8020040: Improve and generalize the F/J tasks to handle right or left-balanced trees
Co-authored-by: Doug Lea <dl@cs.oswego.edu> Reviewed-by: briangoetz
This commit is contained in:
parent
b47a003232
commit
cfbed70a62
@ -92,21 +92,50 @@ abstract class AbstractShortCircuitTask<P_IN, P_OUT, R,
|
||||
*/
|
||||
protected abstract R getEmptyResult();
|
||||
|
||||
/**
|
||||
* Overrides AbstractTask version to include checks for early
|
||||
* exits while splitting or computing.
|
||||
*/
|
||||
@Override
|
||||
protected boolean canCompute() {
|
||||
// Have we already found an answer?
|
||||
if (sharedResult.get() != null) {
|
||||
tryComplete();
|
||||
return false;
|
||||
} else if (taskCanceled()) {
|
||||
setLocalResult(getEmptyResult());
|
||||
tryComplete();
|
||||
return false;
|
||||
public void compute() {
|
||||
Spliterator<P_IN> rs = spliterator, ls;
|
||||
long sizeEstimate = rs.estimateSize();
|
||||
long sizeThreshold = getTargetSize(sizeEstimate);
|
||||
boolean forkRight = false;
|
||||
@SuppressWarnings("unchecked") K task = (K) this;
|
||||
AtomicReference<R> sr = sharedResult;
|
||||
R result;
|
||||
while ((result = sr.get()) == null) {
|
||||
if (task.taskCanceled()) {
|
||||
result = task.getEmptyResult();
|
||||
break;
|
||||
}
|
||||
if (sizeEstimate <= sizeThreshold || (ls = rs.trySplit()) == null) {
|
||||
result = task.doLeaf();
|
||||
break;
|
||||
}
|
||||
K leftChild, rightChild, taskToFork;
|
||||
task.leftChild = leftChild = task.makeChild(ls);
|
||||
task.rightChild = rightChild = task.makeChild(rs);
|
||||
task.setPendingCount(1);
|
||||
if (forkRight) {
|
||||
forkRight = false;
|
||||
rs = ls;
|
||||
task = leftChild;
|
||||
taskToFork = rightChild;
|
||||
}
|
||||
else {
|
||||
return true;
|
||||
forkRight = true;
|
||||
task = rightChild;
|
||||
taskToFork = leftChild;
|
||||
}
|
||||
taskToFork.fork();
|
||||
sizeEstimate = rs.estimateSize();
|
||||
}
|
||||
task.setLocalResult(result);
|
||||
task.tryComplete();
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* Declares that a globally valid result has been found. If another task has
|
||||
|
@ -102,7 +102,7 @@ abstract class AbstractTask<P_IN, P_OUT, R,
|
||||
protected Spliterator<P_IN> spliterator;
|
||||
|
||||
/** Target leaf size, common to all tasks in a computation */
|
||||
protected final long targetSize;
|
||||
protected long targetSize; // may be laziliy initialized
|
||||
|
||||
/**
|
||||
* The left child.
|
||||
@ -134,7 +134,7 @@ abstract class AbstractTask<P_IN, P_OUT, R,
|
||||
super(null);
|
||||
this.helper = helper;
|
||||
this.spliterator = spliterator;
|
||||
this.targetSize = suggestTargetSize(spliterator.estimateSize());
|
||||
this.targetSize = 0L;
|
||||
}
|
||||
|
||||
/**
|
||||
@ -182,27 +182,13 @@ abstract class AbstractTask<P_IN, P_OUT, R,
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns a suggestion whether it is advisable to split the provided
|
||||
* spliterator based on target size and other considerations, such as pool
|
||||
* state.
|
||||
*
|
||||
* @return {@code true} if a split is advised otherwise {@code false}
|
||||
* Returns the targetSize, initializing it via the supplied
|
||||
* size estimate if not already initialized.
|
||||
*/
|
||||
public static boolean suggestSplit(Spliterator spliterator,
|
||||
long targetSize) {
|
||||
long remaining = spliterator.estimateSize();
|
||||
return (remaining > targetSize);
|
||||
// @@@ May additionally want to fold in pool characteristics such as surplus task count
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns a suggestion whether it is adviseable to split this task based on
|
||||
* target size and other considerations.
