diff --git a/jdk/src/share/classes/java/util/DualPivotQuicksort.java b/jdk/src/share/classes/java/util/DualPivotQuicksort.java index b368d0b95b1..07cda259dd4 100644 --- a/jdk/src/share/classes/java/util/DualPivotQuicksort.java +++ b/jdk/src/share/classes/java/util/DualPivotQuicksort.java @@ -36,12 +36,12 @@ package java.util; * @author Jon Bentley * @author Josh Bloch * - * @version 2009.11.16 m765.827.v12a + * @version 2009.11.29 m765.827.12i */ final class DualPivotQuicksort { /** - * Suppresses default constructor. + * Prevents instantiation. */ private DualPivotQuicksort() {} @@ -84,7 +84,7 @@ final class DualPivotQuicksort { * Sorts the specified range of the array into ascending order. The range * to be sorted extends from the index {@code fromIndex}, inclusive, to * the index {@code toIndex}, exclusive. If {@code fromIndex == toIndex}, - * the range to be sorted is empty. + * the range to be sorted is empty (and the call is a no-op). * * @param a the array to be sorted * @param fromIndex the index of the first element, inclusive, to be sorted @@ -101,8 +101,8 @@ final class DualPivotQuicksort { /** * Sorts the specified range of the array into ascending order. This * method differs from the public {@code sort} method in that the - * {@code right} index is inclusive, and it does no range checking on - * {@code left} or {@code right}. + * {@code right} index is inclusive, and it does no range checking + * on {@code left} or {@code right}. * * @param a the array to be sorted * @param left the index of the first element, inclusive, to be sorted @@ -111,13 +111,13 @@ final class DualPivotQuicksort { private static void doSort(int[] a, int left, int right) { // Use insertion sort on tiny arrays if (right - left + 1 < INSERTION_SORT_THRESHOLD) { - for (int k = left + 1; k <= right; k++) { - int ak = a[k]; + for (int i = left + 1; i <= right; i++) { + int ai = a[i]; int j; - for (j = k - 1; j >= left && ak < a[j]; j--) { + for (j = i - 1; j >= left && ai < a[j]; j--) { a[j + 1] = a[j]; } - a[j + 1] = ak; + a[j + 1] = ai; } } else { // Use Dual-Pivot Quicksort on large arrays dualPivotQuicksort(a, left, right); @@ -162,7 +162,7 @@ final class DualPivotQuicksort { * second terciles of the array. Note that pivot1 <= pivot2. * * The pivots are stored in local variables, and the first and - * the last of the sorted elements are moved to the locations + * the last of the elements to be sorted are moved to the locations * formerly occupied by the pivots. When partitioning is complete, * the pivots are swapped back into their final positions, and * excluded from subsequent sorting. @@ -170,27 +170,26 @@ final class DualPivotQuicksort { int pivot1 = ae2; a[e2] = a[left]; int pivot2 = ae4; a[e4] = a[right]; - /* - * Partitioning - * - * left part center part right part - * ------------------------------------------------------------ - * [ < pivot1 | pivot1 <= && <= pivot2 | ? | > pivot2 ] - * ------------------------------------------------------------ - * ^ ^ ^ - * | | | - * less k great - */ - // Pointers int less = left + 1; // The index of first element of center part int great = right - 1; // The index before first element of right part - boolean pivotsDiffer = pivot1 != pivot2; + boolean pivotsDiffer = (pivot1 != pivot2); if (pivotsDiffer) { /* + * Partitioning: + * + * left part center part right part + * +------------------------------------------------------------+ + * | < pivot1 | pivot1 <= && <= pivot2 | ? | > pivot2 | + * +------------------------------------------------------------+ + * ^ ^ ^ + * | | | + * less k great + * * Invariants: + * * all in (left, less) < pivot1 * pivot1 <= all in [less, k) <= pivot2 * all in (great, right) > pivot2 @@ -200,37 +199,37 @@ final class DualPivotQuicksort { outer: for (int k = less; k <= great; k++) { int ak = a[k]; - if (ak < pivot1) { - if (k > less) { + if (ak < pivot1) { // Move a[k] to left part + if (k != less) { a[k] = a[less]; a[less] = ak; } less++; - } else if (ak > pivot2) { + } else if (ak > pivot2) { // Move a[k] to right part while (a[great] > pivot2) { - if (k == great--) { + if (great-- == k) { break outer; } } - a[k] = a[great]; - a[great--] = ak; - - if ((ak = a[k]) < pivot1) { + if (a[great] < pivot1) { a[k] = a[less]; - a[less++] = ak; + a[less++] = a[great]; + a[great--] = ak; + } else { // pivot1 <= a[great] <= pivot2 + a[k] = a[great]; + a[great--] = ak; } } } } else { // Pivots are equal /* - * Partition degenerates to the traditional 3-way - * (or "Dutch National Flag") partition: + * Partition degenerates to the traditional 3-way, + * or "Dutch National Flag", partition: * * left part center part right part - * ------------------------------------------------- - * [ < pivot | == pivot | ? | > pivot ] - * ------------------------------------------------- - * + * +----------------------------------------------+ + * | < pivot | == pivot | ? | > pivot | + * +----------------------------------------------+ * ^ ^ ^ * | | | * less k great @@ -243,30 +242,34 @@ final class DualPivotQuicksort { * * Pointer k is the first index of ?