
|
||||
* The intuition is to equalize the time that is spend profiling each method.
|
||||
* The same predicate is used to control the transition from level 3 to level 4 (C2). It should be
|
||||
* noted though that the thresholds are relative. Moreover i and b for the 0->3 transition come
|
||||
* from methodOop and for 3->4 transition they come from MDO (since profiled invocations are
|
||||
* counted separately).
|
||||
*
|
||||
* OSR transitions are controlled simply with b > TierXBackEdgeThreshold * s predicates.
|
||||
*
|
||||
* - Tier?LoadFeedback options are used to automatically scale the predicates described above depending
|
||||
* on the compiler load. The scaling coefficients are computed as follows:
|
||||
*
|
||||
* s = queue_size_X / (TierXLoadFeedback * compiler_count_X) + 1,
|
||||
*
|
||||
* where queue_size_X is the current size of the compiler queue of level X, and compiler_count_X
|
||||
* is the number of level X compiler threads.
|
||||
*
|
||||
* Basically these parameters describe how many methods should be in the compile queue
|
||||
* per compiler thread before the scaling coefficient increases by one.
|
||||
*
|
||||
* This feedback provides the mechanism to automatically control the flow of compilation requests
|
||||
* depending on the machine speed, mutator load and other external factors.
|
||||
*
|
||||
* - Tier3DelayOn and Tier3DelayOff parameters control another important feedback loop.
|
||||
* Consider the following observation: a method compiled with full profiling (level 3)
|
||||
* is about 30% slower than a method at level 2 (just invocation and backedge counters, no MDO).
|
||||
* Normally, the following transitions will occur: 0->3->4. The problem arises when the C2 queue
|
||||
* gets congested and the 3->4 transition is delayed. While the method is the C2 queue it continues
|
||||
* executing at level 3 for much longer time than is required by the predicate and at suboptimal speed.
|
||||
* The idea is to dynamically change the behavior of the system in such a way that if a substantial
|
||||
* load on C2 is detected we would first do the 0->2 transition allowing a method to run faster.
|
||||
* And then when the load decreases to allow 2->3 transitions.
|
||||
*
|
||||
* Tier3Delay* parameters control this switching mechanism.
|
||||
* Tier3DelayOn is the number of methods in the C2 queue per compiler thread after which the policy
|
||||
* no longer does 0->3 transitions but does 0->2 transitions instead.
|
||||
* Tier3DelayOff switches the original behavior back when the number of methods in the C2 queue
|
||||
* per compiler thread falls below the specified amount.
|
||||
* The hysteresis is necessary to avoid jitter.
|
||||
*
|
||||
* - TieredCompileTaskTimeout is the amount of time an idle method can spend in the compile queue.
|
||||
* Basically, since we use the event rate d(i + b)/dt as a value of priority when selecting a method to
|
||||
* compile from the compile queue, we also can detect stale methods for which the rate has been
|
||||
* 0 for some time in the same iteration. Stale methods can appear in the queue when an application
|
||||
* abruptly changes its behavior.
|
||||
*
|
||||
* - TieredStopAtLevel, is used mostly for testing. It allows to bypass the policy logic and stick
|
||||
* to a given level. For example it's useful to set TieredStopAtLevel = 1 in order to compile everything
|
||||
* with pure c1.
|
||||
*
|
||||
* - Tier0ProfilingStartPercentage allows the interpreter to start profiling when the inequalities in the
|
||||
* 0->3 predicate are already exceeded by the given percentage but the level 3 version of the
|
||||
* method is still not ready. We can even go directly from level 0 to 4 if c1 doesn't produce a compiled
|
||||
* version in time. This reduces the overall transition to level 4 and decreases the startup time.
|
||||
* Note that this behavior is also guarded by the Tier3Delay mechanism: when the c2 queue is too long
|
||||
* these is not reason to start profiling prematurely.
|
||||
*
|
||||
* - TieredRateUpdateMinTime and TieredRateUpdateMaxTime are parameters of the rate computation.
