This commit is contained in:
Coleen Phillimore 2014-07-14 10:15:21 -04:00
commit c9b2bc62c9
2991 changed files with 67823 additions and 46239 deletions

View File

@ -261,3 +261,7 @@ efe7dbc6088691757404e0c8745f894e3ca9c022 jdk9-b09
4a09f5d30be844ac6f714bdb0f63d8c3c08b9a98 jdk9-b16
410bccbded9e9cce80f1e13ad221e37ae97a3986 jdk9-b17
c5495e25c7258ab5f96a1ae14610887d76d2be63 jdk9-b18
2dcf544eb7ed5ac6a3f7813a32e33acea7442405 jdk9-b19
89731ae72a761afdf4262e8b9513f302f6563f89 jdk9-b20
28dd0c7beb3cad9cf95f17b4b5ad87eb447a4084 jdk9-b21
9678e0db8ff6ed845d4c2ee4a3baf7f386a777e5 jdk9-b22

View File

@ -261,3 +261,7 @@ b114474fb25af4e73cb7219f7c04bd8994da03a5 jdk9-b15
cf22a728521f91a4692b433d39d730a0a1b23155 jdk9-b16
24152ee0ee1abef54a8bab04c099261dba7bcca5 jdk9-b17
65abab59f783fcf02ff8e133431c252f9e5f07d5 jdk9-b18
75a08df650eb3126bab0c4d15241f5886162393c jdk9-b19
ee4fd72b2ec3d92497f37163352f294aa695c6fb jdk9-b20
9052803f4d01feda28b3d65f2b64dd457d21c7b6 jdk9-b21
8e4bdab4c362aadde2d321f968cd503a2f779e2f jdk9-b22

View File

@ -512,7 +512,7 @@ AC_DEFUN_ONCE([BASIC_SETUP_DEVKIT],
)
AC_ARG_WITH(sysroot, [AS_HELP_STRING([--with-sysroot],
[use this directory as sysroot)])],
[use this directory as sysroot])],
[SYSROOT=$with_sysroot]
)
@ -531,6 +531,75 @@ AC_DEFUN_ONCE([BASIC_SETUP_DEVKIT],
[BASIC_PREPEND_TO_PATH([EXTRA_PATH],$with_extra_path)]
)
if test "x$OPENJDK_BUILD_OS" = "xmacosx"; then
# detect if Xcode is installed by running xcodebuild -version
# if no Xcode installed, xcodebuild exits with 1
# if Xcode is installed, even if xcode-select is misconfigured, then it exits with 0
if /usr/bin/xcodebuild -version >/dev/null 2>&1; then
# We need to use xcodebuild in the toolchain dir provided by the user, this will
# fall back on the stub binary in /usr/bin/xcodebuild
AC_PATH_PROG([XCODEBUILD], [xcodebuild], [/usr/bin/xcodebuild], [$TOOLCHAIN_PATH])
else
# this should result in SYSROOT being empty, unless --with-sysroot is provided
# when only the command line tools are installed there are no SDKs, so headers
# are copied into the system frameworks
XCODEBUILD=
AC_SUBST(XCODEBUILD)
fi
AC_MSG_CHECKING([for sdk name])
AC_ARG_WITH([sdk-name], [AS_HELP_STRING([--with-sdk-name],
[use the platform SDK of the given name. @<:@macosx@:>@])],
[SDKNAME=$with_sdk_name]
)
AC_MSG_RESULT([$SDKNAME])
# if toolchain path is specified then don't rely on system headers, they may not compile
HAVE_SYSTEM_FRAMEWORK_HEADERS=0
test -z "$TOOLCHAIN_PATH" && \
HAVE_SYSTEM_FRAMEWORK_HEADERS=`test ! -f /System/Library/Frameworks/Foundation.framework/Headers/Foundation.h; echo $?`
if test -z "$SYSROOT"; then
if test -n "$XCODEBUILD"; then
# if we don't have system headers, use default SDK name (last resort)
if test -z "$SDKNAME" -a $HAVE_SYSTEM_FRAMEWORK_HEADERS -eq 0; then
SDKNAME=${SDKNAME:-macosx}
fi
if test -n "$SDKNAME"; then
# Call xcodebuild to determine SYSROOT
SYSROOT=`"$XCODEBUILD" -sdk $SDKNAME -version | grep '^Path: ' | sed 's/Path: //'`
fi
else
if test $HAVE_SYSTEM_FRAMEWORK_HEADERS -eq 0; then
AC_MSG_ERROR([No xcodebuild tool and no system framework headers found, use --with-sysroot or --with-sdk-name to provide a path to a valid SDK])
fi
fi
else
# warn user if --with-sdk-name was also set
if test -n "$with_sdk_name"; then
AC_MSG_WARN([Both SYSROOT and --with-sdk-name are set, only SYSROOT will be used])
fi
fi
if test $HAVE_SYSTEM_FRAMEWORK_HEADERS -eq 0 -a -z "$SYSROOT"; then
# If no system framework headers, then SYSROOT must be set, or we won't build
AC_MSG_ERROR([Unable to determine SYSROOT and no headers found in /System/Library/Frameworks. Check Xcode configuration, --with-sysroot or --with-sdk-name arguments.])
fi
# Perform a basic sanity test
if test ! -f "$SYSROOT/System/Library/Frameworks/Foundation.framework/Headers/Foundation.h"; then
if test -z "$SYSROOT"; then
AC_MSG_ERROR([Unable to find required framework headers, provide a path to an SDK via --with-sysroot or --with-sdk-name and be sure Xcode is installed properly])
else
AC_MSG_ERROR([Invalid SDK or SYSROOT path, dependent framework headers not found])
fi
fi
# set SDKROOT too, Xcode tools will pick it up
AC_SUBST(SDKROOT,$SYSROOT)
fi
# Prepend the extra path to the global path
BASIC_PREPEND_TO_PATH([PATH],$EXTRA_PATH)

View File

@ -116,8 +116,8 @@ AC_DEFUN_ONCE([FLAGS_SETUP_INIT_FLAGS],
AC_SUBST(RC_FLAGS)
if test "x$TOOLCHAIN_TYPE" = xmicrosoft; then
# FIXME: likely bug, should be CCXXFLAGS_JDK? or one for C or CXX.
CCXXFLAGS="$CCXXFLAGS -nologo"
# silence copyright notice and other headers.
COMMON_CCXXFLAGS="$COMMON_CCXXFLAGS -nologo"
fi
if test "x$SYSROOT" != "x"; then
@ -131,6 +131,10 @@ AC_DEFUN_ONCE([FLAGS_SETUP_INIT_FLAGS],
-L$SYSROOT/lib$OPENJDK_TARGET_CPU_ISADIR \
-L$SYSROOT/usr/ccs/lib$OPENJDK_TARGET_CPU_ISADIR"
fi
elif test "x$OPENJDK_TARGET_OS" = xmacosx; then
# Apple only wants -isysroot <path>, but we also need -iframework<path>/System/Library/Frameworks
SYSROOT_CFLAGS="-isysroot \"$SYSROOT\" -iframework\"$SYSROOT/System/Library/Frameworks\""
SYSROOT_LDFLAGS=$SYSROOT_CFLAGS
elif test "x$TOOLCHAIN_TYPE" = xgcc; then
SYSROOT_CFLAGS="--sysroot=\"$SYSROOT\""
SYSROOT_LDFLAGS="--sysroot=\"$SYSROOT\""
@ -143,6 +147,14 @@ AC_DEFUN_ONCE([FLAGS_SETUP_INIT_FLAGS],
LEGACY_EXTRA_CXXFLAGS="$LEGACY_EXTRA_CXXFLAGS $SYSROOT_CFLAGS"
LEGACY_EXTRA_LDFLAGS="$LEGACY_EXTRA_LDFLAGS $SYSROOT_LDFLAGS"
fi
# These always need to be set, or we can't find the frameworks embedded in JavaVM.framework
# set this here so it doesn't have to be peppered throughout the forest
if test "x$OPENJDK_TARGET_OS" = xmacosx; then
SYSROOT_CFLAGS="$SYSROOT_CFLAGS -F\"$SYSROOT/System/Library/Frameworks/JavaVM.framework/Frameworks\""
SYSROOT_LDFLAGS="$SYSROOT_LDFLAGS -F\"$SYSROOT/System/Library/Frameworks/JavaVM.framework/Frameworks\""
fi
AC_SUBST(SYSROOT_CFLAGS)
AC_SUBST(SYSROOT_LDFLAGS)
])
@ -302,6 +314,7 @@ AC_DEFUN_ONCE([FLAGS_SETUP_COMPILER_FLAGS_FOR_OPTIMIZATION],
# Debug symbols
if test "x$TOOLCHAIN_TYPE" = xgcc; then
if test "x$OPENJDK_TARGET_CPU_BITS" = "x64" && test "x$DEBUG_LEVEL" = "xfastdebug"; then
# reduce from default "-g2" option to save space
CFLAGS_DEBUG_SYMBOLS="-g1"
CXXFLAGS_DEBUG_SYMBOLS="-g1"
else
@ -313,6 +326,7 @@ AC_DEFUN_ONCE([FLAGS_SETUP_COMPILER_FLAGS_FOR_OPTIMIZATION],
CXXFLAGS_DEBUG_SYMBOLS="-g"
elif test "x$TOOLCHAIN_TYPE" = xsolstudio; then
CFLAGS_DEBUG_SYMBOLS="-g -xs"
# FIXME: likely a bug, this disables debug symbols rather than enables them
CXXFLAGS_DEBUG_SYMBOLS="-g0 -xs"
elif test "x$TOOLCHAIN_TYPE" = xxlc; then
CFLAGS_DEBUG_SYMBOLS="-g"
@ -321,6 +335,31 @@ AC_DEFUN_ONCE([FLAGS_SETUP_COMPILER_FLAGS_FOR_OPTIMIZATION],
AC_SUBST(CFLAGS_DEBUG_SYMBOLS)
AC_SUBST(CXXFLAGS_DEBUG_SYMBOLS)
# bounds, memory and behavior checking options
if test "x$TOOLCHAIN_TYPE" = xgcc; then
case $DEBUG_LEVEL in
release )
# no adjustment
;;
fastdebug )
# Add compile time bounds checks.
CFLAGS_DEBUG_OPTIONS="-U_FORTIFY_SOURCE -D_FORTIFY_SOURCE=1"
CXXFLAGS_DEBUG_OPTIONS="-U_FORTIFY_SOURCE -D_FORTIFY_SOURCE=1"
;;
slowdebug )
# Add runtime bounds checks and symbol info.
CFLAGS_DEBUG_OPTIONS="-U_FORTIFY_SOURCE -D_FORTIFY_SOURCE=2 -fstack-protector-all --param ssp-buffer-size=1"
CXXFLAGS_DEBUG_OPTIONS="-U_FORTIFY_SOURCE -D_FORTIFY_SOURCE=2 -fstack-protector-all --param ssp-buffer-size=1"
if test "x$HAS_CFLAG_DETECT_UNDEFINED_BEHAVIOR" = "xtrue"; then
CFLAGS_DEBUG_OPTIONS="$CFLAGS_DEBUG_OPTIONS $CFLAG_DETECT_UNDEFINED_BEHAVIOR_FLAG"
CXXFLAGS_DEBUG_OPTIONS="$CXXFLAGS_DEBUG_OPTIONS $CFLAG_DETECT_UNDEFINED_BEHAVIOR_FLAG"
fi
;;
esac
fi
AC_SUBST(CFLAGS_DEBUG_OPTIONS)
AC_SUBST(CXXFLAGS_DEBUG_OPTIONS)
# Optimization levels
if test "x$TOOLCHAIN_TYPE" = xsolstudio; then
CC_HIGHEST="$CC_HIGHEST -fns -fsimple -fsingle -xbuiltin=%all -xdepend -xrestrict -xlibmil"
@ -330,10 +369,12 @@ AC_DEFUN_ONCE([FLAGS_SETUP_COMPILER_FLAGS_FOR_OPTIMIZATION],
C_O_FLAG_HIGHEST="-xO4 -Wu,-O4~yz $CC_HIGHEST -xalias_level=basic -xregs=no%frameptr"
C_O_FLAG_HI="-xO4 -Wu,-O4~yz -xregs=no%frameptr"
C_O_FLAG_NORM="-xO2 -Wu,-O2~yz -xregs=no%frameptr"
C_O_FLAG_DEBUG="-xregs=no%frameptr"
C_O_FLAG_NONE="-xregs=no%frameptr"
CXX_O_FLAG_HIGHEST="-xO4 -Qoption ube -O4~yz $CC_HIGHEST -xregs=no%frameptr"
CXX_O_FLAG_HI="-xO4 -Qoption ube -O4~yz -xregs=no%frameptr"
CXX_O_FLAG_NORM="-xO2 -Qoption ube -O2~yz -xregs=no%frameptr"
CXX_O_FLAG_DEBUG="-xregs=no%frameptr"
CXX_O_FLAG_NONE="-xregs=no%frameptr"
if test "x$OPENJDK_TARGET_CPU_BITS" = "x32"; then
C_O_FLAG_HIGHEST="$C_O_FLAG_HIGHEST -xchip=pentium"
@ -343,10 +384,12 @@ AC_DEFUN_ONCE([FLAGS_SETUP_COMPILER_FLAGS_FOR_OPTIMIZATION],
C_O_FLAG_HIGHEST="-xO4 -Wc,-Qrm-s -Wc,-Qiselect-T0 $CC_HIGHEST -xalias_level=basic -xprefetch=auto,explicit -xchip=ultra"
C_O_FLAG_HI="-xO4 -Wc,-Qrm-s -Wc,-Qiselect-T0"
C_O_FLAG_NORM="-xO2 -Wc,-Qrm-s -Wc,-Qiselect-T0"
C_O_FLAG_DEBUG=""
C_O_FLAG_NONE=""
CXX_O_FLAG_HIGHEST="-xO4 -Qoption cg -Qrm-s -Qoption cg -Qiselect-T0 $CC_HIGHEST -xprefetch=auto,explicit -xchip=ultra"
CXX_O_FLAG_HI="-xO4 -Qoption cg -Qrm-s -Qoption cg -Qiselect-T0"
CXX_O_FLAG_NORM="-xO2 -Qoption cg -Qrm-s -Qoption cg -Qiselect-T0"
C_O_FLAG_DEBUG=""
CXX_O_FLAG_NONE=""
fi
else
@ -359,13 +402,17 @@ AC_DEFUN_ONCE([FLAGS_SETUP_COMPILER_FLAGS_FOR_OPTIMIZATION],
C_O_FLAG_HIGHEST="-Os"
C_O_FLAG_HI="-Os"
C_O_FLAG_NORM="-Os"
C_O_FLAG_NONE=""
else
C_O_FLAG_HIGHEST="-O3"
C_O_FLAG_HI="-O3"
C_O_FLAG_NORM="-O2"
C_O_FLAG_NONE="-O0"
fi
if test "x$HAS_CFLAG_OPTIMIZE_DEBUG" = "xtrue"; then
C_O_FLAG_DEBUG="$CFLAG_OPTIMIZE_DEBUG_FLAG"
else
C_O_FLAG_DEBUG="-O0"
fi
C_O_FLAG_NONE="-O0"
elif test "x$TOOLCHAIN_TYPE" = xclang; then
if test "x$OPENJDK_TARGET_OS" = xmacosx; then
# On MacOSX we optimize for size, something
@ -373,37 +420,63 @@ AC_DEFUN_ONCE([FLAGS_SETUP_COMPILER_FLAGS_FOR_OPTIMIZATION],
C_O_FLAG_HIGHEST="-Os"
C_O_FLAG_HI="-Os"
C_O_FLAG_NORM="-Os"
C_O_FLAG_NONE=""
else
C_O_FLAG_HIGHEST="-O3"
C_O_FLAG_HI="-O3"
C_O_FLAG_NORM="-O2"
C_O_FLAG_NONE="-O0"
fi
C_O_FLAG_DEBUG="-O0"
C_O_FLAG_NONE="-O0"
elif test "x$TOOLCHAIN_TYPE" = xxlc; then
C_O_FLAG_HIGHEST="-O3"
C_O_FLAG_HI="-O3 -qstrict"
C_O_FLAG_NORM="-O2"
C_O_FLAG_NONE=""
C_O_FLAG_DEBUG="-qnoopt"
C_O_FLAG_NONE="-qnoop"
elif test "x$TOOLCHAIN_TYPE" = xmicrosoft; then
C_O_FLAG_HIGHEST="-O2"
C_O_FLAG_HI="-O1"
C_O_FLAG_NORM="-O1"
C_O_FLAG_DEBUG="-Od"
C_O_FLAG_NONE="-Od"
fi
CXX_O_FLAG_HIGHEST="$C_O_FLAG_HIGHEST"
CXX_O_FLAG_HI="$C_O_FLAG_HI"
CXX_O_FLAG_NORM="$C_O_FLAG_NORM"
CXX_O_FLAG_DEBUG="$C_O_FLAG_DEBUG"
CXX_O_FLAG_NONE="$C_O_FLAG_NONE"
fi
# Adjust optimization flags according to debug level.
case $DEBUG_LEVEL in
release )
# no adjustment
;;
fastdebug )
# Not quite so much optimization
C_O_FLAG_HI="$C_O_FLAG_NORM"
CXX_O_FLAG_HI="$CXX_O_FLAG_NORM"
;;
slowdebug )
# Disable optimization
C_O_FLAG_HIGHEST="$C_O_FLAG_DEBUG"
C_O_FLAG_HI="$C_O_FLAG_DEBUG"
C_O_FLAG_NORM="$C_O_FLAG_DEBUG"
CXX_O_FLAG_HIGHEST="$CXX_O_FLAG_DEBUG"
CXX_O_FLAG_HI="$CXX_O_FLAG_DEBUG"
CXX_O_FLAG_NORM="$CXX_O_FLAG_DEBUG"
;;
esac
AC_SUBST(C_O_FLAG_HIGHEST)
AC_SUBST(C_O_FLAG_HI)
AC_SUBST(C_O_FLAG_NORM)
AC_SUBST(C_O_FLAG_DEBUG)
AC_SUBST(C_O_FLAG_NONE)
AC_SUBST(CXX_O_FLAG_HIGHEST)
AC_SUBST(CXX_O_FLAG_HI)
AC_SUBST(CXX_O_FLAG_NORM)
AC_SUBST(CXX_O_FLAG_DEBUG)
AC_SUBST(CXX_O_FLAG_NONE)
])
@ -461,11 +534,12 @@ AC_DEFUN_ONCE([FLAGS_SETUP_COMPILER_FLAGS_FOR_JDK],
# Later we will also have CFLAGS and LDFLAGS for the hotspot subrepo build.
#
# Setup compiler/platform specific flags to CFLAGS_JDK,
# CXXFLAGS_JDK and CCXXFLAGS_JDK (common to C and CXX?)
# Setup compiler/platform specific flags into
# CFLAGS_JDK - C Compiler flags
# CXXFLAGS_JDK - C++ Compiler flags
# COMMON_CCXXFLAGS_JDK - common to C and C++
if test "x$TOOLCHAIN_TYPE" = xgcc; then
# these options are used for both C and C++ compiles
CCXXFLAGS_JDK="$CCXXFLAGS $CCXXFLAGS_JDK -Wall -Wno-parentheses -Wextra -Wno-unused -Wno-unused-parameter -Wformat=2 \
COMMON_CCXXFLAGS_JDK="$COMMON_CCXXFLAGS $COMMON_CCXXFLAGS_JDK -Wall -Wno-parentheses -Wextra -Wno-unused -Wno-unused-parameter -Wformat=2 \
-pipe -D_GNU_SOURCE -D_REENTRANT -D_LARGEFILE64_SOURCE"
case $OPENJDK_TARGET_CPU_ARCH in
arm )
@ -477,14 +551,14 @@ AC_DEFUN_ONCE([FLAGS_SETUP_COMPILER_FLAGS_FOR_JDK],
CFLAGS_JDK="${CFLAGS_JDK} -fno-strict-aliasing"
;;
* )
CCXXFLAGS_JDK="$CCXXFLAGS_JDK -fno-omit-frame-pointer"
COMMON_CCXXFLAGS_JDK="$COMMON_CCXXFLAGS_JDK -fno-omit-frame-pointer"
CFLAGS_JDK="${CFLAGS_JDK} -fno-strict-aliasing"
;;
esac
elif test "x$TOOLCHAIN_TYPE" = xsolstudio; then
CCXXFLAGS_JDK="$CCXXFLAGS $CCXXFLAGS_JDK -DTRACING -DMACRO_MEMSYS_OPS -DBREAKPTS"
COMMON_CCXXFLAGS_JDK="$COMMON_CCXXFLAGS $COMMON_CCXXFLAGS_JDK -DTRACING -DMACRO_MEMSYS_OPS -DBREAKPTS"
if test "x$OPENJDK_TARGET_CPU_ARCH" = xx86; then
CCXXFLAGS_JDK="$CCXXFLAGS_JDK -DcpuIntel -Di586 -D$OPENJDK_TARGET_CPU_LEGACY_LIB"
COMMON_CCXXFLAGS_JDK="$COMMON_CCXXFLAGS_JDK -DcpuIntel -Di586 -D$OPENJDK_TARGET_CPU_LEGACY_LIB"
CFLAGS_JDK="$CFLAGS_JDK -erroff=E_BAD_PRAGMA_PACK_VALUE"
fi
@ -494,14 +568,14 @@ AC_DEFUN_ONCE([FLAGS_SETUP_COMPILER_FLAGS_FOR_JDK],
CFLAGS_JDK="$CFLAGS_JDK -D_GNU_SOURCE -D_REENTRANT -D_LARGEFILE64_SOURCE -DSTDC"
CXXFLAGS_JDK="$CXXFLAGS_JDK -D_GNU_SOURCE -D_REENTRANT -D_LARGEFILE64_SOURCE -DSTDC"
elif test "x$TOOLCHAIN_TYPE" = xmicrosoft; then
CCXXFLAGS_JDK="$CCXXFLAGS $CCXXFLAGS_JDK -Zi -MD -Zc:wchar_t- -W3 -wd4800 \
COMMON_CCXXFLAGS_JDK="$COMMON_CCXXFLAGS $COMMON_CCXXFLAGS_JDK -Zi -MD -Zc:wchar_t- -W3 -wd4800 \
-D_STATIC_CPPLIB -D_DISABLE_DEPRECATE_STATIC_CPPLIB -DWIN32_LEAN_AND_MEAN \
-D_CRT_SECURE_NO_DEPRECATE -D_CRT_NONSTDC_NO_DEPRECATE \
-DWIN32 -DIAL"
if test "x$OPENJDK_TARGET_CPU" = xx86_64; then
CCXXFLAGS_JDK="$CCXXFLAGS_JDK -D_AMD64_ -Damd64"
COMMON_CCXXFLAGS_JDK="$COMMON_CCXXFLAGS_JDK -D_AMD64_ -Damd64"
else
CCXXFLAGS_JDK="$CCXXFLAGS_JDK -D_X86_ -Dx86"
COMMON_CCXXFLAGS_JDK="$COMMON_CCXXFLAGS_JDK -D_X86_ -Dx86"
fi
fi
@ -509,28 +583,20 @@ AC_DEFUN_ONCE([FLAGS_SETUP_COMPILER_FLAGS_FOR_JDK],
# Adjust flags according to debug level.
case $DEBUG_LEVEL in
fastdebug )
CFLAGS_JDK="$CFLAGS_JDK $CFLAGS_DEBUG_SYMBOLS"
CXXFLAGS_JDK="$CXXFLAGS_JDK $CXXFLAGS_DEBUG_SYMBOLS"
C_O_FLAG_HI="$C_O_FLAG_NORM"
C_O_FLAG_NORM="$C_O_FLAG_NORM"
CXX_O_FLAG_HI="$CXX_O_FLAG_NORM"
CXX_O_FLAG_NORM="$CXX_O_FLAG_NORM"
fastdebug | slowdebug )
CFLAGS_JDK="$CFLAGS_JDK $CFLAGS_DEBUG_SYMBOLS $CFLAGS_DEBUG_OPTIONS"
CXXFLAGS_JDK="$CXXFLAGS_JDK $CXXFLAGS_DEBUG_SYMBOLS $CXXFLAGS_DEBUG_OPTIONS"
JAVAC_FLAGS="$JAVAC_FLAGS -g"
;;
slowdebug )
CFLAGS_JDK="$CFLAGS_JDK $CFLAGS_DEBUG_SYMBOLS"
CXXFLAGS_JDK="$CXXFLAGS_JDK $CXXFLAGS_DEBUG_SYMBOLS"
C_O_FLAG_HI="$C_O_FLAG_NONE"
C_O_FLAG_NORM="$C_O_FLAG_NONE"
CXX_O_FLAG_HI="$CXX_O_FLAG_NONE"
CXX_O_FLAG_NORM="$CXX_O_FLAG_NONE"
JAVAC_FLAGS="$JAVAC_FLAGS -g"
release )
;;
* )
AC_MSG_ERROR([Unrecognized \$DEBUG_LEVEL: $DEBUG_LEVEL])
;;
esac
# Setup LP64
CCXXFLAGS_JDK="$CCXXFLAGS_JDK $ADD_LP64"
COMMON_CCXXFLAGS_JDK="$COMMON_CCXXFLAGS_JDK $ADD_LP64"
# Set some common defines. These works for all compilers, but assume
# -D is universally accepted.
@ -543,57 +609,53 @@ AC_DEFUN_ONCE([FLAGS_SETUP_COMPILER_FLAGS_FOR_JDK],
# Note: -Dmacro is the same as #define macro 1
# -Dmacro= is the same as #define macro
if test "x$OPENJDK_TARGET_OS" = xsolaris; then
CCXXFLAGS_JDK="$CCXXFLAGS_JDK -D_LITTLE_ENDIAN="
COMMON_CCXXFLAGS_JDK="$COMMON_CCXXFLAGS_JDK -D_LITTLE_ENDIAN="
else
CCXXFLAGS_JDK="$CCXXFLAGS_JDK -D_LITTLE_ENDIAN"
COMMON_CCXXFLAGS_JDK="$COMMON_CCXXFLAGS_JDK -D_LITTLE_ENDIAN"
fi
else
# Same goes for _BIG_ENDIAN. Do we really need to set *ENDIAN on Solaris if they
# are defined in the system?
if test "x$OPENJDK_TARGET_OS" = xsolaris; then
CCXXFLAGS_JDK="$CCXXFLAGS_JDK -D_BIG_ENDIAN="
COMMON_CCXXFLAGS_JDK="$COMMON_CCXXFLAGS_JDK -D_BIG_ENDIAN="
else
CCXXFLAGS_JDK="$CCXXFLAGS_JDK -D_BIG_ENDIAN"
COMMON_CCXXFLAGS_JDK="$COMMON_CCXXFLAGS_JDK -D_BIG_ENDIAN"
fi
fi
# Setup target OS define. Use OS target name but in upper case.
OPENJDK_TARGET_OS_UPPERCASE=`$ECHO $OPENJDK_TARGET_OS | $TR 'abcdefghijklmnopqrstuvwxyz' 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'`
CCXXFLAGS_JDK="$CCXXFLAGS_JDK -D$OPENJDK_TARGET_OS_UPPERCASE"
COMMON_CCXXFLAGS_JDK="$COMMON_CCXXFLAGS_JDK -D$OPENJDK_TARGET_OS_UPPERCASE"
# Setup target CPU
CCXXFLAGS_JDK="$CCXXFLAGS_JDK -DARCH='\"$OPENJDK_TARGET_CPU_LEGACY\"' -D$OPENJDK_TARGET_CPU_LEGACY"
COMMON_CCXXFLAGS_JDK="$COMMON_CCXXFLAGS_JDK -DARCH='\"$OPENJDK_TARGET_CPU_LEGACY\"' -D$OPENJDK_TARGET_CPU_LEGACY"
# Setup debug/release defines
if test "x$DEBUG_LEVEL" = xrelease; then
CCXXFLAGS_JDK="$CCXXFLAGS_JDK -DNDEBUG"
COMMON_CCXXFLAGS_JDK="$COMMON_CCXXFLAGS_JDK -DNDEBUG"
if test "x$OPENJDK_TARGET_OS" = xsolaris; then
CCXXFLAGS_JDK="$CCXXFLAGS_JDK -DTRIMMED"
COMMON_CCXXFLAGS_JDK="$COMMON_CCXXFLAGS_JDK -DTRIMMED"
fi
else
CCXXFLAGS_JDK="$CCXXFLAGS_JDK -DDEBUG"
COMMON_CCXXFLAGS_JDK="$COMMON_CCXXFLAGS_JDK -DDEBUG"
fi
# Setup release name
CCXXFLAGS_JDK="$CCXXFLAGS_JDK -DRELEASE='\"\$(RELEASE)\"'"
COMMON_CCXXFLAGS_JDK="$COMMON_CCXXFLAGS_JDK -DRELEASE='\"\$(RELEASE)\"'"
# Set some additional per-OS defines.
if test "x$OPENJDK_TARGET_OS" = xmacosx; then
CCXXFLAGS_JDK="$CCXXFLAGS_JDK -D_ALLBSD_SOURCE -D_DARWIN_UNLIMITED_SELECT"
COMMON_CCXXFLAGS_JDK="$COMMON_CCXXFLAGS_JDK -D_ALLBSD_SOURCE -D_DARWIN_UNLIMITED_SELECT"
elif test "x$OPENJDK_TARGET_OS" = xaix; then
# FIXME: PPC64 should not be here.
CCXXFLAGS_JDK="$CCXXFLAGS_JDK -DPPC64"
COMMON_CCXXFLAGS_JDK="$COMMON_CCXXFLAGS_JDK -DPPC64"
elif test "x$OPENJDK_TARGET_OS" = xbsd; then
CCXXFLAGS_JDK="$CCXXFLAGS_JDK -D_ALLBSD_SOURCE"
COMMON_CCXXFLAGS_JDK="$COMMON_CCXXFLAGS_JDK -D_ALLBSD_SOURCE"
fi
# Additional macosx handling
if test "x$OPENJDK_TARGET_OS" = xmacosx; then
if test "x$TOOLCHAIN_TYPE" = xgcc; then
# FIXME: This needs to be exported in spec.gmk due to closed legacy code.
# FIXME: clean this up, and/or move it elsewhere.
# Setting these parameters makes it an error to link to macosx APIs that are
# newer than the given OS version and makes the linked binaries compatible
# even if built on a newer version of the OS.
@ -604,13 +666,12 @@ AC_DEFUN_ONCE([FLAGS_SETUP_COMPILER_FLAGS_FOR_JDK],
# The macro takes the version with no dots, ex: 1070
# Let the flags variables get resolved in make for easier override on make
# command line.
CCXXFLAGS_JDK="$CCXXFLAGS_JDK -DMAC_OS_X_VERSION_MAX_ALLOWED=\$(subst .,,\$(MACOSX_VERSION_MIN)) -mmacosx-version-min=\$(MACOSX_VERSION_MIN)"
COMMON_CCXXFLAGS_JDK="$COMMON_CCXXFLAGS_JDK -DMAC_OS_X_VERSION_MAX_ALLOWED=\$(subst .,,\$(MACOSX_VERSION_MIN)) -mmacosx-version-min=\$(MACOSX_VERSION_MIN)"
LDFLAGS_JDK="$LDFLAGS_JDK -mmacosx-version-min=\$(MACOSX_VERSION_MIN)"
fi
fi
# Setup some hard coded includes
CCXXFLAGS_JDK="$CCXXFLAGS_JDK \
COMMON_CCXXFLAGS_JDK="$COMMON_CCXXFLAGS_JDK \
-I${JDK_OUTPUTDIR}/include \
-I${JDK_OUTPUTDIR}/include/$OPENJDK_TARGET_OS \
-I${JDK_TOPDIR}/src/share/javavm/export \
@ -619,12 +680,12 @@ AC_DEFUN_ONCE([FLAGS_SETUP_COMPILER_FLAGS_FOR_JDK],
-I${JDK_TOPDIR}/src/$OPENJDK_TARGET_OS_API_DIR/native/common"
# The shared libraries are compiled using the picflag.
CFLAGS_JDKLIB="$CCXXFLAGS_JDK $CFLAGS_JDK $PICFLAG $CFLAGS_JDKLIB_EXTRA"
CXXFLAGS_JDKLIB="$CCXXFLAGS_JDK $CXXFLAGS_JDK $PICFLAG $CXXFLAGS_JDKLIB_EXTRA "
CFLAGS_JDKLIB="$COMMON_CCXXFLAGS_JDK $CFLAGS_JDK $PICFLAG $CFLAGS_JDKLIB_EXTRA"
CXXFLAGS_JDKLIB="$COMMON_CCXXFLAGS_JDK $CXXFLAGS_JDK $PICFLAG $CXXFLAGS_JDKLIB_EXTRA "
# Executable flags
CFLAGS_JDKEXE="$CCXXFLAGS_JDK $CFLAGS_JDK"
CXXFLAGS_JDKEXE="$CCXXFLAGS_JDK $CXXFLAGS_JDK"
CFLAGS_JDKEXE="$COMMON_CCXXFLAGS_JDK $CFLAGS_JDK"
CXXFLAGS_JDKEXE="$COMMON_CCXXFLAGS_JDK $CXXFLAGS_JDK"
AC_SUBST(CFLAGS_JDKLIB)
AC_SUBST(CFLAGS_JDKEXE)
@ -633,6 +694,7 @@ AC_DEFUN_ONCE([FLAGS_SETUP_COMPILER_FLAGS_FOR_JDK],
# Setup LDFLAGS et al.
#
# Now this is odd. The JDK native libraries have to link against libjvm.so
# On 32-bit machines there is normally two distinct libjvm.so:s, client and server.
# Which should we link to? Are we lucky enough that the binary api to the libjvm.so library
@ -648,39 +710,93 @@ AC_DEFUN_ONCE([FLAGS_SETUP_COMPILER_FLAGS_FOR_JDK],
fi
# TODO: make -debug optional "--disable-full-debug-symbols"
LDFLAGS_JDK="$LDFLAGS_JDK -debug"
LDFLAGS_JDKLIB="${LDFLAGS_JDK} -dll -libpath:${JDK_OUTPUTDIR}/lib"
LDFLAGS_JDKLIB_SUFFIX=""
if test "x$OPENJDK_TARGET_CPU_BITS" = "x64"; then
LDFLAGS_STACK_SIZE=1048576
else
LDFLAGS_STACK_SIZE=327680
fi
LDFLAGS_JDKEXE="${LDFLAGS_JDK} /STACK:$LDFLAGS_STACK_SIZE"
else
if test "x$TOOLCHAIN_TYPE" = xgcc; then
elif test "x$TOOLCHAIN_TYPE" = xgcc; then
# If this is a --hash-style=gnu system, use --hash-style=both, why?
# We have previously set HAS_GNU_HASH if this is the case
if test -n "$HAS_GNU_HASH"; then
LDFLAGS_JDK="${LDFLAGS_JDK} -Xlinker --hash-style=both "
LDFLAGS_JDK="${LDFLAGS_JDK} -Xlinker --hash-style=both"
fi
if test "x$OPENJDK_TARGET_OS" = xlinux; then
# And since we now know that the linker is gnu, then add -z defs, to forbid
# undefined symbols in object files.
LDFLAGS_JDK="${LDFLAGS_JDK} -Xlinker -z -Xlinker defs"
if test "x$DEBUG_LEVEL" = "xrelease"; then
# When building release libraries, tell the linker optimize them.
case $DEBUG_LEVEL in
release )
# tell linker to optimize libraries.
# Should this be supplied to the OSS linker as well?
LDFLAGS_JDK="${LDFLAGS_JDK} -Xlinker -O1"
;;
slowdebug )
if test "x$HAS_LINKER_NOW" = "xtrue"; then
# do relocations at load
LDFLAGS_JDK="$LDFLAGS_JDK $LINKER_NOW_FLAG"
LDFLAGS_CXX_JDK="$LDFLAGS_CXX_JDK $LINKER_NOW_FLAG"
fi
if test "x$HAS_LINKER_RELRO" = "xtrue"; then
# mark relocations read only
LDFLAGS_JDK="$LDFLAGS_JDK $LINKER_RELRO_FLAG"
LDFLAGS_CXX_JDK="$LDFLAGS_CXX_JDK $LINKER_RELRO_FLAG"
fi
;;
fastdebug )
if test "x$HAS_LINKER_RELRO" = "xtrue"; then
# mark relocations read only
LDFLAGS_JDK="$LDFLAGS_JDK $LINKER_RELRO_FLAG"
LDFLAGS_CXX_JDK="$LDFLAGS_CXX_JDK $LINKER_RELRO_FLAG"
fi
if test "x$TOOLCHAIN_TYPE" = xsolstudio; then
;;
* )
AC_MSG_ERROR([Unrecognized \$DEBUG_LEVEL: $DEBUG_LEVEL])
;;
esac
fi
elif test "x$TOOLCHAIN_TYPE" = xsolstudio; then
LDFLAGS_JDK="$LDFLAGS_JDK -z defs -xildoff -ztext"
LDFLAGS_CXX_JDK="$LDFLAGS_CXX_JDK -norunpath -xnolib"
fi
LDFLAGS_JDKLIB="${LDFLAGS_JDK} $SHARED_LIBRARY_FLAGS \
if test "x$TOOLCHAIN_TYPE" = xgcc || test "x$TOOLCHAIN_TYPE" = xclang; then
# If undefined behaviour detection is enabled then we need to tell linker.
case $DEBUG_LEVEL in
release | fastdebug )
;;
slowdebug )
AC_MSG_WARN([$HAS_CFLAG_DETECT_UNDEFINED_BEHAVIOR])
if test "x$HAS_CFLAG_DETECT_UNDEFINED_BEHAVIOR" = "xtrue"; then
# enable undefined behaviour checking
LDFLAGS_JDK="$LDFLAGS_JDK `$ECHO -n $CFLAG_DETECT_UNDEFINED_BEHAVIOR_FLAG | sed -e "s/[ ]*\([^ ]\+\)/ -Xlinker \1/g"`"
LDFLAGS_CXX_JDK="$LDFLAGS_CXX_JDK `$ECHO -n $CFLAG_DETECT_UNDEFINED_BEHAVIOR_FLAG | sed -e "s/[ ]*\([^ ]\+\)/ -Xlinker \1/g"`"
fi
;;
* )
AC_MSG_ERROR([Unrecognized \$DEBUG_LEVEL: $DEBUG_LEVEL])
;;
esac
fi
# Customize LDFLAGS for executables
LDFLAGS_JDKEXE="${LDFLAGS_JDK}"
if test "x$TOOLCHAIN_TYPE" = xmicrosoft; then
if test "x$OPENJDK_TARGET_CPU_BITS" = "x64"; then
LDFLAGS_STACK_SIZE=1048576
else
LDFLAGS_STACK_SIZE=327680
fi
LDFLAGS_JDKEXE="${LDFLAGS_JDKEXE} /STACK:$LDFLAGS_STACK_SIZE"
elif test "x$OPENJDK_TARGET_OS" = xlinux; then
LDFLAGS_JDKEXE="$LDFLAGS_JDKEXE -Xlinker --allow-shlib-undefined"
fi
# Customize LDFLAGS for libs
LDFLAGS_JDKLIB="${LDFLAGS_JDK}"
if test "x$TOOLCHAIN_TYPE" = xmicrosoft; then
LDFLAGS_JDKLIB="${LDFLAGS_JDKLIB} -dll -libpath:${JDK_OUTPUTDIR}/lib"
LDFLAGS_JDKLIB_SUFFIX=""
else
LDFLAGS_JDKLIB="${LDFLAGS_JDKLIB} ${SHARED_LIBRARY_FLAGS} \
-L${JDK_OUTPUTDIR}/lib${OPENJDK_TARGET_CPU_LIBDIR}"
# On some platforms (mac) the linker warns about non existing -L dirs.
@ -701,12 +817,8 @@ AC_DEFUN_ONCE([FLAGS_SETUP_COMPILER_FLAGS_FOR_JDK],
if test "x$TOOLCHAIN_TYPE" = xsolstudio; then
LDFLAGS_JDKLIB_SUFFIX="$LDFLAGS_JDKLIB_SUFFIX -lc"
fi
fi
LDFLAGS_JDKEXE="${LDFLAGS_JDK}"
if test "x$OPENJDK_TARGET_OS" = xlinux; then
LDFLAGS_JDKEXE="$LDFLAGS_JDKEXE -Xlinker --allow-shlib-undefined"
fi
fi
AC_SUBST(LDFLAGS_JDKLIB)
AC_SUBST(LDFLAGS_JDKEXE)
AC_SUBST(LDFLAGS_JDKLIB_SUFFIX)
@ -714,7 +826,6 @@ AC_DEFUN_ONCE([FLAGS_SETUP_COMPILER_FLAGS_FOR_JDK],
AC_SUBST(LDFLAGS_CXX_JDK)
])
# FLAGS_COMPILER_CHECK_ARGUMENTS([ARGUMENT], [RUN-IF-TRUE],
# [RUN-IF-FALSE])
# ------------------------------------------------------------
@ -748,6 +859,31 @@ AC_DEFUN([FLAGS_COMPILER_CHECK_ARGUMENTS],
fi
])
# FLAGS_LINKER_CHECK_ARGUMENTS([ARGUMENT], [RUN-IF-TRUE],
# [RUN-IF-FALSE])
# ------------------------------------------------------------
# Check that the linker support an argument
AC_DEFUN([FLAGS_LINKER_CHECK_ARGUMENTS],
[
AC_MSG_CHECKING([if linker supports "$1"])
supports=yes
saved_ldflags="$LDFLAGS"
LDFLAGS="$LDFLAGS $1"
AC_LANG_PUSH([C])
AC_LINK_IFELSE([AC_LANG_PROGRAM([[]],[[]])],
[], [supports=no])
AC_LANG_POP([C])
LDFLAGS="$saved_ldflags"
AC_MSG_RESULT([$supports])
if test "x$supports" = "xyes" ; then
m4_ifval([$2], [$2], [:])
else
m4_ifval([$3], [$3], [:])
fi
])
AC_DEFUN_ONCE([FLAGS_SETUP_COMPILER_FLAGS_MISC],
[
# Some Zero and Shark settings.