-part */ - outer: for (int k = less; k <= great; k++) { int ak = a[k]; if (ak == pivot1) { continue; } - if (ak < pivot1) { - if (k > less) { + if (ak < pivot1) { // Move a[k] to left part + if (k != less) { a[k] = a[less]; a[less] = ak; } less++; - } else { // a[k] > pivot + } else { // (a[k] > pivot1) - Move a[k] to right part + /* + * We know that pivot1 == a[e3] == pivot2. Thus, we know + * that great will still be >= k when the following loop + * terminates, even though we don't test for it explicitly. + * In other words, a[e3] acts as a sentinel for great. + */ while (a[great] > pivot1) { - if (k == great--) { - break outer; - } + great--; } - a[k] = a[great]; - a[great--] = ak; - - if ((ak = a[k]) < pivot1) { + if (a[great] < pivot1) { a[k] = a[less]; - a[less++] = ak; + a[less++] = a[great]; + a[great--] = ak; + } else { // a[great] == pivot1 + a[k] = pivot1; + a[great--] = ak; } } } @@ -289,26 +292,55 @@ final class DualPivotQuicksort { } /* - * If center part is too large (comprises > 5/6 of - * the array), swap internal pivot values to ends + * If center part is too large (comprises > 2/3 of the array), + * swap internal pivot values to ends */ - if (less < e1 && e5 < great) { + if (less < e1 && great > e5) { while (a[less] == pivot1) { less++; } while (a[great] == pivot2) { great--; } - for (int k = less + 1; k <= great; ) { + + /* + * Partitioning: + * + * left part center part right part + * +----------------------------------------------------------+ + * | == pivot1 | pivot1 < && < pivot2 | ? | == pivot2 | + * +----------------------------------------------------------+ + * ^ ^ ^ + * | | | + * less k great + * + * Invariants: + * + * all in (*, less) == pivot1 + * pivot1 < all in [less, k) < pivot2 + * all in (great, *) == pivot2 + * + * Pointer k is the first index of ?-part + */ + outer: + for (int k = less; k <= great; k++) { int ak = a[k]; - if (ak == pivot1) { - a[k++] = a[less]; - a[less++] = pivot1; - } else if (ak == pivot2) { - a[k] = a[great]; + if (ak == pivot2) { // Move a[k] to right part + while (a[great] == pivot2) { + if (great-- == k) { + break outer; + } + } + if (a[great] == pivot1) { + a[k] = a[less]; + a[less++] = pivot1; + } else { // pivot1 < a[great] < pivot2 + a[k] = a[great]; + } a[great--] = pivot2; - } else { - k++; + } else if (ak == pivot1) { // Move a[k] to left part + a[k] = a[less]; + a[less++] = pivot1; } } } @@ -330,7 +362,7 @@ final class DualPivotQuicksort { * Sorts the specified range of the array into ascending order. The range * to be sorted extends from the index {@code fromIndex}, inclusive, to * the index {@code toIndex}, exclusive. If {@code fromIndex == toIndex}, - * the range to be sorted is empty. + * the range to be sorted is empty (and the call is a no-op). * * @param a the array to be sorted * @param fromIndex the index of the first element, inclusive, to be sorted @@ -357,13 +389,13 @@ final class DualPivotQuicksort { private static void doSort(long[] a, int left, int right) { // Use insertion sort on tiny arrays if (right - left + 1 < INSERTION_SORT_THRESHOLD) { - for (int k = left + 1; k <= right; k++) { - long ak = a[k]; + for (int i = left + 1; i <= right; i++) { + long ai = a[i]; int j; - for (j = k - 1; j >= left && ak < a[j]; j--) { + for (j = i - 1; j >= left && ai < a[j]; j--) { a[j + 1] = a[j]; } - a[j + 1] = ak; + a[j + 1] = ai; } } else { // Use Dual-Pivot Quicksort on large arrays dualPivotQuicksort(a, left, right); @@ -408,7 +440,7 @@ final class DualPivotQuicksort { * second terciles of the array. Note that pivot1 <= pivot2. * * The pivots are stored in local variables, and the first and - * the last of the sorted elements are moved to the locations + * the last of the elements to be sorted are moved to the locations * formerly occupied by the pivots. When partitioning is complete, * the pivots are swapped back into their final positions, and * excluded from subsequent sorting. @@ -416,27 +448,26 @@ final class DualPivotQuicksort { long pivot1 = ae2; a[e2] = a[left]; long pivot2 = ae4; a[e4] = a[right]; - /* - * Partitioning - * - * left part center part right part - * ------------------------------------------------------------ - * [ < pivot1 | pivot1 <= && <= pivot2 | ? | > pivot2 ] - * ------------------------------------------------------------ - * ^ ^ ^ - * | | | - * less k great - */ - // Pointers int less = left + 1; // The index of first element of center part int great = right - 1; // The index before first element of right part - boolean pivotsDiffer = pivot1 != pivot2; + boolean pivotsDiffer = (pivot1 != pivot2); if (pivotsDiffer) { /* + * Partitioning: + * + * left part center part right part + * +------------------------------------------------------------+ + * | < pivot1 | pivot1 <= && <= pivot2 | ? | > pivot2 | + * +------------------------------------------------------------+ + * ^ ^ ^ + * | | | + * less k great + * * Invariants: + * * all in (left, less) < pivot1 * pivot1 <= all in [less, k) <= pivot2 * all in (great, right) > pivot2 @@ -446,37 +477,37 @@ final class DualPivotQuicksort { outer: for (int k = less; k <= great; k++) { long ak = a[k]; - if (ak < pivot1) { - if (k > less) { + if (ak < pivot1) { // Move a[k] to left part + if (k != less) { a[k] = a[less]; a[less] = ak; } less++; - } else if (ak > pivot2) { + } else if (ak > pivot2) { // Move a[k] to right part while (a[great] > pivot2) { - if (k == great--) { + if (great-- == k) { break outer; } } - a[k] = a[great]; - a[great--] = ak; - - if ((ak = a[k]) < pivot1) { + if (a[great] < pivot1) { a[k] = a[less]; - a[less++] = ak; + a[less++] = a[great]; + a[great--] = ak; + } else { // pivot1 <= a[great] <= pivot2 + a[k] = a[great]; + a[great--] = ak; } } } } else { // Pivots are equal /* - * Partition degenerates to the traditional 3-way - * (or "Dutch National Flag") partition: + * Partition degenerates to the traditional 3-way, + * or "Dutch National Flag", partition: * * left part center part right part - * ------------------------------------------------- - * [ < pivot | == pivot | ? | > pivot ] - * ------------------------------------------------- - * + * +----------------------------------------------+ + * | < pivot | == pivot | ? | > pivot | + * +----------------------------------------------+ * ^ ^ ^ * | | | * less k great @@ -489,30 +520,34 @@ final class DualPivotQuicksort { * * Pointer k is the first index of ?