This commit is contained in:
Antonios Printezis 2010-04-26 18:01:55 -04:00
commit e1ae5e1cb0
41 changed files with 1662 additions and 1535 deletions

View File

@ -1,5 +1,5 @@
/*
* Copyright (c) 2007 Sun Microsystems, Inc. All Rights Reserved.
* Copyright 2007-2010 Sun Microsystems, Inc. All Rights Reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -32,11 +32,10 @@ class ConcurrentMarkSweepPolicy : public TwoGenerationCollectorPolicy {
ConcurrentMarkSweepPolicy* as_concurrent_mark_sweep_policy() { return this; }
void initialize_gc_policy_counters();
#if 1
virtual void initialize_size_policy(size_t init_eden_size,
size_t init_promo_size,
size_t init_survivor_size);
#endif
// Returns true if the incremental mode is enabled.
virtual bool has_soft_ended_eden();

View File

@ -1,5 +1,5 @@
/*
* Copyright 2001-2009 Sun Microsystems, Inc. All Rights Reserved.
* Copyright 2001-2010 Sun Microsystems, Inc. All Rights Reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -1815,8 +1815,19 @@ NOT_PRODUCT(
do_compaction_work(clear_all_soft_refs);
// Has the GC time limit been exceeded?
check_gc_time_limit();
DefNewGeneration* young_gen = _young_gen->as_DefNewGeneration();
size_t max_eden_size = young_gen->max_capacity() -
young_gen->to()->capacity() -
young_gen->from()->capacity();
GenCollectedHeap* gch = GenCollectedHeap::heap();
GCCause::Cause gc_cause = gch->gc_cause();
size_policy()->check_gc_overhead_limit(_young_gen->used(),
young_gen->eden()->used(),
_cmsGen->max_capacity(),
max_eden_size,
full,
gc_cause,
gch->collector_policy());
} else {
do_mark_sweep_work(clear_all_soft_refs, first_state,
should_start_over);
@ -1828,55 +1839,6 @@ NOT_PRODUCT(
return;
}
void CMSCollector::check_gc_time_limit() {
// Ignore explicit GC's. Exiting here does not set the flag and
// does not reset the count. Updating of the averages for system
// GC's is still controlled by UseAdaptiveSizePolicyWithSystemGC.
GCCause::Cause gc_cause = GenCollectedHeap::heap()->gc_cause();
if (GCCause::is_user_requested_gc(gc_cause) ||
GCCause::is_serviceability_requested_gc(gc_cause)) {
return;
}
// Calculate the fraction of the CMS generation was freed during
// the last collection.
// Only consider the STW compacting cost for now.
//
// Note that the gc time limit test only works for the collections
// of the young gen + tenured gen and not for collections of the
// permanent gen. That is because the calculation of the space
// freed by the collection is the free space in the young gen +
// tenured gen.
double fraction_free =
((double)_cmsGen->free())/((double)_cmsGen->max_capacity());
if ((100.0 * size_policy()->compacting_gc_cost()) >
((double) GCTimeLimit) &&
((fraction_free * 100) < GCHeapFreeLimit)) {
size_policy()->inc_gc_time_limit_count();
if (UseGCOverheadLimit &&
(size_policy()->gc_time_limit_count() >
AdaptiveSizePolicyGCTimeLimitThreshold)) {
size_policy()->set_gc_time_limit_exceeded(true);
// Avoid consecutive OOM due to the gc time limit by resetting
// the counter.
size_policy()->reset_gc_time_limit_count();
if (PrintGCDetails) {
gclog_or_tty->print_cr(" GC is exceeding overhead limit "
"of %d%%", GCTimeLimit);
}
} else {
if (PrintGCDetails) {
gclog_or_tty->print_cr(" GC would exceed overhead limit "
"of %d%%", GCTimeLimit);
}
}
} else {
size_policy()->reset_gc_time_limit_count();
}
}
// Resize the perm generation and the tenured generation
// after obtaining the free list locks for the
// two generations.
@ -6182,6 +6144,11 @@ void CMSCollector::reset(bool asynch) {
}
curAddr = chunk.end();
}
// A successful mostly concurrent collection has been done.
// Because only the full (i.e., concurrent mode failure) collections
// are being measured for gc overhead limits, clean the "near" flag
// and count.
sp->reset_gc_overhead_limit_count();
_collectorState = Idling;
} else {
// already have the lock

View File

@ -1,5 +1,5 @@
/*
* Copyright 2001-2009 Sun Microsystems, Inc. All Rights Reserved.
* Copyright 2001-2010 Sun Microsystems, Inc. All Rights Reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -570,10 +570,6 @@ class CMSCollector: public CHeapObj {
ConcurrentMarkSweepPolicy* _collector_policy;
ConcurrentMarkSweepPolicy* collector_policy() { return _collector_policy; }
// Check whether the gc time limit has been
// exceeded and set the size policy flag
// appropriately.
void check_gc_time_limit();
// XXX Move these to CMSStats ??? FIX ME !!!
elapsedTimer _inter_sweep_timer; // time between sweeps
elapsedTimer _intra_sweep_timer; // time _in_ sweeps

View File

@ -1,5 +1,5 @@
/*
* Copyright 2001-2009 Sun Microsystems, Inc. All Rights Reserved.
* Copyright 2001-2010 Sun Microsystems, Inc. All Rights Reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -69,9 +69,9 @@ void ConcurrentG1RefineThread::sample_young_list_rs_lengths() {
G1CollectorPolicy* g1p = g1h->g1_policy();
if (g1p->adaptive_young_list_length()) {
int regions_visited = 0;
g1h->young_list_rs_length_sampling_init();
while (g1h->young_list_rs_length_sampling_more()) {
g1h->young_list_rs_length_sampling_next();
g1h->young_list()->rs_length_sampling_init();
while (g1h->young_list()->rs_length_sampling_more()) {
g1h->young_list()->rs_length_sampling_next();
++regions_visited;
// we try to yield every time we visit 10 regions
@ -162,6 +162,7 @@ void ConcurrentG1RefineThread::run() {
if (_worker_id >= cg1r()->worker_thread_num()) {
run_young_rs_sampling();
terminate();
return;
}
_vtime_start = os::elapsedVTime();

View File

@ -767,7 +767,8 @@ void ConcurrentMark::checkpointRootsInitialPre() {
_has_aborted = false;
if (G1PrintReachableAtInitialMark) {
print_reachable(true, "before");
print_reachable("at-cycle-start",
true /* use_prev_marking */, true /* all */);
}
// Initialise marking structures. This has to be done in a STW phase.
@ -1979,19 +1980,21 @@ void ConcurrentMark::checkpointRootsFinalWork() {
#ifndef PRODUCT
class ReachablePrinterOopClosure: public OopClosure {
class PrintReachableOopClosure: public OopClosure {
private:
G1CollectedHeap* _g1h;
CMBitMapRO* _bitmap;
outputStream* _out;
bool _use_prev_marking;
bool _all;
public:
ReachablePrinterOopClosure(CMBitMapRO* bitmap,
outputStream* out,
bool use_prev_marking) :
PrintReachableOopClosure(CMBitMapRO* bitmap,
outputStream* out,
bool use_prev_marking,
bool all) :
_g1h(G1CollectedHeap::heap()),
_bitmap(bitmap), _out(out), _use_prev_marking(use_prev_marking) { }
_bitmap(bitmap), _out(out), _use_prev_marking(use_prev_marking), _all(all) { }
void do_oop(narrowOop* p) { do_oop_work(p); }
void do_oop( oop* p) { do_oop_work(p); }
@ -2001,9 +2004,11 @@ public:
const char* str = NULL;
const char* str2 = "";
if (!_g1h->is_in_g1_reserved(obj))
str = "outside G1 reserved";
else {
if (obj == NULL) {
str = "";
} else if (!_g1h->is_in_g1_reserved(obj)) {
str = " O";
} else {
HeapRegion* hr = _g1h->heap_region_containing(obj);
guarantee(hr != NULL, "invariant");
bool over_tams = false;
@ -2012,74 +2017,67 @@ public:
} else {
over_tams = hr->obj_allocated_since_next_marking(obj);
}
bool marked = _bitmap->isMarked((HeapWord*) obj);
if (over_tams) {
str = "over TAMS";
if (_bitmap->isMarked((HeapWord*) obj)) {
str = " >";
if (marked) {
str2 = " AND MARKED";
}
} else if (_bitmap->isMarked((HeapWord*) obj)) {
str = "marked";
} else if (marked) {
str = " M";
} else {
str = "#### NOT MARKED ####";
str = " NOT";
}
}
_out->print_cr(" "PTR_FORMAT" contains "PTR_FORMAT" %s%s",
_out->print_cr(" "PTR_FORMAT": "PTR_FORMAT"%s%s",
p, (void*) obj, str, str2);
}
};
class ReachablePrinterClosure: public BitMapClosure {
class PrintReachableObjectClosure : public ObjectClosure {
private:
CMBitMapRO* _bitmap;
outputStream* _out;
bool _use_prev_marking;
bool _all;
HeapRegion* _hr;
public:
ReachablePrinterClosure(CMBitMapRO* bitmap,
outputStream* out,
bool use_prev_marking) :
_bitmap(bitmap), _out(out), _use_prev_marking(use_prev_marking) { }
bool do_bit(size_t offset) {
HeapWord* addr = _bitmap->offsetToHeapWord(offset);
ReachablePrinterOopClosure oopCl(_bitmap, _out, _use_prev_marking);
_out->print_cr(" obj "PTR_FORMAT", offset %10d (marked)", addr, offset);
oop(addr)->oop_iterate(&oopCl);
_out->print_cr("");
return true;
}
};
class ObjInRegionReachablePrinterClosure : public ObjectClosure {
private:
CMBitMapRO* _bitmap;
outputStream* _out;
bool _use_prev_marking;
public:
ObjInRegionReachablePrinterClosure(CMBitMapRO* bitmap,
outputStream* out,
bool use_prev_marking) :
_bitmap(bitmap), _out(out), _use_prev_marking(use_prev_marking) { }
PrintReachableObjectClosure(CMBitMapRO* bitmap,
outputStream* out,
bool use_prev_marking,
bool all,
HeapRegion* hr) :
_bitmap(bitmap), _out(out),
_use_prev_marking(use_prev_marking), _all(all), _hr(hr) { }
void do_object(oop o) {
ReachablePrinterOopClosure oopCl(_bitmap, _out, _use_prev_marking);
bool over_tams;
if (_use_prev_marking) {
over_tams = _hr->obj_allocated_since_prev_marking(o);
} else {
over_tams = _hr->obj_allocated_since_next_marking(o);
}
bool marked = _bitmap->isMarked((HeapWord*) o);
bool print_it = _all || over_tams || marked;
_out->print_cr(" obj "PTR_FORMAT" (over TAMS)", (void*) o);
o->oop_iterate(&oopCl);
_out->print_cr("");
if (print_it) {
_out->print_cr(" "PTR_FORMAT"%s",
o, (over_tams) ? " >" : (marked) ? " M" : "");
PrintReachableOopClosure oopCl(_bitmap, _out, _use_prev_marking, _all);
o->oop_iterate(&oopCl);
}
}
};
class RegionReachablePrinterClosure : public HeapRegionClosure {
class PrintReachableRegionClosure : public HeapRegionClosure {
private:
CMBitMapRO* _bitmap;
outputStream* _out;
bool _use_prev_marking;
bool _all;
public:
bool doHeapRegion(HeapRegion* hr) {
@ -2094,22 +2092,35 @@ public:
}
_out->print_cr("** ["PTR_FORMAT", "PTR_FORMAT"] top: "PTR_FORMAT" "
"TAMS: "PTR_FORMAT, b, e, t, p);
_out->print_cr("");
_out->cr();
ObjInRegionReachablePrinterClosure ocl(_bitmap, _out, _use_prev_marking);
hr->object_iterate_mem_careful(MemRegion(p, t), &ocl);
HeapWord* from = b;
HeapWord* to = t;
if (to > from) {
_out->print_cr("Objects in ["PTR_FORMAT", "PTR_FORMAT"]", from, to);
_out->cr();
PrintReachableObjectClosure ocl(_bitmap, _out,
_use_prev_marking, _all, hr);
hr->object_iterate_mem_careful(MemRegion(from, to), &ocl);
_out->cr();
}
return false;
}
RegionReachablePrinterClosure(CMBitMapRO* bitmap,
outputStream* out,
bool use_prev_marking) :
_bitmap(bitmap), _out(out), _use_prev_marking(use_prev_marking) { }
PrintReachableRegionClosure(CMBitMapRO* bitmap,
outputStream* out,
bool use_prev_marking,
bool all) :
_bitmap(bitmap), _out(out), _use_prev_marking(use_prev_marking), _all(all) { }
};
void ConcurrentMark::print_reachable(bool use_prev_marking, const char* str) {
gclog_or_tty->print_cr("== Doing reachable object dump... ");
void ConcurrentMark::print_reachable(const char* str,
bool use_prev_marking,
bool all) {
gclog_or_tty->cr();
gclog_or_tty->print_cr("== Doing heap dump... ");
if (G1PrintReachableBaseFile == NULL) {
gclog_or_tty->print_cr(" #### error: no base file defined");
@ -2144,19 +2155,14 @@ void ConcurrentMark::print_reachable(bool use_prev_marking, const char* str) {
out->print_cr("-- USING %s", (use_prev_marking) ? "PTAMS" : "NTAMS");
out->cr();
RegionReachablePrinterClosure rcl(bitmap, out, use_prev_marking);
out->print_cr("--- ITERATING OVER REGIONS WITH TAMS < TOP");
out->print_cr("--- ITERATING OVER REGIONS");
out->cr();
PrintReachableRegionClosure rcl(bitmap, out, use_prev_marking, all);
_g1h->heap_region_iterate(&rcl);
out->cr();
ReachablePrinterClosure cl(bitmap, out, use_prev_marking);
out->print_cr("--- ITERATING OVER MARKED OBJECTS ON THE BITMAP");
out->cr();
bitmap->iterate(&cl);
out->cr();
gclog_or_tty->print_cr(" done");
gclog_or_tty->flush();
}
#endif // PRODUCT