|
||||
* Basically, the rate is not computed more frequently than TieredRateUpdateMinTime and is considered
|
||||
* to be zero if no events occurred in TieredRateUpdateMaxTime.
|
||||
*/
|
||||
|
||||
|
||||
class AdvancedThresholdPolicy : public SimpleThresholdPolicy {
|
||||
jlong _start_time;
|
||||
|
||||
// Call and loop predicates determine whether a transition to a higher compilation
|
||||
// level should be performed (pointers to predicate functions are passed to common().
|
||||
// Predicates also take compiler load into account.
|
||||
typedef bool (AdvancedThresholdPolicy::*Predicate)(int i, int b, CompLevel cur_level);
|
||||
bool call_predicate(int i, int b, CompLevel cur_level);
|
||||
bool loop_predicate(int i, int b, CompLevel cur_level);
|
||||
// Common transition function. Given a predicate determines if a method should transition to another level.
|
||||
CompLevel common(Predicate p, methodOop method, CompLevel cur_level);
|
||||
// Transition functions.
|
||||
// call_event determines if a method should be compiled at a different
|
||||
// level with a regular invocation entry.
|
||||
CompLevel call_event(methodOop method, CompLevel cur_level);
|
||||
// loop_event checks if a method should be OSR compiled at a different
|
||||
// level.
|
||||
CompLevel loop_event(methodOop method, CompLevel cur_level);
|
||||
// Has a method been long around?
|
||||
// We don't remove old methods from the compile queue even if they have
|
||||
// very low activity (see select_task()).
|
||||
inline bool is_old(methodOop method);
|
||||
// Was a given method inactive for a given number of milliseconds.
|
||||
// If it is, we would remove it from the queue (see select_task()).
|
||||
inline bool is_stale(jlong t, jlong timeout, methodOop m);
|
||||
// Compute the weight of the method for the compilation scheduling
|
||||
inline double weight(methodOop method);
|
||||
// Apply heuristics and return true if x should be compiled before y
|
||||
inline bool compare_methods(methodOop x, methodOop y);
|
||||
// Compute event rate for a given method. The rate is the number of event (invocations + backedges)
|
||||
// per millisecond.
|
||||
inline void update_rate(jlong t, methodOop m);
|
||||
// Compute threshold scaling coefficient
|
||||
inline double threshold_scale(CompLevel level, int feedback_k);
|
||||
// If a method is old enough and is still in the interpreter we would want to
|
||||
// start profiling without waiting for the compiled method to arrive. This function
|
||||
// determines whether we should do that.
|
||||
inline bool should_create_mdo(methodOop method, CompLevel cur_level);
|
||||
// Create MDO if necessary.
|
||||
void create_mdo(methodHandle mh, TRAPS);
|
||||
// Is method profiled enough?
|
||||
bool is_method_profiled(methodOop method);
|
||||
|
||||
protected:
|
||||
void print_specific(EventType type, methodHandle mh, methodHandle imh, int bci, CompLevel level);
|
||||
|
||||
void set_start_time(jlong t) { _start_time = t; }
|
||||
jlong start_time() const { return _start_time; }
|
||||
|
||||
// Submit a given method for compilation (and update the rate).
|
||||
virtual void submit_compile(methodHandle mh, int bci, CompLevel level, TRAPS);
|
||||
// event() from SimpleThresholdPolicy would call these.
|
||||
virtual void method_invocation_event(methodHandle method, methodHandle inlinee,
|
||||
CompLevel level, TRAPS);
|
||||
virtual void method_back_branch_event(methodHandle method, methodHandle inlinee,
|
||||
int bci, CompLevel level, TRAPS);
|
||||
public:
|
||||
AdvancedThresholdPolicy() : _start_time(0) { }
|
||||
// Select task is called by CompileBroker. We should return a task or NULL.