File diff suppressed because it is too large Load Diff

View File

@ -69,8 +69,8 @@ ISA_DIR=$(OPENJDK_TARGET_CPU_ISADIR)
# Yet another name for arch used for an extra subdir below the jvm lib.
# Uses i386 and amd64, instead of x86 and x86_64.
LIBARCH=$(OPENJDK_TARGET_CPU_LEGACY_LIB)
# Old name for OPENJDK_TARGET_CPU, uses i586 and amd64, instead of x86 and x86_64.
ARCH=$(OPENJDK_TARGET_CPU_LEGACY)
# Set the cpu architecture
ARCH=$(OPENJDK_TARGET_CPU_ARCH)
# Legacy setting for building for a 64 bit machine.
# If yes then this expands to _LP64:=1
@LP64@

View File

@ -65,8 +65,6 @@ AC_DEFUN_ONCE([LIB_SETUP_INIT],
ALSA_NOT_NEEDED=yes
PULSE_NOT_NEEDED=yes
X11_NOT_NEEDED=yes
# If the java runtime framework is disabled, then we need X11.
# This will be adjusted below.
AC_MSG_RESULT([alsa pulse x11])
fi
@ -83,20 +81,6 @@ AC_DEFUN_ONCE([LIB_SETUP_INIT],
if test "x$SUPPORT_HEADFUL" = xno; then
X11_NOT_NEEDED=yes
fi
###############################################################################
#
# Check for MacOSX support for OpenJDK.
#
BASIC_DEPRECATED_ARG_ENABLE(macosx-runtime-support, macosx_runtime_support)
AC_MSG_CHECKING([for Mac OS X Java Framework])
if test -f /System/Library/Frameworks/JavaVM.framework/Frameworks/JavaRuntimeSupport.framework/Headers/JavaRuntimeSupport.h; then
AC_MSG_RESULT([/System/Library/Frameworks/JavaVM.framework])
else
AC_MSG_RESULT([no])
fi
])
AC_DEFUN_ONCE([LIB_SETUP_X11],
@ -620,11 +604,36 @@ AC_DEFUN_ONCE([LIB_SETUP_MISC_LIBS],
# Check for the jpeg library
#
AC_ARG_WITH(libjpeg, [AS_HELP_STRING([--with-libjpeg],
[use libjpeg from build system or OpenJDK source (system, bundled) @<:@bundled@:>@])])
AC_MSG_CHECKING([for which libjpeg to use])
# default is bundled
DEFAULT_LIBJPEG=bundled
#
# if user didn't specify, use DEFAULT_LIBJPEG
#
if test "x${with_libjpeg}" = "x"; then
with_libjpeg=${DEFAULT_LIBJPEG}
fi
AC_MSG_RESULT(${with_libjpeg})
if test "x${with_libjpeg}" = "xbundled"; then
USE_EXTERNAL_LIBJPEG=false
elif test "x${with_libjpeg}" = "xsystem"; then
AC_CHECK_HEADER(jpeglib.h, [],
[ AC_MSG_ERROR([--with-libjpeg=system specified, but jpeglib.h not found!])])
AC_CHECK_LIB(jpeg, jpeg_CreateDecompress, [],
[ AC_MSG_ERROR([--with-libjpeg=system specified, but no libjpeg found])])
USE_EXTERNAL_LIBJPEG=true
AC_CHECK_LIB(jpeg, main, [],
[ USE_EXTERNAL_LIBJPEG=false
AC_MSG_NOTICE([Will use jpeg decoder bundled with the OpenJDK source])
])
else
AC_MSG_ERROR([Invalid use of --with-libjpeg: ${with_libjpeg}, use 'system' or 'bundled'])
fi
AC_SUBST(USE_EXTERNAL_LIBJPEG)
###############################################################################

View File

@ -84,7 +84,7 @@ AC_DEFUN([PLATFORM_EXTRACT_VARS_FROM_CPU],
VAR_CPU_BITS=32
VAR_CPU_ENDIAN=big
;;
sparcv9)
sparcv9|sparc64)
VAR_CPU=sparcv9
VAR_CPU_ARCH=sparc
VAR_CPU_BITS=64

View File

@ -347,6 +347,9 @@ CPP:=@FIXPATH@ @CPP@
# The linker can be gcc or ld on posix systems, or link.exe on windows systems.
LD:=@FIXPATH@ @LD@
# Xcode SDK path
SDKROOT:=@SDKROOT@
# The linker on older SuSE distros (e.g. on SLES 10) complains with:
# "Invalid version tag `SUNWprivate_1.1'. Only anonymous version tag is allowed in executable."
# if feeded with a version script which contains named tags.
@ -544,7 +547,7 @@ SETFILE:=@SETFILE@
XATTR:=@XATTR@
JT_HOME:=@JT_HOME@
JTREGEXE:=@JTREGEXE@
XCODEBUILD=@XCODEBUILD@
FIXPATH:=@FIXPATH@
# Where the build output is stored for your convenience.

View File

@ -98,8 +98,9 @@ AC_DEFUN_ONCE([TOOLCHAIN_DETERMINE_TOOLCHAIN_TYPE],
VALID_TOOLCHAINS=${!toolchain_var_name}
if test "x$OPENJDK_TARGET_OS" = xmacosx; then
if test -n "$XCODEBUILD"; then
# On Mac OS X, default toolchain to clang after Xcode 5
XCODE_VERSION_OUTPUT=`xcodebuild -version 2>&1 | $HEAD -n 1`
XCODE_VERSION_OUTPUT=`"$XCODEBUILD" -version 2>&1 | $HEAD -n 1`
$ECHO "$XCODE_VERSION_OUTPUT" | $GREP "Xcode " > /dev/null
if test $? -ne 0; then
AC_MSG_ERROR([Failed to determine Xcode version.])
@ -113,6 +114,12 @@ AC_DEFUN_ONCE([TOOLCHAIN_DETERMINE_TOOLCHAIN_TYPE],
else
DEFAULT_TOOLCHAIN="gcc"
fi
else
# If Xcode is not installed, but the command line tools are
# then we can't run xcodebuild. On these systems we should
# default to clang
DEFAULT_TOOLCHAIN="clang"
fi
else
# First toolchain type in the list is the default
DEFAULT_TOOLCHAIN=${VALID_TOOLCHAINS%% *}
@ -690,6 +697,30 @@ AC_DEFUN_ONCE([TOOLCHAIN_MISC_CHECKS],
# If this is a --hash-style=gnu system, use --hash-style=both, why?
HAS_GNU_HASH=`$CC -dumpspecs 2>/dev/null | $GREP 'hash-style=gnu'`
# This is later checked when setting flags.
# "-Og" suppported for GCC 4.8 and later
CFLAG_OPTIMIZE_DEBUG_FLAG="-Og"
FLAGS_COMPILER_CHECK_ARGUMENTS([$CFLAG_OPTIMIZE_DEBUG_FLAG],
[HAS_CFLAG_OPTIMIZE_DEBUG=true],
[HAS_CFLAG_OPTIMIZE_DEBUG=false])
# "-fsanitize=undefined" supported for GCC 4.9 and later
CFLAG_DETECT_UNDEFINED_BEHAVIOR_FLAG="-fsanitize=undefined -fsanitize-recover"
FLAGS_COMPILER_CHECK_ARGUMENTS([$CFLAG_DETECT_UNDEFINED_BEHAVIOR_FLAG],
[HAS_CFLAG_DETECT_UNDEFINED_BEHAVIOR=true],
[HAS_CFLAG_DETECT_UNDEFINED_BEHAVIOR=false])
# "-z relro" supported in GNU binutils 2.17 and later
LINKER_RELRO_FLAG="-Xlinker -z -Xlinker relro"
FLAGS_LINKER_CHECK_ARGUMENTS([$LINKER_RELRO_FLAG],
[HAS_LINKER_RELRO=true],
[HAS_LINKER_RELRO=false])
# "-z now" supported in GNU binutils 2.11 and later
LINKER_NOW_FLAG="-Xlinker -z -Xlinker now"
FLAGS_LINKER_CHECK_ARGUMENTS([$LINKER_NOW_FLAG],
[HAS_LINKER_NOW=true],
[HAS_LINKER_NOW=false])
fi
# Check for broken SuSE 'ld' for which 'Only anonymous version tag is allowed
@ -697,8 +728,8 @@ AC_DEFUN_ONCE([TOOLCHAIN_MISC_CHECKS],
USING_BROKEN_SUSE_LD=no
if test "x$OPENJDK_TARGET_OS" = xlinux && test "x$TOOLCHAIN_TYPE" = xgcc; then
AC_MSG_CHECKING([for broken SuSE 'ld' which only understands anonymous version tags in executables])
echo "SUNWprivate_1.1 { local: *; };" > version-script.map
echo "int main() { }" > main.c
$ECHO "SUNWprivate_1.1 { local: *; };" > version-script.map
$ECHO "int main() { }" > main.c
if $CXX -Xlinker -version-script=version-script.map main.c 2>&AS_MESSAGE_LOG_FD >&AS_MESSAGE_LOG_FD; then
AC_MSG_RESULT(no)
USING_BROKEN_SUSE_LD=no

View File

@ -261,3 +261,7 @@ e54022d0dd92106fff7f7fe670010cd7e6517ee3 jdk9-b15
422ef9d29d84f571453f015c4cb8713c3af70ee4 jdk9-b16
4c75c2ca7cf3e0618315879acf17f42c8fcd0c09 jdk9-b17
77565aaaa2bb814e94817e92d680168052a25395 jdk9-b18
eecc1b6adc7e193d00a0641eb0963add5a4c06e8 jdk9-b19
87f36eecb1665012d01c5cf102494e591c943ea6 jdk9-b20
3615a4e7f0542ca7552ad6454b742c73ee211d8e jdk9-b21
ddc07abf4307855c0dc904cc5c96cc764023a930 jdk9-b22

View File

@ -1,5 +1,5 @@
/*
* Copyright (c) 1999, 2013, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 1999, 2014, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -35,7 +35,8 @@ import java.io.IOException;
import java.io.OutputStream;
import java.io.ObjectOutputStream;
import java.io.ObjectOutput;
import java.util.Hashtable;
import java.util.Map;
import java.util.HashMap;
import org.omg.CORBA.INTERNAL;
@ -49,7 +50,7 @@ public abstract class OutputStreamHook extends ObjectOutputStream
*/
private class HookPutFields extends ObjectOutputStream.PutField
{
private Hashtable fields = new Hashtable();
private Map<String,Object> fields = new HashMap<>();
/**
* Put the value of the named boolean field into the persistent field.
@ -140,7 +141,6 @@ public abstract class OutputStreamHook extends ObjectOutputStream
public OutputStreamHook()
throws java.io.IOException {
super();
}
public void defaultWriteObject() throws IOException {

View File

@ -1,7 +1,7 @@
#!/bin/sh
#
# Copyright (c) 2010, 2012, Oracle and/or its affiliates. All rights reserved.
# Copyright (c) 2010, 2014, Oracle and/or its affiliates. All rights reserved.
# DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
#
# This code is free software; you can redistribute it and/or modify it
@ -25,9 +25,76 @@
# questions.
#
# Get clones of all nested repositories
sh ./common/bin/hgforest.sh clone "$@" || exit 1
to_stderr() {
echo "$@" >&2
}
error() {
to_stderr "ERROR: $1"
exit ${2:-126}
}
warning() {
to_stderr "WARNING: $1"
}
version_field() {
# rev is typically omitted for minor and major releases
field=`echo ${1}.0 | cut -f ${2} -d .`
if expr 1 + $field >/dev/null 2> /dev/null; then
echo $field
else
echo -1
fi
}
# Version check
# required
reqdmajor=1
reqdminor=4
reqdrev=0
# requested
rqstmajor=2
rqstminor=6
rqstrev=3
# installed
hgwhere="`command -v hg`"
if [ "x$hgwhere" = "x" ]; then
error "Could not locate Mercurial command"
fi
hgversion="`hg --version 2> /dev/null | sed -n -e 's@^Mercurial Distributed SCM (version \([^+]*\).*)\$@\1@p'`"
if [ "x${hgversion}" = "x" ] ; then
error "Could not determine Mercurial version of $hgwhere"
fi
hgmajor="`version_field $hgversion 1`"
hgminor="`version_field $hgversion 2`"
hgrev="`version_field $hgversion 3`"
if [ $hgmajor -eq -1 -o $hgminor -eq -1 -o $hgrev -eq -1 ] ; then
error "Could not determine Mercurial version of $hgwhere from \"$hgversion\""
fi
# Require
if [ $hgmajor -lt $reqdmajor -o \( $hgmajor -eq $reqdmajor -a $hgminor -lt $reqdminor \) -o \( $hgmajor -eq $reqdmajor -a $hgminor -eq $reqdminor -a $hgrev -lt $reqdrev \) ] ; then
error "Mercurial version $reqdmajor.$reqdminor.$reqdrev or later is required. $hgwhere is version $hgversion"
fi
# Request
if [ $hgmajor -lt $rqstmajor -o \( $hgmajor -eq $rqstmajor -a $hgminor -lt $rqstminor \) -o \( $hgmajor -eq $rqstmajor -a $hgminor -eq $rqstminor -a $hgrev -lt $rqstrev \) ] ; then
warning "Mercurial version $rqstmajor.$rqstminor.$rqstrev or later is recommended. $hgwhere is version $hgversion"
fi
# Get clones of all absent nested repositories (harmless if already exist)
sh ./common/bin/hgforest.sh clone "$@" || exit $?
# Update all existing repositories to the latest sources
sh ./common/bin/hgforest.sh pull -u

View File

@ -421,3 +421,7 @@ bd333491bb6c012d7b606939406d0fa9a5ac7ffd jdk9-b14
b14e7c0b7d3ec04127f565cda1d84122e205680c jdk9-b16
14b656df31c2cb09c505921061e79977823de71a jdk9-b17
871fd128548480095e0dc3fc34c422666baeec75 jdk9-b18
d4cffb3ae6213c66c7522ebffe0349360a45f0ef jdk9-b19
c1af79d122ec9f715fa29312b5e91763f3a4dfc4 jdk9-b20
17b4a5e831b398738feedb0afe75245744510153 jdk9-b21
518d1fcc0799494f013e00e0a94a91b6f212d54f jdk9-b22

View File

@ -24,23 +24,26 @@
package sun.jvm.hotspot.gc_implementation.g1;
import java.util.ArrayList;
import java.util.List;
import java.util.Observable;
import java.util.Observer;
import sun.jvm.hotspot.debugger.Address;
import sun.jvm.hotspot.memory.ContiguousSpace;
import sun.jvm.hotspot.memory.CompactibleSpace;
import sun.jvm.hotspot.memory.MemRegion;
import sun.jvm.hotspot.runtime.VM;
import sun.jvm.hotspot.types.AddressField;
import sun.jvm.hotspot.types.CIntegerField;
import sun.jvm.hotspot.types.Type;
import sun.jvm.hotspot.types.TypeDataBase;
// Mirror class for HeapRegion. Currently we don't actually include
// any of its fields but only iterate over it (which we get "for free"
// as HeapRegion ultimately inherits from ContiguousSpace).
// any of its fields but only iterate over it.
public class HeapRegion extends ContiguousSpace {
public class HeapRegion extends CompactibleSpace {
// static int GrainBytes;
static private CIntegerField grainBytesField;
static private AddressField topField;
static {
VM.registerVMInitializedObserver(new Observer() {
@ -54,6 +57,8 @@ public class HeapRegion extends ContiguousSpace {
Type type = db.lookupType("HeapRegion");
grainBytesField = type.getCIntegerField("GrainBytes");
topField = type.getAddressField("_top");
}
static public long grainBytes() {
@ -63,4 +68,25 @@ public class HeapRegion extends ContiguousSpace {
public HeapRegion(Address addr) {
super(addr);
}
public Address top() {
return topField.getValue(addr);
}
@Override
public List getLiveRegions() {
List res = new ArrayList();
res.add(new MemRegion(bottom(), top()));
return res;
}
@Override
public long used() {
return top().minus(bottom());
}
@Override
public long free() {
return end().minus(top());
}
}

View File

@ -280,16 +280,7 @@ endif
# optimization control flags (Used by fastdebug and release variants)
OPT_CFLAGS/NOOPT=-O0
ifeq ($(USE_CLANG), true)
# Clang does not support -Og
OPT_CFLAGS/DEBUG=-O0
else ifeq "$(shell expr \( $(CC_VER_MAJOR) \> 4 \) \| \( \( $(CC_VER_MAJOR) = 4 \) \& \( $(CC_VER_MINOR) \>= 8 \) \))" "1"
# Allow basic optimizations which don't distrupt debugging. (Principally dead code elimination)
OPT_CFLAGS/DEBUG=-Og
else
# Allow no optimizations.
OPT_CFLAGS/DEBUG=-O0
endif
OPT_CFLAGS/DEBUG=-O0
OPT_CFLAGS/SIZE=-Os
OPT_CFLAGS/SPEED=-O3
@ -457,16 +448,8 @@ ifeq ($(USE_CLANG), true)
CFLAGS += -flimit-debug-info
endif
ifeq ($(USE_CLANG), true)
# Clang does not support -Og
DEBUG_CFLAGS=-O0
else ifeq "$(shell expr \( $(CC_VER_MAJOR) \> 4 \) \| \( \( $(CC_VER_MAJOR) = 4 \) \& \( $(CC_VER_MINOR) \>= 8 \) \))" "1"
# Allow basic optimizations which don't distrupt debugging. (Principally dead code elimination)
DEBUG_CFLAGS=-Og
else
# Allow no optimizations.
DEBUG_CFLAGS=-O0
endif
# Allow no optimizations.
DEBUG_CFLAGS=-O0
# DEBUG_BINARIES uses full -g debug information for all configs
ifeq ($(DEBUG_BINARIES), true)

View File

@ -93,6 +93,7 @@ ifeq ($(INCLUDE_ALL_GCS), false)
ageTable.cpp \
collectorCounters.cpp \
cSpaceCounters.cpp \
gcId.cpp \
gcPolicyCounters.cpp \
gcStats.cpp \
gcTimer.cpp \

View File

@ -350,21 +350,25 @@ jprt.make.rule.test.targets.standard.internalvmtests = \
${jprt.my.windows.i586}-fastdebug-c2-internalvmtests, \
${jprt.my.windows.x64}-fastdebug-c2-internalvmtests
jprt.make.rule.test.targets.standard.wbapi = \
${jprt.my.solaris.sparcv9}-{product|fastdebug}-c2-wbapitest, \
${jprt.my.solaris.x64}-{product|fastdebug}-c2-wbapitest, \
${jprt.my.linux.i586}-{product|fastdebug}-c2-wbapitest, \
${jprt.my.linux.x64}-{product|fastdebug}-c2-wbapitest, \
${jprt.my.windows.i586}-{product|fastdebug}-c2-wbapitest, \
${jprt.my.windows.x64}-{product|fastdebug}-c2-wbapitest, \
${jprt.my.linux.i586}-{product|fastdebug}-c1-wbapitest, \
${jprt.my.windows.i586}-{product|fastdebug}-c1-wbapitest
jprt.make.rule.test.targets.standard.reg.group = \
${jprt.my.solaris.sparcv9}-{product|fastdebug}-c2-GROUP, \
${jprt.my.solaris.x64}-{product|fastdebug}-c2-GROUP, \
${jprt.my.linux.i586}-{product|fastdebug}-c2-GROUP, \
${jprt.my.linux.x64}-{product|fastdebug}-c2-GROUP, \
${jprt.my.windows.i586}-{product|fastdebug}-c2-GROUP, \
${jprt.my.windows.x64}-{product|fastdebug}-c2-GROUP, \
${jprt.my.linux.i586}-{product|fastdebug}-c1-GROUP, \
${jprt.my.windows.i586}-{product|fastdebug}-c1-GROUP
jprt.make.rule.test.targets.standard = \
${jprt.make.rule.test.targets.standard.client}, \
${jprt.make.rule.test.targets.standard.server}, \
${jprt.make.rule.test.targets.standard.internalvmtests}, \
${jprt.make.rule.test.targets.standard.wbapi}
${jprt.make.rule.test.targets.standard.reg.group:GROUP=hotspot_wbapitest}, \
${jprt.make.rule.test.targets.standard.reg.group:GROUP=hotspot_compiler}, \
${jprt.make.rule.test.targets.standard.reg.group:GROUP=hotspot_gc}, \
${jprt.make.rule.test.targets.standard.reg.group:GROUP=hotspot_runtime}, \
${jprt.make.rule.test.targets.standard.reg.group:GROUP=hotspot_serviceability}
jprt.make.rule.test.targets.embedded = \
${jprt.make.rule.test.targets.standard.client}

View File

@ -40,7 +40,14 @@ else
ifneq ($(ALT_SDT_H),)
SDT_H_FILE = $(ALT_SDT_H)
else
SDT_H_FILE = /usr/include/sys/sdt.h
ifeq ($(USE_CLANG), true)
# Clang doesn't support the -print-sysroot option and there is no known equivalent
# option, so fall back to using / as sysroot
SDT_SYSROOT=
else
SDT_SYSROOT=$(shell $(CXX) -print-sysroot)
endif
SDT_H_FILE = $(SDT_SYSROOT)/usr/include/sys/sdt.h
endif
DTRACE_ENABLED = $(shell test -f $(SDT_H_FILE) && echo $(SDT_H_FILE))

View File

@ -231,13 +231,7 @@ CFLAGS_WARN/BYFILE = $(CFLAGS_WARN/$@)$(CFLAGS_WARN/DEFAULT$(CFLAGS_WARN/$@))
# optimization control flags (Used by fastdebug and release variants)
OPT_CFLAGS/NOOPT=-O0
ifeq "$(shell expr \( $(CC_VER_MAJOR) \> 4 \) \| \( \( $(CC_VER_MAJOR) = 4 \) \& \( $(CC_VER_MINOR) \>= 8 \) \))" "1"
# Allow basic optimizations which don't distrupt debugging. (Principally dead code elimination)
OPT_CFLAGS/DEBUG=-Og
else
# Allow no optimizations.
OPT_CFLAGS/DEBUG=-O0
endif
OPT_CFLAGS/DEBUG=-O0
OPT_CFLAGS/SIZE=-Os
OPT_CFLAGS/SPEED=-O3
@ -344,13 +338,8 @@ ifeq ($(USE_CLANG), true)
CFLAGS += -flimit-debug-info
endif
ifeq "$(shell expr \( $(CC_VER_MAJOR) \> 4 \) \| \( \( $(CC_VER_MAJOR) = 4 \) \& \( $(CC_VER_MINOR) \>= 8 \) \))" "1"
# Allow basic optimizations which don't distrupt debugging. (Principally dead code elimination)
DEBUG_CFLAGS=-Og
else
# Allow no optimizations.
DEBUG_CFLAGS=-O0
endif
# Allow no optimizations.
DEBUG_CFLAGS=-O0
# DEBUG_BINARIES uses full -g debug information for all configs
ifeq ($(DEBUG_BINARIES), true)

View File

@ -127,13 +127,7 @@ CFLAGS_WARN/BYFILE = $(CFLAGS_WARN/$@)$(CFLAGS_WARN/DEFAULT$(CFLAGS_WARN/$@))
# optimization control flags (Used by fastdebug and release variants)
OPT_CFLAGS/NOOPT=-O0
ifeq "$(shell expr \( $(CC_VER_MAJOR) \> 4 \) \| \( \( $(CC_VER_MAJOR) = 4 \) \& \( $(CC_VER_MINOR) \>= 8 \) \))" "1"
# Allow basic optimizations which don't distrupt debugging. (Principally dead code elimination)
OPT_CFLAGS/DEBUG=-Og
+else
# Allow no optimizations.
OPT_CFLAGS/DEBUG=-O0
endif
OPT_CFLAGS/DEBUG=-O0
OPT_CFLAGS/SIZE=-Os
OPT_CFLAGS/SPEED=-O3
@ -229,14 +223,8 @@ SHARED_FLAG = -shared
#------------------------------------------------------------------------
# Debug flags
ifeq "$(shell expr \( $(CC_VER_MAJOR) \> 4 \) \| \( \( $(CC_VER_MAJOR) = 4 \) \& \( $(CC_VER_MINOR) \>= 8 \) \))" "1"
# Allow basic optimizations which don't distrupt debugging. (Principally dead code elimination)
DEBUG_CFLAGS=-Og
else
# Allow no optimizations.
DEBUG_CFLAGS=-O0
endif
# Allow no optimizations.
DEBUG_CFLAGS=-O0
# Use the stabs format for debugging information (this is the default
# on gcc-2.91). It's good enough, has all the information about line

View File

@ -2809,12 +2809,10 @@ bool os::dont_yield() {
return DontYieldALot;
}
void os::yield() {
void os::naked_yield() {
sched_yield();
}
os::YieldResult os::NakedYield() { sched_yield(); return os::YIELD_UNKNOWN; }
////////////////////////////////////////////////////////////////////////////////
// thread priority support
@ -3071,7 +3069,7 @@ static bool do_suspend(OSThread* osthread) {
for (int n = 0; !osthread->sr.is_suspended(); n++) {
for (int i = 0; i < RANDOMLY_LARGE_INTEGER2 && !osthread->sr.is_suspended(); i++) {
os::yield();
os::naked_yield();
}
// timeout, try to cancel the request
@ -3105,7 +3103,7 @@ static void do_resume(OSThread* osthread) {
if (sr_notify(osthread) == 0) {
for (int n = 0; n < RANDOMLY_LARGE_INTEGER && !osthread->sr.is_running(); n++) {
for (int i = 0; i < 100 && !osthread->sr.is_running(); i++) {
os::yield();
os::naked_yield();
}
}
} else {

View File

@ -2596,12 +2596,10 @@ bool os::dont_yield() {
return DontYieldALot;
}
void os::yield() {
void os::naked_yield() {
sched_yield();
}
os::YieldResult os::NakedYield() { sched_yield(); return os::YIELD_UNKNOWN; }
////////////////////////////////////////////////////////////////////////////////
// thread priority support
@ -4218,22 +4216,12 @@ static struct timespec* compute_abstime(struct timespec* abstime, jlong millis)
return abstime;
}
// Test-and-clear _Event, always leaves _Event set to 0, returns immediately.
// Conceptually TryPark() should be equivalent to park(0).
int os::PlatformEvent::TryPark() {
for (;;) {
const int v = _Event;
guarantee((v == 0) || (v == 1), "invariant");
if (Atomic::cmpxchg(0, &_Event, v) == v) return v;
}
}
void os::PlatformEvent::park() { // AKA "down()"
// Invariant: Only the thread associated with the Event/PlatformEvent
// may call park().
// TODO: assert that _Assoc != NULL or _Assoc == Self
assert(_nParked == 0, "invariant");
int v;
for (;;) {
v = _Event;
@ -4333,8 +4321,7 @@ void os::PlatformEvent::unpark() {
// 1 :=> 1
// -1 :=> either 0 or 1; must signal target thread
// That is, we can safely transition _Event from -1 to either
// 0 or 1. Forcing 1 is slightly more efficient for back-to-back
// unpark() calls.
// 0 or 1.
// See also: "Semaphores in Plan 9" by Mullender & Cox
//
// Note: Forcing a transition from "-1" to "1" on an unpark() means
@ -4541,10 +4528,9 @@ void Parker::park(bool isAbsolute, jlong time) {
}
void Parker::unpark() {
int s, status;
status = pthread_mutex_lock(_mutex);
int status = pthread_mutex_lock(_mutex);
assert(status == 0, "invariant");
s = _counter;
const int s = _counter;
_counter = 1;
if (s < 1) {
if (WorkAroundNPTLTimedWaitHang) {

View File

@ -219,7 +219,6 @@ class PlatformEvent : public CHeapObj<mtInternal> {
int fired() { return _Event; }
void park();
void unpark();
int TryPark();
int park(jlong millis);
void SetAssociation(Thread * a) { _Assoc = a; }
};

View File

@ -3791,12 +3791,10 @@ bool os::dont_yield() {
return DontYieldALot;
}
void os::yield() {
void os::naked_yield() {
sched_yield();
}
os::YieldResult os::NakedYield() { sched_yield(); return os::YIELD_UNKNOWN; }
////////////////////////////////////////////////////////////////////////////////
// thread priority support
@ -5457,22 +5455,12 @@ static struct timespec* compute_abstime(timespec* abstime, jlong millis) {
return abstime;
}
// Test-and-clear _Event, always leaves _Event set to 0, returns immediately.
// Conceptually TryPark() should be equivalent to park(0).
int os::PlatformEvent::TryPark() {
for (;;) {
const int v = _Event;
guarantee((v == 0) || (v == 1), "invariant");
if (Atomic::cmpxchg(0, &_Event, v) == v) return v;
}
}
void os::PlatformEvent::park() { // AKA "down()"
// Invariant: Only the thread associated with the Event/PlatformEvent
// may call park().
// TODO: assert that _Assoc != NULL or _Assoc == Self
assert(_nParked == 0, "invariant");
int v;
for (;;) {
v = _Event;
@ -5572,8 +5560,7 @@ void os::PlatformEvent::unpark() {
// 1 :=> 1
// -1 :=> either 0 or 1; must signal target thread
// That is, we can safely transition _Event from -1 to either
// 0 or 1. Forcing 1 is slightly more efficient for back-to-back
// unpark() calls.
// 0 or 1.
// See also: "Semaphores in Plan 9" by Mullender & Cox
//
// Note: Forcing a transition from "-1" to "1" on an unpark() means
@ -5801,10 +5788,9 @@ void Parker::park(bool isAbsolute, jlong time) {
}
void Parker::unpark() {
int s, status;
status = pthread_mutex_lock(_mutex);
int status = pthread_mutex_lock(_mutex);
assert(status == 0, "invariant");
s = _counter;
const int s = _counter;
_counter = 1;
if (s < 1) {
// thread might be parked

View File

@ -315,7 +315,6 @@ class PlatformEvent : public CHeapObj<mtInternal> {
int fired() { return _Event; }
void park();
void unpark();
int TryPark();
int park(jlong millis); // relative timed-wait only
void SetAssociation(Thread * a) { _Assoc = a; }
};

View File

@ -3174,20 +3174,14 @@ bool os::dont_yield() {
}
}
// Caveat: Solaris os::yield() causes a thread-state transition whereas
// the linux and win32 implementations do not. This should be checked.
void os::yield() {
// Yields to all threads with same or greater priority
os::sleep(Thread::current(), 0, false);
}
// Note that yield semantics are defined by the scheduling class to which
// the thread currently belongs. Typically, yield will _not yield to
// other equal or higher priority threads that reside on the dispatch queues
// of other CPUs.
os::YieldResult os::NakedYield() { thr_yield(); return os::YIELD_UNKNOWN; }
void os::naked_yield() {
thr_yield();
}
// Interface for setting lwp priorities. If we are using T2 libthread,
// which forces the use of BoundThreads or we manually set UseBoundThreads,
@ -5441,20 +5435,11 @@ static timestruc_t* compute_abstime(timestruc_t* abstime, jlong millis) {
return abstime;
}
// Test-and-clear _Event, always leaves _Event set to 0, returns immediately.
// Conceptually TryPark() should be equivalent to park(0).
int os::PlatformEvent::TryPark() {
for (;;) {
const int v = _Event;
guarantee((v == 0) || (v == 1), "invariant");
if (Atomic::cmpxchg(0, &_Event, v) == v) return v;
}
}
void os::PlatformEvent::park() { // AKA: down()
// Invariant: Only the thread associated with the Event/PlatformEvent
// may call park().
assert(_nParked == 0, "invariant");
int v;
for (;;) {
v = _Event;
@ -5541,8 +5526,7 @@ void os::PlatformEvent::unpark() {
// 1 :=> 1
// -1 :=> either 0 or 1; must signal target thread
// That is, we can safely transition _Event from -1 to either
// 0 or 1. Forcing 1 is slightly more efficient for back-to-back
// unpark() calls.
// 0 or 1.
// See also: "Semaphores in Plan 9" by Mullender & Cox
//
// Note: Forcing a transition from "-1" to "1" on an unpark() means
@ -5746,10 +5730,9 @@ void Parker::park(bool isAbsolute, jlong time) {
}
void Parker::unpark() {
int s, status;
status = os::Solaris::mutex_lock(_mutex);
int status = os::Solaris::mutex_lock(_mutex);
assert(status == 0, "invariant");
s = _counter;
const int s = _counter;
_counter = 1;
status = os::Solaris::mutex_unlock(_mutex);
assert(status == 0, "invariant");

View File

@ -332,7 +332,6 @@ class PlatformEvent : public CHeapObj<mtInternal> {
int fired() { return _Event; }
void park();
int park(jlong millis);
int TryPark();
void unpark();
};

View File

@ -3516,19 +3516,16 @@ void os::infinite_sleep() {
typedef BOOL (WINAPI * STTSignature)(void);
os::YieldResult os::NakedYield() {
void os::naked_yield() {
// Use either SwitchToThread() or Sleep(0)
// Consider passing back the return value from SwitchToThread().
if (os::Kernel32Dll::SwitchToThreadAvailable()) {
return SwitchToThread() ? os::YIELD_SWITCHED : os::YIELD_NONEREADY;
SwitchToThread();
} else {
Sleep(0);
}
return os::YIELD_UNKNOWN;
}
void os::yield() { os::NakedYield(); }
// Win32 only gives you access to seven real priorities at a time,
// so we compress Java's ten down to seven. It would be better
// if we dynamically adjusted relative priorities.
@ -4877,8 +4874,7 @@ void os::PlatformEvent::unpark() {
// 1 :=> 1
// -1 :=> either 0 or 1; must signal target thread
// That is, we can safely transition _Event from -1 to either
// 0 or 1. Forcing 1 is slightly more efficient for back-to-back
// unpark() calls.
// 0 or 1.
// See also: "Semaphores in Plan 9" by Mullender & Cox
//
// Note: Forcing a transition from "-1" to "1" on an unpark() means

View File

@ -1998,7 +1998,13 @@ void GraphBuilder::invoke(Bytecodes::Code code) {
if (!UseInlineCaches && is_loaded && code == Bytecodes::_invokevirtual
&& !target->can_be_statically_bound()) {
// Find a vtable index if one is available
vtable_index = target->resolve_vtable_index(calling_klass, callee_holder);
// For arrays, callee_holder is Object. Resolving the call with
// Object would allow an illegal call to finalize() on an
// array. We use holder instead: illegal calls to finalize() won't
// be compiled as vtable calls (IC call resolution will catch the
// illegal call) and the few legal calls on array types won't be
// either.
vtable_index = target->resolve_vtable_index(calling_klass, holder);
}
#endif

View File

@ -1051,6 +1051,7 @@ JRT_ENTRY(void, Runtime1::patch_code(JavaThread* thread, Runtime1::StubID stub_i
n_copy->set_data((intx) (load_klass()));
} else {
assert(mirror() != NULL, "klass not set");
// Don't need a G1 pre-barrier here since we assert above that data isn't an oop.
n_copy->set_data(cast_from_oop<intx>(mirror()));
}

View File

@ -38,7 +38,7 @@ ciConstantPoolCache::ciConstantPoolCache(Arena* arena,
int expected_size) {
_elements =
new (arena) GrowableArray<void*>(arena, expected_size, 0, 0);
_keys = new (arena) GrowableArray<intptr_t>(arena, expected_size, 0, 0);
_keys = new (arena) GrowableArray<int>(arena, expected_size, 0, 0);
}
// ------------------------------------------------------------------

View File

@ -35,7 +35,7 @@
// Usage note: this klass has nothing to do with ConstantPoolCache*.
class ciConstantPoolCache : public ResourceObj {
private:
GrowableArray<intptr_t>* _keys;
GrowableArray<int>* _keys;
GrowableArray<void*>* _elements;
int find(int index);

View File

@ -185,6 +185,10 @@ private:
}
}
void ensure_metadata_alive(ciMetadata* m) {
_factory->ensure_metadata_alive(m);
}
ciInstance* get_instance(oop o) {
if (o == NULL) return NULL;
return get_object(o)->as_instance();

View File

@ -43,6 +43,7 @@ class ciKlass : public ciType {
friend class ciMethod;
friend class ciMethodData;
friend class ciObjArrayKlass;
friend class ciReceiverTypeData;
private:
ciSymbol* _name;

View File

@ -170,6 +170,7 @@ void ciReceiverTypeData::translate_receiver_data_from(const ProfileData* data) {
Klass* k = data->as_ReceiverTypeData()->receiver(row);
if (k != NULL) {
ciKlass* klass = CURRENT_ENV->get_klass(k);
CURRENT_ENV->ensure_metadata_alive(klass);
set_receiver(row, klass);
}
}
@ -191,6 +192,7 @@ void ciReturnTypeEntry::translate_type_data_from(const ReturnTypeEntry* ret) {
void ciSpeculativeTrapData::translate_from(const ProfileData* data) {
Method* m = data->as_SpeculativeTrapData()->method();
ciMethod* ci_m = CURRENT_ENV->get_method(m);
CURRENT_ENV->ensure_metadata_alive(ci_m);
set_method(ci_m);
}

View File

@ -70,6 +70,7 @@ protected:
Klass* v = TypeEntries::valid_klass(k);
if (v != NULL) {
ciKlass* klass = CURRENT_ENV->get_klass(v);
CURRENT_ENV->ensure_metadata_alive(klass);
return with_status(klass, k);
}
return with_status(NULL, k);

View File

@ -46,6 +46,9 @@
#include "oops/oop.inline.hpp"
#include "oops/oop.inline2.hpp"
#include "runtime/fieldType.hpp"
#if INCLUDE_ALL_GCS
# include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
#endif
// ciObjectFactory
//
@ -374,6 +377,37 @@ ciMetadata* ciObjectFactory::create_new_object(Metadata* o) {
return NULL;
}
// ------------------------------------------------------------------
// ciObjectFactory::ensure_metadata_alive
//
// Ensure that the metadata wrapped by the ciMetadata is kept alive by GC.
// This is primarily useful for metadata which is considered as weak roots
// by the GC but need to be strong roots if reachable from a current compilation.
//
void ciObjectFactory::ensure_metadata_alive(ciMetadata* m) {
ASSERT_IN_VM; // We're handling raw oops here.
#if INCLUDE_ALL_GCS
if (!UseG1GC) {
return;
}
Klass* metadata_owner_klass;
if (m->is_klass()) {
metadata_owner_klass = m->as_klass()->get_Klass();
} else if (m->is_method()) {
metadata_owner_klass = m->as_method()->get_Method()->constants()->pool_holder();
} else {
fatal("Not implemented for other types of metadata");
}
oop metadata_holder = metadata_owner_klass->klass_holder();
if (metadata_holder != NULL) {
G1SATBCardTableModRefBS::enqueue(metadata_holder);
}
#endif
}
//------------------------------------------------------------------
// ciObjectFactory::get_unloaded_method
//

View File

@ -75,6 +75,8 @@ private:
ciObject* create_new_object(oop o);
ciMetadata* create_new_object(Metadata* o);
void ensure_metadata_alive(ciMetadata* m);
static bool is_equal(NonPermObject* p, oop key) {
return p->object()->get_oop() == key;
}

View File

@ -4590,8 +4590,9 @@ void ClassFileParser::check_final_method_override(instanceKlassHandle this_klass
Exceptions::fthrow(
THREAD_AND_LOCATION,
vmSymbols::java_lang_VerifyError(),
"class %s overrides final method %s.%s",
"class %s overrides final method %s.%s%s",
this_klass->external_name(),
super_m->method_holder()->external_name(),
name->as_C_string(),
signature->as_C_string()
);

