8341137: Optimize long vector multiplication using x86 VPMUL[U]DQ instruction

Co-authored-by: Vladimir Ivanov <vlivanov@openjdk.org>
Reviewed-by: vlivanov, sviswanathan
This commit is contained in:
Jatin Bhateja 2024-11-21 18:13:32 +00:00
parent 191b38e712
commit dc9a6ef610
7 changed files with 544 additions and 1 deletions

View File

@ -6179,6 +6179,7 @@ instruct evmulL_reg(vec dst, vec src1, vec src2) %{
VM_Version::supports_avx512dq()) ||
VM_Version::supports_avx512vldq());
match(Set dst (MulVL src1 src2));
ins_cost(500);
format %{ "evpmullq $dst,$src1,$src2\t! mul packedL" %}
ins_encode %{
assert(UseAVX > 2, "required");
@ -6195,6 +6196,7 @@ instruct evmulL_mem(vec dst, vec src, memory mem) %{
VM_Version::supports_avx512vldq()));
match(Set dst (MulVL src (LoadVector mem)));
format %{ "evpmullq $dst,$src,$mem\t! mul packedL" %}
ins_cost(500);
ins_encode %{
assert(UseAVX > 2, "required");
int vlen_enc = vector_length_encoding(this);
@ -6206,6 +6208,7 @@ instruct evmulL_mem(vec dst, vec src, memory mem) %{
instruct vmulL(vec dst, vec src1, vec src2, vec xtmp) %{
predicate(UseAVX == 0);
match(Set dst (MulVL src1 src2));
ins_cost(500);
effect(TEMP dst, TEMP xtmp);
format %{ "mulVL $dst, $src1, $src2\t! using $xtmp as TEMP" %}
ins_encode %{
@ -6232,6 +6235,7 @@ instruct vmulL_reg(vec dst, vec src1, vec src2, vec xtmp1, vec xtmp2) %{
!VM_Version::supports_avx512vldq())));
match(Set dst (MulVL src1 src2));
effect(TEMP xtmp1, TEMP xtmp2);
ins_cost(500);
format %{ "vmulVL $dst, $src1, $src2\t! using $xtmp1, $xtmp2 as TEMP" %}
ins_encode %{
int vlen_enc = vector_length_encoding(this);
@ -6248,6 +6252,30 @@ instruct vmulL_reg(vec dst, vec src1, vec src2, vec xtmp1, vec xtmp2) %{
ins_pipe( pipe_slow );
%}
instruct vmuludq_reg(vec dst, vec src1, vec src2) %{
predicate(UseAVX > 0 && n->as_MulVL()->has_uint_inputs());
match(Set dst (MulVL src1 src2));
ins_cost(100);
format %{ "vpmuludq $dst,$src1,$src2\t! muludq packedL" %}
ins_encode %{
int vlen_enc = vector_length_encoding(this);
__ vpmuludq($dst$$XMMRegister, $src1$$XMMRegister, $src2$$XMMRegister, vlen_enc);
%}
ins_pipe( pipe_slow );
%}
instruct vmuldq_reg(vec dst, vec src1, vec src2) %{
predicate(UseAVX > 0 && n->as_MulVL()->has_int_inputs());
match(Set dst (MulVL src1 src2));
ins_cost(100);
format %{ "vpmuldq $dst,$src1,$src2\t! muldq packedL" %}
ins_encode %{
int vlen_enc = vector_length_encoding(this);
__ vpmuldq($dst$$XMMRegister, $src1$$XMMRegister, $src2$$XMMRegister, vlen_enc);
%}
ins_pipe( pipe_slow );
%}
// Floats vector mul
instruct vmulF(vec dst, vec src) %{
predicate(UseAVX == 0);

View File

@ -193,6 +193,7 @@ class VectorUnboxNode;
class VectorSet;
class VectorReinterpretNode;
class ShiftVNode;
class MulVLNode;
class ExpandVNode;
class CompressVNode;
class CompressMNode;
@ -743,6 +744,7 @@ public:
DEFINE_CLASS_ID(Reduction, Vector, 7)
DEFINE_CLASS_ID(NegV, Vector, 8)
DEFINE_CLASS_ID(SaturatingVector, Vector, 9)
DEFINE_CLASS_ID(MulVL, Vector, 10)
DEFINE_CLASS_ID(Con, Type, 8)
DEFINE_CLASS_ID(ConI, Con, 0)
DEFINE_CLASS_ID(SafePointScalarMerge, Type, 9)
@ -970,6 +972,7 @@ public:
DEFINE_CLASS_QUERY(Mul)
DEFINE_CLASS_QUERY(Multi)
DEFINE_CLASS_QUERY(MultiBranch)
DEFINE_CLASS_QUERY(MulVL)
DEFINE_CLASS_QUERY(Neg)
DEFINE_CLASS_QUERY(NegV)
DEFINE_CLASS_QUERY(NeverBranch)