-part */ - outer: for (int k = less; k <= great; k++) { long ak = a[k]; if (ak == pivot1) { continue; } - if (ak < pivot1) { - if (k > less) { + if (ak < pivot1) { // Move a[k] to left part + if (k != less) { a[k] = a[less]; a[less] = ak; } less++; - } else { // a[k] > pivot + } else { // (a[k] > pivot1) - Move a[k] to right part + /* + * We know that pivot1 == a[e3] == pivot2. Thus, we know + * that great will still be >= k when the following loop + * terminates, even though we don't test for it explicitly. + * In other words, a[e3] acts as a sentinel for great. + */ while (a[great] > pivot1) { - if (k == great--) { - break outer; - } + great--; } - a[k] = a[great]; - a[great--] = ak; - - if ((ak = a[k]) < pivot1) { + if (a[great] < pivot1) { a[k] = a[less]; - a[less++] = ak; + a[less++] = a[great]; + a[great--] = ak; + } else { // a[great] == pivot1 + a[k] = pivot1; + a[great--] = ak; } } } @@ -535,26 +570,55 @@ final class DualPivotQuicksort { } /* - * If center part is too large (comprises > 5/6 of - * the array), swap internal pivot values to ends + * If center part is too large (comprises > 2/3 of the array), + * swap internal pivot values to ends */ - if (less < e1 && e5 < great) { + if (less < e1 && great > e5) { while (a[less] == pivot1) { less++; } while (a[great] == pivot2) { great--; } - for (int k = less + 1; k <= great; ) { + + /* + * Partitioning: + * + * left part center part right part + * +----------------------------------------------------------+ + * | == pivot1 | pivot1 < && < pivot2 | ? | == pivot2 | + * +----------------------------------------------------------+ + * ^ ^ ^ + * | | | + * less k great + * + * Invariants: + * + * all in (*, less) == pivot1 + * pivot1 < all in [less, k) < pivot2 + * all in (great, *) == pivot2 + * + * Pointer k is the first index of ?-part + */ + outer: + for (int k = less; k <= great; k++) { long ak = a[k]; - if (ak == pivot1) { - a[k++] = a[less]; - a[less++] = pivot1; - } else if (ak == pivot2) { - a[k] = a[great]; + if (ak == pivot2) { // Move a[k] to right part + while (a[great] == pivot2) { + if (great-- == k) { + break outer; + } + } + if (a[great] == pivot1) { + a[k] = a[less]; + a[less++] = pivot1; + } else { // pivot1 < a[great] < pivot2 + a[k] = a[great]; + } a[great--] = pivot2; - } else { - k++; + } else if (ak == pivot1) { // Move a[k] to left part + a[k] = a[less]; + a[less++] = pivot1; } } } @@ -576,7 +640,7 @@ final class DualPivotQuicksort { * Sorts the specified range of the array into ascending order. The range * to be sorted extends from the index {@code fromIndex}, inclusive, to * the index {@code toIndex}, exclusive. If {@code fromIndex == toIndex}, - * the range to be sorted is empty. + * the range to be sorted is empty (and the call is a no-op). * * @param a the array to be sorted * @param fromIndex the index of the first element, inclusive, to be sorted @@ -606,13 +670,13 @@ final class DualPivotQuicksort { private static void doSort(short[] a, int left, int right) { // Use insertion sort on tiny arrays if (right - left + 1 < INSERTION_SORT_THRESHOLD) { - for (int k = left + 1; k <= right; k++) { - short ak = a[k]; + for (int i = left + 1; i <= right; i++) { + short ai = a[i]; int j; - for (j = k - 1; j >= left && ak < a[j]; j--) { + for (j = i - 1; j >= left && ai < a[j]; j--) { a[j + 1] = a[j]; } - a[j + 1] = ak; + a[j + 1] = ai; } } else if (right-left+1 > COUNTING_SORT_THRESHOLD_FOR_SHORT_OR_CHAR) { // Use counting sort on huge arrays @@ -671,7 +735,7 @@ final class DualPivotQuicksort { * second terciles of the array. Note that pivot1 <= pivot2. * * The pivots are stored in local variables, and the first and - * the last of the sorted elements are moved to the locations + * the last of the elements to be sorted are moved to the locations * formerly occupied by the pivots. When partitioning is complete, * the pivots are swapped back into their final positions, and * excluded from subsequent sorting. @@ -679,27 +743,26 @@ final class DualPivotQuicksort { short pivot1 = ae2; a[e2] = a[left]; short pivot2 = ae4; a[e4] = a[right]; - /* - * Partitioning - * - * left part center part right part - * ------------------------------------------------------------ - * [ < pivot1 | pivot1 <= && <= pivot2 | ? | > pivot2 ] - * ------------------------------------------------------------ - * ^ ^ ^ - * | | | - * less k great - */ - // Pointers int less = left + 1; // The index of first element of center part int great = right - 1; // The index before first element of right part - boolean pivotsDiffer = pivot1 != pivot2; + boolean pivotsDiffer = (pivot1 != pivot2); if (pivotsDiffer) { /* + * Partitioning: + * + * left part center part right part + * +------------------------------------------------------------+ + * | < pivot1 | pivot1 <= && <= pivot2 | ? | > pivot2 | + * +------------------------------------------------------------+ + * ^ ^ ^ + * | | | + * less k great + * * Invariants: + * * all in (left, less) < pivot1 * pivot1 <= all in [less, k) <= pivot2 * all in (great, right) > pivot2 @@ -709,37 +772,37 @@ final class DualPivotQuicksort { outer: for (int k = less; k <= great; k++) { short ak = a[k]; - if (ak < pivot1) { - if (k > less) { + if (ak < pivot1) { // Move a[k] to left part + if (k != less) { a[k] = a[less]; a[less] = ak; } less++; - } else if (ak > pivot2) { + } else if (ak > pivot2) { // Move a[k] to right part while (a[great] > pivot2) { - if (k == great--) { + if (great-- == k) { break outer; } } - a[k] = a[great]; - a[great--] = ak; - - if ((ak = a[k]) < pivot1) { + if (a[great] < pivot1) { a[k] = a[less]; - a[less++] = ak; + a[less++] = a[great]; + a[great--] = ak; + } else { // pivot1 <= a[great] <= pivot2 + a[k] = a[great]; + a[great--] = ak; } } } } else { // Pivots are equal /* - * Partition degenerates to the traditional 3-way - * (or "Dutch National Flag") partition: + * Partition degenerates to the traditional 3-way, + * or "Dutch National Flag", partition: * * left part center part right part - * ------------------------------------------------- - * [ < pivot | == pivot | ? | > pivot ] - * ------------------------------------------------- - * + * +----------------------------------------------+ + * | < pivot | == pivot | ? | > pivot | + * +----------------------------------------------+ * ^ ^ ^ * | | | * less k great @@ -752,30 +815,34 @@ final class DualPivotQuicksort { * * Pointer k is the first index of ?