View File

@ -1,5 +1,5 @@
/*
* Copyright 2001-2009 Sun Microsystems, Inc. All Rights Reserved.
* Copyright 2001-2010 Sun Microsystems, Inc. All Rights Reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -652,11 +652,24 @@ public:
// we do nothing.
void markAndGrayObjectIfNecessary(oop p);
// This iterates over the marking bitmap (either prev or next) and
// prints out all objects that are marked on the bitmap and indicates
// whether what they point to is also marked or not. It also iterates
// the objects over TAMS (either prev or next).
void print_reachable(bool use_prev_marking, const char* str);
// It iterates over the heap and for each object it comes across it
// will dump the contents of its reference fields, as well as
// liveness information for the object and its referents. The dump
// will be written to a file with the following name:
// G1PrintReachableBaseFile + "." + str. use_prev_marking decides
// whether the prev (use_prev_marking == true) or next
// (use_prev_marking == false) marking information will be used to
// determine the liveness of each object / referent. If all is true,
// all objects in the heap will be dumped, otherwise only the live
// ones. In the dump the following symbols / abbreviations are used:
// M : an explicitly live object (its bitmap bit is set)
// > : an implicitly live object (over tams)
// O : an object outside the G1 heap (typically: in the perm gen)
// NOT : a reference field whose referent is not live
// AND MARKED : indicates that an object is both explicitly and
// implicitly live (it should be one or the other, not both)
void print_reachable(const char* str,
bool use_prev_marking, bool all) PRODUCT_RETURN;
// Clear the next marking bitmap (will be called concurrently).
void clearNextBitmap();
@ -720,6 +733,19 @@ public:
// to determine whether any heap regions are located above the finger.
void registerCSetRegion(HeapRegion* hr);
// Registers the maximum region-end associated with a set of
// regions with CM. Again this is used to determine whether any
// heap regions are located above the finger.
void register_collection_set_finger(HeapWord* max_finger) {
// max_finger is the highest heap region end of the regions currently
// contained in the collection set. If this value is larger than
// _min_finger then we need to gray objects.
// This routine is like registerCSetRegion but for an entire
// collection of regions.
if (max_finger > _min_finger)
_should_gray_objects = true;
}
// Returns "true" if at least one mark has been completed.
bool at_least_one_mark_complete() { return _at_least_one_mark_complete; }

