This commit is contained in:
John Coomes 2011-11-18 15:15:13 -08:00
commit df1266ed6e
97 changed files with 1434 additions and 591 deletions

View File

@ -30,6 +30,7 @@ import sun.jvm.hotspot.gc_implementation.g1.*;
import sun.jvm.hotspot.gc_implementation.parallelScavenge.*;
import sun.jvm.hotspot.gc_implementation.shared.*;
import sun.jvm.hotspot.memory.*;
import sun.jvm.hotspot.oops.*;
import sun.jvm.hotspot.runtime.*;
public class HeapSummary extends Tool {
@ -134,6 +135,9 @@ public class HeapSummary extends Tool {
} else {
throw new RuntimeException("unknown CollectedHeap type : " + heap.getClass());
}
System.out.println();
printInternStringStatistics();
}
// Helper methods
@ -248,4 +252,41 @@ public class HeapSummary extends Tool {
return -1;
}
}
private void printInternStringStatistics() {
class StringStat implements StringTable.StringVisitor {
private int count;
private long size;
private OopField stringValueField;
StringStat() {
VM vm = VM.getVM();
SystemDictionary sysDict = vm.getSystemDictionary();
InstanceKlass strKlass = sysDict.getStringKlass();
// String has a field named 'value' of type 'char[]'.
stringValueField = (OopField) strKlass.findField("value", "[C");
}
private long stringSize(Instance instance) {
// We include String content in size calculation.
return instance.getObjectSize() +
stringValueField.getValue(instance).getObjectSize();
}
public void visit(Instance str) {
count++;
size += stringSize(str);
}
public void print() {
System.out.println(count +
" interned Strings occupying " + size + " bytes.");
}
}
StringStat stat = new StringStat();
StringTable strTable = VM.getVM().getStringTable();
strTable.stringsDo(stat);
stat.print();
}
}

View File

@ -63,47 +63,9 @@ public class PermStat extends Tool {
}
public void run() {
printInternStringStatistics();
printClassLoaderStatistics();
}
private void printInternStringStatistics() {
class StringStat implements StringTable.StringVisitor {
private int count;
private long size;
private OopField stringValueField;
StringStat() {
VM vm = VM.getVM();
SystemDictionary sysDict = vm.getSystemDictionary();
InstanceKlass strKlass = sysDict.getStringKlass();
// String has a field named 'value' of type 'char[]'.
stringValueField = (OopField) strKlass.findField("value", "[C");
}
private long stringSize(Instance instance) {
// We include String content in size calculation.
return instance.getObjectSize() +
stringValueField.getValue(instance).getObjectSize();
}
public void visit(Instance str) {
count++;
size += stringSize(str);
}
public void print() {
System.out.println(count +
" intern Strings occupying " + size + " bytes.");
}
}
StringStat stat = new StringStat();
StringTable strTable = VM.getVM().getStringTable();
strTable.stringsDo(stat);
stat.print();
}
private void printClassLoaderStatistics() {
final PrintStream out = System.out;
final PrintStream err = System.err;

View File

@ -35,7 +35,7 @@ HOTSPOT_VM_COPYRIGHT=Copyright 2011
HS_MAJOR_VER=23
HS_MINOR_VER=0
HS_BUILD_NUMBER=05
HS_BUILD_NUMBER=06
JDK_MAJOR_VER=1
JDK_MINOR_VER=8

View File

@ -541,9 +541,20 @@ jprt.make.rule.test.targets.standard.server = \
${jprt.my.windows.i586}-*-c2-servertest, \
${jprt.my.windows.x64}-*-c2-servertest
jprt.make.rule.test.targets.standard.internalvmtests = \
${jprt.my.solaris.sparc}-fastdebug-c2-internalvmtests, \
${jprt.my.solaris.sparcv9}-fastdebug-c2-internalvmtests, \
${jprt.my.solaris.i586}-fastdebug-c2-internalvmtests, \
${jprt.my.solaris.x64}-fastdebug-c2-internalvmtests, \
${jprt.my.linux.i586}-fastdebug-c2-internalvmtests, \
${jprt.my.linux.x64}-fastdebug-c2-internalvmtests, \
${jprt.my.windows.i586}-fastdebug-c2-internalvmtests, \
${jprt.my.windows.x64}-fastdebug-c2-internalvmtests
jprt.make.rule.test.targets.standard = \
${jprt.make.rule.test.targets.standard.client}, \
${jprt.make.rule.test.targets.standard.server}
${jprt.make.rule.test.targets.standard.server}, \
${jprt.make.rule.test.targets.standard.internalvmtests}
jprt.make.rule.test.targets.embedded = \
${jprt.make.rule.test.targets.standard.client}

View File

@ -597,6 +597,10 @@ inline void MacroAssembler::jmp( Register s1, Register s2 ) { jmpl( s1, s2, G0 )
inline void MacroAssembler::jmp( Register s1, int simm13a, RelocationHolder const& rspec ) { jmpl( s1, simm13a, G0, rspec); }
inline bool MacroAssembler::is_far_target(address d) {
if (ForceUnreachable) {
// References outside the code cache should be treated as far
return d < CodeCache::low_bound() || d > CodeCache::high_bound();
}
return !is_in_wdisp30_range(d, CodeCache::low_bound()) || !is_in_wdisp30_range(d, CodeCache::high_bound());
}
@ -679,28 +683,44 @@ inline intptr_t MacroAssembler::load_pc_address( Register reg, int bytes_to_skip
inline void MacroAssembler::load_contents(const AddressLiteral& addrlit, Register d, int offset) {
assert_not_delayed();
sethi(addrlit, d);
if (ForceUnreachable) {
patchable_sethi(addrlit, d);
} else {
sethi(addrlit, d);
}
ld(d, addrlit.low10() + offset, d);
}
inline void MacroAssembler::load_ptr_contents(const AddressLiteral& addrlit, Register d, int offset) {
assert_not_delayed();
sethi(addrlit, d);
if (ForceUnreachable) {
patchable_sethi(addrlit, d);
} else {
sethi(addrlit, d);
}
ld_ptr(d, addrlit.low10() + offset, d);
}
inline void MacroAssembler::store_contents(Register s, const AddressLiteral& addrlit, Register temp, int offset) {
assert_not_delayed();
sethi(addrlit, temp);
if (ForceUnreachable) {
patchable_sethi(addrlit, temp);
} else {
sethi(addrlit, temp);
}
st(s, temp, addrlit.low10() + offset);
}
inline void MacroAssembler::store_ptr_contents(Register s, const AddressLiteral& addrlit, Register temp, int offset) {
assert_not_delayed();
sethi(addrlit, temp);
if (ForceUnreachable) {
patchable_sethi(addrlit, temp);
} else {
sethi(addrlit, temp);
}
st_ptr(s, temp, addrlit.low10() + offset);
}

View File

@ -367,10 +367,10 @@ void PatchingStub::emit_code(LIR_Assembler* ce) {
void DeoptimizeStub::emit_code(LIR_Assembler* ce) {
__ bind(_entry);
__ call(SharedRuntime::deopt_blob()->unpack_with_reexecution());
__ call(Runtime1::entry_for(Runtime1::deoptimize_id), relocInfo::runtime_call_type);
__ delayed()->nop();
ce->add_call_info_here(_info);
debug_only(__ should_not_reach_here());
DEBUG_ONLY(__ should_not_reach_here());
}

View File

@ -1116,7 +1116,7 @@ void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmi
} else {
__ set(value_hi, O7);
}
offset = store(tmp, base, addr->disp() + hi_word_offset_in_bytes, T_INT, wide, false);
store(tmp, base, addr->disp() + hi_word_offset_in_bytes, T_INT, wide, false);
break;
}
case T_OBJECT: {

View File

@ -766,7 +766,22 @@ OopMapSet* Runtime1::generate_code_for(StubID id, StubAssembler* sasm) {
__ ret();
__ delayed()->restore();
}
break;
case deoptimize_id:
{
__ set_info("deoptimize", dont_gc_arguments);
OopMap* oop_map = save_live_registers(sasm);
int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, deoptimize));
oop_maps = new OopMapSet();
oop_maps->add_gc_map(call_offset, oop_map);
restore_live_registers(sasm);
DeoptimizationBlob* deopt_blob = SharedRuntime::deopt_blob();
assert(deopt_blob != NULL, "deoptimization blob must have been created");
AddressLiteral dest(deopt_blob->unpack_with_reexecution());
__ jump_to(dest, O0);
__ delayed()->restore();
}
break;

View File

@ -352,6 +352,7 @@ void MethodHandles::load_stack_move(MacroAssembler* _masm,
BLOCK_COMMENT("load_stack_move {");
__ ldsw(G3_amh_conversion, stack_move_reg);
__ sra(stack_move_reg, CONV_STACK_MOVE_SHIFT, stack_move_reg);
#ifdef ASSERT
if (VerifyMethodHandles) {
Label L_ok, L_bad;
int32_t stack_move_limit = 0x0800; // extra-large
@ -363,6 +364,7 @@ void MethodHandles::load_stack_move(MacroAssembler* _masm,
__ stop("load_stack_move of garbage value");
__ BIND(L_ok);
}
#endif
BLOCK_COMMENT("} load_stack_move");
}

View File

@ -27,7 +27,7 @@
// Adapters
enum /* platform_dependent_constants */ {
adapter_code_size = NOT_LP64(22000 DEBUG_ONLY(+ 40000)) LP64_ONLY(32000 DEBUG_ONLY(+ 80000))
adapter_code_size = NOT_LP64(23000 DEBUG_ONLY(+ 40000)) LP64_ONLY(35000 DEBUG_ONLY(+ 50000))
};
public:

View File

@ -1860,6 +1860,14 @@ const bool Matcher::init_array_count_is_in_bytes = true;
// Threshold size for cleararray.
const int Matcher::init_array_short_size = 8 * BytesPerLong;
// No additional cost for CMOVL.
const int Matcher::long_cmove_cost() { return 0; }
// CMOVF/CMOVD are expensive on T4 and on SPARC64.
const int Matcher::float_cmove_cost() {
return (VM_Version::is_T4() || VM_Version::is_sparc64()) ? ConditionalMoveLimit : 0;
}
// Should the Matcher clone shifts on addressing modes, expecting them to
// be subsumed into complex addressing expressions or compute them into
// registers? True for Intel but false for most RISCs

View File

@ -1,5 +1,5 @@
/*
* Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -211,7 +211,7 @@ void VM_Version::initialize() {
#ifdef COMPILER2
// T4 and newer Sparc cpus have fast RDPC.
if (has_fast_rdpc() && FLAG_IS_DEFAULT(UseRDPCForConstantTableBase)) {
// FLAG_SET_DEFAULT(UseRDPCForConstantTableBase, true);
FLAG_SET_DEFAULT(UseRDPCForConstantTableBase, true);
}
// Currently not supported anywhere.

View File

@ -387,9 +387,9 @@ void PatchingStub::emit_code(LIR_Assembler* ce) {
void DeoptimizeStub::emit_code(LIR_Assembler* ce) {
__ bind(_entry);
__ call(RuntimeAddress(SharedRuntime::deopt_blob()->unpack_with_reexecution()));
__ call(RuntimeAddress(Runtime1::entry_for(Runtime1::deoptimize_id)));
ce->add_call_info_here(_info);
debug_only(__ should_not_reach_here());
DEBUG_ONLY(__ should_not_reach_here());
}

View File

@ -1447,7 +1447,22 @@ OopMapSet* Runtime1::generate_code_for(StubID id, StubAssembler* sasm) {
oop_maps = new OopMapSet();
oop_maps->add_gc_map(call_offset, map);
restore_live_registers(sasm, save_fpu_registers);
}
break;
case deoptimize_id:
{
StubFrame f(sasm, "deoptimize", dont_gc_arguments);
const int num_rt_args = 1; // thread
OopMap* oop_map = save_live_registers(sasm, num_rt_args);
int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, deoptimize));
oop_maps = new OopMapSet();
oop_maps->add_gc_map(call_offset, oop_map);
restore_live_registers(sasm);
DeoptimizationBlob* deopt_blob = SharedRuntime::deopt_blob();
assert(deopt_blob != NULL, "deoptimization blob must have been created");
__ leave();
__ jump(RuntimeAddress(deopt_blob->unpack_with_reexecution()));
}
break;

View File

@ -234,10 +234,12 @@ bool frame::safe_for_sender(JavaThread *thread) {
void frame::patch_pc(Thread* thread, address pc) {
address* pc_addr = &(((address*) sp())[-1]);
if (TracePcPatching) {
tty->print_cr("patch_pc at address " INTPTR_FORMAT " [" INTPTR_FORMAT " -> " INTPTR_FORMAT "] ",
tty->print_cr("patch_pc at address " INTPTR_FORMAT " [" INTPTR_FORMAT " -> " INTPTR_FORMAT "]",
pc_addr, *pc_addr, pc);
}
assert(_pc == *pc_addr, err_msg("must be: " INTPTR_FORMAT " == " INTPTR_FORMAT, _pc, *pc_addr));
// Either the return address is the original one or we are going to
// patch in the same address that's already there.
assert(_pc == *pc_addr || pc == *pc_addr, "must be");
*pc_addr = pc;
_cb = CodeCache::find_blob(pc);
address original_pc = nmethod::get_deopt_original_pc(this);

View File

@ -382,6 +382,7 @@ void MethodHandles::load_stack_move(MacroAssembler* _masm,
__ movslq(rdi_stack_move, rdi_stack_move);
}
#endif //_LP64
#ifdef ASSERT
if (VerifyMethodHandles) {
Label L_ok, L_bad;
int32_t stack_move_limit = 0x4000; // extra-large
@ -393,6 +394,7 @@ void MethodHandles::load_stack_move(MacroAssembler* _masm,
__ stop("load_stack_move of garbage value");
__ BIND(L_ok);
}
#endif
BLOCK_COMMENT("} load_stack_move");
}

View File

@ -27,7 +27,7 @@
// Adapters
enum /* platform_dependent_constants */ {
adapter_code_size = NOT_LP64(30000 DEBUG_ONLY(+ 10000)) LP64_ONLY(80000 DEBUG_ONLY(+ 120000))
adapter_code_size = NOT_LP64(16000 DEBUG_ONLY(+ 15000)) LP64_ONLY(32000 DEBUG_ONLY(+ 80000))
};
public:

View File

@ -2797,17 +2797,25 @@ void SharedRuntime::generate_deopt_blob() {
// void Deoptimization::unpack_frames(JavaThread* thread, int exec_mode)
// Use rbp because the frames look interpreted now
__ set_last_Java_frame(noreg, rbp, NULL);
// Save "the_pc" since it cannot easily be retrieved using the last_java_SP after we aligned SP.
// Don't need the precise return PC here, just precise enough to point into this code blob.
address the_pc = __ pc();
__ set_last_Java_frame(noreg, rbp, the_pc);
__ andptr(rsp, -(StackAlignmentInBytes)); // Fix stack alignment as required by ABI
__ mov(c_rarg0, r15_thread);
__ movl(c_rarg1, r14); // second arg: exec_mode
__ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)));
// Revert SP alignment after call since we're going to do some SP relative addressing below
__ movptr(rsp, Address(r15_thread, JavaThread::last_Java_sp_offset()));
// Set an oopmap for the call site
oop_maps->add_gc_map(__ pc() - start,
// Use the same PC we used for the last java frame
oop_maps->add_gc_map(the_pc - start,
new OopMap( frame_size_in_words, 0 ));
__ reset_last_Java_frame(true, false);
// Clear fp AND pc
__ reset_last_Java_frame(true, true);
// Collect return values
__ movdbl(xmm0, Address(rsp, RegisterSaver::xmm0_offset_in_bytes()));
@ -2968,7 +2976,10 @@ void SharedRuntime::generate_uncommon_trap_blob() {
// Prolog
// Use rbp because the frames look interpreted now
__ set_last_Java_frame(noreg, rbp, NULL);
// Save "the_pc" since it cannot easily be retrieved using the last_java_SP after we aligned SP.
// Don't need the precise return PC here, just precise enough to point into this code blob.
address the_pc = __ pc();
__ set_last_Java_frame(noreg, rbp, the_pc);
// Call C code. Need thread but NOT official VM entry
// crud. We cannot block on this call, no GC can happen. Call should
@ -2977,14 +2988,17 @@ void SharedRuntime::generate_uncommon_trap_blob() {
//
// BasicType unpack_frames(JavaThread* thread, int exec_mode);
__ andptr(rsp, -(StackAlignmentInBytes)); // Align SP as required by ABI
__ mov(c_rarg0, r15_thread);
__ movl(c_rarg1, Deoptimization::Unpack_uncommon_trap);
__ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)));
// Set an oopmap for the call site
oop_maps->add_gc_map(__ pc() - start, new OopMap(SimpleRuntimeFrame::framesize, 0));
// Use the same PC we used for the last java frame
oop_maps->add_gc_map(the_pc - start, new OopMap(SimpleRuntimeFrame::framesize, 0));
__ reset_last_Java_frame(true, false);
// Clear fp AND pc
__ reset_last_Java_frame(true, true);
// Pop self-frame.
__ leave(); // Epilog

View File

@ -1609,6 +1609,12 @@ int AbstractInterpreter::layout_activation(methodOop method,
// and sender_sp is fp+8
intptr_t* locals = interpreter_frame->sender_sp() + max_locals - 1;
#ifdef ASSERT
if (caller->is_interpreted_frame()) {
assert(locals < caller->fp() + frame::interpreter_frame_initial_sp_offset, "bad placement");
}
#endif
interpreter_frame->interpreter_frame_set_locals(locals);
BasicObjectLock* montop = interpreter_frame->interpreter_frame_monitor_begin();
BasicObjectLock* monbot = montop - moncount;

View File

@ -1622,6 +1622,12 @@ int AbstractInterpreter::layout_activation(methodOop method,
// sender_sp is fp+16 XXX
intptr_t* locals = interpreter_frame->sender_sp() + max_locals - 1;
#ifdef ASSERT
if (caller->is_interpreted_frame()) {
assert(locals < caller->fp() + frame::interpreter_frame_initial_sp_offset, "bad placement");
}
#endif
interpreter_frame->interpreter_frame_set_locals(locals);
BasicObjectLock* montop = interpreter_frame->interpreter_frame_monitor_begin();
BasicObjectLock* monbot = montop - moncount;

View File

@ -1393,6 +1393,12 @@ const bool Matcher::init_array_count_is_in_bytes = false;
// Threshold size for cleararray.
const int Matcher::init_array_short_size = 8 * BytesPerLong;
// Needs 2 CMOV's for longs.
const int Matcher::long_cmove_cost() { return 1; }
// No CMOVF/CMOVD with SSE/SSE2
const int Matcher::float_cmove_cost() { return (UseSSE>=1) ? ConditionalMoveLimit : 0; }
// Should the Matcher clone shifts on addressing modes, expecting them to
// be subsumed into complex addressing expressions or compute them into
// registers? True for Intel but false for most RISCs
@ -7905,6 +7911,40 @@ instruct castP2X(eRegI dst, eRegP src ) %{
//----------Conditional Move---------------------------------------------------
// Conditional move
instruct jmovI_reg(cmpOp cop, eFlagsReg cr, eRegI dst, eRegI src) %{
predicate(!VM_Version::supports_cmov() );
match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
ins_cost(200);
format %{ "J$cop,us skip\t# signed cmove\n\t"
"MOV $dst,$src\n"
"skip:" %}
ins_encode %{
Label Lskip;
// Invert sense of branch from sense of CMOV
__ jccb((Assembler::Condition)($cop$$cmpcode^1), Lskip);
__ movl($dst$$Register, $src$$Register);
__ bind(Lskip);
%}
ins_pipe( pipe_cmov_reg );
%}
instruct jmovI_regU(cmpOpU cop, eFlagsRegU cr, eRegI dst, eRegI src) %{
predicate(!VM_Version::supports_cmov() );
match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
ins_cost(200);
format %{ "J$cop,us skip\t# unsigned cmove\n\t"
"MOV $dst,$src\n"
"skip:" %}
ins_encode %{
Label Lskip;
// Invert sense of branch from sense of CMOV
__ jccb((Assembler::Condition)($cop$$cmpcode^1), Lskip);
__ movl($dst$$Register, $src$$Register);
__ bind(Lskip);
%}
ins_pipe( pipe_cmov_reg );
%}
instruct cmovI_reg(eRegI dst, eRegI src, eFlagsReg cr, cmpOp cop ) %{
predicate(VM_Version::supports_cmov() );
match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));

