This commit is contained in:
Erik Trimble 2011-04-29 16:55:43 -07:00
commit c99361768e
61 changed files with 1401 additions and 834 deletions

View File

@ -22,29 +22,23 @@
#
#
#
# The cscope.out file is made in the current directory and spans the entire
# source tree.
#
# Things to note:
# 1. We use relative names for cscope.
# 2. We *don't* remove the old cscope.out file, because cscope is smart
# enough to only build what has changed. It can be confused, however,
# if files are renamed or removed, so it may be necessary to manually
# remove cscope.out if a lot of reorganization has occurred.
#
# The cscope.out file is generated in the current directory. The old cscope.out
# file is *not* removed because cscope is smart enough to only build what has
# changed. cscope can be confused if files are renamed or removed, so it may be
# necessary to remove cscope.out (gmake cscope.clean) if a lot of reorganization
# has occurred.
include $(GAMMADIR)/make/scm.make
NAWK = /usr/xpg4/bin/awk
RM = rm -f
HG = hg
CS_TOP = ../..
CS_TOP = $(GAMMADIR)
CSDIRS = $(CS_TOP)/src $(CS_TOP)/make
CSINCS = $(CSDIRS:%=-I%)
CSCOPE = cscope
CSCOPE_OUT = cscope.out
CSCOPE_FLAGS = -b
# Allow .java files to be added from the environment (CSCLASSES=yes).
@ -61,25 +55,22 @@ ifndef CSHEADERS
RMCCHEADERS= -o -name CClassHeaders
endif
# Use CS_GENERATED=x to include auto-generated files in the make directories.
ifdef CS_GENERATED
CS_ADD_GENERATED = -o -name '*.incl'
else
CS_PRUNE_GENERATED = -o -name '${OS}_*_core' -o -name '${OS}_*_compiler?'
# Ignore build products.
CS_PRUNE_GENERATED = -o -name '${OSNAME}_*_core' -o \
-name '${OSNAME}_*_compiler?'
# O/S-specific files for all systems are included by default. Set CS_OS to a
# space-separated list of identifiers to include only those systems.
ifdef CS_OS
CS_PRUNE_OS = $(patsubst %,-o -name '*%*',\
$(filter-out ${CS_OS},linux macos solaris windows))
endif
# OS-specific files for other systems are excluded by default. Use CS_OS=yes
# to include platform-specific files for other platforms.
ifndef CS_OS
CS_OS = linux macos solaris win32
CS_PRUNE_OS = $(patsubst %,-o -name '*%*',$(filter-out ${OS},${CS_OS}))
endif
# Processor-specific files for other processors are excluded by default. Use
# CS_CPU=x to include platform-specific files for other platforms.
ifndef CS_CPU
CS_CPU = i486 sparc amd64 ia64
CS_PRUNE_CPU = $(patsubst %,-o -name '*%*',$(filter-out ${SRCARCH},${CS_CPU}))
# CPU-specific files for all processors are included by default. Set CS_CPU
# space-separated list identifiers to include only those CPUs.
ifdef CS_CPU
CS_PRUNE_CPU = $(patsubst %,-o -name '*%*',\
$(filter-out ${CS_CPU},arm ppc sparc x86 zero))
endif
# What files should we include? A simple rule might be just those files under
@ -95,10 +86,14 @@ CS_PRUNE_STD = $(SCM_DIRS) \
-o -name '*demo' \
-o -name pkgarchive
# Placeholder for user-defined excludes.
CS_PRUNE_EX =
CS_PRUNE = $(CS_PRUNE_STD) \
$(CS_PRUNE_OS) \
$(CS_PRUNE_CPU) \
$(CS_PRUNE_GENERATED) \
$(CS_PRUNE_EX) \
$(RMCCHEADERS)
# File names to include.
@ -114,49 +109,33 @@ CSFILENAMES = -name '*.[ch]pp' \
-o -name '*.ad' \
$(ADDCLASSES)
.PHONY: cscope cscope.clean cscope.scratch TAGS.clean FORCE
.PRECIOUS: cscope.out
cscope cscope.out: cscope.files FORCE
$(CSCOPE) $(CSCOPE_FLAGS)
cscope $(CSCOPE_OUT): cscope.files FORCE
$(CSCOPE) -f $(CSCOPE_OUT) $(CSCOPE_FLAGS)
# The .raw file is reordered here in an attempt to make cscope display the most
# relevant files first.
cscope.files: .cscope.files.raw
echo "$(CSINCS)" > $@
-egrep -v "\.java|\/make\/" $< >> $@
-fgrep ".java" $< >> $@
-fgrep "/make/" $< >> $@
cscope.clean:
$(QUIETLY) $(RM) $(CSCOPE_OUT) cscope.files
.cscope.files.raw: .nametable.files
-find $(CSDIRS) -type d \( $(CS_PRUNE) \) -prune -o \
-type f \( $(CSFILENAMES) \) -print > $@
cscope.scratch: cscope.clean cscope
cscope.clean: nametable.clean
-$(RM) cscope.out cscope.files .cscope.files.raw
# The raw list is reordered so cscope displays the most relevant files first.
cscope.files:
$(QUIETLY) \
raw=cscope.$$$$; \
find $(CSDIRS) -type d \( $(CS_PRUNE) \) -prune -o \
-type f \( $(CSFILENAMES) \) -print > $$raw; \
{ \
echo "$(CSINCS)"; \
egrep -v "\.java|/make/" $$raw; \
fgrep ".java" $$raw; \
fgrep "/make/" $$raw; \
} > $@; \
rm -f $$raw
TAGS: cscope.files FORCE
egrep -v '^-|^$$' $< | etags --members -
TAGS.clean: nametable.clean
-$(RM) TAGS
# .nametable.files and .nametable.files.tmp are used to determine if any files
# were added to/deleted from/renamed in the workspace. If not, then there's
# normally no need to rebuild the cscope database. To force a rebuild of
# the cscope database: gmake nametable.clean.
.nametable.files: .nametable.files.tmp
( cmp -s $@ $< ) || ( cp $< $@ )
-$(RM) $<
# `hg status' is slightly faster than `hg fstatus'. Both are
# quite a bit slower on an NFS mounted file system, so this is
# really geared towards repos on local file systems.
.nametable.files.tmp:
-$(HG) fstatus -acmn > $@
nametable.clean:
-$(RM) .nametable.files .nametable.files.tmp
FORCE:
.PHONY: cscope cscope.clean TAGS.clean nametable.clean FORCE
TAGS.clean:
$(RM) TAGS

View File

@ -359,7 +359,7 @@ clean_compiler1 clean_compiler2 clean_core clean_zero clean_shark:
clean: clean_compiler2 clean_compiler1 clean_core clean_zero clean_shark clean_docs
include $(GAMMADIR)/make/$(OSNAME)/makefiles/cscope.make
include $(GAMMADIR)/make/cscope.make
#-------------------------------------------------------------------------------

View File

@ -1,160 +0,0 @@
#
# Copyright (c) 2005, 2008, Oracle and/or its affiliates. All rights reserved.
# DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
#
# This code is free software; you can redistribute it and/or modify it
# under the terms of the GNU General Public License version 2 only, as
# published by the Free Software Foundation.
#
# This code is distributed in the hope that it will be useful, but WITHOUT
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
# FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
# version 2 for more details (a copy is included in the LICENSE file that
# accompanied this code).
#
# You should have received a copy of the GNU General Public License version
# 2 along with this work; if not, write to the Free Software Foundation,
# Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
#
# Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
# or visit www.oracle.com if you need additional information or have any
# questions.
#
#
#
# The cscope.out file is made in the current directory and spans the entire
# source tree.
#
# Things to note:
# 1. We use relative names for cscope.
# 2. We *don't* remove the old cscope.out file, because cscope is smart
# enough to only build what has changed. It can be confused, however,
# if files are renamed or removed, so it may be necessary to manually
# remove cscope.out if a lot of reorganization has occurred.
#
include $(GAMMADIR)/make/scm.make
NAWK = awk
RM = rm -f
HG = hg
CS_TOP = ../..
CSDIRS = $(CS_TOP)/src $(CS_TOP)/build
CSINCS = $(CSDIRS:%=-I%)
CSCOPE = cscope
CSCOPE_FLAGS = -b
# Allow .java files to be added from the environment (CSCLASSES=yes).
ifdef CSCLASSES
ADDCLASSES= -o -name '*.java'
endif
# Adding CClassHeaders also pushes the file count of a full workspace up about
# 200 files (these files also don't exist in a new workspace, and thus will
# cause the recreation of the database as they get created, which might seem
# a little confusing). Thus allow these files to be added from the environment
# (CSHEADERS=yes).
ifndef CSHEADERS
RMCCHEADERS= -o -name CClassHeaders
endif
# Use CS_GENERATED=x to include auto-generated files in the build directories.
ifdef CS_GENERATED
CS_ADD_GENERATED = -o -name '*.incl'
else
CS_PRUNE_GENERATED = -o -name '${OS}_*_core' -o -name '${OS}_*_compiler?'
endif
# OS-specific files for other systems are excluded by default. Use CS_OS=yes
# to include platform-specific files for other platforms.
ifndef CS_OS
CS_OS = linux macos solaris win32
CS_PRUNE_OS = $(patsubst %,-o -name '*%*',$(filter-out ${OS},${CS_OS}))
endif
# Processor-specific files for other processors are excluded by default. Use
# CS_CPU=x to include platform-specific files for other platforms.
ifndef CS_CPU
CS_CPU = i486 sparc amd64 ia64
CS_PRUNE_CPU = $(patsubst %,-o -name '*%*',$(filter-out ${SRCARCH},${CS_CPU}))
endif
# What files should we include? A simple rule might be just those files under
# SCCS control, however this would miss files we create like the opcodes and
# CClassHeaders. The following attempts to find everything that is *useful*.
# (.del files are created by sccsrm, demo directories contain many .java files
# that probably aren't useful for development, and the pkgarchive may contain
# duplicates of files within the source hierarchy).
# Directories to exclude.
CS_PRUNE_STD = $(SCM_DIRS) \
-o -name '.del-*' \
-o -name '*demo' \
-o -name pkgarchive
CS_PRUNE = $(CS_PRUNE_STD) \
$(CS_PRUNE_OS) \
$(CS_PRUNE_CPU) \
$(CS_PRUNE_GENERATED) \
$(RMCCHEADERS)
# File names to include.
CSFILENAMES = -name '*.[ch]pp' \
-o -name '*.[Ccshlxy]' \
$(CS_ADD_GENERATED) \
-o -name '*.il' \
-o -name '*.cc' \
-o -name '*[Mm]akefile*' \
-o -name '*.gmk' \
-o -name '*.make' \
-o -name '*.ad' \
$(ADDCLASSES)
.PRECIOUS: cscope.out
cscope cscope.out: cscope.files FORCE
$(CSCOPE) $(CSCOPE_FLAGS)
# The .raw file is reordered here in an attempt to make cscope display the most
# relevant files first.
cscope.files: .cscope.files.raw
echo "$(CSINCS)" > $@
-egrep -v "\.java|\/make\/" $< >> $@
-fgrep ".java" $< >> $@
-fgrep "/make/" $< >> $@
.cscope.files.raw: .nametable.files
-find $(CSDIRS) -type d \( $(CS_PRUNE) \) -prune -o \
-type f \( $(CSFILENAMES) \) -print > $@
cscope.clean: nametable.clean
-$(RM) cscope.out cscope.files .cscope.files.raw
TAGS: cscope.files FORCE
egrep -v '^-|^$$' $< | etags --members -
TAGS.clean: nametable.clean
-$(RM) TAGS
# .nametable.files and .nametable.files.tmp are used to determine if any files
# were added to/deleted from/renamed in the workspace. If not, then there's
# normally no need to rebuild the cscope database. To force a rebuild of
# the cscope database: gmake nametable.clean.
.nametable.files: .nametable.files.tmp
( cmp -s $@ $< ) || ( cp $< $@ )
-$(RM) $<
# `hg status' is slightly faster than `hg fstatus'. Both are
# quite a bit slower on an NFS mounted file system, so this is
# really geared towards repos on local file systems.
.nametable.files.tmp:
-$(HG) fstatus -acmn > $@
nametable.clean:
-$(RM) .nametable.files .nametable.files.tmp
FORCE:
.PHONY: cscope cscope.clean TAGS.clean nametable.clean FORCE

View File

@ -296,7 +296,7 @@ clean_compiler1 clean_compiler2 clean_core clean_kernel:
clean: clean_compiler2 clean_compiler1 clean_core clean_docs clean_kernel
include $(GAMMADIR)/make/$(OSNAME)/makefiles/cscope.make
include $(GAMMADIR)/make/cscope.make
#-------------------------------------------------------------------------------

View File

@ -486,7 +486,7 @@ void MethodHandles::generate_method_handle_stub(MacroAssembler* _masm, MethodHan
if (ek == _invokespecial_mh) {
// Must load & check the first argument before entering the target method.
__ load_method_handle_vmslots(O0_argslot, G3_method_handle, O1_scratch);
__ ld_ptr(__ argument_address(O0_argslot), G3_method_handle);
__ ld_ptr(__ argument_address(O0_argslot, -1), G3_method_handle);
__ null_check(G3_method_handle);
__ verify_oop(G3_method_handle);
}

View File

@ -3293,8 +3293,6 @@ void TemplateTable::invokedynamic(int byte_no) {
/*virtual*/ false, /*vfinal*/ false, /*indy*/ true);
__ mov(SP, O5_savedSP); // record SP that we wanted the callee to restore
__ verify_oop(G5_callsite);
// profile this call
__ profile_call(O4);
@ -3307,8 +3305,10 @@ void TemplateTable::invokedynamic(int byte_no) {
__ sll(Rret, LogBytesPerWord, Rret);
__ ld_ptr(Rtemp, Rret, Rret); // get return address
__ verify_oop(G5_callsite);
__ load_heap_oop(G5_callsite, __ delayed_value(java_lang_invoke_CallSite::target_offset_in_bytes, Rscratch), G3_method_handle);
__ null_check(G3_method_handle);
__ verify_oop(G3_method_handle);
// Adjust Rret first so Llast_SP can be same as Rret
__ add(Rret, -frame::pc_return_offset, O7);

View File

@ -422,7 +422,7 @@ void TemplateTable::fast_aldc(bool wide) {
Label L_done, L_throw_exception;
const Register con_klass_temp = rcx; // same as Rcache
__ movptr(con_klass_temp, Address(rax, oopDesc::klass_offset_in_bytes()));
__ load_klass(con_klass_temp, rax);
__ cmpptr(con_klass_temp, ExternalAddress((address)Universe::systemObjArrayKlassObj_addr()));
__ jcc(Assembler::notEqual, L_done);
__ cmpl(Address(rax, arrayOopDesc::length_offset_in_bytes()), 0);
@ -432,7 +432,7 @@ void TemplateTable::fast_aldc(bool wide) {
// Load the exception from the system-array which wraps it:
__ bind(L_throw_exception);
__ movptr(rax, Address(rax, arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
__ load_heap_oop(rax, Address(rax, arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
__ jump(ExternalAddress(Interpreter::throw_exception_entry()));
__ bind(L_done);
@ -946,9 +946,9 @@ void TemplateTable::aastore() {
__ jcc(Assembler::zero, is_null);
// Move subklass into EBX
__ movptr(rbx, Address(rax, oopDesc::klass_offset_in_bytes()));
__ load_klass(rbx, rax);
// Move superklass into EAX
__ movptr(rax, Address(rdx, oopDesc::klass_offset_in_bytes()));
__ load_klass(rax, rdx);
__ movptr(rax, Address(rax, sizeof(oopDesc) + objArrayKlass::element_klass_offset_in_bytes()));
// Compress array+index*wordSize+12 into a single register. Frees ECX.
__ lea(rdx, element_address);
@ -2001,7 +2001,7 @@ void TemplateTable::_return(TosState state) {
if (_desc->bytecode() == Bytecodes::_return_register_finalizer) {
assert(state == vtos, "only valid state");
__ movptr(rax, aaddress(0));
__ movptr(rdi, Address(rax, oopDesc::klass_offset_in_bytes()));
__ load_klass(rdi, rax);
__ movl(rdi, Address(rdi, Klass::access_flags_offset_in_bytes() + sizeof(oopDesc)));
__ testl(rdi, JVM_ACC_HAS_FINALIZER);
Label skip_register_finalizer;
@ -2948,7 +2948,7 @@ void TemplateTable::invokevirtual_helper(Register index, Register recv,
// get receiver klass
__ null_check(recv, oopDesc::klass_offset_in_bytes());
// Keep recv in rcx for callee expects it there
__ movptr(rax, Address(recv, oopDesc::klass_offset_in_bytes()));
__ load_klass(rax, recv);
__ verify_oop(rax);
// profile this call
@ -3028,7 +3028,7 @@ void TemplateTable::invokeinterface(int byte_no) {
// Get receiver klass into rdx - also a null check
__ restore_locals(); // restore rdi
__ movptr(rdx, Address(rcx, oopDesc::klass_offset_in_bytes()));
__ load_klass(rdx, rcx);
__ verify_oop(rdx);
// profile this call
@ -3083,6 +3083,7 @@ void TemplateTable::invokeinterface(int byte_no) {
void TemplateTable::invokedynamic(int byte_no) {
transition(vtos, vtos);
assert(byte_no == f1_oop, "use this argument");
if (!EnableInvokeDynamic) {
// We should not encounter this bytecode if !EnableInvokeDynamic.
@ -3095,7 +3096,6 @@ void TemplateTable::invokedynamic(int byte_no) {
return;
}
assert(byte_no == f1_oop, "use this argument");
prepare_invoke(rax, rbx, byte_no);
// rax: CallSite object (f1)
@ -3106,14 +3106,14 @@ void TemplateTable::invokedynamic(int byte_no) {
Register rax_callsite = rax;
Register rcx_method_handle = rcx;
if (ProfileInterpreter) {
// %%% should make a type profile for any invokedynamic that takes a ref argument
// profile this call
__ profile_call(rsi);
}
// %%% should make a type profile for any invokedynamic that takes a ref argument
// profile this call
__ profile_call(rsi);
__ movptr(rcx_method_handle, Address(rax_callsite, __ delayed_value(java_lang_invoke_CallSite::target_offset_in_bytes, rcx)));
__ verify_oop(rax_callsite);
__ load_heap_oop(rcx_method_handle, Address(rax_callsite, __ delayed_value(java_lang_invoke_CallSite::target_offset_in_bytes, rdx)));
__ null_check(rcx_method_handle);
__ verify_oop(rcx_method_handle);
__ prepare_to_jump_from_interpreted();
__ jump_to_method_handle_entry(rcx_method_handle, rdx);
}
@ -3258,7 +3258,7 @@ void TemplateTable::_new() {
(int32_t)markOopDesc::prototype()); // header
__ pop(rcx); // get saved klass back in the register.
}
__ movptr(Address(rax, oopDesc::klass_offset_in_bytes()), rcx); // klass
__ store_klass(rax, rcx); // klass
{
SkipIfEqual skip_if(_masm, &DTraceAllocProbes, 0);
@ -3333,7 +3333,7 @@ void TemplateTable::checkcast() {
__ movptr(rax, Address(rcx, rbx, Address::times_ptr, sizeof(constantPoolOopDesc)));
__ bind(resolved);
__ movptr(rbx, Address(rdx, oopDesc::klass_offset_in_bytes()));
__ load_klass(rbx, rdx);
// Generate subtype check. Blows ECX. Resets EDI. Object in EDX.
// Superklass in EAX. Subklass in EBX.
@ -3376,12 +3376,12 @@ void TemplateTable::instanceof() {
__ push(atos);
call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc) );
__ pop_ptr(rdx);
__ movptr(rdx, Address(rdx, oopDesc::klass_offset_in_bytes()));
__ load_klass(rdx, rdx);
__ jmp(resolved);
// Get superklass in EAX and subklass in EDX
__ bind(quicked);
__ movptr(rdx, Address(rax, oopDesc::klass_offset_in_bytes()));
__ load_klass(rdx, rax);
__ movptr(rax, Address(rcx, rbx, Address::times_ptr, sizeof(constantPoolOopDesc)));
__ bind(resolved);