View File

@ -332,6 +332,27 @@ void ClassLoaderData::unload() {
}
}
#ifdef ASSERT
class AllAliveClosure : public OopClosure {
BoolObjectClosure* _is_alive_closure;
bool _found_dead;
public:
AllAliveClosure(BoolObjectClosure* is_alive_closure) : _is_alive_closure(is_alive_closure), _found_dead(false) {}
template <typename T> void do_oop_work(T* p) {
T heap_oop = oopDesc::load_heap_oop(p);
if (!oopDesc::is_null(heap_oop)) {
oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
if (!_is_alive_closure->do_object_b(obj)) {
_found_dead = true;
}
}
}
void do_oop(oop* p) { do_oop_work<oop>(p); }
void do_oop(narrowOop* p) { do_oop_work<narrowOop>(p); }
bool found_dead() { return _found_dead; }
};
#endif
oop ClassLoaderData::keep_alive_object() const {
assert(!keep_alive(), "Don't use with CLDs that are artificially kept alive");
return is_anonymous() ? _klasses->java_mirror() : class_loader();
@ -341,7 +362,15 @@ bool ClassLoaderData::is_alive(BoolObjectClosure* is_alive_closure) const {
bool alive = keep_alive() // null class loader and incomplete anonymous klasses.
|| is_alive_closure->do_object_b(keep_alive_object());
assert(!alive || claimed(), "must be claimed");
#ifdef ASSERT
if (alive) {
AllAliveClosure all_alive_closure(is_alive_closure);
KlassToOopClosure klass_closure(&all_alive_closure);
const_cast<ClassLoaderData*>(this)->oops_do(&all_alive_closure, &klass_closure, false);
assert(!all_alive_closure.found_dead(), err_msg("Found dead oop in alive cld: " PTR_FORMAT, p2i(this)));
}
#endif
return alive;
}
@ -620,9 +649,9 @@ void ClassLoaderDataGraph::keep_alive_oops_do(OopClosure* f, KlassClosure* klass
void ClassLoaderDataGraph::always_strong_oops_do(OopClosure* f, KlassClosure* klass_closure, bool must_claim) {
if (ClassUnloading) {
ClassLoaderDataGraph::keep_alive_oops_do(f, klass_closure, must_claim);
keep_alive_oops_do(f, klass_closure, must_claim);
} else {
ClassLoaderDataGraph::oops_do(f, klass_closure, must_claim);
oops_do(f, klass_closure, must_claim);
}
}
@ -632,6 +661,27 @@ void ClassLoaderDataGraph::cld_do(CLDClosure* cl) {
}
}
void ClassLoaderDataGraph::roots_cld_do(CLDClosure* strong, CLDClosure* weak) {
for (ClassLoaderData* cld = _head; cld != NULL; cld = cld->_next) {
CLDClosure* closure = cld->keep_alive() ? strong : weak;
if (closure != NULL) {
closure->do_cld(cld);
}
}
}
void ClassLoaderDataGraph::keep_alive_cld_do(CLDClosure* cl) {
roots_cld_do(cl, NULL);
}
void ClassLoaderDataGraph::always_strong_cld_do(CLDClosure* cl) {
if (ClassUnloading) {
keep_alive_cld_do(cl);
} else {
cld_do(cl);
}
}
void ClassLoaderDataGraph::classes_do(KlassClosure* klass_closure) {
for (ClassLoaderData* cld = _head; cld != NULL; cld = cld->next()) {
cld->classes_do(klass_closure);
@ -689,6 +739,16 @@ GrowableArray<ClassLoaderData*>* ClassLoaderDataGraph::new_clds() {
return array;
}
bool ClassLoaderDataGraph::unload_list_contains(const void* x) {
assert(SafepointSynchronize::is_at_safepoint(), "only safe to call at safepoint");
for (ClassLoaderData* cld = _unloading; cld != NULL; cld = cld->next()) {
if (cld->metaspace_or_null() != NULL && cld->metaspace_or_null()->contains(x)) {
return true;
}
}
return false;
}
#ifndef PRODUCT
bool ClassLoaderDataGraph::contains_loader_data(ClassLoaderData* loader_data) {
for (ClassLoaderData* data = _head; data != NULL; data = data->next()) {
@ -809,6 +869,60 @@ Metaspace* ClassLoaderData::rw_metaspace() {
return _rw_metaspace;
}
ClassLoaderDataGraphKlassIteratorAtomic::ClassLoaderDataGraphKlassIteratorAtomic()
: _next_klass(NULL) {
ClassLoaderData* cld = ClassLoaderDataGraph::_head;
Klass* klass = NULL;
// Find the first klass in the CLDG.
while (cld != NULL) {
klass = cld->_klasses;
if (klass != NULL) {
_next_klass = klass;
return;
}
cld = cld->next();
}
}
Klass* ClassLoaderDataGraphKlassIteratorAtomic::next_klass_in_cldg(Klass* klass) {
Klass* next = klass->next_link();
if (next != NULL) {
return next;
}
// No more klasses in the current CLD. Time to find a new CLD.
ClassLoaderData* cld = klass->class_loader_data();
while (next == NULL) {
cld = cld->next();
if (cld == NULL) {
break;
}
next = cld->_klasses;
}
return next;
}
Klass* ClassLoaderDataGraphKlassIteratorAtomic::next_klass() {
Klass* head = (Klass*)_next_klass;
while (head != NULL) {
Klass* next = next_klass_in_cldg(head);
Klass* old_head = (Klass*)Atomic::cmpxchg_ptr(next, &_next_klass, head);
if (old_head == head) {
return head; // Won the CAS.
}
head = old_head;
}
// Nothing more for the iterator to hand out.
assert(head == NULL, err_msg("head is " PTR_FORMAT ", expected not null:", p2i(head)));
return NULL;
}
ClassLoaderDataGraphMetaspaceIterator::ClassLoaderDataGraphMetaspaceIterator() {
_data = ClassLoaderDataGraph::_head;

View File

@ -31,7 +31,6 @@
#include "memory/metaspaceCounters.hpp"
#include "runtime/mutex.hpp"
#include "utilities/growableArray.hpp"
#if INCLUDE_TRACE
# include "utilities/ticks.hpp"
#endif
@ -59,6 +58,7 @@ class Metadebug;
class ClassLoaderDataGraph : public AllStatic {
friend class ClassLoaderData;
friend class ClassLoaderDataGraphMetaspaceIterator;
friend class ClassLoaderDataGraphKlassIteratorAtomic;
friend class VMStructs;
private:
// All CLDs (except the null CLD) can be reached by walking _head->_next->...
@ -75,10 +75,16 @@ class ClassLoaderDataGraph : public AllStatic {
static ClassLoaderData* find_or_create(Handle class_loader, TRAPS);
static void purge();
static void clear_claimed_marks();
// oops do
static void oops_do(OopClosure* f, KlassClosure* klass_closure, bool must_claim);
static void always_strong_oops_do(OopClosure* blk, KlassClosure* klass_closure, bool must_claim);
static void keep_alive_oops_do(OopClosure* blk, KlassClosure* klass_closure, bool must_claim);
static void always_strong_oops_do(OopClosure* blk, KlassClosure* klass_closure, bool must_claim);
// cld do
static void cld_do(CLDClosure* cl);
static void roots_cld_do(CLDClosure* strong, CLDClosure* weak);
static void keep_alive_cld_do(CLDClosure* cl);
static void always_strong_cld_do(CLDClosure* cl);
// klass do
static void classes_do(KlassClosure* klass_closure);
static void classes_do(void f(Klass* const));
static void methods_do(void f(Method*));
@ -104,6 +110,7 @@ class ClassLoaderDataGraph : public AllStatic {
static void dump() { dump_on(tty); }
static void verify();
static bool unload_list_contains(const void* x);
#ifndef PRODUCT
static bool contains_loader_data(ClassLoaderData* loader_data);
#endif
@ -136,6 +143,7 @@ class ClassLoaderData : public CHeapObj<mtClass> {
};
friend class ClassLoaderDataGraph;
friend class ClassLoaderDataGraphKlassIteratorAtomic;
friend class ClassLoaderDataGraphMetaspaceIterator;
friend class MetaDataFactory;
friend class Method;
@ -195,7 +203,6 @@ class ClassLoaderData : public CHeapObj<mtClass> {
void unload();
bool keep_alive() const { return _keep_alive; }
bool is_alive(BoolObjectClosure* is_alive_closure) const;
void classes_do(void f(Klass*));
void loaded_classes_do(KlassClosure* klass_closure);
void classes_do(void f(InstanceKlass*));
@ -208,6 +215,9 @@ class ClassLoaderData : public CHeapObj<mtClass> {
MetaWord* allocate(size_t size);
public:
bool is_alive(BoolObjectClosure* is_alive_closure) const;
// Accessors
Metaspace* metaspace_or_null() const { return _metaspace; }
@ -293,6 +303,16 @@ class ClassLoaderData : public CHeapObj<mtClass> {
void initialize_shared_metaspaces();
};
// An iterator that distributes Klasses to parallel worker threads.
class ClassLoaderDataGraphKlassIteratorAtomic : public StackObj {
volatile Klass* _next_klass;
public:
ClassLoaderDataGraphKlassIteratorAtomic();
Klass* next_klass();
private:
static Klass* next_klass_in_cldg(Klass* klass);
};
class ClassLoaderDataGraphMetaspaceIterator : public StackObj {
ClassLoaderData* _data;
public:

View File

@ -199,6 +199,26 @@ bool Dictionary::do_unloading() {
return class_was_unloaded;
}
void Dictionary::roots_oops_do(OopClosure* strong, OopClosure* weak) {
// Skip the strong roots probe marking if the closures are the same.
if (strong == weak) {
oops_do(strong);
return;
}
for (int index = 0; index < table_size(); index++) {
for (DictionaryEntry *probe = bucket(index);
probe != NULL;
probe = probe->next()) {
Klass* e = probe->klass();
ClassLoaderData* loader_data = probe->loader_data();
if (is_strongly_reachable(loader_data, e)) {
probe->set_strongly_reachable();
}
}
}
_pd_cache_table->roots_oops_do(strong, weak);
}
void Dictionary::always_strong_oops_do(OopClosure* blk) {
// Follow all system classes and temporary placeholders in dictionary; only
@ -490,6 +510,23 @@ void ProtectionDomainCacheTable::oops_do(OopClosure* f) {
}
}
void ProtectionDomainCacheTable::roots_oops_do(OopClosure* strong, OopClosure* weak) {
for (int index = 0; index < table_size(); index++) {
for (ProtectionDomainCacheEntry* probe = bucket(index);
probe != NULL;
probe = probe->next()) {
if (probe->is_strongly_reachable()) {
probe->reset_strongly_reachable();
probe->oops_do(strong);
} else {
if (weak != NULL) {
probe->oops_do(weak);
}
}
}
}
}
uint ProtectionDomainCacheTable::bucket_size() {
return sizeof(ProtectionDomainCacheEntry);
}

View File

@ -89,6 +89,7 @@ public:
// GC support
void oops_do(OopClosure* f);
void always_strong_oops_do(OopClosure* blk);
void roots_oops_do(OopClosure* strong, OopClosure* weak);
void always_strong_classes_do(KlassClosure* closure);
@ -218,6 +219,7 @@ public:
// GC support
void oops_do(OopClosure* f);
void always_strong_oops_do(OopClosure* f);
void roots_oops_do(OopClosure* strong, OopClosure* weak);
static uint bucket_size();

View File

@ -1239,6 +1239,16 @@ oop java_lang_Throwable::message(Handle throwable) {
}
// Return Symbol for detailed_message or NULL
Symbol* java_lang_Throwable::detail_message(oop throwable) {
PRESERVE_EXCEPTION_MARK; // Keep original exception
oop detailed_message = java_lang_Throwable::message(throwable);
if (detailed_message != NULL) {
return java_lang_String::as_symbol(detailed_message, THREAD);
}
return NULL;
}
void java_lang_Throwable::set_message(oop throwable, oop value) {
throwable->obj_field_put(detailMessage_offset, value);
}

View File

@ -520,6 +520,7 @@ class java_lang_Throwable: AllStatic {
static oop message(oop throwable);
static oop message(Handle throwable);
static void set_message(oop throwable, oop value);
static Symbol* detail_message(oop throwable);
static void print_stack_element(outputStream *st, Handle mirror, int method,
int version, int bci);
static void print_stack_element(outputStream *st, methodHandle method, int bci);

View File

@ -47,8 +47,11 @@ MetadataOnStackMark::MetadataOnStackMark() {
if (_marked_objects == NULL) {
_marked_objects = new (ResourceObj::C_HEAP, mtClass) GrowableArray<Metadata*>(1000, true);
}
Threads::metadata_do(Metadata::mark_on_stack);
if (JvmtiExport::has_redefined_a_class()) {
CodeCache::alive_nmethods_do(nmethod::mark_on_stack);
}
CompileBroker::mark_on_stack();
JvmtiCurrentBreakpoints::metadata_do(Metadata::mark_on_stack);
ThreadService::metadata_do(Metadata::mark_on_stack);

View File

@ -37,6 +37,7 @@
#include "runtime/mutexLocker.hpp"
#include "utilities/hashtable.inline.hpp"
#if INCLUDE_ALL_GCS
#include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
#include "gc_implementation/g1/g1StringDedup.hpp"
#endif
@ -157,11 +158,26 @@ oop StringTable::lookup(Symbol* symbol) {
return lookup(chars, length);
}
// Tell the GC that this string was looked up in the StringTable.
static void ensure_string_alive(oop string) {
// A lookup in the StringTable could return an object that was previously
// considered dead. The SATB part of G1 needs to get notified about this
// potential resurrection, otherwise the marking might not find the object.
#if INCLUDE_ALL_GCS
if (UseG1GC && string != NULL) {
G1SATBCardTableModRefBS::enqueue(string);
}
#endif
}
oop StringTable::lookup(jchar* name, int len) {
unsigned int hash = hash_string(name, len);
int index = the_table()->hash_to_index(hash);
return the_table()->lookup(index, name, len, hash);
oop string = the_table()->lookup(index, name, len, hash);
ensure_string_alive(string);
return string;
}
@ -172,7 +188,10 @@ oop StringTable::intern(Handle string_or_null, jchar* name,
oop found_string = the_table()->lookup(index, name, len, hashValue);
// Found
if (found_string != NULL) return found_string;
if (found_string != NULL) {
ensure_string_alive(found_string);
return found_string;
}
debug_only(StableMemoryChecker smc(name, len * sizeof(name[0])));
assert(!Universe::heap()->is_in_reserved(name),
@ -197,11 +216,17 @@ oop StringTable::intern(Handle string_or_null, jchar* name,
// Grab the StringTable_lock before getting the_table() because it could
// change at safepoint.
oop added_or_found;
{
MutexLocker ml(StringTable_lock, THREAD);
// Otherwise, add to symbol to table
return the_table()->basic_add(index, string, name, len,
added_or_found = the_table()->basic_add(index, string, name, len,
hashValue, CHECK_NULL);
}
ensure_string_alive(added_or_found);
return added_or_found;
}
oop StringTable::intern(Symbol* symbol, TRAPS) {

View File

@ -1612,13 +1612,7 @@ void SystemDictionary::add_to_hierarchy(instanceKlassHandle k, TRAPS) {
// system dictionary and follows the remaining classes' contents.
void SystemDictionary::always_strong_oops_do(OopClosure* blk) {
blk->do_oop(&_java_system_loader);
blk->do_oop(&_system_loader_lock_obj);
dictionary()->always_strong_oops_do(blk);
// Visit extra methods
invoke_method_table()->oops_do(blk);
roots_oops_do(blk, NULL);
}
void SystemDictionary::always_strong_classes_do(KlassClosure* closure) {
@ -1685,6 +1679,17 @@ bool SystemDictionary::do_unloading(BoolObjectClosure* is_alive) {
return unloading_occurred;
}
void SystemDictionary::roots_oops_do(OopClosure* strong, OopClosure* weak) {
strong->do_oop(&_java_system_loader);
strong->do_oop(&_system_loader_lock_obj);
// Adjust dictionary
dictionary()->roots_oops_do(strong, weak);
// Visit extra methods
invoke_method_table()->oops_do(strong);
}
void SystemDictionary::oops_do(OopClosure* f) {
f->do_oop(&_java_system_loader);
f->do_oop(&_system_loader_lock_obj);

View File

@ -330,6 +330,7 @@ public:
// Applies "f->do_oop" to all root oops in the system dictionary.
static void oops_do(OopClosure* f);
static void roots_oops_do(OopClosure* strong, OopClosure* weak);
// System loader lock
static oop system_loader_lock() { return _system_loader_lock_obj; }

View File

@ -331,6 +331,11 @@ void CodeCache::blobs_do(CodeBlobClosure* f) {
// Walk the list of methods which might contain non-perm oops.
void CodeCache::scavenge_root_nmethods_do(CodeBlobClosure* f) {
assert_locked_or_safepoint(CodeCache_lock);
if (UseG1GC) {
return;
}
debug_only(mark_scavenge_root_nmethods());
for (nmethod* cur = scavenge_root_nmethods(); cur != NULL; cur = cur->scavenge_root_link()) {
@ -356,6 +361,11 @@ void CodeCache::scavenge_root_nmethods_do(CodeBlobClosure* f) {
void CodeCache::add_scavenge_root_nmethod(nmethod* nm) {
assert_locked_or_safepoint(CodeCache_lock);
if (UseG1GC) {
return;
}
nm->set_on_scavenge_root_list();
nm->set_scavenge_root_link(_scavenge_root_nmethods);
set_scavenge_root_nmethods(nm);
@ -364,6 +374,11 @@ void CodeCache::add_scavenge_root_nmethod(nmethod* nm) {
void CodeCache::drop_scavenge_root_nmethod(nmethod* nm) {
assert_locked_or_safepoint(CodeCache_lock);
if (UseG1GC) {
return;
}
print_trace("drop_scavenge_root", nm);
nmethod* last = NULL;
nmethod* cur = scavenge_root_nmethods();
@ -385,6 +400,11 @@ void CodeCache::drop_scavenge_root_nmethod(nmethod* nm) {
void CodeCache::prune_scavenge_root_nmethods() {
assert_locked_or_safepoint(CodeCache_lock);
if (UseG1GC) {
return;
}
debug_only(mark_scavenge_root_nmethods());
nmethod* last = NULL;
@ -417,6 +437,10 @@ void CodeCache::prune_scavenge_root_nmethods() {
#ifndef PRODUCT
void CodeCache::asserted_non_scavengable_nmethods_do(CodeBlobClosure* f) {
if (UseG1GC) {
return;
}
// While we are here, verify the integrity of the list.
mark_scavenge_root_nmethods();
for (nmethod* cur = scavenge_root_nmethods(); cur != NULL; cur = cur->scavenge_root_link()) {
@ -457,9 +481,36 @@ void CodeCache::verify_perm_nmethods(CodeBlobClosure* f_or_null) {
}
#endif //PRODUCT
void CodeCache::verify_clean_inline_caches() {
#ifdef ASSERT
FOR_ALL_ALIVE_BLOBS(cb) {
if (cb->is_nmethod()) {
nmethod* nm = (nmethod*)cb;
assert(!nm->is_unloaded(), "Tautology");
nm->verify_clean_inline_caches();
nm->verify();
}
}
#endif
}
void CodeCache::verify_icholder_relocations() {
#ifdef ASSERT
// make sure that we aren't leaking icholders
int count = 0;
FOR_ALL_BLOBS(cb) {
if (cb->is_nmethod()) {
nmethod* nm = (nmethod*)cb;
count += nm->verify_icholder_relocations();
}
}
assert(count + InlineCacheBuffer::pending_icholder_count() + CompiledICHolder::live_not_claimed_count() ==
CompiledICHolder::live_count(), "must agree");
#endif
}
void CodeCache::gc_prologue() {
assert(!nmethod::oops_do_marking_is_active(), "oops_do_marking_epilogue must be called");
}
void CodeCache::gc_epilogue() {
@ -472,41 +523,15 @@ void CodeCache::gc_epilogue() {
nm->cleanup_inline_caches();
}
DEBUG_ONLY(nm->verify());
nm->fix_oop_relocations();
DEBUG_ONLY(nm->verify_oop_relocations());
}
}
set_needs_cache_clean(false);
prune_scavenge_root_nmethods();
assert(!nmethod::oops_do_marking_is_active(), "oops_do_marking_prologue must be called");
#ifdef ASSERT
// make sure that we aren't leaking icholders
int count = 0;
FOR_ALL_BLOBS(cb) {
if (cb->is_nmethod()) {
RelocIterator iter((nmethod*)cb);
while(iter.next()) {
if (iter.type() == relocInfo::virtual_call_type) {
if (CompiledIC::is_icholder_call_site(iter.virtual_call_reloc())) {
CompiledIC *ic = CompiledIC_at(iter.reloc());
if (TraceCompiledIC) {
tty->print("noticed icholder " INTPTR_FORMAT " ", p2i(ic->cached_icholder()));
ic->print();
}
assert(ic->cached_icholder() != NULL, "must be non-NULL");
count++;
}
}
}
}
}
assert(count + InlineCacheBuffer::pending_icholder_count() + CompiledICHolder::live_not_claimed_count() ==
CompiledICHolder::live_count(), "must agree");
#endif
verify_icholder_relocations();
}
void CodeCache::verify_oops() {
MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
VerifyOopClosure voc;

View File

@ -134,10 +134,6 @@ class CodeCache : AllStatic {
// to) any unmarked codeBlobs in the cache. Sets "marked_for_unloading"
// to "true" iff some code got unloaded.
static void do_unloading(BoolObjectClosure* is_alive, bool unloading_occurred);
static void oops_do(OopClosure* f) {
CodeBlobToOopClosure oopc(f, /*do_marking=*/ false);
blobs_do(&oopc);
}
static void asserted_non_scavengable_nmethods_do(CodeBlobClosure* f = NULL) PRODUCT_RETURN;
static void scavenge_root_nmethods_do(CodeBlobClosure* f);
@ -173,6 +169,9 @@ class CodeCache : AllStatic {
static void set_needs_cache_clean(bool v) { _needs_cache_clean = v; }
static void clear_inline_caches(); // clear all inline caches
static void verify_clean_inline_caches();
static void verify_icholder_relocations();
// Deoptimization
static int mark_for_deoptimization(DepChange& changes);
#ifdef HOTSWAP

View File

@ -99,13 +99,13 @@ void CompiledIC::internal_set_ic_destination(address entry_point, bool is_icstub
}
{
MutexLockerEx pl(Patching_lock, Mutex::_no_safepoint_check_flag);
MutexLockerEx pl(SafepointSynchronize::is_at_safepoint() ? NULL : Patching_lock, Mutex::_no_safepoint_check_flag);
#ifdef ASSERT
CodeBlob* cb = CodeCache::find_blob_unsafe(_ic_call);
assert(cb != NULL && cb->is_nmethod(), "must be nmethod");
#endif
_ic_call->set_destination_mt_safe(entry_point);
}
}
if (is_optimized() || is_icstub) {
// Optimized call sites don't have a cache value and ICStub call
@ -159,10 +159,24 @@ address CompiledIC::stub_address() const {
//-----------------------------------------------------------------------------
// High-level access to an inline cache. Guaranteed to be MT-safe.
void CompiledIC::initialize_from_iter(RelocIterator* iter) {
assert(iter->addr() == _ic_call->instruction_address(), "must find ic_call");
if (iter->type() == relocInfo::virtual_call_type) {
virtual_call_Relocation* r = iter->virtual_call_reloc();
_is_optimized = false;
_value = nativeMovConstReg_at(r->cached_value());
} else {
assert(iter->type() == relocInfo::opt_virtual_call_type, "must be a virtual call");
_is_optimized = true;
_value = NULL;
}
}
CompiledIC::CompiledIC(nmethod* nm, NativeCall* call)
: _ic_call(call)
{
address ic_call = call->instruction_address();
address ic_call = _ic_call->instruction_address();
assert(ic_call != NULL, "ic_call address must be set");
assert(nm != NULL, "must pass nmethod");
@ -173,15 +187,21 @@ CompiledIC::CompiledIC(nmethod* nm, NativeCall* call)
bool ret = iter.next();
assert(ret == true, "relocInfo must exist at this address");
assert(iter.addr() == ic_call, "must find ic_call");
if (iter.type() == relocInfo::virtual_call_type) {
virtual_call_Relocation* r = iter.virtual_call_reloc();
_is_optimized = false;
_value = nativeMovConstReg_at(r->cached_value());
} else {
assert(iter.type() == relocInfo::opt_virtual_call_type, "must be a virtual call");
_is_optimized = true;
_value = NULL;
}
initialize_from_iter(&iter);
}
CompiledIC::CompiledIC(RelocIterator* iter)
: _ic_call(nativeCall_at(iter->addr()))
{
address ic_call = _ic_call->instruction_address();
nmethod* nm = iter->code();
assert(ic_call != NULL, "ic_call address must be set");
assert(nm != NULL, "must pass nmethod");
assert(nm->contains(ic_call), "must be in nmethod");
initialize_from_iter(iter);
}
bool CompiledIC::set_to_megamorphic(CallInfo* call_info, Bytecodes::Code bytecode, TRAPS) {
@ -509,7 +529,7 @@ bool CompiledIC::is_icholder_entry(address entry) {
void CompiledStaticCall::set_to_clean() {
assert (CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "mt unsafe call");
// Reset call site
MutexLockerEx pl(Patching_lock, Mutex::_no_safepoint_check_flag);
MutexLockerEx pl(SafepointSynchronize::is_at_safepoint() ? NULL : Patching_lock, Mutex::_no_safepoint_check_flag);
#ifdef ASSERT
CodeBlob* cb = CodeCache::find_blob_unsafe(this);
assert(cb != NULL && cb->is_nmethod(), "must be nmethod");

View File

@ -136,6 +136,9 @@ class CompiledIC: public ResourceObj {
bool _is_optimized; // an optimized virtual call (i.e., no compiled IC)
CompiledIC(nmethod* nm, NativeCall* ic_call);
CompiledIC(RelocIterator* iter);
void initialize_from_iter(RelocIterator* iter);
static bool is_icholder_entry(address entry);
@ -169,6 +172,7 @@ class CompiledIC: public ResourceObj {
friend CompiledIC* CompiledIC_before(nmethod* nm, address return_addr);
friend CompiledIC* CompiledIC_at(nmethod* nm, address call_site);
friend CompiledIC* CompiledIC_at(Relocation* call_site);
friend CompiledIC* CompiledIC_at(RelocIterator* reloc_iter);
// This is used to release CompiledICHolder*s from nmethods that
// are about to be freed. The callsite might contain other stale
@ -249,6 +253,13 @@ inline CompiledIC* CompiledIC_at(Relocation* call_site) {
return c_ic;
}
inline CompiledIC* CompiledIC_at(RelocIterator* reloc_iter) {
assert(reloc_iter->type() == relocInfo::virtual_call_type ||
reloc_iter->type() == relocInfo::opt_virtual_call_type, "wrong reloc. info");
CompiledIC* c_ic = new CompiledIC(reloc_iter);
c_ic->verify();
return c_ic;
}
//-----------------------------------------------------------------------------
// The CompiledStaticCall represents a call to a static method in the compiled

View File

@ -51,6 +51,8 @@
PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
unsigned char nmethod::_global_unloading_clock = 0;
#ifdef DTRACE_ENABLED
// Only bother with this argument setup if dtrace is available
@ -446,6 +448,7 @@ const char* nmethod::compile_kind() const {
// Fill in default values for various flag fields
void nmethod::init_defaults() {
_state = in_use;
_unloading_clock = 0;
_marked_for_reclamation = 0;
_has_flushed_dependencies = 0;
_has_unsafe_access = 0;
@ -464,7 +467,11 @@ void nmethod::init_defaults() {
_oops_do_mark_link = NULL;
_jmethod_id = NULL;
_osr_link = NULL;
if (UseG1GC) {
_unloading_next = NULL;
} else {
_scavenge_root_link = NULL;
}
_scavenge_root_state = 0;
_compiler = NULL;
#if INCLUDE_RTM_OPT
@ -1146,7 +1153,7 @@ void nmethod::cleanup_inline_caches() {
switch(iter.type()) {
case relocInfo::virtual_call_type:
case relocInfo::opt_virtual_call_type: {
CompiledIC *ic = CompiledIC_at(iter.reloc());
CompiledIC *ic = CompiledIC_at(&iter);
// Ok, to lookup references to zombies here
CodeBlob *cb = CodeCache::find_blob_unsafe(ic->ic_destination());
if( cb != NULL && cb->is_nmethod() ) {
@ -1170,6 +1177,77 @@ void nmethod::cleanup_inline_caches() {
}
}
void nmethod::verify_clean_inline_caches() {
assert_locked_or_safepoint(CompiledIC_lock);
// If the method is not entrant or zombie then a JMP is plastered over the
// first few bytes. If an oop in the old code was there, that oop
// should not get GC'd. Skip the first few bytes of oops on
// not-entrant methods.
address low_boundary = verified_entry_point();
if (!is_in_use()) {
low_boundary += NativeJump::instruction_size;
// %%% Note: On SPARC we patch only a 4-byte trap, not a full NativeJump.
// This means that the low_boundary is going to be a little too high.
// This shouldn't matter, since oops of non-entrant methods are never used.
// In fact, why are we bothering to look at oops in a non-entrant method??
}
ResourceMark rm;
RelocIterator iter(this, low_boundary);
while(iter.next()) {
switch(iter.type()) {
case relocInfo::virtual_call_type:
case relocInfo::opt_virtual_call_type: {
CompiledIC *ic = CompiledIC_at(&iter);
// Ok, to lookup references to zombies here
CodeBlob *cb = CodeCache::find_blob_unsafe(ic->ic_destination());
if( cb != NULL && cb->is_nmethod() ) {
nmethod* nm = (nmethod*)cb;
// Verify that inline caches pointing to both zombie and not_entrant methods are clean
if (!nm->is_in_use() || (nm->method()->code() != nm)) {
assert(ic->is_clean(), "IC should be clean");
}
}
break;
}
case relocInfo::static_call_type: {
CompiledStaticCall *csc = compiledStaticCall_at(iter.reloc());
CodeBlob *cb = CodeCache::find_blob_unsafe(csc->destination());
if( cb != NULL && cb->is_nmethod() ) {
nmethod* nm = (nmethod*)cb;
// Verify that inline caches pointing to both zombie and not_entrant methods are clean
if (!nm->is_in_use() || (nm->method()->code() != nm)) {
assert(csc->is_clean(), "IC should be clean");
}
}
break;
}
}
}
}
int nmethod::verify_icholder_relocations() {
int count = 0;
RelocIterator iter(this);
while(iter.next()) {
if (iter.type() == relocInfo::virtual_call_type) {
if (CompiledIC::is_icholder_call_site(iter.virtual_call_reloc())) {
CompiledIC *ic = CompiledIC_at(&iter);
if (TraceCompiledIC) {
tty->print("noticed icholder " INTPTR_FORMAT " ", p2i(ic->cached_icholder()));
ic->print();
}
assert(ic->cached_icholder() != NULL, "must be non-NULL");
count++;
}
}
}
return count;
}
// This is a private interface with the sweeper.
void nmethod::mark_as_seen_on_stack() {
assert(is_alive(), "Must be an alive method");
@ -1202,6 +1280,23 @@ void nmethod::inc_decompile_count() {
mdo->inc_decompile_count();
}
void nmethod::increase_unloading_clock() {
_global_unloading_clock++;
if (_global_unloading_clock == 0) {
// _nmethods are allocated with _unloading_clock == 0,
// so 0 is never used as a clock value.
_global_unloading_clock = 1;
}
}
void nmethod::set_unloading_clock(unsigned char unloading_clock) {
OrderAccess::release_store((volatile jubyte*)&_unloading_clock, unloading_clock);
}
unsigned char nmethod::unloading_clock() {
return (unsigned char)OrderAccess::load_acquire((volatile jubyte*)&_unloading_clock);
}
void nmethod::make_unloaded(BoolObjectClosure* is_alive, oop cause) {
post_compiled_method_unload();
@ -1247,6 +1342,10 @@ void nmethod::make_unloaded(BoolObjectClosure* is_alive, oop cause) {
// for later on.
CodeCache::set_needs_cache_clean(true);
}
// Unregister must be done before the state change
Universe::heap()->unregister_nmethod(this);
_state = unloaded;
// Log the unloading.
@ -1590,6 +1689,35 @@ void nmethod::post_compiled_method_unload() {
set_unload_reported();
}
void static clean_ic_if_metadata_is_dead(CompiledIC *ic, BoolObjectClosure *is_alive) {
if (ic->is_icholder_call()) {
// The only exception is compiledICHolder oops which may
// yet be marked below. (We check this further below).
CompiledICHolder* cichk_oop = ic->cached_icholder();
if (cichk_oop->holder_method()->method_holder()->is_loader_alive(is_alive) &&
cichk_oop->holder_klass()->is_loader_alive(is_alive)) {
return;
}
} else {
Metadata* ic_oop = ic->cached_metadata();
if (ic_oop != NULL) {
if (ic_oop->is_klass()) {
if (((Klass*)ic_oop)->is_loader_alive(is_alive)) {
return;
}
} else if (ic_oop->is_method()) {
if (((Method*)ic_oop)->method_holder()->is_loader_alive(is_alive)) {
return;
}
} else {
ShouldNotReachHere();
}
}
}
ic->set_to_clean();
}
// This is called at the end of the strong tracing/marking phase of a
// GC to unload an nmethod if it contains otherwise unreachable
// oops.
@ -1632,32 +1760,8 @@ void nmethod::do_unloading(BoolObjectClosure* is_alive, bool unloading_occurred)
RelocIterator iter(this, low_boundary);
while(iter.next()) {
if (iter.type() == relocInfo::virtual_call_type) {
CompiledIC *ic = CompiledIC_at(iter.reloc());
if (ic->is_icholder_call()) {
// The only exception is compiledICHolder oops which may
// yet be marked below. (We check this further below).
CompiledICHolder* cichk_oop = ic->cached_icholder();
if (cichk_oop->holder_method()->method_holder()->is_loader_alive(is_alive) &&
cichk_oop->holder_klass()->is_loader_alive(is_alive)) {
continue;
}
} else {
Metadata* ic_oop = ic->cached_metadata();
if (ic_oop != NULL) {
if (ic_oop->is_klass()) {
if (((Klass*)ic_oop)->is_loader_alive(is_alive)) {
continue;
}
} else if (ic_oop->is_method()) {
if (((Method*)ic_oop)->method_holder()->is_loader_alive(is_alive)) {
continue;
}
} else {
ShouldNotReachHere();
}
}
}
ic->set_to_clean();
CompiledIC *ic = CompiledIC_at(&iter);
clean_ic_if_metadata_is_dead(ic, is_alive);
}
}
}
@ -1695,6 +1799,175 @@ void nmethod::do_unloading(BoolObjectClosure* is_alive, bool unloading_occurred)
verify_metadata_loaders(low_boundary, is_alive);
}
template <class CompiledICorStaticCall>
static bool clean_if_nmethod_is_unloaded(CompiledICorStaticCall *ic, address addr, BoolObjectClosure *is_alive, nmethod* from) {
// Ok, to lookup references to zombies here
CodeBlob *cb = CodeCache::find_blob_unsafe(addr);
if (cb != NULL && cb->is_nmethod()) {
nmethod* nm = (nmethod*)cb;
if (nm->unloading_clock() != nmethod::global_unloading_clock()) {
// The nmethod has not been processed yet.
return true;
}
// Clean inline caches pointing to both zombie and not_entrant methods
if (!nm->is_in_use() || (nm->method()->code() != nm)) {
ic->set_to_clean();
assert(ic->is_clean(), err_msg("nmethod " PTR_FORMAT "not clean %s", from, from->method()->name_and_sig_as_C_string()));
}
}
return false;
}
static bool clean_if_nmethod_is_unloaded(CompiledIC *ic, BoolObjectClosure *is_alive, nmethod* from) {
return clean_if_nmethod_is_unloaded(ic, ic->ic_destination(), is_alive, from);
}
static bool clean_if_nmethod_is_unloaded(CompiledStaticCall *csc, BoolObjectClosure *is_alive, nmethod* from) {
return clean_if_nmethod_is_unloaded(csc, csc->destination(), is_alive, from);
}
bool nmethod::do_unloading_parallel(BoolObjectClosure* is_alive, bool unloading_occurred) {
ResourceMark rm;
// Make sure the oop's ready to receive visitors
assert(!is_zombie() && !is_unloaded(),
"should not call follow on zombie or unloaded nmethod");
// If the method is not entrant then a JMP is plastered over the
// first few bytes. If an oop in the old code was there, that oop
// should not get GC'd. Skip the first few bytes of oops on
// not-entrant methods.
address low_boundary = verified_entry_point();
if (is_not_entrant()) {
low_boundary += NativeJump::instruction_size;
// %%% Note: On SPARC we patch only a 4-byte trap, not a full NativeJump.
// (See comment above.)
}
// The RedefineClasses() API can cause the class unloading invariant
// to no longer be true. See jvmtiExport.hpp for details.
// Also, leave a debugging breadcrumb in local flag.
bool a_class_was_redefined = JvmtiExport::has_redefined_a_class();
if (a_class_was_redefined) {
// This set of the unloading_occurred flag is done before the
// call to post_compiled_method_unload() so that the unloading
// of this nmethod is reported.
unloading_occurred = true;
}
// Exception cache
clean_exception_cache(is_alive);
bool is_unloaded = false;
bool postponed = false;
RelocIterator iter(this, low_boundary);
while(iter.next()) {
switch (iter.type()) {
case relocInfo::virtual_call_type:
if (unloading_occurred) {
// If class unloading occurred we first iterate over all inline caches and
// clear ICs where the cached oop is referring to an unloaded klass or method.
clean_ic_if_metadata_is_dead(CompiledIC_at(&iter), is_alive);
}
postponed |= clean_if_nmethod_is_unloaded(CompiledIC_at(&iter), is_alive, this);
break;
case relocInfo::opt_virtual_call_type:
postponed |= clean_if_nmethod_is_unloaded(CompiledIC_at(&iter), is_alive, this);
break;
case relocInfo::static_call_type:
postponed |= clean_if_nmethod_is_unloaded(compiledStaticCall_at(iter.reloc()), is_alive, this);
break;
case relocInfo::oop_type:
if (!is_unloaded) {
// Unload check
oop_Relocation* r = iter.oop_reloc();
// Traverse those oops directly embedded in the code.
// Other oops (oop_index>0) are seen as part of scopes_oops.
assert(1 == (r->oop_is_immediate()) +
(r->oop_addr() >= oops_begin() && r->oop_addr() < oops_end()),
"oop must be found in exactly one place");
if (r->oop_is_immediate() && r->oop_value() != NULL) {
if (can_unload(is_alive, r->oop_addr(), unloading_occurred)) {
is_unloaded = true;
}
}
}
break;
}
}
if (is_unloaded) {
return postponed;
}
// Scopes
for (oop* p = oops_begin(); p < oops_end(); p++) {
if (*p == Universe::non_oop_word()) continue; // skip non-oops
if (can_unload(is_alive, p, unloading_occurred)) {
is_unloaded = true;
break;
}
}
if (is_unloaded) {
return postponed;
}
// Ensure that all metadata is still alive
verify_metadata_loaders(low_boundary, is_alive);
return postponed;
}
void nmethod::do_unloading_parallel_postponed(BoolObjectClosure* is_alive, bool unloading_occurred) {
ResourceMark rm;
// Make sure the oop's ready to receive visitors
assert(!is_zombie(),
"should not call follow on zombie nmethod");
// If the method is not entrant then a JMP is plastered over the
// first few bytes. If an oop in the old code was there, that oop
// should not get GC'd. Skip the first few bytes of oops on
// not-entrant methods.
address low_boundary = verified_entry_point();
if (is_not_entrant()) {
low_boundary += NativeJump::instruction_size;
// %%% Note: On SPARC we patch only a 4-byte trap, not a full NativeJump.
// (See comment above.)
}
RelocIterator iter(this, low_boundary);
while(iter.next()) {
switch (iter.type()) {
case relocInfo::virtual_call_type:
clean_if_nmethod_is_unloaded(CompiledIC_at(&iter), is_alive, this);
break;
case relocInfo::opt_virtual_call_type:
clean_if_nmethod_is_unloaded(CompiledIC_at(&iter), is_alive, this);
break;
case relocInfo::static_call_type:
clean_if_nmethod_is_unloaded(compiledStaticCall_at(iter.reloc()), is_alive, this);
break;
}
}
}
#ifdef ASSERT
class CheckClass : AllStatic {
@ -1741,7 +2014,7 @@ void nmethod::verify_metadata_loaders(address low_boundary, BoolObjectClosure* i
// compiled code is maintaining a link to dead metadata.
address static_call_addr = NULL;
if (iter.type() == relocInfo::opt_virtual_call_type) {
CompiledIC* cic = CompiledIC_at(iter.reloc());
CompiledIC* cic = CompiledIC_at(&iter);
if (!cic->is_call_to_interpreted()) {
static_call_addr = iter.addr();
}
@ -1793,7 +2066,7 @@ void nmethod::metadata_do(void f(Metadata*)) {
}
} else if (iter.type() == relocInfo::virtual_call_type) {
// Check compiledIC holders associated with this nmethod
CompiledIC *ic = CompiledIC_at(iter.reloc());
CompiledIC *ic = CompiledIC_at(&iter);
if (ic->is_icholder_call()) {
CompiledICHolder* cichk = ic->cached_icholder();
f(cichk->holder_method());
@ -1911,7 +2184,7 @@ void nmethod::oops_do_marking_epilogue() {
assert(cur != NULL, "not NULL-terminated");
nmethod* next = cur->_oops_do_mark_link;
cur->_oops_do_mark_link = NULL;
cur->fix_oop_relocations();
cur->verify_oop_relocations();
NOT_PRODUCT(if (TraceScavenge) cur->print_on(tty, "oops_do, unmark"));
cur = next;
}
@ -2479,6 +2752,10 @@ public:
};
void nmethod::verify_scavenge_root_oops() {
if (UseG1GC) {
return;
}
if (!on_scavenge_root_list()) {
// Actually look inside, to verify the claim that it's clean.
DebugScavengeRoot debug_scavenge_root(this);
@ -2922,7 +3199,7 @@ void nmethod::print_calls(outputStream* st) {
case relocInfo::virtual_call_type:
case relocInfo::opt_virtual_call_type: {
VerifyMutexLocker mc(CompiledIC_lock);
CompiledIC_at(iter.reloc())->print();
CompiledIC_at(&iter)->print();
break;
}
case relocInfo::static_call_type:

View File

@ -111,6 +111,11 @@ class nmethod : public CodeBlob {
friend class NMethodSweeper;
friend class CodeCache; // scavengable oops
private:
// GC support to help figure out if an nmethod has been
// cleaned/unloaded by the current GC.
static unsigned char _global_unloading_clock;
// Shared fields for all nmethod's
Method* _method;
int _entry_bci; // != InvocationEntryBci if this nmethod is an on-stack replacement method
@ -118,7 +123,13 @@ class nmethod : public CodeBlob {
// To support simple linked-list chaining of nmethods:
nmethod* _osr_link; // from InstanceKlass::osr_nmethods_head
union {
// Used by G1 to chain nmethods.
nmethod* _unloading_next;
// Used by non-G1 GCs to chain nmethods.
nmethod* _scavenge_root_link; // from CodeCache::scavenge_root_nmethods
};
static nmethod* volatile _oops_do_mark_nmethods;
nmethod* volatile _oops_do_mark_link;
@ -180,6 +191,8 @@ class nmethod : public CodeBlob {
// Protected by Patching_lock
volatile unsigned char _state; // {alive, not_entrant, zombie, unloaded}
volatile unsigned char _unloading_clock; // Incremented after GC unloaded/cleaned the nmethod
#ifdef ASSERT
bool _oops_are_stale; // indicates that it's no longer safe to access oops section
#endif
@ -437,6 +450,15 @@ class nmethod : public CodeBlob {
bool unload_reported() { return _unload_reported; }
void set_unload_reported() { _unload_reported = true; }
void set_unloading_next(nmethod* next) { _unloading_next = next; }
nmethod* unloading_next() { return _unloading_next; }
static unsigned char global_unloading_clock() { return _global_unloading_clock; }
static void increase_unloading_clock();
void set_unloading_clock(unsigned char unloading_clock);
unsigned char unloading_clock();
bool is_marked_for_deoptimization() const { return _marked_for_deoptimization; }
void mark_for_deoptimization() { _marked_for_deoptimization = true; }
@ -552,6 +574,10 @@ public:
return (addr >= code_begin() && addr < verified_entry_point());
}
// Verify calls to dead methods have been cleaned.
void verify_clean_inline_caches();
// Verify and count cached icholder relocations.
int verify_icholder_relocations();
// Check that all metadata is still alive
void verify_metadata_loaders(address low_boundary, BoolObjectClosure* is_alive);
@ -577,6 +603,10 @@ public:
// GC support
void do_unloading(BoolObjectClosure* is_alive, bool unloading_occurred);
// The parallel versions are used by G1.
bool do_unloading_parallel(BoolObjectClosure* is_alive, bool unloading_occurred);
void do_unloading_parallel_postponed(BoolObjectClosure* is_alive, bool unloading_occurred);
// Unload a nmethod if the *root object is dead.
bool can_unload(BoolObjectClosure* is_alive, oop* root, bool unloading_occurred);
void preserve_callee_argument_oops(frame fr, const RegisterMap *reg_map,

View File

@ -24,6 +24,7 @@
#include "precompiled.hpp"
#include "code/vtableStubs.hpp"
#include "compiler/compileBroker.hpp"
#include "compiler/disassembler.hpp"
#include "memory/allocation.inline.hpp"
#include "memory/resourceArea.hpp"
@ -62,6 +63,7 @@ void* VtableStub::operator new(size_t size, int code_size) throw() {
// If changing the name, update the other file accordingly.
BufferBlob* blob = BufferBlob::create("vtable chunks", bytes);
if (blob == NULL) {
CompileBroker::handle_full_code_cache();
return NULL;
}
_chunk = blob->content_begin();

View File

@ -1048,7 +1048,7 @@ CompilerThread* CompileBroker::make_compiler_thread(const char* name, CompileQue
}
// Let go of Threads_lock before yielding
os::yield(); // make sure that the compiler thread is started early (especially helpful on SOLARIS)
os::naked_yield(); // make sure that the compiler thread is started early (especially helpful on SOLARIS)
return compiler_thread;
}

View File

@ -1,477 +0,0 @@
/*
* Copyright (c) 2004, 2013, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef SHARE_VM_GC_IMPLEMENTATION_CONCURRENTMARKSWEEP_CMSADAPTIVESIZEPOLICY_HPP
#define SHARE_VM_GC_IMPLEMENTATION_CONCURRENTMARKSWEEP_CMSADAPTIVESIZEPOLICY_HPP
#include "gc_implementation/shared/adaptiveSizePolicy.hpp"
#include "runtime/timer.hpp"
// This class keeps statistical information and computes the
// size of the heap for the concurrent mark sweep collector.
//
// Cost for garbage collector include cost for
// minor collection
// concurrent collection
// stop-the-world component
// concurrent component
// major compacting collection
// uses decaying cost
// Forward decls
class elapsedTimer;
class CMSAdaptiveSizePolicy : public AdaptiveSizePolicy {
friend class CMSGCAdaptivePolicyCounters;
friend class CMSCollector;
private:
// Total number of processors available
int _processor_count;
// Number of processors used by the concurrent phases of GC
// This number is assumed to be the same for all concurrent
// phases.
int _concurrent_processor_count;
// Time that the mutators run exclusive of a particular
// phase. For example, the time the mutators run excluding
// the time during which the cms collector runs concurrently
// with the mutators.
// Between end of most recent cms reset and start of initial mark
// This may be redundant
double _latest_cms_reset_end_to_initial_mark_start_secs;
// Between end of the most recent initial mark and start of remark
double _latest_cms_initial_mark_end_to_remark_start_secs;
// Between end of most recent collection and start of
// a concurrent collection
double _latest_cms_collection_end_to_collection_start_secs;
// Times of the concurrent phases of the most recent
// concurrent collection
double _latest_cms_concurrent_marking_time_secs;
double _latest_cms_concurrent_precleaning_time_secs;
double _latest_cms_concurrent_sweeping_time_secs;
// Between end of most recent STW MSC and start of next STW MSC
double _latest_cms_msc_end_to_msc_start_time_secs;
// Between end of most recent MS and start of next MS
// This does not include any time spent during a concurrent
// collection.
double _latest_cms_ms_end_to_ms_start;
// Between start and end of the initial mark of the most recent
// concurrent collection.
double _latest_cms_initial_mark_start_to_end_time_secs;
// Between start and end of the remark phase of the most recent
// concurrent collection
double _latest_cms_remark_start_to_end_time_secs;
// Between start and end of the most recent MS STW marking phase
double _latest_cms_ms_marking_start_to_end_time_secs;
// Pause time timers
static elapsedTimer _STW_timer;
// Concurrent collection timer. Used for total of all concurrent phases
// during 1 collection cycle.
static elapsedTimer _concurrent_timer;
// When the size of the generation is changed, the size
// of the change will rounded up or down (depending on the
// type of change) by this value.
size_t _generation_alignment;
// If this variable is true, the size of the young generation
// may be changed in order to reduce the pause(s) of the
// collection of the tenured generation in order to meet the
// pause time goal. It is common to change the size of the
// tenured generation in order to meet the pause time goal
// for the tenured generation. With the CMS collector for
// the tenured generation, the size of the young generation
// can have an significant affect on the pause times for collecting the
// tenured generation.
// This is a duplicate of a variable in PSAdaptiveSizePolicy. It
// is duplicated because it is not clear that it is general enough
// to go into AdaptiveSizePolicy.
int _change_young_gen_for_maj_pauses;
// Variable that is set to true after a collection.
bool _first_after_collection;
// Fraction of collections that are of each type
double concurrent_fraction() const;
double STW_msc_fraction() const;
double STW_ms_fraction() const;
// This call cannot be put into the epilogue as long as some
// of the counters can be set during concurrent phases.
virtual void clear_generation_free_space_flags();
void set_first_after_collection() { _first_after_collection = true; }
protected:
// Average of the sum of the concurrent times for
// one collection in seconds.
AdaptiveWeightedAverage* _avg_concurrent_time;
// Average time between concurrent collections in seconds.
AdaptiveWeightedAverage* _avg_concurrent_interval;
// Average cost of the concurrent part of a collection
// in seconds.
AdaptiveWeightedAverage* _avg_concurrent_gc_cost;
// Average of the initial pause of a concurrent collection in seconds.
AdaptivePaddedAverage* _avg_initial_pause;
// Average of the remark pause of a concurrent collection in seconds.
AdaptivePaddedAverage* _avg_remark_pause;
// Average of the stop-the-world (STW) (initial mark + remark)
// times in seconds for concurrent collections.
AdaptiveWeightedAverage* _avg_cms_STW_time;
// Average of the STW collection cost for concurrent collections.
AdaptiveWeightedAverage* _avg_cms_STW_gc_cost;
// Average of the bytes free at the start of the sweep.
AdaptiveWeightedAverage* _avg_cms_free_at_sweep;
// Average of the bytes free at the end of the collection.
AdaptiveWeightedAverage* _avg_cms_free;
// Average of the bytes promoted between cms collections.
AdaptiveWeightedAverage* _avg_cms_promo;
// stop-the-world (STW) mark-sweep-compact
// Average of the pause time in seconds for STW mark-sweep-compact
// collections.
AdaptiveWeightedAverage* _avg_msc_pause;
// Average of the interval in seconds between STW mark-sweep-compact
// collections.
AdaptiveWeightedAverage* _avg_msc_interval;
// Average of the collection costs for STW mark-sweep-compact
// collections.
AdaptiveWeightedAverage* _avg_msc_gc_cost;
// Averages for mark-sweep collections.
// The collection may have started as a background collection
// that completes in a stop-the-world (STW) collection.
// Average of the pause time in seconds for mark-sweep
// collections.
AdaptiveWeightedAverage* _avg_ms_pause;
// Average of the interval in seconds between mark-sweep
// collections.
AdaptiveWeightedAverage* _avg_ms_interval;
// Average of the collection costs for mark-sweep
// collections.
AdaptiveWeightedAverage* _avg_ms_gc_cost;
// These variables contain a linear fit of
// a generation size as the independent variable
// and a pause time as the dependent variable.
// For example _remark_pause_old_estimator
// is a fit of the old generation size as the
// independent variable and the remark pause
// as the dependent variable.
// remark pause time vs. cms gen size
LinearLeastSquareFit* _remark_pause_old_estimator;
// initial pause time vs. cms gen size
LinearLeastSquareFit* _initial_pause_old_estimator;
// remark pause time vs. young gen size
LinearLeastSquareFit* _remark_pause_young_estimator;
// initial pause time vs. young gen size
LinearLeastSquareFit* _initial_pause_young_estimator;
// Accessors
int processor_count() const { return _processor_count; }
int concurrent_processor_count() const { return _concurrent_processor_count; }
AdaptiveWeightedAverage* avg_concurrent_time() const {
return _avg_concurrent_time;
}
AdaptiveWeightedAverage* avg_concurrent_interval() const {
return _avg_concurrent_interval;
}
AdaptiveWeightedAverage* avg_concurrent_gc_cost() const {
return _avg_concurrent_gc_cost;
}
AdaptiveWeightedAverage* avg_cms_STW_time() const {
return _avg_cms_STW_time;
}
AdaptiveWeightedAverage* avg_cms_STW_gc_cost() const {
return _avg_cms_STW_gc_cost;
}
AdaptivePaddedAverage* avg_initial_pause() const {
return _avg_initial_pause;
}
AdaptivePaddedAverage* avg_remark_pause() const {
return _avg_remark_pause;
}
AdaptiveWeightedAverage* avg_cms_free() const {
return _avg_cms_free;
}
AdaptiveWeightedAverage* avg_cms_free_at_sweep() const {
return _avg_cms_free_at_sweep;
}
AdaptiveWeightedAverage* avg_msc_pause() const {
return _avg_msc_pause;
}
AdaptiveWeightedAverage* avg_msc_interval() const {
return _avg_msc_interval;
}
AdaptiveWeightedAverage* avg_msc_gc_cost() const {
return _avg_msc_gc_cost;
}
AdaptiveWeightedAverage* avg_ms_pause() const {
return _avg_ms_pause;
}
AdaptiveWeightedAverage* avg_ms_interval() const {
return _avg_ms_interval;
}
AdaptiveWeightedAverage* avg_ms_gc_cost() const {
return _avg_ms_gc_cost;
}
LinearLeastSquareFit* remark_pause_old_estimator() {
return _remark_pause_old_estimator;
}
LinearLeastSquareFit* initial_pause_old_estimator() {
return _initial_pause_old_estimator;
}
LinearLeastSquareFit* remark_pause_young_estimator() {
return _remark_pause_young_estimator;
}
LinearLeastSquareFit* initial_pause_young_estimator() {
return _initial_pause_young_estimator;
}
// These *slope() methods return the slope
// m for the linear fit of an independent
// variable vs. a dependent variable. For
// example
// remark_pause = m * old_generation_size + c
// These may be used to determine if an
// adjustment should be made to achieve a goal.
// For example, if remark_pause_old_slope() is
// positive, a reduction of the old generation
// size has on average resulted in the reduction
// of the remark pause.
float remark_pause_old_slope() {
return _remark_pause_old_estimator->slope();
}
float initial_pause_old_slope() {
return _initial_pause_old_estimator->slope();
}
float remark_pause_young_slope() {
return _remark_pause_young_estimator->slope();
}
float initial_pause_young_slope() {
return _initial_pause_young_estimator->slope();
}
// Update estimators
void update_minor_pause_old_estimator(double minor_pause_in_ms);
// Fraction of processors used by the concurrent phases.
double concurrent_processor_fraction();
// Returns the total times for the concurrent part of the
// latest collection in seconds.
double concurrent_collection_time();
// Return the total times for the concurrent part of the
// latest collection in seconds where the times of the various
// concurrent phases are scaled by the processor fraction used
// during the phase.
double scaled_concurrent_collection_time();
// Dimensionless concurrent GC cost for all the concurrent phases.
double concurrent_collection_cost(double interval_in_seconds);
// Dimensionless GC cost
double collection_cost(double pause_in_seconds, double interval_in_seconds);
virtual GCPolicyKind kind() const { return _gc_cms_adaptive_size_policy; }
virtual double time_since_major_gc() const;
// This returns the maximum average for the concurrent, ms, and
// msc collections. This is meant to be used for the calculation
// of the decayed major gc cost and is not in general the
// average of all the different types of major collections.
virtual double major_gc_interval_average_for_decay() const;
public:
CMSAdaptiveSizePolicy(size_t init_eden_size,
size_t init_promo_size,
size_t init_survivor_size,
double max_gc_minor_pause_sec,
double max_gc_pause_sec,
uint gc_cost_ratio);
// The timers for the stop-the-world phases measure a total
// stop-the-world time. The timer is started and stopped
// for each phase but is only reset after the final checkpoint.
void checkpoint_roots_initial_begin();
void checkpoint_roots_initial_end(GCCause::Cause gc_cause);
void checkpoint_roots_final_begin();
void checkpoint_roots_final_end(GCCause::Cause gc_cause);
// Methods for gathering information about the
// concurrent marking phase of the collection.
// Records the mutator times and
// resets the concurrent timer.
void concurrent_marking_begin();
// Resets concurrent phase timer in the begin methods and
// saves the time for a phase in the end methods.
void concurrent_marking_end();
void concurrent_sweeping_begin();
void concurrent_sweeping_end();
// Similar to the above (e.g., concurrent_marking_end()) and
// is used for both the precleaning an abortable precleaning
// phases.
void concurrent_precleaning_begin();
void concurrent_precleaning_end();
// Stops the concurrent phases time. Gathers
// information and resets the timer.
void concurrent_phases_end(GCCause::Cause gc_cause,
size_t cur_eden,
size_t cur_promo);
// Methods for gather information about STW Mark-Sweep-Compact
void msc_collection_begin();
void msc_collection_end(GCCause::Cause gc_cause);
// Methods for gather information about Mark-Sweep done
// in the foreground.
void ms_collection_begin();
void ms_collection_end(GCCause::Cause gc_cause);
// Cost for a mark-sweep tenured gen collection done in the foreground
double ms_gc_cost() const {
return MAX2(0.0F, _avg_ms_gc_cost->average());
}
// Cost of collecting the tenured generation. Includes
// concurrent collection and STW collection costs
double cms_gc_cost() const;
// Cost of STW mark-sweep-compact tenured gen collection.
double msc_gc_cost() const {
return MAX2(0.0F, _avg_msc_gc_cost->average());
}
//
double compacting_gc_cost() const {
double result = MIN2(1.0, minor_gc_cost() + msc_gc_cost());
assert(result >= 0.0, "Both minor and major costs are non-negative");
return result;
}
// Restarts the concurrent phases timer.
void concurrent_phases_resume();
// Time beginning and end of the marking phase for
// a synchronous MS collection. A MS collection
// that finishes in the foreground can have started
// in the background. These methods capture the
// completion of the marking (after the initial
// marking) that is done in the foreground.
void ms_collection_marking_begin();
void ms_collection_marking_end(GCCause::Cause gc_cause);
static elapsedTimer* concurrent_timer_ptr() {
return &_concurrent_timer;
}
AdaptiveWeightedAverage* avg_cms_promo() const {
return _avg_cms_promo;
}
int change_young_gen_for_maj_pauses() {
return _change_young_gen_for_maj_pauses;
}
void set_change_young_gen_for_maj_pauses(int v) {
_change_young_gen_for_maj_pauses = v;
}
void clear_internal_time_intervals();
// Either calculated_promo_size_in_bytes() or promo_size()
// should be deleted.
size_t promo_size() { return _promo_size; }
void set_promo_size(size_t v) { _promo_size = v; }
// Cost of GC for all types of collections.
virtual double gc_cost() const;
size_t generation_alignment() { return _generation_alignment; }
virtual void compute_eden_space_size(size_t cur_eden,
size_t max_eden_size);
// Calculates new survivor space size; returns a new tenuring threshold
// value. Stores new survivor size in _survivor_size.
virtual uint compute_survivor_space_size_and_threshold(
bool is_survivor_overflow,
uint tenuring_threshold,
size_t survivor_limit);
virtual void compute_tenured_generation_free_space(size_t cur_tenured_free,
size_t max_tenured_available,
size_t cur_eden);
size_t eden_decrement_aligned_down(size_t cur_eden);
size_t eden_increment_aligned_up(size_t cur_eden);
size_t adjust_eden_for_pause_time(size_t cur_eden);
size_t adjust_eden_for_throughput(size_t cur_eden);
size_t adjust_eden_for_footprint(size_t cur_eden);
size_t promo_decrement_aligned_down(size_t cur_promo);
size_t promo_increment_aligned_up(size_t cur_promo);
size_t adjust_promo_for_pause_time(size_t cur_promo);
size_t adjust_promo_for_throughput(size_t cur_promo);
size_t adjust_promo_for_footprint(size_t cur_promo, size_t cur_eden);
// Scale down the input size by the ratio of the cost to collect the
// generation to the total GC cost.
size_t scale_by_gen_gc_cost(size_t base_change, double gen_gc_cost);
// Return the value and clear it.
bool get_and_clear_first_after_collection();
// Printing support
virtual bool print_adaptive_size_policy_on(outputStream* st) const;
};
#endif // SHARE_VM_GC_IMPLEMENTATION_CONCURRENTMARKSWEEP_CMSADAPTIVESIZEPOLICY_HPP

View File

@ -23,9 +23,8 @@
*/
#include "precompiled.hpp"
#include "gc_implementation/concurrentMarkSweep/cmsAdaptiveSizePolicy.hpp"
#include "gc_implementation/shared/adaptiveSizePolicy.hpp"
#include "gc_implementation/concurrentMarkSweep/cmsCollectorPolicy.hpp"
#include "gc_implementation/concurrentMarkSweep/cmsGCAdaptivePolicyCounters.hpp"
#include "gc_implementation/parNew/parNewGeneration.hpp"
#include "gc_implementation/shared/gcPolicyCounters.hpp"
#include "gc_implementation/shared/vmGCOperations.hpp"
@ -57,25 +56,12 @@ void ConcurrentMarkSweepPolicy::initialize_generations() {
if (_generations == NULL)
vm_exit_during_initialization("Unable to allocate gen spec");
if (UseParNewGC) {
if (UseAdaptiveSizePolicy) {
_generations[0] = new GenerationSpec(Generation::ASParNew,
_initial_young_size, _max_young_size);
} else {
_generations[0] = new GenerationSpec(Generation::ParNew,
_initial_young_size, _max_young_size);
}
} else {
_generations[0] = new GenerationSpec(Generation::DefNew,
_initial_young_size, _max_young_size);
}
if (UseAdaptiveSizePolicy) {
_generations[1] = new GenerationSpec(Generation::ASConcurrentMarkSweep,
_initial_old_size, _max_old_size);
} else {
Generation::Name yg_name =
UseParNewGC ? Generation::ParNew : Generation::DefNew;
_generations[0] = new GenerationSpec(yg_name, _initial_young_size,
_max_young_size);
_generations[1] = new GenerationSpec(Generation::ConcurrentMarkSweep,
_initial_old_size, _max_old_size);
}
if (_generations[0] == NULL || _generations[1] == NULL) {
vm_exit_during_initialization("Unable to allocate gen spec");
@ -85,12 +71,10 @@ void ConcurrentMarkSweepPolicy::initialize_generations() {
void ConcurrentMarkSweepPolicy::initialize_size_policy(size_t init_eden_size,
size_t init_promo_size,
size_t init_survivor_size) {
double max_gc_minor_pause_sec = ((double) MaxGCMinorPauseMillis)/1000.0;
double max_gc_pause_sec = ((double) MaxGCPauseMillis)/1000.0;
_size_policy = new CMSAdaptiveSizePolicy(init_eden_size,
_size_policy = new AdaptiveSizePolicy(init_eden_size,
init_promo_size,
init_survivor_size,
max_gc_minor_pause_sec,
max_gc_pause_sec,
GCTimeRatio);
}
@ -110,22 +94,3 @@ bool ConcurrentMarkSweepPolicy::has_soft_ended_eden()
{
return CMSIncrementalMode;
}
//
// ASConcurrentMarkSweepPolicy methods
//
void ASConcurrentMarkSweepPolicy::initialize_gc_policy_counters() {
assert(size_policy() != NULL, "A size policy is required");
// initialize the policy counters - 2 collectors, 3 generations
if (UseParNewGC) {
_gc_policy_counters = new CMSGCAdaptivePolicyCounters("ParNew:CMS", 2, 3,
size_policy());
}
else {
_gc_policy_counters = new CMSGCAdaptivePolicyCounters("Copy:CMS", 2, 3,
size_policy());
}
}

View File

@ -47,19 +47,4 @@ class ConcurrentMarkSweepPolicy : public GenCollectorPolicy {
virtual bool has_soft_ended_eden();
};
class ASConcurrentMarkSweepPolicy : public ConcurrentMarkSweepPolicy {
public:
// Initialize the jstat counters. This method requires a
// size policy. The size policy is expected to be created
// after the generations are fully initialized so the
// initialization of the counters need to be done post
// the initialization of the generations.
void initialize_gc_policy_counters();
virtual CollectorPolicy::Name kind() {
return CollectorPolicy::ASConcurrentMarkSweepPolicyKind;
}
};
#endif // SHARE_VM_GC_IMPLEMENTATION_CONCURRENTMARKSWEEP_CMSCOLLECTORPOLICY_HPP

View File

@ -1,303 +0,0 @@
/*
* Copyright (c) 2004, 2010, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "gc_implementation/concurrentMarkSweep/cmsGCAdaptivePolicyCounters.hpp"
#include "memory/resourceArea.hpp"
CMSGCAdaptivePolicyCounters::CMSGCAdaptivePolicyCounters(const char* name_arg,
int collectors,
int generations,
AdaptiveSizePolicy* size_policy_arg)
: GCAdaptivePolicyCounters(name_arg,
collectors,
generations,
size_policy_arg) {
if (UsePerfData) {
EXCEPTION_MARK;
ResourceMark rm;
const char* cname =
PerfDataManager::counter_name(name_space(), "cmsCapacity");
_cms_capacity_counter = PerfDataManager::create_variable(SUN_GC, cname,
PerfData::U_Bytes, (jlong) OldSize, CHECK);
#ifdef NOT_PRODUCT
cname =
PerfDataManager::counter_name(name_space(), "initialPause");
_initial_pause_counter = PerfDataManager::create_variable(SUN_GC, cname,
PerfData::U_Ticks,
(jlong) cms_size_policy()->avg_initial_pause()->last_sample(),
CHECK);
cname = PerfDataManager::counter_name(name_space(), "remarkPause");
_remark_pause_counter = PerfDataManager::create_variable(SUN_GC, cname,
PerfData::U_Ticks,
(jlong) cms_size_policy()->avg_remark_pause()->last_sample(),
CHECK);
#endif
cname =
PerfDataManager::counter_name(name_space(), "avgInitialPause");
_avg_initial_pause_counter = PerfDataManager::create_variable(SUN_GC, cname,
PerfData::U_Ticks,
(jlong) cms_size_policy()->avg_initial_pause()->average(),
CHECK);
cname = PerfDataManager::counter_name(name_space(), "avgRemarkPause");
_avg_remark_pause_counter = PerfDataManager::create_variable(SUN_GC, cname,
PerfData::U_Ticks,
(jlong) cms_size_policy()->avg_remark_pause()->average(),
CHECK);
cname = PerfDataManager::counter_name(name_space(), "avgSTWGcCost");
_avg_cms_STW_gc_cost_counter = PerfDataManager::create_variable(SUN_GC,
cname,
PerfData::U_Ticks,
(jlong) cms_size_policy()->avg_cms_STW_gc_cost()->average(),
CHECK);
cname = PerfDataManager::counter_name(name_space(), "avgSTWTime");
_avg_cms_STW_time_counter = PerfDataManager::create_variable(SUN_GC,
cname,
PerfData::U_Ticks,
(jlong) cms_size_policy()->avg_cms_STW_time()->average(),
CHECK);
cname = PerfDataManager::counter_name(name_space(), "avgConcurrentTime");
_avg_concurrent_time_counter = PerfDataManager::create_variable(SUN_GC,
cname,
PerfData::U_Ticks,
(jlong) cms_size_policy()->avg_concurrent_time()->average(),
CHECK);
cname =
PerfDataManager::counter_name(name_space(), "avgConcurrentInterval");
_avg_concurrent_interval_counter = PerfDataManager::create_variable(SUN_GC,
cname,
PerfData::U_Ticks,
(jlong) cms_size_policy()->avg_concurrent_interval()->average(),
CHECK);
cname = PerfDataManager::counter_name(name_space(), "avgConcurrentGcCost");
_avg_concurrent_gc_cost_counter = PerfDataManager::create_variable(SUN_GC,
cname,
PerfData::U_Ticks,
(jlong) cms_size_policy()->avg_concurrent_gc_cost()->average(),
CHECK);
cname = PerfDataManager::counter_name(name_space(), "avgCMSFreeAtSweep");
_avg_cms_free_at_sweep_counter = PerfDataManager::create_variable(SUN_GC,
cname,
PerfData::U_Ticks,
(jlong) cms_size_policy()->avg_cms_free_at_sweep()->average(),
CHECK);
cname = PerfDataManager::counter_name(name_space(), "avgCMSFree");
_avg_cms_free_counter = PerfDataManager::create_variable(SUN_GC,
cname,
PerfData::U_Ticks,
(jlong) cms_size_policy()->avg_cms_free()->average(),
CHECK);
cname = PerfDataManager::counter_name(name_space(), "avgCMSPromo");
_avg_cms_promo_counter = PerfDataManager::create_variable(SUN_GC,
cname,
PerfData::U_Ticks,
(jlong) cms_size_policy()->avg_cms_promo()->average(),
CHECK);
cname = PerfDataManager::counter_name(name_space(), "avgMscPause");
_avg_msc_pause_counter = PerfDataManager::create_variable(SUN_GC,
cname,
PerfData::U_Ticks,
(jlong) cms_size_policy()->avg_msc_pause()->average(),
CHECK);
cname = PerfDataManager::counter_name(name_space(), "avgMscInterval");
_avg_msc_interval_counter = PerfDataManager::create_variable(SUN_GC,
cname,
PerfData::U_Ticks,
(jlong) cms_size_policy()->avg_msc_interval()->average(),
CHECK);
cname = PerfDataManager::counter_name(name_space(), "mscGcCost");
_msc_gc_cost_counter = PerfDataManager::create_variable(SUN_GC,
cname,
PerfData::U_Ticks,
(jlong) cms_size_policy()->avg_msc_gc_cost()->average(),
CHECK);
cname = PerfDataManager::counter_name(name_space(), "avgMsPause");
_avg_ms_pause_counter = PerfDataManager::create_variable(SUN_GC,
cname,
PerfData::U_Ticks,
(jlong) cms_size_policy()->avg_ms_pause()->average(),
CHECK);
cname = PerfDataManager::counter_name(name_space(), "avgMsInterval");
_avg_ms_interval_counter = PerfDataManager::create_variable(SUN_GC,
cname,
PerfData::U_Ticks,
(jlong) cms_size_policy()->avg_ms_interval()->average(),
CHECK);
cname = PerfDataManager::counter_name(name_space(), "msGcCost");
_ms_gc_cost_counter = PerfDataManager::create_variable(SUN_GC,
cname,
PerfData::U_Ticks,
(jlong) cms_size_policy()->avg_ms_gc_cost()->average(),
CHECK);
cname = PerfDataManager::counter_name(name_space(), "majorGcCost");
_major_gc_cost_counter = PerfDataManager::create_variable(SUN_GC, cname,
PerfData::U_Ticks, (jlong) cms_size_policy()->cms_gc_cost(), CHECK);
cname = PerfDataManager::counter_name(name_space(), "avgPromotedAvg");
_promoted_avg_counter =
PerfDataManager::create_variable(SUN_GC, cname, PerfData::U_Bytes,
cms_size_policy()->calculated_promo_size_in_bytes(), CHECK);
cname = PerfDataManager::counter_name(name_space(), "avgPromotedDev");
_promoted_avg_dev_counter =
PerfDataManager::create_variable(SUN_GC, cname, PerfData::U_Bytes,
(jlong) 0 , CHECK);
cname = PerfDataManager::counter_name(name_space(), "avgPromotedPaddedAvg");
_promoted_padded_avg_counter =
PerfDataManager::create_variable(SUN_GC, cname, PerfData::U_Bytes,
cms_size_policy()->calculated_promo_size_in_bytes(), CHECK);
cname = PerfDataManager::counter_name(name_space(),
"changeYoungGenForMajPauses");
_change_young_gen_for_maj_pauses_counter =
PerfDataManager::create_variable(SUN_GC, cname, PerfData::U_Events,
(jlong)0, CHECK);
cname = PerfDataManager::counter_name(name_space(), "remarkPauseOldSlope");
_remark_pause_old_slope_counter =
PerfDataManager::create_variable(SUN_GC, cname, PerfData::U_Bytes,
(jlong) cms_size_policy()->remark_pause_old_slope(), CHECK);
cname = PerfDataManager::counter_name(name_space(), "initialPauseOldSlope");
_initial_pause_old_slope_counter =
PerfDataManager::create_variable(SUN_GC, cname, PerfData::U_Bytes,
(jlong) cms_size_policy()->initial_pause_old_slope(), CHECK);
cname =
PerfDataManager::counter_name(name_space(), "remarkPauseYoungSlope") ;
_remark_pause_young_slope_counter =
PerfDataManager::create_variable(SUN_GC, cname, PerfData::U_Bytes,
(jlong) cms_size_policy()->remark_pause_young_slope(), CHECK);
cname =
PerfDataManager::counter_name(name_space(), "initialPauseYoungSlope");
_initial_pause_young_slope_counter =
PerfDataManager::create_variable(SUN_GC, cname, PerfData::U_Bytes,
(jlong) cms_size_policy()->initial_pause_young_slope(), CHECK);
}
assert(size_policy()->is_gc_cms_adaptive_size_policy(),
"Wrong type of size policy");
}
void CMSGCAdaptivePolicyCounters::update_counters() {
if (UsePerfData) {
GCAdaptivePolicyCounters::update_counters_from_policy();
update_counters_from_policy();
}
}
void CMSGCAdaptivePolicyCounters::update_counters(CMSGCStats* gc_stats) {
if (UsePerfData) {
update_counters();
update_promoted((size_t) gc_stats->avg_promoted()->last_sample());
update_avg_promoted_avg(gc_stats);
update_avg_promoted_dev(gc_stats);
update_avg_promoted_padded_avg(gc_stats);
}
}
void CMSGCAdaptivePolicyCounters::update_counters_from_policy() {
if (UsePerfData && (cms_size_policy() != NULL)) {
GCAdaptivePolicyCounters::update_counters_from_policy();
update_major_gc_cost_counter();
update_mutator_cost_counter();
update_eden_size();
update_promo_size();
// If these updates from the last_sample() work,
// revise the update methods for these counters
// (both here and in PS).
update_survived((size_t) cms_size_policy()->avg_survived()->last_sample());
update_avg_concurrent_time_counter();
update_avg_concurrent_interval_counter();
update_avg_concurrent_gc_cost_counter();
#ifdef NOT_PRODUCT
update_initial_pause_counter();
update_remark_pause_counter();
#endif
update_avg_initial_pause_counter();
update_avg_remark_pause_counter();
update_avg_cms_STW_time_counter();
update_avg_cms_STW_gc_cost_counter();
update_avg_cms_free_counter();
update_avg_cms_free_at_sweep_counter();
update_avg_cms_promo_counter();
update_avg_msc_pause_counter();
update_avg_msc_interval_counter();
update_msc_gc_cost_counter();
update_avg_ms_pause_counter();
update_avg_ms_interval_counter();
update_ms_gc_cost_counter();
update_avg_old_live_counter();
update_survivor_size_counters();
update_avg_survived_avg_counters();
update_avg_survived_dev_counters();
update_decrement_tenuring_threshold_for_gc_cost();
update_increment_tenuring_threshold_for_gc_cost();
update_decrement_tenuring_threshold_for_survivor_limit();
update_change_young_gen_for_maj_pauses();
update_major_collection_slope_counter();
update_remark_pause_old_slope_counter();
update_initial_pause_old_slope_counter();
update_remark_pause_young_slope_counter();
update_initial_pause_young_slope_counter();
update_decide_at_full_gc_counter();
}
}

View File

@ -1,308 +0,0 @@
/*
* Copyright (c) 2004, 2010, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef SHARE_VM_GC_IMPLEMENTATION_CONCURRENTMARKSWEEP_CMSGCADAPTIVEPOLICYCOUNTERS_HPP
#define SHARE_VM_GC_IMPLEMENTATION_CONCURRENTMARKSWEEP_CMSGCADAPTIVEPOLICYCOUNTERS_HPP
#include "gc_implementation/concurrentMarkSweep/cmsAdaptiveSizePolicy.hpp"
#include "gc_implementation/shared/gcAdaptivePolicyCounters.hpp"
#include "gc_implementation/shared/gcStats.hpp"
#include "runtime/perfData.hpp"
// CMSGCAdaptivePolicyCounters is a holder class for performance counters
// that track the data and decisions for the ergonomics policy for the
// concurrent mark sweep collector
class CMSGCAdaptivePolicyCounters : public GCAdaptivePolicyCounters {
friend class VMStructs;
private:
// Capacity of tenured generation recorded at the end of
// any collection.
PerfVariable* _cms_capacity_counter; // Make this common with PS _old_capacity
// Average stop-the-world pause time for both initial and
// remark pauses sampled at the end of the checkpointRootsFinalWork.
PerfVariable* _avg_cms_STW_time_counter;
// Average stop-the-world (STW) GC cost for the STW pause time
// _avg_cms_STW_time_counter.
PerfVariable* _avg_cms_STW_gc_cost_counter;
#ifdef NOT_PRODUCT
// These are useful to see how the most recent values of these
// counters compare to their respective averages but
// do not control behavior.
PerfVariable* _initial_pause_counter;
PerfVariable* _remark_pause_counter;
#endif
// Average of the initial marking pause for a concurrent collection.
PerfVariable* _avg_initial_pause_counter;
// Average of the remark pause for a concurrent collection.
PerfVariable* _avg_remark_pause_counter;
// Average for the sum of all the concurrent times per collection.
PerfVariable* _avg_concurrent_time_counter;
// Average for the time between the most recent end of a
// concurrent collection and the beginning of the next
// concurrent collection.
PerfVariable* _avg_concurrent_interval_counter;
// Average of the concurrent GC costs based on _avg_concurrent_time_counter
// and _avg_concurrent_interval_counter.
PerfVariable* _avg_concurrent_gc_cost_counter;
// Average of the free space in the tenured generation at the
// end of the sweep of the tenured generation.
PerfVariable* _avg_cms_free_counter;
// Average of the free space in the tenured generation at the
// start of the sweep of the tenured generation.
PerfVariable* _avg_cms_free_at_sweep_counter;
// Average of the free space in the tenured generation at the
// after any resizing of the tenured generation at the end
// of a collection of the tenured generation.
PerfVariable* _avg_cms_promo_counter;
// Average of the mark-sweep-compact (MSC) pause time for a collection
// of the tenured generation.
PerfVariable* _avg_msc_pause_counter;
// Average for the time between the most recent end of a
// MSC collection and the beginning of the next MSC collection.
PerfVariable* _avg_msc_interval_counter;
// Average for the GC cost of a MSC collection based on
// _avg_msc_pause_counter and _avg_msc_interval_counter.
PerfVariable* _msc_gc_cost_counter;
// Average of the mark-sweep (MS) pause time for a collection
// of the tenured generation.
PerfVariable* _avg_ms_pause_counter;
// Average for the time between the most recent end of a
// MS collection and the beginning of the next MS collection.
PerfVariable* _avg_ms_interval_counter;
// Average for the GC cost of a MS collection based on
// _avg_ms_pause_counter and _avg_ms_interval_counter.
PerfVariable* _ms_gc_cost_counter;
// Average of the bytes promoted per minor collection.
PerfVariable* _promoted_avg_counter;
// Average of the deviation of the promoted average.
PerfVariable* _promoted_avg_dev_counter;
// Padded average of the bytes promoted per minor collection.
PerfVariable* _promoted_padded_avg_counter;
// See description of the _change_young_gen_for_maj_pauses
// variable recently in cmsAdaptiveSizePolicy.hpp.
PerfVariable* _change_young_gen_for_maj_pauses_counter;
// See descriptions of _remark_pause_old_slope, _initial_pause_old_slope,
// etc. variables recently in cmsAdaptiveSizePolicy.hpp.
PerfVariable* _remark_pause_old_slope_counter;
PerfVariable* _initial_pause_old_slope_counter;
PerfVariable* _remark_pause_young_slope_counter;
PerfVariable* _initial_pause_young_slope_counter;
CMSAdaptiveSizePolicy* cms_size_policy() {
assert(_size_policy->kind() ==
AdaptiveSizePolicy::_gc_cms_adaptive_size_policy,
"Wrong size policy");
return (CMSAdaptiveSizePolicy*)_size_policy;
}
inline void update_avg_cms_STW_time_counter() {
_avg_cms_STW_time_counter->set_value(
(jlong) (cms_size_policy()->avg_cms_STW_time()->average() *
(double) MILLIUNITS));
}
inline void update_avg_cms_STW_gc_cost_counter() {
_avg_cms_STW_gc_cost_counter->set_value(
(jlong) (cms_size_policy()->avg_cms_STW_gc_cost()->average() * 100.0));
}
inline void update_avg_initial_pause_counter() {
_avg_initial_pause_counter->set_value(
(jlong) (cms_size_policy()->avg_initial_pause()->average() *
(double) MILLIUNITS));
}
#ifdef NOT_PRODUCT
inline void update_avg_remark_pause_counter() {
_avg_remark_pause_counter->set_value(
(jlong) (cms_size_policy()-> avg_remark_pause()->average() *
(double) MILLIUNITS));
}
inline void update_initial_pause_counter() {
_initial_pause_counter->set_value(
(jlong) (cms_size_policy()->avg_initial_pause()->average() *
(double) MILLIUNITS));
}
#endif
inline void update_remark_pause_counter() {
_remark_pause_counter->set_value(
(jlong) (cms_size_policy()-> avg_remark_pause()->last_sample() *
(double) MILLIUNITS));
}
inline void update_avg_concurrent_time_counter() {
_avg_concurrent_time_counter->set_value(
(jlong) (cms_size_policy()->avg_concurrent_time()->last_sample() *
(double) MILLIUNITS));
}
inline void update_avg_concurrent_interval_counter() {
_avg_concurrent_interval_counter->set_value(
(jlong) (cms_size_policy()->avg_concurrent_interval()->average() *
(double) MILLIUNITS));
}
inline void update_avg_concurrent_gc_cost_counter() {
_avg_concurrent_gc_cost_counter->set_value(
(jlong) (cms_size_policy()->avg_concurrent_gc_cost()->average() * 100.0));
}
inline void update_avg_cms_free_counter() {
_avg_cms_free_counter->set_value(
(jlong) cms_size_policy()->avg_cms_free()->average());
}
inline void update_avg_cms_free_at_sweep_counter() {
_avg_cms_free_at_sweep_counter->set_value(
(jlong) cms_size_policy()->avg_cms_free_at_sweep()->average());
}
inline void update_avg_cms_promo_counter() {
_avg_cms_promo_counter->set_value(
(jlong) cms_size_policy()->avg_cms_promo()->average());
}
inline void update_avg_old_live_counter() {
_avg_old_live_counter->set_value(
(jlong)(cms_size_policy()->avg_old_live()->average())
);
}
inline void update_avg_msc_pause_counter() {
_avg_msc_pause_counter->set_value(
(jlong) (cms_size_policy()->avg_msc_pause()->average() *
(double) MILLIUNITS));
}
inline void update_avg_msc_interval_counter() {
_avg_msc_interval_counter->set_value(
(jlong) (cms_size_policy()->avg_msc_interval()->average() *
(double) MILLIUNITS));
}
inline void update_msc_gc_cost_counter() {
_msc_gc_cost_counter->set_value(
(jlong) (cms_size_policy()->avg_msc_gc_cost()->average() * 100.0));
}
inline void update_avg_ms_pause_counter() {
_avg_ms_pause_counter->set_value(
(jlong) (cms_size_policy()->avg_ms_pause()->average() *
(double) MILLIUNITS));
}
inline void update_avg_ms_interval_counter() {
_avg_ms_interval_counter->set_value(
(jlong) (cms_size_policy()->avg_ms_interval()->average() *
(double) MILLIUNITS));
}
inline void update_ms_gc_cost_counter() {
_ms_gc_cost_counter->set_value(
(jlong) (cms_size_policy()->avg_ms_gc_cost()->average() * 100.0));
}
inline void update_major_gc_cost_counter() {
_major_gc_cost_counter->set_value(
(jlong)(cms_size_policy()->cms_gc_cost() * 100.0)
);
}
inline void update_mutator_cost_counter() {
_mutator_cost_counter->set_value(
(jlong)(cms_size_policy()->mutator_cost() * 100.0)
);
}
inline void update_avg_promoted_avg(CMSGCStats* gc_stats) {
_promoted_avg_counter->set_value(
(jlong)(gc_stats->avg_promoted()->average())
);
}
inline void update_avg_promoted_dev(CMSGCStats* gc_stats) {
_promoted_avg_dev_counter->set_value(
(jlong)(gc_stats->avg_promoted()->deviation())
);
}
inline void update_avg_promoted_padded_avg(CMSGCStats* gc_stats) {
_promoted_padded_avg_counter->set_value(
(jlong)(gc_stats->avg_promoted()->padded_average())
);
}
inline void update_remark_pause_old_slope_counter() {
_remark_pause_old_slope_counter->set_value(
(jlong)(cms_size_policy()->remark_pause_old_slope() * 1000)
);
}
inline void update_initial_pause_old_slope_counter() {
_initial_pause_old_slope_counter->set_value(
(jlong)(cms_size_policy()->initial_pause_old_slope() * 1000)
);
}
inline void update_remark_pause_young_slope_counter() {
_remark_pause_young_slope_counter->set_value(
(jlong)(cms_size_policy()->remark_pause_young_slope() * 1000)
);
}
inline void update_initial_pause_young_slope_counter() {
_initial_pause_young_slope_counter->set_value(
(jlong)(cms_size_policy()->initial_pause_young_slope() * 1000)
);
}
inline void update_change_young_gen_for_maj_pauses() {
_change_young_gen_for_maj_pauses_counter->set_value(
cms_size_policy()->change_young_gen_for_maj_pauses());
}
public:
CMSGCAdaptivePolicyCounters(const char* name, int collectors, int generations,
AdaptiveSizePolicy* size_policy);
// update counters
void update_counters();
void update_counters(CMSGCStats* gc_stats);
void update_counters_from_policy();
inline void update_cms_capacity_counter(size_t size_in_bytes) {
_cms_capacity_counter->set_value(size_in_bytes);
}
virtual GCPolicyCounters::Name kind() const {
return GCPolicyCounters::CMSGCAdaptivePolicyCountersKind;
}
};
#endif // SHARE_VM_GC_IMPLEMENTATION_CONCURRENTMARKSWEEP_CMSGCADAPTIVEPOLICYCOUNTERS_HPP