View File

@ -1993,6 +1993,12 @@ const bool Matcher::init_array_count_is_in_bytes = false;
// Threshold size for cleararray.
const int Matcher::init_array_short_size = 8 * BytesPerLong;
// No additional cost for CMOVL.
const int Matcher::long_cmove_cost() { return 0; }
// No CMOVF/CMOVD with SSE2
const int Matcher::float_cmove_cost() { return ConditionalMoveLimit; }
// Should the Matcher clone shifts on addressing modes, expecting them
// to be subsumed into complex addressing expressions or compute them
// into registers? True for Intel but false for most RISCs

View File

@ -26,6 +26,7 @@
#include "asm/codeBuffer.hpp"
#include "compiler/disassembler.hpp"
#include "utilities/copy.hpp"
#include "utilities/xmlstream.hpp"
// The structure of a CodeSection:
//
@ -81,7 +82,7 @@ typedef CodeBuffer::csize_t csize_t; // file-local definition
CodeBuffer::CodeBuffer(CodeBlob* blob) {
initialize_misc("static buffer");
initialize(blob->content_begin(), blob->content_size());
assert(verify_section_allocation(), "initial use of buffer OK");
verify_section_allocation();
}
void CodeBuffer::initialize(csize_t code_size, csize_t locs_size) {
@ -108,17 +109,18 @@ void CodeBuffer::initialize(csize_t code_size, csize_t locs_size) {
_insts.initialize_locs(locs_size / sizeof(relocInfo));
}
assert(verify_section_allocation(), "initial use of blob is OK");
verify_section_allocation();
}
CodeBuffer::~CodeBuffer() {
verify_section_allocation();
// If we allocate our code buffer from the CodeCache
// via a BufferBlob, and it's not permanent, then
// free the BufferBlob.
// The rest of the memory will be freed when the ResourceObj
// is released.
assert(verify_section_allocation(), "final storage configuration still OK");
for (CodeBuffer* cb = this; cb != NULL; cb = cb->before_expand()) {
// Previous incarnations of this buffer are held live, so that internal
// addresses constructed before expansions will not be confused.
@ -484,7 +486,7 @@ void CodeBuffer::compute_final_layout(CodeBuffer* dest) const {
// Done calculating sections; did it come out to the right end?
assert(buf_offset == total_content_size(), "sanity");
assert(dest->verify_section_allocation(), "final configuration works");
dest->verify_section_allocation();
}
csize_t CodeBuffer::total_offset_of(CodeSection* cs) const {
@ -632,7 +634,8 @@ void CodeBuffer::copy_code_to(CodeBlob* dest_blob) {
// CodeBuffer gets the final layout (consts, insts, stubs in order of
// ascending address).
void CodeBuffer::relocate_code_to(CodeBuffer* dest) const {
DEBUG_ONLY(address dest_end = dest->_total_start + dest->_total_size);
address dest_end = dest->_total_start + dest->_total_size;
address dest_filled = NULL;
for (int n = (int) SECT_FIRST; n < (int) SECT_LIMIT; n++) {
// pull code out of each section
const CodeSection* cs = code_section(n);
@ -654,6 +657,8 @@ void CodeBuffer::relocate_code_to(CodeBuffer* dest) const {
Copy::fill_to_bytes(dest_cs->end(), dest_cs->remaining(),
Assembler::code_fill_byte());
}
// Keep track of the highest filled address
dest_filled = MAX2(dest_filled, dest_cs->end() + dest_cs->remaining());
assert(cs->locs_start() != (relocInfo*)badAddress,
"this section carries no reloc storage, but reloc was attempted");
@ -668,6 +673,14 @@ void CodeBuffer::relocate_code_to(CodeBuffer* dest) const {
}
}
}
if (dest->blob() == NULL) {
// Destination is a final resting place, not just another buffer.
// Normalize uninitialized bytes in the final padding.
Copy::fill_to_bytes(dest_filled, dest_end - dest_filled,
Assembler::code_fill_byte());
}
}
csize_t CodeBuffer::figure_expanded_capacities(CodeSection* which_cs,
@ -799,7 +812,7 @@ void CodeBuffer::expand(CodeSection* which_cs, csize_t amount) {
_decode_begin = NULL; // sanity
// Make certain that the new sections are all snugly inside the new blob.
assert(verify_section_allocation(), "expanded allocation is ship-shape");
verify_section_allocation();
#ifndef PRODUCT
if (PrintNMethods && (WizardMode || Verbose)) {
@ -828,35 +841,48 @@ void CodeBuffer::take_over_code_from(CodeBuffer* cb) {
DEBUG_ONLY(cb->_blob = (BufferBlob*)badAddress);
}
#ifdef ASSERT
bool CodeBuffer::verify_section_allocation() {
void CodeBuffer::verify_section_allocation() {
address tstart = _total_start;
if (tstart == badAddress) return true; // smashed by set_blob(NULL)
if (tstart == badAddress) return; // smashed by set_blob(NULL)
address tend = tstart + _total_size;
if (_blob != NULL) {
assert(tstart >= _blob->content_begin(), "sanity");
assert(tend <= _blob->content_end(), "sanity");
guarantee(tstart >= _blob->content_begin(), "sanity");
guarantee(tend <= _blob->content_end(), "sanity");
}
// Verify disjointness.
for (int n = (int) SECT_FIRST; n < (int) SECT_LIMIT; n++) {
CodeSection* sect = code_section(n);
if (!sect->is_allocated() || sect->is_empty()) continue;
assert((intptr_t)sect->start() % sect->alignment() == 0
guarantee((intptr_t)sect->start() % sect->alignment() == 0
|| sect->is_empty() || _blob == NULL,
"start is aligned");
for (int m = (int) SECT_FIRST; m < (int) SECT_LIMIT; m++) {
CodeSection* other = code_section(m);
if (!other->is_allocated() || other == sect) continue;
assert(!other->contains(sect->start() ), "sanity");
guarantee(!other->contains(sect->start() ), "sanity");
// limit is an exclusive address and can be the start of another
// section.
assert(!other->contains(sect->limit() - 1), "sanity");
guarantee(!other->contains(sect->limit() - 1), "sanity");
}
assert(sect->end() <= tend, "sanity");
guarantee(sect->end() <= tend, "sanity");
guarantee(sect->end() <= sect->limit(), "sanity");
}
}
void CodeBuffer::log_section_sizes(const char* name) {
if (xtty != NULL) {
// log info about buffer usage
xtty->print_cr("<blob name='%s' size='%d'>", name, _total_size);
for (int n = (int) CodeBuffer::SECT_FIRST; n < (int) CodeBuffer::SECT_LIMIT; n++) {
CodeSection* sect = code_section(n);
if (!sect->is_allocated() || sect->is_empty()) continue;
xtty->print_cr("<sect index='%d' size='" SIZE_FORMAT "' free='" SIZE_FORMAT "'/>",
n, sect->limit() - sect->start(), sect->limit() - sect->end());
}
xtty->print_cr("</blob>");
}
return true;
}
#endif //ASSERT
#ifndef PRODUCT
@ -884,7 +910,6 @@ void CodeBuffer::block_comment(intptr_t offset, const char * comment) {
_comments.add_comment(offset, comment);
}
class CodeComment: public CHeapObj {
private:
friend class CodeComments;

View File

@ -362,10 +362,8 @@ class CodeBuffer: public StackObj {
// helper for CodeBuffer::expand()
void take_over_code_from(CodeBuffer* cs);
#ifdef ASSERT
// ensure sections are disjoint, ordered, and contained in the blob
bool verify_section_allocation();
#endif
void verify_section_allocation();
// copies combined relocations to the blob, returns bytes copied
// (if target is null, it is a dry run only, just for sizing)
@ -393,7 +391,7 @@ class CodeBuffer: public StackObj {
assert(code_start != NULL, "sanity");
initialize_misc("static buffer");
initialize(code_start, code_size);
assert(verify_section_allocation(), "initial use of buffer OK");
verify_section_allocation();
}
// (2) CodeBuffer referring to pre-allocated CodeBlob.
@ -545,6 +543,9 @@ class CodeBuffer: public StackObj {
void block_comment(intptr_t offset, const char * comment) PRODUCT_RETURN;
// Log a little info about section usage in the CodeBuffer
void log_section_sizes(const char* name);
#ifndef PRODUCT
public:
// Printing / Decoding

View File

@ -51,6 +51,7 @@ class Canonicalizer: InstructionVisitor {
public:
Canonicalizer(Compilation* c, Value x, int bci) : _compilation(c), _canonical(x), _bci(bci) {
NOT_PRODUCT(x->set_printable_bci(bci));
if (CanonicalizeNodes) x->visit(this);
}
Value canonical() const { return _canonical; }

View File

@ -681,6 +681,23 @@ JRT_LEAF(void, Runtime1::monitorexit(JavaThread* thread, BasicObjectLock* lock))
}
JRT_END
// Cf. OptoRuntime::deoptimize_caller_frame
JRT_ENTRY(void, Runtime1::deoptimize(JavaThread* thread))
// Called from within the owner thread, so no need for safepoint
RegisterMap reg_map(thread, false);
frame stub_frame = thread->last_frame();
assert(stub_frame.is_runtime_frame(), "sanity check");
frame caller_frame = stub_frame.sender(&reg_map);
// We are coming from a compiled method; check this is true.
assert(CodeCache::find_nmethod(caller_frame.pc()) != NULL, "sanity");
// Deoptimize the caller frame.
Deoptimization::deoptimize_frame(thread, caller_frame.id());
// Return to the now deoptimized frame.
JRT_END
static klassOop resolve_field_return_klass(methodHandle caller, int bci, TRAPS) {
Bytecode_field field_access(caller, bci);

View File

@ -63,6 +63,7 @@ class StubAssembler;
stub(monitorenter_nofpu) /* optimized version that does not preserve fpu registers */ \
stub(monitorexit) \
stub(monitorexit_nofpu) /* optimized version that does not preserve fpu registers */ \
stub(deoptimize) \
stub(access_field_patching) \
stub(load_klass_patching) \
stub(g1_pre_barrier_slow) \
@ -152,6 +153,8 @@ class Runtime1: public AllStatic {
static void monitorenter(JavaThread* thread, oopDesc* obj, BasicObjectLock* lock);
static void monitorexit (JavaThread* thread, BasicObjectLock* lock);
static void deoptimize(JavaThread* thread);
static int access_field_patching(JavaThread* thread);
static int move_klass_patching(JavaThread* thread);

View File

@ -86,12 +86,12 @@ ciMethod* ciMethodHandle::get_adapter(bool is_invokedynamic) {
}
#ifndef PRODUCT
#ifdef ASSERT
// ------------------------------------------------------------------
// ciMethodHandle::print_chain_impl
//
// Implementation of the print method.
void ciMethodHandle::print_chain_impl(outputStream* st) {
void ciMethodHandle::print_chain_impl() {
ASSERT_IN_VM;
MethodHandleChain::print(get_oop());
}
@ -101,7 +101,7 @@ void ciMethodHandle::print_chain_impl(outputStream* st) {
// ciMethodHandle::print_chain
//
// Implementation of the print_chain method.
void ciMethodHandle::print_chain(outputStream* st) {
GUARDED_VM_ENTRY(print_chain_impl(st););
void ciMethodHandle::print_chain() {
GUARDED_VM_ENTRY(print_chain_impl(););
}
#endif

View File

@ -45,7 +45,7 @@ private:
ciMethod* get_adapter( bool is_invokedynamic);
protected:
void print_chain_impl(outputStream* st) PRODUCT_RETURN;
void print_chain_impl() NOT_DEBUG_RETURN;
public:
ciMethodHandle(instanceHandle h_i) :
@ -79,7 +79,7 @@ public:
return _invokedynamic_adapter;
}
void print_chain(outputStream* st = tty) PRODUCT_RETURN;
void print_chain() NOT_DEBUG_RETURN;
};
#endif // SHARE_VM_CI_CIMETHODHANDLE_HPP

View File

@ -763,9 +763,14 @@ class ClassHierarchyWalker {
// Method m is inherited into ctxk.
return true;
if (lm != NULL) {
if (!(lm->is_public() || lm->is_protected()))
if (!(lm->is_public() || lm->is_protected())) {
// Method is [package-]private, so the override story is complex.
return true; // Must punt the assertion to true.
}
if (lm->is_static()) {
// Static methods don't override non-static so punt
return true;
}
if ( !Dependencies::is_concrete_method(lm)
&& !Dependencies::is_concrete_method(m)
&& Klass::cast(lm->method_holder())->is_subtype_of(m->method_holder()))
@ -1091,9 +1096,11 @@ bool Dependencies::is_concrete_klass(klassOop k) {
}
bool Dependencies::is_concrete_method(methodOop m) {
if (m->is_abstract()) return false;
// %%% We could treat unexecuted methods as virtually abstract also.
// This would require a deoptimization barrier on first execution.
// Statics are irrelevant to virtual call sites.
if (m->is_static()) return false;
// We could also return false if m does not yet appear to be
// executed, if the VM version supports this distinction also.
return !m->is_abstract();
}
@ -1113,7 +1120,7 @@ Klass* Dependencies::find_finalizable_subclass(Klass* k) {
bool Dependencies::is_concrete_klass(ciInstanceKlass* k) {
if (k->is_abstract()) return false;
// We could return also false if k does not yet appear to be
// We could also return false if k does not yet appear to be
// instantiated, if the VM version supports this distinction also.
//if (k->is_not_instantiated()) return false;
return true;
@ -1123,7 +1130,7 @@ bool Dependencies::is_concrete_method(ciMethod* m) {
// Statics are irrelevant to virtual call sites.
if (m->is_static()) return false;
// We could return also false if m does not yet appear to be
// We could also return false if m does not yet appear to be
// executed, if the VM version supports this distinction also.
return !m->is_abstract();
}

View File

@ -1722,11 +1722,11 @@ void CompileBroker::invoke_compiler_on_method(CompileTask* task) {
if (PrintCompilation) {
const char* reason = ci_env.failure_reason();
if (compilable == ciEnv::MethodCompilable_not_at_tier) {
tty->print_cr("%3d COMPILE SKIPPED: %s (retry at different tier)", compile_id, reason);
tty->print_cr("%4d COMPILE SKIPPED: %s (retry at different tier)", compile_id, reason);
} else if (compilable == ciEnv::MethodCompilable_never) {
tty->print_cr("%3d COMPILE SKIPPED: %s (not retryable)", compile_id, reason);
tty->print_cr("%4d COMPILE SKIPPED: %s (not retryable)", compile_id, reason);
} else if (compilable == ciEnv::MethodCompilable) {
tty->print_cr("%3d COMPILE SKIPPED: %s", compile_id, reason);
tty->print_cr("%4d COMPILE SKIPPED: %s", compile_id, reason);
}
}
} else {
@ -1743,6 +1743,14 @@ void CompileBroker::invoke_compiler_on_method(CompileTask* task) {
collect_statistics(thread, time, task);
if (PrintCompilation && PrintCompilation2) {
tty->print("%7d ", (int) tty->time_stamp().milliseconds()); // print timestamp
tty->print("%4d ", compile_id); // print compilation number
tty->print("%s ", (is_osr ? "%" : " "));
int code_size = (task->code() == NULL) ? 0 : task->code()->total_size();
tty->print_cr("size: %d time: %d inlined: %d bytes", code_size, time.milliseconds(), task->num_inlined_bytecodes());
}
if (compilable == ciEnv::MethodCompilable_never) {
if (is_osr) {
method->set_not_osr_compilable();

View File

@ -50,8 +50,8 @@
int CompactibleFreeListSpace::_lockRank = Mutex::leaf + 3;
// Defaults are 0 so things will break badly if incorrectly initialized.
int CompactibleFreeListSpace::IndexSetStart = 0;
int CompactibleFreeListSpace::IndexSetStride = 0;
size_t CompactibleFreeListSpace::IndexSetStart = 0;
size_t CompactibleFreeListSpace::IndexSetStride = 0;
size_t MinChunkSize = 0;
@ -62,7 +62,7 @@ void CompactibleFreeListSpace::set_cms_values() {
MinChunkSize = numQuanta(sizeof(FreeChunk), MinObjAlignmentInBytes) * MinObjAlignment;
assert(IndexSetStart == 0 && IndexSetStride == 0, "already set");
IndexSetStart = (int) MinChunkSize;
IndexSetStart = MinChunkSize;
IndexSetStride = MinObjAlignment;
}
@ -250,7 +250,7 @@ void CompactibleFreeListSpace::initializeIndexedFreeListArray() {
}
void CompactibleFreeListSpace::resetIndexedFreeListArray() {
for (int i = 1; i < IndexSetSize; i++) {
for (size_t i = 1; i < IndexSetSize; i++) {
assert(_indexedFreeList[i].size() == (size_t) i,
"Indexed free list sizes are incorrect");
_indexedFreeList[i].reset(IndexSetSize);
@ -337,7 +337,7 @@ size_t CompactibleFreeListSpace::sumIndexedFreeListArrayReturnedBytes() {
size_t CompactibleFreeListSpace::totalCountInIndexedFreeLists() const {
size_t count = 0;
for (int i = (int)MinChunkSize; i < IndexSetSize; i++) {
for (size_t i = IndexSetStart; i < IndexSetSize; i++) {
debug_only(
ssize_t total_list_count = 0;
for (FreeChunk* fc = _indexedFreeList[i].head(); fc != NULL;
@ -2200,7 +2200,7 @@ void CompactibleFreeListSpace::setFLHints() {
void CompactibleFreeListSpace::clearFLCensus() {
assert_locked();
int i;
size_t i;
for (i = IndexSetStart; i < IndexSetSize; i += IndexSetStride) {
FreeList *fl = &_indexedFreeList[i];
fl->set_prevSweep(fl->count());
@ -2494,7 +2494,7 @@ void CompactibleFreeListSpace::verifyFreeLists() const {
void CompactibleFreeListSpace::verifyIndexedFreeLists() const {
size_t i = 0;
for (; i < MinChunkSize; i++) {
for (; i < IndexSetStart; i++) {
guarantee(_indexedFreeList[i].head() == NULL, "should be NULL");
}
for (; i < IndexSetSize; i++) {
@ -2507,7 +2507,7 @@ void CompactibleFreeListSpace::verifyIndexedFreeList(size_t size) const {
FreeChunk* tail = _indexedFreeList[size].tail();
size_t num = _indexedFreeList[size].count();
size_t n = 0;
guarantee(((size >= MinChunkSize) && (size % IndexSetStride == 0)) || fc == NULL,
guarantee(((size >= IndexSetStart) && (size % IndexSetStride == 0)) || fc == NULL,
"Slot should have been empty");
for (; fc != NULL; fc = fc->next(), n++) {
guarantee(fc->size() == size, "Size inconsistency");
@ -2527,7 +2527,7 @@ void CompactibleFreeListSpace::check_free_list_consistency() const {
"else MIN_TREE_CHUNK_SIZE is wrong");
assert((IndexSetStride == 2 && IndexSetStart == 4) || // 32-bit
(IndexSetStride == 1 && IndexSetStart == 3), "just checking"); // 64-bit
assert((IndexSetStride != 2) || (MinChunkSize % 2 == 0),
assert((IndexSetStride != 2) || (IndexSetStart % 2 == 0),
"Some for-loops may be incorrectly initialized");
assert((IndexSetStride != 2) || (IndexSetSize % 2 == 1),
"For-loops that iterate over IndexSet with stride 2 may be wrong");

View File

@ -104,8 +104,8 @@ class CompactibleFreeListSpace: public CompactibleSpace {
SmallForDictionary = 257, // size < this then use _indexedFreeList
IndexSetSize = SmallForDictionary // keep this odd-sized
};
static int IndexSetStart;
static int IndexSetStride;
static size_t IndexSetStart;
static size_t IndexSetStride;
private:
enum FitStrategyOptions {