View File

@ -436,7 +436,7 @@ void TemplateTable::fast_aldc(bool wide) {
Label L_done, L_throw_exception;
const Register con_klass_temp = rcx; // same as cache
const Register array_klass_temp = rdx; // same as index
__ movptr(con_klass_temp, Address(rax, oopDesc::klass_offset_in_bytes()));
__ load_klass(con_klass_temp, rax);
__ lea(array_klass_temp, ExternalAddress((address)Universe::systemObjArrayKlassObj_addr()));
__ cmpptr(con_klass_temp, Address(array_klass_temp, 0));
__ jcc(Assembler::notEqual, L_done);
@ -447,7 +447,7 @@ void TemplateTable::fast_aldc(bool wide) {
// Load the exception from the system-array which wraps it:
__ bind(L_throw_exception);
__ movptr(rax, Address(rax, arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
__ load_heap_oop(rax, Address(rax, arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
__ jump(ExternalAddress(Interpreter::throw_exception_entry()));
__ bind(L_done);
@ -3137,7 +3137,6 @@ void TemplateTable::invokedynamic(int byte_no) {
return;
}
assert(byte_no == f1_oop, "use this argument");
prepare_invoke(rax, rbx, byte_no);
// rax: CallSite object (f1)
@ -3148,14 +3147,14 @@ void TemplateTable::invokedynamic(int byte_no) {
Register rax_callsite = rax;
Register rcx_method_handle = rcx;
if (ProfileInterpreter) {
// %%% should make a type profile for any invokedynamic that takes a ref argument
// profile this call
__ profile_call(r13);
}
// %%% should make a type profile for any invokedynamic that takes a ref argument
// profile this call
__ profile_call(r13);
__ load_heap_oop(rcx_method_handle, Address(rax_callsite, __ delayed_value(java_lang_invoke_CallSite::target_offset_in_bytes, rcx)));
__ verify_oop(rax_callsite);
__ load_heap_oop(rcx_method_handle, Address(rax_callsite, __ delayed_value(java_lang_invoke_CallSite::target_offset_in_bytes, rdx)));
__ null_check(rcx_method_handle);
__ verify_oop(rcx_method_handle);
__ prepare_to_jump_from_interpreted();
__ jump_to_method_handle_entry(rcx_method_handle, rdx);
}

View File

@ -441,12 +441,25 @@ void VM_Version::get_processor_features() {
}
}
// On family 21 processors default is no sw prefetch
if ( cpu_family() == 21 ) {
// some defaults for AMD family 15h
if ( cpu_family() == 0x15 ) {
// On family 15h processors default is no sw prefetch
if (FLAG_IS_DEFAULT(AllocatePrefetchStyle)) {
AllocatePrefetchStyle = 0;
}
// Also, if some other prefetch style is specified, default instruction type is PREFETCHW
if (FLAG_IS_DEFAULT(AllocatePrefetchInstr)) {
AllocatePrefetchInstr = 3;
}
// On family 15h processors use XMM and UnalignedLoadStores for Array Copy
if( FLAG_IS_DEFAULT(UseXMMForArrayCopy) ) {
UseXMMForArrayCopy = true;
}
if( FLAG_IS_DEFAULT(UseUnalignedLoadStores) && UseXMMForArrayCopy ) {
UseUnalignedLoadStores = true;
}
}
}
if( is_intel() ) { // Intel cpus specific settings

View File

@ -29,13 +29,19 @@
// Defines Linux specific flags. They are not available on other platforms.
//
#define RUNTIME_OS_FLAGS(develop, develop_pd, product, product_pd, diagnostic, notproduct) \
product(bool, UseOprofile, false, \
"enable support for Oprofile profiler") \
\
product(bool, UseLinuxPosixThreadCPUClocks, true, \
"enable fast Linux Posix clocks where available")
// NB: The default value of UseLinuxPosixThreadCPUClocks may be
// overridden in Arguments::parse_each_vm_init_arg.
product(bool, UseOprofile, false, \
"enable support for Oprofile profiler") \
\
product(bool, UseLinuxPosixThreadCPUClocks, true, \
"enable fast Linux Posix clocks where available") \
/* NB: The default value of UseLinuxPosixThreadCPUClocks may be \
overridden in Arguments::parse_each_vm_init_arg. */ \
\
product(bool, UseHugeTLBFS, false, \
"Use MAP_HUGETLB for large pages") \
\
product(bool, UseSHM, false, \
"Use SYSV shared memory for large pages")
//
// Defines Linux-specific default values. The flags are available on all

View File

@ -2465,16 +2465,40 @@ bool os::commit_memory(char* addr, size_t size, bool exec) {
return res != (uintptr_t) MAP_FAILED;
}
// Define MAP_HUGETLB here so we can build HotSpot on old systems.
#ifndef MAP_HUGETLB
#define MAP_HUGETLB 0x40000
#endif
// Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
#ifndef MADV_HUGEPAGE
#define MADV_HUGEPAGE 14
#endif
bool os::commit_memory(char* addr, size_t size, size_t alignment_hint,
bool exec) {
if (UseHugeTLBFS && alignment_hint > (size_t)vm_page_size()) {
int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
uintptr_t res =
(uintptr_t) ::mmap(addr, size, prot,
MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS|MAP_HUGETLB,
-1, 0);
return res != (uintptr_t) MAP_FAILED;
}
return commit_memory(addr, size, exec);
}
void os::realign_memory(char *addr, size_t bytes, size_t alignment_hint) { }
void os::realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
if (UseHugeTLBFS && alignment_hint > (size_t)vm_page_size()) {
// We don't check the return value: madvise(MADV_HUGEPAGE) may not
// be supported or the memory may already be backed by huge pages.
::madvise(addr, bytes, MADV_HUGEPAGE);
}
}
void os::free_memory(char *addr, size_t bytes) {
::mmap(addr, bytes, PROT_READ | PROT_WRITE,
MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
::madvise(addr, bytes, MADV_DONTNEED);
}
void os::numa_make_global(char *addr, size_t bytes) {
@ -2812,6 +2836,43 @@ bool os::unguard_memory(char* addr, size_t size) {
return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
}
bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
bool result = false;
void *p = mmap (NULL, page_size, PROT_READ|PROT_WRITE,
MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
-1, 0);
if (p != (void *) -1) {
// We don't know if this really is a huge page or not.
FILE *fp = fopen("/proc/self/maps", "r");
if (fp) {
while (!feof(fp)) {
char chars[257];
long x = 0;
if (fgets(chars, sizeof(chars), fp)) {
if (sscanf(chars, "%lx-%*lx", &x) == 1
&& x == (long)p) {
if (strstr (chars, "hugepage")) {
result = true;
break;
}
}
}
}
fclose(fp);
}
munmap (p, page_size);
if (result)
return true;
}
if (warn) {
warning("HugeTLBFS is not supported by the operating system.");
}
return result;
}
/*
* Set the coredump_filter bits to include largepages in core dump (bit 6)
*
@ -2854,7 +2915,16 @@ static void set_coredump_filter(void) {
static size_t _large_page_size = 0;
bool os::large_page_init() {
if (!UseLargePages) return false;
if (!UseLargePages) {
UseHugeTLBFS = false;
UseSHM = false;
return false;
}
if (FLAG_IS_DEFAULT(UseHugeTLBFS) && FLAG_IS_DEFAULT(UseSHM)) {
// Our user has not expressed a preference, so we'll try both.
UseHugeTLBFS = UseSHM = true;
}
if (LargePageSizeInBytes) {
_large_page_size = LargePageSizeInBytes;
@ -2899,6 +2969,9 @@ bool os::large_page_init() {
}
}
// print a warning if any large page related flag is specified on command line
bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
const size_t default_page_size = (size_t)Linux::page_size();
if (_large_page_size > default_page_size) {
_page_sizes[0] = _large_page_size;
@ -2906,6 +2979,14 @@ bool os::large_page_init() {
_page_sizes[2] = 0;
}
UseHugeTLBFS = UseHugeTLBFS &&
Linux::hugetlbfs_sanity_check(warn_on_failure, _large_page_size);
if (UseHugeTLBFS)
UseSHM = false;
UseLargePages = UseHugeTLBFS || UseSHM;
set_coredump_filter();
// Large page support is available on 2.6 or newer kernel, some vendors
@ -2922,7 +3003,7 @@ bool os::large_page_init() {
char* os::reserve_memory_special(size_t bytes, char* req_addr, bool exec) {
// "exec" is passed in but not used. Creating the shared image for
// the code cache doesn't have an SHM_X executable permission to check.
assert(UseLargePages, "only for large pages");
assert(UseLargePages && UseSHM, "only for SHM large pages");
key_t key = IPC_PRIVATE;
char *addr;
@ -2989,16 +3070,15 @@ size_t os::large_page_size() {
return _large_page_size;
}
// Linux does not support anonymous mmap with large page memory. The only way
// to reserve large page memory without file backing is through SysV shared
// memory API. The entire memory region is committed and pinned upfront.
// Hopefully this will change in the future...
// HugeTLBFS allows application to commit large page memory on demand;
// with SysV SHM the entire memory region must be allocated as shared
// memory.
bool os::can_commit_large_page_memory() {
return false;
return UseHugeTLBFS;
}
bool os::can_execute_large_page_memory() {
return false;
return UseHugeTLBFS;
}
// Reserve memory at an arbitrary address, only if that area is
@ -4090,6 +4170,23 @@ jint os::init_2(void)
UseNUMA = false;
}
}
// With SHM large pages we cannot uncommit a page, so there's not way
// we can make the adaptive lgrp chunk resizing work. If the user specified
// both UseNUMA and UseLargePages (or UseSHM) on the command line - warn and
// disable adaptive resizing.
if (UseNUMA && UseLargePages && UseSHM) {
if (!FLAG_IS_DEFAULT(UseNUMA)) {
if (FLAG_IS_DEFAULT(UseLargePages) && FLAG_IS_DEFAULT(UseSHM)) {
UseLargePages = false;
} else {
warning("UseNUMA is not fully compatible with SHM large pages, disabling adaptive resizing");
UseAdaptiveSizePolicy = false;
UseAdaptiveNUMAChunkSizing = false;
}
} else {
UseNUMA = false;
}
}
if (!UseNUMA && ForceNUMA) {
UseNUMA = true;
}

View File

@ -86,6 +86,9 @@ class Linux {
static void rebuild_cpu_to_node_map();
static GrowableArray<int>* cpu_to_node() { return _cpu_to_node; }
static bool hugetlbfs_sanity_check(bool warn, size_t page_size);
public:
static void init_thread_fpu_state();
static int get_fpu_control_word();

View File

@ -2826,7 +2826,9 @@ bool os::remove_stack_guard_pages(char* addr, size_t size) {
void os::realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
assert((intptr_t)addr % alignment_hint == 0, "Address should be aligned.");
assert((intptr_t)(addr + bytes) % alignment_hint == 0, "End should be aligned.");
Solaris::set_mpss_range(addr, bytes, alignment_hint);
if (UseLargePages && UseMPSS) {
Solaris::set_mpss_range(addr, bytes, alignment_hint);
}
}
// Tell the OS to make the range local to the first-touching LWP
@ -5044,6 +5046,20 @@ jint os::init_2(void) {
UseNUMA = false;
}
}
// ISM is not compatible with the NUMA allocator - it always allocates
// pages round-robin across the lgroups.
if (UseNUMA && UseLargePages && UseISM) {
if (!FLAG_IS_DEFAULT(UseNUMA)) {
if (FLAG_IS_DEFAULT(UseLargePages) && FLAG_IS_DEFAULT(UseISM)) {
UseLargePages = false;
} else {
warning("UseNUMA is not compatible with ISM large pages, disabling NUMA allocator");
UseNUMA = false;
}
} else {
UseNUMA = false;
}
}
if (!UseNUMA && ForceNUMA) {
UseNUMA = true;
}

View File

@ -1026,9 +1026,21 @@ JRT_ENTRY(void, Runtime1::patch_code(JavaThread* thread, Runtime1::StubID stub_i
// first replace the tail, then the call
#ifdef ARM
if(stub_id == Runtime1::load_klass_patching_id && !VM_Version::supports_movw()) {
nmethod* nm = CodeCache::find_nmethod(instr_pc);
oop* oop_addr = NULL;
assert(nm != NULL, "invalid nmethod_pc");
RelocIterator oops(nm, copy_buff, copy_buff + 1);
while (oops.next()) {
if (oops.type() == relocInfo::oop_type) {
oop_Relocation* r = oops.oop_reloc();
oop_addr = r->oop_addr();
break;
}
}
assert(oop_addr != NULL, "oop relocation must exist");
copy_buff -= *byte_count;
NativeMovConstReg* n_copy2 = nativeMovConstReg_at(copy_buff);
n_copy2->set_data((intx) (load_klass()), instr_pc);
n_copy2->set_pc_relative_offset((address)oop_addr, instr_pc);
}
#endif

View File

@ -232,14 +232,7 @@ void BCEscapeAnalyzer::invoke(StateInfo &state, Bytecodes::Code code, ciMethod*
}
// compute size of arguments
int arg_size = target->arg_size();
if (code == Bytecodes::_invokedynamic) {
assert(!target->is_static(), "receiver explicit in method");
arg_size--; // implicit, not really on stack
}
if (!target->is_loaded() && code == Bytecodes::_invokestatic) {
arg_size--;
}
int arg_size = target->invoke_arg_size(code);
int arg_base = MAX2(state._stack_height - arg_size, 0);
// direct recursive calls are skipped if they can be bound statically without introducing

View File

@ -756,7 +756,7 @@ ciMethod* ciEnv::get_fake_invokedynamic_method_impl(constantPoolHandle cpool,
assert(bc == Bytecodes::_invokedynamic, "must be invokedynamic");
bool is_resolved = cpool->cache()->main_entry_at(index)->is_resolved(bc);
if (is_resolved && (oop) cpool->cache()->secondary_entry_at(index)->f1() == NULL)
if (is_resolved && cpool->cache()->secondary_entry_at(index)->is_f1_null())
// FIXME: code generation could allow for null (unlinked) call site
is_resolved = false;
@ -770,7 +770,7 @@ ciMethod* ciEnv::get_fake_invokedynamic_method_impl(constantPoolHandle cpool,
// Get the invoker methodOop from the constant pool.
oop f1_value = cpool->cache()->main_entry_at(index)->f1();
methodOop signature_invoker = methodOop(f1_value);
methodOop signature_invoker = (methodOop) f1_value;
assert(signature_invoker != NULL && signature_invoker->is_method() && signature_invoker->is_method_handle_invoke(),
"correct result from LinkResolver::resolve_invokedynamic");

View File

@ -127,7 +127,24 @@ class ciMethod : public ciObject {
ciSignature* signature() const { return _signature; }
ciType* return_type() const { return _signature->return_type(); }
int arg_size_no_receiver() const { return _signature->size(); }
int arg_size() const { return _signature->size() + (_flags.is_static() ? 0 : 1); }
// Can only be used on loaded ciMethods
int arg_size() const {
check_is_loaded();
return _signature->size() + (_flags.is_static() ? 0 : 1);
}
// Report the number of elements on stack when invoking this method.
// This is different than the regular arg_size because invokdynamic
// has an implicit receiver.
int invoke_arg_size(Bytecodes::Code code) const {
int arg_size = _signature->size();
// Add a receiver argument, maybe:
if (code != Bytecodes::_invokestatic &&
code != Bytecodes::_invokedynamic) {
arg_size++;
}
return arg_size;
}
// Method code and related information.
address code() { if (_code == NULL) load_code(); return _code; }
@ -276,9 +293,9 @@ class ciMethod : public ciObject {
void print_short_name(outputStream* st = tty);
methodOop get_method_handle_target() {
klassOop receiver_limit_oop = NULL;
int flags = 0;
return MethodHandles::decode_method(get_oop(), receiver_limit_oop, flags);
KlassHandle receiver_limit; int flags = 0;
methodHandle m = MethodHandles::decode_method(get_oop(), receiver_limit, flags);
return m();
}
};

View File

@ -194,6 +194,16 @@ bool ciObject::can_be_constant() {
// ciObject::should_be_constant()
bool ciObject::should_be_constant() {
if (ScavengeRootsInCode >= 2) return true; // force everybody to be a constant
if (!JavaObjectsInPerm && !is_null_object()) {
// We want Strings and Classes to be embeddable by default since
// they used to be in the perm world. Not all Strings used to be
// embeddable but there's no easy way to distinguish the interned
// from the regulars ones so just treat them all that way.
ciEnv* env = CURRENT_ENV;
if (klass() == env->String_klass() || klass() == env->Class_klass()) {
return true;
}
}
return handle() == NULL || !is_scavengable();
}

View File

@ -1357,7 +1357,7 @@ class BacktraceBuilder: public StackObj {
};
void java_lang_Throwable::fill_in_stack_trace(Handle throwable, TRAPS) {
void java_lang_Throwable::fill_in_stack_trace(Handle throwable, methodHandle method, TRAPS) {
if (!StackTraceInThrowable) return;
ResourceMark rm(THREAD);
@ -1374,6 +1374,16 @@ void java_lang_Throwable::fill_in_stack_trace(Handle throwable, TRAPS) {
JavaThread* thread = (JavaThread*)THREAD;
BacktraceBuilder bt(CHECK);
// If there is no Java frame just return the method that was being called
// with bci 0
if (!thread->has_last_Java_frame()) {
if (max_depth >= 1 && method() != NULL) {
bt.push(method(), 0, CHECK);
set_backtrace(throwable(), bt.backtrace());
}
return;
}
// Instead of using vframe directly, this version of fill_in_stack_trace
// basically handles everything by hand. This significantly improved the
// speed of this method call up to 28.5% on Solaris sparc. 27.1% on Windows.
@ -1477,7 +1487,7 @@ void java_lang_Throwable::fill_in_stack_trace(Handle throwable, TRAPS) {
set_backtrace(throwable(), bt.backtrace());
}
void java_lang_Throwable::fill_in_stack_trace(Handle throwable) {
void java_lang_Throwable::fill_in_stack_trace(Handle throwable, methodHandle method) {
// No-op if stack trace is disabled
if (!StackTraceInThrowable) {
return;
@ -1491,7 +1501,7 @@ void java_lang_Throwable::fill_in_stack_trace(Handle throwable) {
PRESERVE_EXCEPTION_MARK;
JavaThread* thread = JavaThread::active();
fill_in_stack_trace(throwable, thread);
fill_in_stack_trace(throwable, method, thread);
// ignore exceptions thrown during stack trace filling
CLEAR_PENDING_EXCEPTION;
}