View File

@ -70,7 +70,6 @@ class LinearAllocBlock VALUE_OBJ_CLASS_SPEC {
class CompactibleFreeListSpace: public CompactibleSpace {
friend class VMStructs;
friend class ConcurrentMarkSweepGeneration;
friend class ASConcurrentMarkSweepGeneration;
friend class CMSCollector;
// Local alloc buffer for promotion into this space.
friend class CFLS_LAB;

View File

@ -27,9 +27,8 @@
#include "classfile/stringTable.hpp"
#include "classfile/systemDictionary.hpp"
#include "code/codeCache.hpp"
#include "gc_implementation/concurrentMarkSweep/cmsAdaptiveSizePolicy.hpp"
#include "gc_implementation/shared/adaptiveSizePolicy.hpp"
#include "gc_implementation/concurrentMarkSweep/cmsCollectorPolicy.hpp"
#include "gc_implementation/concurrentMarkSweep/cmsGCAdaptivePolicyCounters.hpp"
#include "gc_implementation/concurrentMarkSweep/cmsOopClosures.inline.hpp"
#include "gc_implementation/concurrentMarkSweep/compactibleFreeListSpace.hpp"
#include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepGeneration.inline.hpp"
@ -319,27 +318,13 @@ void CMSCollector::ref_processor_init() {
}
}
CMSAdaptiveSizePolicy* CMSCollector::size_policy() {
AdaptiveSizePolicy* CMSCollector::size_policy() {
GenCollectedHeap* gch = GenCollectedHeap::heap();
assert(gch->kind() == CollectedHeap::GenCollectedHeap,
"Wrong type of heap");
CMSAdaptiveSizePolicy* sp = (CMSAdaptiveSizePolicy*)
gch->gen_policy()->size_policy();
assert(sp->is_gc_cms_adaptive_size_policy(),
"Wrong type of size policy");
return sp;
return gch->gen_policy()->size_policy();
}
CMSGCAdaptivePolicyCounters* CMSCollector::gc_adaptive_policy_counters() {
CMSGCAdaptivePolicyCounters* results =
(CMSGCAdaptivePolicyCounters*) collector_policy()->counters();
assert(
results->kind() == GCPolicyCounters::CMSGCAdaptivePolicyCountersKind,
"Wrong gc policy counter kind");
return results;
}
void ConcurrentMarkSweepGeneration::initialize_performance_counters() {
const char* gen_name = "old";
@ -2031,11 +2016,6 @@ void CMSCollector::do_compaction_work(bool clear_all_soft_refs) {
"collections passed to foreground collector", _full_gcs_since_conc_gc);
}
// Sample collection interval time and reset for collection pause.
if (UseAdaptiveSizePolicy) {
size_policy()->msc_collection_begin();
}
// Temporarily widen the span of the weak reference processing to
// the entire heap.
MemRegion new_span(GenCollectedHeap::heap()->reserved_region());
@ -2111,11 +2091,6 @@ void CMSCollector::do_compaction_work(bool clear_all_soft_refs) {
_inter_sweep_timer.reset();
_inter_sweep_timer.start();
// Sample collection pause time and reset for collection interval.
if (UseAdaptiveSizePolicy) {
size_policy()->msc_collection_end(gch->gc_cause());
}
gc_timer->register_gc_end();
gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
@ -2373,26 +2348,14 @@ void CMSCollector::collect_in_background(bool clear_all_soft_refs, GCCause::Caus
}
break;
case Precleaning:
if (UseAdaptiveSizePolicy) {
size_policy()->concurrent_precleaning_begin();
}
// marking from roots in markFromRoots has been completed
preclean();
if (UseAdaptiveSizePolicy) {
size_policy()->concurrent_precleaning_end();
}
assert(_collectorState == AbortablePreclean ||
_collectorState == FinalMarking,
"Collector state should have changed");
break;
case AbortablePreclean:
if (UseAdaptiveSizePolicy) {
size_policy()->concurrent_phases_resume();
}
abortable_preclean();
if (UseAdaptiveSizePolicy) {
size_policy()->concurrent_precleaning_end();
}
assert(_collectorState == FinalMarking, "Collector state should "
"have changed");
break;
@ -2406,23 +2369,12 @@ void CMSCollector::collect_in_background(bool clear_all_soft_refs, GCCause::Caus
assert(_foregroundGCShouldWait, "block post-condition");
break;
case Sweeping:
if (UseAdaptiveSizePolicy) {
size_policy()->concurrent_sweeping_begin();
}
// final marking in checkpointRootsFinal has been completed
sweep(true);
assert(_collectorState == Resizing, "Collector state change "
"to Resizing must be done under the free_list_lock");
_full_gcs_since_conc_gc = 0;
// Stop the timers for adaptive size policy for the concurrent phases
if (UseAdaptiveSizePolicy) {
size_policy()->concurrent_sweeping_end();
size_policy()->concurrent_phases_end(gch->gc_cause(),
gch->prev_gen(_cmsGen)->capacity(),
_cmsGen->free());
}
case Resizing: {
// Sweeping has been completed...
// At this point the background collection has completed.
@ -2539,9 +2491,6 @@ void CMSCollector::collect_in_foreground(bool clear_all_soft_refs, GCCause::Caus
const GCId gc_id = _collectorState == InitialMarking ? GCId::peek() : _gc_tracer_cm->gc_id();
NOT_PRODUCT(GCTraceTime t("CMS:MS (foreground) ", PrintGCDetails && Verbose,
true, NULL, gc_id);)
if (UseAdaptiveSizePolicy) {
size_policy()->ms_collection_begin();
}
COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact);
HandleMark hm; // Discard invalid handles created during verification
@ -2633,11 +2582,6 @@ void CMSCollector::collect_in_foreground(bool clear_all_soft_refs, GCCause::Caus
}
}
if (UseAdaptiveSizePolicy) {
GenCollectedHeap* gch = GenCollectedHeap::heap();
size_policy()->ms_collection_end(gch->gc_cause());
}
if (VerifyAfterGC &&
GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
Universe::verify();
@ -3053,17 +2997,18 @@ void CMSCollector::verify_after_remark_work_1() {
HandleMark hm;
GenCollectedHeap* gch = GenCollectedHeap::heap();
// Get a clear set of claim bits for the strong roots processing to work with.
// Get a clear set of claim bits for the roots processing to work with.
ClassLoaderDataGraph::clear_claimed_marks();
// Mark from roots one level into CMS
MarkRefsIntoClosure notOlder(_span, verification_mark_bm());
gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
gch->gen_process_strong_roots(_cmsGen->level(),
gch->gen_process_roots(_cmsGen->level(),
true, // younger gens are roots
true, // activate StrongRootsScope
SharedHeap::ScanningOption(roots_scanning_options()),
should_unload_classes(),
&notOlder,
NULL,
NULL); // SSS: Provide correct closure
@ -3117,22 +3062,24 @@ void CMSCollector::verify_after_remark_work_2() {
HandleMark hm;
GenCollectedHeap* gch = GenCollectedHeap::heap();
// Get a clear set of claim bits for the strong roots processing to work with.
// Get a clear set of claim bits for the roots processing to work with.
ClassLoaderDataGraph::clear_claimed_marks();
// Mark from roots one level into CMS
MarkRefsIntoVerifyClosure notOlder(_span, verification_mark_bm(),
markBitMap());
KlassToOopClosure klass_closure(&notOlder);
CLDToOopClosure cld_closure(&notOlder, true);
gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
gch->gen_process_strong_roots(_cmsGen->level(),
gch->gen_process_roots(_cmsGen->level(),
true, // younger gens are roots
true, // activate StrongRootsScope
SharedHeap::ScanningOption(roots_scanning_options()),
should_unload_classes(),
&notOlder,
NULL,
&klass_closure);
&cld_closure);
// Now mark from the roots
MarkFromRootsVerifyClosure markFromRootsClosure(this, _span,
@ -3319,12 +3266,10 @@ bool ConcurrentMarkSweepGeneration::is_too_full() const {
void CMSCollector::setup_cms_unloading_and_verification_state() {
const bool should_verify = VerifyBeforeGC || VerifyAfterGC || VerifyDuringGC
|| VerifyBeforeExit;
const int rso = SharedHeap::SO_Strings | SharedHeap::SO_AllCodeCache;
const int rso = SharedHeap::SO_AllCodeCache;
// We set the proper root for this CMS cycle here.
if (should_unload_classes()) { // Should unload classes this cycle
remove_root_scanning_option(SharedHeap::SO_AllClasses);
add_root_scanning_option(SharedHeap::SO_SystemClasses);
remove_root_scanning_option(rso); // Shrink the root set appropriately
set_verifying(should_verify); // Set verification state for this cycle
return; // Nothing else needs to be done at this time
@ -3332,8 +3277,6 @@ void CMSCollector::setup_cms_unloading_and_verification_state() {
// Not unloading classes this cycle
assert(!should_unload_classes(), "Inconsistency!");
remove_root_scanning_option(SharedHeap::SO_SystemClasses);
add_root_scanning_option(SharedHeap::SO_AllClasses);
if ((!verifying() || unloaded_classes_last_cycle()) && should_verify) {
// Include symbols, strings and code cache elements to prevent their resurrection.
@ -3687,9 +3630,6 @@ void CMSCollector::checkpointRootsInitialWork(bool asynch) {
NOT_PRODUCT(GCTraceTime t("\ncheckpointRootsInitialWork",
PrintGCDetails && Verbose, true, _gc_timer_cm, _gc_tracer_cm->gc_id());)
if (UseAdaptiveSizePolicy) {
size_policy()->checkpoint_roots_initial_begin();
}
// Reset all the PLAB chunk arrays if necessary.
if (_survivor_plab_array != NULL && !CMSPLABRecordAlways) {
@ -3744,15 +3684,16 @@ void CMSCollector::checkpointRootsInitialWork(bool asynch) {
gch->set_par_threads(0);
} else {
// The serial version.
KlassToOopClosure klass_closure(&notOlder);
CLDToOopClosure cld_closure(&notOlder, true);
gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
gch->gen_process_strong_roots(_cmsGen->level(),
gch->gen_process_roots(_cmsGen->level(),
true, // younger gens are roots
true, // activate StrongRootsScope
SharedHeap::ScanningOption(roots_scanning_options()),
should_unload_classes(),
&notOlder,
NULL,
&klass_closure);
&cld_closure);
}
}
@ -3769,9 +3710,6 @@ void CMSCollector::checkpointRootsInitialWork(bool asynch) {
// Save the end of the used_region of the constituent generations
// to be used to limit the extent of sweep in each generation.
save_sweep_limits();
if (UseAdaptiveSizePolicy) {
size_policy()->checkpoint_roots_initial_end(gch->gc_cause());
}
verify_overflow_empty();
}
@ -3788,15 +3726,6 @@ bool CMSCollector::markFromRoots(bool asynch) {
bool res;
if (asynch) {
// Start the timers for adaptive size policy for the concurrent phases
// Do it here so that the foreground MS can use the concurrent
// timer since a foreground MS might has the sweep done concurrently
// or STW.
if (UseAdaptiveSizePolicy) {
size_policy()->concurrent_marking_begin();
}
// Weak ref discovery note: We may be discovering weak
// refs in this generation concurrent (but interleaved) with
// weak ref discovery by a younger generation collector.
@ -3814,22 +3743,12 @@ bool CMSCollector::markFromRoots(bool asynch) {
gclog_or_tty->print_cr("bailing out to foreground collection");
}
}
if (UseAdaptiveSizePolicy) {
size_policy()->concurrent_marking_end();
}
} else {
assert(SafepointSynchronize::is_at_safepoint(),
"inconsistent with asynch == false");
if (UseAdaptiveSizePolicy) {
size_policy()->ms_collection_marking_begin();
}
// already have locks
res = markFromRootsWork(asynch);
_collectorState = FinalMarking;
if (UseAdaptiveSizePolicy) {
GenCollectedHeap* gch = GenCollectedHeap::heap();
size_policy()->ms_collection_marking_end(gch->gc_cause());
}
}
verify_overflow_empty();
return res;
@ -4705,8 +4624,7 @@ size_t CMSCollector::preclean_work(bool clean_refs, bool clean_survivor) {
if (clean_survivor) { // preclean the active survivor space(s)
assert(_young_gen->kind() == Generation::DefNew ||
_young_gen->kind() == Generation::ParNew ||
_young_gen->kind() == Generation::ASParNew,
_young_gen->kind() == Generation::ParNew,
"incorrect type for cast");
DefNewGeneration* dng = (DefNewGeneration*)_young_gen;
PushAndMarkClosure pam_cl(this, _span, ref_processor(),
@ -5077,10 +4995,6 @@ void CMSCollector::checkpointRootsFinalWork(bool asynch,
assert(haveFreelistLocks(), "must have free list locks");
assert_lock_strong(bitMapLock());
if (UseAdaptiveSizePolicy) {
size_policy()->checkpoint_roots_final_begin();
}
ResourceMark rm;
HandleMark hm;
@ -5214,9 +5128,6 @@ void CMSCollector::checkpointRootsFinalWork(bool asynch,
"Should be clear by end of the final marking");
assert(_ct->klass_rem_set()->mod_union_is_clear(),
"Should be clear by end of the final marking");
if (UseAdaptiveSizePolicy) {
size_policy()->checkpoint_roots_final_end(gch->gc_cause());
}
}
void CMSParInitialMarkTask::work(uint worker_id) {
@ -5228,7 +5139,6 @@ void CMSParInitialMarkTask::work(uint worker_id) {
_timer.start();
GenCollectedHeap* gch = GenCollectedHeap::heap();
Par_MarkRefsIntoClosure par_mri_cl(_collector->_span, &(_collector->_markBitMap));
KlassToOopClosure klass_closure(&par_mri_cl);
// ---------- young gen roots --------------
{
@ -5244,13 +5154,17 @@ void CMSParInitialMarkTask::work(uint worker_id) {
// ---------- remaining roots --------------
_timer.reset();
_timer.start();
gch->gen_process_strong_roots(_collector->_cmsGen->level(),
CLDToOopClosure cld_closure(&par_mri_cl, true);
gch->gen_process_roots(_collector->_cmsGen->level(),
false, // yg was scanned above
false, // this is parallel code
SharedHeap::ScanningOption(_collector->CMSCollector::roots_scanning_options()),
_collector->should_unload_classes(),
&par_mri_cl,
NULL,
&klass_closure);
&cld_closure);
assert(_collector->should_unload_classes()
|| (_collector->CMSCollector::roots_scanning_options() & SharedHeap::SO_AllCodeCache),
"if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
@ -5379,13 +5293,15 @@ void CMSParRemarkTask::work(uint worker_id) {
// ---------- remaining roots --------------
_timer.reset();
_timer.start();
gch->gen_process_strong_roots(_collector->_cmsGen->level(),
gch->gen_process_roots(_collector->_cmsGen->level(),
false, // yg was scanned above
false, // this is parallel code
SharedHeap::ScanningOption(_collector->CMSCollector::roots_scanning_options()),
_collector->should_unload_classes(),
&par_mrias_cl,
NULL,
NULL); // The dirty klasses will be handled below
assert(_collector->should_unload_classes()
|| (_collector->CMSCollector::roots_scanning_options() & SharedHeap::SO_AllCodeCache),
"if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
@ -5440,7 +5356,7 @@ void CMSParRemarkTask::work(uint worker_id) {
// We might have added oops to ClassLoaderData::_handles during the
// concurrent marking phase. These oops point to newly allocated objects
// that are guaranteed to be kept alive. Either by the direct allocation
// code, or when the young collector processes the strong roots. Hence,
// code, or when the young collector processes the roots. Hence,
// we don't have to revisit the _handles block during the remark phase.
// ---------- rescan dirty cards ------------
@ -5862,7 +5778,7 @@ void CMSCollector::do_remark_parallel() {
cms_space,
n_workers, workers, task_queues());
// Set up for parallel process_strong_roots work.
// Set up for parallel process_roots work.
gch->set_par_threads(n_workers);
// We won't be iterating over the cards in the card table updating
// the younger_gen cards, so we shouldn't call the following else
@ -5871,7 +5787,7 @@ void CMSCollector::do_remark_parallel() {
// gch->rem_set()->prepare_for_younger_refs_iterate(true); // parallel
// The young gen rescan work will not be done as part of
// process_strong_roots (which currently doesn't knw how to
// process_roots (which currently doesn't know how to
// parallelize such a scan), but rather will be broken up into
// a set of parallel tasks (via the sampling that the [abortable]
// preclean phase did of EdenSpace, plus the [two] tasks of
@ -5968,10 +5884,12 @@ void CMSCollector::do_remark_non_parallel() {
gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
GenCollectedHeap::StrongRootsScope srs(gch);
gch->gen_process_strong_roots(_cmsGen->level(),
gch->gen_process_roots(_cmsGen->level(),
true, // younger gens as roots
false, // use the local StrongRootsScope
SharedHeap::ScanningOption(roots_scanning_options()),
should_unload_classes(),
&mrias_cl,
NULL,
NULL); // The dirty klasses will be handled below
@ -6014,7 +5932,7 @@ void CMSCollector::do_remark_non_parallel() {
// We might have added oops to ClassLoaderData::_handles during the
// concurrent marking phase. These oops point to newly allocated objects
// that are guaranteed to be kept alive. Either by the direct allocation
// code, or when the young collector processes the strong roots. Hence,
// code, or when the young collector processes the roots. Hence,
// we don't have to revisit the _handles block during the remark phase.
verify_work_stacks_empty();
@ -6264,15 +6182,14 @@ void CMSCollector::refProcessingWork(bool asynch, bool clear_all_soft_refs) {
// Clean up unreferenced symbols in symbol table.
SymbolTable::unlink();
}
}
// CMS doesn't use the StringTable as hard roots when class unloading is turned off.
// Need to check if we really scanned the StringTable.
if ((roots_scanning_options() & SharedHeap::SO_Strings) == 0) {
{
GCTraceTime t("scrub string table", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());
// Delete entries for dead interned strings.
StringTable::unlink(&_is_alive_closure);
}
}
// Restore any preserved marks as a result of mark stack or
// work queue overflow
@ -6329,7 +6246,6 @@ void CMSCollector::sweep(bool asynch) {
_inter_sweep_timer.stop();
_inter_sweep_estimate.sample(_inter_sweep_timer.seconds());
size_policy()->avg_cms_free_at_sweep()->sample(_cmsGen->free());
assert(!_intra_sweep_timer.is_active(), "Should not be active");
_intra_sweep_timer.reset();
@ -6454,17 +6370,6 @@ void ConcurrentMarkSweepGeneration::update_gc_stats(int current_level,
}
}
CMSAdaptiveSizePolicy* ConcurrentMarkSweepGeneration::size_policy() {
GenCollectedHeap* gch = GenCollectedHeap::heap();
assert(gch->kind() == CollectedHeap::GenCollectedHeap,
"Wrong type of heap");
CMSAdaptiveSizePolicy* sp = (CMSAdaptiveSizePolicy*)
gch->gen_policy()->size_policy();
assert(sp->is_gc_cms_adaptive_size_policy(),
"Wrong type of size policy");
return sp;
}
void ConcurrentMarkSweepGeneration::rotate_debug_collection_type() {
if (PrintGCDetails && Verbose) {
gclog_or_tty->print("Rotate from %d ", _debug_collection_type);
@ -6540,9 +6445,6 @@ void CMSCollector::sweepWork(ConcurrentMarkSweepGeneration* gen,
// Reset CMS data structures (for now just the marking bit map)
// preparatory for the next cycle.
void CMSCollector::reset(bool asynch) {
GenCollectedHeap* gch = GenCollectedHeap::heap();
CMSAdaptiveSizePolicy* sp = size_policy();
AdaptiveSizePolicyOutput(sp, gch->total_collections());
if (asynch) {
CMSTokenSyncWithLocks ts(true, bitMapLock());
@ -6597,7 +6499,7 @@ void CMSCollector::reset(bool asynch) {
// Because only the full (i.e., concurrent mode failure) collections
// are being measured for gc overhead limits, clean the "near" flag
// and count.
sp->reset_gc_overhead_limit_count();
size_policy()->reset_gc_overhead_limit_count();
_collectorState = Idling;
} else {
// already have the lock
@ -7064,7 +6966,6 @@ void MarkRefsIntoAndScanClosure::do_yield_work() {
ConcurrentMarkSweepThread::desynchronize(true);
ConcurrentMarkSweepThread::acknowledge_yield_request();
_collector->stopTimer();
GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
if (PrintCMSStatistics != 0) {
_collector->incrementYields();
}
@ -7225,7 +7126,6 @@ void ScanMarkedObjectsAgainCarefullyClosure::do_yield_work() {
ConcurrentMarkSweepThread::desynchronize(true);
ConcurrentMarkSweepThread::acknowledge_yield_request();
_collector->stopTimer();
GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
if (PrintCMSStatistics != 0) {
_collector->incrementYields();
}
@ -7298,7 +7198,6 @@ void SurvivorSpacePrecleanClosure::do_yield_work() {
ConcurrentMarkSweepThread::desynchronize(true);
ConcurrentMarkSweepThread::acknowledge_yield_request();
_collector->stopTimer();
GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
if (PrintCMSStatistics != 0) {
_collector->incrementYields();
}
@ -7457,7 +7356,6 @@ void MarkFromRootsClosure::do_yield_work() {
ConcurrentMarkSweepThread::desynchronize(true);
ConcurrentMarkSweepThread::acknowledge_yield_request();
_collector->stopTimer();
GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
if (PrintCMSStatistics != 0) {
_collector->incrementYields();
}
@ -8099,7 +7997,6 @@ void CMSPrecleanRefsYieldClosure::do_yield_work() {
ConcurrentMarkSweepThread::acknowledge_yield_request();
_collector->stopTimer();
GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
if (PrintCMSStatistics != 0) {
_collector->incrementYields();
}
@ -8780,7 +8677,6 @@ void SweepClosure::do_yield_work(HeapWord* addr) {
ConcurrentMarkSweepThread::desynchronize(true);
ConcurrentMarkSweepThread::acknowledge_yield_request();
_collector->stopTimer();
GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
if (PrintCMSStatistics != 0) {
_collector->incrementYields();
}
@ -9327,172 +9223,6 @@ bool CMSCollector::no_preserved_marks() const {
}
#endif
CMSAdaptiveSizePolicy* ASConcurrentMarkSweepGeneration::cms_size_policy() const
{
GenCollectedHeap* gch = (GenCollectedHeap*) GenCollectedHeap::heap();
CMSAdaptiveSizePolicy* size_policy =
(CMSAdaptiveSizePolicy*) gch->gen_policy()->size_policy();
assert(size_policy->is_gc_cms_adaptive_size_policy(),
"Wrong type for size policy");
return size_policy;
}
void ASConcurrentMarkSweepGeneration::resize(size_t cur_promo_size,
size_t desired_promo_size) {
if (cur_promo_size < desired_promo_size) {
size_t expand_bytes = desired_promo_size - cur_promo_size;
if (PrintAdaptiveSizePolicy && Verbose) {
gclog_or_tty->print_cr(" ASConcurrentMarkSweepGeneration::resize "
"Expanding tenured generation by " SIZE_FORMAT " (bytes)",
expand_bytes);
}
expand(expand_bytes,
MinHeapDeltaBytes,
CMSExpansionCause::_adaptive_size_policy);
} else if (desired_promo_size < cur_promo_size) {
size_t shrink_bytes = cur_promo_size - desired_promo_size;
if (PrintAdaptiveSizePolicy && Verbose) {
gclog_or_tty->print_cr(" ASConcurrentMarkSweepGeneration::resize "
"Shrinking tenured generation by " SIZE_FORMAT " (bytes)",
shrink_bytes);
}
shrink(shrink_bytes);
}
}
CMSGCAdaptivePolicyCounters* ASConcurrentMarkSweepGeneration::gc_adaptive_policy_counters() {
GenCollectedHeap* gch = GenCollectedHeap::heap();
CMSGCAdaptivePolicyCounters* counters =
(CMSGCAdaptivePolicyCounters*) gch->collector_policy()->counters();
assert(counters->kind() == GCPolicyCounters::CMSGCAdaptivePolicyCountersKind,
"Wrong kind of counters");
return counters;
}
void ASConcurrentMarkSweepGeneration::update_counters() {
if (UsePerfData) {
_space_counters->update_all();
_gen_counters->update_all();
CMSGCAdaptivePolicyCounters* counters = gc_adaptive_policy_counters();
GenCollectedHeap* gch = GenCollectedHeap::heap();
CMSGCStats* gc_stats_l = (CMSGCStats*) gc_stats();
assert(gc_stats_l->kind() == GCStats::CMSGCStatsKind,
"Wrong gc statistics type");
counters->update_counters(gc_stats_l);
}
}
void ASConcurrentMarkSweepGeneration::update_counters(size_t used) {
if (UsePerfData) {
_space_counters->update_used(used);
_space_counters->update_capacity();
_gen_counters->update_all();
CMSGCAdaptivePolicyCounters* counters = gc_adaptive_policy_counters();
GenCollectedHeap* gch = GenCollectedHeap::heap();
CMSGCStats* gc_stats_l = (CMSGCStats*) gc_stats();
assert(gc_stats_l->kind() == GCStats::CMSGCStatsKind,
"Wrong gc statistics type");
counters->update_counters(gc_stats_l);
}
}
void ASConcurrentMarkSweepGeneration::shrink_by(size_t desired_bytes) {
assert_locked_or_safepoint(Heap_lock);
assert_lock_strong(freelistLock());
HeapWord* old_end = _cmsSpace->end();
HeapWord* unallocated_start = _cmsSpace->unallocated_block();
assert(old_end >= unallocated_start, "Miscalculation of unallocated_start");
FreeChunk* chunk_at_end = find_chunk_at_end();
if (chunk_at_end == NULL) {
// No room to shrink
if (PrintGCDetails && Verbose) {
gclog_or_tty->print_cr("No room to shrink: old_end "
PTR_FORMAT " unallocated_start " PTR_FORMAT
" chunk_at_end " PTR_FORMAT,
old_end, unallocated_start, chunk_at_end);
}
return;
} else {
// Find the chunk at the end of the space and determine
// how much it can be shrunk.
size_t shrinkable_size_in_bytes = chunk_at_end->size();
size_t aligned_shrinkable_size_in_bytes =
align_size_down(shrinkable_size_in_bytes, os::vm_page_size());
assert(unallocated_start <= (HeapWord*) chunk_at_end->end(),
"Inconsistent chunk at end of space");
size_t bytes = MIN2(desired_bytes, aligned_shrinkable_size_in_bytes);
size_t word_size_before = heap_word_size(_virtual_space.committed_size());
// Shrink the underlying space
_virtual_space.shrink_by(bytes);
if (PrintGCDetails && Verbose) {
gclog_or_tty->print_cr("ConcurrentMarkSweepGeneration::shrink_by:"
" desired_bytes " SIZE_FORMAT
" shrinkable_size_in_bytes " SIZE_FORMAT
" aligned_shrinkable_size_in_bytes " SIZE_FORMAT
" bytes " SIZE_FORMAT,
desired_bytes, shrinkable_size_in_bytes,
aligned_shrinkable_size_in_bytes, bytes);
gclog_or_tty->print_cr(" old_end " SIZE_FORMAT
" unallocated_start " SIZE_FORMAT,
old_end, unallocated_start);
}
// If the space did shrink (shrinking is not guaranteed),
// shrink the chunk at the end by the appropriate amount.
if (((HeapWord*)_virtual_space.high()) < old_end) {
size_t new_word_size =
heap_word_size(_virtual_space.committed_size());
// Have to remove the chunk from the dictionary because it is changing
// size and might be someplace elsewhere in the dictionary.
// Get the chunk at end, shrink it, and put it
// back.
_cmsSpace->removeChunkFromDictionary(chunk_at_end);
size_t word_size_change = word_size_before - new_word_size;
size_t chunk_at_end_old_size = chunk_at_end->size();
assert(chunk_at_end_old_size >= word_size_change,
"Shrink is too large");
chunk_at_end->set_size(chunk_at_end_old_size -
word_size_change);
_cmsSpace->freed((HeapWord*) chunk_at_end->end(),
word_size_change);
_cmsSpace->returnChunkToDictionary(chunk_at_end);
MemRegion mr(_cmsSpace->bottom(), new_word_size);
_bts->resize(new_word_size); // resize the block offset shared array
Universe::heap()->barrier_set()->resize_covered_region(mr);
_cmsSpace->assert_locked();
_cmsSpace->set_end((HeapWord*)_virtual_space.high());
NOT_PRODUCT(_cmsSpace->dictionary()->verify());
// update the space and generation capacity counters
if (UsePerfData) {
_space_counters->update_capacity();
_gen_counters->update_all();
}
if (Verbose && PrintGCDetails) {
size_t new_mem_size = _virtual_space.committed_size();
size_t old_mem_size = new_mem_size + bytes;
gclog_or_tty->print_cr("Shrinking %s from " SIZE_FORMAT "K by " SIZE_FORMAT "K to " SIZE_FORMAT "K",
name(), old_mem_size/K, bytes/K, new_mem_size/K);
}
}
assert(_cmsSpace->unallocated_block() <= _cmsSpace->end(),
"Inconsistency at end of space");
assert(chunk_at_end->end() == (uintptr_t*) _cmsSpace->end(),
"Shrinking is inconsistent");
return;
}
}
// Transfer some number of overflown objects to usual marking
// stack. Return true if some objects were transferred.
bool MarkRefsIntoAndScanClosure::take_from_overflow_list() {

View File

@ -32,6 +32,7 @@
#include "gc_implementation/shared/generationCounters.hpp"
#include "memory/freeBlockDictionary.hpp"
#include "memory/generation.hpp"
#include "memory/iterator.hpp"
#include "runtime/mutexLocker.hpp"
#include "runtime/virtualspace.hpp"
#include "services/memoryService.hpp"
@ -52,7 +53,7 @@
// Concurrent mode failures are currently handled by
// means of a sliding mark-compact.
class CMSAdaptiveSizePolicy;
class AdaptiveSizePolicy;
class CMSConcMarkingTask;
class CMSGCAdaptivePolicyCounters;
class CMSTracer;
@ -1009,8 +1010,7 @@ class CMSCollector: public CHeapObj<mtGC> {
void icms_wait(); // Called at yield points.
// Adaptive size policy
CMSAdaptiveSizePolicy* size_policy();
CMSGCAdaptivePolicyCounters* gc_adaptive_policy_counters();
AdaptiveSizePolicy* size_policy();
static void print_on_error(outputStream* st);
@ -1150,9 +1150,6 @@ class ConcurrentMarkSweepGeneration: public CardGeneration {
virtual Generation::Name kind() { return Generation::ConcurrentMarkSweep; }
// Adaptive size policy
CMSAdaptiveSizePolicy* size_policy();
void set_did_compact(bool v) { _did_compact = v; }
bool refs_discovery_is_atomic() const { return false; }
@ -1346,37 +1343,6 @@ class ConcurrentMarkSweepGeneration: public CardGeneration {
void rotate_debug_collection_type();
};
class ASConcurrentMarkSweepGeneration : public ConcurrentMarkSweepGeneration {
// Return the size policy from the heap's collector
// policy casted to CMSAdaptiveSizePolicy*.
CMSAdaptiveSizePolicy* cms_size_policy() const;
// Resize the generation based on the adaptive size
// policy.
void resize(size_t cur_promo, size_t desired_promo);
// Return the GC counters from the collector policy
CMSGCAdaptivePolicyCounters* gc_adaptive_policy_counters();
virtual void shrink_by(size_t bytes);
public:
ASConcurrentMarkSweepGeneration(ReservedSpace rs, size_t initial_byte_size,
int level, CardTableRS* ct,
bool use_adaptive_freelists,
FreeBlockDictionary<FreeChunk>::DictionaryChoice
dictionaryChoice) :
ConcurrentMarkSweepGeneration(rs, initial_byte_size, level, ct,
use_adaptive_freelists, dictionaryChoice) {}
virtual const char* short_name() const { return "ASCMS"; }
virtual Generation::Name kind() { return Generation::ASConcurrentMarkSweep; }
virtual void update_counters();
virtual void update_counters(size_t used);
};
//
// Closures of various sorts used by CMS to accomplish its work
//