View File

@ -1518,6 +1518,7 @@ class G1NoteEndOfConcMarkClosure : public HeapRegionClosure {
size_t _regions_claimed;
size_t _freed_bytes;
FreeRegionList* _local_cleanup_list;
OldRegionSet* _old_proxy_set;
HumongousRegionSet* _humongous_proxy_set;
HRRSCleanupTask* _hrrs_cleanup_task;
double _claimed_region_time;
@ -1527,6 +1528,7 @@ public:
G1NoteEndOfConcMarkClosure(G1CollectedHeap* g1,
int worker_num,
FreeRegionList* local_cleanup_list,
OldRegionSet* old_proxy_set,
HumongousRegionSet* humongous_proxy_set,
HRRSCleanupTask* hrrs_cleanup_task);
size_t freed_bytes() { return _freed_bytes; }
@ -1557,9 +1559,11 @@ public:
void work(int i) {
double start = os::elapsedTime();
FreeRegionList local_cleanup_list("Local Cleanup List");
OldRegionSet old_proxy_set("Local Cleanup Old Proxy Set");
HumongousRegionSet humongous_proxy_set("Local Cleanup Humongous Proxy Set");
HRRSCleanupTask hrrs_cleanup_task;
G1NoteEndOfConcMarkClosure g1_note_end(_g1h, i, &local_cleanup_list,
&old_proxy_set,
&humongous_proxy_set,
&hrrs_cleanup_task);
if (G1CollectedHeap::use_parallel_gc_threads()) {
@ -1573,6 +1577,7 @@ public:
// Now update the lists
_g1h->update_sets_after_freeing_regions(g1_note_end.freed_bytes(),
NULL /* free_list */,
&old_proxy_set,
&humongous_proxy_set,
true /* par */);
{
@ -1643,6 +1648,7 @@ G1NoteEndOfConcMarkClosure::
G1NoteEndOfConcMarkClosure(G1CollectedHeap* g1,
int worker_num,
FreeRegionList* local_cleanup_list,
OldRegionSet* old_proxy_set,
HumongousRegionSet* humongous_proxy_set,
HRRSCleanupTask* hrrs_cleanup_task)
: _g1(g1), _worker_num(worker_num),
@ -1650,6 +1656,7 @@ G1NoteEndOfConcMarkClosure(G1CollectedHeap* g1,
_freed_bytes(0),
_claimed_region_time(0.0), _max_region_time(0.0),
_local_cleanup_list(local_cleanup_list),
_old_proxy_set(old_proxy_set),
_humongous_proxy_set(humongous_proxy_set),
_hrrs_cleanup_task(hrrs_cleanup_task) { }
@ -1665,6 +1672,7 @@ bool G1NoteEndOfConcMarkClosure::doHeapRegion(HeapRegion *hr) {
_g1->free_region_if_empty(hr,
&_freed_bytes,
_local_cleanup_list,
_old_proxy_set,
_humongous_proxy_set,
_hrrs_cleanup_task,
true /* par */);
@ -1689,6 +1697,7 @@ void ConcurrentMark::cleanup() {
return;
}
HRSPhaseSetter x(HRSPhaseCleanup);
g1h->verify_region_sets_optional();
if (VerifyDuringGC) {

View File

@ -1203,6 +1203,7 @@ bool G1CollectedHeap::do_collection(bool explicit_gc,
Universe::print_heap_before_gc();
}
HRSPhaseSetter x(HRSPhaseFullGC);
verify_region_sets_optional();
const bool do_clear_all_soft_refs = clear_all_soft_refs ||
@ -1263,7 +1264,6 @@ bool G1CollectedHeap::do_collection(bool explicit_gc,
release_mutator_alloc_region();
abandon_gc_alloc_regions();
g1_rem_set()->cleanupHRRS();
tear_down_region_lists();
// We should call this after we retire any currently active alloc
// regions so that all the ALLOC / RETIRE events are generated
@ -1278,7 +1278,7 @@ bool G1CollectedHeap::do_collection(bool explicit_gc,
g1_policy()->clear_incremental_cset();
g1_policy()->stop_incremental_cset_building();
empty_young_list();
tear_down_region_sets(false /* free_list_only */);
g1_policy()->set_full_young_gcs(true);
// See the comments in g1CollectedHeap.hpp and
@ -1301,9 +1301,7 @@ bool G1CollectedHeap::do_collection(bool explicit_gc,
}
assert(free_regions() == 0, "we should not have added any free regions");
rebuild_region_lists();
_summary_bytes_used = recalculate_used();
rebuild_region_sets(false /* free_list_only */);
// Enqueue any discovered reference objects that have
// not been removed from the discovered lists.
@ -1764,9 +1762,9 @@ void G1CollectedHeap::shrink(size_t shrink_bytes) {
// Instead of tearing down / rebuilding the free lists here, we
// could instead use the remove_all_pending() method on free_list to
// remove only the ones that we need to remove.
tear_down_region_lists(); // We will rebuild them in a moment.
tear_down_region_sets(true /* free_list_only */);
shrink_helper(shrink_bytes);
rebuild_region_lists();
rebuild_region_sets(true /* free_list_only */);
_hrs.verify_optional();
verify_region_sets_optional();
@ -1799,6 +1797,7 @@ G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
_full_collection(false),
_free_list("Master Free List"),
_secondary_free_list("Secondary Free List"),
_old_set("Old Set"),
_humongous_set("Master Humongous Set"),
_free_regions_coming(false),
_young_list(new YoungList(this)),
@ -3007,7 +3006,10 @@ void G1CollectedHeap::verify(bool allow_dirty,
if (failures) {
gclog_or_tty->print_cr("Heap:");
print_on(gclog_or_tty, true /* extended */);
// It helps to have the per-region information in the output to
// help us track down what went wrong. This is why we call
// print_extended_on() instead of print_on().
print_extended_on(gclog_or_tty);
gclog_or_tty->print_cr("");
#ifndef PRODUCT
if (VerifyDuringGC && G1VerifyDuringGCPrintReachable) {
@ -3033,13 +3035,7 @@ public:
}
};
void G1CollectedHeap::print() const { print_on(tty); }
void G1CollectedHeap::print_on(outputStream* st) const {
print_on(st, PrintHeapAtGCExtended);
}
void G1CollectedHeap::print_on(outputStream* st, bool extended) const {
st->print(" %-20s", "garbage-first heap");
st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
capacity()/K, used_unlocked()/K);
@ -3057,13 +3053,14 @@ void G1CollectedHeap::print_on(outputStream* st, bool extended) const {
survivor_regions, survivor_regions * HeapRegion::GrainBytes / K);
st->cr();
perm()->as_gen()->print_on(st);
if (extended) {
st->cr();
print_on_extended(st);
}
}
void G1CollectedHeap::print_on_extended(outputStream* st) const {
void G1CollectedHeap::print_extended_on(outputStream* st) const {
print_on(st);
// Print the per-region information.
st->cr();
st->print_cr("Heap Regions: (Y=young(eden), SU=young(survivor), HS=humongous(starts), HC=humongous(continues), CS=collection set, F=free, TS=gc time stamp, PTAMS=previous top-at-mark-start, NTAMS=next top-at-mark-start)");
PrintRegionClosure blk(st);
heap_region_iterate(&blk);
}
@ -3352,6 +3349,7 @@ G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
Universe::print_heap_before_gc();
}
HRSPhaseSetter x(HRSPhaseEvacuation);
verify_region_sets_optional();
verify_dirty_young_regions();
@ -3774,6 +3772,11 @@ void G1CollectedHeap::init_gc_alloc_regions() {
!retained_region->is_empty() &&
!retained_region->isHumongous()) {
retained_region->set_saved_mark();
// The retained region was added to the old region set when it was
// retired. We have to remove it now, since we don't allow regions
// we allocate to in the region sets. We'll re-add it later, when
// it's retired again.
_old_set.remove(retained_region);
_old_gc_alloc_region.set(retained_region);
_hr_printer.reuse(retained_region);
}
@ -5338,6 +5341,7 @@ void G1CollectedHeap::evacuate_collection_set() {
void G1CollectedHeap::free_region_if_empty(HeapRegion* hr,
size_t* pre_used,
FreeRegionList* free_list,
OldRegionSet* old_proxy_set,
HumongousRegionSet* humongous_proxy_set,
HRRSCleanupTask* hrrs_cleanup_task,
bool par) {
@ -5346,6 +5350,7 @@ void G1CollectedHeap::free_region_if_empty(HeapRegion* hr,
assert(hr->startsHumongous(), "we should only see starts humongous");
free_humongous_region(hr, pre_used, free_list, humongous_proxy_set, par);
} else {
_old_set.remove_with_proxy(hr, old_proxy_set);
free_region(hr, pre_used, free_list, par);
}
} else {
@ -5402,6 +5407,7 @@ void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
void G1CollectedHeap::update_sets_after_freeing_regions(size_t pre_used,
FreeRegionList* free_list,
OldRegionSet* old_proxy_set,
HumongousRegionSet* humongous_proxy_set,
bool par) {
if (pre_used > 0) {
@ -5417,6 +5423,10 @@ void G1CollectedHeap::update_sets_after_freeing_regions(size_t pre_used,
MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
_free_list.add_as_head(free_list);
}
if (old_proxy_set != NULL && !old_proxy_set->is_empty()) {
MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
_old_set.update_from_proxy(old_proxy_set);
}
if (humongous_proxy_set != NULL && !humongous_proxy_set->is_empty()) {
MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
_humongous_set.update_from_proxy(humongous_proxy_set);
@ -5614,6 +5624,8 @@ void G1CollectedHeap::free_collection_set(HeapRegion* cs_head) {
cur->set_young_index_in_cset(-1);
cur->set_not_young();
cur->set_evacuation_failed(false);
// The region is now considered to be old.
_old_set.add(cur);
}
cur = next;
}
@ -5629,6 +5641,7 @@ void G1CollectedHeap::free_collection_set(HeapRegion* cs_head) {
young_time_ms += elapsed_ms;
update_sets_after_freeing_regions(pre_used, &local_free_list,
NULL /* old_proxy_set */,
NULL /* humongous_proxy_set */,
false /* par */);
policy->record_young_free_cset_time_ms(young_time_ms);
@ -5740,52 +5753,106 @@ bool G1CollectedHeap::check_young_list_empty(bool check_heap, bool check_sample)
return ret;
}
void G1CollectedHeap::empty_young_list() {
assert(heap_lock_held_for_gc(),
"the heap lock should already be held by or for this thread");
_young_list->empty_list();
}
// Done at the start of full GC.
void G1CollectedHeap::tear_down_region_lists() {
_free_list.remove_all();
}
class RegionResetter: public HeapRegionClosure {
G1CollectedHeap* _g1h;
FreeRegionList _local_free_list;
class TearDownRegionSetsClosure : public HeapRegionClosure {
private:
OldRegionSet *_old_set;
public:
RegionResetter() : _g1h(G1CollectedHeap::heap()),
_local_free_list("Local Free List for RegionResetter") { }
TearDownRegionSetsClosure(OldRegionSet* old_set) : _old_set(old_set) { }
bool doHeapRegion(HeapRegion* r) {
if (r->continuesHumongous()) return false;
if (r->top() > r->bottom()) {
if (r->top() < r->end()) {
Copy::fill_to_words(r->top(),
pointer_delta(r->end(), r->top()));
}
if (r->is_empty()) {
// We ignore empty regions, we'll empty the free list afterwards
} else if (r->is_young()) {
// We ignore young regions, we'll empty the young list afterwards
} else if (r->isHumongous()) {
// We ignore humongous regions, we're not tearing down the
// humongous region set
} else {
assert(r->is_empty(), "tautology");
_local_free_list.add_as_tail(r);
// The rest should be old
_old_set->remove(r);
}
return false;
}
void update_free_lists() {
_g1h->update_sets_after_freeing_regions(0, &_local_free_list, NULL,
false /* par */);
~TearDownRegionSetsClosure() {
assert(_old_set->is_empty(), "post-condition");
}
};
// Done at the end of full GC.
void G1CollectedHeap::rebuild_region_lists() {
// This needs to go at the end of the full GC.
RegionResetter rs;
heap_region_iterate(&rs);
rs.update_free_lists();
void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
assert_at_safepoint(true /* should_be_vm_thread */);
if (!free_list_only) {
TearDownRegionSetsClosure cl(&_old_set);
heap_region_iterate(&cl);
// Need to do this after the heap iteration to be able to
// recognize the young regions and ignore them during the iteration.
_young_list->empty_list();
}
_free_list.remove_all();
}
class RebuildRegionSetsClosure : public HeapRegionClosure {
private:
bool _free_list_only;
OldRegionSet* _old_set;
FreeRegionList* _free_list;
size_t _total_used;
public:
RebuildRegionSetsClosure(bool free_list_only,
OldRegionSet* old_set, FreeRegionList* free_list) :
_free_list_only(free_list_only),
_old_set(old_set), _free_list(free_list), _total_used(0) {
assert(_free_list->is_empty(), "pre-condition");
if (!free_list_only) {
assert(_old_set->is_empty(), "pre-condition");
}
}
bool doHeapRegion(HeapRegion* r) {
if (r->continuesHumongous()) {
return false;
}
if (r->is_empty()) {
// Add free regions to the free list
_free_list->add_as_tail(r);
} else if (!_free_list_only) {
assert(!r->is_young(), "we should not come across young regions");
if (r->isHumongous()) {
// We ignore humongous regions, we left the humongous set unchanged
} else {
// The rest should be old, add them to the old set
_old_set->add(r);
}
_total_used += r->used();
}
return false;
}
size_t total_used() {
return _total_used;
}
};
void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
assert_at_safepoint(true /* should_be_vm_thread */);
RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_free_list);
heap_region_iterate(&cl);
if (!free_list_only) {
_summary_bytes_used = cl.total_used();
}
assert(_summary_bytes_used == recalculate_used(),
err_msg("inconsistent _summary_bytes_used, "
"value: "SIZE_FORMAT" recalculated: "SIZE_FORMAT,
_summary_bytes_used, recalculate_used()));
}
void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
@ -5882,6 +5949,8 @@ void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
if (ap == GCAllocForSurvived) {
young_list()->add_survivor_region(alloc_region);
} else {
_old_set.add(alloc_region);
}
_hr_printer.retire(alloc_region);
}
@ -5913,15 +5982,17 @@ void OldGCAllocRegion::retire_region(HeapRegion* alloc_region,
class VerifyRegionListsClosure : public HeapRegionClosure {
private:
HumongousRegionSet* _humongous_set;
FreeRegionList* _free_list;
OldRegionSet* _old_set;
HumongousRegionSet* _humongous_set;
size_t _region_count;
public:
VerifyRegionListsClosure(HumongousRegionSet* humongous_set,
VerifyRegionListsClosure(OldRegionSet* old_set,
HumongousRegionSet* humongous_set,
FreeRegionList* free_list) :
_humongous_set(humongous_set), _free_list(free_list),
_region_count(0) { }
_old_set(old_set), _humongous_set(humongous_set),
_free_list(free_list), _region_count(0) { }
size_t region_count() { return _region_count; }
@ -5938,6 +6009,8 @@ public:
_humongous_set->verify_next_region(hr);
} else if (hr->is_empty()) {
_free_list->verify_next_region(hr);
} else {
_old_set->verify_next_region(hr);
}
return false;
}
@ -5964,6 +6037,7 @@ void G1CollectedHeap::verify_region_sets() {
MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
_secondary_free_list.verify();
}
_old_set.verify();
_humongous_set.verify();
// If a concurrent region freeing operation is in progress it will
@ -5987,12 +6061,14 @@ void G1CollectedHeap::verify_region_sets() {
// Finally, make sure that the region accounting in the lists is
// consistent with what we see in the heap.
_old_set.verify_start();
_humongous_set.verify_start();
_free_list.verify_start();
VerifyRegionListsClosure cl(&_humongous_set, &_free_list);
VerifyRegionListsClosure cl(&_old_set, &_humongous_set, &_free_list);
heap_region_iterate(&cl);
_old_set.verify_end();
_humongous_set.verify_end();
_free_list.verify_end();
}

View File

@ -239,6 +239,9 @@ private:
// master free list when appropriate.
SecondaryFreeRegionList _secondary_free_list;
// It keeps track of the old regions.
MasterOldRegionSet _old_set;
// It keeps track of the humongous regions.
MasterHumongousRegionSet _humongous_set;
@ -248,10 +251,21 @@ private:
// The block offset table for the G1 heap.
G1BlockOffsetSharedArray* _bot_shared;
// Move all of the regions off the free lists, then rebuild those free
// lists, before and after full GC.
void tear_down_region_lists();
void rebuild_region_lists();
// Tears down the region sets / lists so that they are empty and the
// regions on the heap do not belong to a region set / list. The
// only exception is the humongous set which we leave unaltered. If
// free_list_only is true, it will only tear down the master free
// list. It is called before a Full GC (free_list_only == false) or
// before heap shrinking (free_list_only == true).
void tear_down_region_sets(bool free_list_only);
// Rebuilds the region sets / lists so that they are repopulated to
// reflect the contents of the heap. The only exception is the
// humongous set which was not torn down in the first place. If
// free_list_only is true, it will only rebuild the master free
// list. It is called after a Full GC (free_list_only == false) or
// after heap shrinking (free_list_only == true).
void rebuild_region_sets(bool free_list_only);
// The sequence of all heap regions in the heap.
HeapRegionSeq _hrs;
@ -1124,6 +1138,10 @@ public:
}
}
void old_set_remove(HeapRegion* hr) {
_old_set.remove(hr);
}
void set_free_regions_coming();
void reset_free_regions_coming();
bool free_regions_coming() { return _free_regions_coming; }
@ -1153,6 +1171,7 @@ public:
void free_region_if_empty(HeapRegion* hr,
size_t* pre_used,
FreeRegionList* free_list,
OldRegionSet* old_proxy_set,
HumongousRegionSet* humongous_proxy_set,
HRRSCleanupTask* hrrs_cleanup_task,
bool par);
@ -1163,6 +1182,7 @@ public:
// (if par is true, it will do so by taking the ParGCRareEvent_lock).
void update_sets_after_freeing_regions(size_t pre_used,
FreeRegionList* free_list,
OldRegionSet* old_proxy_set,
HumongousRegionSet* humongous_proxy_set,
bool par);
@ -1429,14 +1449,8 @@ public:
// Override; it uses the "prev" marking information
virtual void verify(bool allow_dirty, bool silent);
// Default behavior by calling print(tty);
virtual void print() const;
// This calls print_on(st, PrintHeapAtGCExtended).
virtual void print_on(outputStream* st) const;
// If extended is true, it will print out information for all
// regions in the heap by calling print_on_extended(st).
virtual void print_on(outputStream* st, bool extended) const;
virtual void print_on_extended(outputStream* st) const;
virtual void print_extended_on(outputStream* st) const;
virtual void print_gc_threads_on(outputStream* st) const;
virtual void gc_threads_do(ThreadClosure* tc) const;
@ -1452,8 +1466,6 @@ public:
// asserted to be this type.
static G1CollectedHeap* heap();
void empty_young_list();
void set_region_short_lived_locked(HeapRegion* hr);
// add appropriate methods for any other surv rate groups

View File

@ -3015,6 +3015,7 @@ void G1CollectorPolicy::choose_collection_set(double target_pause_time_ms) {
hr = _collectionSetChooser->getNextMarkedRegion(time_remaining_ms,
avg_prediction);
if (hr != NULL) {
_g1->old_set_remove(hr);
double predicted_time_ms = predict_region_elapsed_time_ms(hr, false);
time_remaining_ms -= predicted_time_ms;
predicted_pause_time_ms += predicted_time_ms;

View File

@ -236,6 +236,7 @@ public:
// at the end of the GC, so no point in updating those values here.
_g1h->update_sets_after_freeing_regions(0, /* pre_used */
NULL, /* free_list */
NULL, /* old_proxy_set */
&_humongous_proxy_set,
false /* par */);
}

View File

@ -635,10 +635,18 @@ bool G1RemSet::concurrentRefineOneCard_impl(jbyte* card_ptr, int worker_i,
ct_freq_note_card(_ct_bs->index_for(start));
#endif
assert(!check_for_refs_into_cset || _cset_rs_update_cl[worker_i] != NULL, "sanity");
OopsInHeapRegionClosure* oops_in_heap_closure = NULL;
if (check_for_refs_into_cset) {
// ConcurrentG1RefineThreads have worker numbers larger than what
// _cset_rs_update_cl[] is set up to handle. But those threads should
// only be active outside of a collection which means that when they
// reach here they should have check_for_refs_into_cset == false.
assert((size_t)worker_i < n_workers(), "index of worker larger than _cset_rs_update_cl[].length");
oops_in_heap_closure = _cset_rs_update_cl[worker_i];
}
UpdateRSOrPushRefOopClosure update_rs_oop_cl(_g1,
_g1->g1_rem_set(),
_cset_rs_update_cl[worker_i],
oops_in_heap_closure,
check_for_refs_into_cset,
worker_i);
update_rs_oop_cl.set_from(r);

View File

@ -722,7 +722,7 @@ void HeapRegion::print_on(outputStream* st) const {
st->print(" F");
else
st->print(" ");
st->print(" %5d", _gc_time_stamp);
st->print(" TS %5d", _gc_time_stamp);
st->print(" PTAMS "PTR_FORMAT" NTAMS "PTR_FORMAT,
prev_top_at_mark_start(), next_top_at_mark_start());
G1OffsetTableContigSpace::print_on(st);

View File

@ -26,6 +26,7 @@
#include "gc_implementation/g1/heapRegionSet.inline.hpp"
size_t HeapRegionSetBase::_unrealistically_long_length = 0;
HRSPhase HeapRegionSetBase::_phase = HRSPhaseNone;
//////////////////// HeapRegionSetBase ////////////////////
@ -192,6 +193,17 @@ void HeapRegionSetBase::verify_end() {
_verify_in_progress = false;
}
void HeapRegionSetBase::clear_phase() {
assert(_phase != HRSPhaseNone, "pre-condition");
_phase = HRSPhaseNone;
}
void HeapRegionSetBase::set_phase(HRSPhase phase) {
assert(_phase == HRSPhaseNone, "pre-condition");
assert(phase != HRSPhaseNone, "pre-condition");
_phase = phase;
}
void HeapRegionSetBase::print_on(outputStream* out, bool print_contents) {
out->cr();
out->print_cr("Set: %s ("PTR_FORMAT")", name(), this);

View File

@ -47,8 +47,18 @@ typedef FormatBuffer<HRS_ERR_MSG_BUFSZ> hrs_err_msg;
class hrs_ext_msg;
typedef enum {
HRSPhaseNone,
HRSPhaseEvacuation,
HRSPhaseCleanup,
HRSPhaseFullGC
} HRSPhase;
class HRSPhaseSetter;
class HeapRegionSetBase VALUE_OBJ_CLASS_SPEC {
friend class hrs_ext_msg;
friend class HRSPhaseSetter;
protected:
static size_t calculate_region_num(HeapRegion* hr);
@ -80,6 +90,15 @@ protected:
size_t _calc_total_capacity_bytes;
size_t _calc_total_used_bytes;
// This is here so that it can be used in the subclasses to assert
// something different depending on which phase the GC is in. This
// can be particularly helpful in the check_mt_safety() methods.
static HRSPhase _phase;
// Only used by HRSPhaseSetter.
static void clear_phase();
static void set_phase(HRSPhase phase);
// verify_region() is used to ensure that the contents of a region
// added to / removed from a set are consistent. Different sets
// make different assumptions about the regions added to them. So
@ -177,6 +196,16 @@ public:
}
};
class HRSPhaseSetter {
public:
HRSPhaseSetter(HRSPhase phase) {
HeapRegionSetBase::set_phase(phase);
}
~HRSPhaseSetter() {
HeapRegionSetBase::clear_phase();
}
};
// These two macros are provided for convenience, to keep the uses of
// these two asserts a bit more concise.