View File

@ -1,5 +1,5 @@
/*
* Copyright 2001-2009 Sun Microsystems, Inc. All Rights Reserved.
* Copyright 2001-2010 Sun Microsystems, Inc. All Rights Reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -30,7 +30,7 @@ size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
// turn it on so that the contents of the young list (scan-only /
// to-be-collected) are printed at "strategic" points before / during
// / after the collection --- this is useful for debugging
#define SCAN_ONLY_VERBOSE 0
#define YOUNG_LIST_VERBOSE 0
// CURRENT STATUS
// This file is under construction. Search for "FIXME".
@ -133,8 +133,7 @@ public:
YoungList::YoungList(G1CollectedHeap* g1h)
: _g1h(g1h), _head(NULL),
_scan_only_head(NULL), _scan_only_tail(NULL), _curr_scan_only(NULL),
_length(0), _scan_only_length(0),
_length(0),
_last_sampled_rs_lengths(0),
_survivor_head(NULL), _survivor_tail(NULL), _survivor_length(0)
{
@ -166,48 +165,6 @@ void YoungList::add_survivor_region(HeapRegion* hr) {
++_survivor_length;
}
HeapRegion* YoungList::pop_region() {
while (_head != NULL) {
assert( length() > 0, "list should not be empty" );
HeapRegion* ret = _head;
_head = ret->get_next_young_region();
ret->set_next_young_region(NULL);
--_length;
assert(ret->is_young(), "region should be very young");
// Replace 'Survivor' region type with 'Young'. So the region will
// be treated as a young region and will not be 'confused' with
// newly created survivor regions.
if (ret->is_survivor()) {
ret->set_young();
}
if (!ret->is_scan_only()) {
return ret;
}
// scan-only, we'll add it to the scan-only list
if (_scan_only_tail == NULL) {
guarantee( _scan_only_head == NULL, "invariant" );
_scan_only_head = ret;
_curr_scan_only = ret;
} else {
guarantee( _scan_only_head != NULL, "invariant" );
_scan_only_tail->set_next_young_region(ret);
}
guarantee( ret->get_next_young_region() == NULL, "invariant" );
_scan_only_tail = ret;
// no need to be tagged as scan-only any more
ret->set_young();
++_scan_only_length;
}
assert( length() == 0, "list should be empty" );
return NULL;
}
void YoungList::empty_list(HeapRegion* list) {
while (list != NULL) {
HeapRegion* next = list->get_next_young_region();
@ -225,12 +182,6 @@ void YoungList::empty_list() {
_head = NULL;
_length = 0;
empty_list(_scan_only_head);
_scan_only_head = NULL;
_scan_only_tail = NULL;
_scan_only_length = 0;
_curr_scan_only = NULL;
empty_list(_survivor_head);
_survivor_head = NULL;
_survivor_tail = NULL;
@ -248,11 +199,11 @@ bool YoungList::check_list_well_formed() {
HeapRegion* curr = _head;
HeapRegion* last = NULL;
while (curr != NULL) {
if (!curr->is_young() || curr->is_scan_only()) {
if (!curr->is_young()) {
gclog_or_tty->print_cr("### YOUNG REGION "PTR_FORMAT"-"PTR_FORMAT" "
"incorrectly tagged (%d, %d)",
"incorrectly tagged (y: %d, surv: %d)",
curr->bottom(), curr->end(),
curr->is_young(), curr->is_scan_only());
curr->is_young(), curr->is_survivor());
ret = false;
}
++length;
@ -267,47 +218,10 @@ bool YoungList::check_list_well_formed() {
length, _length);
}
bool scan_only_ret = true;
length = 0;
curr = _scan_only_head;
last = NULL;
while (curr != NULL) {
if (!curr->is_young() || curr->is_scan_only()) {
gclog_or_tty->print_cr("### SCAN-ONLY REGION "PTR_FORMAT"-"PTR_FORMAT" "
"incorrectly tagged (%d, %d)",
curr->bottom(), curr->end(),
curr->is_young(), curr->is_scan_only());
scan_only_ret = false;
}
++length;
last = curr;
curr = curr->get_next_young_region();
}
scan_only_ret = scan_only_ret && (length == _scan_only_length);
if ( (last != _scan_only_tail) ||
(_scan_only_head == NULL && _scan_only_tail != NULL) ||
(_scan_only_head != NULL && _scan_only_tail == NULL) ) {
gclog_or_tty->print_cr("## _scan_only_tail is set incorrectly");
scan_only_ret = false;
}
if (_curr_scan_only != NULL && _curr_scan_only != _scan_only_head) {
gclog_or_tty->print_cr("### _curr_scan_only is set incorrectly");
scan_only_ret = false;
}
if (!scan_only_ret) {
gclog_or_tty->print_cr("### SCAN-ONLY LIST seems not well formed!");
gclog_or_tty->print_cr("### list has %d entries, _scan_only_length is %d",
length, _scan_only_length);
}
return ret && scan_only_ret;
return ret;
}
bool YoungList::check_list_empty(bool ignore_scan_only_list,
bool check_sample) {
bool YoungList::check_list_empty(bool check_sample) {
bool ret = true;
if (_length != 0) {
@ -327,28 +241,7 @@ bool YoungList::check_list_empty(bool ignore_scan_only_list,
gclog_or_tty->print_cr("### YOUNG LIST does not seem empty");
}
if (ignore_scan_only_list)
return ret;
bool scan_only_ret = true;
if (_scan_only_length != 0) {
gclog_or_tty->print_cr("### SCAN-ONLY LIST should have 0 length, not %d",
_scan_only_length);
scan_only_ret = false;
}
if (_scan_only_head != NULL) {
gclog_or_tty->print_cr("### SCAN-ONLY LIST does not have a NULL head");
scan_only_ret = false;
}
if (_scan_only_tail != NULL) {
gclog_or_tty->print_cr("### SCAN-ONLY LIST does not have a NULL tail");
scan_only_ret = false;
}
if (!scan_only_ret) {
gclog_or_tty->print_cr("### SCAN-ONLY LIST does not seem empty");
}
return ret && scan_only_ret;
return ret;
}
void
@ -365,7 +258,18 @@ YoungList::rs_length_sampling_more() {
void
YoungList::rs_length_sampling_next() {
assert( _curr != NULL, "invariant" );
_sampled_rs_lengths += _curr->rem_set()->occupied();
size_t rs_length = _curr->rem_set()->occupied();
_sampled_rs_lengths += rs_length;
// The current region may not yet have been added to the
// incremental collection set (it gets added when it is
// retired as the current allocation region).
if (_curr->in_collection_set()) {
// Update the collection set policy information for this region
_g1h->g1_policy()->update_incremental_cset_info(_curr, rs_length);
}
_curr = _curr->get_next_young_region();
if (_curr == NULL) {
_last_sampled_rs_lengths = _sampled_rs_lengths;
@ -375,54 +279,46 @@ YoungList::rs_length_sampling_next() {
void
YoungList::reset_auxilary_lists() {
// We could have just "moved" the scan-only list to the young list.
// However, the scan-only list is ordered according to the region
// age in descending order, so, by moving one entry at a time, we
// ensure that it is recreated in ascending order.
guarantee( is_empty(), "young list should be empty" );
assert(check_list_well_formed(), "young list should be well formed");
// Add survivor regions to SurvRateGroup.
_g1h->g1_policy()->note_start_adding_survivor_regions();
_g1h->g1_policy()->finished_recalculating_age_indexes(true /* is_survivors */);
for (HeapRegion* curr = _survivor_head;
curr != NULL;
curr = curr->get_next_young_region()) {
_g1h->g1_policy()->set_region_survivors(curr);
// The region is a non-empty survivor so let's add it to
// the incremental collection set for the next evacuation
// pause.
_g1h->g1_policy()->add_region_to_incremental_cset_rhs(curr);
}
_g1h->g1_policy()->note_stop_adding_survivor_regions();
_head = _survivor_head;
_length = _survivor_length;
if (_survivor_head != NULL) {
_head = _survivor_head;
_length = _survivor_length + _scan_only_length;
_survivor_tail->set_next_young_region(_scan_only_head);
} else {
_head = _scan_only_head;
_length = _scan_only_length;
assert(_survivor_tail != NULL, "cause it shouldn't be");
assert(_survivor_length > 0, "invariant");
_survivor_tail->set_next_young_region(NULL);
}
for (HeapRegion* curr = _scan_only_head;
curr != NULL;
curr = curr->get_next_young_region()) {
curr->recalculate_age_in_surv_rate_group();
}
_scan_only_head = NULL;
_scan_only_tail = NULL;
_scan_only_length = 0;
_curr_scan_only = NULL;
// Don't clear the survivor list handles until the start of
// the next evacuation pause - we need it in order to re-tag
// the survivor regions from this evacuation pause as 'young'
// at the start of the next.
_survivor_head = NULL;
_survivor_tail = NULL;
_survivor_length = 0;
_g1h->g1_policy()->finished_recalculating_age_indexes(false /* is_survivors */);
assert(check_list_well_formed(), "young list should be well formed");
}
void YoungList::print() {
HeapRegion* lists[] = {_head, _scan_only_head, _survivor_head};
const char* names[] = {"YOUNG", "SCAN-ONLY", "SURVIVOR"};
HeapRegion* lists[] = {_head, _survivor_head};
const char* names[] = {"YOUNG", "SURVIVOR"};
for (unsigned int list = 0; list < ARRAY_SIZE(lists); ++list) {
gclog_or_tty->print_cr("%s LIST CONTENTS", names[list]);
@ -431,7 +327,7 @@ void YoungList::print() {
gclog_or_tty->print_cr(" empty");
while (curr != NULL) {
gclog_or_tty->print_cr(" [%08x-%08x], t: %08x, P: %08x, N: %08x, C: %08x, "
"age: %4d, y: %d, s-o: %d, surv: %d",
"age: %4d, y: %d, surv: %d",
curr->bottom(), curr->end(),
curr->top(),
curr->prev_top_at_mark_start(),
@ -439,7 +335,6 @@ void YoungList::print() {
curr->top_at_conc_mark_count(),
curr->age_in_surv_rate_group_cond(),
curr->is_young(),
curr->is_scan_only(),
curr->is_survivor());
curr = curr->get_next_young_region();
}
@ -707,6 +602,12 @@ G1CollectedHeap::attempt_allocation_slow(size_t word_size,
// region below.
if (_cur_alloc_region != NULL) {
// We're finished with the _cur_alloc_region.
// As we're builing (at least the young portion) of the collection
// set incrementally we'll add the current allocation region to
// the collection set here.
if (_cur_alloc_region->is_young()) {
g1_policy()->add_region_to_incremental_cset_lhs(_cur_alloc_region);
}
_summary_bytes_used += _cur_alloc_region->used();
_cur_alloc_region = NULL;
}
@ -820,6 +721,12 @@ void G1CollectedHeap::abandon_cur_alloc_region() {
_free_regions++;
free_region(_cur_alloc_region);
} else {
// As we're builing (at least the young portion) of the collection
// set incrementally we'll add the current allocation region to
// the collection set here.
if (_cur_alloc_region->is_young()) {
g1_policy()->add_region_to_incremental_cset_lhs(_cur_alloc_region);
}
_summary_bytes_used += _cur_alloc_region->used();
}
_cur_alloc_region = NULL;
@ -913,20 +820,25 @@ void G1CollectedHeap::do_collection(bool full, bool clear_all_soft_refs,
}
if (full && DisableExplicitGC) {
gclog_or_tty->print("\n\n\nDisabling Explicit GC\n\n\n");
return;
}
assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
assert(Thread::current() == VMThread::vm_thread(), "should be in vm thread");
const bool do_clear_all_soft_refs = clear_all_soft_refs ||
collector_policy()->should_clear_all_soft_refs();
ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
{
IsGCActiveMark x;
// Timing
gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
TraceTime t(full ? "Full GC (System.gc())" : "Full GC", PrintGC, true, gclog_or_tty);
TraceTime t(full ? "Full GC (System.gc())" : "Full GC",
PrintGC, true, gclog_or_tty);
TraceMemoryManagerStats tms(true /* fullGC */);
@ -970,6 +882,15 @@ void G1CollectedHeap::do_collection(bool full, bool clear_all_soft_refs,
g1_rem_set()->as_HRInto_G1RemSet()->cleanupHRRS();
tear_down_region_lists();
set_used_regions_to_need_zero_fill();
// We may have added regions to the current incremental collection
// set between the last GC or pause and now. We need to clear the
// incremental collection set and then start rebuilding it afresh
// after this full GC.
abandon_collection_set(g1_policy()->inc_cset_head());
g1_policy()->clear_incremental_cset();
g1_policy()->stop_incremental_cset_building();
if (g1_policy()->in_young_gc_mode()) {
empty_young_list();
g1_policy()->set_full_young_gcs(true);
@ -985,12 +906,12 @@ void G1CollectedHeap::do_collection(bool full, bool clear_all_soft_refs,
ReferenceProcessorIsAliveMutator rp_is_alive_null(ref_processor(), NULL);
ref_processor()->enable_discovery();
ref_processor()->setup_policy(clear_all_soft_refs);
ref_processor()->setup_policy(do_clear_all_soft_refs);
// Do collection work
{
HandleMark hm; // Discard invalid handles created during gc
G1MarkSweep::invoke_at_safepoint(ref_processor(), clear_all_soft_refs);
G1MarkSweep::invoke_at_safepoint(ref_processor(), do_clear_all_soft_refs);
}
// Because freeing humongous regions may have added some unclean
// regions, it is necessary to tear down again before rebuilding.
@ -1053,6 +974,15 @@ void G1CollectedHeap::do_collection(bool full, bool clear_all_soft_refs,
perm()->compute_new_size();
}
// Start a new incremental collection set for the next pause
assert(g1_policy()->collection_set() == NULL, "must be");
g1_policy()->start_incremental_cset_building();
// Clear the _cset_fast_test bitmap in anticipation of adding
// regions to the incremental collection set for the next
// evacuation pause.
clear_cset_fast_test();
double end = os::elapsedTime();
g1_policy()->record_full_collection_end();
@ -1071,7 +1001,9 @@ void G1CollectedHeap::do_collection(bool full, bool clear_all_soft_refs,
if (g1_policy()->in_young_gc_mode()) {
_young_list->reset_sampled_info();
assert( check_young_list_empty(false, false),
// At this point there should be no regions in the
// entire heap tagged as young.
assert( check_young_list_empty(true /* check_heap */),
"young list should be empty at this point");
}
@ -1208,6 +1140,9 @@ G1CollectedHeap::satisfy_failed_allocation(size_t word_size) {
return result;
}
assert(!collector_policy()->should_clear_all_soft_refs(),
"Flag should have been handled and cleared prior to this point");
// What else? We might try synchronous finalization later. If the total
// space available is large enough for the allocation, then a more
// complete compaction phase than we've tried so far might be
@ -1565,6 +1500,20 @@ jint G1CollectedHeap::initialize() {
_g1h = this;
_in_cset_fast_test_length = max_regions();
_in_cset_fast_test_base = NEW_C_HEAP_ARRAY(bool, _in_cset_fast_test_length);
// We're biasing _in_cset_fast_test to avoid subtracting the
// beginning of the heap every time we want to index; basically
// it's the same with what we do with the card table.
_in_cset_fast_test = _in_cset_fast_test_base -
((size_t) _g1_reserved.start() >> HeapRegion::LogOfHRGrainBytes);
// Clear the _cset_fast_test bitmap in anticipation of adding
// regions to the incremental collection set for the first
// evacuation pause.
clear_cset_fast_test();
// Create the ConcurrentMark data structure and thread.
// (Must do this late, so that "max_regions" is defined.)
_cm = new ConcurrentMark(heap_rs, (int) max_regions());
@ -2185,8 +2134,10 @@ public:
assert(o != NULL, "Huh?");
if (!_g1h->is_obj_dead_cond(o, _use_prev_marking)) {
o->oop_iterate(&isLive);
if (!_hr->obj_allocated_since_prev_marking(o))
_live_bytes += (o->size() * HeapWordSize);
if (!_hr->obj_allocated_since_prev_marking(o)) {
size_t obj_size = o->size(); // Make sure we don't overflow
_live_bytes += (obj_size * HeapWordSize);
}
}
}
size_t live_bytes() { return _live_bytes; }
@ -2388,8 +2339,8 @@ void G1CollectedHeap::verify(bool allow_dirty,
print_on(gclog_or_tty, true /* extended */);
gclog_or_tty->print_cr("");
if (VerifyDuringGC && G1VerifyDuringGCPrintReachable) {
concurrent_mark()->print_reachable(use_prev_marking,
"failed-verification");
concurrent_mark()->print_reachable("at-verification-failure",
use_prev_marking, false /* all */);
}
gclog_or_tty->flush();
}
@ -2741,25 +2692,19 @@ G1CollectedHeap::do_collection_pause_at_safepoint() {
double start_time_sec = os::elapsedTime();
size_t start_used_bytes = used();
#if YOUNG_LIST_VERBOSE