View File

@ -24,6 +24,7 @@
#include "precompiled.hpp"
#include "classfile/symbolTable.hpp"
#include "code/codeCache.hpp"
#include "gc_implementation/g1/concurrentMark.inline.hpp"
#include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
#include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
@ -39,6 +40,7 @@
#include "gc_implementation/shared/gcTimer.hpp"
#include "gc_implementation/shared/gcTrace.hpp"
#include "gc_implementation/shared/gcTraceTime.hpp"
#include "memory/allocation.hpp"
#include "memory/genOopClosures.inline.hpp"
#include "memory/referencePolicy.hpp"
#include "memory/resourceArea.hpp"
@ -58,8 +60,8 @@ CMBitMapRO::CMBitMapRO(int shifter) :
_bmWordSize = 0;
}
HeapWord* CMBitMapRO::getNextMarkedWordAddress(HeapWord* addr,
HeapWord* limit) const {
HeapWord* CMBitMapRO::getNextMarkedWordAddress(const HeapWord* addr,
const HeapWord* limit) const {
// First we must round addr *up* to a possible object boundary.
addr = (HeapWord*)align_size_up((intptr_t)addr,
HeapWordSize << _shifter);
@ -76,8 +78,8 @@ HeapWord* CMBitMapRO::getNextMarkedWordAddress(HeapWord* addr,
return nextAddr;
}
HeapWord* CMBitMapRO::getNextUnmarkedWordAddress(HeapWord* addr,
HeapWord* limit) const {
HeapWord* CMBitMapRO::getNextUnmarkedWordAddress(const HeapWord* addr,
const HeapWord* limit) const {
size_t addrOffset = heapWordToOffset(addr);
if (limit == NULL) {
limit = _bmStartWord + _bmWordSize;
@ -1223,6 +1225,9 @@ public:
};
void ConcurrentMark::scanRootRegions() {
// Start of concurrent marking.
ClassLoaderDataGraph::clear_claimed_marks();
// scan_in_progress() will have been set to true only if there was
// at least one root region to scan. So, if it's false, we
// should not attempt to do any further work.
@ -1271,7 +1276,7 @@ void ConcurrentMark::markFromRoots() {
CMConcurrentMarkingTask markingTask(this, cmThread());
if (use_parallel_marking_threads()) {
_parallel_workers->set_active_workers((int)active_workers);
// Don't set _n_par_threads because it affects MT in process_strong_roots()
// Don't set _n_par_threads because it affects MT in process_roots()
// and the decisions on that MT processing is made elsewhere.
assert(_parallel_workers->active_workers() > 0, "Should have been set");
_parallel_workers->run_task(&markingTask);
@ -2142,23 +2147,29 @@ void ConcurrentMark::cleanup() {
// Update the soft reference policy with the new heap occupancy.
Universe::update_heap_info_at_gc();
// We need to make this be a "collection" so any collection pause that
// races with it goes around and waits for completeCleanup to finish.
g1h->increment_total_collections();
// We reclaimed old regions so we should calculate the sizes to make
// sure we update the old gen/space data.
g1h->g1mm()->update_sizes();
if (VerifyDuringGC) {
HandleMark hm; // handle scope
Universe::heap()->prepare_for_verify();
Universe::verify(VerifyOption_G1UsePrevMarking,
" VerifyDuringGC:(after)");
}
g1h->check_bitmaps("Cleanup End");
g1h->verify_region_sets_optional();
// We need to make this be a "collection" so any collection pause that
// races with it goes around and waits for completeCleanup to finish.
g1h->increment_total_collections();
// Clean out dead classes and update Metaspace sizes.
ClassLoaderDataGraph::purge();
MetaspaceGC::compute_new_size();
// We reclaimed old regions so we should calculate the sizes to make
// sure we update the old gen/space data.
g1h->g1mm()->update_sizes();
g1h->trace_heap_after_concurrent_cycle();
}
@ -2445,6 +2456,26 @@ void G1CMRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
_g1h->set_par_threads(0);
}
void ConcurrentMark::weakRefsWorkParallelPart(BoolObjectClosure* is_alive, bool purged_classes) {
G1CollectedHeap::heap()->parallel_cleaning(is_alive, true, true, purged_classes);
}
// Helper class to get rid of some boilerplate code.
class G1RemarkGCTraceTime : public GCTraceTime {
static bool doit_and_prepend(bool doit) {
if (doit) {
gclog_or_tty->put(' ');
}
return doit;
}
public:
G1RemarkGCTraceTime(const char* title, bool doit)
: GCTraceTime(title, doit_and_prepend(doit), false, G1CollectedHeap::heap()->gc_timer_cm(),
G1CollectedHeap::heap()->concurrent_mark()->concurrent_gc_id()) {
}
};
void ConcurrentMark::weakRefsWork(bool clear_all_soft_refs) {
if (has_overflown()) {
// Skip processing the discovered references if we have
@ -2557,9 +2588,28 @@ void ConcurrentMark::weakRefsWork(bool clear_all_soft_refs) {
return;
}
g1h->unlink_string_and_symbol_table(&g1_is_alive,
/* process_strings */ false, // currently strings are always roots
/* process_symbols */ true);
assert(_markStack.isEmpty(), "Marking should have completed");
// Unload Klasses, String, Symbols, Code Cache, etc.
G1RemarkGCTraceTime trace("Unloading", G1Log::finer());
bool purged_classes;
{
G1RemarkGCTraceTime trace("System Dictionary Unloading", G1Log::finest());
purged_classes = SystemDictionary::do_unloading(&g1_is_alive);
}
{
G1RemarkGCTraceTime trace("Parallel Unloading", G1Log::finest());
weakRefsWorkParallelPart(&g1_is_alive, purged_classes);
}
if (G1StringDedup::is_enabled()) {
G1RemarkGCTraceTime trace("String Deduplication Unlink", G1Log::finest());
G1StringDedup::unlink(&g1_is_alive);
}
}
void ConcurrentMark::swapMarkBitMaps() {
@ -2568,6 +2618,57 @@ void ConcurrentMark::swapMarkBitMaps() {
_nextMarkBitMap = (CMBitMap*) temp;
}
class CMObjectClosure;
// Closure for iterating over objects, currently only used for
// processing SATB buffers.
class CMObjectClosure : public ObjectClosure {
private:
CMTask* _task;
public:
void do_object(oop obj) {
_task->deal_with_reference(obj);
}
CMObjectClosure(CMTask* task) : _task(task) { }
};
class G1RemarkThreadsClosure : public ThreadClosure {
CMObjectClosure _cm_obj;
G1CMOopClosure _cm_cl;
MarkingCodeBlobClosure _code_cl;
int _thread_parity;
bool _is_par;
public:
G1RemarkThreadsClosure(G1CollectedHeap* g1h, CMTask* task, bool is_par) :
_cm_obj(task), _cm_cl(g1h, g1h->concurrent_mark(), task), _code_cl(&_cm_cl, !CodeBlobToOopClosure::FixRelocations),
_thread_parity(SharedHeap::heap()->strong_roots_parity()), _is_par(is_par) {}
void do_thread(Thread* thread) {
if (thread->is_Java_thread()) {
if (thread->claim_oops_do(_is_par, _thread_parity)) {
JavaThread* jt = (JavaThread*)thread;
// In theory it should not be neccessary to explicitly walk the nmethods to find roots for concurrent marking
// however the liveness of oops reachable from nmethods have very complex lifecycles:
// * Alive if on the stack of an executing method
// * Weakly reachable otherwise
// Some objects reachable from nmethods, such as the class loader (or klass_holder) of the receiver should be
// live by the SATB invariant but other oops recorded in nmethods may behave differently.
jt->nmethods_do(&_code_cl);
jt->satb_mark_queue().apply_closure_and_empty(&_cm_obj);
}
} else if (thread->is_VM_thread()) {
if (thread->claim_oops_do(_is_par, _thread_parity)) {
JavaThread::satb_mark_queue_set().shared_satb_queue()->apply_closure_and_empty(&_cm_obj);
}
}
}
};
class CMRemarkTask: public AbstractGangTask {
private:
ConcurrentMark* _cm;
@ -2579,6 +2680,14 @@ public:
if (worker_id < _cm->active_tasks()) {
CMTask* task = _cm->task(worker_id);
task->record_start_time();
{
ResourceMark rm;
HandleMark hm;
G1RemarkThreadsClosure threads_f(G1CollectedHeap::heap(), task, !_is_serial);
Threads::threads_do(&threads_f);
}
do {
task->do_marking_step(1000000000.0 /* something very large */,
true /* do_termination */,
@ -2601,6 +2710,8 @@ void ConcurrentMark::checkpointRootsFinalWork() {
HandleMark hm;
G1CollectedHeap* g1h = G1CollectedHeap::heap();
G1RemarkGCTraceTime trace("Finalize Marking", G1Log::finer());
g1h->ensure_parsability(false);
if (G1CollectedHeap::use_parallel_gc_threads()) {
@ -3430,20 +3541,6 @@ public:
}
};
// Closure for iterating over objects, currently only used for
// processing SATB buffers.
class CMObjectClosure : public ObjectClosure {
private:
CMTask* _task;
public:
void do_object(oop obj) {
_task->deal_with_reference(obj);
}
CMObjectClosure(CMTask* task) : _task(task) { }
};
G1CMOopClosure::G1CMOopClosure(G1CollectedHeap* g1h,
ConcurrentMark* cm,
CMTask* task)
@ -3908,15 +4005,6 @@ void CMTask::drain_satb_buffers() {
}
}
if (!concurrent() && !has_aborted()) {
// We should only do this during remark.
if (G1CollectedHeap::use_parallel_gc_threads()) {
satb_mq_set.par_iterate_closure_all_threads(_worker_id);
} else {
satb_mq_set.iterate_closure_all_threads();
}
}
_draining_satb_buffers = false;
assert(has_aborted() ||

View File

@ -25,6 +25,7 @@
#ifndef SHARE_VM_GC_IMPLEMENTATION_G1_CONCURRENTMARK_HPP
#define SHARE_VM_GC_IMPLEMENTATION_G1_CONCURRENTMARK_HPP
#include "classfile/javaClasses.hpp"
#include "gc_implementation/g1/heapRegionSet.hpp"
#include "gc_implementation/shared/gcId.hpp"
#include "utilities/taskqueue.hpp"
@ -86,19 +87,19 @@ class CMBitMapRO VALUE_OBJ_CLASS_SPEC {
// Return the address corresponding to the next marked bit at or after
// "addr", and before "limit", if "limit" is non-NULL. If there is no
// such bit, returns "limit" if that is non-NULL, or else "endWord()".
HeapWord* getNextMarkedWordAddress(HeapWord* addr,
HeapWord* limit = NULL) const;
HeapWord* getNextMarkedWordAddress(const HeapWord* addr,
const HeapWord* limit = NULL) const;
// Return the address corresponding to the next unmarked bit at or after
// "addr", and before "limit", if "limit" is non-NULL. If there is no
// such bit, returns "limit" if that is non-NULL, or else "endWord()".
HeapWord* getNextUnmarkedWordAddress(HeapWord* addr,
HeapWord* limit = NULL) const;
HeapWord* getNextUnmarkedWordAddress(const HeapWord* addr,
const HeapWord* limit = NULL) const;
// conversion utilities
HeapWord* offsetToHeapWord(size_t offset) const {
return _bmStartWord + (offset << _shifter);
}
size_t heapWordToOffset(HeapWord* addr) const {
size_t heapWordToOffset(const HeapWord* addr) const {
return pointer_delta(addr, _bmStartWord) >> _shifter;
}
int heapWordDiffToOffsetDiff(size_t diff) const;
@ -476,6 +477,7 @@ protected:
ForceOverflowSettings _force_overflow_conc;
ForceOverflowSettings _force_overflow_stw;
void weakRefsWorkParallelPart(BoolObjectClosure* is_alive, bool purged_classes);
void weakRefsWork(bool clear_all_soft_refs);
void swapMarkBitMaps();

View File

@ -26,6 +26,7 @@
#define SHARE_VM_GC_IMPLEMENTATION_G1_G1ALLOCREGION_INLINE_HPP
#include "gc_implementation/g1/g1AllocRegion.hpp"
#include "gc_implementation/g1/heapRegion.inline.hpp"
inline HeapWord* G1AllocRegion::allocate(HeapRegion* alloc_region,
size_t word_size,

View File

@ -426,7 +426,7 @@ G1BlockOffsetArray::forward_to_block_containing_addr_slow(HeapWord* q,
q = n;
oop obj = oop(q);
if (obj->klass_or_null() == NULL) return q;
n += obj->size();
n += block_size(q);
}
assert(q <= next_boundary && n > next_boundary, "Consequence of loop");
// [q, n) is the block that crosses the boundary.

View File

@ -26,7 +26,8 @@
#define SHARE_VM_GC_IMPLEMENTATION_G1_G1BLOCKOFFSETTABLE_INLINE_HPP
#include "gc_implementation/g1/g1BlockOffsetTable.hpp"
#include "gc_implementation/g1/heapRegion.hpp"
#include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
#include "gc_implementation/g1/heapRegion.inline.hpp"
#include "memory/space.hpp"
inline HeapWord* G1BlockOffsetTable::block_start(const void* addr) {
@ -112,7 +113,7 @@ forward_to_block_containing_addr_const(HeapWord* q, HeapWord* n,
q = n;
oop obj = oop(q);
if (obj->klass_or_null() == NULL) return q;
n += obj->size();
n += block_size(q);
}
assert(q <= n, "wrong order for q and addr");
assert(addr < n, "wrong order for addr and n");

View File

@ -30,23 +30,52 @@
PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
G1CodeRootChunk::G1CodeRootChunk() : _top(NULL), _next(NULL), _prev(NULL) {
G1CodeRootChunk::G1CodeRootChunk() : _top(NULL), _next(NULL), _prev(NULL), _free(NULL) {
_top = bottom();
}
void G1CodeRootChunk::reset() {
_next = _prev = NULL;
_free = NULL;
_top = bottom();
}
void G1CodeRootChunk::nmethods_do(CodeBlobClosure* cl) {
nmethod** cur = bottom();
NmethodOrLink* cur = bottom();
while (cur != _top) {
cl->do_code_blob(*cur);
if (is_nmethod(cur)) {
cl->do_code_blob(cur->_nmethod);
}
cur++;
}
}
bool G1CodeRootChunk::remove_lock_free(nmethod* method) {
NmethodOrLink* cur = bottom();
for (NmethodOrLink* cur = bottom(); cur != _top; cur++) {
if (cur->_nmethod == method) {
bool result = Atomic::cmpxchg_ptr(NULL, &cur->_nmethod, method) == method;
if (!result) {
// Someone else cleared out this entry.
return false;
}
// The method was cleared. Time to link it into the free list.
NmethodOrLink* prev_free;
do {
prev_free = (NmethodOrLink*)_free;
cur->_link = prev_free;
} while (Atomic::cmpxchg_ptr(cur, &_free, prev_free) != prev_free);
return true;
}
}
return false;
}
G1CodeRootChunkManager::G1CodeRootChunkManager() : _free_list(), _num_chunks_handed_out(0) {
_free_list.initialize();
_free_list.set_size(G1CodeRootChunk::word_size());
@ -140,34 +169,43 @@ G1CodeRootSet::~G1CodeRootSet() {
void G1CodeRootSet::add(nmethod* method) {
if (!contains(method)) {
// Try to add the nmethod. If there is not enough space, get a new chunk.
if (_list.head() == NULL || _list.head()->is_full()) {
G1CodeRootChunk* cur = new_chunk();
// Find the first chunk that isn't full.
G1CodeRootChunk* cur = _list.head();
while (cur != NULL) {
if (!cur->is_full()) {
break;
}
cur = cur->next();
}
// All chunks are full, get a new chunk.
if (cur == NULL) {
cur = new_chunk();
_list.return_chunk_at_head(cur);
}
bool result = _list.head()->add(method);
// Add the nmethod.
bool result = cur->add(method);
guarantee(result, err_msg("Not able to add nmethod "PTR_FORMAT" to newly allocated chunk.", method));
_length++;
}
}
void G1CodeRootSet::remove(nmethod* method) {
void G1CodeRootSet::remove_lock_free(nmethod* method) {
G1CodeRootChunk* found = find(method);
if (found != NULL) {
bool result = found->remove(method);
guarantee(result, err_msg("could not find nmethod "PTR_FORMAT" during removal although we previously found it", method));
// eventually free completely emptied chunk
if (found->is_empty()) {
_list.remove_chunk(found);
free(found);
bool result = found->remove_lock_free(method);
if (result) {
Atomic::dec_ptr((volatile intptr_t*)&_length);
}
_length--;
}
assert(!contains(method), err_msg(PTR_FORMAT" still contains nmethod "PTR_FORMAT, this, method));
}
nmethod* G1CodeRootSet::pop() {
do {
while (true) {
G1CodeRootChunk* cur = _list.head();
if (cur == NULL) {
assert(_length == 0, "when there are no chunks, there should be no elements");
@ -180,7 +218,7 @@ nmethod* G1CodeRootSet::pop() {
} else {
free(_list.get_chunk_at_head());
}
} while (true);
}
}
G1CodeRootChunk* G1CodeRootSet::find(nmethod* method) {

View File

@ -31,6 +31,14 @@
class CodeBlobClosure;
// The elements of the G1CodeRootChunk is either:
// 1) nmethod pointers
// 2) nodes in an internally chained free list
typedef union {
nmethod* _nmethod;
void* _link;
} NmethodOrLink;
class G1CodeRootChunk : public CHeapObj<mtGC> {
private:
static const int NUM_ENTRIES = 32;
@ -38,16 +46,28 @@ class G1CodeRootChunk : public CHeapObj<mtGC> {
G1CodeRootChunk* _next;
G1CodeRootChunk* _prev;
nmethod** _top;
NmethodOrLink* _top;
// First free position within the chunk.
volatile NmethodOrLink* _free;
nmethod* _data[NUM_ENTRIES];
NmethodOrLink _data[NUM_ENTRIES];
nmethod** bottom() const {
return (nmethod**) &(_data[0]);
NmethodOrLink* bottom() const {
return (NmethodOrLink*) &(_data[0]);
}
nmethod** end() const {
return (nmethod**) &(_data[NUM_ENTRIES]);
NmethodOrLink* end() const {
return (NmethodOrLink*) &(_data[NUM_ENTRIES]);
}
bool is_link(NmethodOrLink* nmethod_or_link) {
return nmethod_or_link->_link == NULL ||
(bottom() <= nmethod_or_link->_link
&& nmethod_or_link->_link < end());
}
bool is_nmethod(NmethodOrLink* nmethod_or_link) {
return !is_link(nmethod_or_link);
}
public:
@ -85,46 +105,55 @@ class G1CodeRootChunk : public CHeapObj<mtGC> {
}
bool is_full() const {
return _top == (nmethod**)end();
return _top == end() && _free == NULL;
}
bool contains(nmethod* method) {
nmethod** cur = bottom();
NmethodOrLink* cur = bottom();
while (cur != _top) {
if (*cur == method) return true;
if (cur->_nmethod == method) return true;
cur++;
}
return false;
}
bool add(nmethod* method) {
if (is_full()) return false;
*_top = method;
if (is_full()) {
return false;
}
if (_free != NULL) {
// Take from internally chained free list
NmethodOrLink* first_free = (NmethodOrLink*)_free;
_free = (NmethodOrLink*)_free->_link;
first_free->_nmethod = method;
} else {
// Take from top.
_top->_nmethod = method;
_top++;
}
return true;
}
bool remove(nmethod* method) {
nmethod** cur = bottom();
while (cur != _top) {
if (*cur == method) {
memmove(cur, cur + 1, (_top - (cur + 1)) * sizeof(nmethod**));
_top--;
return true;
}
cur++;
}
return false;
}
bool remove_lock_free(nmethod* method);
void nmethods_do(CodeBlobClosure* blk);
nmethod* pop() {
if (is_empty()) {
return NULL;
if (_free != NULL) {
// Kill the free list.
_free = NULL;
}
while (!is_empty()) {
_top--;
return *_top;
if (is_nmethod(_top)) {
return _top->_nmethod;
}
}
return NULL;
}
};
@ -193,7 +222,7 @@ class G1CodeRootSet VALUE_OBJ_CLASS_SPEC {
// method is likely to be repeatedly called with the same nmethod.
void add(nmethod* method);
void remove(nmethod* method);
void remove_lock_free(nmethod* method);
nmethod* pop();
bool contains(nmethod* method);

File diff suppressed because it is too large Load Diff

View File

@ -31,7 +31,6 @@
#include "gc_implementation/g1/g1BiasedArray.hpp"
#include "gc_implementation/g1/g1HRPrinter.hpp"
#include "gc_implementation/g1/g1MonitoringSupport.hpp"
#include "gc_implementation/g1/g1RemSet.hpp"
#include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
#include "gc_implementation/g1/g1YCTypes.hpp"
#include "gc_implementation/g1/heapRegionSeq.hpp"
@ -211,6 +210,7 @@ class G1FastCSetBiasedMappedArray : public G1BiasedMappedArray<bool> {
class RefineCardTableEntryClosure;
class G1CollectedHeap : public SharedHeap {
friend class VM_CollectForMetadataAllocation;
friend class VM_G1CollectForAllocation;
friend class VM_G1CollectFull;
friend class VM_G1IncCollectionPause;
@ -220,7 +220,7 @@ class G1CollectedHeap : public SharedHeap {
friend class OldGCAllocRegion;
// Closures used in implementation.
template <G1Barrier barrier, bool do_mark_object>
template <G1Barrier barrier, G1Mark do_mark_object>
friend class G1ParCopyClosure;
friend class G1IsAliveClosure;
friend class G1EvacuateFollowersClosure;
@ -347,6 +347,9 @@ private:
// It initializes the GC alloc regions at the start of a GC.
void init_gc_alloc_regions(EvacuationInfo& evacuation_info);
// Setup the retained old gc alloc region as the currrent old gc alloc region.
void use_retained_old_gc_alloc_region(EvacuationInfo& evacuation_info);
// It releases the GC alloc regions at the end of a GC.
void release_gc_alloc_regions(uint no_of_gc_workers, EvacuationInfo& evacuation_info);
@ -828,11 +831,12 @@ protected:
// param is for use with parallel roots processing, and should be
// the "i" of the calling parallel worker thread's work(i) function.
// In the sequential case this param will be ignored.
void g1_process_strong_roots(bool is_scavenging,
ScanningOption so,
OopClosure* scan_non_heap_roots,
void g1_process_roots(OopClosure* scan_non_heap_roots,
OopClosure* scan_non_heap_weak_roots,
OopsInHeapRegionClosure* scan_rs,
G1KlassScanClosure* scan_klasses,
CLDClosure* scan_strong_clds,
CLDClosure* scan_weak_clds,
CodeBlobClosure* scan_strong_code,
uint worker_i);
// Notifies all the necessary spaces that the committed space has
@ -1026,7 +1030,7 @@ protected:
// of G1CollectedHeap::_gc_time_stamp.
unsigned int* _worker_cset_start_region_time_stamp;
enum G1H_process_strong_roots_tasks {
enum G1H_process_roots_tasks {
G1H_PS_filter_satb_buffers,
G1H_PS_refProcessor_oops_do,
// Leave this one last.
@ -1608,10 +1612,6 @@ public:
// Free up superfluous code root memory.
void purge_code_root_memory();
// During an initial mark pause, mark all the code roots that
// point into regions *not* in the collection set.
void mark_strong_code_roots(uint worker_id);
// Rebuild the strong code root lists for each region
// after a full GC.
void rebuild_strong_code_roots();
@ -1620,6 +1620,9 @@ public:
// in symbol table, possibly in parallel.
void unlink_string_and_symbol_table(BoolObjectClosure* is_alive, bool unlink_strings = true, bool unlink_symbols = true);
// Parallel phase of unloading/cleaning after G1 concurrent mark.
void parallel_cleaning(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols, bool class_unloading_occurred);
// Redirty logged cards in the refinement queue.
void redirty_logged_cards();
// Verification
@ -1715,256 +1718,4 @@ public:
}
};
class G1ParScanThreadState : public StackObj {
protected:
G1CollectedHeap* _g1h;
RefToScanQueue* _refs;
DirtyCardQueue _dcq;
G1SATBCardTableModRefBS* _ct_bs;
G1RemSet* _g1_rem;
G1ParGCAllocBuffer _surviving_alloc_buffer;
G1ParGCAllocBuffer _tenured_alloc_buffer;
G1ParGCAllocBuffer* _alloc_buffers[GCAllocPurposeCount];
ageTable _age_table;
G1ParScanClosure _scanner;
size_t _alloc_buffer_waste;
size_t _undo_waste;
OopsInHeapRegionClosure* _evac_failure_cl;
int _hash_seed;
uint _queue_num;
size_t _term_attempts;
double _start;
double _start_strong_roots;
double _strong_roots_time;
double _start_term;
double _term_time;
// Map from young-age-index (0 == not young, 1 is youngest) to
// surviving words. base is what we get back from the malloc call
size_t* _surviving_young_words_base;
// this points into the array, as we use the first few entries for padding
size_t* _surviving_young_words;
#define PADDING_ELEM_NUM (DEFAULT_CACHE_LINE_SIZE / sizeof(size_t))
void add_to_alloc_buffer_waste(size_t waste) { _alloc_buffer_waste += waste; }
void add_to_undo_waste(size_t waste) { _undo_waste += waste; }
DirtyCardQueue& dirty_card_queue() { return _dcq; }
G1SATBCardTableModRefBS* ctbs() { return _ct_bs; }
template <class T> inline void immediate_rs_update(HeapRegion* from, T* p, int tid);
template <class T> void deferred_rs_update(HeapRegion* from, T* p, int tid) {
// If the new value of the field points to the same region or
// is the to-space, we don't need to include it in the Rset updates.
if (!from->is_in_reserved(oopDesc::load_decode_heap_oop(p)) && !from->is_survivor()) {
size_t card_index = ctbs()->index_for(p);
// If the card hasn't been added to the buffer, do it.
if (ctbs()->mark_card_deferred(card_index)) {
dirty_card_queue().enqueue((jbyte*)ctbs()->byte_for_index(card_index));
}
}
}
public:
G1ParScanThreadState(G1CollectedHeap* g1h, uint queue_num, ReferenceProcessor* rp);
~G1ParScanThreadState() {
retire_alloc_buffers();
FREE_C_HEAP_ARRAY(size_t, _surviving_young_words_base, mtGC);
}
RefToScanQueue* refs() { return _refs; }
ageTable* age_table() { return &_age_table; }
G1ParGCAllocBuffer* alloc_buffer(GCAllocPurpose purpose) {
return _alloc_buffers[purpose];
}
size_t alloc_buffer_waste() const { return _alloc_buffer_waste; }
size_t undo_waste() const { return _undo_waste; }
#ifdef ASSERT
bool verify_ref(narrowOop* ref) const;
bool verify_ref(oop* ref) const;
bool verify_task(StarTask ref) const;
#endif // ASSERT
template <class T> void push_on_queue(T* ref) {
assert(verify_ref(ref), "sanity");
refs()->push(ref);
}
template <class T> inline void update_rs(HeapRegion* from, T* p, int tid);
HeapWord* allocate_slow(GCAllocPurpose purpose, size_t word_sz) {
HeapWord* obj = NULL;
size_t gclab_word_size = _g1h->desired_plab_sz(purpose);
if (word_sz * 100 < gclab_word_size * ParallelGCBufferWastePct) {
G1ParGCAllocBuffer* alloc_buf = alloc_buffer(purpose);
add_to_alloc_buffer_waste(alloc_buf->words_remaining());
alloc_buf->retire(false /* end_of_gc */, false /* retain */);
HeapWord* buf = _g1h->par_allocate_during_gc(purpose, gclab_word_size);
if (buf == NULL) return NULL; // Let caller handle allocation failure.
// Otherwise.
alloc_buf->set_word_size(gclab_word_size);
alloc_buf->set_buf(buf);
obj = alloc_buf->allocate(word_sz);
assert(obj != NULL, "buffer was definitely big enough...");
} else {
obj = _g1h->par_allocate_during_gc(purpose, word_sz);
}
return obj;
}
HeapWord* allocate(GCAllocPurpose purpose, size_t word_sz) {
HeapWord* obj = alloc_buffer(purpose)->allocate(word_sz);
if (obj != NULL) return obj;
return allocate_slow(purpose, word_sz);
}
void undo_allocation(GCAllocPurpose purpose, HeapWord* obj, size_t word_sz) {
if (alloc_buffer(purpose)->contains(obj)) {
assert(alloc_buffer(purpose)->contains(obj + word_sz - 1),
"should contain whole object");
alloc_buffer(purpose)->undo_allocation(obj, word_sz);
} else {
CollectedHeap::fill_with_object(obj, word_sz);
add_to_undo_waste(word_sz);
}
}
void set_evac_failure_closure(OopsInHeapRegionClosure* evac_failure_cl) {
_evac_failure_cl = evac_failure_cl;
}
OopsInHeapRegionClosure* evac_failure_closure() {
return _evac_failure_cl;
}
int* hash_seed() { return &_hash_seed; }
uint queue_num() { return _queue_num; }
size_t term_attempts() const { return _term_attempts; }
void note_term_attempt() { _term_attempts++; }
void start_strong_roots() {
_start_strong_roots = os::elapsedTime();
}
void end_strong_roots() {
_strong_roots_time += (os::elapsedTime() - _start_strong_roots);
}
double strong_roots_time() const { return _strong_roots_time; }
void start_term_time() {
note_term_attempt();
_start_term = os::elapsedTime();
}
void end_term_time() {
_term_time += (os::elapsedTime() - _start_term);
}
double term_time() const { return _term_time; }
double elapsed_time() const {
return os::elapsedTime() - _start;
}
static void
print_termination_stats_hdr(outputStream* const st = gclog_or_tty);
void
print_termination_stats(int i, outputStream* const st = gclog_or_tty) const;
size_t* surviving_young_words() {
// We add on to hide entry 0 which accumulates surviving words for
// age -1 regions (i.e. non-young ones)
return _surviving_young_words;
}
private:
void retire_alloc_buffers() {
for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
size_t waste = _alloc_buffers[ap]->words_remaining();
add_to_alloc_buffer_waste(waste);
_alloc_buffers[ap]->flush_stats_and_retire(_g1h->stats_for_purpose((GCAllocPurpose)ap),
true /* end_of_gc */,
false /* retain */);
}
}
#define G1_PARTIAL_ARRAY_MASK 0x2
inline bool has_partial_array_mask(oop* ref) const {
return ((uintptr_t)ref & G1_PARTIAL_ARRAY_MASK) == G1_PARTIAL_ARRAY_MASK;
}
// We never encode partial array oops as narrowOop*, so return false immediately.
// This allows the compiler to create optimized code when popping references from
// the work queue.
inline bool has_partial_array_mask(narrowOop* ref) const {
assert(((uintptr_t)ref & G1_PARTIAL_ARRAY_MASK) != G1_PARTIAL_ARRAY_MASK, "Partial array oop reference encoded as narrowOop*");
return false;
}
// Only implement set_partial_array_mask() for regular oops, not for narrowOops.
// We always encode partial arrays as regular oop, to allow the
// specialization for has_partial_array_mask() for narrowOops above.
// This means that unintentional use of this method with narrowOops are caught
// by the compiler.
inline oop* set_partial_array_mask(oop obj) const {
assert(((uintptr_t)(void *)obj & G1_PARTIAL_ARRAY_MASK) == 0, "Information loss!");
return (oop*) ((uintptr_t)(void *)obj | G1_PARTIAL_ARRAY_MASK);
}
inline oop clear_partial_array_mask(oop* ref) const {
return cast_to_oop((intptr_t)ref & ~G1_PARTIAL_ARRAY_MASK);
}
inline void do_oop_partial_array(oop* p);
// This method is applied to the fields of the objects that have just been copied.
template <class T> void do_oop_evac(T* p, HeapRegion* from) {
assert(!oopDesc::is_null(oopDesc::load_decode_heap_oop(p)),
"Reference should not be NULL here as such are never pushed to the task queue.");
oop obj = oopDesc::load_decode_heap_oop_not_null(p);
// Although we never intentionally push references outside of the collection
// set, due to (benign) races in the claim mechanism during RSet scanning more
// than one thread might claim the same card. So the same card may be
// processed multiple times. So redo this check.
if (_g1h->in_cset_fast_test(obj)) {
oop forwardee;
if (obj->is_forwarded()) {
forwardee = obj->forwardee();
} else {
forwardee = copy_to_survivor_space(obj);
}
assert(forwardee != NULL, "forwardee should not be NULL");
oopDesc::encode_store_heap_oop(p, forwardee);
}
assert(obj != NULL, "Must be");
update_rs(from, p, queue_num());
}
public:
oop copy_to_survivor_space(oop const obj);
template <class T> inline void deal_with_reference(T* ref_to_scan);
inline void deal_with_reference(StarTask ref);
public:
void trim_queue();
};
#endif // SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP

View File

@ -29,7 +29,6 @@
#include "gc_implementation/g1/g1CollectedHeap.hpp"
#include "gc_implementation/g1/g1AllocRegion.inline.hpp"
#include "gc_implementation/g1/g1CollectorPolicy.hpp"
#include "gc_implementation/g1/g1RemSet.inline.hpp"
#include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
#include "gc_implementation/g1/heapRegionSet.inline.hpp"
#include "gc_implementation/g1/heapRegionSeq.inline.hpp"
@ -289,89 +288,4 @@ inline bool G1CollectedHeap::is_obj_ill(const oop obj) const {
return is_obj_ill(obj, heap_region_containing(obj));
}
template <class T> inline void G1ParScanThreadState::immediate_rs_update(HeapRegion* from, T* p, int tid) {
if (!from->is_survivor()) {
_g1_rem->par_write_ref(from, p, tid);
}
}
template <class T> void G1ParScanThreadState::update_rs(HeapRegion* from, T* p, int tid) {
if (G1DeferredRSUpdate) {
deferred_rs_update(from, p, tid);
} else {
immediate_rs_update(from, p, tid);
}
}
inline void G1ParScanThreadState::do_oop_partial_array(oop* p) {
assert(has_partial_array_mask(p), "invariant");
oop from_obj = clear_partial_array_mask(p);
assert(Universe::heap()->is_in_reserved(from_obj), "must be in heap.");
assert(from_obj->is_objArray(), "must be obj array");
objArrayOop from_obj_array = objArrayOop(from_obj);
// The from-space object contains the real length.
int length = from_obj_array->length();
assert(from_obj->is_forwarded(), "must be forwarded");
oop to_obj = from_obj->forwardee();
assert(from_obj != to_obj, "should not be chunking self-forwarded objects");
objArrayOop to_obj_array = objArrayOop(to_obj);
// We keep track of the next start index in the length field of the
// to-space object.
int next_index = to_obj_array->length();
assert(0 <= next_index && next_index < length,
err_msg("invariant, next index: %d, length: %d", next_index, length));
int start = next_index;
int end = length;
int remainder = end - start;
// We'll try not to push a range that's smaller than ParGCArrayScanChunk.
if (remainder > 2 * ParGCArrayScanChunk) {
end = start + ParGCArrayScanChunk;
to_obj_array->set_length(end);
// Push the remainder before we process the range in case another
// worker has run out of things to do and can steal it.
oop* from_obj_p = set_partial_array_mask(from_obj);
push_on_queue(from_obj_p);
} else {
assert(length == end, "sanity");
// We'll process the final range for this object. Restore the length
// so that the heap remains parsable in case of evacuation failure.
to_obj_array->set_length(end);
}
_scanner.set_region(_g1h->heap_region_containing_raw(to_obj));
// Process indexes [start,end). It will also process the header
// along with the first chunk (i.e., the chunk with start == 0).
// Note that at this point the length field of to_obj_array is not
// correct given that we are using it to keep track of the next
// start index. oop_iterate_range() (thankfully!) ignores the length
// field and only relies on the start / end parameters. It does
// however return the size of the object which will be incorrect. So
// we have to ignore it even if we wanted to use it.
to_obj_array->oop_iterate_range(&_scanner, start, end);
}
template <class T> inline void G1ParScanThreadState::deal_with_reference(T* ref_to_scan) {
if (!has_partial_array_mask(ref_to_scan)) {
// Note: we can use "raw" versions of "region_containing" because
// "obj_to_scan" is definitely in the heap, and is not in a
// humongous region.
HeapRegion* r = _g1h->heap_region_containing_raw(ref_to_scan);
do_oop_evac(ref_to_scan, r);
} else {
do_oop_partial_array((oop*)ref_to_scan);
}
}
inline void G1ParScanThreadState::deal_with_reference(StarTask ref) {
assert(verify_task(ref), "sanity");
if (ref.is_narrow()) {
deal_with_reference((narrowOop*)ref);
} else {
deal_with_reference((oop*)ref);
}
}
#endif // SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_INLINE_HPP

View File

@ -71,6 +71,9 @@ private:
bool _during_initial_mark;
bool _during_conc_mark;
uint _worker_id;
HeapWord* _end_of_last_gap;
HeapWord* _last_gap_threshold;
HeapWord* _last_obj_threshold;
public:
RemoveSelfForwardPtrObjClosure(G1CollectedHeap* g1, ConcurrentMark* cm,
@ -83,7 +86,10 @@ public:
_update_rset_cl(update_rset_cl),
_during_initial_mark(during_initial_mark),
_during_conc_mark(during_conc_mark),
_worker_id(worker_id) { }
_worker_id(worker_id),
_end_of_last_gap(hr->bottom()),
_last_gap_threshold(hr->bottom()),
_last_obj_threshold(hr->bottom()) { }
size_t marked_bytes() { return _marked_bytes; }
@ -107,7 +113,12 @@ public:
HeapWord* obj_addr = (HeapWord*) obj;
assert(_hr->is_in(obj_addr), "sanity");
size_t obj_size = obj->size();
_hr->update_bot_for_object(obj_addr, obj_size);
HeapWord* obj_end = obj_addr + obj_size;
if (_end_of_last_gap != obj_addr) {
// there was a gap before obj_addr
_last_gap_threshold = _hr->cross_threshold(_end_of_last_gap, obj_addr);
}
if (obj->is_forwarded() && obj->forwardee() == obj) {
// The object failed to move.
@ -115,7 +126,9 @@ public:
// We consider all objects that we find self-forwarded to be
// live. What we'll do is that we'll update the prev marking
// info so that they are all under PTAMS and explicitly marked.
if (!_cm->isPrevMarked(obj)) {
_cm->markPrev(obj);
}
if (_during_initial_mark) {
// For the next marking info we'll only mark the
// self-forwarded objects explicitly if we are during
@ -145,13 +158,18 @@ public:
// remembered set entries missing given that we skipped cards on
// the collection set. So, we'll recreate such entries now.
obj->oop_iterate(_update_rset_cl);
assert(_cm->isPrevMarked(obj), "Should be marked!");
} else {
// The object has been either evacuated or is dead. Fill it with a
// dummy object.
MemRegion mr((HeapWord*) obj, obj_size);
MemRegion mr(obj_addr, obj_size);
CollectedHeap::fill_with_object(mr);
// must nuke all dead objects which we skipped when iterating over the region
_cm->clearRangePrevBitmap(MemRegion(_end_of_last_gap, obj_end));
}
_end_of_last_gap = obj_end;
_last_obj_threshold = _hr->cross_threshold(obj_addr, obj_end);
}
};
@ -182,13 +200,6 @@ public:
during_conc_mark,
_worker_id);
MemRegion mr(hr->bottom(), hr->end());
// We'll recreate the prev marking info so we'll first clear
// the prev bitmap range for this region. We never mark any
// CSet objects explicitly so the next bitmap range should be
// cleared anyway.
_cm->clearRangePrevBitmap(mr);
hr->note_self_forwarding_removal_start(during_initial_mark,
during_conc_mark);
_g1h->check_bitmaps("Self-Forwarding Ptr Removal", hr);

View File

@ -167,7 +167,6 @@ G1GCPhaseTimes::G1GCPhaseTimes(uint max_gc_threads) :
_last_update_rs_processed_buffers(_max_gc_threads, "%d"),
_last_scan_rs_times_ms(_max_gc_threads, "%.1lf"),
_last_strong_code_root_scan_times_ms(_max_gc_threads, "%.1lf"),
_last_strong_code_root_mark_times_ms(_max_gc_threads, "%.1lf"),
_last_obj_copy_times_ms(_max_gc_threads, "%.1lf"),
_last_termination_times_ms(_max_gc_threads, "%.1lf"),
_last_termination_attempts(_max_gc_threads, SIZE_FORMAT),
@ -194,7 +193,6 @@ void G1GCPhaseTimes::note_gc_start(uint active_gc_threads) {
_last_update_rs_processed_buffers.reset();
_last_scan_rs_times_ms.reset();
_last_strong_code_root_scan_times_ms.reset();
_last_strong_code_root_mark_times_ms.reset();
_last_obj_copy_times_ms.reset();
_last_termination_times_ms.reset();
_last_termination_attempts.reset();
@ -215,7 +213,6 @@ void G1GCPhaseTimes::note_gc_end() {
_last_update_rs_processed_buffers.verify();
_last_scan_rs_times_ms.verify();
_last_strong_code_root_scan_times_ms.verify();
_last_strong_code_root_mark_times_ms.verify();
_last_obj_copy_times_ms.verify();
_last_termination_times_ms.verify();
_last_termination_attempts.verify();
@ -230,7 +227,6 @@ void G1GCPhaseTimes::note_gc_end() {
_last_update_rs_times_ms.get(i) +
_last_scan_rs_times_ms.get(i) +
_last_strong_code_root_scan_times_ms.get(i) +
_last_strong_code_root_mark_times_ms.get(i) +
_last_obj_copy_times_ms.get(i) +
_last_termination_times_ms.get(i);
@ -302,9 +298,6 @@ void G1GCPhaseTimes::print(double pause_time_sec) {
if (_last_satb_filtering_times_ms.sum() > 0.0) {
_last_satb_filtering_times_ms.print(2, "SATB Filtering (ms)");
}
if (_last_strong_code_root_mark_times_ms.sum() > 0.0) {
_last_strong_code_root_mark_times_ms.print(2, "Code Root Marking (ms)");
}
_last_update_rs_times_ms.print(2, "Update RS (ms)");
_last_update_rs_processed_buffers.print(3, "Processed Buffers");
_last_scan_rs_times_ms.print(2, "Scan RS (ms)");
@ -322,9 +315,6 @@ void G1GCPhaseTimes::print(double pause_time_sec) {
if (_last_satb_filtering_times_ms.sum() > 0.0) {
_last_satb_filtering_times_ms.print(1, "SATB Filtering (ms)");
}
if (_last_strong_code_root_mark_times_ms.sum() > 0.0) {
_last_strong_code_root_mark_times_ms.print(1, "Code Root Marking (ms)");
}
_last_update_rs_times_ms.print(1, "Update RS (ms)");
_last_update_rs_processed_buffers.print(2, "Processed Buffers");
_last_scan_rs_times_ms.print(1, "Scan RS (ms)");

View File

@ -120,7 +120,6 @@ class G1GCPhaseTimes : public CHeapObj<mtGC> {
WorkerDataArray<int> _last_update_rs_processed_buffers;
WorkerDataArray<double> _last_scan_rs_times_ms;
WorkerDataArray<double> _last_strong_code_root_scan_times_ms;
WorkerDataArray<double> _last_strong_code_root_mark_times_ms;
WorkerDataArray<double> _last_obj_copy_times_ms;
WorkerDataArray<double> _last_termination_times_ms;
WorkerDataArray<size_t> _last_termination_attempts;
@ -199,10 +198,6 @@ class G1GCPhaseTimes : public CHeapObj<mtGC> {
_last_strong_code_root_scan_times_ms.set(worker_i, ms);
}
void record_strong_code_root_mark_time(uint worker_i, double ms) {
_last_strong_code_root_mark_times_ms.set(worker_i, ms);
}
void record_obj_copy_time(uint worker_i, double ms) {
_last_obj_copy_times_ms.set(worker_i, ms);
}
@ -369,10 +364,6 @@ class G1GCPhaseTimes : public CHeapObj<mtGC> {
return _last_strong_code_root_scan_times_ms.average();
}
double average_last_strong_code_root_mark_time(){
return _last_strong_code_root_mark_times_ms.average();
}
double average_last_obj_copy_time() {
return _last_obj_copy_times_ms.average();
}