View File

@ -2085,6 +2085,55 @@ Node* VectorBlendNode::Identity(PhaseGVN* phase) {
}
return this;
}
static bool is_replicate_uint_constant(const Node* n) {
return n->Opcode() == Op_Replicate &&
n->in(1)->is_Con() &&
n->in(1)->bottom_type()->isa_long() &&
n->in(1)->bottom_type()->is_long()->get_con() <= 0xFFFFFFFFL;
}
static bool has_vector_elements_fit_uint(Node* n) {
auto is_lower_doubleword_mask_pattern = [](const Node* n) {
return n->Opcode() == Op_AndV &&
(is_replicate_uint_constant(n->in(1)) ||
is_replicate_uint_constant(n->in(2)));
};
auto is_clear_upper_doubleword_uright_shift_pattern = [](const Node* n) {
return n->Opcode() == Op_URShiftVL &&
n->in(2)->Opcode() == Op_RShiftCntV && n->in(2)->in(1)->is_Con() &&
n->in(2)->in(1)->bottom_type()->isa_int() &&
n->in(2)->in(1)->bottom_type()->is_int()->get_con() >= 32;
};
return is_lower_doubleword_mask_pattern(n) || // (AndV SRC (Replicate C)) where C <= 0xFFFFFFFF
is_clear_upper_doubleword_uright_shift_pattern(n); // (URShiftV SRC S) where S >= 32
}
static bool has_vector_elements_fit_int(Node* n) {
auto is_cast_integer_to_long_pattern = [](const Node* n) {
return n->Opcode() == Op_VectorCastI2X && Matcher::vector_element_basic_type(n) == T_LONG;
};
auto is_clear_upper_doubleword_right_shift_pattern = [](const Node* n) {
return n->Opcode() == Op_RShiftVL &&
n->in(2)->Opcode() == Op_RShiftCntV && n->in(2)->in(1)->is_Con() &&
n->in(2)->in(1)->bottom_type()->isa_int() &&
n->in(2)->in(1)->bottom_type()->is_int()->get_con() >= 32;
};
return is_cast_integer_to_long_pattern(n) || // (VectorCastI2X SRC)
is_clear_upper_doubleword_right_shift_pattern(n); // (RShiftV SRC S) where S >= 32
}
bool MulVLNode::has_int_inputs() const {
return has_vector_elements_fit_int(in(1)) &&
has_vector_elements_fit_int(in(2));
}
bool MulVLNode::has_uint_inputs() const {
return has_vector_elements_fit_uint(in(1)) &&
has_vector_elements_fit_uint(in(2));
}
#ifndef PRODUCT
void VectorBoxAllocateNode::dump_spec(outputStream *st) const {

View File

@ -441,8 +441,12 @@ class MulVINode : public VectorNode {
// Vector multiply long
class MulVLNode : public VectorNode {
public:
MulVLNode(Node* in1, Node* in2, const TypeVect* vt) : VectorNode(in1, in2, vt) {}
MulVLNode(Node* in1, Node* in2, const TypeVect* vt) : VectorNode(in1, in2, vt) {
init_class_id(Class_MulVL);
}
virtual int Opcode() const;
bool has_int_inputs() const;
bool has_uint_inputs() const;
};
//------------------------------MulVFNode--------------------------------------