|
||||
*
|
||||
* @return {@code true} if a split is advised otherwise {@code false}
|
||||
*/
|
||||
public boolean suggestSplit() {
|
||||
return suggestSplit(spliterator, targetSize);
|
||||
protected final long getTargetSize(long sizeEstimate) {
|
||||
long s;
|
||||
return ((s = targetSize) != 0 ? s :
|
||||
(targetSize = suggestTargetSize(sizeEstimate)));
|
||||
}
|
||||
|
||||
/**
|
||||
@ -285,43 +271,46 @@ abstract class AbstractTask<P_IN, P_OUT, R,
|
||||
}
|
||||
|
||||
/**
|
||||
* Decides whether or not to split a task further or compute it directly. If
|
||||
* computing directly, call {@code doLeaf} and pass the result to
|
||||
* {@code setRawResult}. If splitting, set up the child-related fields,
|
||||
* create the child tasks, fork the leftmost (prefix) child tasks, and
|
||||
* compute the rightmost (remaining) child tasks.
|
||||
* Decides whether or not to split a task further or compute it
|
||||
* directly. If computing directly, calls {@code doLeaf} and pass
|
||||
* the result to {@code setRawResult}. Otherwise splits off
|
||||
* subtasks, forking one and continuing as the other.
|
||||
*
|
||||
* <p>
|
||||
* Computing will continue for rightmost tasks while a task can be computed
|
||||
* as determined by {@link #canCompute()} and that task should and can be
|
||||
* split into left and right tasks.
|
||||
*
|
||||
* <p>
|
||||
* The rightmost tasks are computed in a loop rather than recursively to
|
||||
* avoid potential stack overflows when computing with a right-balanced
|
||||
* tree, such as that produced when splitting with a {@link Spliterator}
|
||||
* created from an {@link java.util.Iterator}.
|
||||
* <p> The method is structured to conserve resources across a
|
||||
* range of uses. The loop continues with one of the child tasks
|
||||
* when split, to avoid deep recursion. To cope with spliterators
|
||||
* that may be systematically biased toward left-heavy or
|
||||
* right-heavy splits, we alternate which child is forked versus
|
||||
* continued in the loop.
|
||||
*/
|
||||
@Override
|
||||
public final void compute() {
|
||||
@SuppressWarnings("unchecked")
|
||||
K task = (K) this;
|
||||
while (task.canCompute()) {
|
||||
Spliterator<P_IN> split;
|
||||
if (!task.suggestSplit() || (split = task.spliterator.trySplit()) == null) {
|
||||
task.setLocalResult(task.doLeaf());
|
||||
task.tryComplete();
|
||||
return;
|
||||
public void compute() {
|
||||
Spliterator<P_IN> rs = spliterator, ls; // right, left spliterators
|
||||
long sizeEstimate = rs.estimateSize();
|
||||
long sizeThreshold = getTargetSize(sizeEstimate);
|
||||
boolean forkRight = false;
|
||||
@SuppressWarnings("unchecked") K task = (K) this;
|
||||
while (sizeEstimate > sizeThreshold && (ls = rs.trySplit()) != null) {
|
||||
K leftChild, rightChild, taskToFork;
|
||||
task.leftChild = leftChild = task.makeChild(ls);
|
||||
task.rightChild = rightChild = task.makeChild(rs);
|
||||
task.setPendingCount(1);
|
||||
if (forkRight) {
|
||||
forkRight = false;
|
||||
rs = ls;
|
||||
task = leftChild;
|
||||
taskToFork = rightChild;
|
||||
}
|
||||
else {
|
||||
K l = task.leftChild = task.makeChild(split);
|
||||
K r = task.rightChild = task.makeChild(task.spliterator);
|
||||
task.spliterator = null;
|
||||
task.setPendingCount(1);
|
||||
l.fork();
|
||||
task = r;
|
||||
forkRight = true;
|
||||
task = rightChild;
|
||||
taskToFork = leftChild;
|
||||
}
|
||||
taskToFork.fork();
|
||||
sizeEstimate = rs.estimateSize();
|
||||
}
|
||||
task.setLocalResult(task.doLeaf());
|
||||
task.tryComplete();
|
||||
}
|
||||
|
||||
/**
|
||||
@ -338,21 +327,6 @@ abstract class AbstractTask<P_IN, P_OUT, R,
|
||||
leftChild = rightChild = null;
|
||||
}
|
||||
|
||||
/**
|
||||
* Determines if the task can be computed.