gclog_or_tty->print_cr("\nBefore recording pause start.\nYoung_list:");
_young_list->print();
g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
#endif // YOUNG_LIST_VERBOSE
g1_policy()->record_collection_pause_start(start_time_sec,
start_used_bytes);
guarantee(_in_cset_fast_test == NULL, "invariant");
guarantee(_in_cset_fast_test_base == NULL, "invariant");
_in_cset_fast_test_length = max_regions();
_in_cset_fast_test_base =
NEW_C_HEAP_ARRAY(bool, _in_cset_fast_test_length);
memset(_in_cset_fast_test_base, false,
_in_cset_fast_test_length * sizeof(bool));
// We're biasing _in_cset_fast_test to avoid subtracting the
// beginning of the heap every time we want to index; basically
// it's the same with what we do with the card table.
_in_cset_fast_test = _in_cset_fast_test_base -
((size_t) _g1_reserved.start() >> HeapRegion::LogOfHRGrainBytes);
#if SCAN_ONLY_VERBOSE
#if YOUNG_LIST_VERBOSE
gclog_or_tty->print_cr("\nAfter recording pause start.\nYoung_list:");
_young_list->print();
#endif // SCAN_ONLY_VERBOSE
#endif // YOUNG_LIST_VERBOSE
if (g1_policy()->during_initial_mark_pause()) {
concurrent_mark()->checkpointRootsInitialPre();
@ -2786,12 +2731,15 @@ G1CollectedHeap::do_collection_pause_at_safepoint() {
if (mark_in_progress())
concurrent_mark()->newCSet();
// Now choose the CS.
g1_policy()->choose_collection_set();
#if YOUNG_LIST_VERBOSE
gclog_or_tty->print_cr("\nBefore choosing collection set.\nYoung_list:");
_young_list->print();
g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
#endif // YOUNG_LIST_VERBOSE
// We may abandon a pause if we find no region that will fit in the MMU
// pause.
bool abandoned = (g1_policy()->collection_set() == NULL);
// Now choose the CS. We may abandon a pause if we find no
// region that will fit in the MMU pause.
bool abandoned = g1_policy()->choose_collection_set();
// Nothing to do if we were unable to choose a collection set.
if (!abandoned) {
@ -2809,40 +2757,64 @@ G1CollectedHeap::do_collection_pause_at_safepoint() {
// Actually do the work...
evacuate_collection_set();
free_collection_set(g1_policy()->collection_set());
g1_policy()->clear_collection_set();
FREE_C_HEAP_ARRAY(bool, _in_cset_fast_test_base);
// this is more for peace of mind; we're nulling them here and
// we're expecting them to be null at the beginning of the next GC
_in_cset_fast_test = NULL;
_in_cset_fast_test_base = NULL;
cleanup_surviving_young_words();
// Start a new incremental collection set for the next pause.
g1_policy()->start_incremental_cset_building();
// Clear the _cset_fast_test bitmap in anticipation of adding
// regions to the incremental collection set for the next
// evacuation pause.
clear_cset_fast_test();
if (g1_policy()->in_young_gc_mode()) {
_young_list->reset_sampled_info();
assert(check_young_list_empty(true),
"young list should be empty");
#if SCAN_ONLY_VERBOSE
// Don't check the whole heap at this point as the
// GC alloc regions from this pause have been tagged
// as survivors and moved on to the survivor list.
// Survivor regions will fail the !is_young() check.
assert(check_young_list_empty(false /* check_heap */),
"young list should be empty");
#if YOUNG_LIST_VERBOSE
gclog_or_tty->print_cr("Before recording survivors.\nYoung List:");
_young_list->print();
#endif // SCAN_ONLY_VERBOSE
#endif // YOUNG_LIST_VERBOSE
g1_policy()->record_survivor_regions(_young_list->survivor_length(),
_young_list->first_survivor_region(),
_young_list->last_survivor_region());
_young_list->reset_auxilary_lists();
}
} else {
if (_in_cset_fast_test != NULL) {
assert(_in_cset_fast_test_base != NULL, "Since _in_cset_fast_test isn't");
FREE_C_HEAP_ARRAY(bool, _in_cset_fast_test_base);
// this is more for peace of mind; we're nulling them here and
// we're expecting them to be null at the beginning of the next GC
_in_cset_fast_test = NULL;
_in_cset_fast_test_base = NULL;
}
// We have abandoned the current collection. This can only happen
// if we're not doing young or partially young collections, and
// we didn't find an old region that we're able to collect within
// the allowed time.
assert(g1_policy()->collection_set() == NULL, "should be");
assert(_young_list->length() == 0, "because it should be");
// This should be a no-op.
abandon_collection_set(g1_policy()->inc_cset_head());
g1_policy()->clear_incremental_cset();
g1_policy()->stop_incremental_cset_building();
// Start a new incremental collection set for the next pause.
g1_policy()->start_incremental_cset_building();
// Clear the _cset_fast_test bitmap in anticipation of adding
// regions to the incremental collection set for the next
// evacuation pause.
clear_cset_fast_test();
// This looks confusing, because the DPT should really be empty
// at this point -- since we have not done any collection work,
// there should not be any derived pointers in the table to update;
@ -2876,9 +2848,11 @@ G1CollectedHeap::do_collection_pause_at_safepoint() {
doConcurrentMark();
}
#if SCAN_ONLY_VERBOSE
#if YOUNG_LIST_VERBOSE
gclog_or_tty->print_cr("\nEnd of the pause.\nYoung_list:");
_young_list->print();
#endif // SCAN_ONLY_VERBOSE
g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
#endif // YOUNG_LIST_VERBOSE
double end_time_sec = os::elapsedTime();
double pause_time_ms = (end_time_sec - start_time_sec) * MILLIUNITS;
@ -2936,6 +2910,25 @@ G1CollectedHeap::do_collection_pause_at_safepoint() {
}
}
size_t G1CollectedHeap::desired_plab_sz(GCAllocPurpose purpose)
{
size_t gclab_word_size;
switch (purpose) {
case GCAllocForSurvived:
gclab_word_size = YoungPLABSize;
break;
case GCAllocForTenured:
gclab_word_size = OldPLABSize;
break;
default:
assert(false, "unknown GCAllocPurpose");
gclab_word_size = OldPLABSize;
break;
}
return gclab_word_size;
}
void G1CollectedHeap::set_gc_alloc_region(int purpose, HeapRegion* r) {
assert(purpose >= 0 && purpose < GCAllocPurposeCount, "invalid purpose");
// make sure we don't call set_gc_alloc_region() multiple times on
@ -3109,6 +3102,11 @@ void G1CollectedHeap::get_gc_alloc_regions() {
} else {
// the region was retained from the last collection
++_gc_alloc_region_counts[ap];
if (G1PrintHeapRegions) {
gclog_or_tty->print_cr("new alloc region %d:["PTR_FORMAT", "PTR_FORMAT"], "
"top "PTR_FORMAT,
alloc_region->hrs_index(), alloc_region->bottom(), alloc_region->end(), alloc_region->top());
}
}
if (alloc_region != NULL) {
@ -3665,6 +3663,8 @@ G1ParScanThreadState::G1ParScanThreadState(G1CollectedHeap* g1h, int queue_num)
_g1_rem(g1h->g1_rem_set()),
_hash_seed(17), _queue_num(queue_num),
_term_attempts(0),
_surviving_alloc_buffer(g1h->desired_plab_sz(GCAllocForSurvived)),
_tenured_alloc_buffer(g1h->desired_plab_sz(GCAllocForTenured)),
_age_table(false),
#if G1_DETAILED_STATS
_pushes(0), _pops(0), _steals(0),
@ -3691,6 +3691,9 @@ G1ParScanThreadState::G1ParScanThreadState(G1CollectedHeap* g1h, int queue_num)
_overflowed_refs = new OverflowQueue(10);
_alloc_buffers[GCAllocForSurvived] = &_surviving_alloc_buffer;
_alloc_buffers[GCAllocForTenured] = &_tenured_alloc_buffer;
_start = os::elapsedTime();
}
@ -3988,16 +3991,13 @@ public:
OopsInHeapRegionClosure *scan_root_cl;
OopsInHeapRegionClosure *scan_perm_cl;
OopsInHeapRegionClosure *scan_so_cl;
if (_g1h->g1_policy()->during_initial_mark_pause()) {
scan_root_cl = &scan_mark_root_cl;
scan_perm_cl = &scan_mark_perm_cl;
scan_so_cl = &scan_mark_heap_rs_cl;
} else {
scan_root_cl = &only_scan_root_cl;
scan_perm_cl = &only_scan_perm_cl;
scan_so_cl = &only_scan_heap_rs_cl;
}
pss.start_strong_roots();
@ -4005,7 +4005,6 @@ public:
SharedHeap::SO_AllClasses,
scan_root_cl,
&push_heap_rs_cl,
scan_so_cl,
scan_perm_cl,
i);
pss.end_strong_roots();
@ -4067,7 +4066,6 @@ g1_process_strong_roots(bool collecting_perm_gen,
SharedHeap::ScanningOption so,
OopClosure* scan_non_heap_roots,
OopsInHeapRegionClosure* scan_rs,
OopsInHeapRegionClosure* scan_so,
OopsInGenClosure* scan_perm,
int worker_i) {
// First scan the strong roots, including the perm gen.
@ -4087,6 +4085,7 @@ g1_process_strong_roots(bool collecting_perm_gen,
&buf_scan_non_heap_roots,
&eager_scan_code_roots,
&buf_scan_perm);
// Finish up any enqueued closure apps.
buf_scan_non_heap_roots.done();
buf_scan_perm.done();
@ -4109,9 +4108,6 @@ g1_process_strong_roots(bool collecting_perm_gen,
// XXX What should this be doing in the parallel case?
g1_policy()->record_collection_pause_end_CH_strong_roots();
if (scan_so != NULL) {
scan_scan_only_set(scan_so, worker_i);
}
// Now scan the complement of the collection set.
if (scan_rs != NULL) {
g1_rem_set()->oops_into_collection_set_do(scan_rs, worker_i);
@ -4124,54 +4120,6 @@ g1_process_strong_roots(bool collecting_perm_gen,
_process_strong_tasks->all_tasks_completed();
}
void
G1CollectedHeap::scan_scan_only_region(HeapRegion* r,
OopsInHeapRegionClosure* oc,
int worker_i) {
HeapWord* startAddr = r->bottom();
HeapWord* endAddr = r->used_region().end();
oc->set_region(r);
HeapWord* p = r->bottom();
HeapWord* t = r->top();
guarantee( p == r->next_top_at_mark_start(), "invariant" );
while (p < t) {
oop obj = oop(p);
p += obj->oop_iterate(oc);
}
}
void
G1CollectedHeap::scan_scan_only_set(OopsInHeapRegionClosure* oc,
int worker_i) {
double start = os::elapsedTime();
BufferingOopsInHeapRegionClosure boc(oc);
FilterInHeapRegionAndIntoCSClosure scan_only(this, &boc);
FilterAndMarkInHeapRegionAndIntoCSClosure scan_and_mark(this, &boc, concurrent_mark());
OopsInHeapRegionClosure *foc;
if (g1_policy()->during_initial_mark_pause())
foc = &scan_and_mark;
else
foc = &scan_only;
HeapRegion* hr;
int n = 0;
while ((hr = _young_list->par_get_next_scan_only_region()) != NULL) {
scan_scan_only_region(hr, foc, worker_i);
++n;
}
boc.done();
double closure_app_s = boc.closure_app_seconds();
g1_policy()->record_obj_copy_time(worker_i, closure_app_s * 1000.0);
double ms = (os::elapsedTime() - start - closure_app_s)*1000.0;
g1_policy()->record_scan_only_time(worker_i, ms, n);
}
void
G1CollectedHeap::g1_process_weak_roots(OopClosure* root_closure,
OopClosure* non_root_closure) {
@ -4370,17 +4318,14 @@ void G1CollectedHeap::dirtyCardsForYoungRegions(CardTableModRefBS* ct_bs, HeapRe
class G1ParCleanupCTTask : public AbstractGangTask {
CardTableModRefBS* _ct_bs;
G1CollectedHeap* _g1h;
HeapRegion* volatile _so_head;
HeapRegion* volatile _su_head;
public:
G1ParCleanupCTTask(CardTableModRefBS* ct_bs,
G1CollectedHeap* g1h,
HeapRegion* scan_only_list,
HeapRegion* survivor_list) :
AbstractGangTask("G1 Par Cleanup CT Task"),
_ct_bs(ct_bs),
_g1h(g1h),
_so_head(scan_only_list),
_su_head(survivor_list)
{ }
@ -4389,14 +4334,13 @@ public:
while (r = _g1h->pop_dirty_cards_region()) {
clear_cards(r);
}
// Redirty the cards of the scan-only and survivor regions.
dirty_list(&this->_so_head);
// Redirty the cards of the survivor regions.
dirty_list(&this->_su_head);
}
void clear_cards(HeapRegion* r) {
// Cards for Survivor and Scan-Only regions will be dirtied later.
if (!r->is_scan_only() && !r->is_survivor()) {
// Cards for Survivor regions will be dirtied later.
if (!r->is_survivor()) {
_ct_bs->clear(MemRegion(r->bottom(), r->end()));
}
}
@ -4429,7 +4373,7 @@ public:
virtual bool doHeapRegion(HeapRegion* r)
{
MemRegion mr(r->bottom(), r->end());
if (r->is_scan_only() || r->is_survivor()) {
if (r->is_survivor()) {
_ct_bs->verify_dirty_region(mr);
} else {
_ct_bs->verify_clean_region(mr);
@ -4445,8 +4389,8 @@ void G1CollectedHeap::cleanUpCardTable() {
// Iterate over the dirty cards region list.
G1ParCleanupCTTask cleanup_task(ct_bs, this,
_young_list->first_scan_only_region(),
_young_list->first_survivor_region());
if (ParallelGCThreads > 0) {
set_par_threads(workers()->total_workers());
workers()->run_task(&cleanup_task);
@ -4462,12 +4406,12 @@ void G1CollectedHeap::cleanUpCardTable() {
}
r->set_next_dirty_cards_region(NULL);
}
// now, redirty the cards of the scan-only and survivor regions
// now, redirty the cards of the survivor regions
// (it seemed faster to do it this way, instead of iterating over
// all regions and then clearing / dirtying as appropriate)
dirtyCardsForYoungRegions(ct_bs, _young_list->first_scan_only_region());
dirtyCardsForYoungRegions(ct_bs, _young_list->first_survivor_region());
}
double elapsed = os::elapsedTime() - start;
g1_policy()->record_clear_ct_time( elapsed * 1000.0);
#ifndef PRODUCT
@ -4488,6 +4432,11 @@ void G1CollectedHeap::free_collection_set(HeapRegion* cs_head) {
double young_time_ms = 0.0;
double non_young_time_ms = 0.0;
// Since the collection set is a superset of the the young list,
// all we need to do to clear the young list is clear its
// head and length, and unlink any young regions in the code below
_young_list->clear();
G1CollectorPolicy* policy = g1_policy();
double start_sec = os::elapsedTime();
@ -4531,6 +4480,12 @@ void G1CollectedHeap::free_collection_set(HeapRegion* cs_head) {
guarantee( (size_t)index < policy->young_cset_length(), "invariant" );
size_t words_survived = _surviving_young_words[index];
cur->record_surv_words_in_group(words_survived);
// At this point the we have 'popped' cur from the collection set
// (linked via next_in_collection_set()) but it is still in the
// young list (linked via next_young_region()). Clear the
// _next_young_region field.
cur->set_next_young_region(NULL);
} else {
int index = cur->young_index_in_cset();
guarantee( index == -1, "invariant" );
@ -4546,7 +4501,6 @@ void G1CollectedHeap::free_collection_set(HeapRegion* cs_head) {
"Should not have empty regions in a CS.");
free_region(cur);
} else {
guarantee( !cur->is_scan_only(), "should not be scan only" );
cur->uninstall_surv_rate_group();
if (cur->is_young())
cur->set_young_index_in_cset(-1);
@ -4570,6 +4524,27 @@ void G1CollectedHeap::free_collection_set(HeapRegion* cs_head) {
policy->record_non_young_free_cset_time_ms(non_young_time_ms);
}
// This routine is similar to the above but does not record
// any policy statistics or update free lists; we are abandoning
// the current incremental collection set in preparation of a
// full collection. After the full GC we will start to build up
// the incremental collection set again.
// This is only called when we're doing a full collection
// and is immediately followed by the tearing down of the young list.
void G1CollectedHeap::abandon_collection_set(HeapRegion* cs_head) {
HeapRegion* cur = cs_head;
while (cur != NULL) {
HeapRegion* next = cur->next_in_collection_set();
assert(cur->in_collection_set(), "bad CS");
cur->set_next_in_collection_set(NULL);
cur->set_in_collection_set(false);
cur->set_young_index_in_cset(-1);
cur = next;
}
}
HeapRegion*
G1CollectedHeap::alloc_region_from_unclean_list_locked(bool zero_filled) {
assert(ZF_mon->owned_by_self(), "Precondition");
@ -4936,12 +4911,10 @@ public:
bool success() { return _success; }
};
bool G1CollectedHeap::check_young_list_empty(bool ignore_scan_only_list,
bool check_sample) {
bool ret = true;
bool G1CollectedHeap::check_young_list_empty(bool check_heap, bool check_sample) {
bool ret = _young_list->check_list_empty(check_sample);
ret = _young_list->check_list_empty(ignore_scan_only_list, check_sample);
if (!ignore_scan_only_list) {
if (check_heap) {
NoYoungRegionsClosure closure;
heap_region_iterate(&closure);
ret = ret && closure.success();