View File

@ -26,6 +26,17 @@
#include "gc_implementation/g1/heapRegionRemSet.hpp"
#include "gc_implementation/g1/heapRegionSets.hpp"
// Note on the check_mt_safety() methods below:
//
// Verification of the "master" heap region sets / lists that are
// maintained by G1CollectedHeap is always done during a STW pause and
// by the VM thread at the start / end of the pause. The standard
// verification methods all assert check_mt_safety(). This is
// important as it ensures that verification is done without
// concurrent updates taking place at the same time. It follows, that,
// for the "master" heap region sets / lists, the check_mt_safety()
// method should include the VM thread / STW case.
//////////////////// FreeRegionList ////////////////////
const char* FreeRegionList::verify_region_extra(HeapRegion* hr) {
@ -33,7 +44,7 @@ const char* FreeRegionList::verify_region_extra(HeapRegion* hr) {
return "the region should not be young";
}
// The superclass will check that the region is empty and
// not-humongous.
// not humongous.
return HeapRegionLinkedList::verify_region_extra(hr);
}
@ -58,12 +69,16 @@ bool MasterFreeRegionList::check_mt_safety() {
// (b) If we're not at a safepoint, operations on the master free
// list should be invoked while holding the Heap_lock.
guarantee((SafepointSynchronize::is_at_safepoint() &&
(Thread::current()->is_VM_thread() ||
FreeList_lock->owned_by_self())) ||
(!SafepointSynchronize::is_at_safepoint() &&
Heap_lock->owned_by_self()),
hrs_ext_msg(this, "master free list MT safety protocol"));
if (SafepointSynchronize::is_at_safepoint()) {
guarantee(Thread::current()->is_VM_thread() ||
FreeList_lock->owned_by_self(),
hrs_ext_msg(this, "master free list MT safety protocol "
"at a safepoint"));
} else {
guarantee(Heap_lock->owned_by_self(),
hrs_ext_msg(this, "master free list MT safety protocol "
"outside a safepoint"));
}
return FreeRegionList::check_mt_safety();
}
@ -81,6 +96,48 @@ bool SecondaryFreeRegionList::check_mt_safety() {
return FreeRegionList::check_mt_safety();
}
//////////////////// OldRegionSet ////////////////////
const char* OldRegionSet::verify_region_extra(HeapRegion* hr) {
if (hr->is_young()) {
return "the region should not be young";
}
// The superclass will check that the region is not empty and not
// humongous.
return HeapRegionSet::verify_region_extra(hr);
}
//////////////////// MasterOldRegionSet ////////////////////
bool MasterOldRegionSet::check_mt_safety() {
// Master Old Set MT safety protocol:
// (a) If we're at a safepoint, operations on the master old set
// should be invoked:
// - by the VM thread (which will serialize them), or
// - by the GC workers while holding the FreeList_lock, if we're
// at a safepoint for an evacuation pause (this lock is taken
// anyway when an GC alloc region is retired so that a new one
// is allocated from the free list), or
// - by the GC workers while holding the OldSets_lock, if we're at a
// safepoint for a cleanup pause.
// (b) If we're not at a safepoint, operations on the master old set
// should be invoked while holding the Heap_lock.
if (SafepointSynchronize::is_at_safepoint()) {
guarantee(Thread::current()->is_VM_thread() ||
_phase == HRSPhaseEvacuation && FreeList_lock->owned_by_self() ||
_phase == HRSPhaseCleanup && OldSets_lock->owned_by_self(),
hrs_ext_msg(this, "master old set MT safety protocol "
"at a safepoint"));
} else {
guarantee(Heap_lock->owned_by_self(),
hrs_ext_msg(this, "master old set MT safety protocol "
"outside a safepoint"));
}
return OldRegionSet::check_mt_safety();
}
//////////////////// HumongousRegionSet ////////////////////
const char* HumongousRegionSet::verify_region_extra(HeapRegion* hr) {
@ -103,11 +160,16 @@ bool MasterHumongousRegionSet::check_mt_safety() {
// (b) If we're not at a safepoint, operations on the master
// humongous set should be invoked while holding the Heap_lock.
guarantee((SafepointSynchronize::is_at_safepoint() &&
(Thread::current()->is_VM_thread() ||
OldSets_lock->owned_by_self())) ||
(!SafepointSynchronize::is_at_safepoint() &&
Heap_lock->owned_by_self()),
hrs_ext_msg(this, "master humongous set MT safety protocol"));
if (SafepointSynchronize::is_at_safepoint()) {
guarantee(Thread::current()->is_VM_thread() ||
OldSets_lock->owned_by_self(),
hrs_ext_msg(this, "master humongous set MT safety protocol "
"at a safepoint"));
} else {
guarantee(Heap_lock->owned_by_self(),
hrs_ext_msg(this, "master humongous set MT safety protocol "
"outside a safepoint"));
}
return HumongousRegionSet::check_mt_safety();
}

View File

@ -61,6 +61,30 @@ public:
SecondaryFreeRegionList(const char* name) : FreeRegionList(name) { }
};
//////////////////// OldRegionSet ////////////////////
class OldRegionSet : public HeapRegionSet {
protected:
virtual const char* verify_region_extra(HeapRegion* hr);
virtual bool regions_humongous() { return false; }
virtual bool regions_empty() { return false; }
public:
OldRegionSet(const char* name) : HeapRegionSet(name) { }
};
//////////////////// MasterOldRegionSet ////////////////////
class MasterOldRegionSet : public OldRegionSet {
private:
protected:
virtual bool check_mt_safety();
public:
MasterOldRegionSet(const char* name) : OldRegionSet(name) { }
};
//////////////////// HumongousRegionSet ////////////////////
class HumongousRegionSet : public HeapRegionSet {

View File

@ -863,8 +863,6 @@ void ParallelScavengeHeap::prepare_for_verify() {
ensure_parsability(false); // no need to retire TLABs for verification
}
void ParallelScavengeHeap::print() const { print_on(tty); }
void ParallelScavengeHeap::print_on(outputStream* st) const {
young_gen()->print_on(st);
old_gen()->print_on(st);

View File

@ -246,8 +246,7 @@ CollectorPolicy* collector_policy() const { return (CollectorPolicy*) _collector
jlong millis_since_last_gc();
void prepare_for_verify();
void print() const;
void print_on(outputStream* st) const;
virtual void print_on(outputStream* st) const;
virtual void print_gc_threads_on(outputStream* st) const;
virtual void gc_threads_do(ThreadClosure* tc) const;
virtual void print_tracing_info() const;

View File

@ -590,13 +590,27 @@ class CollectedHeap : public CHeapObj {
void pre_full_gc_dump();
void post_full_gc_dump();
virtual void print() const = 0;
// Print heap information on the given outputStream.
virtual void print_on(outputStream* st) const = 0;
// The default behavior is to call print_on() on tty.
virtual void print() const {
print_on(tty);
}
// Print more detailed heap information on the given
// outputStream. The default behaviour is to call print_on(). It is
// up to each subclass to override it and add any additional output
// it needs.
virtual void print_extended_on(outputStream* st) const {
print_on(st);
}
// Print all GC threads (other than the VM thread)
// used by this heap.
virtual void print_gc_threads_on(outputStream* st) const = 0;
void print_gc_threads() { print_gc_threads_on(tty); }
// The default behavior is to call print_gc_threads_on() on tty.
void print_gc_threads() {
print_gc_threads_on(tty);
}
// Iterator for all GC threads (other than VM thread)
virtual void gc_threads_do(ThreadClosure* tc) const = 0;

View File

@ -42,12 +42,6 @@ const char* GCCause::to_string(GCCause::Cause cause) {
case _jvmti_force_gc:
return "JvmtiEnv ForceGarbageCollection";
case _no_gc:
return "No GC";
case _allocation_failure:
return "Allocation Failure";
case _gc_locker:
return "GCLocker Initiated GC";
@ -57,6 +51,12 @@ const char* GCCause::to_string(GCCause::Cause cause) {
case _heap_dump:
return "Heap Dump Initiated GC";
case _no_gc:
return "No GC";
case _allocation_failure:
return "Allocation Failure";
case _tenured_generation_full:
return "Tenured Generation Full";
@ -78,6 +78,9 @@ const char* GCCause::to_string(GCCause::Cause cause) {
case _old_generation_too_full_to_scavenge:
return "Old Generation Too Full To Scavenge";
case _adaptive_size_policy:
return "Ergonomics";
case _g1_inc_collection_pause:
return "G1 Evacuation Pause";

View File

@ -234,6 +234,13 @@ class Bytecode_invoke: public Bytecode_member_ref {
is_invokespecial() ||
is_invokedynamic(); }
bool is_method_handle_invoke() const {
return (is_invokedynamic() ||
(is_invokevirtual() &&
method()->constants()->klass_ref_at_noresolve(index()) == vmSymbols::java_lang_invoke_MethodHandle() &&
methodOopDesc::is_method_handle_invoke_name(name())));
}
// Helper to skip verification. Used is_valid() to check if the result is really an invoke
inline friend Bytecode_invoke Bytecode_invoke_check(methodHandle method, int bci);
};

View File

@ -241,7 +241,7 @@ bool BytecodePrinter::check_index(int i, int& cp_index, outputStream* st) {
st->print_cr(" not secondary entry?", i);
return false;
}
i = cache->entry_at(i)->main_entry_index();
i = cache->entry_at(i)->main_entry_index() + constantPoolOopDesc::CPCACHE_INDEX_TAG;
goto check_cache_index;
} else {
st->print_cr(" not in cache[*]?", i);

View File

@ -549,8 +549,8 @@ IRT_ENTRY(void, InterpreterRuntime::resolve_get_put(JavaThread* thread, Bytecode
if (is_put && !is_static && klass->is_subclass_of(SystemDictionary::CallSite_klass()) && (info.name() == vmSymbols::target_name())) {
const jint direction = frame::interpreter_frame_expression_stack_direction();
oop call_site = *((oop*) thread->last_frame().interpreter_frame_tos_at(-1 * direction));
oop method_handle = *((oop*) thread->last_frame().interpreter_frame_tos_at( 0 * direction));
Handle call_site (THREAD, *((oop*) thread->last_frame().interpreter_frame_tos_at(-1 * direction)));
Handle method_handle(THREAD, *((oop*) thread->last_frame().interpreter_frame_tos_at( 0 * direction)));
assert(call_site ->is_a(SystemDictionary::CallSite_klass()), "must be");
assert(method_handle->is_a(SystemDictionary::MethodHandle_klass()), "must be");

View File

@ -350,6 +350,21 @@ int VectorSet::hash() const
return (int)_xor;
}
//------------------------------iterate----------------------------------------
// Used by Set::print().
class VSetI_ : public SetI_ {
VectorSetI vsi;
public:
VSetI_( const VectorSet *vset, uint &elem ) : vsi(vset) { elem = vsi.elem; }
uint next(void) { ++vsi; return vsi.elem; }
int test(void) { return vsi.test(); }
};
SetI_ *VectorSet::iterate(uint &elem) const {
return new(ResourceObj::C_HEAP) VSetI_(this, elem);
}
//=============================================================================
//------------------------------next-------------------------------------------
// Find and return the next element of a vector set, or return garbage and

View File

@ -151,7 +151,7 @@ public:
private:
SetI_ *iterate(uint&) const { ShouldNotCallThis(); return NULL; } // Removed
SetI_ *iterate(uint&) const;
};
//------------------------------Iteration--------------------------------------

View File

@ -1270,7 +1270,6 @@ void GenCollectedHeap::verify(bool allow_dirty, bool silent, VerifyOption option
rem_set()->verify();
}
void GenCollectedHeap::print() const { print_on(tty); }
void GenCollectedHeap::print_on(outputStream* st) const {
for (int i = 0; i < _n_gens; i++) {
_gens[i]->print_on(st);

View File

@ -360,8 +360,7 @@ public:
void verify(bool allow_dirty, bool silent, VerifyOption option);
// Override.
void print() const;
void print_on(outputStream* st) const;
virtual void print_on(outputStream* st) const;
virtual void print_gc_threads_on(outputStream* st) const;
virtual void gc_threads_do(ThreadClosure* tc) const;
virtual void print_tracing_info() const;

View File

@ -1281,11 +1281,17 @@ void Universe::flush_dependents_on_method(methodHandle m_h) {
}
}
void Universe::print() { print_on(gclog_or_tty); }
void Universe::print() {
print_on(gclog_or_tty);
}
void Universe::print_on(outputStream* st) {
void Universe::print_on(outputStream* st, bool extended) {
st->print_cr("Heap");
heap()->print_on(st);
if (!extended) {
heap()->print_on(st);
} else {
heap()->print_extended_on(st);
}
}
void Universe::print_heap_at_SIGBREAK() {
@ -1301,14 +1307,22 @@ void Universe::print_heap_before_gc(outputStream* st) {
st->print_cr("{Heap before GC invocations=%u (full %u):",
heap()->total_collections(),
heap()->total_full_collections());
heap()->print_on(st);
if (!PrintHeapAtGCExtended) {
heap()->print_on(st);
} else {
heap()->print_extended_on(st);
}
}
void Universe::print_heap_after_gc(outputStream* st) {
st->print_cr("Heap after GC invocations=%u (full %u):",
heap()->total_collections(),
heap()->total_full_collections());
heap()->print_on(st);
if (!PrintHeapAtGCExtended) {
heap()->print_on(st);
} else {
heap()->print_extended_on(st);
}
st->print_cr("}");
}

View File

@ -414,9 +414,13 @@ class Universe: AllStatic {
static bool verify_in_progress() { return _verify_in_progress; }
static void verify(bool allow_dirty = true, bool silent = false,
VerifyOption option = VerifyOption_Default );
static int verify_count() { return _verify_count; }
static int verify_count() { return _verify_count; }
// The default behavior is to call print_on() on gclog_or_tty.
static void print();
static void print_on(outputStream* st);
// The extended parameter determines which method on the heap will
// be called: print_on() (extended == false) or print_extended_on()
// (extended == true).
static void print_on(outputStream* st, bool extended = false);
static void print_heap_at_SIGBREAK();
static void print_heap_before_gc() { print_heap_before_gc(gclog_or_tty); }
static void print_heap_after_gc() { print_heap_after_gc(gclog_or_tty); }

View File

@ -23,9 +23,40 @@
*/
#include "precompiled.hpp"
#include "oops/arrayOop.hpp"
#include "oops/objArrayOop.hpp"
#include "oops/oop.inline.hpp"
#include "oops/symbol.hpp"
// <<this page is intentionally left blank>>
/////////////// Unit tests ///////////////
#ifndef PRODUCT
#include "oops/arrayOop.hpp"
#include "utilities/globalDefinitions.hpp"
bool arrayOopDesc::check_max_length_overflow(BasicType type) {
julong length = max_array_length(type);
julong bytes_per_element = type2aelembytes(type);
julong bytes = length * bytes_per_element + header_size_in_bytes();
return (julong)(size_t)bytes == bytes;
}
bool arrayOopDesc::test_max_array_length() {
tty->print_cr("test_max_array_length");
assert(check_max_length_overflow(T_BOOLEAN), "size_t overflow for boolean array");
assert(check_max_length_overflow(T_CHAR), "size_t overflow for char array");
assert(check_max_length_overflow(T_FLOAT), "size_t overflow for float array");
assert(check_max_length_overflow(T_DOUBLE), "size_t overflow for double array");
assert(check_max_length_overflow(T_BYTE), "size_t overflow for byte array");
assert(check_max_length_overflow(T_SHORT), "size_t overflow for short array");
assert(check_max_length_overflow(T_INT), "size_t overflow for int array");
assert(check_max_length_overflow(T_LONG), "size_t overflow for long array");
assert(check_max_length_overflow(T_OBJECT), "size_t overflow for object array");
assert(check_max_length_overflow(T_ARRAY), "size_t overflow for array array");
assert(check_max_length_overflow(T_NARROWOOP), "size_t overflow for narrowOop array");
// T_VOID and T_ADDRESS are not supported by max_array_length()
return true;
}
#endif //PRODUCT

View File

@ -1,5 +1,5 @@
/*
* Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -104,20 +104,32 @@ class arrayOopDesc : public oopDesc {
// Return the maximum length of an array of BasicType. The length can passed
// to typeArrayOop::object_size(scale, length, header_size) without causing an
// overflow.
// overflow. We also need to make sure that this will not overflow a size_t on
// 32 bit platforms when we convert it to a byte size.
static int32_t max_array_length(BasicType type) {
assert(type >= 0 && type < T_CONFLICT, "wrong type");
assert(type2aelembytes(type) != 0, "wrong type");
const int bytes_per_element = type2aelembytes(type);
if (bytes_per_element < HeapWordSize) {
return max_jint;
}
const int32_t max_words = align_size_down(max_jint, MinObjAlignment);
const int32_t max_element_words = max_words - header_size(type);
const int32_t words_per_element = bytes_per_element >> LogHeapWordSize;
return max_element_words / words_per_element;
const size_t max_element_words_per_size_t =
align_size_down((SIZE_MAX/HeapWordSize - header_size(type)), MinObjAlignment);
const size_t max_elements_per_size_t =
HeapWordSize * max_element_words_per_size_t / type2aelembytes(type);
if ((size_t)max_jint < max_elements_per_size_t) {
// It should be ok to return max_jint here, but parts of the code
// (CollectedHeap, Klass::oop_oop_iterate(), and more) uses an int for
// passing around the size (in words) of an object. So, we need to avoid
// overflowing an int when we add the header. See CRs 4718400 and 7110613.
return align_size_down(max_jint - header_size(type), MinObjAlignment);
}
return (int32_t)max_elements_per_size_t;
}
// for unit testing
#ifndef PRODUCT
static bool check_max_length_overflow(BasicType type);
static int32_t old_max_array_length(BasicType type);
static bool test_max_array_length();
#endif
};
#endif // SHARE_VM_OOPS_ARRAYOOP_HPP

View File

@ -532,7 +532,7 @@ void constantPoolKlass::preload_and_initialize_all_classes(oop obj, TRAPS) {
if (cp->tag_at(i).is_unresolved_klass()) {
// This will force loading of the class
klassOop klass = cp->klass_at(i, CHECK);
if (klass->is_instance()) {
if (klass->klass_part()->oop_is_instance()) {
// Force initialization of class
instanceKlass::cast(klass)->initialize(CHECK);
}