View File

@ -440,8 +440,8 @@ class java_lang_Throwable: AllStatic {
static void fill_in_stack_trace_of_preallocated_backtrace(Handle throwable);
// Fill in current stack trace, can cause GC
static void fill_in_stack_trace(Handle throwable, TRAPS);
static void fill_in_stack_trace(Handle throwable);
static void fill_in_stack_trace(Handle throwable, methodHandle method, TRAPS);
static void fill_in_stack_trace(Handle throwable, methodHandle method = methodHandle());
// Programmatic access to stack trace
static oop get_stack_trace_element(oop throwable, int index, TRAPS);
static int get_stack_trace_depth(oop throwable, TRAPS);

View File

@ -976,6 +976,15 @@ void CompileBroker::compile_method_base(methodHandle method,
return;
}
// If the requesting thread is holding the pending list lock
// then we just return. We can't risk blocking while holding
// the pending list lock or a 3-way deadlock may occur
// between the reference handler thread, a GC (instigated
// by a compiler thread), and compiled method registration.
if (instanceRefKlass::owns_pending_list_lock(JavaThread::current())) {
return;
}
// Outputs from the following MutexLocker block:
CompileTask* task = NULL;
bool blocking = false;
@ -1304,17 +1313,8 @@ uint CompileBroker::assign_compile_id(methodHandle method, int osr_bci) {
// Should the current thread be blocked until this compilation request
// has been fulfilled?
bool CompileBroker::is_compile_blocking(methodHandle method, int osr_bci) {
if (!BackgroundCompilation) {
Symbol* class_name = method->method_holder()->klass_part()->name();
if (class_name->starts_with("java/lang/ref/Reference", 23)) {
// The reference handler thread can dead lock with the GC if compilation is blocking,
// so we avoid blocking compiles for anything in the java.lang.ref.Reference class,
// including inner classes such as ReferenceHandler.
return false;
}
return true;
}
return false;
assert(!instanceRefKlass::owns_pending_list_lock(JavaThread::current()), "possible deadlock");
return !BackgroundCompilation;
}

View File

@ -1963,10 +1963,21 @@ CompactibleFreeListSpace::gc_epilogue() {
// Iteration support, mostly delegated from a CMS generation
void CompactibleFreeListSpace::save_marks() {
// mark the "end" of the used space at the time of this call;
assert(Thread::current()->is_VM_thread(),
"Global variable should only be set when single-threaded");
// Mark the "end" of the used space at the time of this call;
// note, however, that promoted objects from this point
// on are tracked in the _promoInfo below.
set_saved_mark_word(unallocated_block());
#ifdef ASSERT
// Check the sanity of save_marks() etc.
MemRegion ur = used_region();
MemRegion urasm = used_region_at_save_marks();
assert(ur.contains(urasm),
err_msg(" Error at save_marks(): [" PTR_FORMAT "," PTR_FORMAT ")"
" should contain [" PTR_FORMAT "," PTR_FORMAT ")",
ur.start(), ur.end(), urasm.start(), urasm.end()));
#endif
// inform allocator that promotions should be tracked.
assert(_promoInfo.noPromotions(), "_promoInfo inconsistency");
_promoInfo.startTrackingPromotions();

View File

@ -3189,10 +3189,9 @@ bool ConcurrentMarkSweepGeneration::is_too_full() const {
}
void CMSCollector::setup_cms_unloading_and_verification_state() {
const bool should_verify = VerifyBeforeGC || VerifyAfterGC || VerifyDuringGC
const bool should_verify = VerifyBeforeGC || VerifyAfterGC || VerifyDuringGC
|| VerifyBeforeExit;
const int rso = SharedHeap::SO_Symbols | SharedHeap::SO_Strings
| SharedHeap::SO_CodeCache;
const int rso = SharedHeap::SO_Strings | SharedHeap::SO_CodeCache;
if (should_unload_classes()) { // Should unload classes this cycle
remove_root_scanning_option(rso); // Shrink the root set appropriately

View File

@ -1161,6 +1161,7 @@ bool G1CollectedHeap::do_collection(bool explicit_gc,
TraceTime t(system_gc ? "Full GC (System.gc())" : "Full GC",
PrintGC, true, gclog_or_tty);
TraceCollectorStats tcs(g1mm()->full_collection_counters());
TraceMemoryManagerStats tms(true /* fullGC */);
double start = os::elapsedTime();
@ -1339,6 +1340,7 @@ bool G1CollectedHeap::do_collection(bool explicit_gc,
if (PrintHeapAtGC) {
Universe::print_heap_after_gc();
}
g1mm()->update_counters();
return true;
}
@ -1971,6 +1973,10 @@ jint G1CollectedHeap::initialize() {
init_mutator_alloc_region();
// Do create of the monitoring and management support so that
// values in the heap have been properly initialized.
_g1mm = new G1MonitoringSupport(this, &_g1_storage);
return JNI_OK;
}
@ -2113,6 +2119,28 @@ bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
(cause == GCCause::_java_lang_system_gc && ExplicitGCInvokesConcurrent));
}
#ifndef PRODUCT
void G1CollectedHeap::allocate_dummy_regions() {
// Let's fill up most of the region
size_t word_size = HeapRegion::GrainWords - 1024;
// And as a result the region we'll allocate will be humongous.
guarantee(isHumongous(word_size), "sanity");
for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
// Let's use the existing mechanism for the allocation
HeapWord* dummy_obj = humongous_obj_allocate(word_size);
if (dummy_obj != NULL) {
MemRegion mr(dummy_obj, word_size);
CollectedHeap::fill_with_object(mr);
} else {
// If we can't allocate once, we probably cannot allocate
// again. Let's get out of the loop.
break;
}
}
}
#endif // !PRODUCT
void G1CollectedHeap::increment_full_collections_completed(bool concurrent) {
MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
@ -2777,17 +2805,26 @@ void G1CollectedHeap::verify(bool allow_dirty,
bool silent,
bool use_prev_marking) {
if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
if (!silent) { gclog_or_tty->print("roots "); }
if (!silent) { gclog_or_tty->print("Roots (excluding permgen) "); }
VerifyRootsClosure rootsCl(use_prev_marking);
CodeBlobToOopClosure blobsCl(&rootsCl, /*do_marking=*/ false);
process_strong_roots(true, // activate StrongRootsScope
false,
SharedHeap::SO_AllClasses,
// We apply the relevant closures to all the oops in the
// system dictionary, the string table and the code cache.
const int so = SharedHeap::SO_AllClasses | SharedHeap::SO_Strings | SharedHeap::SO_CodeCache;
process_strong_roots(true, // activate StrongRootsScope
true, // we set "collecting perm gen" to true,
// so we don't reset the dirty cards in the perm gen.
SharedHeap::ScanningOption(so), // roots scanning options
&rootsCl,
&blobsCl,
&rootsCl);
// Since we used "collecting_perm_gen" == true above, we will not have
// checked the refs from perm into the G1-collected heap. We check those
// references explicitly below. Whether the relevant cards are dirty
// is checked further below in the rem set verification.
if (!silent) { gclog_or_tty->print("Permgen roots "); }
perm_gen()->oop_iterate(&rootsCl);
bool failures = rootsCl.failures();
rem_set()->invalidate(perm_gen()->used_region(), false);
if (!silent) { gclog_or_tty->print("HeapRegionSets "); }
verify_region_sets();
if (!silent) { gclog_or_tty->print("HeapRegions "); }
@ -3164,6 +3201,7 @@ G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
TraceTime t(verbose_str, PrintGC && !PrintGCDetails, true, gclog_or_tty);
TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
TraceMemoryManagerStats tms(false /* fullGC */);
// If the secondary_free_list is not empty, append it to the
@ -3338,6 +3376,8 @@ G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
doConcurrentMark();
}
allocate_dummy_regions();
#if YOUNG_LIST_VERBOSE
gclog_or_tty->print_cr("\nEnd of the pause.\nYoung_list:");
_young_list->print();
@ -3401,6 +3441,8 @@ G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
if (PrintHeapAtGC) {
Universe::print_heap_after_gc();
}
g1mm()->update_counters();
if (G1SummarizeRSetStats &&
(G1SummarizeRSetStatsPeriod > 0) &&
(total_collections() % G1SummarizeRSetStatsPeriod == 0)) {
@ -5314,6 +5356,7 @@ HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
if (new_alloc_region != NULL) {
g1_policy()->update_region_num(true /* next_is_young */);
set_region_short_lived_locked(new_alloc_region);
g1mm()->update_eden_counters();
return new_alloc_region;
}
}

View File

@ -28,7 +28,9 @@
#include "gc_implementation/g1/concurrentMark.hpp"
#include "gc_implementation/g1/g1AllocRegion.hpp"
#include "gc_implementation/g1/g1RemSet.hpp"
#include "gc_implementation/g1/g1MonitoringSupport.hpp"
#include "gc_implementation/g1/heapRegionSets.hpp"
#include "gc_implementation/shared/hSpaceCounters.hpp"
#include "gc_implementation/parNew/parGCAllocBuffer.hpp"
#include "memory/barrierSet.hpp"
#include "memory/memRegion.hpp"
@ -57,6 +59,7 @@ class HeapRegionRemSetIterator;
class ConcurrentMark;
class ConcurrentMarkThread;
class ConcurrentG1Refine;
class GenerationCounters;
typedef OverflowTaskQueue<StarTask> RefToScanQueue;
typedef GenericTaskQueueSet<RefToScanQueue> RefToScanQueueSet;
@ -236,6 +239,9 @@ private:
// current collection.
HeapRegion* _gc_alloc_region_list;
// Helper for monitoring and management support.
G1MonitoringSupport* _g1mm;
// Determines PLAB size for a particular allocation purpose.
static size_t desired_plab_sz(GCAllocPurpose purpose);
@ -298,6 +304,14 @@ private:
// started is maintained in _total_full_collections in CollectedHeap.
volatile unsigned int _full_collections_completed;
// This is a non-product method that is helpful for testing. It is
// called at the end of a GC and artificially expands the heap by
// allocating a number of dead regions. This way we can induce very
// frequent marking cycles and stress the cleanup / concurrent
// cleanup code more (as all the regions that will be allocated by
// this method will be found dead by the marking cycle).
void allocate_dummy_regions() PRODUCT_RETURN;
// These are macros so that, if the assert fires, we get the correct
// line number, file, etc.
@ -542,6 +556,9 @@ protected:
HeapWord* expand_and_allocate(size_t word_size);
public:
G1MonitoringSupport* g1mm() { return _g1mm; }
// Expand the garbage-first heap by at least the given size (in bytes!).
// Returns true if the heap was expanded by the requested amount;
// false otherwise.

View File

@ -0,0 +1,178 @@
/*
* Copyright (c) 2011, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "gc_implementation/g1/g1MonitoringSupport.hpp"
#include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
#include "gc_implementation/g1/g1CollectorPolicy.hpp"
G1MonitoringSupport::G1MonitoringSupport(G1CollectedHeap* g1h,
VirtualSpace* g1_storage_addr) :
_g1h(g1h),
_incremental_collection_counters(NULL),
_full_collection_counters(NULL),
_non_young_collection_counters(NULL),
_old_space_counters(NULL),
_young_collection_counters(NULL),
_eden_counters(NULL),
_from_counters(NULL),
_to_counters(NULL),
_g1_storage_addr(g1_storage_addr)
{
// Counters for GC collections
//
// name "collector.0". In a generational collector this would be the
// young generation collection.
_incremental_collection_counters =
new CollectorCounters("G1 incremental collections", 0);
// name "collector.1". In a generational collector this would be the
// old generation collection.
_full_collection_counters =
new CollectorCounters("G1 stop-the-world full collections", 1);
// timer sampling for all counters supporting sampling only update the
// used value. See the take_sample() method. G1 requires both used and
// capacity updated so sampling is not currently used. It might
// be sufficient to update all counters in take_sample() even though
// take_sample() only returns "used". When sampling was used, there
// were some anomolous values emitted which may have been the consequence
// of not updating all values simultaneously (i.e., see the calculation done
// in eden_space_used(), is it possbile that the values used to
// calculate either eden_used or survivor_used are being updated by
// the collector when the sample is being done?).
const bool sampled = false;
// "Generation" and "Space" counters.
//
// name "generation.1" This is logically the old generation in
// generational GC terms. The "1, 1" parameters are for
// the n-th generation (=1) with 1 space.
// Counters are created from minCapacity, maxCapacity, and capacity
_non_young_collection_counters =
new GenerationCounters("whole heap", 1, 1, _g1_storage_addr);
// name "generation.1.space.0"
// Counters are created from maxCapacity, capacity, initCapacity,
// and used.
_old_space_counters = new HSpaceCounters("space", 0,
_g1h->max_capacity(), _g1h->capacity(), _non_young_collection_counters);
// Young collection set
// name "generation.0". This is logically the young generation.
// The "0, 3" are paremeters for the n-th genertaion (=0) with 3 spaces.
// See _non_young_collection_counters for additional counters
_young_collection_counters = new GenerationCounters("young", 0, 3, NULL);
// Replace "max_heap_byte_size() with maximum young gen size for
// g1Collectedheap
// name "generation.0.space.0"
// See _old_space_counters for additional counters
_eden_counters = new HSpaceCounters("eden", 0,
_g1h->max_capacity(), eden_space_committed(),
_young_collection_counters);
// name "generation.0.space.1"
// See _old_space_counters for additional counters
// Set the arguments to indicate that this survivor space is not used.
_from_counters = new HSpaceCounters("s0", 1, (long) 0, (long) 0,
_young_collection_counters);
// name "generation.0.space.2"
// See _old_space_counters for additional counters
_to_counters = new HSpaceCounters("s1", 2,
_g1h->max_capacity(),
survivor_space_committed(),
_young_collection_counters);
}
size_t G1MonitoringSupport::overall_committed() {
return g1h()->capacity();
}
size_t G1MonitoringSupport::overall_used() {
return g1h()->used_unlocked();
}
size_t G1MonitoringSupport::eden_space_committed() {
return MAX2(eden_space_used(), (size_t) HeapRegion::GrainBytes);
}
size_t G1MonitoringSupport::eden_space_used() {
size_t young_list_length = g1h()->young_list()->length();
size_t eden_used = young_list_length * HeapRegion::GrainBytes;
size_t survivor_used = survivor_space_used();
eden_used = subtract_up_to_zero(eden_used, survivor_used);
return eden_used;
}
size_t G1MonitoringSupport::survivor_space_committed() {
return MAX2(survivor_space_used(),
(size_t) HeapRegion::GrainBytes);
}
size_t G1MonitoringSupport::survivor_space_used() {
size_t survivor_num = g1h()->g1_policy()->recorded_survivor_regions();
size_t survivor_used = survivor_num * HeapRegion::GrainBytes;
return survivor_used;
}
size_t G1MonitoringSupport::old_space_committed() {
size_t committed = overall_committed();
size_t eden_committed = eden_space_committed();
size_t survivor_committed = survivor_space_committed();
committed = subtract_up_to_zero(committed, eden_committed);
committed = subtract_up_to_zero(committed, survivor_committed);
committed = MAX2(committed, (size_t) HeapRegion::GrainBytes);
return committed;
}
// See the comment near the top of g1MonitoringSupport.hpp for
// an explanation of these calculations for "used" and "capacity".
size_t G1MonitoringSupport::old_space_used() {
size_t used = overall_used();
size_t eden_used = eden_space_used();
size_t survivor_used = survivor_space_used();
used = subtract_up_to_zero(used, eden_used);
used = subtract_up_to_zero(used, survivor_used);
return used;
}
void G1MonitoringSupport::update_counters() {
if (UsePerfData) {
eden_counters()->update_capacity(eden_space_committed());
eden_counters()->update_used(eden_space_used());
to_counters()->update_capacity(survivor_space_committed());
to_counters()->update_used(survivor_space_used());
old_space_counters()->update_capacity(old_space_committed());
old_space_counters()->update_used(old_space_used());
non_young_collection_counters()->update_all();
}
}
void G1MonitoringSupport::update_eden_counters() {
if (UsePerfData) {
eden_counters()->update_capacity(eden_space_committed());
eden_counters()->update_used(eden_space_used());
}
}