View File

@ -1,5 +1,5 @@
/*
* Copyright 2001-2009 Sun Microsystems, Inc. All Rights Reserved.
* Copyright 2001-2010 Sun Microsystems, Inc. All Rights Reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -81,33 +81,29 @@ private:
HeapRegion* _head;
HeapRegion* _scan_only_head;
HeapRegion* _scan_only_tail;
HeapRegion* _survivor_head;
HeapRegion* _survivor_tail;
HeapRegion* _curr;
size_t _length;
size_t _scan_only_length;
size_t _survivor_length;
size_t _last_sampled_rs_lengths;
size_t _sampled_rs_lengths;
HeapRegion* _curr;
HeapRegion* _curr_scan_only;
HeapRegion* _survivor_head;
HeapRegion* _survivor_tail;
size_t _survivor_length;
void empty_list(HeapRegion* list);
void empty_list(HeapRegion* list);
public:
YoungList(G1CollectedHeap* g1h);
void push_region(HeapRegion* hr);
void add_survivor_region(HeapRegion* hr);
HeapRegion* pop_region();
void empty_list();
bool is_empty() { return _length == 0; }
size_t length() { return _length; }
size_t scan_only_length() { return _scan_only_length; }
size_t survivor_length() { return _survivor_length; }
void push_region(HeapRegion* hr);
void add_survivor_region(HeapRegion* hr);
void empty_list();
bool is_empty() { return _length == 0; }
size_t length() { return _length; }
size_t survivor_length() { return _survivor_length; }
void rs_length_sampling_init();
bool rs_length_sampling_more();
@ -120,22 +116,21 @@ public:
// for development purposes
void reset_auxilary_lists();
void clear() { _head = NULL; _length = 0; }
void clear_survivors() {
_survivor_head = NULL;
_survivor_tail = NULL;
_survivor_length = 0;
}
HeapRegion* first_region() { return _head; }
HeapRegion* first_scan_only_region() { return _scan_only_head; }
HeapRegion* first_survivor_region() { return _survivor_head; }
HeapRegion* last_survivor_region() { return _survivor_tail; }
HeapRegion* par_get_next_scan_only_region() {
MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
HeapRegion* ret = _curr_scan_only;
if (ret != NULL)
_curr_scan_only = ret->get_next_young_region();
return ret;
}
// debugging
bool check_list_well_formed();
bool check_list_empty(bool ignore_scan_only_list,
bool check_sample = true);
bool check_list_empty(bool check_sample = true);
void print();
};
@ -232,6 +227,9 @@ private:
// current collection.
HeapRegion* _gc_alloc_region_list;
// Determines PLAB size for a particular allocation purpose.
static size_t desired_plab_sz(GCAllocPurpose purpose);
// When called by par thread, require par_alloc_during_gc_lock() to be held.
void push_gc_alloc_region(HeapRegion* hr);
@ -402,8 +400,7 @@ public:
assert(_in_cset_fast_test_base != NULL, "sanity");
assert(r->in_collection_set(), "invariant");
int index = r->hrs_index();
assert(0 <= (size_t) index && (size_t) index < _in_cset_fast_test_length,
"invariant");
assert(0 <= index && (size_t) index < _in_cset_fast_test_length, "invariant");
assert(!_in_cset_fast_test_base[index], "invariant");
_in_cset_fast_test_base[index] = true;
}
@ -428,6 +425,12 @@ public:
}
}
void clear_cset_fast_test() {
assert(_in_cset_fast_test_base != NULL, "sanity");
memset(_in_cset_fast_test_base, false,
_in_cset_fast_test_length * sizeof(bool));
}
protected:
// Shrink the garbage-first heap by at most the given size (in bytes!).
@ -473,6 +476,10 @@ protected:
// regions.
void free_collection_set(HeapRegion* cs_head);
// Abandon the current collection set without recording policy
// statistics or updating free lists.
void abandon_collection_set(HeapRegion* cs_head);
// Applies "scan_non_heap_roots" to roots outside the heap,
// "scan_rs" to roots inside the heap (having done "set_region" to
// indicate the region in which the root resides), and does "scan_perm"
@ -485,16 +492,9 @@ protected:
SharedHeap::ScanningOption so,
OopClosure* scan_non_heap_roots,
OopsInHeapRegionClosure* scan_rs,
OopsInHeapRegionClosure* scan_so,
OopsInGenClosure* scan_perm,
int worker_i);
void scan_scan_only_set(OopsInHeapRegionClosure* oc,
int worker_i);
void scan_scan_only_region(HeapRegion* hr,
OopsInHeapRegionClosure* oc,
int worker_i);
// Apply "blk" to all the weak roots of the system. These include
// JNI weak roots, the code cache, system dictionary, symbol table,
// string table, and referents of reachable weak refs.
@ -1133,36 +1133,14 @@ public:
void set_region_short_lived_locked(HeapRegion* hr);
// add appropriate methods for any other surv rate groups
void young_list_rs_length_sampling_init() {
_young_list->rs_length_sampling_init();
}
bool young_list_rs_length_sampling_more() {
return _young_list->rs_length_sampling_more();
}
void young_list_rs_length_sampling_next() {
_young_list->rs_length_sampling_next();
}
size_t young_list_sampled_rs_lengths() {
return _young_list->sampled_rs_lengths();
}
size_t young_list_length() { return _young_list->length(); }
size_t young_list_scan_only_length() {
return _young_list->scan_only_length(); }
HeapRegion* pop_region_from_young_list() {
return _young_list->pop_region();
}
HeapRegion* young_list_first_region() {
return _young_list->first_region();
}
YoungList* young_list() { return _young_list; }
// debugging
bool check_young_list_well_formed() {
return _young_list->check_list_well_formed();
}
bool check_young_list_empty(bool ignore_scan_only_list,
bool check_young_list_empty(bool check_heap,
bool check_sample = true);
// *** Stuff related to concurrent marking. It's not clear to me that so
@ -1367,12 +1345,18 @@ private:
return BitsPerWord << shifter();
}
static size_t gclab_word_size() {
return G1ParallelGCAllocBufferSize / HeapWordSize;
size_t gclab_word_size() const {
return _gclab_word_size;
}
static size_t bitmap_size_in_bits() {
size_t bits_in_bitmap = gclab_word_size() >> shifter();
// Calculates actual GCLab size in words
size_t gclab_real_word_size() const {
return bitmap_size_in_bits(pointer_delta(_real_end_word, _start_word))
/ BitsPerWord;
}
static size_t bitmap_size_in_bits(size_t gclab_word_size) {
size_t bits_in_bitmap = gclab_word_size >> shifter();
// We are going to ensure that the beginning of a word in this
// bitmap also corresponds to the beginning of a word in the
// global marking bitmap. To handle the case where a GCLab
@ -1382,13 +1366,13 @@ private:
return bits_in_bitmap + BitsPerWord - 1;
}
public:
GCLabBitMap(HeapWord* heap_start)
: BitMap(bitmap_size_in_bits()),
GCLabBitMap(HeapWord* heap_start, size_t gclab_word_size)
: BitMap(bitmap_size_in_bits(gclab_word_size)),
_cm(G1CollectedHeap::heap()->concurrent_mark()),
_shifter(shifter()),
_bitmap_word_covers_words(bitmap_word_covers_words()),
_heap_start(heap_start),
_gclab_word_size(gclab_word_size()),
_gclab_word_size(gclab_word_size),
_real_start_word(NULL),
_real_end_word(NULL),
_start_word(NULL)
@ -1483,7 +1467,7 @@ public:
mark_bitmap->mostly_disjoint_range_union(this,
0, // always start from the start of the bitmap
_start_word,
size_in_words());
gclab_real_word_size());
_cm->grayRegionIfNecessary(MemRegion(_real_start_word, _real_end_word));
#ifndef PRODUCT
@ -1495,9 +1479,10 @@ public:
}
}
static size_t bitmap_size_in_words() {
return (bitmap_size_in_bits() + BitsPerWord - 1) / BitsPerWord;
size_t bitmap_size_in_words() const {
return (bitmap_size_in_bits(gclab_word_size()) + BitsPerWord - 1) / BitsPerWord;
}
};
class G1ParGCAllocBuffer: public ParGCAllocBuffer {
@ -1507,10 +1492,10 @@ private:
GCLabBitMap _bitmap;
public:
G1ParGCAllocBuffer() :
ParGCAllocBuffer(G1ParallelGCAllocBufferSize / HeapWordSize),
G1ParGCAllocBuffer(size_t gclab_word_size) :
ParGCAllocBuffer(gclab_word_size),
_during_marking(G1CollectedHeap::heap()->mark_in_progress()),
_bitmap(G1CollectedHeap::heap()->reserved_region().start()),
_bitmap(G1CollectedHeap::heap()->reserved_region().start(), gclab_word_size),
_retired(false)
{ }
@ -1549,8 +1534,10 @@ protected:
typedef GrowableArray<StarTask> OverflowQueue;
OverflowQueue* _overflowed_refs;
G1ParGCAllocBuffer _alloc_buffers[GCAllocPurposeCount];
ageTable _age_table;
G1ParGCAllocBuffer _surviving_alloc_buffer;
G1ParGCAllocBuffer _tenured_alloc_buffer;
G1ParGCAllocBuffer* _alloc_buffers[GCAllocPurposeCount];
ageTable _age_table;
size_t _alloc_buffer_waste;
size_t _undo_waste;
@ -1619,7 +1606,7 @@ public:
ageTable* age_table() { return &_age_table; }
G1ParGCAllocBuffer* alloc_buffer(GCAllocPurpose purpose) {
return &_alloc_buffers[purpose];
return _alloc_buffers[purpose];
}
size_t alloc_buffer_waste() { return _alloc_buffer_waste; }
@ -1684,15 +1671,15 @@ public:
HeapWord* allocate_slow(GCAllocPurpose purpose, size_t word_sz) {
HeapWord* obj = NULL;
if (word_sz * 100 <
(size_t)(G1ParallelGCAllocBufferSize / HeapWordSize) *
ParallelGCBufferWastePct) {
size_t gclab_word_size = _g1h->desired_plab_sz(purpose);
if (word_sz * 100 < gclab_word_size * ParallelGCBufferWastePct) {
G1ParGCAllocBuffer* alloc_buf = alloc_buffer(purpose);
assert(gclab_word_size == alloc_buf->word_sz(),
"dynamic resizing is not supported");
add_to_alloc_buffer_waste(alloc_buf->words_remaining());
alloc_buf->retire(false, false);
HeapWord* buf =
_g1h->par_allocate_during_gc(purpose, G1ParallelGCAllocBufferSize / HeapWordSize);
HeapWord* buf = _g1h->par_allocate_during_gc(purpose, gclab_word_size);
if (buf == NULL) return NULL; // Let caller handle allocation failure.
// Otherwise.
alloc_buf->set_buf(buf);
@ -1786,9 +1773,9 @@ public:
void retire_alloc_buffers() {
for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
size_t waste = _alloc_buffers[ap].words_remaining();
size_t waste = _alloc_buffers[ap]->words_remaining();
add_to_alloc_buffer_waste(waste);
_alloc_buffers[ap].retire(true, false);
_alloc_buffers[ap]->retire(true, false);
}
}