-part */ - outer: for (int k = less; k <= great; k++) { short ak = a[k]; if (ak == pivot1) { continue; } - if (ak < pivot1) { - if (k > less) { + if (ak < pivot1) { // Move a[k] to left part + if (k != less) { a[k] = a[less]; a[less] = ak; } less++; - } else { // a[k] > pivot + } else { // (a[k] > pivot1) - Move a[k] to right part + /* + * We know that pivot1 == a[e3] == pivot2. Thus, we know + * that great will still be >= k when the following loop + * terminates, even though we don't test for it explicitly. + * In other words, a[e3] acts as a sentinel for great. + */ while (a[great] > pivot1) { - if (k == great--) { - break outer; - } + great--; } - a[k] = a[great]; - a[great--] = ak; - - if ((ak = a[k]) < pivot1) { + if (a[great] < pivot1) { a[k] = a[less]; - a[less++] = ak; + a[less++] = a[great]; + a[great--] = ak; + } else { // a[great] == pivot1 + a[k] = pivot1; + a[great--] = ak; } } } @@ -798,26 +865,55 @@ final class DualPivotQuicksort { } /* - * If center part is too large (comprises > 5/6 of - * the array), swap internal pivot values to ends + * If center part is too large (comprises > 2/3 of the array), + * swap internal pivot values to ends */ - if (less < e1 && e5 < great) { + if (less < e1 && great > e5) { while (a[less] == pivot1) { less++; } while (a[great] == pivot2) { great--; } - for (int k = less + 1; k <= great; ) { + + /* + * Partitioning: + * + * left part center part right part + * +----------------------------------------------------------+ + * | == pivot1 | pivot1 < && < pivot2 | ? | == pivot2 | + * +----------------------------------------------------------+ + * ^ ^ ^ + * | | | + * less k great + * + * Invariants: + * + * all in (*, less) == pivot1 + * pivot1 < all in [less, k) < pivot2 + * all in (great, *) == pivot2 + * + * Pointer k is the first index of ?-part + */ + outer: + for (int k = less; k <= great; k++) { short ak = a[k]; - if (ak == pivot1) { - a[k++] = a[less]; - a[less++] = pivot1; - } else if (ak == pivot2) { - a[k] = a[great]; + if (ak == pivot2) { // Move a[k] to right part + while (a[great] == pivot2) { + if (great-- == k) { + break outer; + } + } + if (a[great] == pivot1) { + a[k] = a[less]; + a[less++] = pivot1; + } else { // pivot1 < a[great] < pivot2 + a[k] = a[great]; + } a[great--] = pivot2; - } else { - k++; + } else if (ak == pivot1) { // Move a[k] to left part + a[k] = a[less]; + a[less++] = pivot1; } } } @@ -839,7 +935,7 @@ final class DualPivotQuicksort { * Sorts the specified range of the array into ascending order. The range * to be sorted extends from the index {@code fromIndex}, inclusive, to * the index {@code toIndex}, exclusive. If {@code fromIndex == toIndex}, - * the range to be sorted is empty. + * the range to be sorted is empty (and the call is a no-op). * * @param a the array to be sorted * @param fromIndex the index of the first element, inclusive, to be sorted @@ -869,13 +965,13 @@ final class DualPivotQuicksort { private static void doSort(char[] a, int left, int right) { // Use insertion sort on tiny arrays if (right - left + 1 < INSERTION_SORT_THRESHOLD) { - for (int k = left + 1; k <= right; k++) { - char ak = a[k]; + for (int i = left + 1; i <= right; i++) { + char ai = a[i]; int j; - for (j = k - 1; j >= left && ak < a[j]; j--) { + for (j = i - 1; j >= left && ai < a[j]; j--) { a[j + 1] = a[j]; } - a[j + 1] = ak; + a[j + 1] = ai; } } else if (right-left+1 > COUNTING_SORT_THRESHOLD_FOR_SHORT_OR_CHAR) { // Use counting sort on huge arrays @@ -932,7 +1028,7 @@ final class DualPivotQuicksort { * second terciles of the array. Note that pivot1 <= pivot2. * * The pivots are stored in local variables, and the first and - * the last of the sorted elements are moved to the locations + * the last of the elements to be sorted are moved to the locations * formerly occupied by the pivots. When partitioning is complete, * the pivots are swapped back into their final positions, and * excluded from subsequent sorting. @@ -940,27 +1036,26 @@ final class DualPivotQuicksort { char pivot1 = ae2; a[e2] = a[left]; char pivot2 = ae4; a[e4] = a[right]; - /* - * Partitioning - * - * left part center part right part - * ------------------------------------------------------------ - * [ < pivot1 | pivot1 <= && <= pivot2 | ? | > pivot2 ] - * ------------------------------------------------------------ - * ^ ^ ^ - * | | | - * less k great - */ - // Pointers int less = left + 1; // The index of first element of center part int great = right - 1; // The index before first element of right part - boolean pivotsDiffer = pivot1 != pivot2; + boolean pivotsDiffer = (pivot1 != pivot2); if (pivotsDiffer) { /* + * Partitioning: + * + * left part center part right part + * +------------------------------------------------------------+ + * | < pivot1 | pivot1 <= && <= pivot2 | ? | > pivot2 | + * +------------------------------------------------------------+ + * ^ ^ ^ + * | | | + * less k great + * * Invariants: + * * all in (left, less) < pivot1 * pivot1 <= all in [less, k) <= pivot2 * all in (great, right) > pivot2 @@ -970,37 +1065,37 @@ final class DualPivotQuicksort { outer: for (int k = less; k <= great; k++) { char ak = a[k]; - if (ak < pivot1) { - if (k > less) { + if (ak < pivot1) { // Move a[k] to left part + if (k != less) { a[k] = a[less]; a[less] = ak; } less++; - } else if (ak > pivot2) { + } else if (ak > pivot2) { // Move a[k] to right part while (a[great] > pivot2) { - if (k == great--) { + if (great-- == k) { break outer; } } - a[k] = a[great]; - a[great--] = ak; - - if ((ak = a[k]) < pivot1) { + if (a[great] < pivot1) { a[k] = a[less]; - a[less++] = ak; + a[less++] = a[great]; + a[great--] = ak; + } else { // pivot1 <= a[great] <= pivot2 + a[k] = a[great]; + a[great--] = ak; } } } } else { // Pivots are equal /* - * Partition degenerates to the traditional 3-way - * (or "Dutch National Flag") partition: + * Partition degenerates to the traditional 3-way, + * or "Dutch National Flag", partition: * * left part center part right part - * ------------------------------------------------- - * [ < pivot | == pivot | ? | > pivot ] - * ------------------------------------------------- - * + * +----------------------------------------------+ + * | < pivot | == pivot | ? | > pivot | + * +----------------------------------------------+ * ^ ^ ^ * | | | * less k great @@ -1013,30 +1108,34 @@ final class DualPivotQuicksort { * * Pointer k is the first index of ?-part */ - outer: for (int k = less; k <= great; k++) { char ak = a[k]; if (ak == pivot1) { continue; } - if (ak < pivot1) { - if (k > less) { + if (ak < pivot1) { // Move a[k] to left part + if (k != less) { a[k] = a[less]; a[less] = ak; } less++; - } else { // a[k] > pivot + } else { // (a[k] > pivot1) - Move a[k] to right part + /* + * We know that pivot1 == a[e3] == pivot2. Thus, we know + * that great will still be >= k when the following loop + * terminates, even though we don't test for it explicitly. + * In other words, a[e3] acts as a sentinel for great. + */ while (a[great] > pivot1) { - if (k == great--) { - break outer; - } + great--; } - a[k] = a[great]; - a[great--] = ak; - - if ((ak = a[k]) < pivot1) { + if (a[great] < pivot1) { a[k] = a[less]; - a[less++] = ak; + a[less++] = a[great]; + a[great--] = ak; + } else { // a[great] == pivot1 + a[k] = pivot1; + a[great--] = ak; } } } @@ -1059,26 +1158,55 @@ final class DualPivotQuicksort { } /* - * If center part is too large (comprises > 5/6 of - * the array), swap internal pivot values to ends + * If center part is too large (comprises > 2/3 of the array), + * swap internal pivot values to ends */ - if (less < e1 && e5 < great) { + if (less < e1 && great > e5) { while (a[less] == pivot1) { less++; } while (a[great] == pivot2) { great--; } - for (int k = less + 1; k <= great; ) { + + /* + * Partitioning: + * + * left part center part right part + * +----------------------------------------------------------+ + * | == pivot1 | pivot1 < && < pivot2 | ? | == pivot2 | + * +----------------------------------------------------------+ + * ^ ^ ^ + * | | | + * less k great + * + * Invariants: + * + * all in (*, less) == pivot1 + * pivot1 < all in [less, k) < pivot2 + * all in (great, *) == pivot2 + * + * Pointer k is the first index of ?-part + */ + outer: + for (int k = less; k <= great; k++) { char ak = a[k]; - if (ak == pivot1) { - a[k++] = a[less]; - a[less++] = pivot1; - } else if (ak == pivot2) { - a[k] = a[great]; + if (ak == pivot2) { // Move a[k] to right part + while (a[great] == pivot2) { + if (great-- == k) { + break outer; + } + } + if (a[great] == pivot1) { + a[k] = a[less]; + a[less++] = pivot1; + } else { // pivot1 < a[great] < pivot2 + a[k] = a[great]; + } a[great--] = pivot2; - } else { - k++; + } else if (ak == pivot1) { // Move a[k] to left part + a[k] = a[less]; + a[less++] = pivot1; } } } @@ -1100,7 +1228,7 @@ final class DualPivotQuicksort { * Sorts the specified range of the array into ascending order. The range * to be sorted extends from the index {@code fromIndex}, inclusive, to * the index {@code toIndex}, exclusive. If {@code fromIndex == toIndex}, - * the range to be sorted is empty. + * the range to be sorted is empty (and the call is a no-op). * * @param a the array to be sorted * @param fromIndex the index of the first element, inclusive, to be sorted @@ -1130,13 +1258,13 @@ final class DualPivotQuicksort { private static void doSort(byte[] a, int left, int right) { // Use insertion sort on tiny arrays if (right - left + 1 < INSERTION_SORT_THRESHOLD) { - for (int k = left + 1; k <= right; k++) { - byte ak = a[k]; + for (int i = left + 1; i <= right; i++) { + byte ai = a[i]; int j; - for (j = k - 1; j >= left && ak < a[j]; j--) { + for (j = i - 1; j >= left && ai < a[j]; j--) { a[j + 1] = a[j]; } - a[j + 1] = ak; + a[j + 1] = ai; } } else if (right - left + 1 > COUNTING_SORT_THRESHOLD_FOR_BYTE) { // Use counting sort on huge arrays @@ -1195,7 +1323,7 @@ final class DualPivotQuicksort { * second terciles of the array. Note that pivot1 <= pivot2. * * The pivots are stored in local variables, and the first and - * the last of the sorted elements are moved to the locations + * the last of the elements to be sorted are moved to the locations * formerly occupied by the pivots. When partitioning is complete, * the pivots are swapped back into their final positions, and * excluded from subsequent sorting. @@ -1203,27 +1331,26 @@ final class DualPivotQuicksort { byte pivot1 = ae2; a[e2] = a[left]; byte pivot2 = ae4; a[e4] = a[right]; - /* - * Partitioning - * - * left part center part right part - * ------------------------------------------------------------ - * [ < pivot1 | pivot1 <= && <= pivot2 | ? | > pivot2 ] - * ------------------------------------------------------------ - * ^ ^ ^ - * | | | - * less k great - */ - // Pointers int less = left + 1; // The index of first element of center part int great = right - 1; // The index before first element of right part - boolean pivotsDiffer = pivot1 != pivot2; + boolean pivotsDiffer = (pivot1 != pivot2); if (pivotsDiffer) { /* + * Partitioning: + * + * left part center part right part + * +------------------------------------------------------------+ + * | < pivot1 | pivot1 <= && <= pivot2 | ? | > pivot2 | + * +------------------------------------------------------------+ + * ^ ^ ^ + * | | | + * less k great + * * Invariants: + * * all in (left, less) < pivot1 * pivot1 <= all in [less, k) <= pivot2 * all in (great, right) > pivot2 @@ -1233,37 +1360,37 @@ final class DualPivotQuicksort { outer: for (int k = less; k <= great; k++) { byte ak = a[k]; - if (ak < pivot1) { - if (k > less) { + if (ak < pivot1) { // Move a[k] to left part + if (k != less) { a[k] = a[less]; a[less] = ak; } less++; - } else if (ak > pivot2) { + } else if (ak > pivot2) { // Move a[k] to right part while (a[great] > pivot2) { - if (k == great--) { + if (great-- == k) { break outer; } } - a[k] = a[great]; - a[great--] = ak; - - if ((ak = a[k]) < pivot1) { + if (a[great] < pivot1) { a[k] = a[less]; - a[less++] = ak; + a[less++] = a[great]; + a[great--] = ak; + } else { // pivot1 <= a[great] <= pivot2 + a[k] = a[great]; + a[great--] = ak; } } } } else { // Pivots are equal /* - * Partition degenerates to the traditional 3-way - * (or "Dutch National Flag") partition: + * Partition degenerates to the traditional 3-way, + * or "Dutch National Flag", partition: * * left part center part right part - * ------------------------------------------------- - * [ < pivot | == pivot | ? | > pivot ] - * ------------------------------------------------- - * + * +----------------------------------------------+ + * | < pivot | == pivot | ? | > pivot | + * +----------------------------------------------+ * ^ ^ ^ * | | | * less k great @@ -1276,30 +1403,34 @@ final class DualPivotQuicksort { * * Pointer k is the first index of ?-part */ - outer: for (int k = less; k <= great; k++) { byte ak = a[k]; if (ak == pivot1) { continue; } - if (ak < pivot1) { - if (k > less) { + if (ak < pivot1) { // Move a[k] to left part + if (k != less) { a[k] = a[less]; a[less] = ak; } less++; - } else { // a[k] > pivot + } else { // (a[k] > pivot1) - Move a[k] to right part + /* + * We know that pivot1 == a[e3] == pivot2. Thus, we know + * that great will still be >= k when the following loop + * terminates, even though we don't test for it explicitly. + * In other words, a[e3] acts as a sentinel for great. + */ while (a[great] > pivot1) { - if (k == great--) { - break outer; - } + great--; } - a[k] = a[great]; - a[great--] = ak; - - if ((ak = a[k]) < pivot1) { + if (a[great] < pivot1) { a[k] = a[less]; - a[less++] = ak; + a[less++] = a[great]; + a[great--] = ak; + } else { // a[great] == pivot1 + a[k] = pivot1; + a[great--] = ak; } } } @@ -1322,26 +1453,55 @@ final class DualPivotQuicksort { } /* - * If center part is too large (comprises > 5/6 of - * the array), swap internal pivot values to ends + * If center part is too large (comprises > 2/3 of the array), + * swap internal pivot values to ends */ - if (less < e1 && e5 < great) { + if (less < e1 && great > e5) { while (a[less] == pivot1) { less++; } while (a[great] == pivot2) { great--; } - for (int k = less + 1; k <= great; ) { + + /* + * Partitioning: + * + * left part center part right part + * +----------------------------------------------------------+ + * | == pivot1 | pivot1 < && < pivot2 | ? | == pivot2 | + * +----------------------------------------------------------+ + * ^ ^ ^ + * | | | + * less k great + * + * Invariants: + * + * all in (*, less) == pivot1 + * pivot1 < all in [less, k) < pivot2 + * all in (great, *) == pivot2 + * + * Pointer k is the first index of ?-part + */ + outer: + for (int k = less; k <= great; k++) { byte ak = a[k]; - if (ak == pivot1) { - a[k++] = a[less]; - a[less++] = pivot1; - } else if (ak == pivot2) { - a[k] = a[great]; + if (ak == pivot2) { // Move a[k] to right part + while (a[great] == pivot2) { + if (great-- == k) { + break outer; + } + } + if (a[great] == pivot1) { + a[k] = a[less]; + a[less++] = pivot1; + } else { // pivot1 < a[great] < pivot2 + a[k] = a[great]; + } a[great--] = pivot2; - } else { - k++; + } else if (ak == pivot1) { // Move a[k] to left part + a[k] = a[less]; + a[less++] = pivot1; } } } @@ -1371,7 +1531,7 @@ final class DualPivotQuicksort { * Sorts the specified range of the array into ascending order. The range * to be sorted extends from the index {@code fromIndex}, inclusive, to * the index {@code toIndex}, exclusive. If {@code fromIndex == toIndex}, - * the range to be sorted is empty. + * the range to be sorted is empty and the call is a no-op). * *

The {@code <} relation does not provide a total order on all float * values: {@code -0.0f == 0.0f} is {@code true} and a {@code Float.NaN} @@ -1485,13 +1645,13 @@ final class DualPivotQuicksort { private static void doSort(float[] a, int left, int right) { // Use insertion sort on tiny arrays if (right - left + 1 < INSERTION_SORT_THRESHOLD) { - for (int k = left + 1; k <= right; k++) { - float ak = a[k]; + for (int i = left + 1; i <= right; i++) { + float ai = a[i]; int j; - for (j = k - 1; j >= left && ak < a[j]; j--) { + for (j = i - 1; j >= left && ai < a[j]; j--) { a[j + 1] = a[j]; } - a[j + 1] = ak; + a[j + 1] = ai; } } else { // Use Dual-Pivot Quicksort on large arrays dualPivotQuicksort(a, left, right); @@ -1536,7 +1696,7 @@ final class DualPivotQuicksort { * second terciles of the array. Note that pivot1 <= pivot2. * * The pivots are stored in local variables, and the first and - * the last of the sorted elements are moved to the locations + * the last of the elements to be sorted are moved to the