View File

@ -0,0 +1,203 @@
/*
* Copyright (c) 2011, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef SHARE_VM_GC_IMPLEMENTATION_G1_G1MONITORINGSUPPORT_HPP
#define SHARE_VM_GC_IMPLEMENTATION_G1_G1MONITORINGSUPPORT_HPP
#include "gc_implementation/shared/hSpaceCounters.hpp"
class G1CollectedHeap;
class G1SpaceMonitoringSupport;
// Class for monitoring logical spaces in G1.
// G1 defines a set of regions as a young
// collection (analogous to a young generation).
// The young collection is a logical generation
// with no fixed chunk (see space.hpp) reflecting
// the address space for the generation. In addition
// to the young collection there is its complement
// the non-young collection that is simply the regions
// not in the young collection. The non-young collection
// is treated here as a logical old generation only
// because the monitoring tools expect a generational
// heap. The monitoring tools expect that a Space
// (see space.hpp) exists that describe the
// address space of young collection and non-young
// collection and such a view is provided here.
//
// This class provides interfaces to access
// the value of variables for the young collection
// that include the "capacity" and "used" of the
// young collection along with constant values
// for the minimum and maximum capacities for
// the logical spaces. Similarly for the non-young
// collection.
//
// Also provided are counters for G1 concurrent collections
// and stop-the-world full heap collecitons.
//
// Below is a description of how "used" and "capactiy"
// (or committed) is calculated for the logical spaces.
//
// 1) The used space calculation for a pool is not necessarily
// independent of the others. We can easily get from G1 the overall
// used space in the entire heap, the number of regions in the young
// generation (includes both eden and survivors), and the number of
// survivor regions. So, from that we calculate:
//
// survivor_used = survivor_num * region_size
// eden_used = young_region_num * region_size - survivor_used
// old_gen_used = overall_used - eden_used - survivor_used
//
// Note that survivor_used and eden_used are upper bounds. To get the
// actual value we would have to iterate over the regions and add up
// ->used(). But that'd be expensive. So, we'll accept some lack of
// accuracy for those two. But, we have to be careful when calculating
// old_gen_used, in case we subtract from overall_used more then the
// actual number and our result goes negative.
//
// 2) Calculating the used space is straightforward, as described
// above. However, how do we calculate the committed space, given that
// we allocate space for the eden, survivor, and old gen out of the
// same pool of regions? One way to do this is to use the used value
// as also the committed value for the eden and survivor spaces and
// then calculate the old gen committed space as follows:
//
// old_gen_committed = overall_committed - eden_committed - survivor_committed
//
// Maybe a better way to do that would be to calculate used for eden
// and survivor as a sum of ->used() over their regions and then
// calculate committed as region_num * region_size (i.e., what we use
// to calculate the used space now). This is something to consider
// in the future.
//
// 3) Another decision that is again not straightforward is what is
// the max size that each memory pool can grow to. One way to do this
// would be to use the committed size for the max for the eden and
// survivors and calculate the old gen max as follows (basically, it's
// a similar pattern to what we use for the committed space, as
// described above):
//
// old_gen_max = overall_max - eden_max - survivor_max
//
// Unfortunately, the above makes the max of each pool fluctuate over
// time and, even though this is allowed according to the spec, it
// broke several assumptions in the M&M framework (there were cases
// where used would reach a value greater than max). So, for max we
// use -1, which means "undefined" according to the spec.
//
// 4) Now, there is a very subtle issue with all the above. The
// framework will call get_memory_usage() on the three pools
// asynchronously. As a result, each call might get a different value
// for, say, survivor_num which will yield inconsistent values for
// eden_used, survivor_used, and old_gen_used (as survivor_num is used
// in the calculation of all three). This would normally be
// ok. However, it's possible that this might cause the sum of
// eden_used, survivor_used, and old_gen_used to go over the max heap
// size and this seems to sometimes cause JConsole (and maybe other
// clients) to get confused. There's not a really an easy / clean
// solution to this problem, due to the asynchrounous nature of the
// framework.
class G1MonitoringSupport : public CHeapObj {
G1CollectedHeap* _g1h;
VirtualSpace* _g1_storage_addr;
// jstat performance counters
// incremental collections both fully and partially young
CollectorCounters* _incremental_collection_counters;
// full stop-the-world collections
CollectorCounters* _full_collection_counters;
// young collection set counters. The _eden_counters,
// _from_counters, and _to_counters are associated with
// this "generational" counter.
GenerationCounters* _young_collection_counters;
// non-young collection set counters. The _old_space_counters
// below are associated with this "generational" counter.
GenerationCounters* _non_young_collection_counters;
// Counters for the capacity and used for
// the whole heap
HSpaceCounters* _old_space_counters;
// the young collection
HSpaceCounters* _eden_counters;
// the survivor collection (only one, _to_counters, is actively used)
HSpaceCounters* _from_counters;
HSpaceCounters* _to_counters;
// It returns x - y if x > y, 0 otherwise.
// As described in the comment above, some of the inputs to the
// calculations we have to do are obtained concurrently and hence
// may be inconsistent with each other. So, this provides a
// defensive way of performing the subtraction and avoids the value
// going negative (which would mean a very large result, given that
// the parameter are size_t).
static size_t subtract_up_to_zero(size_t x, size_t y) {
if (x > y) {
return x - y;
} else {
return 0;
}
}
public:
G1MonitoringSupport(G1CollectedHeap* g1h, VirtualSpace* g1_storage_addr);
G1CollectedHeap* g1h() { return _g1h; }
VirtualSpace* g1_storage_addr() { return _g1_storage_addr; }
// Performance Counter accessors
void update_counters();
void update_eden_counters();
CollectorCounters* incremental_collection_counters() {
return _incremental_collection_counters;
}
CollectorCounters* full_collection_counters() {
return _full_collection_counters;
}
GenerationCounters* non_young_collection_counters() {
return _non_young_collection_counters;
}
HSpaceCounters* old_space_counters() { return _old_space_counters; }
HSpaceCounters* eden_counters() { return _eden_counters; }
HSpaceCounters* from_counters() { return _from_counters; }
HSpaceCounters* to_counters() { return _to_counters; }
// Monitoring support used by
// MemoryService
// jstat counters
size_t overall_committed();
size_t overall_used();
size_t eden_space_committed();
size_t eden_space_used();
size_t survivor_space_committed();
size_t survivor_space_used();
size_t old_space_committed();
size_t old_space_used();
};
#endif // SHARE_VM_GC_IMPLEMENTATION_G1_G1MONITORINGSUPPORT_HPP

View File

@ -300,6 +300,11 @@
develop(uintx, G1StressConcRegionFreeingDelayMillis, 0, \
"Artificial delay during concurrent region freeing") \
\
develop(uintx, G1DummyRegionsPerGC, 0, \
"The number of dummy regions G1 will allocate at the end of " \
"each evacuation pause in order to artificially fill up the " \
"heap and stress the marking implementation.") \
\
develop(bool, ReduceInitialCardMarksForG1, false, \
"When ReduceInitialCardMarks is true, this flag setting " \
" controls whether G1 allows the RICM optimization") \

View File

@ -33,44 +33,43 @@
#include "runtime/mutexLocker.hpp"
#include "runtime/virtualspace.hpp"
void CardTableModRefBS::par_non_clean_card_iterate_work(Space* sp, MemRegion mr,
DirtyCardToOopClosure* dcto_cl,
MemRegionClosure* cl,
int n_threads) {
if (n_threads > 0) {
assert((n_threads == 1 && ParallelGCThreads == 0) ||
n_threads <= (int)ParallelGCThreads,
"# worker threads != # requested!");
// Make sure the LNC array is valid for the space.
jbyte** lowest_non_clean;
uintptr_t lowest_non_clean_base_chunk_index;
size_t lowest_non_clean_chunk_size;
get_LNC_array_for_space(sp, lowest_non_clean,
lowest_non_clean_base_chunk_index,
lowest_non_clean_chunk_size);
void CardTableModRefBS::non_clean_card_iterate_parallel_work(Space* sp, MemRegion mr,
DirtyCardToOopClosure* dcto_cl,
ClearNoncleanCardWrapper* cl,
int n_threads) {
assert(n_threads > 0, "Error: expected n_threads > 0");
assert((n_threads == 1 && ParallelGCThreads == 0) ||
n_threads <= (int)ParallelGCThreads,
"# worker threads != # requested!");
// Make sure the LNC array is valid for the space.
jbyte** lowest_non_clean;
uintptr_t lowest_non_clean_base_chunk_index;
size_t lowest_non_clean_chunk_size;
get_LNC_array_for_space(sp, lowest_non_clean,
lowest_non_clean_base_chunk_index,
lowest_non_clean_chunk_size);
int n_strides = n_threads * StridesPerThread;
SequentialSubTasksDone* pst = sp->par_seq_tasks();
pst->set_n_threads(n_threads);
pst->set_n_tasks(n_strides);
int n_strides = n_threads * StridesPerThread;
SequentialSubTasksDone* pst = sp->par_seq_tasks();
pst->set_n_threads(n_threads);
pst->set_n_tasks(n_strides);
int stride = 0;
while (!pst->is_task_claimed(/* reference */ stride)) {
process_stride(sp, mr, stride, n_strides, dcto_cl, cl,
lowest_non_clean,
lowest_non_clean_base_chunk_index,
lowest_non_clean_chunk_size);
}
if (pst->all_tasks_completed()) {
// Clear lowest_non_clean array for next time.
intptr_t first_chunk_index = addr_to_chunk_index(mr.start());
uintptr_t last_chunk_index = addr_to_chunk_index(mr.last());
for (uintptr_t ch = first_chunk_index; ch <= last_chunk_index; ch++) {
intptr_t ind = ch - lowest_non_clean_base_chunk_index;
assert(0 <= ind && ind < (intptr_t)lowest_non_clean_chunk_size,
"Bounds error");
lowest_non_clean[ind] = NULL;
}
int stride = 0;
while (!pst->is_task_claimed(/* reference */ stride)) {
process_stride(sp, mr, stride, n_strides, dcto_cl, cl,
lowest_non_clean,
lowest_non_clean_base_chunk_index,
lowest_non_clean_chunk_size);
}
if (pst->all_tasks_completed()) {
// Clear lowest_non_clean array for next time.
intptr_t first_chunk_index = addr_to_chunk_index(mr.start());
uintptr_t last_chunk_index = addr_to_chunk_index(mr.last());
for (uintptr_t ch = first_chunk_index; ch <= last_chunk_index; ch++) {
intptr_t ind = ch - lowest_non_clean_base_chunk_index;
assert(0 <= ind && ind < (intptr_t)lowest_non_clean_chunk_size,
"Bounds error");
lowest_non_clean[ind] = NULL;
}
}
}
@ -81,7 +80,7 @@ process_stride(Space* sp,
MemRegion used,
jint stride, int n_strides,
DirtyCardToOopClosure* dcto_cl,
MemRegionClosure* cl,
ClearNoncleanCardWrapper* cl,
jbyte** lowest_non_clean,
uintptr_t lowest_non_clean_base_chunk_index,
size_t lowest_non_clean_chunk_size) {
@ -127,7 +126,11 @@ process_stride(Space* sp,
lowest_non_clean_base_chunk_index,
lowest_non_clean_chunk_size);
non_clean_card_iterate_work(chunk_mr, cl);
// We do not call the non_clean_card_iterate_serial() version because
// we want to clear the cards, and the ClearNoncleanCardWrapper closure
// itself does the work of finding contiguous dirty ranges of cards to
// process (and clear).
cl->do_MemRegion(chunk_mr);
// Find the next chunk of the stride.
chunk_card_start += CardsPerStrideChunk * n_strides;

View File

@ -1,5 +1,5 @@
/*
* Copyright (c) 2002, 2010, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2002, 2011, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -51,15 +51,18 @@ GenerationCounters::GenerationCounters(const char* name,
cname = PerfDataManager::counter_name(_name_space, "minCapacity");
PerfDataManager::create_constant(SUN_GC, cname, PerfData::U_Bytes,
_virtual_space == NULL ? 0 :
_virtual_space->committed_size(), CHECK);
cname = PerfDataManager::counter_name(_name_space, "maxCapacity");
PerfDataManager::create_constant(SUN_GC, cname, PerfData::U_Bytes,
_virtual_space == NULL ? 0 :
_virtual_space->reserved_size(), CHECK);
cname = PerfDataManager::counter_name(_name_space, "capacity");
_current_size = PerfDataManager::create_variable(SUN_GC, cname,
PerfData::U_Bytes,
PerfData::U_Bytes,
_virtual_space == NULL ? 0 :
_virtual_space->committed_size(), CHECK);
}
}

View File

@ -1,5 +1,5 @@
/*
* Copyright (c) 2002, 2010, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2002, 2011, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -61,10 +61,11 @@ class GenerationCounters: public CHeapObj {
}
virtual void update_all() {
_current_size->set_value(_virtual_space->committed_size());
_current_size->set_value(_virtual_space == NULL ? 0 :
_virtual_space->committed_size());
}
const char* name_space() const { return _name_space; }
};
};
#endif // SHARE_VM_GC_IMPLEMENTATION_SHARED_GENERATIONCOUNTERS_HPP

View File

@ -0,0 +1,66 @@
/*
* Copyright (c) 2011, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "gc_implementation/shared/hSpaceCounters.hpp"
#include "memory/generation.hpp"
#include "memory/resourceArea.hpp"
HSpaceCounters::HSpaceCounters(const char* name,
int ordinal,
size_t max_size,
size_t initial_capacity,
GenerationCounters* gc) {
if (UsePerfData) {
EXCEPTION_MARK;
ResourceMark rm;
const char* cns =
PerfDataManager::name_space(gc->name_space(), "space", ordinal);
_name_space = NEW_C_HEAP_ARRAY(char, strlen(cns)+1);
strcpy(_name_space, cns);
const char* cname = PerfDataManager::counter_name(_name_space, "name");
PerfDataManager::create_string_constant(SUN_GC, cname, name, CHECK);
cname = PerfDataManager::counter_name(_name_space, "maxCapacity");
PerfDataManager::create_constant(SUN_GC, cname, PerfData::U_Bytes,
(jlong)max_size, CHECK);
cname = PerfDataManager::counter_name(_name_space, "capacity");
_capacity = PerfDataManager::create_variable(SUN_GC, cname,
PerfData::U_Bytes,
initial_capacity, CHECK);
cname = PerfDataManager::counter_name(_name_space, "used");
_used = PerfDataManager::create_variable(SUN_GC, cname, PerfData::U_Bytes,
(jlong) 0, CHECK);
cname = PerfDataManager::counter_name(_name_space, "initCapacity");
PerfDataManager::create_constant(SUN_GC, cname, PerfData::U_Bytes,
initial_capacity, CHECK);
}
}

View File

@ -0,0 +1,87 @@
/*
* Copyright (c) 2011, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef SHARE_VM_GC_IMPLEMENTATION_SHARED_HSPACECOUNTERS_HPP
#define SHARE_VM_GC_IMPLEMENTATION_SHARED_HSPACECOUNTERS_HPP
#ifndef SERIALGC
#include "gc_implementation/shared/generationCounters.hpp"
#include "memory/generation.hpp"
#include "runtime/perfData.hpp"
#endif
// A HSpaceCounter is a holder class for performance counters
// that track a collections (logical spaces) in a heap;
class HeapSpaceUsedHelper;
class G1SpaceMonitoringSupport;
class HSpaceCounters: public CHeapObj {
friend class VMStructs;
private:
PerfVariable* _capacity;
PerfVariable* _used;
// Constant PerfData types don't need to retain a reference.
// However, it's a good idea to document them here.
char* _name_space;
public:
HSpaceCounters(const char* name, int ordinal, size_t max_size,
size_t initial_capacity, GenerationCounters* gc);
~HSpaceCounters() {
if (_name_space != NULL) FREE_C_HEAP_ARRAY(char, _name_space);
}
inline void update_capacity(size_t v) {
_capacity->set_value(v);
}
inline void update_used(size_t v) {
_used->set_value(v);
}
debug_only(
// for security reasons, we do not allow arbitrary reads from
// the counters as they may live in shared memory.
jlong used() {
return _used->get_value();
}
jlong capacity() {
return _used->get_value();
}
)
inline void update_all(size_t capacity, size_t used) {
update_capacity(capacity);
update_used(used);
}
const char* name_space() const { return _name_space; }
};
#endif // SHARE_VM_GC_IMPLEMENTATION_SHARED_HSPACECOUNTERS_HPP

View File

@ -456,31 +456,35 @@ bool CardTableModRefBS::mark_card_deferred(size_t card_index) {
}
void CardTableModRefBS::non_clean_card_iterate(Space* sp,
MemRegion mr,
DirtyCardToOopClosure* dcto_cl,
MemRegionClosure* cl) {
void CardTableModRefBS::non_clean_card_iterate_possibly_parallel(Space* sp,
MemRegion mr,
DirtyCardToOopClosure* dcto_cl,
ClearNoncleanCardWrapper* cl) {
if (!mr.is_empty()) {
int n_threads = SharedHeap::heap()->n_par_threads();
if (n_threads > 0) {
#ifndef SERIALGC
par_non_clean_card_iterate_work(sp, mr, dcto_cl, cl, n_threads);
non_clean_card_iterate_parallel_work(sp, mr, dcto_cl, cl, n_threads);
#else // SERIALGC
fatal("Parallel gc not supported here.");
#endif // SERIALGC
} else {
non_clean_card_iterate_work(mr, cl);
// We do not call the non_clean_card_iterate_serial() version below because
// we want to clear the cards (which non_clean_card_iterate_serial() does not
// do for us), and the ClearNoncleanCardWrapper closure itself does the work
// of finding contiguous dirty ranges of cards to process (and clear).
cl->do_MemRegion(mr);
}
}
}
// NOTE: For this to work correctly, it is important that
// we look for non-clean cards below (so as to catch those
// marked precleaned), rather than look explicitly for dirty
// cards (and miss those marked precleaned). In that sense,
// the name precleaned is currently somewhat of a misnomer.
void CardTableModRefBS::non_clean_card_iterate_work(MemRegion mr,
MemRegionClosure* cl) {
// The iterator itself is not MT-aware, but
// MT-aware callers and closures can use this to
// accomplish dirty card iteration in parallel. The
// iterator itself does not clear the dirty cards, or
// change their values in any manner.
void CardTableModRefBS::non_clean_card_iterate_serial(MemRegion mr,
MemRegionClosure* cl) {
for (int i = 0; i < _cur_covered_regions; i++) {
MemRegion mri = mr.intersection(_covered[i]);
if (mri.word_size() > 0) {
@ -661,7 +665,7 @@ public:
void CardTableModRefBS::verify_clean_region(MemRegion mr) {
GuaranteeNotModClosure blk(this);
non_clean_card_iterate_work(mr, &blk);
non_clean_card_iterate_serial(mr, &blk);
}
// To verify a MemRegion is entirely dirty this closure is passed to

View File

@ -44,6 +44,7 @@
class Generation;
class OopsInGenClosure;
class DirtyCardToOopClosure;
class ClearNoncleanCardWrapper;
class CardTableModRefBS: public ModRefBarrierSet {
// Some classes get to look at some private stuff.
@ -165,22 +166,28 @@ class CardTableModRefBS: public ModRefBarrierSet {
// Iterate over the portion of the card-table which covers the given
// region mr in the given space and apply cl to any dirty sub-regions
// of mr. cl and dcto_cl must either be the same closure or cl must
// wrap dcto_cl. Both are required - neither may be NULL. Also, dcto_cl
// may be modified. Note that this function will operate in a parallel
// mode if worker threads are available.
void non_clean_card_iterate(Space* sp, MemRegion mr,
DirtyCardToOopClosure* dcto_cl,
MemRegionClosure* cl);
// of mr. Dirty cards are _not_ cleared by the iterator method itself,
// but closures may arrange to do so on their own should they so wish.
void non_clean_card_iterate_serial(MemRegion mr, MemRegionClosure* cl);
// Utility function used to implement the other versions below.
void non_clean_card_iterate_work(MemRegion mr, MemRegionClosure* cl);
// A variant of the above that will operate in a parallel mode if
// worker threads are available, and clear the dirty cards as it
// processes them.
// ClearNoncleanCardWrapper cl must wrap the DirtyCardToOopClosure dcto_cl,
// which may itself be modified by the method.
void non_clean_card_iterate_possibly_parallel(Space* sp, MemRegion mr,
DirtyCardToOopClosure* dcto_cl,
ClearNoncleanCardWrapper* cl);
void par_non_clean_card_iterate_work(Space* sp, MemRegion mr,
DirtyCardToOopClosure* dcto_cl,
MemRegionClosure* cl,
int n_threads);
private:
// Work method used to implement non_clean_card_iterate_possibly_parallel()
// above in the parallel case.
void non_clean_card_iterate_parallel_work(Space* sp, MemRegion mr,
DirtyCardToOopClosure* dcto_cl,
ClearNoncleanCardWrapper* cl,
int n_threads);
protected:
// Dirty the bytes corresponding to "mr" (not all of which must be
// covered.)
void dirty_MemRegion(MemRegion mr);
@ -237,7 +244,7 @@ class CardTableModRefBS: public ModRefBarrierSet {
MemRegion used,
jint stride, int n_strides,
DirtyCardToOopClosure* dcto_cl,
MemRegionClosure* cl,
ClearNoncleanCardWrapper* cl,
jbyte** lowest_non_clean,
uintptr_t lowest_non_clean_base_chunk_index,
size_t lowest_non_clean_chunk_size);
@ -409,14 +416,14 @@ public:
// marking, where a dirty card may cause scanning, and summarization
// marking, of objects that extend onto subsequent cards.)
void mod_card_iterate(MemRegionClosure* cl) {
non_clean_card_iterate_work(_whole_heap, cl);
non_clean_card_iterate_serial(_whole_heap, cl);
}
// Like the "mod_cards_iterate" above, except only invokes the closure
// for cards within the MemRegion "mr" (which is required to be
// card-aligned and sized.)
void mod_card_iterate(MemRegion mr, MemRegionClosure* cl) {
non_clean_card_iterate_work(mr, cl);
non_clean_card_iterate_serial(mr, cl);
}
static uintx ct_max_alignment_constraint();
@ -493,4 +500,5 @@ public:
void set_CTRS(CardTableRS* rs) { _rs = rs; }
};
#endif // SHARE_VM_MEMORY_CARDTABLEMODREFBS_HPP