File diff suppressed because it is too large Load Diff

View File

@ -1,5 +1,5 @@
/*
* Copyright 2001-2009 Sun Microsystems, Inc. All Rights Reserved.
* Copyright 2001-2010 Sun Microsystems, Inc. All Rights Reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -61,7 +61,6 @@ class MainBodySummary: public CHeapObj {
define_num_seq(parallel) // parallel only
define_num_seq(ext_root_scan)
define_num_seq(mark_stack_scan)
define_num_seq(scan_only)
define_num_seq(update_rs)
define_num_seq(scan_rs)
define_num_seq(scan_new_refs) // Only for temp use; added to
@ -174,8 +173,6 @@ protected:
double* _par_last_ext_root_scan_times_ms;
double* _par_last_mark_stack_scan_times_ms;
double* _par_last_scan_only_times_ms;
double* _par_last_scan_only_regions_scanned;
double* _par_last_update_rs_start_times_ms;
double* _par_last_update_rs_times_ms;
double* _par_last_update_rs_processed_buffers;
@ -196,7 +193,6 @@ protected:
bool _adaptive_young_list_length;
size_t _young_list_min_length;
size_t _young_list_target_length;
size_t _young_list_so_prefix_length;
size_t _young_list_fixed_length;
size_t _young_cset_length;
@ -234,7 +230,6 @@ private:
TruncatedSeq* _pending_card_diff_seq;
TruncatedSeq* _rs_length_diff_seq;
TruncatedSeq* _cost_per_card_ms_seq;
TruncatedSeq* _cost_per_scan_only_region_ms_seq;
TruncatedSeq* _fully_young_cards_per_entry_ratio_seq;
TruncatedSeq* _partially_young_cards_per_entry_ratio_seq;
TruncatedSeq* _cost_per_entry_ms_seq;
@ -249,19 +244,16 @@ private:
TruncatedSeq* _rs_lengths_seq;
TruncatedSeq* _cost_per_byte_ms_during_cm_seq;
TruncatedSeq* _cost_per_scan_only_region_ms_during_cm_seq;
TruncatedSeq* _young_gc_eff_seq;
TruncatedSeq* _max_conc_overhead_seq;
size_t _recorded_young_regions;
size_t _recorded_scan_only_regions;
size_t _recorded_non_young_regions;
size_t _recorded_region_num;
size_t _free_regions_at_end_of_collection;
size_t _scan_only_regions_at_end_of_collection;
size_t _recorded_rs_lengths;
size_t _max_rs_lengths;
@ -277,7 +269,6 @@ private:
double _predicted_survival_ratio;
double _predicted_rs_update_time_ms;
double _predicted_rs_scan_time_ms;
double _predicted_scan_only_scan_time_ms;
double _predicted_object_copy_time_ms;
double _predicted_constant_other_time_ms;
double _predicted_young_other_time_ms;
@ -344,8 +335,6 @@ public:
bool verify_young_ages();
#endif // PRODUCT
void tag_scan_only(size_t short_lived_scan_only_length);
double get_new_prediction(TruncatedSeq* seq) {
return MAX2(seq->davg() + sigma() * seq->dsd(),
seq->davg() * confidence_factor(seq->num()));
@ -431,23 +420,6 @@ public:
get_new_prediction(_partially_young_cost_per_entry_ms_seq);
}
double predict_scan_only_time_ms_during_cm(size_t scan_only_region_num) {
if (_cost_per_scan_only_region_ms_during_cm_seq->num() < 3)
return 1.5 * (double) scan_only_region_num *
get_new_prediction(_cost_per_scan_only_region_ms_seq);
else
return (double) scan_only_region_num *
get_new_prediction(_cost_per_scan_only_region_ms_during_cm_seq);
}
double predict_scan_only_time_ms(size_t scan_only_region_num) {
if (_in_marking_window_im)
return predict_scan_only_time_ms_during_cm(scan_only_region_num);
else
return (double) scan_only_region_num *
get_new_prediction(_cost_per_scan_only_region_ms_seq);
}
double predict_object_copy_time_ms_during_cm(size_t bytes_to_copy) {
if (_cost_per_byte_ms_during_cm_seq->num() < 3)
return 1.1 * (double) bytes_to_copy *
@ -490,24 +462,21 @@ public:
size_t predict_bytes_to_copy(HeapRegion* hr);
double predict_region_elapsed_time_ms(HeapRegion* hr, bool young);
// for use by: calculate_optimal_so_length(length)
void predict_gc_eff(size_t young_region_num,
size_t so_length,
double base_time_ms,
double *gc_eff,
double *pause_time_ms);
// for use by: calculate_young_list_target_config(rs_length)
bool predict_gc_eff(size_t young_region_num,
size_t so_length,
double base_time_with_so_ms,
size_t init_free_regions,
double target_pause_time_ms,
double* gc_eff);
// for use by: calculate_young_list_target_length(rs_length)
bool predict_will_fit(size_t young_region_num,
double base_time_ms,
size_t init_free_regions,
double target_pause_time_ms);
void start_recording_regions();
void record_cset_region(HeapRegion* hr, bool young);
void record_scan_only_regions(size_t scan_only_length);
void record_cset_region_info(HeapRegion* hr, bool young);
void record_non_young_cset_region(HeapRegion* hr);
void set_recorded_young_regions(size_t n_regions);
void set_recorded_young_bytes(size_t bytes);
void set_recorded_rs_lengths(size_t rs_lengths);
void set_predicted_bytes_to_copy(size_t bytes);
void end_recording_regions();
void record_vtime_diff_ms(double vtime_diff_ms) {
@ -638,11 +607,74 @@ protected:
void update_recent_gc_times(double end_time_sec, double elapsed_ms);
// The head of the list (via "next_in_collection_set()") representing the
// current collection set.
// current collection set. Set from the incrementally built collection
// set at the start of the pause.
HeapRegion* _collection_set;
// The number of regions in the collection set. Set from the incrementally
// built collection set at the start of an evacuation pause.
size_t _collection_set_size;
// The number of bytes in the collection set before the pause. Set from
// the incrementally built collection set at the start of an evacuation
// pause.
size_t _collection_set_bytes_used_before;
// The associated information that is maintained while the incremental
// collection set is being built with young regions. Used to populate
// the recorded info for the evacuation pause.
enum CSetBuildType {
Active, // We are actively building the collection set
Inactive // We are not actively building the collection set
};
CSetBuildType _inc_cset_build_state;
// The head of the incrementally built collection set.
HeapRegion* _inc_cset_head;
// The tail of the incrementally built collection set.
HeapRegion* _inc_cset_tail;
// The number of regions in the incrementally built collection set.
// Used to set _collection_set_size at the start of an evacuation
// pause.
size_t _inc_cset_size;
// Used as the index in the surving young words structure
// which tracks the amount of space, for each young region,
// that survives the pause.
size_t _inc_cset_young_index;
// The number of bytes in the incrementally built collection set.
// Used to set _collection_set_bytes_used_before at the start of
// an evacuation pause.
size_t _inc_cset_bytes_used_before;
// Used to record the highest end of heap region in collection set
HeapWord* _inc_cset_max_finger;
// The number of recorded used bytes in the young regions
// of the collection set. This is the sum of the used() bytes
// of retired young regions in the collection set.
size_t _inc_cset_recorded_young_bytes;
// The RSet lengths recorded for regions in the collection set
// (updated by the periodic sampling of the regions in the
// young list/collection set).
size_t _inc_cset_recorded_rs_lengths;
// The predicted elapsed time it will take to collect the regions
// in the collection set (updated by the periodic sampling of the
// regions in the young list/collection set).
double _inc_cset_predicted_elapsed_time_ms;
// The predicted bytes to copy for the regions in the collection
// set (updated by the periodic sampling of the regions in the
// young list/collection set).
size_t _inc_cset_predicted_bytes_to_copy;
// Info about marking.
int _n_marks; // Sticky at 2, so we know when we've done at least 2.
@ -761,9 +793,8 @@ protected:
double _mark_closure_time_ms;
void calculate_young_list_min_length();
void calculate_young_list_target_config();
void calculate_young_list_target_config(size_t rs_lengths);
size_t calculate_optimal_so_length(size_t young_list_length);
void calculate_young_list_target_length();
void calculate_young_list_target_length(size_t rs_lengths);
public:
@ -868,11 +899,6 @@ public:
_par_last_mark_stack_scan_times_ms[worker_i] = ms;
}
void record_scan_only_time(int worker_i, double ms, int n) {
_par_last_scan_only_times_ms[worker_i] = ms;
_par_last_scan_only_regions_scanned[worker_i] = (double) n;
}
void record_satb_drain_time(double ms) {
_cur_satb_drain_time_ms = ms;
_satb_drain_time_set = true;
@ -987,20 +1013,67 @@ public:
// Choose a new collection set. Marks the chosen regions as being
// "in_collection_set", and links them together. The head and number of
// the collection set are available via access methods.
virtual void choose_collection_set() = 0;
void clear_collection_set() { _collection_set = NULL; }
virtual bool choose_collection_set() = 0;
// The head of the list (via "next_in_collection_set()") representing the
// current collection set.
HeapRegion* collection_set() { return _collection_set; }
void clear_collection_set() { _collection_set = NULL; }
// The number of elements in the current collection set.
size_t collection_set_size() { return _collection_set_size; }
// Add "hr" to the CS.
void add_to_collection_set(HeapRegion* hr);
// Incremental CSet Support
// The head of the incrementally built collection set.
HeapRegion* inc_cset_head() { return _inc_cset_head; }
// The tail of the incrementally built collection set.
HeapRegion* inc_set_tail() { return _inc_cset_tail; }
// The number of elements in the incrementally built collection set.
size_t inc_cset_size() { return _inc_cset_size; }
// Initialize incremental collection set info.
void start_incremental_cset_building();
void clear_incremental_cset() {
_inc_cset_head = NULL;
_inc_cset_tail = NULL;
}
// Stop adding regions to the incremental collection set
void stop_incremental_cset_building() { _inc_cset_build_state = Inactive; }
// Add/remove information about hr to the aggregated information
// for the incrementally built collection set.
void add_to_incremental_cset_info(HeapRegion* hr, size_t rs_length);
void remove_from_incremental_cset_info(HeapRegion* hr);
// Update information about hr in the aggregated information for
// the incrementally built collection set.
void update_incremental_cset_info(HeapRegion* hr, size_t new_rs_length);
private:
// Update the incremental cset information when adding a region
// (should not be called directly).
void add_region_to_incremental_cset_common(HeapRegion* hr);
public:
// Add hr to the LHS of the incremental collection set.
void add_region_to_incremental_cset_lhs(HeapRegion* hr);
// Add hr to the RHS of the incremental collection set.
void add_region_to_incremental_cset_rhs(HeapRegion* hr);
#ifndef PRODUCT
void print_collection_set(HeapRegion* list_head, outputStream* st);
#endif // !PRODUCT
bool initiate_conc_mark_if_possible() { return _initiate_conc_mark_if_possible; }
void set_initiate_conc_mark_if_possible() { _initiate_conc_mark_if_possible = true; }
void clear_initiate_conc_mark_if_possible() { _initiate_conc_mark_if_possible = false; }
@ -1191,7 +1264,7 @@ class G1CollectorPolicy_BestRegionsFirst: public G1CollectorPolicy {
// If the estimated is less then desirable, resize if possible.
void expand_if_possible(size_t numRegions);
virtual void choose_collection_set();
virtual bool choose_collection_set();
virtual void record_collection_pause_start(double start_time_sec,
size_t start_used);
virtual void record_concurrent_mark_cleanup_end(size_t freed_bytes,