locations * formerly occupied by the pivots. When partitioning is complete, * the pivots are swapped back into their final positions, and * excluded from subsequent sorting. @@ -1544,27 +1704,26 @@ final class DualPivotQuicksort { float pivot1 = ae2; a[e2] = a[left]; float pivot2 = ae4; a[e4] = a[right]; - /* - * Partitioning - * - * left part center part right part - * ------------------------------------------------------------ - * [ < pivot1 | pivot1 <= && <= pivot2 | ? | > pivot2 ] - * ------------------------------------------------------------ - * ^ ^ ^ - * | | | - * less k great - */ - // Pointers int less = left + 1; // The index of first element of center part int great = right - 1; // The index before first element of right part - boolean pivotsDiffer = pivot1 != pivot2; + boolean pivotsDiffer = (pivot1 != pivot2); if (pivotsDiffer) { /* + * Partitioning: + * + * left part center part right part + * +------------------------------------------------------------+ + * | < pivot1 | pivot1 <= && <= pivot2 | ? | > pivot2 | + * +------------------------------------------------------------+ + * ^ ^ ^ + * | | | + * less k great + * * Invariants: + * * all in (left, less) < pivot1 * pivot1 <= all in [less, k) <= pivot2 * all in (great, right) > pivot2 @@ -1574,37 +1733,37 @@ final class DualPivotQuicksort { outer: for (int k = less; k <= great; k++) { float ak = a[k]; - if (ak < pivot1) { - if (k > less) { + if (ak < pivot1) { // Move a[k] to left part + if (k != less) { a[k] = a[less]; a[less] = ak; } less++; - } else if (ak > pivot2) { + } else if (ak > pivot2) { // Move a[k] to right part while (a[great] > pivot2) { - if (k == great--) { + if (great-- == k) { break outer; } } - a[k] = a[great]; - a[great--] = ak; - - if ((ak = a[k]) < pivot1) { + if (a[great] < pivot1) { a[k] = a[less]; - a[less++] = ak; + a[less++] = a[great]; + a[great--] = ak; + } else { // pivot1 <= a[great] <= pivot2 + a[k] = a[great]; + a[great--] = ak; } } } } else { // Pivots are equal /* - * Partition degenerates to the traditional 3-way - * (or "Dutch National Flag") partition: + * Partition degenerates to the traditional 3-way, + * or "Dutch National Flag", partition: * * left part center part right part - * ------------------------------------------------- - * [ < pivot | == pivot | ? | > pivot ] - * ------------------------------------------------- - * + * +----------------------------------------------+ + * | < pivot | == pivot | ? | > pivot | + * +----------------------------------------------+ * ^ ^ ^ * | | | * less k great @@ -1617,30 +1776,34 @@ final class DualPivotQuicksort { * * Pointer k is the first index of ?-part */ - outer: for (int k = less; k <= great; k++) { float ak = a[k]; if (ak == pivot1) { continue; } - if (ak < pivot1) { - if (k > less) { + if (ak < pivot1) { // Move a[k] to left part + if (k != less) { a[k] = a[less]; a[less] = ak; } less++; - } else { // a[k] > pivot + } else { // (a[k] > pivot1) - Move a[k] to right part + /* + * We know that pivot1 == a[e3] == pivot2. Thus, we know + * that great will still be >= k when the following loop + * terminates, even though we don't test for it explicitly. + * In other words, a[e3] acts as a sentinel for great. + */ while (a[great] > pivot1) { - if (k == great--) { - break outer; - } + great--; } - a[k] = a[great]; - a[great--] = ak; - - if ((ak = a[k]) < pivot1) { + if (a[great] < pivot1) { a[k] = a[less]; - a[less++] = ak; + a[less++] = a[great]; + a[great--] = ak; + } else { // a[great] == pivot1 + a[k] = pivot1; + a[great--] = ak; } } } @@ -1663,26 +1826,55 @@ final class DualPivotQuicksort { } /* - * If center part is too large (comprises > 5/6 of - * the array), swap internal pivot values to ends + * If center part is too large (comprises > 2/3 of the array), + * swap internal pivot values to ends */ - if (less < e1 && e5 < great) { + if (less < e1 && great > e5) { while (a[less] == pivot1) { less++; } while (a[great] == pivot2) { great--; } - for (int k = less + 1; k <= great; ) { + + /* + * Partitioning: + * + * left part center part right part + * +----------------------------------------------------------+ + * | == pivot1 | pivot1 < && < pivot2 | ? | == pivot2 | + * +----------------------------------------------------------+ + * ^ ^ ^ + * | | | + * less k great + * + * Invariants: + * + * all in (*, less) == pivot1 + * pivot1 < all in [less, k) < pivot2 + * all in (great, *) == pivot2 + * + * Pointer k is the first index of ?-part + */ + outer: + for (int k = less; k <= great; k++) { float ak = a[k]; - if (ak == pivot1) { - a[k++] = a[less]; - a[less++] = pivot1; - } else if (ak == pivot2) { - a[k] = a[great]; + if (ak == pivot2) { // Move a[k] to right part + while (a[great] == pivot2) { + if (great-- == k) { + break outer; + } + } + if (a[great] == pivot1) { + a[k] = a[less]; + a[less++] = pivot1; + } else { // pivot1 < a[great] < pivot2 + a[k] = a[great]; + } a[great--] = pivot2; - } else { - k++; + } else if (ak == pivot1) { // Move a[k] to left part + a[k] = a[less]; + a[less++] = pivot1; } } } @@ -1712,7 +1904,7 @@ final class DualPivotQuicksort { * Sorts the specified range of the array into ascending order. The range * to be sorted extends from the index {@code fromIndex}, inclusive, to * the index {@code toIndex}, exclusive. If {@code fromIndex == toIndex}, - * the range to be sorted is empty. + * the range to be sorted is empty (and the call is a no-op). * *