View File

@ -105,107 +105,111 @@ void CardTableRS::younger_refs_iterate(Generation* g,
g->younger_refs_iterate(blk);
}
class ClearNoncleanCardWrapper: public MemRegionClosure {
MemRegionClosure* _dirty_card_closure;
CardTableRS* _ct;
bool _is_par;
private:
// Clears the given card, return true if the corresponding card should be
// processed.
bool clear_card(jbyte* entry) {
if (_is_par) {
while (true) {
// In the parallel case, we may have to do this several times.
jbyte entry_val = *entry;
assert(entry_val != CardTableRS::clean_card_val(),
"We shouldn't be looking at clean cards, and this should "
"be the only place they get cleaned.");
if (CardTableRS::card_is_dirty_wrt_gen_iter(entry_val)
|| _ct->is_prev_youngergen_card_val(entry_val)) {
jbyte res =
Atomic::cmpxchg(CardTableRS::clean_card_val(), entry, entry_val);
if (res == entry_val) {
break;
} else {
assert(res == CardTableRS::cur_youngergen_and_prev_nonclean_card,
"The CAS above should only fail if another thread did "
"a GC write barrier.");
}
} else if (entry_val ==
CardTableRS::cur_youngergen_and_prev_nonclean_card) {
// Parallelism shouldn't matter in this case. Only the thread
// assigned to scan the card should change this value.
*entry = _ct->cur_youngergen_card_val();
break;
} else {
assert(entry_val == _ct->cur_youngergen_card_val(),
"Should be the only possibility.");
// In this case, the card was clean before, and become
// cur_youngergen only because of processing of a promoted object.
// We don't have to look at the card.
return false;
}
inline bool ClearNoncleanCardWrapper::clear_card(jbyte* entry) {
if (_is_par) {
return clear_card_parallel(entry);
} else {
return clear_card_serial(entry);
}
}
inline bool ClearNoncleanCardWrapper::clear_card_parallel(jbyte* entry) {
while (true) {
// In the parallel case, we may have to do this several times.
jbyte entry_val = *entry;
assert(entry_val != CardTableRS::clean_card_val(),
"We shouldn't be looking at clean cards, and this should "
"be the only place they get cleaned.");
if (CardTableRS::card_is_dirty_wrt_gen_iter(entry_val)
|| _ct->is_prev_youngergen_card_val(entry_val)) {
jbyte res =
Atomic::cmpxchg(CardTableRS::clean_card_val(), entry, entry_val);
if (res == entry_val) {
break;
} else {
assert(res == CardTableRS::cur_youngergen_and_prev_nonclean_card,
"The CAS above should only fail if another thread did "
"a GC write barrier.");
}
return true;
} else if (entry_val ==
CardTableRS::cur_youngergen_and_prev_nonclean_card) {
// Parallelism shouldn't matter in this case. Only the thread
// assigned to scan the card should change this value.
*entry = _ct->cur_youngergen_card_val();
break;
} else {
jbyte entry_val = *entry;
assert(entry_val != CardTableRS::clean_card_val(),
"We shouldn't be looking at clean cards, and this should "
"be the only place they get cleaned.");
assert(entry_val != CardTableRS::cur_youngergen_and_prev_nonclean_card,
"This should be possible in the sequential case.");
*entry = CardTableRS::clean_card_val();
return true;
assert(entry_val == _ct->cur_youngergen_card_val(),
"Should be the only possibility.");
// In this case, the card was clean before, and become
// cur_youngergen only because of processing of a promoted object.
// We don't have to look at the card.
return false;
}
}
return true;
}
public:
ClearNoncleanCardWrapper(MemRegionClosure* dirty_card_closure,
CardTableRS* ct) :
inline bool ClearNoncleanCardWrapper::clear_card_serial(jbyte* entry) {
jbyte entry_val = *entry;
assert(entry_val != CardTableRS::clean_card_val(),
"We shouldn't be looking at clean cards, and this should "
"be the only place they get cleaned.");
assert(entry_val != CardTableRS::cur_youngergen_and_prev_nonclean_card,
"This should be possible in the sequential case.");
*entry = CardTableRS::clean_card_val();
return true;
}
ClearNoncleanCardWrapper::ClearNoncleanCardWrapper(
MemRegionClosure* dirty_card_closure, CardTableRS* ct) :
_dirty_card_closure(dirty_card_closure), _ct(ct) {
_is_par = (SharedHeap::heap()->n_par_threads() > 0);
}
void do_MemRegion(MemRegion mr) {
// We start at the high end of "mr", walking backwards
// while accumulating a contiguous dirty range of cards in
// [start_of_non_clean, end_of_non_clean) which we then
// process en masse.
HeapWord* end_of_non_clean = mr.end();
HeapWord* start_of_non_clean = end_of_non_clean;
jbyte* entry = _ct->byte_for(mr.last());
const jbyte* first_entry = _ct->byte_for(mr.start());
while (entry >= first_entry) {
HeapWord* cur = _ct->addr_for(entry);
if (!clear_card(entry)) {
// We hit a clean card; process any non-empty
// dirty range accumulated so far.
if (start_of_non_clean < end_of_non_clean) {
MemRegion mr2(start_of_non_clean, end_of_non_clean);
_dirty_card_closure->do_MemRegion(mr2);
}
// Reset the dirty window while continuing to
// look for the next dirty window to process.
end_of_non_clean = cur;
start_of_non_clean = end_of_non_clean;
}
void ClearNoncleanCardWrapper::do_MemRegion(MemRegion mr) {
assert(mr.word_size() > 0, "Error");
assert(_ct->is_aligned(mr.start()), "mr.start() should be card aligned");
// mr.end() may not necessarily be card aligned.
jbyte* cur_entry = _ct->byte_for(mr.last());
const jbyte* limit = _ct->byte_for(mr.start());
HeapWord* end_of_non_clean = mr.end();
HeapWord* start_of_non_clean = end_of_non_clean;
while (cur_entry >= limit) {
HeapWord* cur_hw = _ct->addr_for(cur_entry);
if ((*cur_entry != CardTableRS::clean_card_val()) && clear_card(cur_entry)) {
// Continue the dirty range by opening the
// dirty window one card to the left.
start_of_non_clean = cur_hw;
} else {
// We hit a "clean" card; process any non-empty
// "dirty" range accumulated so far.
if (start_of_non_clean < end_of_non_clean) {
const MemRegion mrd(start_of_non_clean, end_of_non_clean);
_dirty_card_closure->do_MemRegion(mrd);
}
// Open the left end of the window one card to the left.
start_of_non_clean = cur;
// Note that "entry" leads "start_of_non_clean" in
// its leftward excursion after this point
// in the loop and, when we hit the left end of "mr",
// will point off of the left end of the card-table
// for "mr".
entry--;
}
// If the first card of "mr" was dirty, we will have
// been left with a dirty window, co-initial with "mr",
// which we now process.
if (start_of_non_clean < end_of_non_clean) {
MemRegion mr2(start_of_non_clean, end_of_non_clean);
_dirty_card_closure->do_MemRegion(mr2);
// Reset the dirty window, while continuing to look
// for the next dirty card that will start a
// new dirty window.
end_of_non_clean = cur_hw;
start_of_non_clean = cur_hw;
}
// Note that "cur_entry" leads "start_of_non_clean" in
// its leftward excursion after this point
// in the loop and, when we hit the left end of "mr",
// will point off of the left end of the card-table
// for "mr".
cur_entry--;
}
};
// If the first card of "mr" was dirty, we will have
// been left with a dirty window, co-initial with "mr",
// which we now process.
if (start_of_non_clean < end_of_non_clean) {
const MemRegion mrd(start_of_non_clean, end_of_non_clean);
_dirty_card_closure->do_MemRegion(mrd);
}
}
// clean (by dirty->clean before) ==> cur_younger_gen
// dirty ==> cur_youngergen_and_prev_nonclean_card
// precleaned ==> cur_youngergen_and_prev_nonclean_card
@ -246,8 +250,35 @@ void CardTableRS::younger_refs_in_space_iterate(Space* sp,
cl->gen_boundary());
ClearNoncleanCardWrapper clear_cl(dcto_cl, this);
_ct_bs->non_clean_card_iterate(sp, sp->used_region_at_save_marks(),
dcto_cl, &clear_cl);
const MemRegion urasm = sp->used_region_at_save_marks();
#ifdef ASSERT
// Convert the assertion check to a warning if we are running
// CMS+ParNew until related bug is fixed.
MemRegion ur = sp->used_region();
assert(ur.contains(urasm) || (UseConcMarkSweepGC && UseParNewGC),
err_msg("Did you forget to call save_marks()? "
"[" PTR_FORMAT ", " PTR_FORMAT ") is not contained in "
"[" PTR_FORMAT ", " PTR_FORMAT ")",
urasm.start(), urasm.end(), ur.start(), ur.end()));
// In the case of CMS+ParNew, issue a warning
if (!ur.contains(urasm)) {
assert(UseConcMarkSweepGC && UseParNewGC, "Tautology: see assert above");
warning("CMS+ParNew: Did you forget to call save_marks()? "
"[" PTR_FORMAT ", " PTR_FORMAT ") is not contained in "
"[" PTR_FORMAT ", " PTR_FORMAT ")",
urasm.start(), urasm.end(), ur.start(), ur.end());
MemRegion ur2 = sp->used_region();
MemRegion urasm2 = sp->used_region_at_save_marks();
if (!ur.equals(ur2)) {
warning("CMS+ParNew: Flickering used_region()!!");
}
if (!urasm.equals(urasm2)) {
warning("CMS+ParNew: Flickering used_region_at_save_marks()!!");
}
}
#endif
_ct_bs->non_clean_card_iterate_possibly_parallel(sp, urasm,
dcto_cl, &clear_cl);
}
void CardTableRS::clear_into_younger(Generation* gen, bool clear_perm) {

View File

@ -1,5 +1,5 @@
/*
* Copyright (c) 2001, 2010, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2001, 2011, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -166,4 +166,21 @@ public:
};
class ClearNoncleanCardWrapper: public MemRegionClosure {
MemRegionClosure* _dirty_card_closure;
CardTableRS* _ct;
bool _is_par;
private:
// Clears the given card, return true if the corresponding card should be
// processed.
inline bool clear_card(jbyte* entry);
// Work methods called by the clear_card()
inline bool clear_card_serial(jbyte* entry);
inline bool clear_card_parallel(jbyte* entry);
public:
ClearNoncleanCardWrapper(MemRegionClosure* dirty_card_closure, CardTableRS* ct);
void do_MemRegion(MemRegion mr);
};
#endif // SHARE_VM_MEMORY_CARDTABLERS_HPP

View File

@ -427,13 +427,13 @@ public:
// explicitly mark reachable objects in younger generations, to avoid
// excess storage retention.) If "collecting_perm_gen" is false, then
// roots that may only contain references to permGen objects are not
// scanned. The "so" argument determines which of the roots
// scanned; instead, the older_gens closure is applied to all outgoing
// references in the perm gen. The "so" argument determines which of the roots
// the closure is applied to:
// "SO_None" does none;
// "SO_AllClasses" applies the closure to all entries in the SystemDictionary;
// "SO_SystemClasses" to all the "system" classes and loaders;
// "SO_Symbols_and_Strings" applies the closure to all entries in
// SymbolsTable and StringTable.
// "SO_Strings" applies the closure to all entries in the StringTable.
void gen_process_strong_roots(int level,
bool younger_gens_as_roots,
// The remaining arguments are in an order

View File

@ -1,5 +1,5 @@
/*
* Copyright (c) 2001, 2010, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2001, 2011, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -175,7 +175,7 @@ class VerifyOopClosure: public OopClosure {
protected:
template <class T> inline void do_oop_work(T* p) {
oop obj = oopDesc::load_decode_heap_oop(p);
guarantee(obj->is_oop_or_null(), "invalid oop");
guarantee(obj->is_oop_or_null(), err_msg("invalid oop: " INTPTR_FORMAT, obj));
}
public:
virtual void do_oop(oop* p);

View File

@ -46,7 +46,6 @@ enum SH_process_strong_roots_tasks {
SH_PS_Management_oops_do,
SH_PS_SystemDictionary_oops_do,
SH_PS_jvmti_oops_do,
SH_PS_SymbolTable_oops_do,
SH_PS_StringTable_oops_do,
SH_PS_CodeCache_oops_do,
// Leave this one last.
@ -161,13 +160,9 @@ void SharedHeap::process_strong_roots(bool activate_scope,
if (!_process_strong_tasks->is_task_claimed(SH_PS_SystemDictionary_oops_do)) {
if (so & SO_AllClasses) {
SystemDictionary::oops_do(roots);
} else
if (so & SO_SystemClasses) {
SystemDictionary::always_strong_oops_do(roots);
}
}
if (!_process_strong_tasks->is_task_claimed(SH_PS_SymbolTable_oops_do)) {
} else if (so & SO_SystemClasses) {
SystemDictionary::always_strong_oops_do(roots);
}
}
if (!_process_strong_tasks->is_task_claimed(SH_PS_StringTable_oops_do)) {

View File

@ -192,9 +192,8 @@ public:
SO_None = 0x0,
SO_AllClasses = 0x1,
SO_SystemClasses = 0x2,
SO_Symbols = 0x4,
SO_Strings = 0x8,
SO_CodeCache = 0x10
SO_Strings = 0x4,
SO_CodeCache = 0x8
};
FlexibleWorkGang* workers() const { return _workers; }
@ -208,14 +207,13 @@ public:
// Invoke the "do_oop" method the closure "roots" on all root locations.
// If "collecting_perm_gen" is false, then roots that may only contain
// references to permGen objects are not scanned. If true, the
// "perm_gen" closure is applied to all older-to-younger refs in the
// references to permGen objects are not scanned; instead, in that case,
// the "perm_blk" closure is applied to all outgoing refs in the
// permanent generation. The "so" argument determines which of roots
// the closure is applied to:
// "SO_None" does none;
// "SO_AllClasses" applies the closure to all entries in the SystemDictionary;
// "SO_SystemClasses" to all the "system" classes and loaders;
// "SO_Symbols" applies the closure to all entries in SymbolsTable;
// "SO_Strings" applies the closure to all entries in StringTable;
// "SO_CodeCache" applies the closure to all elements of the CodeCache.
void process_strong_roots(bool activate_scope,

View File

@ -104,7 +104,7 @@ void ConstantPoolCacheEntry::set_f1_if_null_atomic(oop f1) {
void* result = Atomic::cmpxchg_ptr(f1, f1_addr, NULL);
bool success = (result == NULL);
if (success) {
update_barrier_set(f1_addr, f1);
update_barrier_set((void*) f1_addr, f1);
}
}
@ -275,21 +275,23 @@ int ConstantPoolCacheEntry::bootstrap_method_index_in_cache() {
return (int) bsm_cache_index;
}
void ConstantPoolCacheEntry::set_dynamic_call(Handle call_site,
methodHandle signature_invoker) {
void ConstantPoolCacheEntry::set_dynamic_call(Handle call_site, methodHandle signature_invoker) {
assert(is_secondary_entry(), "");
// NOTE: it's important that all other values are set before f1 is
// set since some users short circuit on f1 being set
// (i.e. non-null) and that may result in uninitialized values for
// other racing threads (e.g. flags).
int param_size = signature_invoker->size_of_parameters();
assert(param_size >= 1, "method argument size must include MH.this");
param_size -= 1; // do not count MH.this; it is not stacked for invokedynamic
if (Atomic::cmpxchg_ptr(call_site(), &_f1, NULL) == NULL) {
// racing threads might be trying to install their own favorites
set_f1(call_site());
}
param_size -= 1; // do not count MH.this; it is not stacked for invokedynamic
bool is_final = true;
assert(signature_invoker->is_final_method(), "is_final");
set_flags(as_flags(as_TosState(signature_invoker->result_type()), is_final, false, false, false, true) | param_size);
int flags = as_flags(as_TosState(signature_invoker->result_type()), is_final, false, false, false, true) | param_size;
assert(_flags == 0 || _flags == flags, "flags should be the same");
set_flags(flags);
// do not do set_bytecode on a secondary CP cache entry
//set_bytecode_1(Bytecodes::_invokedynamic);
set_f1_if_null_atomic(call_site()); // This must be the last one to set (see NOTE above)!
}

View File

@ -1437,7 +1437,10 @@ void ConnectionGraph::split_unique_types(GrowableArray<Node *> &alloc_worklist)
// Update the memory inputs of MemNodes with the value we computed
// in Phase 2 and move stores memory users to corresponding memory slices.
#ifdef ASSERT
// Disable memory split verification code until the fix for 6984348.
// Currently it produces false negative results since it does not cover all cases.
#if 0 // ifdef ASSERT
visited.Reset();
Node_Stack old_mems(arena, _compile->unique() >> 2);
#endif
@ -1447,7 +1450,7 @@ void ConnectionGraph::split_unique_types(GrowableArray<Node *> &alloc_worklist)
Node *n = ptnode_adr(i)->_node;
assert(n != NULL, "sanity");
if (n->is_Mem()) {
#ifdef ASSERT
#if 0 // ifdef ASSERT
Node* old_mem = n->in(MemNode::Memory);
if (!visited.test_set(old_mem->_idx)) {
old_mems.push(old_mem, old_mem->outcnt());
@ -1469,13 +1472,13 @@ void ConnectionGraph::split_unique_types(GrowableArray<Node *> &alloc_worklist)
}
}
}
#ifdef ASSERT
#if 0 // ifdef ASSERT
// Verify that memory was split correctly
while (old_mems.is_nonempty()) {
Node* old_mem = old_mems.node();
uint old_cnt = old_mems.index();
old_mems.pop();
assert(old_cnt = old_mem->outcnt(), "old mem could be lost");
assert(old_cnt == old_mem->outcnt(), "old mem could be lost");
}
#endif
}