View File

@ -1,5 +1,5 @@
/*
* Copyright 2001-2009 Sun Microsystems, Inc. All Rights Reserved.
* Copyright 2001-2010 Sun Microsystems, Inc. All Rights Reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -31,6 +31,12 @@ void G1MarkSweep::invoke_at_safepoint(ReferenceProcessor* rp,
bool clear_all_softrefs) {
assert(SafepointSynchronize::is_at_safepoint(), "must be at a safepoint");
SharedHeap* sh = SharedHeap::heap();
#ifdef ASSERT
if (sh->collector_policy()->should_clear_all_soft_refs()) {
assert(clear_all_softrefs, "Policy should have been checked earler");
}
#endif
// hook up weak ref data so it can be used during Mark-Sweep
assert(GenMarkSweep::ref_processor() == NULL, "no stomping");
assert(rp != NULL, "should be non-NULL");
@ -44,7 +50,6 @@ void G1MarkSweep::invoke_at_safepoint(ReferenceProcessor* rp,
// Increment the invocation count for the permanent generation, since it is
// implicitly collected whenever we do a full mark sweep collection.
SharedHeap* sh = SharedHeap::heap();
sh->perm_gen()->stat_record()->invocations++;
bool marked_for_unloading = false;

View File

@ -1,5 +1,5 @@
/*
* Copyright 2001-2009 Sun Microsystems, Inc. All Rights Reserved.
* Copyright 2001-2010 Sun Microsystems, Inc. All Rights Reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -28,9 +28,6 @@
#define G1_FLAGS(develop, develop_pd, product, product_pd, diagnostic, experimental, notproduct, manageable, product_rw) \
\
product(intx, G1ParallelGCAllocBufferSize, 8*K, \
"Size of parallel G1 allocation buffers in to-space.") \
\
product(intx, G1ConfidencePercent, 50, \
"Confidence level for MMU/pause predictions") \
\
@ -229,10 +226,6 @@
"the number of regions for which we'll print a surv rate " \
"summary.") \
\
develop(bool, G1UseScanOnlyPrefix, false, \
"It determines whether the system will calculate an optimum " \
"scan-only set.") \
\
product(intx, G1ReservePercent, 10, \
"It determines the minimum reserve we should have in the heap " \
"to minimize the probability of promotion failure.") \

View File

@ -1,5 +1,5 @@
/*
* Copyright 2001-2009 Sun Microsystems, Inc. All Rights Reserved.
* Copyright 2001-2010 Sun Microsystems, Inc. All Rights Reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -75,6 +75,16 @@ public:
virtual void do_oop(narrowOop* p) { do_oop_work(p); }
virtual void do_oop( oop* p) { do_oop_work(p); }
void print_object(outputStream* out, oop obj) {
#ifdef PRODUCT
klassOop k = obj->klass();
const char* class_name = instanceKlass::cast(k)->external_name();
out->print_cr("class name %s", class_name);
#else // PRODUCT
obj->print_on(out);
#endif // PRODUCT
}
template <class T> void do_oop_work(T* p) {
assert(_containing_obj != NULL, "Precondition");
assert(!_g1h->is_obj_dead_cond(_containing_obj, _use_prev_marking),
@ -90,21 +100,29 @@ public:
gclog_or_tty->print_cr("----------");
}
if (!_g1h->is_in_closed_subset(obj)) {
HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p);
gclog_or_tty->print_cr("Field "PTR_FORMAT
" of live obj "PTR_FORMAT
" points to obj "PTR_FORMAT
" not in the heap.",
p, (void*) _containing_obj, (void*) obj);
" of live obj "PTR_FORMAT" in region "
"["PTR_FORMAT", "PTR_FORMAT")",
p, (void*) _containing_obj,
from->bottom(), from->end());
print_object(gclog_or_tty, _containing_obj);
gclog_or_tty->print_cr("points to obj "PTR_FORMAT" not in the heap",
(void*) obj);
} else {
HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p);
HeapRegion* to = _g1h->heap_region_containing((HeapWord*)obj);
gclog_or_tty->print_cr("Field "PTR_FORMAT
" of live obj "PTR_FORMAT
" points to dead obj "PTR_FORMAT".",
p, (void*) _containing_obj, (void*) obj);
" of live obj "PTR_FORMAT" in region "
"["PTR_FORMAT", "PTR_FORMAT")",
p, (void*) _containing_obj,
from->bottom(), from->end());
print_object(gclog_or_tty, _containing_obj);
gclog_or_tty->print_cr("points to dead obj "PTR_FORMAT" in region "
"["PTR_FORMAT", "PTR_FORMAT")",
(void*) obj, to->bottom(), to->end());
print_object(gclog_or_tty, obj);
}
gclog_or_tty->print_cr("Live obj:");
_containing_obj->print_on(gclog_or_tty);
gclog_or_tty->print_cr("Bad referent:");
obj->print_on(gclog_or_tty);
gclog_or_tty->print_cr("----------");
_failures = true;
failed = true;
@ -432,7 +450,9 @@ HeapRegion(G1BlockOffsetSharedArray* sharedOffsetArray,
_young_type(NotYoung), _next_young_region(NULL),
_next_dirty_cards_region(NULL),
_young_index_in_cset(-1), _surv_rate_group(NULL), _age_index(-1),
_rem_set(NULL), _zfs(NotZeroFilled)
_rem_set(NULL), _zfs(NotZeroFilled),
_recorded_rs_length(0), _predicted_elapsed_time_ms(0),
_predicted_bytes_to_copy(0)
{
_orig_end = mr.end();
// Note that initialize() will set the start of the unmarked area of the
@ -715,7 +735,7 @@ void HeapRegion::print_on(outputStream* st) const {
else
st->print(" ");
if (is_young())
st->print(is_scan_only() ? " SO" : (is_survivor() ? " SU" : " Y "));
st->print(is_survivor() ? " SU" : " Y ");
else
st->print(" ");
if (is_empty())
@ -723,6 +743,8 @@ void HeapRegion::print_on(outputStream* st) const {
else
st->print(" ");
st->print(" %5d", _gc_time_stamp);
st->print(" PTAMS "PTR_FORMAT" NTAMS "PTR_FORMAT,
prev_top_at_mark_start(), next_top_at_mark_start());
G1OffsetTableContigSpace::print_on(st);
}