View File

@ -34,8 +34,6 @@
// Portions of code courtesy of Clifford Click
#define MAXFLOAT ((float)3.40282346638528860e+38)
// Classic Add functionality. This covers all the usual 'add' behaviors for
// an algebraic ring. Add-integer, add-float, add-double, and binary-or are
// all inherited from this class. The various identity values are supplied

View File

@ -201,7 +201,7 @@
diagnostic(bool, UnrollLimitCheck, true, \
"Additional overflow checks during loop unroll") \
\
product(bool, OptimizeFill, false, \
product(bool, OptimizeFill, true, \
"convert fill/copy loops into intrinsic") \
\
develop(bool, TraceOptimizeFill, false, \
@ -459,7 +459,7 @@
product(bool, UseOptoBiasInlining, true, \
"Generate biased locking code in C2 ideal graph") \
\
product(bool, OptimizeStringConcat, false, \
product(bool, OptimizeStringConcat, true, \
"Optimize the construction of Strings by StringBuilder") \
\
notproduct(bool, PrintOptimizeStringConcat, false, \

View File

@ -775,15 +775,15 @@ JVMState* PredictedDynamicCallGenerator::generate(JVMState* jvms) {
Node* bol = NULL;
int bc = jvms->method()->java_code_at_bci(jvms->bci());
if (bc == Bytecodes::_invokespecial) {
// This is the selectAlternative idiom for guardWithTest
if (bc != Bytecodes::_invokedynamic) {
// This is the selectAlternative idiom for guardWithTest or
// similar idioms.
Node* receiver = kit.argument(0);
// Check if the MethodHandle is the expected one
Node* cmp = gvn.transform(new(kit.C, 3) CmpPNode(receiver, predicted_mh));
bol = gvn.transform(new(kit.C, 2) BoolNode(cmp, BoolTest::eq) );
} else {
assert(bc == Bytecodes::_invokedynamic, "must be");
// Get the constant pool cache from the caller class.
ciMethod* caller_method = jvms->method();
ciBytecodeStream str(caller_method);

View File

@ -346,15 +346,15 @@ void Compile::identify_useful_nodes(Unique_Node_List &useful) {
// Disconnect all useless nodes by disconnecting those at the boundary.
void Compile::remove_useless_nodes(Unique_Node_List &useful) {
uint next = 0;
while( next < useful.size() ) {
while (next < useful.size()) {
Node *n = useful.at(next++);
// Use raw traversal of out edges since this code removes out edges
int max = n->outcnt();
for (int j = 0; j < max; ++j ) {
for (int j = 0; j < max; ++j) {
Node* child = n->raw_out(j);
if( ! useful.member(child) ) {
assert( !child->is_top() || child != top(),
"If top is cached in Compile object it is in useful list");
if (! useful.member(child)) {
assert(!child->is_top() || child != top(),
"If top is cached in Compile object it is in useful list");
// Only need to remove this out-edge to the useless node
n->raw_del_out(j);
--j;
@ -362,7 +362,14 @@ void Compile::remove_useless_nodes(Unique_Node_List &useful) {
}
}
if (n->outcnt() == 1 && n->has_special_unique_user()) {
record_for_igvn( n->unique_out() );
record_for_igvn(n->unique_out());
}
}
// Remove useless macro and predicate opaq nodes
for (int i = C->macro_count()-1; i >= 0; i--) {
Node* n = C->macro_node(i);
if (!useful.member(n)) {
remove_macro_node(n);
}
}
debug_only(verify_graph_edges(true/*check for no_dead_code*/);)
@ -719,6 +726,7 @@ Compile::Compile( ciEnv* ci_env, C2Compiler* compiler, ciMethod* target, int osr
while (_late_inlines.length() > 0) {
CallGenerator* cg = _late_inlines.pop();
cg->do_late_inline();
if (failing()) return;
}
}
assert(_late_inlines.length() == 0, "should have been processed");
@ -1691,13 +1699,20 @@ void Compile::Optimize() {
// Perform escape analysis
if (_do_escape_analysis && ConnectionGraph::has_candidates(this)) {
if (has_loops()) {
// Cleanup graph (remove dead nodes).
TracePhase t2("idealLoop", &_t_idealLoop, true);
PhaseIdealLoop ideal_loop( igvn, false, true );
if (major_progress()) print_method("PhaseIdealLoop before EA", 2);
if (failing()) return;
}
TracePhase t2("escapeAnalysis", &_t_escapeAnalysis, true);
ConnectionGraph::do_analysis(this, &igvn);
if (failing()) return;
igvn.optimize();
print_method("Iter GVN 3", 2);
print_method("Iter GVN after EA", 2);
if (failing()) return;

View File

@ -108,14 +108,16 @@ ConnectionGraph::ConnectionGraph(Compile * C, PhaseIterGVN *igvn) :
// Add ConP(#NULL) and ConN(#NULL) nodes.
Node* oop_null = igvn->zerocon(T_OBJECT);
_oop_null = oop_null->_idx;
assert(_oop_null < C->unique(), "should be created already");
assert(_oop_null < nodes_size(), "should be created already");
add_node(oop_null, PointsToNode::JavaObject, PointsToNode::NoEscape, true);
if (UseCompressedOops) {
Node* noop_null = igvn->zerocon(T_NARROWOOP);
_noop_null = noop_null->_idx;
assert(_noop_null < C->unique(), "should be created already");
assert(_noop_null < nodes_size(), "should be created already");
add_node(noop_null, PointsToNode::JavaObject, PointsToNode::NoEscape, true);
} else {
_noop_null = _oop_null; // Should be initialized
}
}
@ -174,6 +176,9 @@ void ConnectionGraph::add_field_edge(uint from_i, uint to_i, int offset) {
}
void ConnectionGraph::set_escape_state(uint ni, PointsToNode::EscapeState es) {
// Don't change non-escaping state of NULL pointer.
if (ni == _noop_null || ni == _oop_null)
return;
PointsToNode *npt = ptnode_adr(ni);
PointsToNode::EscapeState old_es = npt->escape_state();
if (es > old_es)
@ -231,8 +236,8 @@ PointsToNode::EscapeState ConnectionGraph::escape_state(Node *n) {
}
if (orig_es != es) {
// cache the computed escape state
assert(es != PointsToNode::UnknownEscape, "should have computed an escape state");
ptnode_adr(idx)->set_escape_state(es);
assert(es > orig_es, "should have computed an escape state");
set_escape_state(idx, es);
} // orig_es could be PointsToNode::UnknownEscape
return es;
}
@ -334,7 +339,7 @@ void ConnectionGraph::remove_deferred(uint ni, GrowableArray<uint>* deferred_edg
add_pointsto_edge(ni, etgt);
if(etgt == _phantom_object) {
// Special case - field set outside (globally escaping).
ptn->set_escape_state(PointsToNode::GlobalEscape);
set_escape_state(ni, PointsToNode::GlobalEscape);
}
} else if (et == PointsToNode::DeferredEdge) {
deferred_edges->append(etgt);
@ -373,16 +378,17 @@ void ConnectionGraph::add_edge_from_fields(uint adr_i, uint to_i, int offs) {
// whose offset matches "offset".
void ConnectionGraph::add_deferred_edge_to_fields(uint from_i, uint adr_i, int offs) {
PointsToNode* an = ptnode_adr(adr_i);
bool is_alloc = an->_node->is_Allocate();
for (uint fe = 0; fe < an->edge_count(); fe++) {
assert(an->edge_type(fe) == PointsToNode::FieldEdge, "expecting a field edge");
int fi = an->edge_target(fe);
PointsToNode* pf = ptnode_adr(fi);
int po = pf->offset();
if (pf->edge_count() == 0) {
// we have not seen any stores to this field, assume it was set outside this method
int offset = pf->offset();
if (!is_alloc) {
// Assume the field was set outside this method if it is not Allocation
add_pointsto_edge(fi, _phantom_object);
}
if (po == offs || po == Type::OffsetBot || offs == Type::OffsetBot) {
if (offset == offs || offset == Type::OffsetBot || offs == Type::OffsetBot) {
add_deferred_edge(from_i, fi);
}
}
@ -1036,7 +1042,7 @@ void ConnectionGraph::split_unique_types(GrowableArray<Node *> &alloc_worklist)
PointsToNode::EscapeState es = escape_state(alloc);
// We have an allocation or call which returns a Java object,
// see if it is unescaped.
if (es != PointsToNode::NoEscape || !ptn->_scalar_replaceable)
if (es != PointsToNode::NoEscape || !ptn->scalar_replaceable())
continue;
// Find CheckCastPP for the allocate or for the return value of a call
@ -1085,7 +1091,7 @@ void ConnectionGraph::split_unique_types(GrowableArray<Node *> &alloc_worklist)
// so it could be eliminated.
alloc->as_Allocate()->_is_scalar_replaceable = true;
}
set_escape_state(n->_idx, es);
set_escape_state(n->_idx, es); // CheckCastPP escape state
// in order for an object to be scalar-replaceable, it must be:
// - a direct allocation (not a call returning an object)
// - non-escaping
@ -1097,15 +1103,14 @@ void ConnectionGraph::split_unique_types(GrowableArray<Node *> &alloc_worklist)
set_map(n->_idx, alloc);
const TypeOopPtr *t = igvn->type(n)->isa_oopptr();
if (t == NULL)
continue; // not a TypeInstPtr
continue; // not a TypeOopPtr
tinst = t->cast_to_exactness(true)->is_oopptr()->cast_to_instance_id(ni);
igvn->hash_delete(n);
igvn->set_type(n, tinst);
n->raise_bottom_type(tinst);
igvn->hash_insert(n);
record_for_optimizer(n);
if (alloc->is_Allocate() && ptn->_scalar_replaceable &&
(t->isa_instptr() || t->isa_aryptr())) {
if (alloc->is_Allocate() && (t->isa_instptr() || t->isa_aryptr())) {
// First, put on the worklist all Field edges from Connection Graph
// which is more accurate then putting immediate users from Ideal Graph.
@ -1533,7 +1538,8 @@ bool ConnectionGraph::compute_escape() {
worklist_init.push(C->root());
}
GrowableArray<int> cg_worklist;
GrowableArray<Node*> alloc_worklist;
GrowableArray<Node*> addp_worklist;
PhaseGVN* igvn = _igvn;
bool has_allocations = false;
@ -1546,11 +1552,13 @@ bool ConnectionGraph::compute_escape() {
if (n->is_Allocate() || n->is_CallStaticJava() &&
ptnode_adr(n->_idx)->node_type() == PointsToNode::JavaObject) {
has_allocations = true;
if (n->is_Allocate())
alloc_worklist.append(n);
}
if(n->is_AddP()) {
// Collect address nodes. Use them during stage 3 below
// to build initial connection graph field edges.
cg_worklist.append(n->_idx);
addp_worklist.append(n);
} else if (n->is_MergeMem()) {
// Collect all MergeMem nodes to add memory slices for
// scalar replaceable objects in split_unique_types().
@ -1576,10 +1584,9 @@ bool ConnectionGraph::compute_escape() {
// 3. Pass to create initial fields edges (JavaObject -F-> AddP)
// to reduce number of iterations during stage 4 below.
uint cg_length = cg_worklist.length();
for( uint next = 0; next < cg_length; ++next ) {
int ni = cg_worklist.at(next);
Node* n = ptnode_adr(ni)->_node;
uint addp_length = addp_worklist.length();
for( uint next = 0; next < addp_length; ++next ) {
Node* n = addp_worklist.at(next);
Node* base = get_addp_base(n);
if (base->is_Proj())
base = base->in(0);
@ -1589,7 +1596,7 @@ bool ConnectionGraph::compute_escape() {
}
}
cg_worklist.clear();
GrowableArray<int> cg_worklist;
cg_worklist.append(_phantom_object);
GrowableArray<uint> worklist;
@ -1648,73 +1655,44 @@ bool ConnectionGraph::compute_escape() {
Arena* arena = Thread::current()->resource_area();
VectorSet visited(arena);
// 5. Find fields initializing values for not escaped allocations
uint alloc_length = alloc_worklist.length();
for (uint next = 0; next < alloc_length; ++next) {
Node* n = alloc_worklist.at(next);
if (ptnode_adr(n->_idx)->escape_state() == PointsToNode::NoEscape) {
find_init_values(n, &visited, igvn);
}
}
worklist.clear();
// 5. Remove deferred edges from the graph and adjust
// escape state of nonescaping objects.
cg_length = cg_worklist.length();
for( uint next = 0; next < cg_length; ++next ) {
// 6. Remove deferred edges from the graph.
uint cg_length = cg_worklist.length();
for (uint next = 0; next < cg_length; ++next) {
int ni = cg_worklist.at(next);
PointsToNode* ptn = ptnode_adr(ni);
PointsToNode::NodeType nt = ptn->node_type();
if (nt == PointsToNode::LocalVar || nt == PointsToNode::Field) {
remove_deferred(ni, &worklist, &visited);
Node *n = ptn->_node;
if (n->is_AddP()) {
// Search for objects which are not scalar replaceable
// and adjust their escape state.
adjust_escape_state(ni, igvn);
}
}
}
// 6. Propagate escape states.
// 7. Adjust escape state of nonescaping objects.
for (uint next = 0; next < addp_length; ++next) {
Node* n = addp_worklist.at(next);
adjust_escape_state(n);
}
// 8. Propagate escape states.
worklist.clear();
bool has_non_escaping_obj = false;
// push all GlobalEscape nodes on the worklist
for( uint next = 0; next < cg_length; ++next ) {
int nk = cg_worklist.at(next);
if (ptnode_adr(nk)->escape_state() == PointsToNode::GlobalEscape)
worklist.push(nk);
}
// mark all nodes reachable from GlobalEscape nodes
while(worklist.length() > 0) {
PointsToNode* ptn = ptnode_adr(worklist.pop());
uint e_cnt = ptn->edge_count();
for (uint ei = 0; ei < e_cnt; ei++) {
uint npi = ptn->edge_target(ei);
PointsToNode *np = ptnode_adr(npi);
if (np->escape_state() < PointsToNode::GlobalEscape) {
np->set_escape_state(PointsToNode::GlobalEscape);
worklist.push(npi);
}
}
}
(void)propagate_escape_state(&cg_worklist, &worklist, PointsToNode::GlobalEscape);
// push all ArgEscape nodes on the worklist
for( uint next = 0; next < cg_length; ++next ) {
int nk = cg_worklist.at(next);
if (ptnode_adr(nk)->escape_state() == PointsToNode::ArgEscape)
worklist.push(nk);
}
// mark all nodes reachable from ArgEscape nodes
while(worklist.length() > 0) {
PointsToNode* ptn = ptnode_adr(worklist.pop());
if (ptn->node_type() == PointsToNode::JavaObject)
has_non_escaping_obj = true; // Non GlobalEscape
uint e_cnt = ptn->edge_count();
for (uint ei = 0; ei < e_cnt; ei++) {
uint npi = ptn->edge_target(ei);
PointsToNode *np = ptnode_adr(npi);
if (np->escape_state() < PointsToNode::ArgEscape) {
np->set_escape_state(PointsToNode::ArgEscape);
worklist.push(npi);
}
}
}
GrowableArray<Node*> alloc_worklist;
bool has_non_escaping_obj = propagate_escape_state(&cg_worklist, &worklist, PointsToNode::ArgEscape);
// push all NoEscape nodes on the worklist
for( uint next = 0; next < cg_length; ++next ) {
@ -1722,15 +1700,20 @@ bool ConnectionGraph::compute_escape() {
if (ptnode_adr(nk)->escape_state() == PointsToNode::NoEscape)
worklist.push(nk);
}
alloc_worklist.clear();
// mark all nodes reachable from NoEscape nodes
while(worklist.length() > 0) {
PointsToNode* ptn = ptnode_adr(worklist.pop());
if (ptn->node_type() == PointsToNode::JavaObject)
has_non_escaping_obj = true; // Non GlobalEscape
uint nk = worklist.pop();
PointsToNode* ptn = ptnode_adr(nk);
if (ptn->node_type() == PointsToNode::JavaObject &&
!(nk == _noop_null || nk == _oop_null))
has_non_escaping_obj = true; // Non Escape
Node* n = ptn->_node;
if (n->is_Allocate() && ptn->_scalar_replaceable ) {
bool scalar_replaceable = ptn->scalar_replaceable();
if (n->is_Allocate() && scalar_replaceable) {
// Push scalar replaceable allocations on alloc_worklist
// for processing in split_unique_types().
// for processing in split_unique_types(). Note,
// following code may change scalar_replaceable value.
alloc_worklist.append(n);
}
uint e_cnt = ptn->edge_count();
@ -1738,7 +1721,14 @@ bool ConnectionGraph::compute_escape() {
uint npi = ptn->edge_target(ei);
PointsToNode *np = ptnode_adr(npi);
if (np->escape_state() < PointsToNode::NoEscape) {
np->set_escape_state(PointsToNode::NoEscape);
set_escape_state(npi, PointsToNode::NoEscape);
if (!scalar_replaceable) {
np->set_scalar_replaceable(false);
}
worklist.push(npi);
} else if (np->scalar_replaceable() && !scalar_replaceable) {
// Propagate scalar_replaceable value.
np->set_scalar_replaceable(false);
worklist.push(npi);
}
}
@ -1747,7 +1737,12 @@ bool ConnectionGraph::compute_escape() {
_collecting = false;
assert(C->unique() == nodes_size(), "there should be no new ideal nodes during ConnectionGraph build");
if (EliminateLocks) {
assert(ptnode_adr(_oop_null)->escape_state() == PointsToNode::NoEscape, "sanity");
if (UseCompressedOops) {
assert(ptnode_adr(_noop_null)->escape_state() == PointsToNode::NoEscape, "sanity");
}
if (EliminateLocks && has_non_escaping_obj) {
// Mark locks before changing ideal graph.
int cnt = C->macro_count();
for( int i=0; i < cnt; i++ ) {
@ -1772,7 +1767,18 @@ bool ConnectionGraph::compute_escape() {
}
#endif
bool has_scalar_replaceable_candidates = alloc_worklist.length() > 0;
bool has_scalar_replaceable_candidates = false;
alloc_length = alloc_worklist.length();
for (uint next = 0; next < alloc_length; ++next) {
Node* n = alloc_worklist.at(next);
PointsToNode* ptn = ptnode_adr(n->_idx);
assert(ptn->escape_state() == PointsToNode::NoEscape, "sanity");
if (ptn->scalar_replaceable()) {
has_scalar_replaceable_candidates = true;
break;
}
}
if ( has_scalar_replaceable_candidates &&
C->AliasLevel() >= 3 && EliminateAllocations ) {
@ -1801,53 +1807,32 @@ bool ConnectionGraph::compute_escape() {
return has_non_escaping_obj;
}
// Adjust escape state after Connection Graph is built.
void ConnectionGraph::adjust_escape_state(int nidx, PhaseTransform* phase) {
PointsToNode* ptn = ptnode_adr(nidx);
Node* n = ptn->_node;
assert(n->is_AddP(), "Should be called for AddP nodes only");
// Search for objects which are not scalar replaceable.
// Mark their escape state as ArgEscape to propagate the state
// to referenced objects.
// Note: currently there are no difference in compiler optimizations
// for ArgEscape objects and NoEscape objects which are not
// scalar replaceable.
// Find fields initializing values for allocations.
void ConnectionGraph::find_init_values(Node* alloc, VectorSet* visited, PhaseTransform* phase) {
assert(alloc->is_Allocate(), "Should be called for Allocate nodes only");
PointsToNode* pta = ptnode_adr(alloc->_idx);
assert(pta->escape_state() == PointsToNode::NoEscape, "Not escaped Allocate nodes only");
InitializeNode* ini = alloc->as_Allocate()->initialization();
Compile* C = _compile;
int offset = ptn->offset();
Node* base = get_addp_base(n);
VectorSet* ptset = PointsTo(base);
int ptset_size = ptset->Size();
visited->Reset();
// Check if a oop field's initializing value is recorded and add
// a corresponding NULL field's value if it is not recorded.
// Connection Graph does not record a default initialization by NULL
// captured by Initialize node.
//
// Note: it will disable scalar replacement in some cases:
//
// Point p[] = new Point[1];
// p[0] = new Point(); // Will be not scalar replaced
//
// but it will save us from incorrect optimizations in next cases:
//
// Point p[] = new Point[1];
// if ( x ) p[0] = new Point(); // Will be not scalar replaced
//
// Do a simple control flow analysis to distinguish above cases.
//
if (offset != Type::OffsetBot && ptset_size == 1) {
uint elem = ptset->getelem(); // Allocation node's index
// It does not matter if it is not Allocation node since
// only non-escaping allocations are scalar replaced.
if (ptnode_adr(elem)->_node->is_Allocate() &&
ptnode_adr(elem)->escape_state() == PointsToNode::NoEscape) {
AllocateNode* alloc = ptnode_adr(elem)->_node->as_Allocate();
InitializeNode* ini = alloc->initialization();
uint ae_cnt = pta->edge_count();
for (uint ei = 0; ei < ae_cnt; ei++) {
uint nidx = pta->edge_target(ei); // Field (AddP)
PointsToNode* ptn = ptnode_adr(nidx);
assert(ptn->_node->is_AddP(), "Should be AddP nodes only");
int offset = ptn->offset();
if (offset != Type::OffsetBot &&
offset != oopDesc::klass_offset_in_bytes() &&
!visited->test_set(offset)) {
// Check only oop fields.
const Type* adr_type = n->as_AddP()->bottom_type();
const Type* adr_type = ptn->_node->as_AddP()->bottom_type();
BasicType basic_field_type = T_INT;
if (adr_type->isa_instptr()) {
ciField* field = C->alias_type(adr_type->isa_instptr())->field();
@ -1857,12 +1842,20 @@ void ConnectionGraph::adjust_escape_state(int nidx, PhaseTransform* phase) {
// Ignore non field load (for example, klass load)
}
} else if (adr_type->isa_aryptr()) {
const Type* elemtype = adr_type->isa_aryptr()->elem();
basic_field_type = elemtype->array_element_basic_type();
if (offset != arrayOopDesc::length_offset_in_bytes()) {
const Type* elemtype = adr_type->isa_aryptr()->elem();
basic_field_type = elemtype->array_element_basic_type();
} else {
// Ignore array length load
}
#ifdef ASSERT
} else {
// Raw pointers are used for initializing stores so skip it.
// Raw pointers are used for initializing stores so skip it
// since it should be recorded already
Node* base = get_addp_base(ptn->_node);
assert(adr_type->isa_rawptr() && base->is_Proj() &&
(base->in(0) == alloc),"unexpected pointer type");
#endif
}
if (basic_field_type == T_OBJECT ||
basic_field_type == T_NARROWOOP ||
@ -1877,18 +1870,33 @@ void ConnectionGraph::adjust_escape_state(int nidx, PhaseTransform* phase) {
// Check for a store which follows allocation without branches.
// For example, a volatile field store is not collected
// by Initialize node. TODO: it would be nice to use idom() here.
for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
store = n->fast_out(i);
if (store->is_Store() && store->in(0) != NULL) {
Node* ctrl = store->in(0);
while(!(ctrl == ini || ctrl == alloc || ctrl == NULL ||
ctrl == C->root() || ctrl == C->top() || ctrl->is_Region() ||
ctrl->is_IfTrue() || ctrl->is_IfFalse())) {
ctrl = ctrl->in(0);
}
if (ctrl == ini || ctrl == alloc) {
value = store->in(MemNode::ValueIn);
break;
//
// Search all references to the same field which use different
// AddP nodes, for example, in the next case:
//
// Point p[] = new Point[1];
// if ( x ) { p[0] = new Point(); p[0].x = x; }
// if ( p[0] != null ) { y = p[0].x; } // has CastPP
//
for (uint next = ei; (next < ae_cnt) && (value == NULL); next++) {
uint fpi = pta->edge_target(next); // Field (AddP)
PointsToNode *ptf = ptnode_adr(fpi);
if (ptf->offset() == offset) {
Node* nf = ptf->_node;
for (DUIterator_Fast imax, i = nf->fast_outs(imax); i < imax; i++) {
store = nf->fast_out(i);
if (store->is_Store() && store->in(0) != NULL) {
Node* ctrl = store->in(0);
while(!(ctrl == ini || ctrl == alloc || ctrl == NULL ||
ctrl == C->root() || ctrl == C->top() || ctrl->is_Region() ||
ctrl->is_IfTrue() || ctrl->is_IfFalse())) {
ctrl = ctrl->in(0);
}
if (ctrl == ini || ctrl == alloc) {
value = store->in(MemNode::ValueIn);
break;
}
}
}
}
}
@ -1897,21 +1905,35 @@ void ConnectionGraph::adjust_escape_state(int nidx, PhaseTransform* phase) {
if (value == NULL || value != ptnode_adr(value->_idx)->_node) {
// A field's initializing value was not recorded. Add NULL.
uint null_idx = UseCompressedOops ? _noop_null : _oop_null;
add_pointsto_edge(nidx, null_idx);
add_edge_from_fields(alloc->_idx, null_idx, offset);
}
}
}
}
}
// Adjust escape state after Connection Graph is built.
void ConnectionGraph::adjust_escape_state(Node* n) {
PointsToNode* ptn = ptnode_adr(n->_idx);
assert(n->is_AddP(), "Should be called for AddP nodes only");
// Search for objects which are not scalar replaceable
// and mark them to propagate the state to referenced objects.
//
int offset = ptn->offset();
Node* base = get_addp_base(n);
VectorSet* ptset = PointsTo(base);
int ptset_size = ptset->Size();
// An object is not scalar replaceable if the field which may point
// to it has unknown offset (unknown element of an array of objects).
//
if (offset == Type::OffsetBot) {
uint e_cnt = ptn->edge_count();
for (uint ei = 0; ei < e_cnt; ei++) {
uint npi = ptn->edge_target(ei);
set_escape_state(npi, PointsToNode::ArgEscape);
ptnode_adr(npi)->_scalar_replaceable = false;
ptnode_adr(npi)->set_scalar_replaceable(false);
}
}
@ -1930,20 +1952,62 @@ void ConnectionGraph::adjust_escape_state(int nidx, PhaseTransform* phase) {
// to unknown field (unknown element for arrays, offset is OffsetBot).
//
// Or the address may point to more then one object. This may produce
// the false positive result (set scalar_replaceable to false)
// the false positive result (set not scalar replaceable)
// since the flow-insensitive escape analysis can't separate
// the case when stores overwrite the field's value from the case
// when stores happened on different control branches.
//
// Note: it will disable scalar replacement in some cases:
//
// Point p[] = new Point[1];
// p[0] = new Point(); // Will be not scalar replaced
//
// but it will save us from incorrect optimizations in next cases:
//
// Point p[] = new Point[1];
// if ( x ) p[0] = new Point(); // Will be not scalar replaced
//
if (ptset_size > 1 || ptset_size != 0 &&
(has_LoadStore || offset == Type::OffsetBot)) {
for( VectorSetI j(ptset); j.test(); ++j ) {
set_escape_state(j.elem, PointsToNode::ArgEscape);
ptnode_adr(j.elem)->_scalar_replaceable = false;
ptnode_adr(j.elem)->set_scalar_replaceable(false);
}
}
}
// Propagate escape states to referenced nodes.
bool ConnectionGraph::propagate_escape_state(GrowableArray<int>* cg_worklist,
GrowableArray<uint>* worklist,
PointsToNode::EscapeState esc_state) {
bool has_java_obj = false;
// push all nodes with the same escape state on the worklist
uint cg_length = cg_worklist->length();
for (uint next = 0; next < cg_length; ++next) {
int nk = cg_worklist->at(next);
if (ptnode_adr(nk)->escape_state() == esc_state)
worklist->push(nk);
}
// mark all reachable nodes
while (worklist->length() > 0) {
PointsToNode* ptn = ptnode_adr(worklist->pop());
if (ptn->node_type() == PointsToNode::JavaObject) {
has_java_obj = true;
}
uint e_cnt = ptn->edge_count();
for (uint ei = 0; ei < e_cnt; ei++) {
uint npi = ptn->edge_target(ei);
PointsToNode *np = ptnode_adr(npi);
if (np->escape_state() < esc_state) {
set_escape_state(npi, esc_state);
worklist->push(npi);
}
}
}
// Has not escaping java objects
return has_java_obj && (esc_state < PointsToNode::GlobalEscape);
}
void ConnectionGraph::process_call_arguments(CallNode *call, PhaseTransform *phase) {
switch (call->Opcode()) {
@ -2100,6 +2164,7 @@ void ConnectionGraph::process_call_result(ProjNode *resproj, PhaseTransform *pha
} else {
es = PointsToNode::NoEscape;
edge_to = call_idx;
assert(ptnode_adr(call_idx)->scalar_replaceable(), "sanity");
}
set_escape_state(call_idx, es);
add_pointsto_edge(resproj_idx, edge_to);
@ -2123,10 +2188,11 @@ void ConnectionGraph::process_call_result(ProjNode *resproj, PhaseTransform *pha
} else {
es = PointsToNode::NoEscape;
edge_to = call_idx;
assert(ptnode_adr(call_idx)->scalar_replaceable(), "sanity");
int length = call->in(AllocateNode::ALength)->find_int_con(-1);
if (length < 0 || length > EliminateAllocationArraySizeLimit) {
// Not scalar replaceable if the length is not constant or too big.
ptnode_adr(call_idx)->_scalar_replaceable = false;
ptnode_adr(call_idx)->set_scalar_replaceable(false);
}
}
set_escape_state(call_idx, es);
@ -2168,11 +2234,12 @@ void ConnectionGraph::process_call_result(ProjNode *resproj, PhaseTransform *pha
// Mark it as NoEscape so that objects referenced by
// it's fields will be marked as NoEscape at least.
set_escape_state(call_idx, PointsToNode::NoEscape);
ptnode_adr(call_idx)->set_scalar_replaceable(false);
add_pointsto_edge(resproj_idx, call_idx);
copy_dependencies = true;
} else if (call_analyzer->is_return_local()) {
// determine whether any arguments are returned
set_escape_state(call_idx, PointsToNode::NoEscape);
set_escape_state(call_idx, PointsToNode::ArgEscape);
bool ret_arg = false;
for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
const Type* at = d->field_at(i);
@ -2189,7 +2256,6 @@ void ConnectionGraph::process_call_result(ProjNode *resproj, PhaseTransform *pha
add_pointsto_edge(resproj_idx, arg->_idx);
else
add_deferred_edge(resproj_idx, arg->_idx);
arg_esp->_hidden_alias = true;
}
}
}
@ -2198,18 +2264,12 @@ void ConnectionGraph::process_call_result(ProjNode *resproj, PhaseTransform *pha
set_escape_state(call_idx, PointsToNode::GlobalEscape);
add_pointsto_edge(resproj_idx, _phantom_object);
}
copy_dependencies = true;
if (done) {
copy_dependencies = true;
}
} else {
set_escape_state(call_idx, PointsToNode::GlobalEscape);
add_pointsto_edge(resproj_idx, _phantom_object);
for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
const Type* at = d->field_at(i);
if (at->isa_oopptr() != NULL) {
Node *arg = call->in(i)->uncast();
PointsToNode *arg_esp = ptnode_adr(arg->_idx);
arg_esp->_hidden_alias = true;
}
}
}
if (copy_dependencies)
call_analyzer->copy_dependencies(_compile->dependencies());