View File

@ -1033,14 +1033,10 @@ bool GraphKit::compute_stack_effects(int& inputs, int& depth) {
iter.reset_to_bci(bci());
iter.next();
ciMethod* method = iter.get_method(ignore);
inputs = method->arg_size_no_receiver();
// Add a receiver argument, maybe:
if (code != Bytecodes::_invokestatic &&
code != Bytecodes::_invokedynamic)
inputs += 1;
// (Do not use ciMethod::arg_size(), because
// it might be an unloaded method, which doesn't
// know whether it is static or not.)
inputs = method->invoke_arg_size(code);
int size = method->return_type()->size();
depth = size - inputs;
}
@ -2957,8 +2953,7 @@ static void hook_memory_on_init(GraphKit& kit, int alias_idx,
//---------------------------set_output_for_allocation-------------------------
Node* GraphKit::set_output_for_allocation(AllocateNode* alloc,
const TypeOopPtr* oop_type,
bool raw_mem_only) {
const TypeOopPtr* oop_type) {
int rawidx = Compile::AliasIdxRaw;
alloc->set_req( TypeFunc::FramePtr, frameptr() );
add_safepoint_edges(alloc);
@ -2982,7 +2977,7 @@ Node* GraphKit::set_output_for_allocation(AllocateNode* alloc,
rawoop)->as_Initialize();
assert(alloc->initialization() == init, "2-way macro link must work");
assert(init ->allocation() == alloc, "2-way macro link must work");
if (ReduceFieldZeroing && !raw_mem_only) {
{
// Extract memory strands which may participate in the new object's
// initialization, and source them from the new InitializeNode.
// This will allow us to observe initializations when they occur,
@ -3043,11 +3038,9 @@ Node* GraphKit::set_output_for_allocation(AllocateNode* alloc,
// the type to a constant.
// The optional arguments are for specialized use by intrinsics:
// - If 'extra_slow_test' if not null is an extra condition for the slow-path.
// - If 'raw_mem_only', do not cast the result to an oop.
// - If 'return_size_val', report the the total object size to the caller.
Node* GraphKit::new_instance(Node* klass_node,
Node* extra_slow_test,
bool raw_mem_only, // affect only raw memory
Node* *return_size_val) {
// Compute size in doublewords
// The size is always an integral number of doublewords, represented
@ -3118,7 +3111,7 @@ Node* GraphKit::new_instance(Node* klass_node,
size, klass_node,
initial_slow_test);
return set_output_for_allocation(alloc, oop_type, raw_mem_only);
return set_output_for_allocation(alloc, oop_type);
}
//-------------------------------new_array-------------------------------------
@ -3128,7 +3121,6 @@ Node* GraphKit::new_instance(Node* klass_node,
Node* GraphKit::new_array(Node* klass_node, // array klass (maybe variable)
Node* length, // number of array elements
int nargs, // number of arguments to push back for uncommon trap
bool raw_mem_only, // affect only raw memory
Node* *return_size_val) {
jint layout_con = Klass::_lh_neutral_value;
Node* layout_val = get_layout_helper(klass_node, layout_con);
@ -3273,7 +3265,7 @@ Node* GraphKit::new_array(Node* klass_node, // array klass (maybe variable)
ary_type = ary_type->is_aryptr()->cast_to_size(length_type);
}
Node* javaoop = set_output_for_allocation(alloc, ary_type, raw_mem_only);
Node* javaoop = set_output_for_allocation(alloc, ary_type);
// Cast length on remaining path to be as narrow as possible
if (map()->find_edge(length) >= 0) {
@ -3462,9 +3454,22 @@ void GraphKit::write_barrier_post(Node* oop_store,
// Get the alias_index for raw card-mark memory
int adr_type = Compile::AliasIdxRaw;
// Smash zero into card
Node* zero = __ ConI(0);
Node* zero = __ ConI(0); // Dirty card value
BasicType bt = T_BYTE;
if (UseCondCardMark) {
// The classic GC reference write barrier is typically implemented
// as a store into the global card mark table. Unfortunately
// unconditional stores can result in false sharing and excessive
// coherence traffic as well as false transactional aborts.
// UseCondCardMark enables MP "polite" conditional card mark
// stores. In theory we could relax the load from ctrl() to
// no_ctrl, but that doesn't buy much latitude.
Node* card_val = __ load( __ ctrl(), card_adr, TypeInt::BYTE, bt, adr_type);
__ if_then(card_val, BoolTest::ne, zero);
}
// Smash zero into card
if( !UseConcMarkSweepGC ) {
__ store(__ ctrl(), card_adr, zero, bt, adr_type);
} else {
@ -3472,6 +3477,10 @@ void GraphKit::write_barrier_post(Node* oop_store,
__ storeCM(__ ctrl(), card_adr, zero, oop_store, adr_idx, bt, adr_type);
}
if (UseCondCardMark) {
__ end_if();
}
// Final sync IdealKit and GraphKit.
final_sync(ideal);
}

View File

@ -773,15 +773,13 @@ class GraphKit : public Phase {
// implementation of object creation
Node* set_output_for_allocation(AllocateNode* alloc,
const TypeOopPtr* oop_type,
bool raw_mem_only);
const TypeOopPtr* oop_type);
Node* get_layout_helper(Node* klass_node, jint& constant_value);
Node* new_instance(Node* klass_node,
Node* slow_test = NULL,
bool raw_mem_only = false,
Node* *return_size_val = NULL);
Node* new_array(Node* klass_node, Node* count_val, int nargs,
bool raw_mem_only = false, Node* *return_size_val = NULL);
Node* *return_size_val = NULL);
// Handy for making control flow
IfNode* create_and_map_if(Node* ctrl, Node* tst, float prob, float cnt) {

View File

@ -3527,8 +3527,7 @@ bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) {
Node* orig_tail = _gvn.transform( new(C, 3) SubINode(orig_length, start) );
Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length);
const bool raw_mem_only = true;
newcopy = new_array(klass_node, length, 0, raw_mem_only);
newcopy = new_array(klass_node, length, 0);
// Generate a direct call to the right arraycopy function(s).
// We know the copy is disjoint but we might not know if the
@ -4325,8 +4324,6 @@ bool LibraryCallKit::inline_native_clone(bool is_virtual) {
const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
int raw_adr_idx = Compile::AliasIdxRaw;
const bool raw_mem_only = true;
Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)NULL);
if (array_ctl != NULL) {
@ -4335,8 +4332,7 @@ bool LibraryCallKit::inline_native_clone(bool is_virtual) {
set_control(array_ctl);
Node* obj_length = load_array_length(obj);
Node* obj_size = NULL;
Node* alloc_obj = new_array(obj_klass, obj_length, 0,
raw_mem_only, &obj_size);
Node* alloc_obj = new_array(obj_klass, obj_length, 0, &obj_size);
if (!use_ReduceInitialCardMarks()) {
// If it is an oop array, it requires very special treatment,
@ -4408,7 +4404,7 @@ bool LibraryCallKit::inline_native_clone(bool is_virtual) {
// It's an instance, and it passed the slow-path tests.
PreserveJVMState pjvms(this);
Node* obj_size = NULL;
Node* alloc_obj = new_instance(obj_klass, NULL, raw_mem_only, &obj_size);
Node* alloc_obj = new_instance(obj_klass, NULL, &obj_size);
copy_to_clone(obj, alloc_obj, obj_size, false, !use_ReduceInitialCardMarks());

View File

@ -2262,6 +2262,9 @@ bool PhaseIdealLoop::is_valid_clone_loop_form( IdealLoopTree *loop, Node_List& p
// stmt1
// |
// v
// loop predicate
// |
// v
// stmt2 clone
// |
// v
@ -2272,9 +2275,6 @@ bool PhaseIdealLoop::is_valid_clone_loop_form( IdealLoopTree *loop, Node_List& p
// : false true
// : | |
// : | v
// : | loop predicate
// : | |
// : | v
// : | newloop<-----+
// : | | |
// : | stmt3 clone |
@ -2330,7 +2330,6 @@ bool PhaseIdealLoop::partial_peel( IdealLoopTree *loop, Node_List &old_new ) {
}
}
Node* entry = head->in(LoopNode::EntryControl);
int dd = dom_depth(head);
// Step 1: find cut point
@ -2627,8 +2626,6 @@ bool PhaseIdealLoop::partial_peel( IdealLoopTree *loop, Node_List &old_new ) {
// Backedge of the surviving new_head (the clone) is original last_peel
_igvn.hash_delete(new_head_clone);
Node* new_entry = move_loop_predicates(entry, new_head_clone->in(LoopNode::EntryControl));
new_head_clone->set_req(LoopNode::EntryControl, new_entry);
new_head_clone->set_req(LoopNode::LoopBackControl, last_peel);
_igvn._worklist.push(new_head_clone);

View File

@ -221,9 +221,16 @@ void PhaseMacroExpand::eliminate_card_mark(Node* p2x) {
Node *shift = p2x->unique_out();
Node *addp = shift->unique_out();
for (DUIterator_Last jmin, j = addp->last_outs(jmin); j >= jmin; --j) {
Node *st = addp->last_out(j);
assert(st->is_Store(), "store required");
_igvn.replace_node(st, st->in(MemNode::Memory));
Node *mem = addp->last_out(j);
if (UseCondCardMark && mem->is_Load()) {
assert(mem->Opcode() == Op_LoadB, "unexpected code shape");
// The load is checking if the card has been written so
// replace it with zero to fold the test.
_igvn.replace_node(mem, intcon(0));
continue;
}
assert(mem->is_Store(), "store required");
_igvn.replace_node(mem, mem->in(MemNode::Memory));
}
} else {
// G1 pre/post barriers

View File

@ -1259,15 +1259,18 @@ Node *LoadNode::split_through_phi(PhaseGVN *phase) {
return NULL; // Wait stable graph
}
uint cnt = mem->req();
for( uint i = 1; i < cnt; i++ ) {
for (uint i = 1; i < cnt; i++) {
Node* rc = region->in(i);
if (rc == NULL || phase->type(rc) == Type::TOP)
return NULL; // Wait stable graph
Node *in = mem->in(i);
if( in == NULL ) {
if (in == NULL) {
return NULL; // Wait stable graph
}
}
// Check for loop invariant.
if (cnt == 3) {
for( uint i = 1; i < cnt; i++ ) {
for (uint i = 1; i < cnt; i++) {
Node *in = mem->in(i);
Node* m = MemNode::optimize_memory_chain(in, addr_t, phase);
if (m == mem) {
@ -1281,38 +1284,37 @@ Node *LoadNode::split_through_phi(PhaseGVN *phase) {
// Do nothing here if Identity will find a value
// (to avoid infinite chain of value phis generation).
if ( !phase->eqv(this, this->Identity(phase)) )
if (!phase->eqv(this, this->Identity(phase)))
return NULL;
// Skip the split if the region dominates some control edge of the address.
if (cnt == 3 && !MemNode::all_controls_dominate(address, region))
if (!MemNode::all_controls_dominate(address, region))
return NULL;
const Type* this_type = this->bottom_type();
int this_index = phase->C->get_alias_index(addr_t);
int this_offset = addr_t->offset();
int this_iid = addr_t->is_oopptr()->instance_id();
int wins = 0;
PhaseIterGVN *igvn = phase->is_IterGVN();
Node *phi = new (igvn->C, region->req()) PhiNode(region, this_type, NULL, this_iid, this_index, this_offset);
for( uint i = 1; i < region->req(); i++ ) {
for (uint i = 1; i < region->req(); i++) {
Node *x;
Node* the_clone = NULL;
if( region->in(i) == phase->C->top() ) {
if (region->in(i) == phase->C->top()) {
x = phase->C->top(); // Dead path? Use a dead data op
} else {
x = this->clone(); // Else clone up the data op
the_clone = x; // Remember for possible deletion.
// Alter data node to use pre-phi inputs
if( this->in(0) == region ) {
x->set_req( 0, region->in(i) );
if (this->in(0) == region) {
x->set_req(0, region->in(i));
} else {
x->set_req( 0, NULL );
x->set_req(0, NULL);
}
for( uint j = 1; j < this->req(); j++ ) {
for (uint j = 1; j < this->req(); j++) {
Node *in = this->in(j);
if( in->is_Phi() && in->in(0) == region )
x->set_req( j, in->in(i) ); // Use pre-Phi input for the clone
if (in->is_Phi() && in->in(0) == region)
x->set_req(j, in->in(i)); // Use pre-Phi input for the clone
}
}
// Check for a 'win' on some paths
@ -1321,12 +1323,11 @@ Node *LoadNode::split_through_phi(PhaseGVN *phase) {
bool singleton = t->singleton();
// See comments in PhaseIdealLoop::split_thru_phi().
if( singleton && t == Type::TOP ) {
if (singleton && t == Type::TOP) {
singleton &= region->is_Loop() && (i != LoopNode::EntryControl);
}
if( singleton ) {
wins++;
if (singleton) {
x = igvn->makecon(t);
} else {
// We now call Identity to try to simplify the cloned node.
@ -1340,13 +1341,11 @@ Node *LoadNode::split_through_phi(PhaseGVN *phase) {
// igvn->type(x) is set to x->Value() already.
x->raise_bottom_type(t);
Node *y = x->Identity(igvn);
if( y != x ) {
wins++;
if (y != x) {
x = y;
} else {
y = igvn->hash_find(x);
if( y ) {
wins++;
if (y) {
x = y;
} else {
// Else x is a new node we are keeping
@ -1360,13 +1359,9 @@ Node *LoadNode::split_through_phi(PhaseGVN *phase) {
igvn->remove_dead_node(the_clone);
phi->set_req(i, x);
}
if( wins > 0 ) {
// Record Phi
igvn->register_new_node_with_optimizer(phi);
return phi;
}
igvn->remove_dead_node(phi);
return NULL;
// Record Phi
igvn->register_new_node_with_optimizer(phi);
return phi;
}
//------------------------------Ideal------------------------------------------
@ -1677,14 +1672,15 @@ const Type *LoadNode::Value( PhaseTransform *phase ) const {
// If we are loading from a freshly-allocated object, produce a zero,
// if the load is provably beyond the header of the object.
// (Also allow a variable load from a fresh array to produce zero.)
if (ReduceFieldZeroing) {
const TypeOopPtr *tinst = tp->isa_oopptr();
bool is_instance = (tinst != NULL) && tinst->is_known_instance_field();
if (ReduceFieldZeroing || is_instance) {
Node* value = can_see_stored_value(mem,phase);
if (value != NULL && value->is_Con())
return value->bottom_type();
}
const TypeOopPtr *tinst = tp->isa_oopptr();
if (tinst != NULL && tinst->is_known_instance_field()) {
if (is_instance) {
// If we have an instance type and our memory input is the
// programs's initial memory state, there is no matching store,
// so just return a zero of the appropriate type

View File

@ -1172,16 +1172,16 @@ void PhaseStringOpts::int_getChars(GraphKit& kit, Node* arg, Node* char_array, N
Node* PhaseStringOpts::copy_string(GraphKit& kit, Node* str, Node* char_array, Node* start) {
Node* string = str;
Node* offset = kit.make_load(NULL,
Node* offset = kit.make_load(kit.control(),
kit.basic_plus_adr(string, string, java_lang_String::offset_offset_in_bytes()),
TypeInt::INT, T_INT, offset_field_idx);
Node* count = kit.make_load(NULL,
Node* count = kit.make_load(kit.control(),
kit.basic_plus_adr(string, string, java_lang_String::count_offset_in_bytes()),
TypeInt::INT, T_INT, count_field_idx);
const TypeAryPtr* value_type = TypeAryPtr::make(TypePtr::NotNull,
TypeAry::make(TypeInt::CHAR,TypeInt::POS),
ciTypeArrayKlass::make(T_CHAR), true, 0);
Node* value = kit.make_load(NULL,
Node* value = kit.make_load(kit.control(),
kit.basic_plus_adr(string, string, java_lang_String::value_offset_in_bytes()),
value_type, T_OBJECT, value_field_idx);
@ -1342,7 +1342,7 @@ void PhaseStringOpts::replace_string_concat(StringConcat* sc) {
}
// Node* offset = kit.make_load(NULL, kit.basic_plus_adr(arg, arg, offset_offset),
// TypeInt::INT, T_INT, offset_field_idx);
Node* count = kit.make_load(NULL, kit.basic_plus_adr(arg, arg, java_lang_String::count_offset_in_bytes()),
Node* count = kit.make_load(kit.control(), kit.basic_plus_adr(arg, arg, java_lang_String::count_offset_in_bytes()),
TypeInt::INT, T_INT, count_field_idx);
length = __ AddI(length, count);
string_sizes->init_req(argi, NULL);

View File

@ -82,10 +82,8 @@ void MethodHandleChain::set_method_handle(Handle mh, TRAPS) {
void MethodHandleChain::set_last_method(oop target, TRAPS) {
_is_last = true;
klassOop receiver_limit_oop = NULL;
int flags = 0;
methodOop m = MethodHandles::decode_method(target, receiver_limit_oop, flags);
_last_method = methodHandle(THREAD, m);
KlassHandle receiver_limit; int flags = 0;
_last_method = MethodHandles::decode_method(target, receiver_limit, flags);
if ((flags & MethodHandles::_dmf_has_receiver) == 0)
_last_invoke = Bytecodes::_invokestatic;
else if ((flags & MethodHandles::_dmf_does_dispatch) == 0)