View File

@ -0,0 +1,249 @@
/*
* Copyright (c) 2024, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
package compiler.vectorapi;
import jdk.incubator.vector.*;
import java.util.Random;
import java.util.stream.IntStream;
import compiler.lib.ir_framework.*;
import java.lang.reflect.Array;
/**
* @test
* @bug 8341137
* @summary Optimize long vector multiplication using x86 VPMUL[U]DQ instruction.
* @modules jdk.incubator.vector
* @library /test/lib /
* @run driver compiler.vectorapi.VectorMultiplyOpt
*/
public class VectorMultiplyOpt {
public static int[] isrc1;
public static int[] isrc2;
public static long[] lsrc1;
public static long[] lsrc2;
public static long[] res;
public static final int SIZE = 1024;
public static final Random r = jdk.test.lib.Utils.getRandomInstance();
public static final VectorSpecies<Long> LSP = LongVector.SPECIES_PREFERRED;
public static final VectorSpecies<Integer> ISP = IntVector.SPECIES_PREFERRED;
public static final long mask1 = r.nextLong(0xFFFFFFFFL);
public static final long mask2 = r.nextLong(0xFFFFFFFFL);
public static final long mask3 = r.nextLong(0xFFFFFFFFL);
public static final long mask4 = r.nextLong(0xFFFFFFFFL);
public static final long mask5 = r.nextLong(0xFFFFFFFFL);
public static final long mask6 = r.nextLong(0xFFFFFFFFL);
public static final int shift1 = r.nextInt(32) + 32;
public static final int shift2 = r.nextInt(32) + 32;
public static final int shift3 = r.nextInt(32) + 32;
public static final int shift4 = r.nextInt(32) + 32;
public static final int shift5 = r.nextInt(32) + 32;
public VectorMultiplyOpt() {
lsrc1 = new long[SIZE];
lsrc2 = new long[SIZE];
res = new long[SIZE];
isrc1 = new int[SIZE + 16];
isrc2 = new int[SIZE + 16];
IntStream.range(0, SIZE).forEach(i -> { lsrc1[i] = Long.MAX_VALUE * r.nextLong(); });
IntStream.range(0, SIZE).forEach(i -> { lsrc2[i] = Long.MAX_VALUE * r.nextLong(); });
IntStream.range(0, SIZE).forEach(i -> { isrc1[i] = Integer.MAX_VALUE * r.nextInt(); });
IntStream.range(0, SIZE).forEach(i -> { isrc2[i] = Integer.MAX_VALUE * r.nextInt(); });
}
public static void main(String[] args) {
TestFramework testFramework = new TestFramework();
testFramework.setDefaultWarmup(5000)
.addFlags("--add-modules=jdk.incubator.vector")
.start();
System.out.println("PASSED");
}
interface Validator {
public long apply(long src1, long src2);
}
public static void validate(String msg, long[] actual, Object src1, Object src2, Validator func) {
for (int i = 0; i < actual.length; i++) {
long expected;
if (long[].class == src1.getClass()) {
expected = func.apply(Array.getLong(src1, i), Array.getLong(src2, i));
} else {
assert int[].class == src1.getClass();
expected = func.apply(Array.getInt(src1, i), Array.getInt(src2, i));
}
if (actual[i] != expected) {
throw new AssertionError(msg + "index " + i + ": src1 = " + Array.get(src1, i) + " src2 = " +
Array.get(src2, i) + " actual = " + actual[i] + " expected = " + expected);
}
}
}
@Test
@IR(counts = {IRNode.MUL_VL, " >0 ", IRNode.AND_VL, " >0 "}, applyIfCPUFeature = {"avx", "true"})
@IR(counts = {"vmuludq", " >0 "}, phase = CompilePhase.FINAL_CODE, applyIfCPUFeature = {"avx", "true"})
@Warmup(value = 10000)
public static void test_pattern1() {
int i = 0;
for (; i < LSP.loopBound(res.length); i += LSP.length()) {
LongVector vsrc1 = LongVector.fromArray(LSP, lsrc1, i);
LongVector vsrc2 = LongVector.fromArray(LSP, lsrc2, i);
vsrc1.lanewise(VectorOperators.AND, mask1)
.lanewise(VectorOperators.MUL, vsrc2.lanewise(VectorOperators.AND, mask1))
.intoArray(res, i);
}
for (; i < res.length; i++) {
res[i] = (lsrc1[i] & mask1) * (lsrc2[i] & mask1);
}
}
@Check(test = "test_pattern1")
public void test_pattern1_validate() {
validate("pattern1 ", res, lsrc1, lsrc2, (l1, l2) -> (l1 & mask1) * (l2 & mask1));
}
@Test
@IR(counts = {IRNode.MUL_VL, " >0 ", IRNode.AND_VL, " >0 ", IRNode.URSHIFT_VL, " >0 "}, applyIfCPUFeature = {"avx", "true"})
@IR(counts = {"vmuludq", " >0 "}, phase = CompilePhase.FINAL_CODE, applyIfCPUFeature = {"avx", "true"})
@Warmup(value = 10000)