|
||||
*
|
||||
* @implSpec The default always returns true
|
||||
*
|
||||
* @return {@code true} if this task can be computed to either calculate the
|
||||
* leaf via {@link #doLeaf()} or split, otherwise false if this task
|
||||
* cannot be computed, for example if this task has been canceled
|
||||
* and/or a result for the computation has been found by another
|
||||
* task.
|
||||
*/
|
||||
protected boolean canCompute() {
|
||||
return true;
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns whether this node is a "leftmost" node -- whether the path from
|
||||
* the root to this node involves only traversing leftmost child links. For
|
||||
|
@ -28,6 +28,7 @@ import java.util.Objects;
|
||||
import java.util.Spliterator;
|
||||
import java.util.concurrent.ConcurrentHashMap;
|
||||
import java.util.concurrent.CountedCompleter;
|
||||
import java.util.concurrent.ForkJoinTask;
|
||||
import java.util.function.Consumer;
|
||||
import java.util.function.DoubleConsumer;
|
||||
import java.util.function.IntConsumer;
|
||||
@ -128,7 +129,7 @@ final class ForEachOps {
|
||||
*
|
||||
* @param <T> the output type of the stream pipeline
|
||||
*/
|
||||
private static abstract class ForEachOp<T>
|
||||
static abstract class ForEachOp<T>
|
||||
implements TerminalOp<T, Void>, TerminalSink<T, Void> {
|
||||
private final boolean ordered;
|
||||
|
||||
@ -169,7 +170,7 @@ final class ForEachOps {
|
||||
// Implementations
|
||||
|
||||
/** Implementation class for reference streams */
|
||||
private static class OfRef<T> extends ForEachOp<T> {
|
||||
static final class OfRef<T> extends ForEachOp<T> {
|
||||
final Consumer<? super T> consumer;
|
||||
|
||||
OfRef(Consumer<? super T> consumer, boolean ordered) {
|
||||
@ -184,7 +185,7 @@ final class ForEachOps {
|
||||
}
|
||||
|
||||
/** Implementation class for {@code IntStream} */
|
||||
private static class OfInt extends ForEachOp<Integer>
|
||||
static final class OfInt extends ForEachOp<Integer>
|
||||
implements Sink.OfInt {
|
||||
final IntConsumer consumer;
|
||||
|
||||
@ -205,7 +206,7 @@ final class ForEachOps {
|
||||
}
|
||||
|
||||
/** Implementation class for {@code LongStream} */
|
||||
private static class OfLong extends ForEachOp<Long>
|
||||
static final class OfLong extends ForEachOp<Long>
|
||||
implements Sink.OfLong {
|
||||
final LongConsumer consumer;
|
||||
|
||||
@ -226,7 +227,7 @@ final class ForEachOps {
|
||||
}
|
||||
|
||||
/** Implementation class for {@code DoubleStream} */
|
||||
private static class OfDouble extends ForEachOp<Double>
|
||||
static final class OfDouble extends ForEachOp<Double>
|
||||
implements Sink.OfDouble {
|
||||
final DoubleConsumer consumer;
|
||||
|
||||
@ -248,20 +249,20 @@ final class ForEachOps {
|
||||
}
|
||||
|
||||
/** A {@code ForkJoinTask} for performing a parallel for-each operation */
|
||||
private static class ForEachTask<S, T> extends CountedCompleter<Void> {
|
||||
static final class ForEachTask<S, T> extends CountedCompleter<Void> {
|
||||
private Spliterator<S> spliterator;
|
||||
private final Sink<S> sink;
|
||||
private final PipelineHelper<T> helper;
|
||||
private final long targetSize;
|
||||
private long targetSize;
|
||||
|
||||
ForEachTask(PipelineHelper<T> helper,
|
||||
Spliterator<S> spliterator,
|
||||
Sink<S> sink) {
|
||||
super(null);
|
||||
this.spliterator = spliterator;
|
||||
this.sink = sink;
|
||||