The {@code <} relation does not provide a total order on all double * values: {@code -0.0d == 0.0d} is {@code true} and a {@code Double.NaN} @@ -1826,13 +2018,13 @@ final class DualPivotQuicksort { private static void doSort(double[] a, int left, int right) { // Use insertion sort on tiny arrays if (right - left + 1 < INSERTION_SORT_THRESHOLD) { - for (int k = left + 1; k <= right; k++) { - double ak = a[k]; + for (int i = left + 1; i <= right; i++) { + double ai = a[i]; int j; - for (j = k - 1; j >= left && ak < a[j]; j--) { + for (j = i - 1; j >= left && ai < a[j]; j--) { a[j + 1] = a[j]; } - a[j + 1] = ak; + a[j + 1] = ai; } } else { // Use Dual-Pivot Quicksort on large arrays dualPivotQuicksort(a, left, right); @@ -1877,7 +2069,7 @@ final class DualPivotQuicksort { * second terciles of the array. Note that pivot1 <= pivot2. * * The pivots are stored in local variables, and the first and - * the last of the sorted elements are moved to the locations + * the last of the elements to be sorted are moved to the locations * formerly occupied by the pivots. When partitioning is complete, * the pivots are swapped back into their final positions, and * excluded from subsequent sorting. @@ -1885,27 +2077,26 @@ final class DualPivotQuicksort { double pivot1 = ae2; a[e2] = a[left]; double pivot2 = ae4; a[e4] = a[right]; - /* - * Partitioning - * - * left part center part right part - * ------------------------------------------------------------ - * [ < pivot1 | pivot1 <= && <= pivot2 | ? | > pivot2 ] - * ------------------------------------------------------------ - * ^ ^ ^ - * | | | - * less k great - */ - // Pointers int less = left + 1; // The index of first element of center part int great = right - 1; // The index before first element of right part - boolean pivotsDiffer = pivot1 != pivot2; + boolean pivotsDiffer = (pivot1 != pivot2); if (pivotsDiffer) { /* + * Partitioning: + * + * left part center part right part + * +------------------------------------------------------------+ + * | < pivot1 | pivot1 <= && <= pivot2 | ? | > pivot2 | + * +------------------------------------------------------------+ + * ^ ^ ^ + * | | | + * less k great + * * Invariants: + * * all in (left, less) < pivot1 * pivot1 <= all in [less, k) <= pivot2 * all in (great, right) > pivot2 @@ -1915,37 +2106,37 @@ final class DualPivotQuicksort { outer: for (int k = less; k <= great; k++) { double ak = a[k]; - if (ak < pivot1) { - if (k > less) { + if (ak < pivot1) { // Move a[k] to left part + if (k != less) { a[k] = a[less]; a[less] = ak; } less++; - } else if (ak > pivot2) { + } else if (ak > pivot2) { // Move a[k] to right part while (a[great] > pivot2) { - if (k == great--) { + if (great-- == k) { break outer; } } - a[k] = a[great]; - a[great--] = ak; - - if ((ak = a[k]) < pivot1) { + if (a[great] < pivot1) { a[k] = a[less]; - a[less++] = ak; + a[less++] = a[great]; + a[great--] = ak; + } else { // pivot1 <= a[great] <= pivot2 + a[k] = a[great]; + a[great--] = ak; } } } } else { // Pivots are equal /* - * Partition degenerates to the traditional 3-way - * (or "Dutch National Flag") partition: + * Partition degenerates to the traditional 3-way, + * or "Dutch National Flag", partition: * * left part center part right part - * ------------------------------------------------- - * [ < pivot | == pivot | ? | > pivot ] - * ------------------------------------------------- - * + * +----------------------------------------------+ + * | < pivot | == pivot | ? | > pivot | + * +----------------------------------------------+ * ^ ^ ^ * | | | * less k great @@ -1958,30 +2149,34 @@ final class DualPivotQuicksort { * * Pointer k is the first index of ?-part */ - outer: for (int k = less; k <= great; k++) { double ak = a[k]; if (ak == pivot1) { continue; } - if (ak < pivot1) { - if (k > less) { + if (ak < pivot1) { // Move a[k] to left part + if (k != less) { a[k] = a[less]; a[less] = ak; } less++; - } else { // a[k] > pivot + } else { // (a[k] > pivot1) - Move a[k] to right part + /* + * We know that pivot1 == a[e3] == pivot2. Thus, we know + * that great will still be >= k when the following loop + * terminates, even though we don't test for it explicitly. + * In other words, a[e3] acts as a sentinel for great. + */ while (a[great] > pivot1) { - if (k == great--) { - break outer; - } + great--; } - a[k] = a[great]; - a[great--] = ak; - - if ((ak = a[k]) < pivot1) { + if (a[great] < pivot1) { a[k] = a[less]; - a[less++] = ak; + a[less++] = a[great]; + a[great--] = ak; + } else { // a[great] == pivot1 + a[k] = pivot1; + a[great--] = ak; } } } @@ -2004,26 +2199,55 @@ final class DualPivotQuicksort { } /* - * If center part is too large (comprises > 5/6 of - * the array), swap internal pivot values to ends + * If center part is too large (comprises > 2/3 of the array), + * swap internal pivot values to ends */ - if (less < e1 && e5 < great) { + if (less < e1 && great > e5) { while (a[less] == pivot1) { less++; } while (a[great] == pivot2) { great--; } - for (int k = less + 1; k <= great; ) { + + /* + * Partitioning: + * + * left part center part right part + * +----------------------------------------------------------+ + * | == pivot1 | pivot1 < && < pivot2 | ? | == pivot2 | + * +----------------------------------------------------------+ + * ^ ^ ^ + * | | | + * less k great + * + * Invariants: + * + * all in (*, less) == pivot1 + * pivot1 < all in [less, k) < pivot2 + * all in (great, *) == pivot2 + * + * Pointer k is the first index of ?-part + */ + outer: + for (int k = less; k <= great; k++) { double ak = a[k]; - if (ak == pivot1) { - a[k++] = a[less]; - a[less++] = pivot1; - } else if (ak == pivot2) { - a[k] = a[great]; + if (ak == pivot2) { // Move a[k] to right part + while (a[great] == pivot2) { + if (great-- == k) { + break outer; + } + } + if (a[great] == pivot1) { + a[k] = a[less]; + a[less++] = pivot1; + } else { // pivot1 < a[great] < pivot2 + a[k] = a[great]; + } a[great--] = pivot2; - } else { - k++; + } else if (ak == pivot1) { // Move a[k] to left part + a[k] = a[less]; + a[less++] = pivot1; } } }