public static void test_pattern2() {
int i = 0;
for (; i < LSP.loopBound(res.length); i += LSP.length()) {
LongVector vsrc1 = LongVector.fromArray(LSP, lsrc1, i);
LongVector vsrc2 = LongVector.fromArray(LSP, lsrc2, i);
vsrc1.lanewise(VectorOperators.AND, mask2)
.lanewise(VectorOperators.MUL, vsrc2.lanewise(VectorOperators.LSHR, shift1))
.intoArray(res, i);
}
for (; i < res.length; i++) {
res[i] = (lsrc1[i] & mask2) * (lsrc2[i] >>> shift1);
}
}
@Check(test = "test_pattern2")
public void test_pattern2_validate() {
validate("pattern2 ", res, lsrc1, lsrc2, (l1, l2) -> (l1 & mask2) * (l2 >>> shift1));
}
@Test
@IR(counts = {IRNode.MUL_VL, " >0 ", IRNode.URSHIFT_VL, " >0 "}, applyIfCPUFeature = {"avx", "true"})
@IR(counts = {"vmuludq", " >0 "}, phase = CompilePhase.FINAL_CODE, applyIfCPUFeature = {"avx", "true"})
@Warmup(value = 10000)
public static void test_pattern3() {
int i = 0;
for (; i < LSP.loopBound(res.length); i += LSP.length()) {
LongVector vsrc1 = LongVector.fromArray(LSP, lsrc1, i);
LongVector vsrc2 = LongVector.fromArray(LSP, lsrc2, i);
vsrc1.lanewise(VectorOperators.LSHR, shift2)
.lanewise(VectorOperators.MUL, vsrc2.lanewise(VectorOperators.LSHR, shift3))
.intoArray(res, i);
}
for (; i < res.length; i++) {
res[i] = (lsrc1[i] >>> shift2) * (lsrc2[i] >>> shift3);
}
}
@Check(test = "test_pattern3")
public void test_pattern3_validate() {
validate("pattern3 ", res, lsrc1, lsrc2, (l1, l2) -> (l1 >>> shift2) * (l2 >>> shift3));
}
@Test
@IR(counts = {IRNode.MUL_VL, " >0 ", IRNode.URSHIFT_VL, " >0 "}, applyIfCPUFeature = {"avx", "true"})
@IR(counts = {"vmuludq", " >0 "}, applyIfCPUFeature = {"avx", "true"}, phase = CompilePhase.FINAL_CODE)
@Warmup(value = 10000)
public static void test_pattern4() {
int i = 0;
for (; i < LSP.loopBound(res.length); i += LSP.length()) {
LongVector vsrc1 = LongVector.fromArray(LSP, lsrc1, i);
LongVector vsrc2 = LongVector.fromArray(LSP, lsrc2, i);
vsrc1.lanewise(VectorOperators.LSHR, shift4)
.lanewise(VectorOperators.MUL, vsrc2.lanewise(VectorOperators.AND, mask4))
.intoArray(res, i);
}
for (; i < res.length; i++) {
res[i] = (lsrc1[i] >>> shift4) * (lsrc2[i] & mask4);
}
}
@Check(test = "test_pattern4")
public void test_pattern4_validate() {
validate("pattern4 ", res, lsrc1, lsrc2, (l1, l2) -> (l1 >>> shift4) * (l2 & mask4));
}
@Test
@IR(counts = {IRNode.MUL_VL, " >0 ", IRNode.VECTOR_CAST_I2L, " >0 "}, applyIfCPUFeature = {"avx", "true"})
@IR(counts = {"vmuldq", " >0 "}, applyIfCPUFeature = {"avx", "true"}, phase = CompilePhase.FINAL_CODE)
@Warmup(value = 10000)
public static void test_pattern5() {
int i = 0;
for (; i < LSP.loopBound(res.length); i += LSP.length()) {
LongVector vsrc1 = IntVector.fromArray(ISP, isrc1, i)
.convert(VectorOperators.I2L, 0)
.reinterpretAsLongs();
LongVector vsrc2 = IntVector.fromArray(ISP, isrc2, i)
.convert(VectorOperators.I2L, 0)
.reinterpretAsLongs();
vsrc1.lanewise(VectorOperators.MUL, vsrc2).intoArray(res, i);
}
for (; i < res.length; i++) {
res[i] = Math.multiplyFull(isrc1[i], isrc2[i]);
}
}
@Check(test = "test_pattern5")
public void test_pattern5_validate() {
validate("pattern5 ", res, isrc1, isrc2, (i1, i2) -> Math.multiplyFull((int)i1, (int)i2));
}
@Test
@IR(counts = {IRNode.MUL_VL, " >0 ", IRNode.RSHIFT_VL, " >0 "}, applyIfCPUFeature = {"avx", "true"})
@IR(counts = {"vmuldq", " >0 "}, applyIfCPUFeature = {"avx", "true"}, phase = CompilePhase.FINAL_CODE)
@Warmup(value = 10000)
public static void test_pattern6() {
int i = 0;
for (; i < LSP.loopBound(res.length); i += LSP.length()) {
LongVector vsrc1 = LongVector.fromArray(LSP, lsrc1, i);
LongVector vsrc2 = LongVector.fromArray(LSP, lsrc2, i);
vsrc1.lanewise(VectorOperators.ASHR, shift5)
.lanewise(VectorOperators.MUL, vsrc2.lanewise(VectorOperators.ASHR, shift5))
.intoArray(res, i);
}
for (; i < res.length; i++) {
res[i] = (lsrc1[i] >> shift5) * (lsrc2[i] >> shift5);
}
}
@Check(test = "test_pattern6")
public void test_pattern6_validate() {
validate("pattern6 ", res, lsrc1, lsrc2, (l1, l2) -> (l1 >> shift5) * (l2 >> shift5));
}
}