View File

@ -74,7 +74,7 @@
// C2 does not have local variables. However for the purposes of constructing
// the connection graph, the following IR nodes are treated as local variables:
// Phi (pointer values)
// LoadP
// LoadP, LoadN
// Proj#5 (value returned from callnodes including allocations)
// CheckCastPP, CastPP
//
@ -84,7 +84,7 @@
//
// The following node types are JavaObject:
//
// top()
// phantom_object (general globally escaped object)
// Allocate
// AllocateArray
// Parm (for incoming arguments)
@ -93,6 +93,7 @@
// ConP
// LoadKlass
// ThreadLocal
// CallStaticJava (which returns Object)
//
// AddP nodes are fields.
//
@ -130,10 +131,12 @@ public:
typedef enum {
UnknownEscape = 0,
NoEscape = 1, // A scalar replaceable object with unique type.
ArgEscape = 2, // An object passed as argument or referenced by
// argument (and not globally escape during call).
GlobalEscape = 3 // An object escapes the method and thread.
NoEscape = 1, // An object does not escape method or thread and it is
// not passed to call. It could be replaced with scalar.
ArgEscape = 2, // An object does not escape method or thread but it is
// passed as argument to call or referenced by argument
// and it does not escape during call.
GlobalEscape = 3 // An object escapes the method or thread.
} EscapeState;
typedef enum {
@ -153,28 +156,25 @@ private:
NodeType _type;
EscapeState _escape;
GrowableArray<uint>* _edges; // outgoing edges
GrowableArray<uint>* _edges; // outgoing edges
Node* _node; // Ideal node corresponding to this PointsTo node.
int _offset; // Object fields offsets.
bool _scalar_replaceable; // Not escaped object could be replaced with scalar
public:
Node* _node; // Ideal node corresponding to this PointsTo node.
int _offset; // Object fields offsets.
bool _scalar_replaceable;// Not escaped object could be replaced with scalar
bool _hidden_alias; // This node is an argument to a function.
// which may return it creating a hidden alias.
PointsToNode():
_type(UnknownType),
_escape(UnknownEscape),
_edges(NULL),
_node(NULL),
_offset(-1),
_scalar_replaceable(true),
_hidden_alias(false) {}
_scalar_replaceable(true) {}
EscapeState escape_state() const { return _escape; }
NodeType node_type() const { return _type;}
int offset() { return _offset;}
bool scalar_replaceable() { return _scalar_replaceable;}
void set_offset(int offs) { _offset = offs;}
void set_escape_state(EscapeState state) { _escape = state; }
@ -182,6 +182,7 @@ public:
assert(_type == UnknownType || _type == ntype, "Can't change node type");
_type = ntype;
}
void set_scalar_replaceable(bool v) { _scalar_replaceable = v; }
// count of outgoing edges
uint edge_count() const { return (_edges == NULL) ? 0 : _edges->length(); }
@ -233,8 +234,8 @@ private:
// that pointer values loaded from
// a field which has not been set
// are assumed to point to.
uint _oop_null; // ConP(#NULL)
uint _noop_null; // ConN(#NULL)
uint _oop_null; // ConP(#NULL)->_idx
uint _noop_null; // ConN(#NULL)->_idx
Compile * _compile; // Compile object for current compilation
PhaseIterGVN * _igvn; // Value numbering
@ -339,8 +340,16 @@ private:
// Set the escape state of a node
void set_escape_state(uint ni, PointsToNode::EscapeState es);
// Find fields initializing values for allocations.
void find_init_values(Node* n, VectorSet* visited, PhaseTransform* phase);
// Adjust escape state after Connection Graph is built.
void adjust_escape_state(int nidx, PhaseTransform* phase);
void adjust_escape_state(Node* n);
// Propagate escape states to referenced nodes.
bool propagate_escape_state(GrowableArray<int>* cg_worklist,
GrowableArray<uint>* worklist,
PointsToNode::EscapeState esc_state);
// Compute the escape information
bool compute_escape();
@ -357,21 +366,6 @@ public:
// escape state of a node
PointsToNode::EscapeState escape_state(Node *n);
// other information we have collected
bool is_scalar_replaceable(Node *n) {
if (_collecting || (n->_idx >= nodes_size()))
return false;
PointsToNode* ptn = ptnode_adr(n->_idx);
return ptn->escape_state() == PointsToNode::NoEscape && ptn->_scalar_replaceable;
}
bool hidden_alias(Node *n) {
if (_collecting || (n->_idx >= nodes_size()))
return true;
PointsToNode* ptn = ptnode_adr(n->_idx);
return (ptn->escape_state() != PointsToNode::NoEscape) || ptn->_hidden_alias;
}
#ifndef PRODUCT
void dump();
#endif

View File

@ -1883,7 +1883,7 @@ void PhaseIdealLoop::eliminate_useless_predicates() {
//----------------------------build_and_optimize-------------------------------
// Create a PhaseLoop. Build the ideal Loop tree. Map each Ideal Node to
// its corresponding LoopNode. If 'optimize' is true, do some loop cleanups.
void PhaseIdealLoop::build_and_optimize(bool do_split_ifs) {
void PhaseIdealLoop::build_and_optimize(bool do_split_ifs, bool skip_loop_opts) {
ResourceMark rm;
int old_progress = C->major_progress();
@ -2072,6 +2072,16 @@ void PhaseIdealLoop::build_and_optimize(bool do_split_ifs) {
}
#endif
if (skip_loop_opts) {
// Cleanup any modified bits
_igvn.optimize();
if (C->log() != NULL) {
log_loop_tree(_ltree_root, _ltree_root, C->log());
}
return;
}
if (ReassociateInvariants) {
// Reassociate invariants and prep for split_thru_phi
for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {

View File

@ -747,11 +747,11 @@ private:
_dom_lca_tags(arena()), // Thread::resource_area
_verify_me(NULL),
_verify_only(true) {
build_and_optimize(false);
build_and_optimize(false, false);
}
// build the loop tree and perform any requested optimizations
void build_and_optimize(bool do_split_if);
void build_and_optimize(bool do_split_if, bool skip_loop_opts);
public:
// Dominators for the sea of nodes
@ -762,13 +762,13 @@ public:
Node *dom_lca_internal( Node *n1, Node *n2 ) const;
// Compute the Ideal Node to Loop mapping
PhaseIdealLoop( PhaseIterGVN &igvn, bool do_split_ifs) :
PhaseIdealLoop( PhaseIterGVN &igvn, bool do_split_ifs, bool skip_loop_opts = false) :
PhaseTransform(Ideal_Loop),
_igvn(igvn),
_dom_lca_tags(arena()), // Thread::resource_area
_verify_me(NULL),
_verify_only(false) {
build_and_optimize(do_split_ifs);
build_and_optimize(do_split_ifs, skip_loop_opts);
}
// Verify that verify_me made the same decisions as a fresh run.
@ -778,7 +778,7 @@ public:
_dom_lca_tags(arena()), // Thread::resource_area
_verify_me(verify_me),
_verify_only(false) {
build_and_optimize(false);
build_and_optimize(false, false);
}
// Build and verify the loop tree without modifying the graph. This