View File

@ -153,9 +153,9 @@ void MethodHandles::set_enabled(bool z) {
// and local, like parse a data structure. For speed, such methods work on plain
// oops, not handles. Trapping methods uniformly operate on handles.
methodOop MethodHandles::decode_vmtarget(oop vmtarget, int vmindex, oop mtype,
klassOop& receiver_limit_result, int& decode_flags_result) {
if (vmtarget == NULL) return NULL;
methodHandle MethodHandles::decode_vmtarget(oop vmtarget, int vmindex, oop mtype,
KlassHandle& receiver_limit_result, int& decode_flags_result) {
if (vmtarget == NULL) return methodHandle();
assert(methodOopDesc::nonvirtual_vtable_index < 0, "encoding");
if (vmindex < 0) {
// this DMH performs no dispatch; it is directly bound to a methodOop
@ -198,20 +198,20 @@ methodOop MethodHandles::decode_vmtarget(oop vmtarget, int vmindex, oop mtype,
// MemberName and DirectMethodHandle have the same linkage to the JVM internals.
// (MemberName is the non-operational name used for queries and setup.)
methodOop MethodHandles::decode_DirectMethodHandle(oop mh, klassOop& receiver_limit_result, int& decode_flags_result) {
methodHandle MethodHandles::decode_DirectMethodHandle(oop mh, KlassHandle& receiver_limit_result, int& decode_flags_result) {
oop vmtarget = java_lang_invoke_DirectMethodHandle::vmtarget(mh);
int vmindex = java_lang_invoke_DirectMethodHandle::vmindex(mh);
oop mtype = java_lang_invoke_DirectMethodHandle::type(mh);
return decode_vmtarget(vmtarget, vmindex, mtype, receiver_limit_result, decode_flags_result);
}
methodOop MethodHandles::decode_BoundMethodHandle(oop mh, klassOop& receiver_limit_result, int& decode_flags_result) {
methodHandle MethodHandles::decode_BoundMethodHandle(oop mh, KlassHandle& receiver_limit_result, int& decode_flags_result) {
assert(java_lang_invoke_BoundMethodHandle::is_instance(mh), "");
assert(mh->klass() != SystemDictionary::AdapterMethodHandle_klass(), "");
for (oop bmh = mh;;) {
// Bound MHs can be stacked to bind several arguments.
oop target = java_lang_invoke_MethodHandle::vmtarget(bmh);
if (target == NULL) return NULL;
if (target == NULL) return methodHandle();
decode_flags_result |= MethodHandles::_dmf_binds_argument;
klassOop tk = target->klass();
if (tk == SystemDictionary::BoundMethodHandle_klass()) {
@ -236,14 +236,14 @@ methodOop MethodHandles::decode_BoundMethodHandle(oop mh, klassOop& receiver_lim
}
}
methodOop MethodHandles::decode_AdapterMethodHandle(oop mh, klassOop& receiver_limit_result, int& decode_flags_result) {
methodHandle MethodHandles::decode_AdapterMethodHandle(oop mh, KlassHandle& receiver_limit_result, int& decode_flags_result) {
assert(mh->klass() == SystemDictionary::AdapterMethodHandle_klass(), "");
for (oop amh = mh;;) {
// Adapter MHs can be stacked to convert several arguments.
int conv_op = adapter_conversion_op(java_lang_invoke_AdapterMethodHandle::conversion(amh));
decode_flags_result |= (_dmf_adapter_lsb << conv_op) & _DMF_ADAPTER_MASK;
oop target = java_lang_invoke_MethodHandle::vmtarget(amh);
if (target == NULL) return NULL;
if (target == NULL) return methodHandle();
klassOop tk = target->klass();
if (tk == SystemDictionary::AdapterMethodHandle_klass()) {
amh = target;
@ -255,8 +255,8 @@ methodOop MethodHandles::decode_AdapterMethodHandle(oop mh, klassOop& receiver_l
}
}
methodOop MethodHandles::decode_MethodHandle(oop mh, klassOop& receiver_limit_result, int& decode_flags_result) {
if (mh == NULL) return NULL;
methodHandle MethodHandles::decode_MethodHandle(oop mh, KlassHandle& receiver_limit_result, int& decode_flags_result) {
if (mh == NULL) return methodHandle();
klassOop mhk = mh->klass();
assert(java_lang_invoke_MethodHandle::is_subclass(mhk), "must be a MethodHandle");
if (mhk == SystemDictionary::DirectMethodHandle_klass()) {
@ -270,7 +270,7 @@ methodOop MethodHandles::decode_MethodHandle(oop mh, klassOop& receiver_limit_re
return decode_BoundMethodHandle(mh, receiver_limit_result, decode_flags_result);
} else {
assert(false, "cannot parse this MH");
return NULL; // random MH?
return methodHandle(); // random MH?
}
}
@ -299,9 +299,9 @@ methodOop MethodHandles::decode_methodOop(methodOop m, int& decode_flags_result)
// A trusted party is handing us a cookie to determine a method.
// Let's boil it down to the method oop they really want.
methodOop MethodHandles::decode_method(oop x, klassOop& receiver_limit_result, int& decode_flags_result) {
methodHandle MethodHandles::decode_method(oop x, KlassHandle& receiver_limit_result, int& decode_flags_result) {
decode_flags_result = 0;
receiver_limit_result = NULL;
receiver_limit_result = KlassHandle();
klassOop xk = x->klass();
if (xk == Universe::methodKlassObj()) {
return decode_methodOop((methodOop) x, decode_flags_result);
@ -329,7 +329,7 @@ methodOop MethodHandles::decode_method(oop x, klassOop& receiver_limit_result, i
assert(!x->is_method(), "already checked");
assert(!java_lang_invoke_MemberName::is_instance(x), "already checked");
}
return NULL;
return methodHandle();
}
@ -389,11 +389,10 @@ void MethodHandles::init_MemberName(oop mname_oop, oop target_oop) {
int offset = instanceKlass::cast(k)->offset_from_fields(slot);
init_MemberName(mname_oop, k, accessFlags_from(mods), offset);
} else {
int decode_flags = 0; klassOop receiver_limit = NULL;
methodOop m = MethodHandles::decode_method(target_oop,
receiver_limit, decode_flags);
KlassHandle receiver_limit; int decode_flags = 0;
methodHandle m = MethodHandles::decode_method(target_oop, receiver_limit, decode_flags);
bool do_dispatch = ((decode_flags & MethodHandles::_dmf_does_dispatch) != 0);
init_MemberName(mname_oop, m, do_dispatch);
init_MemberName(mname_oop, m(), do_dispatch);
}
}
@ -423,13 +422,14 @@ void MethodHandles::init_MemberName(oop mname_oop, klassOop field_holder, Access
}
methodOop MethodHandles::decode_MemberName(oop mname, klassOop& receiver_limit_result, int& decode_flags_result) {
methodHandle MethodHandles::decode_MemberName(oop mname, KlassHandle& receiver_limit_result, int& decode_flags_result) {
methodHandle empty;
int flags = java_lang_invoke_MemberName::flags(mname);
if ((flags & (IS_METHOD | IS_CONSTRUCTOR)) == 0) return NULL; // not invocable
if ((flags & (IS_METHOD | IS_CONSTRUCTOR)) == 0) return empty; // not invocable
oop vmtarget = java_lang_invoke_MemberName::vmtarget(mname);
int vmindex = java_lang_invoke_MemberName::vmindex(mname);
if (vmindex == VM_INDEX_UNINITIALIZED) return NULL; // not resolved
methodOop m = decode_vmtarget(vmtarget, vmindex, NULL, receiver_limit_result, decode_flags_result);
if (vmindex == VM_INDEX_UNINITIALIZED) return empty; // not resolved
methodHandle m = decode_vmtarget(vmtarget, vmindex, NULL, receiver_limit_result, decode_flags_result);
oop clazz = java_lang_invoke_MemberName::clazz(mname);
if (clazz != NULL && java_lang_Class::is_instance(clazz)) {
klassOop klass = java_lang_Class::as_klassOop(clazz);
@ -439,9 +439,7 @@ methodOop MethodHandles::decode_MemberName(oop mname, klassOop& receiver_limit_r
}
// convert the external string or reflective type to an internal signature
Symbol* MethodHandles::convert_to_signature(oop type_str,
bool polymorphic,
TRAPS) {
Symbol* MethodHandles::convert_to_signature(oop type_str, bool polymorphic, TRAPS) {
if (java_lang_invoke_MethodType::is_instance(type_str)) {
return java_lang_invoke_MethodType::as_signature(type_str, polymorphic, CHECK_NULL);
} else if (java_lang_Class::is_instance(type_str)) {
@ -474,48 +472,48 @@ void MethodHandles::resolve_MemberName(Handle mname, TRAPS) {
#endif
if (java_lang_invoke_MemberName::vmindex(mname()) != VM_INDEX_UNINITIALIZED)
return; // already resolved
oop defc_oop = java_lang_invoke_MemberName::clazz(mname());
oop name_str = java_lang_invoke_MemberName::name(mname());
oop type_str = java_lang_invoke_MemberName::type(mname());
int flags = java_lang_invoke_MemberName::flags(mname());
Handle defc_oop(THREAD, java_lang_invoke_MemberName::clazz(mname()));
Handle name_str(THREAD, java_lang_invoke_MemberName::name( mname()));
Handle type_str(THREAD, java_lang_invoke_MemberName::type( mname()));
int flags = java_lang_invoke_MemberName::flags(mname());
if (defc_oop == NULL || name_str == NULL || type_str == NULL) {
if (defc_oop.is_null() || name_str.is_null() || type_str.is_null()) {
THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(), "nothing to resolve");
}
klassOop defc_klassOop = java_lang_Class::as_klassOop(defc_oop);
defc_oop = NULL; // safety
if (defc_klassOop == NULL) return; // a primitive; no resolution possible
if (!Klass::cast(defc_klassOop)->oop_is_instance()) {
if (!Klass::cast(defc_klassOop)->oop_is_array()) return;
defc_klassOop = SystemDictionary::Object_klass();
instanceKlassHandle defc;
{
klassOop defc_klassOop = java_lang_Class::as_klassOop(defc_oop());
if (defc_klassOop == NULL) return; // a primitive; no resolution possible
if (!Klass::cast(defc_klassOop)->oop_is_instance()) {
if (!Klass::cast(defc_klassOop)->oop_is_array()) return;
defc_klassOop = SystemDictionary::Object_klass();
}
defc = instanceKlassHandle(THREAD, defc_klassOop);
}
instanceKlassHandle defc(THREAD, defc_klassOop);
defc_klassOop = NULL; // safety
if (defc.is_null()) {
THROW_MSG(vmSymbols::java_lang_InternalError(), "primitive class");
}
defc->link_class(CHECK);
defc->link_class(CHECK); // possible safepoint
// convert the external string name to an internal symbol
TempNewSymbol name = java_lang_String::as_symbol_or_null(name_str);
TempNewSymbol name = java_lang_String::as_symbol_or_null(name_str());
if (name == NULL) return; // no such name
name_str = NULL; // safety
Handle polymorphic_method_type;
bool polymorphic_signature = false;
if ((flags & ALL_KINDS) == IS_METHOD &&
(defc() == SystemDictionary::MethodHandle_klass() &&
methodOopDesc::is_method_handle_invoke_name(name)))
methodOopDesc::is_method_handle_invoke_name(name))) {
polymorphic_signature = true;
// convert the external string or reflective type to an internal signature
TempNewSymbol type = convert_to_signature(type_str, polymorphic_signature, CHECK);
if (java_lang_invoke_MethodType::is_instance(type_str) && polymorphic_signature) {
polymorphic_method_type = Handle(THREAD, type_str); //preserve exactly
}
// convert the external string or reflective type to an internal signature
TempNewSymbol type = convert_to_signature(type_str(), polymorphic_signature, CHECK);
if (java_lang_invoke_MethodType::is_instance(type_str()) && polymorphic_signature) {
polymorphic_method_type = type_str; // preserve exactly
}
if (type == NULL) return; // no such signature exists in the VM
type_str = NULL; // safety
// Time to do the lookup.
switch (flags & ALL_KINDS) {
@ -560,8 +558,8 @@ void MethodHandles::resolve_MemberName(Handle mname, TRAPS) {
java_lang_invoke_MemberName::set_vmtarget(mname(), vmtarget);
java_lang_invoke_MemberName::set_vmindex(mname(), vmindex);
java_lang_invoke_MemberName::set_modifiers(mname(), mods);
DEBUG_ONLY(int junk; klassOop junk2);
assert(decode_MemberName(mname(), junk2, junk) == result.resolved_method()(),
DEBUG_ONLY(KlassHandle junk1; int junk2);
assert(decode_MemberName(mname(), junk1, junk2) == result.resolved_method(),
"properly stored for later decoding");
return;
}
@ -589,8 +587,8 @@ void MethodHandles::resolve_MemberName(Handle mname, TRAPS) {
java_lang_invoke_MemberName::set_vmtarget(mname(), vmtarget);
java_lang_invoke_MemberName::set_vmindex(mname(), vmindex);
java_lang_invoke_MemberName::set_modifiers(mname(), mods);
DEBUG_ONLY(int junk; klassOop junk2);
assert(decode_MemberName(mname(), junk2, junk) == result.resolved_method()(),
DEBUG_ONLY(KlassHandle junk1; int junk2);
assert(decode_MemberName(mname(), junk1, junk2) == result.resolved_method(),
"properly stored for later decoding");
return;
}
@ -677,16 +675,14 @@ void MethodHandles::expand_MemberName(Handle mname, int suppress, TRAPS) {
case IS_METHOD:
case IS_CONSTRUCTOR:
{
klassOop receiver_limit = NULL;
int decode_flags = 0;
methodHandle m(THREAD, decode_vmtarget(vmtarget, vmindex, NULL,
receiver_limit, decode_flags));
KlassHandle receiver_limit; int decode_flags = 0;
methodHandle m = decode_vmtarget(vmtarget, vmindex, NULL, receiver_limit, decode_flags);
if (m.is_null()) break;
if (!have_defc) {
klassOop defc = m->method_holder();
if (receiver_limit != NULL && receiver_limit != defc
&& Klass::cast(receiver_limit)->is_subtype_of(defc))
defc = receiver_limit;
if (receiver_limit.not_null() && receiver_limit() != defc
&& Klass::cast(receiver_limit())->is_subtype_of(defc))
defc = receiver_limit();
java_lang_invoke_MemberName::set_clazz(mname(), Klass::cast(defc)->java_mirror());
}
if (!have_name) {
@ -884,10 +880,9 @@ oop MethodHandles::encode_target(Handle mh, int format, TRAPS) {
// - AMH can have methodOop for static invoke with bound receiver
// - DMH can have methodOop for static invoke (on variable receiver)
// - DMH can have klassOop for dispatched (non-static) invoke
klassOop receiver_limit = NULL;
int decode_flags = 0;
methodOop m = decode_MethodHandle(mh(), receiver_limit, decode_flags);
if (m == NULL) return NULL;
KlassHandle receiver_limit; int decode_flags = 0;
methodHandle m = decode_MethodHandle(mh(), receiver_limit, decode_flags);
if (m.is_null()) return NULL;
switch (format) {
case ETF_REFLECT_METHOD:
// same as jni_ToReflectedMethod:
@ -903,10 +898,10 @@ oop MethodHandles::encode_target(Handle mh, int format, TRAPS) {
if (SystemDictionary::MemberName_klass() == NULL) break;
instanceKlassHandle mname_klass(THREAD, SystemDictionary::MemberName_klass());
mname_klass->initialize(CHECK_NULL);
Handle mname = mname_klass->allocate_instance_handle(CHECK_NULL);
Handle mname = mname_klass->allocate_instance_handle(CHECK_NULL); // possible safepoint
java_lang_invoke_MemberName::set_vmindex(mname(), VM_INDEX_UNINITIALIZED);
bool do_dispatch = ((decode_flags & MethodHandles::_dmf_does_dispatch) != 0);
init_MemberName(mname(), m, do_dispatch);
init_MemberName(mname(), m(), do_dispatch);
expand_MemberName(mname, 0, CHECK_NULL);
return mname();
}
@ -1459,8 +1454,8 @@ void MethodHandles::init_DirectMethodHandle(Handle mh, methodHandle m, bool do_d
// that links the interpreter calls to the method. We need the same
// bits, and will use the same calling sequence code.
int vmindex = methodOopDesc::garbage_vtable_index;
oop vmtarget = NULL;
int vmindex = methodOopDesc::garbage_vtable_index;
Handle vmtarget;
instanceKlass::cast(m->method_holder())->link_class(CHECK);
@ -1478,7 +1473,7 @@ void MethodHandles::init_DirectMethodHandle(Handle mh, methodHandle m, bool do_d
} else if (!do_dispatch || m->can_be_statically_bound()) {
// We are simulating an invokestatic or invokespecial instruction.
// Set up the method pointer, just like ConstantPoolCacheEntry::set_method().
vmtarget = m();
vmtarget = m;
// this does not help dispatch, but it will make it possible to parse this MH:
vmindex = methodOopDesc::nonvirtual_vtable_index;
assert(vmindex < 0, "(>=0) == do_dispatch");
@ -1490,7 +1485,7 @@ void MethodHandles::init_DirectMethodHandle(Handle mh, methodHandle m, bool do_d
// For a DMH, it is done now, when the handle is created.
Klass* k = Klass::cast(m->method_holder());
if (k->should_be_initialized()) {
k->initialize(CHECK);
k->initialize(CHECK); // possible safepoint
}
}
} else {
@ -1504,10 +1499,10 @@ void MethodHandles::init_DirectMethodHandle(Handle mh, methodHandle m, bool do_d
if (me == NULL) { THROW(vmSymbols::java_lang_InternalError()); }
java_lang_invoke_DirectMethodHandle::set_vmtarget(mh(), vmtarget);
java_lang_invoke_DirectMethodHandle::set_vmindex(mh(), vmindex);
DEBUG_ONLY(int flags; klassOop rlimit);
assert(MethodHandles::decode_method(mh(), rlimit, flags) == m(),
java_lang_invoke_DirectMethodHandle::set_vmtarget(mh(), vmtarget());
java_lang_invoke_DirectMethodHandle::set_vmindex( mh(), vmindex);
DEBUG_ONLY(KlassHandle rlimit; int flags);
assert(MethodHandles::decode_method(mh(), rlimit, flags) == m,
"properly stored for later decoding");
DEBUG_ONLY(bool actual_do_dispatch = ((flags & _dmf_does_dispatch) != 0));
assert(!(actual_do_dispatch && !do_dispatch),
@ -1523,10 +1518,13 @@ void MethodHandles::verify_BoundMethodHandle_with_receiver(Handle mh,
methodHandle m,
TRAPS) {
// Verify type.
oop receiver = java_lang_invoke_BoundMethodHandle::argument(mh());
Handle mtype(THREAD, java_lang_invoke_MethodHandle::type(mh()));
KlassHandle bound_recv_type;
if (receiver != NULL) bound_recv_type = KlassHandle(THREAD, receiver->klass());
{
oop receiver = java_lang_invoke_BoundMethodHandle::argument(mh());
if (receiver != NULL)
bound_recv_type = KlassHandle(THREAD, receiver->klass());
}
Handle mtype(THREAD, java_lang_invoke_MethodHandle::type(mh()));
verify_method_type(m, mtype, true, bound_recv_type, CHECK);
int receiver_pos = m->size_of_parameters() - 1;
@ -1573,8 +1571,8 @@ void MethodHandles::init_BoundMethodHandle_with_receiver(Handle mh,
java_lang_invoke_BoundMethodHandle::set_vmtarget(mh(), m());
DEBUG_ONLY(int junk; klassOop junk2);
assert(MethodHandles::decode_method(mh(), junk2, junk) == m(), "properly stored for later decoding");
DEBUG_ONLY(KlassHandle junk1; int junk2);
assert(MethodHandles::decode_method(mh(), junk1, junk2) == m, "properly stored for later decoding");
assert(decode_MethodHandle_stack_pushes(mh()) == 1, "BMH pushes one stack slot");
// Done!
@ -1682,8 +1680,11 @@ void MethodHandles::init_BoundMethodHandle(Handle mh, Handle target, int argnum,
}
// Get bound type and required slots.
oop ptype_oop = java_lang_invoke_MethodType::ptype(java_lang_invoke_MethodHandle::type(target()), argnum);
BasicType ptype = java_lang_Class::as_BasicType(ptype_oop);
BasicType ptype;
{
oop ptype_oop = java_lang_invoke_MethodType::ptype(java_lang_invoke_MethodHandle::type(target()), argnum);
ptype = java_lang_Class::as_BasicType(ptype_oop);
}
int slots_pushed = type2size[ptype];
// If (a) the target is a direct non-dispatched method handle,
@ -1694,13 +1695,12 @@ void MethodHandles::init_BoundMethodHandle(Handle mh, Handle target, int argnum,
if (OptimizeMethodHandles &&
target->klass() == SystemDictionary::DirectMethodHandle_klass() &&
(argnum == 0 || java_lang_invoke_DirectMethodHandle::vmindex(target()) < 0)) {
int decode_flags = 0; klassOop receiver_limit_oop = NULL;
methodHandle m(THREAD, decode_method(target(), receiver_limit_oop, decode_flags));
KlassHandle receiver_limit; int decode_flags = 0;
methodHandle m = decode_method(target(), receiver_limit, decode_flags);
if (m.is_null()) { THROW_MSG(vmSymbols::java_lang_InternalError(), "DMH failed to decode"); }
DEBUG_ONLY(int m_vmslots = m->size_of_parameters() - slots_pushed); // pos. of 1st arg.
assert(java_lang_invoke_BoundMethodHandle::vmslots(mh()) == m_vmslots, "type w/ m sig");
if (argnum == 0 && (decode_flags & _dmf_has_receiver) != 0) {
KlassHandle receiver_limit(THREAD, receiver_limit_oop);
init_BoundMethodHandle_with_receiver(mh, m,
receiver_limit, decode_flags,
CHECK);
@ -2019,7 +2019,6 @@ void MethodHandles::verify_AdapterMethodHandle(Handle mh, int argnum, TRAPS) {
}
void MethodHandles::init_AdapterMethodHandle(Handle mh, Handle target, int argnum, TRAPS) {
oop argument = java_lang_invoke_AdapterMethodHandle::argument(mh());
int argslot = java_lang_invoke_AdapterMethodHandle::vmargslot(mh());
jint conversion = java_lang_invoke_AdapterMethodHandle::conversion(mh());
jint conv_op = adapter_conversion_op(conversion);
@ -2215,18 +2214,14 @@ JVM_ENTRY(void, MHN_init_DMH(JNIEnv *env, jobject igcls, jobject mh_jh,
// which method are we really talking about?
if (target_jh == NULL) { THROW(vmSymbols::java_lang_InternalError()); }
oop target_oop = JNIHandles::resolve_non_null(target_jh);
if (java_lang_invoke_MemberName::is_instance(target_oop) &&
java_lang_invoke_MemberName::vmindex(target_oop) == VM_INDEX_UNINITIALIZED) {
Handle mname(THREAD, target_oop);
MethodHandles::resolve_MemberName(mname, CHECK);
target_oop = mname(); // in case of GC
Handle target(THREAD, JNIHandles::resolve_non_null(target_jh));
if (java_lang_invoke_MemberName::is_instance(target()) &&
java_lang_invoke_MemberName::vmindex(target()) == VM_INDEX_UNINITIALIZED) {
MethodHandles::resolve_MemberName(target, CHECK);
}
int decode_flags = 0; klassOop receiver_limit = NULL;
methodHandle m(THREAD,
MethodHandles::decode_method(target_oop,
receiver_limit, decode_flags));
KlassHandle receiver_limit; int decode_flags = 0;
methodHandle m = MethodHandles::decode_method(target(), receiver_limit, decode_flags);
if (m.is_null()) { THROW_MSG(vmSymbols::java_lang_InternalError(), "no such method"); }
// The trusted Java code that calls this method should already have performed
@ -2284,12 +2279,8 @@ JVM_ENTRY(void, MHN_init_BMH(JNIEnv *env, jobject igcls, jobject mh_jh,
// Target object is a reflective method. (%%% Do we need this alternate path?)
Untested("init_BMH of non-MH");
if (argnum != 0) { THROW(vmSymbols::java_lang_InternalError()); }
int decode_flags = 0; klassOop receiver_limit_oop = NULL;
methodHandle m(THREAD,
MethodHandles::decode_method(target(),
receiver_limit_oop,
decode_flags));
KlassHandle receiver_limit(THREAD, receiver_limit_oop);
KlassHandle receiver_limit; int decode_flags = 0;
methodHandle m = MethodHandles::decode_method(target(), receiver_limit, decode_flags);
MethodHandles::init_BoundMethodHandle_with_receiver(mh, m,
receiver_limit,
decode_flags,
@ -2424,12 +2415,12 @@ JVM_ENTRY(jint, MHN_getNamedCon(JNIEnv *env, jobject igcls, jint which, jobjectA
#ifndef PRODUCT
if (which >= 0 && which < con_value_count) {
int con = con_values[which];
objArrayOop box = (objArrayOop) JNIHandles::resolve(box_jh);
if (box != NULL && box->klass() == Universe::objectArrayKlassObj() && box->length() > 0) {
objArrayHandle box(THREAD, (objArrayOop) JNIHandles::resolve(box_jh));
if (box.not_null() && box->klass() == Universe::objectArrayKlassObj() && box->length() > 0) {
const char* str = &con_names[0];
for (int i = 0; i < which; i++)
str += strlen(str) + 1; // skip name and null
oop name = java_lang_String::create_oop_from_str(str, CHECK_0);
oop name = java_lang_String::create_oop_from_str(str, CHECK_0); // possible safepoint
box->obj_at_put(0, name);
}
return con;
@ -2486,10 +2477,10 @@ JVM_ENTRY(jint, MHN_getMembers(JNIEnv *env, jobject igcls,
jclass clazz_jh, jstring name_jh, jstring sig_jh,
int mflags, jclass caller_jh, jint skip, jobjectArray results_jh)) {
if (clazz_jh == NULL || results_jh == NULL) return -1;
klassOop k_oop = java_lang_Class::as_klassOop(JNIHandles::resolve_non_null(clazz_jh));
KlassHandle k(THREAD, java_lang_Class::as_klassOop(JNIHandles::resolve_non_null(clazz_jh)));
objArrayOop results = (objArrayOop) JNIHandles::resolve(results_jh);
if (results == NULL || !results->is_objArray()) return -1;
objArrayHandle results(THREAD, (objArrayOop) JNIHandles::resolve(results_jh));
if (results.is_null() || !results->is_objArray()) return -1;
TempNewSymbol name = NULL;
TempNewSymbol sig = NULL;
@ -2502,20 +2493,20 @@ JVM_ENTRY(jint, MHN_getMembers(JNIEnv *env, jobject igcls,
if (sig == NULL) return 0; // a match is not possible
}
klassOop caller = NULL;
KlassHandle caller;
if (caller_jh != NULL) {
oop caller_oop = JNIHandles::resolve_non_null(caller_jh);
if (!java_lang_Class::is_instance(caller_oop)) return -1;
caller = java_lang_Class::as_klassOop(caller_oop);
caller = KlassHandle(THREAD, java_lang_Class::as_klassOop(caller_oop));
}
if (name != NULL && sig != NULL && results != NULL) {
if (name != NULL && sig != NULL && results.not_null()) {
// try a direct resolve
// %%% TO DO
}
int res = MethodHandles::find_MemberNames(k_oop, name, sig, mflags,
caller, skip, results);
int res = MethodHandles::find_MemberNames(k(), name, sig, mflags,
caller(), skip, results());
// TO DO: expand at least some of the MemberNames, to avoid massive callbacks
return res;
}