View File

@ -0,0 +1,125 @@
/*
* Copyright (c) 2024, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
package org.openjdk.bench.jdk.incubator.vector;
import java.util.concurrent.TimeUnit;
import org.openjdk.jmh.annotations.*;
import jdk.incubator.vector.*;
import java.util.stream.*;
@BenchmarkMode(Mode.Throughput)
@OutputTimeUnit(TimeUnit.MILLISECONDS)
@State(Scope.Benchmark)
@Warmup(iterations = 3, time = 1)
@Measurement(iterations = 5, time = 1)
@Fork(value = 1, jvmArgsPrepend = {"--add-modules=jdk.incubator.vector"})
public class VectorMultiplyOptBenchmark {
@Param({"1024", "2048", "4096"})
private int SIZE;
private int [] isrc1;
private int [] isrc2;
private long [] lsrc1;
private long [] lsrc2;
private long [] res;
private static final VectorSpecies<Long> LSP = LongVector.SPECIES_PREFERRED;
private static final VectorSpecies<Integer> ISP = IntVector.SPECIES_PREFERRED;
@Setup(Level.Trial)
public void Setup() {
lsrc1 = LongStream.range(Long.MAX_VALUE - SIZE, Long.MAX_VALUE).toArray();
lsrc2 = LongStream.range(0, SIZE).toArray();
isrc1 = IntStream.range(Integer.MAX_VALUE - 2 * SIZE, Integer.MAX_VALUE).toArray();
isrc2 = IntStream.range(0, 2 * SIZE).toArray();
res = new long[SIZE];
}
@Benchmark
public void test_bm_pattern1() {
for (int i = 0; i < LSP.loopBound(res.length); i += LSP.length()) {
LongVector vsrc1 = LongVector.fromArray(LSP, lsrc1, i);
LongVector vsrc2 = LongVector.fromArray(LSP, lsrc2, i);
vsrc1.lanewise(VectorOperators.AND, 0xFFFFFFFFL)
.lanewise(VectorOperators.MUL, vsrc2.lanewise(VectorOperators.AND, 0xFFFFFFFFL))
.intoArray(res, i);
}
}
@Benchmark
public void test_bm_pattern2() {
for (int i = 0; i < LSP.loopBound(res.length); i += LSP.length()) {
LongVector vsrc1 = LongVector.fromArray(LSP, lsrc1, i);
LongVector vsrc2 = LongVector.fromArray(LSP, lsrc2, i);
vsrc1.lanewise(VectorOperators.AND, 0xFFFFFFFFL)
.lanewise(VectorOperators.MUL, vsrc2.lanewise(VectorOperators.LSHR, 32))
.intoArray(res, i);
}
}
@Benchmark
public void test_bm_pattern3() {
for (int i = 0; i < LSP.loopBound(res.length); i += LSP.length()) {
LongVector vsrc1 = LongVector.fromArray(LSP, lsrc1, i);
LongVector vsrc2 = LongVector.fromArray(LSP, lsrc2, i);
vsrc1.lanewise(VectorOperators.LSHR, 32)
.lanewise(VectorOperators.MUL, vsrc2.lanewise(VectorOperators.LSHR, 32))
.intoArray(res, i);
}
}
@Benchmark
public void test_bm_pattern4() {
for (int i = 0; i < LSP.loopBound(res.length); i += LSP.length()) {
LongVector vsrc1 = LongVector.fromArray(LSP, lsrc1, i);
LongVector vsrc2 = LongVector.fromArray(LSP, lsrc2, i);
vsrc1.lanewise(VectorOperators.LSHR, 32)
.lanewise(VectorOperators.MUL, vsrc2.lanewise(VectorOperators.AND, 0xFFFFFFFFL))
.intoArray(res, i);
}
}
@Benchmark
public void test_bm_pattern5() {
for (int i = 0; i < LSP.loopBound(res.length); i += LSP.length()) {
LongVector vsrc1 = IntVector.fromArray(ISP, isrc1, i)
.convert(VectorOperators.I2L, 0)
.reinterpretAsLongs();
LongVector vsrc2 = IntVector.fromArray(ISP, isrc2, i)
.convert(VectorOperators.I2L, 0)
.reinterpretAsLongs();
vsrc1.lanewise(VectorOperators.MUL, vsrc2).intoArray(res, i);
}
}
@Benchmark
public void test_bm_pattern6() {
for (int i = 0; i < LSP.loopBound(res.length); i += LSP.length()) {
LongVector vsrc1 = LongVector.fromArray(LSP, lsrc1, i);
LongVector vsrc2 = LongVector.fromArray(LSP, lsrc2, i);
vsrc1.lanewise(VectorOperators.ASHR, 32)
.lanewise(VectorOperators.MUL, vsrc2.lanewise(VectorOperators.ASHR, 32))
.intoArray(res, i);
}
}
}