|
||||
virtual CompileTask* select_task(CompileQueue* compile_queue);
|
||||
virtual void initialize();
|
||||
};
|
||||
|
||||
#endif // TIERED
|
||||
|
||||
#endif // SHARE_VM_RUNTIME_ADVANCEDTHRESHOLDPOLICY_HPP
|
@ -1026,8 +1026,9 @@ void Arguments::check_compressed_oops_compat() {
|
||||
}
|
||||
|
||||
void Arguments::set_tiered_flags() {
|
||||
// With tiered, set default policy to AdvancedThresholdPolicy, which is 3.
|
||||
if (FLAG_IS_DEFAULT(CompilationPolicyChoice)) {
|
||||
FLAG_SET_DEFAULT(CompilationPolicyChoice, 2);
|
||||
FLAG_SET_DEFAULT(CompilationPolicyChoice, 3);
|
||||
}
|
||||
if (CompilationPolicyChoice < 2) {
|
||||
vm_exit_during_initialization(
|
||||
|
@ -1,5 +1,5 @@
|
||||
/*
|
||||
* Copyright (c) 2000, 2010, Oracle and/or its affiliates. All rights reserved.
|
||||
* Copyright (c) 2000, 2011, Oracle and/or its affiliates. All rights reserved.
|
||||
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
||||
*
|
||||
* This code is free software; you can redistribute it and/or modify it
|
||||
@ -32,6 +32,7 @@
|
||||
#include "oops/methodOop.hpp"
|
||||
#include "oops/oop.inline.hpp"
|
||||
#include "prims/nativeLookup.hpp"
|
||||
#include "runtime/advancedThresholdPolicy.hpp"
|
||||
#include "runtime/compilationPolicy.hpp"
|
||||
#include "runtime/frame.hpp"
|
||||
#include "runtime/handles.inline.hpp"
|
||||
@ -70,10 +71,17 @@ void compilationPolicy_init() {
|
||||
CompilationPolicy::set_policy(new SimpleThresholdPolicy());
|
||||
#else
|
||||
Unimplemented();
|
||||
#endif
|
||||
break;
|
||||
case 3:
|
||||
#ifdef TIERED
|
||||
CompilationPolicy::set_policy(new AdvancedThresholdPolicy());
|
||||
#else
|
||||
Unimplemented();
|
||||
#endif
|
||||
break;
|
||||
default:
|
||||
fatal("CompilationPolicyChoice must be in the range: [0-2]");
|
||||
fatal("CompilationPolicyChoice must be in the range: [0-3]");
|
||||
}
|
||||
CompilationPolicy::policy()->initialize();
|
||||
}
|
||||
|
@ -426,9 +426,7 @@ void NMethodSweeper::log_sweep(const char* msg, const char* format, ...) {
|
||||
tty->vprint(format, ap);
|
||||
va_end(ap);
|
||||
}
|
||||
tty->print_cr(" total_blobs='" UINT32_FORMAT "' nmethods='" UINT32_FORMAT "'"
|
||||
" adapters='" UINT32_FORMAT "' free_code_cache='" SIZE_FORMAT "'",
|
||||
CodeCache::nof_blobs(), CodeCache::nof_nmethods(), CodeCache::nof_adapters(), CodeCache::unallocated_capacity());
|
||||
CodeCache::log_state(tty); tty->cr();
|
||||
}
|
||||
|
||||
if (LogCompilation && (xtty != NULL)) {
|
||||
@ -440,9 +438,7 @@ void NMethodSweeper::log_sweep(const char* msg, const char* format, ...) {
|
||||
xtty->vprint(format, ap);
|
||||
va_end(ap);
|
||||
}
|
||||
xtty->print(" total_blobs='" UINT32_FORMAT "' nmethods='" UINT32_FORMAT "'"
|
||||
" adapters='" UINT32_FORMAT "' free_code_cache='" SIZE_FORMAT "'",
|
||||
CodeCache::nof_blobs(), CodeCache::nof_nmethods(), CodeCache::nof_adapters(), CodeCache::unallocated_capacity());
|
||||
CodeCache::log_state(xtty);
|
||||
xtty->stamp();
|
||||
xtty->end_elem();
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user