this.targetSize = AbstractTask.suggestTargetSize(spliterator.estimateSize());
|
||||
this.helper = helper;
|
||||
this.spliterator = spliterator;
|
||||
this.targetSize = 0L;
|
||||
}
|
||||
|
||||
ForEachTask(ForEachTask<S, T> parent, Spliterator<S> spliterator) {
|
||||
@ -272,28 +273,40 @@ final class ForEachOps {
|
||||
this.helper = parent.helper;
|
||||
}
|
||||
|
||||
// Similar to AbstractTask but doesn't need to track child tasks
|
||||
public void compute() {
|
||||
Spliterator<S> rightSplit = spliterator, leftSplit;
|
||||
long sizeEstimate = rightSplit.estimateSize(), sizeThreshold;
|
||||
if ((sizeThreshold = targetSize) == 0L)
|
||||
targetSize = sizeThreshold = AbstractTask.suggestTargetSize(sizeEstimate);
|
||||
boolean isShortCircuit = StreamOpFlag.SHORT_CIRCUIT.isKnown(helper.getStreamAndOpFlags());
|
||||
while (true) {
|
||||
if (isShortCircuit && sink.cancellationRequested()) {
|
||||
propagateCompletion();
|
||||
spliterator = null;
|
||||
return;
|
||||
boolean forkRight = false;
|
||||
Sink<S> taskSink = sink;
|
||||
ForEachTask<S, T> task = this;
|
||||
while (!isShortCircuit || !taskSink.cancellationRequested()) {
|
||||
if (sizeEstimate <= sizeThreshold ||
|
||||
(leftSplit = rightSplit.trySplit()) == null) {
|
||||
task.helper.copyInto(taskSink, rightSplit);
|
||||
break;
|
||||
}
|
||||
|
||||
Spliterator<S> split;
|
||||
if (!AbstractTask.suggestSplit(spliterator, targetSize)
|
||||
|| (split = spliterator.trySplit()) == null) {
|
||||
helper.copyInto(sink, spliterator);
|
||||
propagateCompletion();
|
||||
spliterator = null;
|
||||
return;
|
||||
ForEachTask<S, T> leftTask = new ForEachTask<>(task, leftSplit);
|
||||
task.addToPendingCount(1);
|
||||
ForEachTask<S, T> taskToFork;
|
||||
if (forkRight) {
|
||||
forkRight = false;
|
||||
rightSplit = leftSplit;
|
||||
taskToFork = task;
|
||||
task = leftTask;
|
||||
}
|
||||
else {
|
||||
addToPendingCount(1);
|
||||
new ForEachTask<>(this, split).fork();
|
||||
forkRight = true;
|
||||
taskToFork = leftTask;
|
||||
}
|
||||
taskToFork.fork();
|
||||
sizeEstimate = rightSplit.estimateSize();
|
||||
}
|
||||
task.spliterator = null;
|
||||
task.propagateCompletion();
|
||||
}
|
||||
}
|
||||
|
||||
@ -301,7 +314,7 @@ final class ForEachOps {
|
||||
* A {@code ForkJoinTask} for performing a parallel for-each operation
|
||||
* which visits the elements in encounter order
|
||||
*/
|
||||
private static class ForEachOrderedTask<S, T> extends CountedCompleter<Void> {
|
||||
static final class ForEachOrderedTask<S, T> extends CountedCompleter<Void> {
|
||||
private final PipelineHelper<T> helper;
|
||||
private Spliterator<S> spliterator;
|
||||
private final long targetSize;
|
||||
@ -343,25 +356,15 @@ final class ForEachOps {
|
||||
}
|
||||
|
||||
private static <S, T> void doCompute(ForEachOrderedTask<S, T> task) {
|
||||
while (true) {
|
||||
Spliterator<S> split;
|
||||
if (!AbstractTask.suggestSplit(task.spliterator, task.targetSize)
|
||||
|| (split = task.spliterator.trySplit()) == null) {
|
||||
if (task.getPendingCount() == 0) {
|
||||
task.helper.wrapAndCopyInto(task.action, task.spliterator);
|
||||
}
|
||||
else {
|
||||
Node.Builder<T> nb = task.helper.makeNodeBuilder(
|
||||
task.helper.exactOutputSizeIfKnown(task.spliterator),
|
||||
size -> (T[]) new Object[size]);
|
||||
task.node = task.helper.wrapAndCopyInto(nb, task.spliterator).build();
|
||||
}
|
||||
task.tryComplete();
|
||||
return;