View File

@ -0,0 +1,85 @@
/*
* Copyright (c) 2024, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
package org.openjdk.bench.jdk.incubator.vector;
import java.util.concurrent.TimeUnit;
import org.openjdk.jmh.annotations.*;
import jdk.incubator.vector.*;
import java.util.stream.*;
@BenchmarkMode(Mode.Throughput)
@OutputTimeUnit(TimeUnit.MILLISECONDS)
@State(Scope.Benchmark)
@Warmup(iterations = 3, time = 1)
@Measurement(iterations = 5, time = 1)
@Fork(value = 1, jvmArgsPrepend = {"--add-modules=jdk.incubator.vector"})
public class VectorXXH3HashingBenchmark {
@Param({"1024", "2048", "4096", "8192"})
private int SIZE;
private long [] accumulators;
private byte [] input;
private byte [] SECRET;
private static final VectorShuffle<Long> LONG_SHUFFLE_PREFERRED = VectorShuffle.fromOp(LongVector.SPECIES_PREFERRED, i -> i ^ 1);
@Setup(Level.Trial)
public void Setup() {
accumulators = new long[SIZE];
input = new byte[SIZE * 8];
SECRET = new byte[SIZE*8];
IntStream.range(0, SIZE*8).forEach(
i -> {
input[i] = (byte)i;
SECRET[i] = (byte)-i;
}
);
}
@Benchmark
public void hashingKernel() {
for (int block = 0; block < input.length / 1024; block++) {
for (int stripe = 0; stripe < 16; stripe++) {
int inputOffset = block * 1024 + stripe * 64;
int secretOffset = stripe * 8;
for (int i = 0; i < 8; i += LongVector.SPECIES_PREFERRED.length()) {
LongVector accumulatorsVector = LongVector.fromArray(LongVector.SPECIES_PREFERRED, accumulators, i);
LongVector inputVector = ByteVector.fromArray(ByteVector.SPECIES_PREFERRED, input, inputOffset + i * 8).reinterpretAsLongs();
LongVector secretVector = ByteVector.fromArray(ByteVector.SPECIES_PREFERRED, SECRET, secretOffset + i * 8).reinterpretAsLongs();
LongVector key = inputVector
.lanewise(VectorOperators.XOR, secretVector)
.reinterpretAsLongs();
LongVector low = key.and(0xFFFF_FFFFL);
LongVector high = key.lanewise(VectorOperators.LSHR, 32);
accumulatorsVector
.add(inputVector.rearrange(LONG_SHUFFLE_PREFERRED))
.add(high.mul(low))
.intoArray(accumulators, i);
}
}
}
}
}