View File

@ -129,13 +129,15 @@ void G1MarkSweep::mark_sweep_phase1(bool& marked_for_unloading,
SharedHeap* sh = SharedHeap::heap();
// Need cleared claim bits for the strong roots processing
// Need cleared claim bits for the roots processing
ClassLoaderDataGraph::clear_claimed_marks();
MarkingCodeBlobClosure follow_code_closure(&GenMarkSweep::follow_root_closure, !CodeBlobToOopClosure::FixRelocations);
sh->process_strong_roots(true, // activate StrongRootsScope
SharedHeap::SO_SystemClasses,
SharedHeap::SO_None,
&GenMarkSweep::follow_root_closure,
&GenMarkSweep::follow_klass_closure);
&GenMarkSweep::follow_cld_closure,
&follow_code_closure);
// Process reference objects found during marking
ReferenceProcessor* rp = GenMarkSweep::ref_processor();
@ -304,13 +306,15 @@ void G1MarkSweep::mark_sweep_phase3() {
SharedHeap* sh = SharedHeap::heap();
// Need cleared claim bits for the strong roots processing
// Need cleared claim bits for the roots processing
ClassLoaderDataGraph::clear_claimed_marks();
sh->process_strong_roots(true, // activate StrongRootsScope
SharedHeap::SO_AllClasses | SharedHeap::SO_Strings | SharedHeap::SO_AllCodeCache,
CodeBlobToOopClosure adjust_code_closure(&GenMarkSweep::adjust_pointer_closure, CodeBlobToOopClosure::FixRelocations);
sh->process_all_roots(true, // activate StrongRootsScope
SharedHeap::SO_AllCodeCache,
&GenMarkSweep::adjust_pointer_closure,
&GenMarkSweep::adjust_klass_closure);
&GenMarkSweep::adjust_cld_closure,
&adjust_code_closure);
assert(GenMarkSweep::ref_processor() == g1h->ref_processor_stw(), "Sanity");
g1h->ref_processor_stw()->weak_oops_do(&GenMarkSweep::adjust_pointer_closure);

View File

@ -25,7 +25,28 @@
#include "precompiled.hpp"
#include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
#include "gc_implementation/g1/g1OopClosures.inline.hpp"
#include "gc_implementation/g1/g1ParScanThreadState.hpp"
G1ParCopyHelper::G1ParCopyHelper(G1CollectedHeap* g1, G1ParScanThreadState* par_scan_state) :
G1ParClosureSuper(g1, par_scan_state), _scanned_klass(NULL),
_cm(_g1->concurrent_mark()) {}
G1ParClosureSuper::G1ParClosureSuper(G1CollectedHeap* g1) :
_g1(g1), _par_scan_state(NULL), _worker_id(UINT_MAX) { }
G1ParClosureSuper::G1ParClosureSuper(G1CollectedHeap* g1, G1ParScanThreadState* par_scan_state) :
_g1(g1), _par_scan_state(NULL),
_worker_id(UINT_MAX) {
set_par_scan_thread_state(par_scan_state);
}
void G1ParClosureSuper::set_par_scan_thread_state(G1ParScanThreadState* par_scan_state) {
assert(_par_scan_state == NULL, "_par_scan_state must only be set once");
assert(par_scan_state != NULL, "Must set par_scan_state to non-NULL.");
_par_scan_state = par_scan_state;
_worker_id = par_scan_state->queue_num();
assert(_worker_id < MAX2((uint)ParallelGCThreads, 1u),
err_msg("The given worker id %u must be less than the number of threads %u", _worker_id, MAX2((uint)ParallelGCThreads, 1u)));
}

View File

@ -25,6 +25,8 @@
#ifndef SHARE_VM_GC_IMPLEMENTATION_G1_G1OOPCLOSURES_HPP
#define SHARE_VM_GC_IMPLEMENTATION_G1_G1OOPCLOSURES_HPP
#include "memory/iterator.hpp"
class HeapRegion;
class G1CollectedHeap;
class G1RemSet;
@ -51,8 +53,13 @@ protected:
G1ParScanThreadState* _par_scan_state;
uint _worker_id;
public:
// Initializes the instance, leaving _par_scan_state uninitialized. Must be done
// later using the set_par_scan_thread_state() method.
G1ParClosureSuper(G1CollectedHeap* g1);
G1ParClosureSuper(G1CollectedHeap* g1, G1ParScanThreadState* par_scan_state);
bool apply_to_weak_ref_discovered_field() { return true; }
void set_par_scan_thread_state(G1ParScanThreadState* par_scan_state);
};
class G1ParPushHeapRSClosure : public G1ParClosureSuper {
@ -68,9 +75,8 @@ public:
class G1ParScanClosure : public G1ParClosureSuper {
public:
G1ParScanClosure(G1CollectedHeap* g1, G1ParScanThreadState* par_scan_state, ReferenceProcessor* rp) :
G1ParClosureSuper(g1, par_scan_state)
{
G1ParScanClosure(G1CollectedHeap* g1, ReferenceProcessor* rp) :
G1ParClosureSuper(g1) {
assert(_ref_processor == NULL, "sanity");
_ref_processor = rp;
}
@ -102,7 +108,7 @@ protected:
template <class T> void do_klass_barrier(T* p, oop new_obj);
};
template <G1Barrier barrier, bool do_mark_object>
template <G1Barrier barrier, G1Mark do_mark_object>
class G1ParCopyClosure : public G1ParCopyHelper {
private:
template <class T> void do_oop_work(T* p);
@ -117,19 +123,19 @@ public:
template <class T> void do_oop_nv(T* p) { do_oop_work(p); }
virtual void do_oop(oop* p) { do_oop_nv(p); }
virtual void do_oop(narrowOop* p) { do_oop_nv(p); }
G1CollectedHeap* g1() { return _g1; };
G1ParScanThreadState* pss() { return _par_scan_state; }
ReferenceProcessor* rp() { return _ref_processor; };
};
typedef G1ParCopyClosure<G1BarrierNone, false> G1ParScanExtRootClosure;
typedef G1ParCopyClosure<G1BarrierKlass, false> G1ParScanMetadataClosure;
typedef G1ParCopyClosure<G1BarrierNone, true> G1ParScanAndMarkExtRootClosure;
typedef G1ParCopyClosure<G1BarrierKlass, true> G1ParScanAndMarkMetadataClosure;
typedef G1ParCopyClosure<G1BarrierNone, G1MarkNone> G1ParScanExtRootClosure;
typedef G1ParCopyClosure<G1BarrierNone, G1MarkFromRoot> G1ParScanAndMarkExtRootClosure;
typedef G1ParCopyClosure<G1BarrierNone, G1MarkPromotedFromRoot> G1ParScanAndMarkWeakExtRootClosure;
// We use a separate closure to handle references during evacuation
// failure processing.
typedef G1ParCopyClosure<G1BarrierEvac, false> G1ParScanHeapEvacFailureClosure;
typedef G1ParCopyClosure<G1BarrierEvac, G1MarkNone> G1ParScanHeapEvacFailureClosure;
class FilterIntoCSClosure: public ExtendedOopClosure {
G1CollectedHeap* _g1;
@ -160,10 +166,11 @@ public:
};
// Closure for iterating over object fields during concurrent marking
class G1CMOopClosure : public ExtendedOopClosure {
class G1CMOopClosure : public MetadataAwareOopClosure {
protected:
ConcurrentMark* _cm;
private:
G1CollectedHeap* _g1h;
ConcurrentMark* _cm;
CMTask* _task;
public:
G1CMOopClosure(G1CollectedHeap* g1h, ConcurrentMark* cm, CMTask* task);
@ -173,7 +180,7 @@ public:
};
// Closure to scan the root regions during concurrent marking
class G1RootRegionScanClosure : public ExtendedOopClosure {
class G1RootRegionScanClosure : public MetadataAwareOopClosure {
private:
G1CollectedHeap* _g1h;
ConcurrentMark* _cm;

View File

@ -28,9 +28,11 @@
#include "gc_implementation/g1/concurrentMark.inline.hpp"
#include "gc_implementation/g1/g1CollectedHeap.hpp"
#include "gc_implementation/g1/g1OopClosures.hpp"
#include "gc_implementation/g1/g1ParScanThreadState.inline.hpp"
#include "gc_implementation/g1/g1RemSet.hpp"
#include "gc_implementation/g1/g1RemSet.inline.hpp"
#include "gc_implementation/g1/heapRegionRemSet.hpp"
#include "memory/iterator.inline.hpp"
#include "runtime/prefetch.inline.hpp"
/*
@ -107,10 +109,6 @@ inline void G1ParPushHeapRSClosure::do_oop_nv(T* p) {
template <class T>
inline void G1CMOopClosure::do_oop_nv(T* p) {
assert(_g1h->is_in_g1_reserved((HeapWord*) p), "invariant");
assert(!_g1h->is_on_master_free_list(
_g1h->heap_region_containing((HeapWord*) p)), "invariant");
oop obj = oopDesc::load_decode_heap_oop(p);
if (_cm->verbose_high()) {
gclog_or_tty->print_cr("[%u] we're looking at location "

View File

@ -0,0 +1,306 @@
/*
* Copyright (c) 2014, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
#include "gc_implementation/g1/g1OopClosures.inline.hpp"
#include "gc_implementation/g1/g1ParScanThreadState.inline.hpp"
#include "oops/oop.inline.hpp"
#include "oops/oop.pcgc.inline.hpp"
#include "runtime/prefetch.inline.hpp"
G1ParScanThreadState::G1ParScanThreadState(G1CollectedHeap* g1h, uint queue_num, ReferenceProcessor* rp)
: _g1h(g1h),
_refs(g1h->task_queue(queue_num)),
_dcq(&g1h->dirty_card_queue_set()),
_ct_bs(g1h->g1_barrier_set()),
_g1_rem(g1h->g1_rem_set()),
_hash_seed(17), _queue_num(queue_num),
_term_attempts(0),
_surviving_alloc_buffer(g1h->desired_plab_sz(GCAllocForSurvived)),
_tenured_alloc_buffer(g1h->desired_plab_sz(GCAllocForTenured)),
_age_table(false), _scanner(g1h, rp),
_strong_roots_time(0), _term_time(0),
_alloc_buffer_waste(0), _undo_waste(0) {
_scanner.set_par_scan_thread_state(this);
// we allocate G1YoungSurvRateNumRegions plus one entries, since
// we "sacrifice" entry 0 to keep track of surviving bytes for
// non-young regions (where the age is -1)
// We also add a few elements at the beginning and at the end in
// an attempt to eliminate cache contention
uint real_length = 1 + _g1h->g1_policy()->young_cset_region_length();
uint array_length = PADDING_ELEM_NUM +
real_length +
PADDING_ELEM_NUM;
_surviving_young_words_base = NEW_C_HEAP_ARRAY(size_t, array_length, mtGC);
if (_surviving_young_words_base == NULL)
vm_exit_out_of_memory(array_length * sizeof(size_t), OOM_MALLOC_ERROR,
"Not enough space for young surv histo.");
_surviving_young_words = _surviving_young_words_base + PADDING_ELEM_NUM;
memset(_surviving_young_words, 0, (size_t) real_length * sizeof(size_t));
_alloc_buffers[GCAllocForSurvived] = &_surviving_alloc_buffer;
_alloc_buffers[GCAllocForTenured] = &_tenured_alloc_buffer;
_start = os::elapsedTime();
}
G1ParScanThreadState::~G1ParScanThreadState() {
retire_alloc_buffers();
FREE_C_HEAP_ARRAY(size_t, _surviving_young_words_base, mtGC);
}
void
G1ParScanThreadState::print_termination_stats_hdr(outputStream* const st)
{
st->print_raw_cr("GC Termination Stats");
st->print_raw_cr(" elapsed --strong roots-- -------termination-------"
" ------waste (KiB)------");
st->print_raw_cr("thr ms ms % ms % attempts"
" total alloc undo");
st->print_raw_cr("--- --------- --------- ------ --------- ------ --------"
" ------- ------- -------");
}
void
G1ParScanThreadState::print_termination_stats(int i,
outputStream* const st) const
{
const double elapsed_ms = elapsed_time() * 1000.0;
const double s_roots_ms = strong_roots_time() * 1000.0;
const double term_ms = term_time() * 1000.0;
st->print_cr("%3d %9.2f %9.2f %6.2f "
"%9.2f %6.2f " SIZE_FORMAT_W(8) " "
SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7),
i, elapsed_ms, s_roots_ms, s_roots_ms * 100 / elapsed_ms,
term_ms, term_ms * 100 / elapsed_ms, term_attempts(),
(alloc_buffer_waste() + undo_waste()) * HeapWordSize / K,
alloc_buffer_waste() * HeapWordSize / K,
undo_waste() * HeapWordSize / K);
}
#ifdef ASSERT
bool G1ParScanThreadState::verify_ref(narrowOop* ref) const {
assert(ref != NULL, "invariant");
assert(UseCompressedOops, "sanity");
assert(!has_partial_array_mask(ref), err_msg("ref=" PTR_FORMAT, p2i(ref)));
oop p = oopDesc::load_decode_heap_oop(ref);
assert(_g1h->is_in_g1_reserved(p),
err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, p2i(ref), p2i(p)));
return true;
}
bool G1ParScanThreadState::verify_ref(oop* ref) const {
assert(ref != NULL, "invariant");
if (has_partial_array_mask(ref)) {
// Must be in the collection set--it's already been copied.
oop p = clear_partial_array_mask(ref);
assert(_g1h->obj_in_cs(p),
err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, p2i(ref), p2i(p)));
} else {
oop p = oopDesc::load_decode_heap_oop(ref);
assert(_g1h->is_in_g1_reserved(p),
err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, p2i(ref), p2i(p)));
}
return true;
}
bool G1ParScanThreadState::verify_task(StarTask ref) const {
if (ref.is_narrow()) {
return verify_ref((narrowOop*) ref);
} else {
return verify_ref((oop*) ref);
}
}
#endif // ASSERT
void G1ParScanThreadState::trim_queue() {
assert(_evac_failure_cl != NULL, "not set");
StarTask ref;
do {
// Drain the overflow stack first, so other threads can steal.
while (_refs->pop_overflow(ref)) {
dispatch_reference(ref);
}
while (_refs->pop_local(ref)) {
dispatch_reference(ref);
}
} while (!_refs->is_empty());
}
oop G1ParScanThreadState::copy_to_survivor_space(oop const old) {
size_t word_sz = old->size();
HeapRegion* from_region = _g1h->heap_region_containing_raw(old);
// +1 to make the -1 indexes valid...
int young_index = from_region->young_index_in_cset()+1;
assert( (from_region->is_young() && young_index > 0) ||
(!from_region->is_young() && young_index == 0), "invariant" );
G1CollectorPolicy* g1p = _g1h->g1_policy();
markOop m = old->mark();
int age = m->has_displaced_mark_helper() ? m->displaced_mark_helper()->age()
: m->age();
GCAllocPurpose alloc_purpose = g1p->evacuation_destination(from_region, age,
word_sz);
HeapWord* obj_ptr = allocate(alloc_purpose, word_sz);
#ifndef PRODUCT
// Should this evacuation fail?
if (_g1h->evacuation_should_fail()) {
if (obj_ptr != NULL) {
undo_allocation(alloc_purpose, obj_ptr, word_sz);
obj_ptr = NULL;
}
}
#endif // !PRODUCT
if (obj_ptr == NULL) {
// This will either forward-to-self, or detect that someone else has
// installed a forwarding pointer.
return _g1h->handle_evacuation_failure_par(this, old);
}
oop obj = oop(obj_ptr);
// We're going to allocate linearly, so might as well prefetch ahead.
Prefetch::write(obj_ptr, PrefetchCopyIntervalInBytes);
oop forward_ptr = old->forward_to_atomic(obj);
if (forward_ptr == NULL) {
Copy::aligned_disjoint_words((HeapWord*) old, obj_ptr, word_sz);
// alloc_purpose is just a hint to allocate() above, recheck the type of region
// we actually allocated from and update alloc_purpose accordingly
HeapRegion* to_region = _g1h->heap_region_containing_raw(obj_ptr);
alloc_purpose = to_region->is_young() ? GCAllocForSurvived : GCAllocForTenured;
if (g1p->track_object_age(alloc_purpose)) {
// We could simply do obj->incr_age(). However, this causes a
// performance issue. obj->incr_age() will first check whether
// the object has a displaced mark by checking its mark word;
// getting the mark word from the new location of the object
// stalls. So, given that we already have the mark word and we
// are about to install it anyway, it's better to increase the
// age on the mark word, when the object does not have a
// displaced mark word. We're not expecting many objects to have
// a displaced marked word, so that case is not optimized
// further (it could be...) and we simply call obj->incr_age().
if (m->has_displaced_mark_helper()) {
// in this case, we have to install the mark word first,
// otherwise obj looks to be forwarded (the old mark word,
// which contains the forward pointer, was copied)
obj->set_mark(m);
obj->incr_age();
} else {
m = m->incr_age();
obj->set_mark(m);
}
age_table()->add(obj, word_sz);
} else {
obj->set_mark(m);
}
if (G1StringDedup::is_enabled()) {
G1StringDedup::enqueue_from_evacuation(from_region->is_young(),
to_region->is_young(),
queue_num(),
obj);
}
size_t* surv_young_words = surviving_young_words();
surv_young_words[young_index] += word_sz;
if (obj->is_objArray() && arrayOop(obj)->length() >= ParGCArrayScanChunk) {
// We keep track of the next start index in the length field of
// the to-space object. The actual length can be found in the
// length field of the from-space object.
arrayOop(obj)->set_length(0);
oop* old_p = set_partial_array_mask(old);
push_on_queue(old_p);
} else {
// No point in using the slower heap_region_containing() method,
// given that we know obj is in the heap.
_scanner.set_region(_g1h->heap_region_containing_raw(obj));
obj->oop_iterate_backwards(&_scanner);
}
} else {
undo_allocation(alloc_purpose, obj_ptr, word_sz);
obj = forward_ptr;
}
return obj;
}
HeapWord* G1ParScanThreadState::allocate_slow(GCAllocPurpose purpose, size_t word_sz) {
HeapWord* obj = NULL;
size_t gclab_word_size = _g1h->desired_plab_sz(purpose);
if (word_sz * 100 < gclab_word_size * ParallelGCBufferWastePct) {
G1ParGCAllocBuffer* alloc_buf = alloc_buffer(purpose);
add_to_alloc_buffer_waste(alloc_buf->words_remaining());
alloc_buf->retire(false /* end_of_gc */, false /* retain */);
HeapWord* buf = _g1h->par_allocate_during_gc(purpose, gclab_word_size);
if (buf == NULL) {
return NULL; // Let caller handle allocation failure.
}
// Otherwise.
alloc_buf->set_word_size(gclab_word_size);
alloc_buf->set_buf(buf);
obj = alloc_buf->allocate(word_sz);
assert(obj != NULL, "buffer was definitely big enough...");
} else {
obj = _g1h->par_allocate_during_gc(purpose, word_sz);
}
return obj;
}
void G1ParScanThreadState::undo_allocation(GCAllocPurpose purpose, HeapWord* obj, size_t word_sz) {
if (alloc_buffer(purpose)->contains(obj)) {
assert(alloc_buffer(purpose)->contains(obj + word_sz - 1),
"should contain whole object");
alloc_buffer(purpose)->undo_allocation(obj, word_sz);
} else {
CollectedHeap::fill_with_object(obj, word_sz);
add_to_undo_waste(word_sz);
}
}
HeapWord* G1ParScanThreadState::allocate(GCAllocPurpose purpose, size_t word_sz) {
HeapWord* obj = alloc_buffer(purpose)->allocate(word_sz);
if (obj != NULL) {
return obj;
}
return allocate_slow(purpose, word_sz);
}
void G1ParScanThreadState::retire_alloc_buffers() {
for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
size_t waste = _alloc_buffers[ap]->words_remaining();
add_to_alloc_buffer_waste(waste);
_alloc_buffers[ap]->flush_stats_and_retire(_g1h->stats_for_purpose((GCAllocPurpose)ap),
true /* end_of_gc */,
false /* retain */);
}
}

View File

@ -0,0 +1,227 @@
/*
* Copyright (c) 2014, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef SHARE_VM_GC_IMPLEMENTATION_G1_G1PARSCANTHREADSTATE_HPP
#define SHARE_VM_GC_IMPLEMENTATION_G1_G1PARSCANTHREADSTATE_HPP
#include "gc_implementation/g1/dirtyCardQueue.hpp"
#include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
#include "gc_implementation/g1/g1CollectedHeap.hpp"
#include "gc_implementation/g1/g1CollectorPolicy.hpp"
#include "gc_implementation/g1/g1OopClosures.hpp"
#include "gc_implementation/g1/g1RemSet.hpp"
#include "gc_implementation/shared/ageTable.hpp"
#include "memory/allocation.hpp"
#include "oops/oop.hpp"
class HeapRegion;
class outputStream;
class G1ParScanThreadState : public StackObj {
private:
G1CollectedHeap* _g1h;
RefToScanQueue* _refs;
DirtyCardQueue _dcq;
G1SATBCardTableModRefBS* _ct_bs;
G1RemSet* _g1_rem;
G1ParGCAllocBuffer _surviving_alloc_buffer;
G1ParGCAllocBuffer _tenured_alloc_buffer;
G1ParGCAllocBuffer* _alloc_buffers[GCAllocPurposeCount];
ageTable _age_table;
G1ParScanClosure _scanner;
size_t _alloc_buffer_waste;
size_t _undo_waste;
OopsInHeapRegionClosure* _evac_failure_cl;
int _hash_seed;
uint _queue_num;
size_t _term_attempts;
double _start;
double _start_strong_roots;
double _strong_roots_time;
double _start_term;
double _term_time;
// Map from young-age-index (0 == not young, 1 is youngest) to
// surviving words. base is what we get back from the malloc call
size_t* _surviving_young_words_base;
// this points into the array, as we use the first few entries for padding
size_t* _surviving_young_words;
#define PADDING_ELEM_NUM (DEFAULT_CACHE_LINE_SIZE / sizeof(size_t))
void add_to_alloc_buffer_waste(size_t waste) { _alloc_buffer_waste += waste; }
void add_to_undo_waste(size_t waste) { _undo_waste += waste; }
DirtyCardQueue& dirty_card_queue() { return _dcq; }
G1SATBCardTableModRefBS* ctbs() { return _ct_bs; }
template <class T> inline void immediate_rs_update(HeapRegion* from, T* p, int tid);
template <class T> void deferred_rs_update(HeapRegion* from, T* p, int tid) {
// If the new value of the field points to the same region or
// is the to-space, we don't need to include it in the Rset updates.
if (!from->is_in_reserved(oopDesc::load_decode_heap_oop(p)) && !from->is_survivor()) {
size_t card_index = ctbs()->index_for(p);
// If the card hasn't been added to the buffer, do it.
if (ctbs()->mark_card_deferred(card_index)) {
dirty_card_queue().enqueue((jbyte*)ctbs()->byte_for_index(card_index));
}
}
}
public:
G1ParScanThreadState(G1CollectedHeap* g1h, uint queue_num, ReferenceProcessor* rp);
~G1ParScanThreadState();
ageTable* age_table() { return &_age_table; }
G1ParGCAllocBuffer* alloc_buffer(GCAllocPurpose purpose) {
return _alloc_buffers[purpose];
}
size_t alloc_buffer_waste() const { return _alloc_buffer_waste; }
size_t undo_waste() const { return _undo_waste; }
#ifdef ASSERT
bool queue_is_empty() const { return _refs->is_empty(); }
bool verify_ref(narrowOop* ref) const;
bool verify_ref(oop* ref) const;
bool verify_task(StarTask ref) const;
#endif // ASSERT
template <class T> void push_on_queue(T* ref) {
assert(verify_ref(ref), "sanity");
_refs->push(ref);
}
template <class T> inline void update_rs(HeapRegion* from, T* p, int tid);
private:
inline HeapWord* allocate(GCAllocPurpose purpose, size_t word_sz);
inline HeapWord* allocate_slow(GCAllocPurpose purpose, size_t word_sz);
inline void undo_allocation(GCAllocPurpose purpose, HeapWord* obj, size_t word_sz);
public:
void set_evac_failure_closure(OopsInHeapRegionClosure* evac_failure_cl) {
_evac_failure_cl = evac_failure_cl;
}
OopsInHeapRegionClosure* evac_failure_closure() { return _evac_failure_cl; }
int* hash_seed() { return &_hash_seed; }
uint queue_num() { return _queue_num; }
size_t term_attempts() const { return _term_attempts; }
void note_term_attempt() { _term_attempts++; }
void start_strong_roots() {
_start_strong_roots = os::elapsedTime();
}
void end_strong_roots() {
_strong_roots_time += (os::elapsedTime() - _start_strong_roots);
}
double strong_roots_time() const { return _strong_roots_time; }
void start_term_time() {
note_term_attempt();
_start_term = os::elapsedTime();
}
void end_term_time() {
_term_time += (os::elapsedTime() - _start_term);
}
double term_time() const { return _term_time; }
double elapsed_time() const {
return os::elapsedTime() - _start;
}
static void print_termination_stats_hdr(outputStream* const st = gclog_or_tty);
void print_termination_stats(int i, outputStream* const st = gclog_or_tty) const;
size_t* surviving_young_words() {
// We add on to hide entry 0 which accumulates surviving words for
// age -1 regions (i.e. non-young ones)
return _surviving_young_words;
}
private:
void retire_alloc_buffers();
#define G1_PARTIAL_ARRAY_MASK 0x2
inline bool has_partial_array_mask(oop* ref) const {
return ((uintptr_t)ref & G1_PARTIAL_ARRAY_MASK) == G1_PARTIAL_ARRAY_MASK;
}
// We never encode partial array oops as narrowOop*, so return false immediately.
// This allows the compiler to create optimized code when popping references from
// the work queue.
inline bool has_partial_array_mask(narrowOop* ref) const {
assert(((uintptr_t)ref & G1_PARTIAL_ARRAY_MASK) != G1_PARTIAL_ARRAY_MASK, "Partial array oop reference encoded as narrowOop*");
return false;
}
// Only implement set_partial_array_mask() for regular oops, not for narrowOops.
// We always encode partial arrays as regular oop, to allow the
// specialization for has_partial_array_mask() for narrowOops above.
// This means that unintentional use of this method with narrowOops are caught
// by the compiler.
inline oop* set_partial_array_mask(oop obj) const {
assert(((uintptr_t)(void *)obj & G1_PARTIAL_ARRAY_MASK) == 0, "Information loss!");
return (oop*) ((uintptr_t)(void *)obj | G1_PARTIAL_ARRAY_MASK);
}
inline oop clear_partial_array_mask(oop* ref) const {
return cast_to_oop((intptr_t)ref & ~G1_PARTIAL_ARRAY_MASK);
}
inline void do_oop_partial_array(oop* p);
// This method is applied to the fields of the objects that have just been copied.
template <class T> inline void do_oop_evac(T* p, HeapRegion* from);
template <class T> inline void deal_with_reference(T* ref_to_scan);
inline void dispatch_reference(StarTask ref);
public:
oop copy_to_survivor_space(oop const obj);
void trim_queue();
inline void steal_and_trim_queue(RefToScanQueueSet *task_queues);
};
#endif // SHARE_VM_GC_IMPLEMENTATION_G1_G1PARSCANTHREADSTATE_HPP

View File

@ -0,0 +1,154 @@
/*
* Copyright (c) 2014, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef SHARE_VM_GC_IMPLEMENTATION_G1_G1PARSCANTHREADSTATE_INLINE_HPP
#define SHARE_VM_GC_IMPLEMENTATION_G1_G1PARSCANTHREADSTATE_INLINE_HPP
#include "gc_implementation/g1/g1ParScanThreadState.hpp"
#include "gc_implementation/g1/g1RemSet.inline.hpp"
#include "oops/oop.inline.hpp"
template <class T> inline void G1ParScanThreadState::immediate_rs_update(HeapRegion* from, T* p, int tid) {
if (!from->is_survivor()) {
_g1_rem->par_write_ref(from, p, tid);
}
}
template <class T> void G1ParScanThreadState::update_rs(HeapRegion* from, T* p, int tid) {
if (G1DeferredRSUpdate) {
deferred_rs_update(from, p, tid);
} else {
immediate_rs_update(from, p, tid);
}
}
template <class T> void G1ParScanThreadState::do_oop_evac(T* p, HeapRegion* from) {
assert(!oopDesc::is_null(oopDesc::load_decode_heap_oop(p)),
"Reference should not be NULL here as such are never pushed to the task queue.");
oop obj = oopDesc::load_decode_heap_oop_not_null(p);
// Although we never intentionally push references outside of the collection
// set, due to (benign) races in the claim mechanism during RSet scanning more
// than one thread might claim the same card. So the same card may be
// processed multiple times. So redo this check.
if (_g1h->in_cset_fast_test(obj)) {
oop forwardee;
if (obj->is_forwarded()) {
forwardee = obj->forwardee();
} else {
forwardee = copy_to_survivor_space(obj);
}
assert(forwardee != NULL, "forwardee should not be NULL");
oopDesc::encode_store_heap_oop(p, forwardee);
}
assert(obj != NULL, "Must be");
update_rs(from, p, queue_num());
}
inline void G1ParScanThreadState::do_oop_partial_array(oop* p) {
assert(has_partial_array_mask(p), "invariant");
oop from_obj = clear_partial_array_mask(p);
assert(Universe::heap()->is_in_reserved(from_obj), "must be in heap.");
assert(from_obj->is_objArray(), "must be obj array");
objArrayOop from_obj_array = objArrayOop(from_obj);
// The from-space object contains the real length.
int length = from_obj_array->length();
assert(from_obj->is_forwarded(), "must be forwarded");
oop to_obj = from_obj->forwardee();
assert(from_obj != to_obj, "should not be chunking self-forwarded objects");
objArrayOop to_obj_array = objArrayOop(to_obj);
// We keep track of the next start index in the length field of the
// to-space object.
int next_index = to_obj_array->length();
assert(0 <= next_index && next_index < length,
err_msg("invariant, next index: %d, length: %d", next_index, length));
int start = next_index;
int end = length;
int remainder = end - start;
// We'll try not to push a range that's smaller than ParGCArrayScanChunk.
if (remainder > 2 * ParGCArrayScanChunk) {
end = start + ParGCArrayScanChunk;
to_obj_array->set_length(end);
// Push the remainder before we process the range in case another
// worker has run out of things to do and can steal it.
oop* from_obj_p = set_partial_array_mask(from_obj);
push_on_queue(from_obj_p);
} else {
assert(length == end, "sanity");
// We'll process the final range for this object. Restore the length
// so that the heap remains parsable in case of evacuation failure.
to_obj_array->set_length(end);
}
_scanner.set_region(_g1h->heap_region_containing_raw(to_obj));
// Process indexes [start,end). It will also process the header
// along with the first chunk (i.e., the chunk with start == 0).
// Note that at this point the length field of to_obj_array is not
// correct given that we are using it to keep track of the next
// start index. oop_iterate_range() (thankfully!) ignores the length
// field and only relies on the start / end parameters. It does
// however return the size of the object which will be incorrect. So
// we have to ignore it even if we wanted to use it.
to_obj_array->oop_iterate_range(&_scanner, start, end);
}
template <class T> inline void G1ParScanThreadState::deal_with_reference(T* ref_to_scan) {
if (!has_partial_array_mask(ref_to_scan)) {
// Note: we can use "raw" versions of "region_containing" because
// "obj_to_scan" is definitely in the heap, and is not in a
// humongous region.
HeapRegion* r = _g1h->heap_region_containing_raw(ref_to_scan);
do_oop_evac(ref_to_scan, r);
} else {
do_oop_partial_array((oop*)ref_to_scan);
}
}
inline void G1ParScanThreadState::dispatch_reference(StarTask ref) {
assert(verify_task(ref), "sanity");
if (ref.is_narrow()) {
deal_with_reference((narrowOop*)ref);
} else {
deal_with_reference((oop*)ref);
}
}
void G1ParScanThreadState::steal_and_trim_queue(RefToScanQueueSet *task_queues) {
StarTask stolen_task;
while (task_queues->steal(queue_num(), hash_seed(), stolen_task)) {
assert(verify_task(stolen_task), "sanity");
dispatch_reference(stolen_task);
// We've just processed a reference and we might have made
// available new entries on the queues. So we have to make sure
// we drain the queues as necessary.
trim_queue();
}
}
#endif /* SHARE_VM_GC_IMPLEMENTATION_G1_G1PARSCANTHREADSTATE_INLINE_HPP */

View File

@ -26,6 +26,7 @@
#define SHARE_VM_GC_IMPLEMENTATION_G1_G1REMSET_INLINE_HPP
#include "gc_implementation/g1/g1RemSet.hpp"
#include "gc_implementation/g1/heapRegion.hpp"
#include "gc_implementation/g1/heapRegionRemSet.hpp"
#include "oops/oop.inline.hpp"

View File

@ -66,6 +66,17 @@ G1SATBCardTableModRefBS::write_ref_array_pre_work(T* dst, int count) {
}
}
void G1SATBCardTableModRefBS::write_ref_array_pre(oop* dst, int count, bool dest_uninitialized) {
if (!dest_uninitialized) {
write_ref_array_pre_work(dst, count);
}
}
void G1SATBCardTableModRefBS::write_ref_array_pre(narrowOop* dst, int count, bool dest_uninitialized) {
if (!dest_uninitialized) {
write_ref_array_pre_work(dst, count);
}
}
bool G1SATBCardTableModRefBS::mark_card_deferred(size_t card_index) {
jbyte val = _byte_map[card_index];
// It's already processed

View File

@ -86,16 +86,8 @@ public:
}
template <class T> void write_ref_array_pre_work(T* dst, int count);
virtual void write_ref_array_pre(oop* dst, int count, bool dest_uninitialized) {
if (!dest_uninitialized) {
write_ref_array_pre_work(dst, count);
}
}
virtual void write_ref_array_pre(narrowOop* dst, int count, bool dest_uninitialized) {
if (!dest_uninitialized) {
write_ref_array_pre_work(dst, count);
}
}
virtual void write_ref_array_pre(oop* dst, int count, bool dest_uninitialized);
virtual void write_ref_array_pre(narrowOop* dst, int count, bool dest_uninitialized);
/*
Claimed and deferred bits are used together in G1 during the evacuation

View File

@ -30,14 +30,21 @@
// non-virtually, using a mechanism defined in this file. Extend these
// macros in the obvious way to add specializations for new closures.
// Forward declarations.
enum G1Barrier {
G1BarrierNone,
G1BarrierEvac,
G1BarrierKlass
};
template<G1Barrier barrier, bool do_mark_object>
enum G1Mark {
G1MarkNone,
G1MarkFromRoot,
G1MarkPromotedFromRoot
};
// Forward declarations.
template<G1Barrier barrier, G1Mark do_mark_object>
class G1ParCopyClosure;
class G1ParScanClosure;

View File

@ -30,6 +30,7 @@
#include "gc_implementation/g1/heapRegion.inline.hpp"
#include "gc_implementation/g1/heapRegionRemSet.hpp"
#include "gc_implementation/g1/heapRegionSeq.inline.hpp"
#include "gc_implementation/shared/liveRange.hpp"
#include "memory/genOopClosures.inline.hpp"
#include "memory/iterator.hpp"
#include "memory/space.inline.hpp"
@ -61,7 +62,7 @@ HeapWord* walk_mem_region_loop(ClosureType* cl, G1CollectedHeap* g1h,
HeapRegion* hr,
HeapWord* cur, HeapWord* top) {
oop cur_oop = oop(cur);
int oop_size = cur_oop->size();
size_t oop_size = hr->block_size(cur);
HeapWord* next_obj = cur + oop_size;
while (next_obj < top) {
// Keep filtering the remembered set.
@ -72,7 +73,7 @@ HeapWord* walk_mem_region_loop(ClosureType* cl, G1CollectedHeap* g1h,
}
cur = next_obj;
cur_oop = oop(cur);
oop_size = cur_oop->size();
oop_size = hr->block_size(cur);
next_obj = cur + oop_size;
}
return cur;
@ -82,7 +83,7 @@ void HeapRegionDCTOC::walk_mem_region(MemRegion mr,
HeapWord* bottom,
HeapWord* top) {
G1CollectedHeap* g1h = _g1;
int oop_size;
size_t oop_size;
ExtendedOopClosure* cl2 = NULL;
FilterIntoCSClosure intoCSFilt(this, g1h, _cl);
@ -102,7 +103,7 @@ void HeapRegionDCTOC::walk_mem_region(MemRegion mr,
if (!g1h->is_obj_dead(oop(bottom), _hr)) {
oop_size = oop(bottom)->oop_iterate(cl2, mr);
} else {
oop_size = oop(bottom)->size();
oop_size = _hr->block_size(bottom);
}
bottom += oop_size;
@ -374,7 +375,7 @@ HeapRegion::HeapRegion(uint hrs_index,
// region.
hr_clear(false /*par*/, false /*clear_space*/);
set_top(bottom());
set_saved_mark();
record_top_and_timestamp();
assert(HeapRegionRemSet::num_par_rem_sets() > 0, "Invariant.");
}
@ -394,38 +395,11 @@ CompactibleSpace* HeapRegion::next_compaction_space() const {
return NULL;
}
void HeapRegion::save_marks() {
set_saved_mark();
}
void HeapRegion::oops_in_mr_iterate(MemRegion mr, ExtendedOopClosure* cl) {
HeapWord* p = mr.start();
HeapWord* e = mr.end();
oop obj;
while (p < e) {
obj = oop(p);
p += obj->oop_iterate(cl);
}
assert(p == e, "bad memregion: doesn't end on obj boundary");
}
#define HeapRegion_OOP_SINCE_SAVE_MARKS_DEFN(OopClosureType, nv_suffix) \
void HeapRegion::oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl) { \
ContiguousSpace::oop_since_save_marks_iterate##nv_suffix(cl); \
}
SPECIALIZED_SINCE_SAVE_MARKS_CLOSURES(HeapRegion_OOP_SINCE_SAVE_MARKS_DEFN)
void HeapRegion::oop_before_save_marks_iterate(ExtendedOopClosure* cl) {
oops_in_mr_iterate(MemRegion(bottom(), saved_mark_word()), cl);
}
void HeapRegion::note_self_forwarding_removal_start(bool during_initial_mark,
bool during_conc_mark) {
// We always recreate the prev marking info and we'll explicitly
// mark all objects we find to be self-forwarded on the prev
// bitmap. So all objects need to be below PTAMS.
_prev_top_at_mark_start = top();
_prev_marked_bytes = 0;
if (during_initial_mark) {
@ -449,6 +423,7 @@ void HeapRegion::note_self_forwarding_removal_end(bool during_initial_mark,
assert(0 <= marked_bytes && marked_bytes <= used(),
err_msg("marked: "SIZE_FORMAT" used: "SIZE_FORMAT,
marked_bytes, used()));
_prev_top_at_mark_start = top();
_prev_marked_bytes = marked_bytes;
}
@ -476,7 +451,7 @@ HeapRegion::object_iterate_mem_careful(MemRegion mr,
} else if (!g1h->is_obj_dead(obj)) {
cl->do_object(obj);
}
cur += obj->size();
cur += block_size(cur);
}
return NULL;
}
@ -548,7 +523,7 @@ oops_on_card_seq_iterate_careful(MemRegion mr,
return cur;
}
// Otherwise...
next = (cur + obj->size());
next = cur + block_size(cur);
}
// If we finish the above loop...We have a parseable object that
@ -556,10 +531,9 @@ oops_on_card_seq_iterate_careful(MemRegion mr,
// inside or spans the entire region.
assert(obj == oop(cur), "sanity");
assert(cur <= start &&
obj->klass_or_null() != NULL &&
(cur + obj->size()) > start,
"Loop postcondition");
assert(cur <= start, "Loop postcondition");
assert(obj->klass_or_null() != NULL, "Loop postcondition");
assert((cur + block_size(cur)) > start, "Loop postcondition");
if (!g1h->is_obj_dead(obj)) {
obj->oop_iterate(cl, mr);
@ -573,7 +547,7 @@ oops_on_card_seq_iterate_careful(MemRegion mr,
};
// Otherwise:
next = (cur + obj->size());
next = cur + block_size(cur);
if (!g1h->is_obj_dead(obj)) {
if (next < end || !obj->is_objArray()) {
@ -928,10 +902,11 @@ void HeapRegion::verify(VerifyOption vo,
size_t object_num = 0;
while (p < top()) {
oop obj = oop(p);
size_t obj_size = obj->size();
size_t obj_size = block_size(p);
object_num += 1;
if (is_humongous != g1->isHumongous(obj_size)) {
if (is_humongous != g1->isHumongous(obj_size) &&
!g1->is_obj_dead(obj, this)) { // Dead objects may have bigger block_size since they span several objects.
gclog_or_tty->print_cr("obj "PTR_FORMAT" is of %shumongous size ("
SIZE_FORMAT" words) in a %shumongous region",
p, g1->isHumongous(obj_size) ? "" : "non-",
@ -942,7 +917,9 @@ void HeapRegion::verify(VerifyOption vo,
// If it returns false, verify_for_object() will output the
// appropriate messasge.
if (do_bot_verify && !_offsets.verify_for_object(p, obj_size)) {
if (do_bot_verify &&
!g1->is_obj_dead(obj, this) &&
!_offsets.verify_for_object(p, obj_size)) {
*failures = true;
return;
}
@ -950,7 +927,10 @@ void HeapRegion::verify(VerifyOption vo,
if (!g1->is_obj_dead_cond(obj, this, vo)) {
if (obj->is_oop()) {
Klass* klass = obj->klass();
if (!klass->is_metaspace_object()) {
bool is_metaspace_object = Metaspace::contains(klass) ||
(vo == VerifyOption_G1UsePrevMarking &&
ClassLoaderDataGraph::unload_list_contains(klass));
if (!is_metaspace_object) {
gclog_or_tty->print_cr("klass "PTR_FORMAT" of object "PTR_FORMAT" "
"not metadata", klass, (void *)obj);
*failures = true;
@ -1064,7 +1044,9 @@ void HeapRegion::verify() const {
// away eventually.
void G1OffsetTableContigSpace::clear(bool mangle_space) {
ContiguousSpace::clear(mangle_space);
set_top(bottom());
set_saved_mark_word(bottom());
CompactibleSpace::clear(mangle_space);
_offsets.zero_bottom_entry();
_offsets.initialize_threshold();
}
@ -1102,10 +1084,10 @@ HeapWord* G1OffsetTableContigSpace::saved_mark_word() const {
if (_gc_time_stamp < g1h->get_gc_time_stamp())
return top();
else
return ContiguousSpace::saved_mark_word();
return Space::saved_mark_word();
}
void G1OffsetTableContigSpace::set_saved_mark() {
void G1OffsetTableContigSpace::record_top_and_timestamp() {
G1CollectedHeap* g1h = G1CollectedHeap::heap();
unsigned curr_gc_time_stamp = g1h->get_gc_time_stamp();
@ -1117,7 +1099,7 @@ void G1OffsetTableContigSpace::set_saved_mark() {
// of region. If it does so after _gc_time_stamp = ..., then it
// will pick up the right saved_mark_word() as the high water mark
// of the region. Either way, the behavior will be correct.
ContiguousSpace::set_saved_mark();
Space::set_saved_mark_word(top());
OrderAccess::storestore();
_gc_time_stamp = curr_gc_time_stamp;
// No need to do another barrier to flush the writes above. If
@ -1128,6 +1110,26 @@ void G1OffsetTableContigSpace::set_saved_mark() {
}
}
void G1OffsetTableContigSpace::safe_object_iterate(ObjectClosure* blk) {
object_iterate(blk);
}
void G1OffsetTableContigSpace::object_iterate(ObjectClosure* blk) {
HeapWord* p = bottom();
while (p < top()) {
if (block_is_obj(p)) {
blk->do_object(oop(p));
}
p += block_size(p);
}
}
#define block_is_always_obj(q) true
void G1OffsetTableContigSpace::prepare_for_compaction(CompactPoint* cp) {
SCAN_AND_FORWARD(cp, top, block_is_always_obj, block_size);
}
#undef block_is_always_obj
G1OffsetTableContigSpace::
G1OffsetTableContigSpace(G1BlockOffsetSharedArray* sharedOffsetArray,
MemRegion mr) :
@ -1137,7 +1139,8 @@ G1OffsetTableContigSpace(G1BlockOffsetSharedArray* sharedOffsetArray,
{
_offsets.set_space(this);
// false ==> we'll do the clearing if there's clearing to be done.
ContiguousSpace::initialize(mr, false, SpaceDecorator::Mangle);
CompactibleSpace::initialize(mr, false, SpaceDecorator::Mangle);
_top = bottom();
_offsets.zero_bottom_entry();
_offsets.initialize_threshold();
}