|
||||
}
|
||||
else {
|
||||
ForEachOrderedTask<S, T> leftChild = new ForEachOrderedTask<>(task, split, task.leftPredecessor);
|
||||
ForEachOrderedTask<S, T> rightChild = new ForEachOrderedTask<>(task, task.spliterator, leftChild);
|
||||
Spliterator<S> rightSplit = task.spliterator, leftSplit;
|
||||
long sizeThreshold = task.targetSize;
|
||||
boolean forkRight = false;
|
||||
while (rightSplit.estimateSize() > sizeThreshold &&
|
||||
(leftSplit = rightSplit.trySplit()) != null) {
|
||||
ForEachOrderedTask<S, T> leftChild =
|
||||
new ForEachOrderedTask<>(task, leftSplit, task.leftPredecessor);
|
||||
ForEachOrderedTask<S, T> rightChild =
|
||||
new ForEachOrderedTask<>(task, rightSplit, leftChild);
|
||||
task.completionMap.put(leftChild, rightChild);
|
||||
task.addToPendingCount(1); // forking
|
||||
rightChild.addToPendingCount(1); // right pending on left child
|
||||
@ -372,10 +375,30 @@ final class ForEachOps {
|
||||
else
|
||||
leftChild.addToPendingCount(-1); // left child is ready to go when ready
|
||||
}
|
||||
leftChild.fork();
|
||||
ForEachOrderedTask<S, T> taskToFork;
|
||||
if (forkRight) {
|
||||
forkRight = false;
|
||||
rightSplit = leftSplit;
|
||||
task = leftChild;
|
||||
taskToFork = rightChild;
|
||||
}
|
||||
else {
|
||||
forkRight = true;
|
||||
task = rightChild;
|
||||
taskToFork = leftChild;
|
||||
}
|
||||
taskToFork.fork();
|
||||
}
|
||||
if (task.getPendingCount() == 0) {
|
||||
task.helper.wrapAndCopyInto(task.action, rightSplit);
|
||||
}
|
||||
else {
|
||||
Node.Builder<T> nb = task.helper.makeNodeBuilder(
|
||||
task.helper.exactOutputSizeIfKnown(rightSplit),
|
||||
size -> (T[]) new Object[size]);
|
||||
task.node = task.helper.wrapAndCopyInto(nb, rightSplit).build();
|
||||
}
|
||||
task.tryComplete();
|
||||
}
|
||||
|
||||
@Override
|
||||
|
@ -1829,25 +1829,20 @@ final class Nodes {
|
||||
@Override
|
||||
public void compute() {
|
||||
SizedCollectorTask<P_IN, P_OUT, T_SINK, K> task = this;
|
||||
while (true) {
|
||||
Spliterator<P_IN> leftSplit;
|
||||
if (!AbstractTask.suggestSplit(task.spliterator, task.targetSize)
|
||||
|| ((leftSplit = task.spliterator.trySplit()) == null)) {
|
||||
if (task.offset + task.length >= MAX_ARRAY_SIZE)
|
||||
throw new IllegalArgumentException("Stream size exceeds max array size");
|
||||
T_SINK sink = (T_SINK) task;
|
||||
task.helper.wrapAndCopyInto(sink, task.spliterator);
|
||||
task.propagateCompletion();
|
||||
return;
|
||||
}
|
||||
else {
|
||||
Spliterator<P_IN> rightSplit = spliterator, leftSplit;
|
||||
while (rightSplit.estimateSize() > task.targetSize &&
|
||||
(leftSplit = rightSplit.trySplit()) != null) {
|
||||
task.setPendingCount(1);
|
||||
long leftSplitSize = leftSplit.estimateSize();
|
||||
task.makeChild(leftSplit, task.offset, leftSplitSize).fork();
|
||||
task = task.makeChild(task.spliterator, task.offset + leftSplitSize,
|
||||
task = task.makeChild(rightSplit, task.offset + leftSplitSize,
|
||||
task.length - leftSplitSize);
|
||||
}
|
||||
}
|
||||
if (task.offset + task.length >= MAX_ARRAY_SIZE)
|
||||
throw new IllegalArgumentException("Stream size exceeds max array size");
|
||||
T_SINK sink = (T_SINK) task;
|
||||
task.helper.wrapAndCopyInto(sink, rightSplit);
|
||||
task.propagateCompletion();
|
||||
}
|
||||
|
||||
abstract K makeChild(Spliterator<P_IN> spliterator, long offset, long size);
|
||||
|
Loading…
Reference in New Issue
Block a user