View File

@ -28,6 +28,7 @@
#include "opto/connode.hpp"
#include "opto/divnode.hpp"
#include "opto/loopnode.hpp"
#include "opto/matcher.hpp"
#include "opto/mulnode.hpp"
#include "opto/rootnode.hpp"
#include "opto/subnode.hpp"
@ -472,46 +473,50 @@ Node *PhaseIdealLoop::remix_address_expressions( Node *n ) {
// 1 or 2 items with a total of 1 or 2 ops executed speculatively.
Node *PhaseIdealLoop::conditional_move( Node *region ) {
assert( region->is_Region(), "sanity check" );
if( region->req() != 3 ) return NULL;
assert(region->is_Region(), "sanity check");
if (region->req() != 3) return NULL;
// Check for CFG diamond
Node *lp = region->in(1);
Node *rp = region->in(2);
if( !lp || !rp ) return NULL;
if (!lp || !rp) return NULL;
Node *lp_c = lp->in(0);
if( lp_c == NULL || lp_c != rp->in(0) || !lp_c->is_If() ) return NULL;
if (lp_c == NULL || lp_c != rp->in(0) || !lp_c->is_If()) return NULL;
IfNode *iff = lp_c->as_If();
// Check for highly predictable branch. No point in CMOV'ing if
// we are going to predict accurately all the time.
// %%% This hides patterns produced by utility methods like Math.min.
if( iff->_prob < PROB_UNLIKELY_MAG(3) ||
iff->_prob > PROB_LIKELY_MAG(3) )
return NULL;
// Check for ops pinned in an arm of the diamond.
// Can't remove the control flow in this case
if( lp->outcnt() > 1 ) return NULL;
if( rp->outcnt() > 1 ) return NULL;
if (lp->outcnt() > 1) return NULL;
if (rp->outcnt() > 1) return NULL;
IdealLoopTree* r_loop = get_loop(region);
assert(r_loop == get_loop(iff), "sanity");
// Always convert to CMOVE if all results are used only outside this loop.
bool used_inside_loop = (r_loop == _ltree_root);
// Check profitability
int cost = 0;
int phis = 0;
for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
Node *out = region->fast_out(i);
if( !out->is_Phi() ) continue; // Ignore other control edges, etc
if (!out->is_Phi()) continue; // Ignore other control edges, etc
phis++;
PhiNode* phi = out->as_Phi();
switch (phi->type()->basic_type()) {
case T_LONG:
cost++; // Probably encodes as 2 CMOV's
case T_INT: // These all CMOV fine
BasicType bt = phi->type()->basic_type();
switch (bt) {
case T_FLOAT:
case T_DOUBLE:
case T_ADDRESS: // (RawPtr)
case T_DOUBLE: {
cost += Matcher::float_cmove_cost(); // Could be very expensive
break;
}
case T_LONG: {
cost += Matcher::long_cmove_cost(); // May encodes as 2 CMOV's
}
case T_INT: // These all CMOV fine
case T_ADDRESS: { // (RawPtr)
cost++;
break;
}
case T_NARROWOOP: // Fall through
case T_OBJECT: { // Base oops are OK, but not derived oops
const TypeOopPtr *tp = phi->type()->make_ptr()->isa_oopptr();
@ -524,7 +529,7 @@ Node *PhaseIdealLoop::conditional_move( Node *region ) {
// relevant bases. This puts the allocator in the business of
// manufacturing expensive instructions, generally a bad plan.
// Just Say No to Conditionally-Moved Derived Pointers.
if( tp && tp->offset() != 0 )
if (tp && tp->offset() != 0)
return NULL;
cost++;
break;
@ -533,39 +538,64 @@ Node *PhaseIdealLoop::conditional_move( Node *region ) {
return NULL; // In particular, can't do memory or I/O
}
// Add in cost any speculative ops
for( uint j = 1; j < region->req(); j++ ) {
for (uint j = 1; j < region->req(); j++) {
Node *proj = region->in(j);
Node *inp = phi->in(j);
if (get_ctrl(inp) == proj) { // Found local op
cost++;
// Check for a chain of dependent ops; these will all become
// speculative in a CMOV.
for( uint k = 1; k < inp->req(); k++ )
for (uint k = 1; k < inp->req(); k++)
if (get_ctrl(inp->in(k)) == proj)
return NULL; // Too much speculative goo
cost += ConditionalMoveLimit; // Too much speculative goo
}
}
// See if the Phi is used by a Cmp or Narrow oop Decode/Encode.
// This will likely Split-If, a higher-payoff operation.
for (DUIterator_Fast kmax, k = phi->fast_outs(kmax); k < kmax; k++) {
Node* use = phi->fast_out(k);
if( use->is_Cmp() || use->is_DecodeN() || use->is_EncodeP() )
return NULL;
if (use->is_Cmp() || use->is_DecodeN() || use->is_EncodeP())
cost += ConditionalMoveLimit;
// Is there a use inside the loop?
// Note: check only basic types since CMoveP is pinned.
if (!used_inside_loop && is_java_primitive(bt)) {
IdealLoopTree* u_loop = get_loop(has_ctrl(use) ? get_ctrl(use) : use);
if (r_loop == u_loop || r_loop->is_member(u_loop)) {
used_inside_loop = true;
}
}
}
}
if( cost >= ConditionalMoveLimit ) return NULL; // Too much goo
Node* bol = iff->in(1);
assert( bol->Opcode() == Op_Bool, "" );
assert(bol->Opcode() == Op_Bool, "");
int cmp_op = bol->in(1)->Opcode();
// It is expensive to generate flags from a float compare.
// Avoid duplicated float compare.
if( phis > 1 && (cmp_op == Op_CmpF || cmp_op == Op_CmpD)) return NULL;
if (phis > 1 && (cmp_op == Op_CmpF || cmp_op == Op_CmpD)) return NULL;
float infrequent_prob = PROB_UNLIKELY_MAG(3);
// Ignore cost and blocks frequency if CMOVE can be moved outside the loop.
if (used_inside_loop) {
if (cost >= ConditionalMoveLimit) return NULL; // Too much goo
// BlockLayoutByFrequency optimization moves infrequent branch
// from hot path. No point in CMOV'ing in such case (110 is used
// instead of 100 to take into account not exactness of float value).
if (BlockLayoutByFrequency) {
infrequent_prob = MAX2(infrequent_prob, (float)BlockLayoutMinDiamondPercentage/110.0f);
}
}
// Check for highly predictable branch. No point in CMOV'ing if
// we are going to predict accurately all the time.
if (iff->_prob < infrequent_prob ||
iff->_prob > (1.0f - infrequent_prob))
return NULL;
// --------------
// Now replace all Phis with CMOV's
Node *cmov_ctrl = iff->in(0);
uint flip = (lp->Opcode() == Op_IfTrue);
while( 1 ) {
while (1) {
PhiNode* phi = NULL;
for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
Node *out = region->fast_out(i);
@ -576,15 +606,15 @@ Node *PhaseIdealLoop::conditional_move( Node *region ) {
}
if (phi == NULL) break;
#ifndef PRODUCT
if( PrintOpto && VerifyLoopOptimizations ) tty->print_cr("CMOV");
if (PrintOpto && VerifyLoopOptimizations) tty->print_cr("CMOV");
#endif
// Move speculative ops
for( uint j = 1; j < region->req(); j++ ) {
for (uint j = 1; j < region->req(); j++) {
Node *proj = region->in(j);
Node *inp = phi->in(j);
if (get_ctrl(inp) == proj) { // Found local op
#ifndef PRODUCT
if( PrintOpto && VerifyLoopOptimizations ) {
if (PrintOpto && VerifyLoopOptimizations) {
tty->print(" speculate: ");
inp->dump();
}
@ -596,7 +626,15 @@ Node *PhaseIdealLoop::conditional_move( Node *region ) {
register_new_node( cmov, cmov_ctrl );
_igvn.replace_node( phi, cmov );
#ifndef PRODUCT
if( VerifyLoopOptimizations ) verify();
if (TraceLoopOpts) {
tty->print("CMOV ");
r_loop->dump_head();
if (Verbose) {
bol->in(1)->dump(1);
cmov->dump(1);
}
}
if (VerifyLoopOptimizations) verify();
#endif
}
@ -676,14 +714,14 @@ Node *PhaseIdealLoop::split_if_with_blocks_pre( Node *n ) {
// Split 'n' through the merge point if it is profitable
Node *phi = split_thru_phi( n, n_blk, policy );
if( !phi ) return n;
if (!phi) return n;
// Found a Phi to split thru!
// Replace 'n' with the new phi
_igvn.replace_node( n, phi );
// Moved a load around the loop, 'en-registering' something.
if( n_blk->Opcode() == Op_Loop && n->is_Load() &&
!phi->in(LoopNode::LoopBackControl)->is_Load() )
if (n_blk->is_Loop() && n->is_Load() &&
!phi->in(LoopNode::LoopBackControl)->is_Load())
C->set_major_progress();
return phi;

View File

@ -484,6 +484,13 @@ int MachConstantNode::constant_offset() {
// Bind the offset lazily.
if (offset == -1) {
Compile::ConstantTable& constant_table = Compile::current()->constant_table();
// If called from Compile::scratch_emit_size assume the worst-case
// for load offsets: half the constant table size.
// NOTE: Don't return or calculate the actual offset (which might
// be zero) because that leads to problems with e.g. jumpXtnd on
// some architectures (cf. add-optimization in SPARC jumpXtnd).
if (Compile::current()->in_scratch_emit_size())
return constant_table.size() / 2;
offset = constant_table.table_base_offset() + constant_table.find_offset(_constant);
_constant.set_offset(offset);
}

View File

@ -1915,7 +1915,7 @@ void Matcher::find_shared( Node *n ) {
set_dontcare(n);
break;
case Op_Jump:
mstack.push(n->in(1), Visit); // Switch Value
mstack.push(n->in(1), Pre_Visit); // Switch Value (could be shared)
mstack.push(n->in(0), Pre_Visit); // Visit Control input
continue; // while (mstack.is_nonempty())
case Op_StrComp:

View File

@ -360,6 +360,12 @@ public:
// Anything this size or smaller may get converted to discrete scalar stores.
static const int init_array_short_size;
// Some hardware needs 2 CMOV's for longs.
static const int long_cmove_cost();
// Some hardware have expensive CMOV for float and double.
static const int float_cmove_cost();
// Should the Matcher clone shifts on addressing modes, expecting them to
// be subsumed into complex addressing expressions or compute them into
// registers? True for Intel but false for most RISCs

View File

@ -1421,6 +1421,12 @@ Node *LoadNode::Ideal(PhaseGVN *phase, bool can_reshape) {
const TypeOopPtr *t_oop = addr_t->isa_oopptr();
if (can_reshape && opt_mem->is_Phi() &&
(t_oop != NULL) && t_oop->is_known_instance_field()) {
PhaseIterGVN *igvn = phase->is_IterGVN();
if (igvn != NULL && igvn->_worklist.member(opt_mem)) {
// Delay this transformation until memory Phi is processed.
phase->is_IterGVN()->_worklist.push(this);
return NULL;
}
// Split instance field load through Phi.
Node* result = split_through_phi(phase);
if (result != NULL) return result;

View File

@ -322,11 +322,12 @@ void NodeHash::remove_useless_nodes(VectorSet &useful) {
void NodeHash::dump() {
_total_inserts += _inserts;
_total_insert_probes += _insert_probes;
if( PrintCompilation && PrintOptoStatistics && Verbose && (_inserts > 0) ) { // PrintOptoGVN
if( PrintCompilation2 ) {
for( uint i=0; i<_max; i++ )
if( _table[i] )
tty->print("%d/%d/%d ",i,_table[i]->hash()&(_max-1),_table[i]->_idx);
if (PrintCompilation && PrintOptoStatistics && Verbose && (_inserts > 0)) {
if (WizardMode) {
for (uint i=0; i<_max; i++) {
if (_table[i])
tty->print("%d/%d/%d ",i,_table[i]->hash()&(_max-1),_table[i]->_idx);
}
}
tty->print("\nGVN Hash stats: %d grows to %d max_size\n", _grows, _max);
tty->print(" %d/%d (%8.1f%% full)\n", _inserts, _max, (double)_inserts/_max*100.0);

View File

@ -338,6 +338,24 @@ JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_nozero_C(klassOopDesc* array_type,
// inform GC that we won't do card marks for initializing writes.
new_store_pre_barrier(thread);
}
oop result = thread->vm_result();
if ((len > 0) && (result != NULL) &&
is_deoptimized_caller_frame(thread)) {
// Zero array here if the caller is deoptimized.
int size = ((typeArrayOop)result)->object_size();
BasicType elem_type = typeArrayKlass::cast(array_type)->element_type();
const size_t hs = arrayOopDesc::header_size(elem_type);
// Align to next 8 bytes to avoid trashing arrays's length.
const size_t aligned_hs = align_object_offset(hs);
HeapWord* obj = (HeapWord*)result;
if (aligned_hs > hs) {
Copy::zero_to_words(obj+hs, aligned_hs-hs);
}
// Optimized zeroing.
Copy::fill_to_aligned_words(obj+aligned_hs, size-aligned_hs);
}
JRT_END
// Note: multianewarray for one dimension is handled inline by GraphKit::new_array.
@ -1130,12 +1148,22 @@ void OptoRuntime::deoptimize_caller_frame(JavaThread *thread, bool doit) {
assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
frame caller_frame = stub_frame.sender(&reg_map);
// bypass VM_DeoptimizeFrame and deoptimize the frame directly
// Deoptimize the caller frame.
Deoptimization::deoptimize_frame(thread, caller_frame.id());
}
}
bool OptoRuntime::is_deoptimized_caller_frame(JavaThread *thread) {
// Called from within the owner thread, so no need for safepoint
RegisterMap reg_map(thread);
frame stub_frame = thread->last_frame();
assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
frame caller_frame = stub_frame.sender(&reg_map);
return caller_frame.is_deoptimized_frame();
}
const TypeFunc *OptoRuntime::register_finalizer_Type() {
// create input type (domain)
const Type **fields = TypeTuple::fields(1);

View File

@ -175,6 +175,7 @@ private:
static address handle_exception_C_helper(JavaThread* thread, nmethod*& nm);
static address rethrow_C (oopDesc* exception, JavaThread *thread, address return_pc );
static void deoptimize_caller_frame (JavaThread *thread, bool doit);
static bool is_deoptimized_caller_frame (JavaThread *thread);
// CodeBlob support
// ===================================================================

View File

@ -5042,7 +5042,8 @@ _JNI_IMPORT_OR_EXPORT_ jint JNICALL JNI_GetDefaultJavaVMInitArgs(void *args_) {
void execute_internal_vm_tests() {
if (ExecuteInternalVMTests) {
assert(QuickSort::test_quick_sort(), "test_quick_sort failed");
tty->print_cr("All tests passed");
assert(arrayOopDesc::test_max_array_length(), "test_max_array_length failed");
tty->print_cr("All internal VM tests passed");
}
}

View File

@ -107,7 +107,7 @@ extern "C" { \
if (env != xenv) { \
NativeReportJNIFatalError(thr, warn_wrong_jnienv); \
} \
__ENTRY(result_type, header, thr)
VM_ENTRY_BASE(result_type, header, thr)
#define UNCHECKED() (unchecked_jni_NativeInterface)

View File

@ -426,7 +426,7 @@ struct jvmtiInterface_1_ jvmti</xsl:text>
<xsl:value-of select="$space"/>
<xsl:text>ThreadInVMfromNative __tiv(current_thread);</xsl:text>
<xsl:value-of select="$space"/>
<xsl:text>__ENTRY(jvmtiError, </xsl:text>
<xsl:text>VM_ENTRY_BASE(jvmtiError, </xsl:text>
<xsl:apply-templates select="." mode="functionid"/>
<xsl:text> , current_thread)</xsl:text>
<xsl:value-of select="$space"/>

View File

@ -173,7 +173,7 @@ JvmtiEnv::GetThreadLocalStorage(jthread thread, void** data_ptr) {
// from native so as to resolve the jthread.
ThreadInVMfromNative __tiv(current_thread);
__ENTRY(jvmtiError, JvmtiEnv::GetThreadLocalStorage , current_thread)
VM_ENTRY_BASE(jvmtiError, JvmtiEnv::GetThreadLocalStorage , current_thread)
debug_only(VMNativeEntryWrapper __vew;)
oop thread_oop = JNIHandles::resolve_external_guard(thread);

View File

@ -373,7 +373,7 @@ JvmtiExport::get_jvmti_interface(JavaVM *jvm, void **penv, jint version) {
JavaThread* current_thread = (JavaThread*) ThreadLocalStorage::thread();
// transition code: native to VM
ThreadInVMfromNative __tiv(current_thread);
__ENTRY(jvmtiEnv*, JvmtiExport::get_jvmti_interface, current_thread)
VM_ENTRY_BASE(jvmtiEnv*, JvmtiExport::get_jvmti_interface, current_thread)
debug_only(VMNativeEntryWrapper __vew;)
JvmtiEnv *jvmti_env = JvmtiEnv::create_a_jvmti(version);

View File

@ -206,9 +206,12 @@ void MethodHandles::generate_adapters() {
_adapter_code = MethodHandlesAdapterBlob::create(adapter_code_size);
if (_adapter_code == NULL)
vm_exit_out_of_memory(adapter_code_size, "CodeCache: no room for MethodHandles adapters");
CodeBuffer code(_adapter_code);
MethodHandlesAdapterGenerator g(&code);
g.generate();
{
CodeBuffer code(_adapter_code);
MethodHandlesAdapterGenerator g(&code);
g.generate();
code.log_section_sizes("MethodHandlesAdapterBlob");
}
}
//------------------------------------------------------------------------------
@ -3079,26 +3082,26 @@ JVM_ENTRY(jint, MHN_getMembers(JNIEnv *env, jobject igcls,
JVM_END
JVM_ENTRY(void, MHN_setCallSiteTargetNormal(JNIEnv* env, jobject igcls, jobject call_site_jh, jobject target_jh)) {
oop call_site = JNIHandles::resolve_non_null(call_site_jh);
oop target = JNIHandles::resolve(target_jh);
Handle call_site(THREAD, JNIHandles::resolve_non_null(call_site_jh));
Handle target (THREAD, JNIHandles::resolve(target_jh));
{
// Walk all nmethods depending on this call site.
MutexLocker mu(Compile_lock, thread);
Universe::flush_dependents_on(call_site, target);
}
java_lang_invoke_CallSite::set_target(call_site, target);
java_lang_invoke_CallSite::set_target(call_site(), target());
}
JVM_END
JVM_ENTRY(void, MHN_setCallSiteTargetVolatile(JNIEnv* env, jobject igcls, jobject call_site_jh, jobject target_jh)) {
oop call_site = JNIHandles::resolve_non_null(call_site_jh);
oop target = JNIHandles::resolve(target_jh);
Handle call_site(THREAD, JNIHandles::resolve_non_null(call_site_jh));
Handle target (THREAD, JNIHandles::resolve(target_jh));
{
// Walk all nmethods depending on this call site.
MutexLocker mu(Compile_lock, thread);
Universe::flush_dependents_on(call_site, target);
}
java_lang_invoke_CallSite::set_target_volatile(call_site, target);
java_lang_invoke_CallSite::set_target_volatile(call_site(), target());
}
JVM_END

View File

@ -302,21 +302,24 @@ UNSAFE_END
UNSAFE_ENTRY(void, Unsafe_SetObjectVolatile(JNIEnv *env, jobject unsafe, jobject obj, jlong offset, jobject x_h))
UnsafeWrapper("Unsafe_SetObjectVolatile");
oop x = JNIHandles::resolve(x_h);
oop p = JNIHandles::resolve(obj);
// Catch VolatileCallSite.target stores (via
// CallSite.setTargetVolatile) and check call site dependencies.
if ((offset == java_lang_invoke_CallSite::target_offset_in_bytes()) && p->is_a(SystemDictionary::CallSite_klass())) {
oop call_site = p;
oop method_handle = x;
assert(call_site ->is_a(SystemDictionary::CallSite_klass()), "must be");
assert(method_handle->is_a(SystemDictionary::MethodHandle_klass()), "must be");
{
// Walk all nmethods depending on this call site.
MutexLocker mu(Compile_lock, thread);
Universe::flush_dependents_on(call_site, method_handle);
{
// Catch VolatileCallSite.target stores (via
// CallSite.setTargetVolatile) and check call site dependencies.
oop p = JNIHandles::resolve(obj);
if ((offset == java_lang_invoke_CallSite::target_offset_in_bytes()) && p->is_a(SystemDictionary::CallSite_klass())) {
Handle call_site (THREAD, p);
Handle method_handle(THREAD, JNIHandles::resolve(x_h));
assert(call_site ->is_a(SystemDictionary::CallSite_klass()), "must be");
assert(method_handle->is_a(SystemDictionary::MethodHandle_klass()), "must be");
{
// Walk all nmethods depending on this call site.
MutexLocker mu(Compile_lock, thread);
Universe::flush_dependents_on(call_site(), method_handle());
}
}
}
oop x = JNIHandles::resolve(x_h);
oop p = JNIHandles::resolve(obj);
void* addr = index_oop_from_field_offset_long(p, offset);
OrderAccess::release();
if (UseCompressedOops) {

View File

@ -1577,18 +1577,9 @@ void Arguments::set_aggressive_opts_flags() {
sprintf(buffer, "java.lang.Integer.IntegerCache.high=" INTX_FORMAT, AutoBoxCacheMax);
add_property(buffer);
}
if (AggressiveOpts && FLAG_IS_DEFAULT(DoEscapeAnalysis)) {
FLAG_SET_DEFAULT(DoEscapeAnalysis, true);
}
if (AggressiveOpts && FLAG_IS_DEFAULT(BiasedLockingStartupDelay)) {
FLAG_SET_DEFAULT(BiasedLockingStartupDelay, 500);
}
if (AggressiveOpts && FLAG_IS_DEFAULT(OptimizeStringConcat)) {
FLAG_SET_DEFAULT(OptimizeStringConcat, true);
}
if (AggressiveOpts && FLAG_IS_DEFAULT(OptimizeFill)) {
FLAG_SET_DEFAULT(OptimizeFill, true);
}
#endif
if (AggressiveOpts) {