View File

@ -46,8 +46,6 @@
// The solution is to remove this method from the definition
// of a Space.
class CompactibleSpace;
class ContiguousSpace;
class HeapRegionRemSet;
class HeapRegionRemSetIterator;
class HeapRegion;
@ -125,9 +123,9 @@ public:
// the regions anyway) and at the end of a Full GC. The current scheme
// that uses sequential unsigned ints will fail only if we have 4b
// evacuation pauses between two cleanups, which is _highly_ unlikely.
class G1OffsetTableContigSpace: public ContiguousSpace {
class G1OffsetTableContigSpace: public CompactibleSpace {
friend class VMStructs;
HeapWord* _top;
protected:
G1BlockOffsetArrayContigSpace _offsets;
Mutex _par_alloc_lock;
@ -144,11 +142,32 @@ class G1OffsetTableContigSpace: public ContiguousSpace {
G1OffsetTableContigSpace(G1BlockOffsetSharedArray* sharedOffsetArray,
MemRegion mr);
void set_top(HeapWord* value) { _top = value; }
HeapWord* top() const { return _top; }
protected:
HeapWord** top_addr() { return &_top; }
// Allocation helpers (return NULL if full).
inline HeapWord* allocate_impl(size_t word_size, HeapWord* end_value);
inline HeapWord* par_allocate_impl(size_t word_size, HeapWord* end_value);
public:
void reset_after_compaction() { set_top(compaction_top()); }
size_t used() const { return byte_size(bottom(), top()); }
size_t free() const { return byte_size(top(), end()); }
bool is_free_block(const HeapWord* p) const { return p >= top(); }
MemRegion used_region() const { return MemRegion(bottom(), top()); }
void object_iterate(ObjectClosure* blk);
void safe_object_iterate(ObjectClosure* blk);
void set_bottom(HeapWord* value);
void set_end(HeapWord* value);
virtual HeapWord* saved_mark_word() const;
virtual void set_saved_mark();
void record_top_and_timestamp();
void reset_gc_time_stamp() { _gc_time_stamp = 0; }
unsigned get_gc_time_stamp() { return _gc_time_stamp; }
@ -168,6 +187,8 @@ class G1OffsetTableContigSpace: public ContiguousSpace {
HeapWord* block_start(const void* p);
HeapWord* block_start_const(const void* p) const;
void prepare_for_compaction(CompactPoint* cp);
// Add offset table update.
virtual HeapWord* allocate(size_t word_size);
HeapWord* par_allocate(size_t word_size);
@ -202,10 +223,6 @@ class HeapRegion: public G1OffsetTableContigSpace {
ContinuesHumongous
};
// Requires that the region "mr" be dense with objects, and begin and end
// with an object.
void oops_in_mr_iterate(MemRegion mr, ExtendedOopClosure* cl);
// The remembered set for this region.
// (Might want to make this "inline" later, to avoid some alloc failure
// issues.)
@ -230,11 +247,9 @@ class HeapRegion: public G1OffsetTableContigSpace {
bool _evacuation_failed;
// A heap region may be a member one of a number of special subsets, each
// represented as linked lists through the field below. Currently, these
// sets include:
// represented as linked lists through the field below. Currently, there
// is only one set:
// The collection set.
// The set of allocation regions used in a collection pause.
// Spaces that may contain gray objects.
HeapRegion* _next_in_special_set;
// next region in the young "generation" region set
@ -353,14 +368,15 @@ class HeapRegion: public G1OffsetTableContigSpace {
ParMarkRootClaimValue = 9
};
inline HeapWord* par_allocate_no_bot_updates(size_t word_size) {
assert(is_young(), "we can only skip BOT updates on young regions");
return ContiguousSpace::par_allocate(word_size);
}
inline HeapWord* allocate_no_bot_updates(size_t word_size) {
assert(is_young(), "we can only skip BOT updates on young regions");
return ContiguousSpace::allocate(word_size);
}
// All allocated blocks are occupied by objects in a HeapRegion
bool block_is_obj(const HeapWord* p) const;
// Returns the object size for all valid block starts
// and the amount of unallocated words if called on top()
size_t block_size(const HeapWord* p) const;
inline HeapWord* par_allocate_no_bot_updates(size_t word_size);
inline HeapWord* allocate_no_bot_updates(size_t word_size);
// If this region is a member of a HeapRegionSeq, the index in that
// sequence, otherwise -1.
@ -569,9 +585,6 @@ class HeapRegion: public G1OffsetTableContigSpace {
HeapWord* orig_end() { return _orig_end; }
// Allows logical separation between objects allocated before and after.
void save_marks();
// Reset HR stuff to default values.
void hr_clear(bool par, bool clear_space, bool locked = false);
void par_clear();
@ -580,10 +593,6 @@ class HeapRegion: public G1OffsetTableContigSpace {
HeapWord* prev_top_at_mark_start() const { return _prev_top_at_mark_start; }
HeapWord* next_top_at_mark_start() const { return _next_top_at_mark_start; }
// Apply "cl->do_oop" to (the addresses of) all reference fields in objects
// allocated in the current region before the last call to "save_mark".
void oop_before_save_marks_iterate(ExtendedOopClosure* cl);
// Note the start or end of marking. This tells the heap region
// that the collector is about to start or has finished (concurrently)
// marking the heap.
@ -769,10 +778,6 @@ class HeapRegion: public G1OffsetTableContigSpace {
_predicted_bytes_to_copy = bytes;
}
#define HeapRegion_OOP_SINCE_SAVE_MARKS_DECL(OopClosureType, nv_suffix) \
virtual void oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl);
SPECIALIZED_SINCE_SAVE_MARKS_CLOSURES(HeapRegion_OOP_SINCE_SAVE_MARKS_DECL)
virtual CompactibleSpace* next_compaction_space() const;
virtual void reset_after_compaction();

View File

@ -26,9 +26,48 @@
#define SHARE_VM_GC_IMPLEMENTATION_G1_HEAPREGION_INLINE_HPP
#include "gc_implementation/g1/g1BlockOffsetTable.inline.hpp"
#include "gc_implementation/g1/g1CollectedHeap.hpp"
#include "gc_implementation/g1/heapRegion.hpp"
#include "memory/space.hpp"
#include "runtime/atomic.inline.hpp"
// This version requires locking.
inline HeapWord* G1OffsetTableContigSpace::allocate_impl(size_t size,
HeapWord* const end_value) {
HeapWord* obj = top();
if (pointer_delta(end_value, obj) >= size) {
HeapWord* new_top = obj + size;
set_top(new_top);
assert(is_aligned(obj) && is_aligned(new_top), "checking alignment");
return obj;
} else {
return NULL;
}
}
// This version is lock-free.
inline HeapWord* G1OffsetTableContigSpace::par_allocate_impl(size_t size,
HeapWord* const end_value) {
do {
HeapWord* obj = top();
if (pointer_delta(end_value, obj) >= size) {
HeapWord* new_top = obj + size;
HeapWord* result = (HeapWord*)Atomic::cmpxchg_ptr(new_top, top_addr(), obj);
// result can be one of two:
// the old top value: the exchange succeeded
// otherwise: the new value of the top is returned.
if (result == obj) {
assert(is_aligned(obj) && is_aligned(new_top), "checking alignment");
return obj;
}
} else {
return NULL;
}
} while (true);
}
inline HeapWord* G1OffsetTableContigSpace::allocate(size_t size) {
HeapWord* res = ContiguousSpace::allocate(size);
HeapWord* res = allocate_impl(size, end());
if (res != NULL) {
_offsets.alloc_block(res, size);
}
@ -40,12 +79,7 @@ inline HeapWord* G1OffsetTableContigSpace::allocate(size_t size) {
// this is used for larger LAB allocations only.
inline HeapWord* G1OffsetTableContigSpace::par_allocate(size_t size) {
MutexLocker x(&_par_alloc_lock);
// Given that we take the lock no need to use par_allocate() here.
HeapWord* res = ContiguousSpace::allocate(size);
if (res != NULL) {
_offsets.alloc_block(res, size);
}
return res;
return allocate(size);
}
inline HeapWord* G1OffsetTableContigSpace::block_start(const void* p) {
@ -57,6 +91,41 @@ G1OffsetTableContigSpace::block_start_const(const void* p) const {
return _offsets.block_start_const(p);
}
inline bool
HeapRegion::block_is_obj(const HeapWord* p) const {
G1CollectedHeap* g1h = G1CollectedHeap::heap();
return !g1h->is_obj_dead(oop(p), this);
}
inline size_t
HeapRegion::block_size(const HeapWord *addr) const {
// Old regions' dead objects may have dead classes
// We need to find the next live object in some other
// manner than getting the oop size
G1CollectedHeap* g1h = G1CollectedHeap::heap();
if (g1h->is_obj_dead(oop(addr), this)) {
HeapWord* next = g1h->concurrent_mark()->prevMarkBitMap()->
getNextMarkedWordAddress(addr, prev_top_at_mark_start());
assert(next > addr, "must get the next live object");
return pointer_delta(next, addr);
} else if (addr == top()) {
return pointer_delta(end(), addr);
}
return oop(addr)->size();
}
inline HeapWord* HeapRegion::par_allocate_no_bot_updates(size_t word_size) {
assert(is_young(), "we can only skip BOT updates on young regions");
return par_allocate_impl(word_size, end());
}
inline HeapWord* HeapRegion::allocate_no_bot_updates(size_t word_size) {
assert(is_young(), "we can only skip BOT updates on young regions");
return allocate_impl(word_size, end());
}
inline void HeapRegion::note_start_of_marking() {
_next_marked_bytes = 0;
_next_top_at_mark_start = top();

View File

@ -931,7 +931,10 @@ void HeapRegionRemSet::add_strong_code_root(nmethod* nm) {
void HeapRegionRemSet::remove_strong_code_root(nmethod* nm) {
assert(nm != NULL, "sanity");
_code_roots.remove(nm);
assert_locked_or_safepoint(CodeCache_lock);
_code_roots.remove_lock_free(nm);
// Check that there were no duplicates
guarantee(!_code_roots.contains(nm), "duplicate entry found");
}

View File

@ -285,37 +285,6 @@ void SATBMarkQueueSet::set_par_closure(int i, ObjectClosure* par_closure) {
_par_closures[i] = par_closure;
}
void SATBMarkQueueSet::iterate_closure_all_threads() {
for(JavaThread* t = Threads::first(); t; t = t->next()) {
t->satb_mark_queue().apply_closure_and_empty(_closure);
}
shared_satb_queue()->apply_closure_and_empty(_closure);
}
void SATBMarkQueueSet::par_iterate_closure_all_threads(uint worker) {
SharedHeap* sh = SharedHeap::heap();
int parity = sh->strong_roots_parity();
for(JavaThread* t = Threads::first(); t; t = t->next()) {
if (t->claim_oops_do(true, parity)) {
t->satb_mark_queue().apply_closure_and_empty(_par_closures[worker]);
}
}
// We also need to claim the VMThread so that its parity is updated
// otherwise the next call to Thread::possibly_parallel_oops_do inside
// a StrongRootsScope might skip the VMThread because it has a stale
// parity that matches the parity set by the StrongRootsScope
//
// Whichever worker succeeds in claiming the VMThread gets to do
// the shared queue.
VMThread* vmt = VMThread::vm_thread();
if (vmt->claim_oops_do(true, parity)) {
shared_satb_queue()->apply_closure_and_empty(_par_closures[worker]);
}
}
bool SATBMarkQueueSet::apply_closure_to_completed_buffer_work(bool par,
uint worker) {
BufferNode* nd = NULL;

View File

@ -33,7 +33,9 @@ class SATBMarkQueueSet;
// A ptrQueue whose elements are "oops", pointers to object heads.
class ObjPtrQueue: public PtrQueue {
friend class Threads;
friend class SATBMarkQueueSet;
friend class G1RemarkThreadsClosure;
private:
// Filter out unwanted entries from the buffer.
@ -119,13 +121,6 @@ public:
// closures, one for each parallel GC thread.
void set_par_closure(int i, ObjectClosure* closure);
// Apply the registered closure to all entries on each
// currently-active buffer and then empty the buffer. It should only
// be called serially and at a safepoint.
void iterate_closure_all_threads();
// Parallel version of the above.
void par_iterate_closure_all_threads(uint worker);
// If there exists some completed buffer, pop it, then apply the
// registered closure to all its elements, and return true. If no
// completed buffers exist, return false.

View File

@ -34,6 +34,8 @@
static_field(HeapRegion, GrainBytes, size_t) \
static_field(HeapRegion, LogOfHRGrainBytes, int) \
\
nonstatic_field(G1OffsetTableContigSpace, _top, HeapWord*) \
\
nonstatic_field(G1HeapRegionTable, _base, address) \
nonstatic_field(G1HeapRegionTable, _length, size_t) \
nonstatic_field(G1HeapRegionTable, _biased_base, address) \
@ -69,7 +71,8 @@
\
declare_type(G1CollectedHeap, SharedHeap) \
\
declare_type(HeapRegion, ContiguousSpace) \
declare_type(G1OffsetTableContigSpace, CompactibleSpace) \
declare_type(HeapRegion, G1OffsetTableContigSpace) \
declare_toplevel_type(HeapRegionSeq) \
declare_toplevel_type(HeapRegionSetBase) \
declare_toplevel_type(HeapRegionSetCount) \

View File

@ -1,657 +0,0 @@
/*
* Copyright (c) 2005, 2014, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "gc_implementation/concurrentMarkSweep/cmsAdaptiveSizePolicy.hpp"
#include "gc_implementation/concurrentMarkSweep/cmsGCAdaptivePolicyCounters.hpp"
#include "gc_implementation/parNew/asParNewGeneration.hpp"
#include "gc_implementation/parNew/parNewGeneration.hpp"
#include "gc_implementation/shared/markSweep.inline.hpp"
#include "gc_implementation/shared/spaceDecorator.hpp"
#include "memory/defNewGeneration.inline.hpp"
#include "memory/referencePolicy.hpp"
#include "oops/markOop.inline.hpp"
#include "oops/oop.pcgc.inline.hpp"
ASParNewGeneration::ASParNewGeneration(ReservedSpace rs,
size_t initial_byte_size,
size_t min_byte_size,
int level) :
ParNewGeneration(rs, initial_byte_size, level),
_min_gen_size(min_byte_size) {}
const char* ASParNewGeneration::name() const {
return "adaptive size par new generation";
}
void ASParNewGeneration::adjust_desired_tenuring_threshold() {
assert(UseAdaptiveSizePolicy,
"Should only be used with UseAdaptiveSizePolicy");
}
void ASParNewGeneration::resize(size_t eden_size, size_t survivor_size) {
// Resize the generation if needed. If the generation resize
// reports false, do not attempt to resize the spaces.
if (resize_generation(eden_size, survivor_size)) {
// Then we lay out the spaces inside the generation
resize_spaces(eden_size, survivor_size);
space_invariants();
if (PrintAdaptiveSizePolicy && Verbose) {
gclog_or_tty->print_cr("Young generation size: "
"desired eden: " SIZE_FORMAT " survivor: " SIZE_FORMAT
" used: " SIZE_FORMAT " capacity: " SIZE_FORMAT
" gen limits: " SIZE_FORMAT " / " SIZE_FORMAT,
eden_size, survivor_size, used(), capacity(),
max_gen_size(), min_gen_size());
}
}
}
size_t ASParNewGeneration::available_to_min_gen() {
assert(virtual_space()->committed_size() >= min_gen_size(), "Invariant");
return virtual_space()->committed_size() - min_gen_size();
}
// This method assumes that from-space has live data and that
// any shrinkage of the young gen is limited by location of
// from-space.
size_t ASParNewGeneration::available_to_live() const {
#undef SHRINKS_AT_END_OF_EDEN
#ifdef SHRINKS_AT_END_OF_EDEN
size_t delta_in_survivor = 0;
ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
const size_t space_alignment = heap->intra_heap_alignment();
const size_t gen_alignment = heap->object_heap_alignment();
MutableSpace* space_shrinking = NULL;
if (from_space()->end() > to_space()->end()) {
space_shrinking = from_space();
} else {
space_shrinking = to_space();
}
// Include any space that is committed but not included in
// the survivor spaces.
assert(((HeapWord*)virtual_space()->high()) >= space_shrinking->end(),
"Survivor space beyond high end");
size_t unused_committed = pointer_delta(virtual_space()->high(),
space_shrinking->end(), sizeof(char));
if (space_shrinking->is_empty()) {
// Don't let the space shrink to 0
assert(space_shrinking->capacity_in_bytes() >= space_alignment,
"Space is too small");
delta_in_survivor = space_shrinking->capacity_in_bytes() - space_alignment;
} else {
delta_in_survivor = pointer_delta(space_shrinking->end(),
space_shrinking->top(),
sizeof(char));
}
size_t delta_in_bytes = unused_committed + delta_in_survivor;
delta_in_bytes = align_size_down(delta_in_bytes, gen_alignment);
return delta_in_bytes;
#else
// The only space available for shrinking is in to-space if it
// is above from-space.
if (to()->bottom() > from()->bottom()) {
const size_t alignment = os::vm_page_size();
if (to()->capacity() < alignment) {
return 0;
} else {
return to()->capacity() - alignment;
}
} else {
return 0;
}
#endif
}
// Return the number of bytes available for resizing down the young
// generation. This is the minimum of
// input "bytes"
// bytes to the minimum young gen size
// bytes to the size currently being used + some small extra
size_t ASParNewGeneration::limit_gen_shrink (size_t bytes) {
// Allow shrinkage into the current eden but keep eden large enough
// to maintain the minimum young gen size
bytes = MIN3(bytes, available_to_min_gen(), available_to_live());
return align_size_down(bytes, os::vm_page_size());
}
// Note that the the alignment used is the OS page size as
// opposed to an alignment associated with the virtual space
// (as is done in the ASPSYoungGen/ASPSOldGen)
bool ASParNewGeneration::resize_generation(size_t eden_size,
size_t survivor_size) {
const size_t alignment = os::vm_page_size();
size_t orig_size = virtual_space()->committed_size();
bool size_changed = false;
// There used to be this guarantee there.
// guarantee ((eden_size + 2*survivor_size) <= _max_gen_size, "incorrect input arguments");
// Code below forces this requirement. In addition the desired eden
// size and desired survivor sizes are desired goals and may
// exceed the total generation size.
assert(min_gen_size() <= orig_size && orig_size <= max_gen_size(),
"just checking");
// Adjust new generation size
const size_t eden_plus_survivors =
align_size_up(eden_size + 2 * survivor_size, alignment);
size_t desired_size = MAX2(MIN2(eden_plus_survivors, max_gen_size()),
min_gen_size());
assert(desired_size <= max_gen_size(), "just checking");
if (desired_size > orig_size) {
// Grow the generation
size_t change = desired_size - orig_size;
assert(change % alignment == 0, "just checking");
if (expand(change)) {
return false; // Error if we fail to resize!
}
size_changed = true;
} else if (desired_size < orig_size) {
size_t desired_change = orig_size - desired_size;
assert(desired_change % alignment == 0, "just checking");
desired_change = limit_gen_shrink(desired_change);
if (desired_change > 0) {
virtual_space()->shrink_by(desired_change);
reset_survivors_after_shrink();
size_changed = true;
}
} else {
if (Verbose && PrintGC) {
if (orig_size == max_gen_size()) {
gclog_or_tty->print_cr("ASParNew generation size at maximum: "
SIZE_FORMAT "K", orig_size/K);
} else if (orig_size == min_gen_size()) {
gclog_or_tty->print_cr("ASParNew generation size at minium: "
SIZE_FORMAT "K", orig_size/K);
}
}
}
if (size_changed) {
MemRegion cmr((HeapWord*)virtual_space()->low(),
(HeapWord*)virtual_space()->high());
GenCollectedHeap::heap()->barrier_set()->resize_covered_region(cmr);
if (Verbose && PrintGC) {
size_t current_size = virtual_space()->committed_size();
gclog_or_tty->print_cr("ASParNew generation size changed: "
SIZE_FORMAT "K->" SIZE_FORMAT "K",
orig_size/K, current_size/K);
}
}
guarantee(eden_plus_survivors <= virtual_space()->committed_size() ||
virtual_space()->committed_size() == max_gen_size(), "Sanity");
return true;
}
void ASParNewGeneration::reset_survivors_after_shrink() {
GenCollectedHeap* gch = GenCollectedHeap::heap();
HeapWord* new_end = (HeapWord*)virtual_space()->high();
if (from()->end() > to()->end()) {
assert(new_end >= from()->end(), "Shrinking past from-space");
} else {
assert(new_end >= to()->bottom(), "Shrink was too large");
// Was there a shrink of the survivor space?
if (new_end < to()->end()) {
MemRegion mr(to()->bottom(), new_end);
to()->initialize(mr,
SpaceDecorator::DontClear,
SpaceDecorator::DontMangle);
}
}
}
void ASParNewGeneration::resize_spaces(size_t requested_eden_size,
size_t requested_survivor_size) {
assert(UseAdaptiveSizePolicy, "sanity check");
assert(requested_eden_size > 0 && requested_survivor_size > 0,
"just checking");
CollectedHeap* heap = Universe::heap();
assert(heap->kind() == CollectedHeap::GenCollectedHeap, "Sanity");
// We require eden and to space to be empty
if ((!eden()->is_empty()) || (!to()->is_empty())) {
return;
}
size_t cur_eden_size = eden()->capacity();
if (PrintAdaptiveSizePolicy && Verbose) {
gclog_or_tty->print_cr("ASParNew::resize_spaces(requested_eden_size: "
SIZE_FORMAT
", requested_survivor_size: " SIZE_FORMAT ")",
requested_eden_size, requested_survivor_size);
gclog_or_tty->print_cr(" eden: [" PTR_FORMAT ".." PTR_FORMAT ") "
SIZE_FORMAT,
p2i(eden()->bottom()),
p2i(eden()->end()),
pointer_delta(eden()->end(),
eden()->bottom(),
sizeof(char)));
gclog_or_tty->print_cr(" from: [" PTR_FORMAT ".." PTR_FORMAT ") "
SIZE_FORMAT,
p2i(from()->bottom()),
p2i(from()->end()),
pointer_delta(from()->end(),
from()->bottom(),
sizeof(char)));
gclog_or_tty->print_cr(" to: [" PTR_FORMAT ".." PTR_FORMAT ") "
SIZE_FORMAT,
p2i(to()->bottom()),
p2i(to()->end()),
pointer_delta( to()->end(),
to()->bottom(),
sizeof(char)));
}
// There's nothing to do if the new sizes are the same as the current
if (requested_survivor_size == to()->capacity() &&
requested_survivor_size == from()->capacity() &&
requested_eden_size == eden()->capacity()) {
if (PrintAdaptiveSizePolicy && Verbose) {
gclog_or_tty->print_cr(" capacities are the right sizes, returning");
}
return;
}
char* eden_start = (char*)eden()->bottom();
char* eden_end = (char*)eden()->end();
char* from_start = (char*)from()->bottom();
char* from_end = (char*)from()->end();
char* to_start = (char*)to()->bottom();
char* to_end = (char*)to()->end();
const size_t alignment = os::vm_page_size();
const bool maintain_minimum =
(requested_eden_size + 2 * requested_survivor_size) <= min_gen_size();
// Check whether from space is below to space
if (from_start < to_start) {
// Eden, from, to
if (PrintAdaptiveSizePolicy && Verbose) {
gclog_or_tty->print_cr(" Eden, from, to:");
}
// Set eden
// "requested_eden_size" is a goal for the size of eden
// and may not be attainable. "eden_size" below is
// calculated based on the location of from-space and
// the goal for the size of eden. from-space is
// fixed in place because it contains live data.
// The calculation is done this way to avoid 32bit
// overflow (i.e., eden_start + requested_eden_size
// may too large for representation in 32bits).
size_t eden_size;
if (maintain_minimum) {
// Only make eden larger than the requested size if
// the minimum size of the generation has to be maintained.
// This could be done in general but policy at a higher
// level is determining a requested size for eden and that
// should be honored unless there is a fundamental reason.
eden_size = pointer_delta(from_start,
eden_start,
sizeof(char));
} else {
eden_size = MIN2(requested_eden_size,
pointer_delta(from_start, eden_start, sizeof(char)));
}
eden_size = align_size_down(eden_size, alignment);
eden_end = eden_start + eden_size;
assert(eden_end >= eden_start, "addition overflowed");
// To may resize into from space as long as it is clear of live data.
// From space must remain page aligned, though, so we need to do some
// extra calculations.
// First calculate an optimal to-space
to_end = (char*)virtual_space()->high();
to_start = (char*)pointer_delta(to_end, (char*)requested_survivor_size,
sizeof(char));
// Does the optimal to-space overlap from-space?
if (to_start < (char*)from()->end()) {
// Calculate the minimum offset possible for from_end
size_t from_size = pointer_delta(from()->top(), from_start, sizeof(char));
// Should we be in this method if from_space is empty? Why not the set_space method? FIX ME!
if (from_size == 0) {
from_size = alignment;
} else {
from_size = align_size_up(from_size, alignment);
}
from_end = from_start + from_size;
assert(from_end > from_start, "addition overflow or from_size problem");
guarantee(from_end <= (char*)from()->end(), "from_end moved to the right");
// Now update to_start with the new from_end
to_start = MAX2(from_end, to_start);
} else {
// If shrinking, move to-space down to abut the end of from-space
// so that shrinking will move to-space down. If not shrinking
// to-space is moving up to allow for growth on the next expansion.
if (requested_eden_size <= cur_eden_size) {
to_start = from_end;
if (to_start + requested_survivor_size > to_start) {
to_end = to_start + requested_survivor_size;
}
}
// else leave to_end pointing to the high end of the virtual space.
}
guarantee(to_start != to_end, "to space is zero sized");
if (PrintAdaptiveSizePolicy && Verbose) {
gclog_or_tty->print_cr(" [eden_start .. eden_end): "
"[" PTR_FORMAT " .. " PTR_FORMAT ") " SIZE_FORMAT,
p2i(eden_start),
p2i(eden_end),
pointer_delta(eden_end, eden_start, sizeof(char)));
gclog_or_tty->print_cr(" [from_start .. from_end): "
"[" PTR_FORMAT " .. " PTR_FORMAT ") " SIZE_FORMAT,
p2i(from_start),
p2i(from_end),
pointer_delta(from_end, from_start, sizeof(char)));
gclog_or_tty->print_cr(" [ to_start .. to_end): "
"[" PTR_FORMAT " .. " PTR_FORMAT ") " SIZE_FORMAT,
p2i(to_start),
p2i(to_end),
pointer_delta( to_end, to_start, sizeof(char)));
}
} else {
// Eden, to, from
if (PrintAdaptiveSizePolicy && Verbose) {
gclog_or_tty->print_cr(" Eden, to, from:");
}
// Calculate the to-space boundaries based on
// the start of from-space.
to_end = from_start;
to_start = (char*)pointer_delta(from_start,
(char*)requested_survivor_size,
sizeof(char));
// Calculate the ideal eden boundaries.
// eden_end is already at the bottom of the generation
assert(eden_start == virtual_space()->low(),
"Eden is not starting at the low end of the virtual space");
if (eden_start + requested_eden_size >= eden_start) {
eden_end = eden_start + requested_eden_size;
} else {
eden_end = to_start;
}
// Does eden intrude into to-space? to-space
// gets priority but eden is not allowed to shrink
// to 0.
if (eden_end > to_start) {
eden_end = to_start;
}
// Don't let eden shrink down to 0 or less.
eden_end = MAX2(eden_end, eden_start + alignment);
assert(eden_start + alignment >= eden_start, "Overflow");
size_t eden_size;
if (maintain_minimum) {
// Use all the space available.
eden_end = MAX2(eden_end, to_start);
eden_size = pointer_delta(eden_end, eden_start, sizeof(char));
eden_size = MIN2(eden_size, cur_eden_size);
} else {
eden_size = pointer_delta(eden_end, eden_start, sizeof(char));
}
eden_size = align_size_down(eden_size, alignment);
assert(maintain_minimum || eden_size <= requested_eden_size,
"Eden size is too large");
assert(eden_size >= alignment, "Eden size is too small");
eden_end = eden_start + eden_size;
// Move to-space down to eden.
if (requested_eden_size < cur_eden_size) {
to_start = eden_end;
if (to_start + requested_survivor_size > to_start) {
to_end = MIN2(from_start, to_start + requested_survivor_size);
} else {
to_end = from_start;
}
}
// eden_end may have moved so again make sure
// the to-space and eden don't overlap.
to_start = MAX2(eden_end, to_start);
// from-space
size_t from_used = from()->used();
if (requested_survivor_size > from_used) {
if (from_start + requested_survivor_size >= from_start) {
from_end = from_start + requested_survivor_size;
}
if (from_end > virtual_space()->high()) {
from_end = virtual_space()->high();
}
}
assert(to_start >= eden_end, "to-space should be above eden");
if (PrintAdaptiveSizePolicy && Verbose) {
gclog_or_tty->print_cr(" [eden_start .. eden_end): "
"[" PTR_FORMAT " .. " PTR_FORMAT ") " SIZE_FORMAT,
p2i(eden_start),
p2i(eden_end),
pointer_delta(eden_end, eden_start, sizeof(char)));
gclog_or_tty->print_cr(" [ to_start .. to_end): "
"[" PTR_FORMAT " .. " PTR_FORMAT ") " SIZE_FORMAT,
p2i(to_start),
p2i(to_end),
pointer_delta( to_end, to_start, sizeof(char)));
gclog_or_tty->print_cr(" [from_start .. from_end): "
"[" PTR_FORMAT " .. " PTR_FORMAT ") " SIZE_FORMAT,
p2i(from_start),
p2i(from_end),
pointer_delta(from_end, from_start, sizeof(char)));
}
}
guarantee((HeapWord*)from_start <= from()->bottom(),
"from start moved to the right");
guarantee((HeapWord*)from_end >= from()->top(),
"from end moved into live data");
assert(is_object_aligned((intptr_t)eden_start), "checking alignment");
assert(is_object_aligned((intptr_t)from_start), "checking alignment");
assert(is_object_aligned((intptr_t)to_start), "checking alignment");
MemRegion edenMR((HeapWord*)eden_start, (HeapWord*)eden_end);
MemRegion toMR ((HeapWord*)to_start, (HeapWord*)to_end);
MemRegion fromMR((HeapWord*)from_start, (HeapWord*)from_end);
// Let's make sure the call to initialize doesn't reset "top"!
HeapWord* old_from_top = from()->top();
// For PrintAdaptiveSizePolicy block below
size_t old_from = from()->capacity();
size_t old_to = to()->capacity();
// If not clearing the spaces, do some checking to verify that
// the spaces are already mangled.
// Must check mangling before the spaces are reshaped. Otherwise,
// the bottom or end of one space may have moved into another
// a failure of the check may not correctly indicate which space
// is not properly mangled.
if (ZapUnusedHeapArea) {
HeapWord* limit = (HeapWord*) virtual_space()->high();
eden()->check_mangled_unused_area(limit);
from()->check_mangled_unused_area(limit);
to()->check_mangled_unused_area(limit);
}
// The call to initialize NULL's the next compaction space
eden()->initialize(edenMR,
SpaceDecorator::Clear,
SpaceDecorator::DontMangle);
eden()->set_next_compaction_space(from());
to()->initialize(toMR ,
SpaceDecorator::Clear,
SpaceDecorator::DontMangle);
from()->initialize(fromMR,
SpaceDecorator::DontClear,
SpaceDecorator::DontMangle);
assert(from()->top() == old_from_top, "from top changed!");
if (PrintAdaptiveSizePolicy) {
GenCollectedHeap* gch = GenCollectedHeap::heap();
assert(gch->kind() == CollectedHeap::GenCollectedHeap, "Sanity");
gclog_or_tty->print("AdaptiveSizePolicy::survivor space sizes: "
"collection: %d "
"(" SIZE_FORMAT ", " SIZE_FORMAT ") -> "
"(" SIZE_FORMAT ", " SIZE_FORMAT ") ",
gch->total_collections(),
old_from, old_to,
from()->capacity(),
to()->capacity());
gclog_or_tty->cr();
}
}
void ASParNewGeneration::compute_new_size() {
GenCollectedHeap* gch = GenCollectedHeap::heap();
assert(gch->kind() == CollectedHeap::GenCollectedHeap,
"not a CMS generational heap");
CMSAdaptiveSizePolicy* size_policy =
(CMSAdaptiveSizePolicy*)gch->gen_policy()->size_policy();
assert(size_policy->is_gc_cms_adaptive_size_policy(),
"Wrong type of size policy");
size_t survived = from()->used();
if (!survivor_overflow()) {
// Keep running averages on how much survived
size_policy->avg_survived()->sample(survived);
} else {
size_t promoted =
(size_t) next_gen()->gc_stats()->avg_promoted()->last_sample();
assert(promoted < gch->capacity(), "Conversion problem?");
size_t survived_guess = survived + promoted;
size_policy->avg_survived()->sample(survived_guess);
}
size_t survivor_limit = max_survivor_size();
_tenuring_threshold =
size_policy->compute_survivor_space_size_and_threshold(
_survivor_overflow,
_tenuring_threshold,
survivor_limit);
size_policy->avg_young_live()->sample(used());
size_policy->avg_eden_live()->sample(eden()->used());
size_policy->compute_eden_space_size(eden()->capacity(), max_gen_size());
resize(size_policy->calculated_eden_size_in_bytes(),
size_policy->calculated_survivor_size_in_bytes());
if (UsePerfData) {
CMSGCAdaptivePolicyCounters* counters =
(CMSGCAdaptivePolicyCounters*) gch->collector_policy()->counters();
assert(counters->kind() ==
GCPolicyCounters::CMSGCAdaptivePolicyCountersKind,
"Wrong kind of counters");
counters->update_tenuring_threshold(_tenuring_threshold);
counters->update_survivor_overflowed(_survivor_overflow);
counters->update_young_capacity(capacity());
}
}
#ifndef PRODUCT
// Changes from PSYoungGen version
// value of "alignment"
void ASParNewGeneration::space_invariants() {
const size_t alignment = os::vm_page_size();
// Currently, our eden size cannot shrink to zero
guarantee(eden()->capacity() >= alignment, "eden too small");
guarantee(from()->capacity() >= alignment, "from too small");
guarantee(to()->capacity() >= alignment, "to too small");
// Relationship of spaces to each other
char* eden_start = (char*)eden()->bottom();
char* eden_end = (char*)eden()->end();
char* from_start = (char*)from()->bottom();
char* from_end = (char*)from()->end();
char* to_start = (char*)to()->bottom();
char* to_end = (char*)to()->end();
guarantee(eden_start >= virtual_space()->low(), "eden bottom");
guarantee(eden_start < eden_end, "eden space consistency");
guarantee(from_start < from_end, "from space consistency");
guarantee(to_start < to_end, "to space consistency");
// Check whether from space is below to space
if (from_start < to_start) {
// Eden, from, to
guarantee(eden_end <= from_start, "eden/from boundary");
guarantee(from_end <= to_start, "from/to boundary");
guarantee(to_end <= virtual_space()->high(), "to end");
} else {
// Eden, to, from
guarantee(eden_end <= to_start, "eden/to boundary");
guarantee(to_end <= from_start, "to/from boundary");
guarantee(from_end <= virtual_space()->high(), "from end");
}
// More checks that the virtual space is consistent with the spaces
assert(virtual_space()->committed_size() >=
(eden()->capacity() +
to()->capacity() +
from()->capacity()), "Committed size is inconsistent");
assert(virtual_space()->committed_size() <= virtual_space()->reserved_size(),
"Space invariant");
char* eden_top = (char*)eden()->top();
char* from_top = (char*)from()->top();
char* to_top = (char*)to()->top();
assert(eden_top <= virtual_space()->high(), "eden top");
assert(from_top <= virtual_space()->high(), "from top");
assert(to_top <= virtual_space()->high(), "to top");
}
#endif

View File

@ -1,98 +0,0 @@
/*
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef SHARE_VM_GC_IMPLEMENTATION_PARNEW_ASPARNEWGENERATION_HPP
#define SHARE_VM_GC_IMPLEMENTATION_PARNEW_ASPARNEWGENERATION_HPP
#include "gc_implementation/parNew/parNewGeneration.hpp"
#include "gc_implementation/shared/adaptiveSizePolicy.hpp"
// A Generation that does parallel young-gen collection extended
// for adaptive size policy.
// Division of generation into spaces
// done by DefNewGeneration::compute_space_boundaries()
// +---------------+
// | uncommitted |
// |---------------|
// | ss0 |
// |---------------|
// | ss1 |
// |---------------|
// | |
// | eden |
// | |
// +---------------+ <-- low end of VirtualSpace
//
class ASParNewGeneration: public ParNewGeneration {
size_t _min_gen_size;
// Resize the generation based on the desired sizes of
// the constituent spaces.
bool resize_generation(size_t eden_size, size_t survivor_size);
// Resize the spaces based on their desired sizes but
// respecting the maximum size of the generation.
void resize_spaces(size_t eden_size, size_t survivor_size);
// Return the byte size remaining to the minimum generation size.
size_t available_to_min_gen();
// Return the byte size remaining to the live data in the generation.
size_t available_to_live() const;
// Return the byte size that the generation is allowed to shrink.
size_t limit_gen_shrink(size_t bytes);
// Reset the size of the spaces after a shrink of the generation.
void reset_survivors_after_shrink();
// Accessor
VirtualSpace* virtual_space() { return &_virtual_space; }
virtual void adjust_desired_tenuring_threshold();
public:
ASParNewGeneration(ReservedSpace rs,
size_t initial_byte_size,
size_t min_byte_size,
int level);
virtual const char* short_name() const { return "ASParNew"; }
virtual const char* name() const;
virtual Generation::Name kind() { return ASParNew; }
// Change the sizes of eden and the survivor spaces in
// the generation. The parameters are desired sizes
// and are not guaranteed to be met. For example, if
// the total is larger than the generation.
void resize(size_t eden_size, size_t survivor_size);
virtual void compute_new_size();
size_t max_gen_size() { return _reserved.byte_size(); }
size_t min_gen_size() const { return _min_gen_size; }
// Space boundary invariant checker
void space_invariants() PRODUCT_RETURN;
};
#endif // SHARE_VM_GC_IMPLEMENTATION_PARNEW_ASPARNEWGENERATION_HPP

Some files were not shown because too many files have changed in this diff Show More