View File

@ -265,13 +265,13 @@ class MethodHandles: AllStatic {
static inline address from_interpreted_entry(EntryKind ek);
// helpers for decode_method.
static methodOop decode_methodOop(methodOop m, int& decode_flags_result);
static methodOop decode_vmtarget(oop vmtarget, int vmindex, oop mtype, klassOop& receiver_limit_result, int& decode_flags_result);
static methodOop decode_MemberName(oop mname, klassOop& receiver_limit_result, int& decode_flags_result);
static methodOop decode_MethodHandle(oop mh, klassOop& receiver_limit_result, int& decode_flags_result);
static methodOop decode_DirectMethodHandle(oop mh, klassOop& receiver_limit_result, int& decode_flags_result);
static methodOop decode_BoundMethodHandle(oop mh, klassOop& receiver_limit_result, int& decode_flags_result);
static methodOop decode_AdapterMethodHandle(oop mh, klassOop& receiver_limit_result, int& decode_flags_result);
static methodOop decode_methodOop(methodOop m, int& decode_flags_result);
static methodHandle decode_vmtarget(oop vmtarget, int vmindex, oop mtype, KlassHandle& receiver_limit_result, int& decode_flags_result);
static methodHandle decode_MemberName(oop mname, KlassHandle& receiver_limit_result, int& decode_flags_result);
static methodHandle decode_MethodHandle(oop mh, KlassHandle& receiver_limit_result, int& decode_flags_result);
static methodHandle decode_DirectMethodHandle(oop mh, KlassHandle& receiver_limit_result, int& decode_flags_result);
static methodHandle decode_BoundMethodHandle(oop mh, KlassHandle& receiver_limit_result, int& decode_flags_result);
static methodHandle decode_AdapterMethodHandle(oop mh, KlassHandle& receiver_limit_result, int& decode_flags_result);
// Find out how many stack slots an mh pushes or pops.
// The result is *not* reported as a multiple of stack_move_unit();
@ -317,7 +317,7 @@ class MethodHandles: AllStatic {
_dmf_adapter_lsb = 0x20,
_DMF_ADAPTER_MASK = (_dmf_adapter_lsb << CONV_OP_LIMIT) - _dmf_adapter_lsb
};
static methodOop decode_method(oop x, klassOop& receiver_limit_result, int& decode_flags_result);
static methodHandle decode_method(oop x, KlassHandle& receiver_limit_result, int& decode_flags_result);
enum {
// format of query to getConstant:
GC_JVM_PUSH_LIMIT = 0,

View File

@ -620,6 +620,9 @@ class CommandLineFlags {
product(bool, UseSSE42Intrinsics, false, \
"SSE4.2 versions of intrinsics") \
\
product(bool, UseCondCardMark, false, \
"Check for already marked card before updating card table") \
\
develop(bool, TraceCallFixup, false, \
"traces all call fixups") \
\

View File

@ -389,7 +389,7 @@ void JavaCalls::call_helper(JavaValue* result, methodHandle* m, JavaCallArgument
// to Java
if (!os::stack_shadow_pages_available(THREAD, method)) {
// Throw stack overflow exception with preinitialized exception.
Exceptions::throw_stack_overflow_exception(THREAD, __FILE__, __LINE__);
Exceptions::throw_stack_overflow_exception(THREAD, __FILE__, __LINE__, method);
return;
} else {
// Touch pages checked if the OS needs them to be touched to be mapped.

View File

@ -1721,14 +1721,14 @@ char* SharedRuntime::generate_wrong_method_type_message(JavaThread* thread,
targetArity = ArgumentCount(target->signature()).size();
}
}
klassOop kignore; int dmf_flags = 0;
methodOop actual_method = MethodHandles::decode_method(actual, kignore, dmf_flags);
KlassHandle kignore; int dmf_flags = 0;
methodHandle actual_method = MethodHandles::decode_method(actual, kignore, dmf_flags);
if ((dmf_flags & ~(MethodHandles::_dmf_has_receiver |
MethodHandles::_dmf_does_dispatch |
MethodHandles::_dmf_from_interface)) != 0)
actual_method = NULL; // MH does extra binds, drops, etc.
actual_method = methodHandle(); // MH does extra binds, drops, etc.
bool has_receiver = ((dmf_flags & MethodHandles::_dmf_has_receiver) != 0);
if (actual_method != NULL) {
if (actual_method.not_null()) {
mhName = actual_method->signature()->as_C_string();
mhArity = ArgumentCount(actual_method->signature()).size();
if (!actual_method->is_static()) mhArity += 1;

View File

@ -291,7 +291,9 @@ void VMThread::run() {
// Among other things, this ensures that Eden top is correct.
Universe::heap()->prepare_for_verify();
os::check_heap();
Universe::verify(true, true); // Silent verification to not polute normal output
// Silent verification so as not to pollute normal output,
// unless we really asked for it.
Universe::verify(true, !(PrintGCDetails || Verbose));
}
CompileBroker::set_should_block();

View File

@ -1,5 +1,5 @@
/*
* Copyright (c) 2007, 2010, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2007, 2011, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -34,10 +34,10 @@ G1MemoryPoolSuper::G1MemoryPoolSuper(G1CollectedHeap* g1h,
size_t init_size,
bool support_usage_threshold) :
_g1h(g1h), CollectedMemoryPool(name,
MemoryPool::Heap,
init_size,
undefined_max(),
support_usage_threshold) {
MemoryPool::Heap,
init_size,
undefined_max(),
support_usage_threshold) {
assert(UseG1GC, "sanity");
}
@ -48,44 +48,27 @@ size_t G1MemoryPoolSuper::eden_space_committed(G1CollectedHeap* g1h) {
// See the comment at the top of g1MemoryPool.hpp
size_t G1MemoryPoolSuper::eden_space_used(G1CollectedHeap* g1h) {
size_t young_list_length = g1h->young_list()->length();
size_t eden_used = young_list_length * HeapRegion::GrainBytes;
size_t survivor_used = survivor_space_used(g1h);
eden_used = subtract_up_to_zero(eden_used, survivor_used);
return eden_used;
return g1h->g1mm()->eden_space_used();
}
// See the comment at the top of g1MemoryPool.hpp
size_t G1MemoryPoolSuper::survivor_space_committed(G1CollectedHeap* g1h) {
return MAX2(survivor_space_used(g1h), (size_t) HeapRegion::GrainBytes);
return g1h->g1mm()->survivor_space_committed();
}
// See the comment at the top of g1MemoryPool.hpp
size_t G1MemoryPoolSuper::survivor_space_used(G1CollectedHeap* g1h) {
size_t survivor_num = g1h->g1_policy()->recorded_survivor_regions();
size_t survivor_used = survivor_num * HeapRegion::GrainBytes;
return survivor_used;
return g1h->g1mm()->survivor_space_used();
}
// See the comment at the top of g1MemoryPool.hpp
size_t G1MemoryPoolSuper::old_space_committed(G1CollectedHeap* g1h) {
size_t committed = overall_committed(g1h);
size_t eden_committed = eden_space_committed(g1h);
size_t survivor_committed = survivor_space_committed(g1h);
committed = subtract_up_to_zero(committed, eden_committed);
committed = subtract_up_to_zero(committed, survivor_committed);
committed = MAX2(committed, (size_t) HeapRegion::GrainBytes);
return committed;
return g1h->g1mm()->old_space_committed();
}
// See the comment at the top of g1MemoryPool.hpp
size_t G1MemoryPoolSuper::old_space_used(G1CollectedHeap* g1h) {
size_t used = overall_used(g1h);
size_t eden_used = eden_space_used(g1h);
size_t survivor_used = survivor_space_used(g1h);
used = subtract_up_to_zero(used, eden_used);
used = subtract_up_to_zero(used, survivor_used);
return used;
return g1h->g1mm()->old_space_used();
}
G1EdenPool::G1EdenPool(G1CollectedHeap* g1h) :

View File

@ -1,5 +1,5 @@
/*
* Copyright (c) 2007, 2010, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2007, 2011, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -46,68 +46,9 @@ class G1CollectedHeap;
// get, as this does affect the performance and behavior of G1. Which
// is why we introduce the three memory pools implemented here.
//
// The above approach inroduces a couple of challenging issues in the
// implementation of the three memory pools:
// See comments in g1MonitoringSupport.hpp for additional details
// on this model.
//
// 1) The used space calculation for a pool is not necessarily
// independent of the others. We can easily get from G1 the overall
// used space in the entire heap, the number of regions in the young
// generation (includes both eden and survivors), and the number of
// survivor regions. So, from that we calculate:
//
// survivor_used = survivor_num * region_size
// eden_used = young_region_num * region_size - survivor_used
// old_gen_used = overall_used - eden_used - survivor_used
//
// Note that survivor_used and eden_used are upper bounds. To get the
// actual value we would have to iterate over the regions and add up
// ->used(). But that'd be expensive. So, we'll accept some lack of
// accuracy for those two. But, we have to be careful when calculating
// old_gen_used, in case we subtract from overall_used more then the
// actual number and our result goes negative.
//
// 2) Calculating the used space is straightforward, as described
// above. However, how do we calculate the committed space, given that
// we allocate space for the eden, survivor, and old gen out of the
// same pool of regions? One way to do this is to use the used value
// as also the committed value for the eden and survivor spaces and
// then calculate the old gen committed space as follows:
//
// old_gen_committed = overall_committed - eden_committed - survivor_committed
//
// Maybe a better way to do that would be to calculate used for eden
// and survivor as a sum of ->used() over their regions and then
// calculate committed as region_num * region_size (i.e., what we use
// to calculate the used space now). This is something to consider
// in the future.
//
// 3) Another decision that is again not straightforward is what is
// the max size that each memory pool can grow to. One way to do this
// would be to use the committed size for the max for the eden and
// survivors and calculate the old gen max as follows (basically, it's
// a similar pattern to what we use for the committed space, as
// described above):
//
// old_gen_max = overall_max - eden_max - survivor_max
//
// Unfortunately, the above makes the max of each pool fluctuate over
// time and, even though this is allowed according to the spec, it
// broke several assumptions in the M&M framework (there were cases
// where used would reach a value greater than max). So, for max we
// use -1, which means "undefined" according to the spec.
//
// 4) Now, there is a very subtle issue with all the above. The
// framework will call get_memory_usage() on the three pools
// asynchronously. As a result, each call might get a different value
// for, say, survivor_num which will yield inconsistent values for
// eden_used, survivor_used, and old_gen_used (as survivor_num is used
// in the calculation of all three). This would normally be
// ok. However, it's possible that this might cause the sum of
// eden_used, survivor_used, and old_gen_used to go over the max heap
// size and this seems to sometimes cause JConsole (and maybe other
// clients) to get confused. There's not a really an easy / clean
// solution to this problem, due to the asynchrounous nature of the
// framework.
// This class is shared by the three G1 memory pool classes
@ -116,22 +57,6 @@ class G1CollectedHeap;
// (see comment above), we put the calculations in this class so that
// we can easily share them among the subclasses.
class G1MemoryPoolSuper : public CollectedMemoryPool {
private:
// It returns x - y if x > y, 0 otherwise.
// As described in the comment above, some of the inputs to the
// calculations we have to do are obtained concurrently and hence
// may be inconsistent with each other. So, this provides a
// defensive way of performing the subtraction and avoids the value
// going negative (which would mean a very large result, given that
// the parameter are size_t).
static size_t subtract_up_to_zero(size_t x, size_t y) {
if (x > y) {
return x - y;
} else {
return 0;
}
}
protected:
G1CollectedHeap* _g1h;
@ -148,13 +73,6 @@ protected:
return (size_t) -1;
}
static size_t overall_committed(G1CollectedHeap* g1h) {
return g1h->capacity();
}
static size_t overall_used(G1CollectedHeap* g1h) {
return g1h->used_unlocked();
}
static size_t eden_space_committed(G1CollectedHeap* g1h);
static size_t eden_space_used(G1CollectedHeap* g1h);

View File

@ -207,7 +207,7 @@ void Exceptions::_throw_args(Thread* thread, const char* file, int line, Symbol*
}
void Exceptions::throw_stack_overflow_exception(Thread* THREAD, const char* file, int line) {
void Exceptions::throw_stack_overflow_exception(Thread* THREAD, const char* file, int line, methodHandle method) {
Handle exception;
if (!THREAD->has_pending_exception()) {
klassOop k = SystemDictionary::StackOverflowError_klass();
@ -215,13 +215,13 @@ void Exceptions::throw_stack_overflow_exception(Thread* THREAD, const char* file
exception = Handle(THREAD, e); // fill_in_stack trace does gc
assert(instanceKlass::cast(k)->is_initialized(), "need to increase min_stack_allowed calculation");
if (StackTraceInThrowable) {
java_lang_Throwable::fill_in_stack_trace(exception);
java_lang_Throwable::fill_in_stack_trace(exception, method());
}
} else {
// if prior exception, throw that one instead
exception = Handle(THREAD, THREAD->pending_exception());
}
_throw_oop(THREAD, file, line, exception());
_throw(THREAD, file, line, exception);
}
void Exceptions::fthrow(Thread* thread, const char* file, int line, Symbol* h_name, const char* format, ...) {

View File

@ -144,7 +144,7 @@ class Exceptions {
const char* message,
ExceptionMsgToUtf8Mode to_utf8_safe = safe_to_utf8);
static void throw_stack_overflow_exception(Thread* thread, const char* file, int line);
static void throw_stack_overflow_exception(Thread* thread, const char* file, int line, methodHandle method);
// for AbortVMOnException flag
NOT_PRODUCT(static void debug_check_abort(Handle exception, const char* message = NULL);)