View File

@ -362,8 +362,6 @@ Deoptimization::UnrollBlock* Deoptimization::fetch_unroll_info_helper(JavaThread
intptr_t* frame_sizes = NEW_C_HEAP_ARRAY(intptr_t, number_of_frames);
// +1 because we always have an interpreter return address for the final slot.
address* frame_pcs = NEW_C_HEAP_ARRAY(address, number_of_frames + 1);
int callee_parameters = 0;
int callee_locals = 0;
int popframe_extra_args = 0;
// Create an interpreter return address for the stub to use as its return
// address so the skeletal frames are perfectly walkable
@ -387,14 +385,16 @@ Deoptimization::UnrollBlock* Deoptimization::fetch_unroll_info_helper(JavaThread
// handles are used. If the caller is interpreted get the real
// value so that the proper amount of space can be added to it's
// frame.
int caller_actual_parameters = callee_parameters;
bool caller_was_method_handle = false;
if (deopt_sender.is_interpreted_frame()) {
methodHandle method = deopt_sender.interpreter_frame_method();
Bytecode_invoke cur = Bytecode_invoke_check(method,
deopt_sender.interpreter_frame_bci());
Symbol* signature = method->constants()->signature_ref_at(cur.index());
ArgumentSizeComputer asc(signature);
caller_actual_parameters = asc.size() + (cur.has_receiver() ? 1 : 0);
Bytecode_invoke cur = Bytecode_invoke_check(method, deopt_sender.interpreter_frame_bci());
if (cur.is_method_handle_invoke()) {
// Method handle invokes may involve fairly arbitrary chains of
// calls so it's impossible to know how much actual space the
// caller has for locals.
caller_was_method_handle = true;
}
}
//
@ -411,14 +411,15 @@ Deoptimization::UnrollBlock* Deoptimization::fetch_unroll_info_helper(JavaThread
// in the frame_sizes/frame_pcs so the assembly code can do a trivial walk.
// so things look a little strange in this loop.
//
int callee_parameters = 0;
int callee_locals = 0;
for (int index = 0; index < array->frames(); index++ ) {
// frame[number_of_frames - 1 ] = on_stack_size(youngest)
// frame[number_of_frames - 2 ] = on_stack_size(sender(youngest))
// frame[number_of_frames - 3 ] = on_stack_size(sender(sender(youngest)))
int caller_parms = callee_parameters;
if (index == array->frames() - 1) {
// Use the value from the interpreted caller
caller_parms = caller_actual_parameters;
if ((index == array->frames() - 1) && caller_was_method_handle) {
caller_parms = 0;
}
frame_sizes[number_of_frames - 1 - index] = BytesPerWord * array->element(index)->on_stack_size(caller_parms,
callee_parameters,
@ -460,13 +461,13 @@ Deoptimization::UnrollBlock* Deoptimization::fetch_unroll_info_helper(JavaThread
// QQQ I'd rather see this pushed down into last_frame_adjust
// and have it take the sender (aka caller).
if (deopt_sender.is_compiled_frame()) {
if (deopt_sender.is_compiled_frame() || caller_was_method_handle) {
caller_adjustment = last_frame_adjust(0, callee_locals);
} else if (callee_locals > caller_actual_parameters) {
} else if (callee_locals > callee_parameters) {
// The caller frame may need extending to accommodate
// non-parameter locals of the first unpacked interpreted frame.
// Compute that adjustment.
caller_adjustment = last_frame_adjust(caller_actual_parameters, callee_locals);
caller_adjustment = last_frame_adjust(callee_parameters, callee_locals);
}
// If the sender is deoptimized the we must retrieve the address of the handler
@ -481,7 +482,7 @@ Deoptimization::UnrollBlock* Deoptimization::fetch_unroll_info_helper(JavaThread
UnrollBlock* info = new UnrollBlock(array->frame_size() * BytesPerWord,
caller_adjustment * BytesPerWord,
caller_actual_parameters,
caller_was_method_handle ? 0 : callee_parameters,
number_of_frames,
frame_sizes,
frame_pcs,

View File

@ -1338,7 +1338,11 @@ void frame::describe(FrameValues& values, int frame_no) {
// Label values common to most frames
values.describe(-1, unextended_sp(), err_msg("unextended_sp for #%d", frame_no));
values.describe(-1, sp(), err_msg("sp for #%d", frame_no));
values.describe(-1, fp(), err_msg("fp for #%d", frame_no));
if (is_compiled_frame()) {
values.describe(-1, sp() + _cb->frame_size(), err_msg("computed fp for #%d", frame_no));
} else {
values.describe(-1, fp(), err_msg("fp for #%d", frame_no));
}
}
if (is_interpreted_frame()) {
methodOop m = interpreter_frame_method();
@ -1450,9 +1454,8 @@ void FrameValues::validate() {
}
void FrameValues::print() {
void FrameValues::print(JavaThread* thread) {
_values.sort(compare);
JavaThread* thread = JavaThread::current();
// Sometimes values like the fp can be invalid values if the
// register map wasn't updated during the walk. Trim out values
@ -1460,12 +1463,22 @@ void FrameValues::print() {
int min_index = 0;
int max_index = _values.length() - 1;
intptr_t* v0 = _values.at(min_index).location;
while (!thread->is_in_stack((address)v0)) {
v0 = _values.at(++min_index).location;
}
intptr_t* v1 = _values.at(max_index).location;
while (!thread->is_in_stack((address)v1)) {
v1 = _values.at(--max_index).location;
if (thread == Thread::current()) {
while (!thread->is_in_stack((address)v0)) {
v0 = _values.at(++min_index).location;
}
while (!thread->is_in_stack((address)v1)) {
v1 = _values.at(--max_index).location;
}
} else {
while (!thread->on_local_stack((address)v0)) {
v0 = _values.at(++min_index).location;
}
while (!thread->on_local_stack((address)v1)) {
v1 = _values.at(--max_index).location;
}
}
intptr_t* min = MIN2(v0, v1);
intptr_t* max = MAX2(v0, v1);

View File

@ -516,7 +516,7 @@ class FrameValues {
void describe(int owner, intptr_t* location, const char* description, int priority = 0);
void validate();
void print();
void print(JavaThread* thread);
};
#endif

View File

@ -577,8 +577,8 @@ class CommandLineFlags {
develop(bool, VerifyStack, false, \
"Verify stack of each thread when it is entering a runtime call") \
\
develop(bool, ForceUnreachable, false, \
"(amd64) Make all non code cache addresses to be unreachable with rip-rel forcing use of 64bit literal fixups") \
diagnostic(bool, ForceUnreachable, false, \
"Make all non code cache addresses to be unreachable with forcing use of 64bit literal fixups") \
\
notproduct(bool, StressDerivedPointers, false, \
"Force scavenge when a derived pointers is detected on stack " \
@ -904,7 +904,7 @@ class CommandLineFlags {
product(bool, AlwaysRestoreFPU, false, \
"Restore the FPU control word after every JNI call (expensive)") \
\
notproduct(bool, PrintCompilation2, false, \
diagnostic(bool, PrintCompilation2, false, \
"Print additional statistics per compilation") \
\
diagnostic(bool, PrintAdapterHandlers, false, \
@ -2580,7 +2580,7 @@ class CommandLineFlags {
diagnostic(bool, DebugInlinedCalls, true, \
"If false, restricts profiled locations to the root method only") \
\
product(bool, PrintVMOptions, NOT_EMBEDDED(trueInDebug) EMBEDDED_ONLY(false),\
product(bool, PrintVMOptions, false, \
"Print flags that appeared on the command line") \
\
product(bool, IgnoreUnrecognizedVMOptions, false, \
@ -3364,7 +3364,7 @@ class CommandLineFlags {
notproduct(bool, ExitOnFullCodeCache, false, \
"Exit the VM if we fill the code cache.") \
\
product(bool, UseCodeCacheFlushing, false, \
product(bool, UseCodeCacheFlushing, true, \
"Attempt to clean the code cache before shutting off compiler") \
\
product(intx, MinCodeCacheFlushingInterval, 30, \

View File

@ -72,9 +72,9 @@ class HandleMarkCleaner: public StackObj {
}
};
// InterfaceSupport provides functionality used by the __LEAF and __ENTRY
// macros. These macros are used to guard entry points into the VM and
// perform checks upon leave of the VM.
// InterfaceSupport provides functionality used by the VM_LEAF_BASE and
// VM_ENTRY_BASE macros. These macros are used to guard entry points into
// the VM and perform checks upon leave of the VM.
class InterfaceSupport: AllStatic {
@ -433,7 +433,7 @@ class RuntimeHistogramElement : public HistogramElement {
// LEAF routines do not lock, GC or throw exceptions
#define __LEAF(result_type, header) \
#define VM_LEAF_BASE(result_type, header) \
TRACE_CALL(result_type, header) \
debug_only(NoHandleMark __hm;) \
/* begin of body */
@ -441,7 +441,7 @@ class RuntimeHistogramElement : public HistogramElement {
// ENTRY routines may lock, GC and throw exceptions
#define __ENTRY(result_type, header, thread) \
#define VM_ENTRY_BASE(result_type, header, thread) \
TRACE_CALL(result_type, header) \
HandleMarkCleaner __hm(thread); \
Thread* THREAD = thread; \
@ -450,7 +450,7 @@ class RuntimeHistogramElement : public HistogramElement {
// QUICK_ENTRY routines behave like ENTRY but without a handle mark
#define __QUICK_ENTRY(result_type, header, thread) \
#define VM_QUICK_ENTRY_BASE(result_type, header, thread) \
TRACE_CALL(result_type, header) \
debug_only(NoHandleMark __hm;) \
Thread* THREAD = thread; \
@ -463,20 +463,20 @@ class RuntimeHistogramElement : public HistogramElement {
#define IRT_ENTRY(result_type, header) \
result_type header { \
ThreadInVMfromJava __tiv(thread); \
__ENTRY(result_type, header, thread) \
VM_ENTRY_BASE(result_type, header, thread) \
debug_only(VMEntryWrapper __vew;)
#define IRT_LEAF(result_type, header) \
result_type header { \
__LEAF(result_type, header) \
VM_LEAF_BASE(result_type, header) \
debug_only(No_Safepoint_Verifier __nspv(true);)
#define IRT_ENTRY_NO_ASYNC(result_type, header) \
result_type header { \
ThreadInVMfromJavaNoAsyncException __tiv(thread); \
__ENTRY(result_type, header, thread) \
VM_ENTRY_BASE(result_type, header, thread) \
debug_only(VMEntryWrapper __vew;)
// Another special case for nmethod_entry_point so the nmethod that the
@ -487,7 +487,7 @@ class RuntimeHistogramElement : public HistogramElement {
result_type header { \
nmethodLocker _nmlock(nm); \
ThreadInVMfromJavaNoAsyncException __tiv(thread); \
__ENTRY(result_type, header, thread)
VM_ENTRY_BASE(result_type, header, thread)
#define IRT_END }
@ -497,20 +497,20 @@ class RuntimeHistogramElement : public HistogramElement {
#define JRT_ENTRY(result_type, header) \
result_type header { \
ThreadInVMfromJava __tiv(thread); \
__ENTRY(result_type, header, thread) \
VM_ENTRY_BASE(result_type, header, thread) \
debug_only(VMEntryWrapper __vew;)
#define JRT_LEAF(result_type, header) \
result_type header { \
__LEAF(result_type, header) \
VM_LEAF_BASE(result_type, header) \
debug_only(JRT_Leaf_Verifier __jlv;)
#define JRT_ENTRY_NO_ASYNC(result_type, header) \
result_type header { \
ThreadInVMfromJavaNoAsyncException __tiv(thread); \
__ENTRY(result_type, header, thread) \
VM_ENTRY_BASE(result_type, header, thread) \
debug_only(VMEntryWrapper __vew;)
// Same as JRT Entry but allows for return value after the safepoint
@ -543,11 +543,11 @@ extern "C" { \
assert( !VerifyJNIEnvThread || (thread == Thread::current()), "JNIEnv is only valid in same thread"); \
ThreadInVMfromNative __tiv(thread); \
debug_only(VMNativeEntryWrapper __vew;) \
__ENTRY(result_type, header, thread)
VM_ENTRY_BASE(result_type, header, thread)
// Ensure that the VMNativeEntryWrapper constructor, which can cause
// a GC, is called outside the NoHandleMark (set via __QUICK_ENTRY).
// a GC, is called outside the NoHandleMark (set via VM_QUICK_ENTRY_BASE).
#define JNI_QUICK_ENTRY(result_type, header) \
extern "C" { \
result_type JNICALL header { \
@ -555,7 +555,7 @@ extern "C" { \
assert( !VerifyJNIEnvThread || (thread == Thread::current()), "JNIEnv is only valid in same thread"); \
ThreadInVMfromNative __tiv(thread); \
debug_only(VMNativeEntryWrapper __vew;) \
__QUICK_ENTRY(result_type, header, thread)
VM_QUICK_ENTRY_BASE(result_type, header, thread)
#define JNI_LEAF(result_type, header) \
@ -563,7 +563,7 @@ extern "C" { \
result_type JNICALL header { \
JavaThread* thread=JavaThread::thread_from_jni_environment(env); \
assert( !VerifyJNIEnvThread || (thread == Thread::current()), "JNIEnv is only valid in same thread"); \
__LEAF(result_type, header)
VM_LEAF_BASE(result_type, header)
// Close the routine and the extern "C"
@ -579,7 +579,7 @@ extern "C" { \
JavaThread* thread=JavaThread::thread_from_jni_environment(env); \
ThreadInVMfromNative __tiv(thread); \
debug_only(VMNativeEntryWrapper __vew;) \
__ENTRY(result_type, header, thread)
VM_ENTRY_BASE(result_type, header, thread)
#define JVM_ENTRY_NO_ENV(result_type, header) \
@ -588,7 +588,7 @@ extern "C" { \
JavaThread* thread = (JavaThread*)ThreadLocalStorage::thread(); \
ThreadInVMfromNative __tiv(thread); \
debug_only(VMNativeEntryWrapper __vew;) \
__ENTRY(result_type, header, thread)
VM_ENTRY_BASE(result_type, header, thread)
#define JVM_QUICK_ENTRY(result_type, header) \
@ -597,14 +597,14 @@ extern "C" { \
JavaThread* thread=JavaThread::thread_from_jni_environment(env); \
ThreadInVMfromNative __tiv(thread); \
debug_only(VMNativeEntryWrapper __vew;) \
__QUICK_ENTRY(result_type, header, thread)
VM_QUICK_ENTRY_BASE(result_type, header, thread)
#define JVM_LEAF(result_type, header) \
extern "C" { \
result_type JNICALL header { \
VM_Exit::block_if_vm_exited(); \
__LEAF(result_type, header)
VM_LEAF_BASE(result_type, header)
#define JVM_END } }

View File

@ -1672,9 +1672,12 @@ IRT_LEAF(void, SharedRuntime::fixup_callers_callsite(methodOopDesc* method, addr
nmethod* nm = cb->as_nmethod_or_null();
assert(nm, "must be");
// Don't fixup MethodHandle call sites as c2i/i2c adapters are used
// to implement MethodHandle actions.
if (nm->is_method_handle_return(caller_pc)) {
// Get the return PC for the passed caller PC.
address return_pc = caller_pc + frame::pc_return_offset;
// Don't fixup method handle call sites as the executed method
// handle adapters are doing the required MethodHandle chain work.
if (nm->is_method_handle_return(return_pc)) {
return;
}
@ -1693,8 +1696,8 @@ IRT_LEAF(void, SharedRuntime::fixup_callers_callsite(methodOopDesc* method, addr
// Expect to find a native call there (unless it was no-inline cache vtable dispatch)
MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
if (NativeCall::is_call_before(caller_pc + frame::pc_return_offset)) {
NativeCall *call = nativeCall_before(caller_pc + frame::pc_return_offset);
if (NativeCall::is_call_before(return_pc)) {
NativeCall *call = nativeCall_before(return_pc);
//
// bug 6281185. We might get here after resolving a call site to a vanilla
// virtual call. Because the resolvee uses the verified entry it may then
@ -1744,7 +1747,6 @@ IRT_LEAF(void, SharedRuntime::fixup_callers_callsite(methodOopDesc* method, addr
}
}
}
IRT_END

View File

@ -2947,7 +2947,7 @@ void JavaThread::print_frame_layout(int depth, bool validate_only) {
values.validate();
} else {
tty->print_cr("[Describe stack layout]");
values.print();
values.print(this);
}
}
#endif

View File

@ -27,6 +27,7 @@
#include "classfile/systemDictionary.hpp"
#include "classfile/vmSymbols.hpp"
#include "gc_implementation/shared/vmGCOperations.hpp"
#include "memory/gcLocker.inline.hpp"
#include "memory/genCollectedHeap.hpp"
#include "memory/universe.hpp"
#include "oops/objArrayKlass.hpp"
@ -1709,11 +1710,16 @@ void VM_HeapDumper::doit() {
HandleMark hm;
CollectedHeap* ch = Universe::heap();
ch->ensure_parsability(false); // must happen, even if collection does
// not happen (e.g. due to GC_locker)
if (_gc_before_heap_dump) {
ch->collect_as_vm_thread(GCCause::_heap_dump);
} else {
// make the heap parsable (no need to retire TLABs)
ch->ensure_parsability(false);
if (GC_locker::is_active()) {
warning("GC locker is held; pre-heapdump GC was skipped");
} else {
ch->collect_as_vm_thread(GCCause::_heap_dump);
}
}
// At this point we should be the only dumper active, so

View File

@ -23,13 +23,13 @@
*/
#include "precompiled.hpp"
#include "utilities/quickSort.hpp"
/////////////// Unit tests ///////////////
#ifndef PRODUCT
// Unit tests
#include "runtime/os.hpp"
#include "utilities/quickSort.hpp"
#include <stdlib.h>
static int test_comparator(int a, int b) {
@ -94,7 +94,7 @@ bool QuickSort::sort_and_compare(int* arrayToSort, int* expectedResult, int leng
}
bool QuickSort::test_quick_sort() {
tty->print_cr("test_quick_sort\n");
tty->print_cr("test_quick_sort");
{
int* test_array = NULL;
int* expected_array = NULL;

View File

@ -680,8 +680,10 @@ void VMError::report(outputStream* st) {
STEP(190, "(printing heap information)" )
if (_verbose && Universe::is_fully_initialized()) {
// print heap information before vm abort
Universe::print_on(st);
// Print heap information before vm abort. As we'd like as much
// information as possible in the report we ask for the
// extended (i.e., more detailed) version.
Universe::print_on(st, true /* extended */);
st->cr();
}

View File

@ -1,5 +1,5 @@
#
# Copyright (c) 1995, 2010, Oracle and/or its affiliates. All rights reserved.
# Copyright (c) 1995, 2011, Oracle and/or its affiliates. All rights reserved.
# DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
#
# This code is free software; you can redistribute it and/or modify it
@ -219,6 +219,15 @@ PHONY_LIST += servertest
################################################################
# internalvmtests (run internal unit tests inside the VM)
internalvmtests: prep $(PRODUCT_HOME)
$(PRODUCT_HOME)/bin/java $(JAVA_OPTIONS) -XX:+ExecuteInternalVMTests -version
PHONY_LIST += internalvmtests
################################################################
# packtest
# Expect JPRT to set JPRT_PACKTEST_HOME.

View File

@ -28,7 +28,7 @@
* @summary JVM crashes with "missing exception handler" error
* @author volker.simonis@sap.com
*
* @run main/othervm -XX:CompileThreshold=100 -Xbatch -Xss128k StackOverflowBug
* @run main/othervm -XX:CompileThreshold=100 -Xbatch -Xss224k StackOverflowBug
*/

View File

@ -0,0 +1,107 @@
/*
* Copyright (c) 2011, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
/**
* @test
* @bug 7103261
* @summary crash with jittester on sparc
*
* @run main Test7103261
*/
// exercise implicit null checking in the compiler for various field types
public class Test7103261 {
static Test7103261 null_value;
static Test7103261 nonnull_value = new Test7103261();
static Test7103261 nonnull_value2 = new Test7103261();
long l;
int i;
float f;
double d;
byte b;
char c;
short s;
boolean z;
public static void main(String[] args) {
constantStore();
valueTest(false);
valueTest(true);
}
static void constantStore() {
for (int field = 0; field < 8; field++) {
try {
Test7103261 o = nonnull_value;
for (int i = 0; i < 100000; i++) {
switch (field) {
case 0: o.l = 0; break;
case 1: o.i = 0; break;
case 2: o.f = 0; break;
case 3: o.d = 0; break;
case 4: o.b = 0; break;
case 5: o.c = 0; break;
case 6: o.s = 0; break;
case 7: o.z = false; break;
default: throw new InternalError();
}
if (i == 90000) {
// hide nullness from optimizer
o = null_value;
}
}
} catch (NullPointerException npe) {
}
}
}
static void valueTest(boolean store) {
for (int field = 0; field < 8; field++) {
try {
Test7103261 o = nonnull_value;
Test7103261 o2 = nonnull_value2;
for (int i = 0; i < 100000; i++) {
switch (field) {
case 0: o.l = o2.l; break;
case 1: o.i = o2.i; break;
case 2: o.f = o2.f; break;
case 3: o.d = o2.d; break;
case 4: o.b = o2.b; break;
case 5: o.c = o2.c; break;
case 6: o.s = o2.s; break;
case 7: o.z = o2.z; break;
default: throw new InternalError();
}
if (i == 90000) {
// hide nullness from optimizer
if (store)
o = null_value;
else
o2 = null_value;
}
}
} catch (NullPointerException npe) {
}
}
}
}