View File

@ -1,5 +1,5 @@
/*
* Copyright 2001-2009 Sun Microsystems, Inc. All Rights Reserved.
* Copyright 2001-2010 Sun Microsystems, Inc. All Rights Reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -247,7 +247,6 @@ class HeapRegion: public G1OffsetTableContigSpace {
enum YoungType {
NotYoung, // a region is not young
ScanOnly, // a region is young and scan-only
Young, // a region is young
Survivor // a region is young and it contains
// survivor
@ -292,6 +291,20 @@ class HeapRegion: public G1OffsetTableContigSpace {
_young_type = new_type;
}
// Cached attributes used in the collection set policy information
// The RSet length that was added to the total value
// for the collection set.
size_t _recorded_rs_length;
// The predicted elapsed time that was added to total value
// for the collection set.
double _predicted_elapsed_time_ms;
// The predicted number of bytes to copy that was added to
// the total value for the collection set.
size_t _predicted_bytes_to_copy;
public:
// If "is_zeroed" is "true", the region "mr" can be assumed to contain zeros.
HeapRegion(G1BlockOffsetSharedArray* sharedOffsetArray,
@ -614,7 +627,6 @@ class HeapRegion: public G1OffsetTableContigSpace {
// </PREDICTION>
bool is_young() const { return _young_type != NotYoung; }
bool is_scan_only() const { return _young_type == ScanOnly; }
bool is_survivor() const { return _young_type == Survivor; }
int young_index_in_cset() const { return _young_index_in_cset; }
@ -629,12 +641,6 @@ class HeapRegion: public G1OffsetTableContigSpace {
return _surv_rate_group->age_in_group(_age_index);
}
void recalculate_age_in_surv_rate_group() {
assert( _surv_rate_group != NULL, "pre-condition" );
assert( _age_index > -1, "pre-condition" );
_age_index = _surv_rate_group->recalculate_age_index(_age_index);
}
void record_surv_words_in_group(size_t words_survived) {
assert( _surv_rate_group != NULL, "pre-condition" );
assert( _age_index > -1, "pre-condition" );
@ -676,8 +682,6 @@ class HeapRegion: public G1OffsetTableContigSpace {
void set_young() { set_young_type(Young); }
void set_scan_only() { set_young_type(ScanOnly); }
void set_survivor() { set_young_type(Survivor); }
void set_not_young() { set_young_type(NotYoung); }
@ -775,6 +779,22 @@ class HeapRegion: public G1OffsetTableContigSpace {
_zero_filler = NULL;
}
size_t recorded_rs_length() const { return _recorded_rs_length; }
double predicted_elapsed_time_ms() const { return _predicted_elapsed_time_ms; }
size_t predicted_bytes_to_copy() const { return _predicted_bytes_to_copy; }
void set_recorded_rs_length(size_t rs_length) {
_recorded_rs_length = rs_length;
}
void set_predicted_elapsed_time_ms(double ms) {
_predicted_elapsed_time_ms = ms;
}
void set_predicted_bytes_to_copy(size_t bytes) {
_predicted_bytes_to_copy = bytes;
}
#define HeapRegion_OOP_SINCE_SAVE_MARKS_DECL(OopClosureType, nv_suffix) \
virtual void oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl);
SPECIALIZED_SINCE_SAVE_MARKS_CLOSURES(HeapRegion_OOP_SINCE_SAVE_MARKS_DECL)

View File

@ -662,8 +662,6 @@ void OtherRegionsTable::add_reference(OopOrNarrowOopStar from, int tid) {
prt = PosParPRT::alloc(from_hr);
}
prt->init(from_hr);
// Record the outgoing pointer in the from_region's outgoing bitmap.
from_hr->rem_set()->add_outgoing_reference(hr());
PosParPRT* first_prt = _fine_grain_regions[ind];
prt->set_next(first_prt); // XXX Maybe move to init?
@ -1073,11 +1071,7 @@ int HeapRegionRemSet::num_par_rem_sets() {
HeapRegionRemSet::HeapRegionRemSet(G1BlockOffsetSharedArray* bosa,
HeapRegion* hr)
: _bosa(bosa), _other_regions(hr),
_outgoing_region_map(G1CollectedHeap::heap()->max_regions(),
false /* in-resource-area */),
_iter_state(Unclaimed)
{}
: _bosa(bosa), _other_regions(hr), _iter_state(Unclaimed) { }
void HeapRegionRemSet::setup_remset_size() {
@ -1148,30 +1142,11 @@ void HeapRegionRemSet::par_cleanup() {
PosParPRT::par_contract_all();
}
void HeapRegionRemSet::add_outgoing_reference(HeapRegion* to_hr) {
_outgoing_region_map.par_at_put(to_hr->hrs_index(), 1);
}
void HeapRegionRemSet::clear() {
clear_outgoing_entries();
_outgoing_region_map.clear();
_other_regions.clear();
assert(occupied() == 0, "Should be clear.");
}
void HeapRegionRemSet::clear_outgoing_entries() {
G1CollectedHeap* g1h = G1CollectedHeap::heap();
size_t i = _outgoing_region_map.get_next_one_offset(0);
while (i < _outgoing_region_map.size()) {
HeapRegion* to_region = g1h->region_at(i);
if (!to_region->in_collection_set()) {
to_region->rem_set()->clear_incoming_entry(hr());
}
i = _outgoing_region_map.get_next_one_offset(i+1);
}
}
void HeapRegionRemSet::scrub(CardTableModRefBS* ctbs,
BitMap* region_bm, BitMap* card_bm) {
_other_regions.scrub(ctbs, region_bm, card_bm);

View File

@ -179,13 +179,6 @@ private:
OtherRegionsTable _other_regions;
// One set bit for every region that has an entry for this one.
BitMap _outgoing_region_map;
// Clear entries for the current region in any rem sets named in
// the _outgoing_region_map.
void clear_outgoing_entries();
enum ParIterState { Unclaimed, Claimed, Complete };
volatile ParIterState _iter_state;
volatile jlong _iter_claimed;
@ -243,10 +236,6 @@ public:
_other_regions.add_reference(from, tid);
}
// Records the fact that the current region contains an outgoing
// reference into "to_hr".
void add_outgoing_reference(HeapRegion* to_hr);
// Removes any entries shown by the given bitmaps to contain only dead
// objects.
void scrub(CardTableModRefBS* ctbs, BitMap* region_bm, BitMap* card_bm);

View File

@ -1,5 +1,5 @@
/*
* Copyright 2001-2009 Sun Microsystems, Inc. All Rights Reserved.
* Copyright 2001-2010 Sun Microsystems, Inc. All Rights Reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -55,7 +55,6 @@ SurvRateGroup::SurvRateGroup(G1CollectorPolicy* g1p,
void SurvRateGroup::reset()
{
_all_regions_allocated = 0;
_scan_only_prefix = 0;
_setup_seq_num = 0;
_stats_arrays_length = 0;
_accum_surv_rate = 0.0;
@ -74,7 +73,7 @@ void SurvRateGroup::reset()
void
SurvRateGroup::start_adding_regions() {
_setup_seq_num = _stats_arrays_length;
_region_num = _scan_only_prefix;
_region_num = 0;
_accum_surv_rate = 0.0;
#if 0
@ -163,12 +162,6 @@ SurvRateGroup::next_age_index() {
return (int) ++_all_regions_allocated;
}
void
SurvRateGroup::record_scan_only_prefix(size_t scan_only_prefix) {
guarantee( scan_only_prefix <= _region_num, "pre-condition" );
_scan_only_prefix = scan_only_prefix;
}
void
SurvRateGroup::record_surviving_words(int age_in_group, size_t surv_words) {
guarantee( 0 <= age_in_group && (size_t) age_in_group < _region_num,
@ -218,13 +211,12 @@ SurvRateGroup::all_surviving_words_recorded(bool propagate) {
#ifndef PRODUCT
void
SurvRateGroup::print() {
gclog_or_tty->print_cr("Surv Rate Group: %s (%d entries, %d scan-only)",
_name, _region_num, _scan_only_prefix);
gclog_or_tty->print_cr("Surv Rate Group: %s (%d entries)",
_name, _region_num);
for (size_t i = 0; i < _region_num; ++i) {
gclog_or_tty->print_cr(" age %4d surv rate %6.2lf %% pred %6.2lf %%%s",
gclog_or_tty->print_cr(" age %4d surv rate %6.2lf %% pred %6.2lf %%",
i, _surv_rate[i] * 100.0,
_g1p->get_new_prediction(_surv_rate_pred[i]) * 100.0,
(i < _scan_only_prefix) ? " S-O" : " ");
_g1p->get_new_prediction(_surv_rate_pred[i]) * 100.0);
}
}

View File

@ -1,5 +1,5 @@
/*
* Copyright 2001-2009 Sun Microsystems, Inc. All Rights Reserved.
* Copyright 2001-2010 Sun Microsystems, Inc. All Rights Reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -41,7 +41,6 @@ private:
int _all_regions_allocated;
size_t _region_num;
size_t _scan_only_prefix;
size_t _setup_seq_num;
public:
@ -51,13 +50,11 @@ public:
void reset();
void start_adding_regions();
void stop_adding_regions();
void record_scan_only_prefix(size_t scan_only_prefix);
void record_surviving_words(int age_in_group, size_t surv_words);
void all_surviving_words_recorded(bool propagate);
const char* name() { return _name; }
size_t region_num() { return _region_num; }
size_t scan_only_length() { return _scan_only_prefix; }
double accum_surv_rate_pred(int age) {
assert(age >= 0, "must be");
if ((size_t)age < _stats_arrays_length)
@ -82,17 +79,12 @@ public:
int next_age_index();
int age_in_group(int age_index) {
int ret = (int) (_all_regions_allocated - age_index);
int ret = (int) (_all_regions_allocated - age_index);
assert( ret >= 0, "invariant" );
return ret;
}
int recalculate_age_index(int age_index) {
int new_age_index = (int) _scan_only_prefix - age_in_group(age_index);
guarantee( new_age_index >= 0, "invariant" );
return new_age_index;
}
void finished_recalculating_age_indexes() {
_all_regions_allocated = (int) _scan_only_prefix;
_all_regions_allocated = 0;
}
#ifndef PRODUCT

View File

@ -1,5 +1,5 @@
//
// Copyright 2001-2009 Sun Microsystems, Inc. All Rights Reserved.
// Copyright 2001-2010 Sun Microsystems, Inc. All Rights Reserved.
// DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
//
// This code is free software; you can redistribute it and/or modify it
@ -161,8 +161,10 @@ parMarkBitMap.cpp psParallelCompact.hpp
parMarkBitMap.hpp bitMap.inline.hpp
parMarkBitMap.hpp psVirtualspace.hpp
psAdaptiveSizePolicy.cpp collectorPolicy.hpp
psAdaptiveSizePolicy.cpp gcPolicyCounters.hpp
psAdaptiveSizePolicy.cpp gcCause.hpp
psAdaptiveSizePolicy.cpp generationSizer.hpp
psAdaptiveSizePolicy.cpp psAdaptiveSizePolicy.hpp
psAdaptiveSizePolicy.cpp psGCAdaptivePolicyCounters.hpp
psAdaptiveSizePolicy.cpp psScavenge.hpp
@ -215,6 +217,7 @@ psMarkSweep.cpp events.hpp
psMarkSweep.cpp fprofiler.hpp
psMarkSweep.cpp gcCause.hpp
psMarkSweep.cpp gcLocker.inline.hpp
psMarkSweep.cpp generationSizer.hpp
psMarkSweep.cpp isGCActiveMark.hpp
psMarkSweep.cpp oop.inline.hpp
psMarkSweep.cpp memoryService.hpp
@ -256,6 +259,7 @@ psParallelCompact.cpp fprofiler.hpp
psParallelCompact.cpp gcCause.hpp
psParallelCompact.cpp gcLocker.inline.hpp
psParallelCompact.cpp gcTaskManager.hpp
psParallelCompact.cpp generationSizer.hpp
psParallelCompact.cpp isGCActiveMark.hpp
psParallelCompact.cpp management.hpp
psParallelCompact.cpp memoryService.hpp
@ -344,10 +348,12 @@ psPromotionLAB.hpp objectStartArray.hpp
psScavenge.cpp psAdaptiveSizePolicy.hpp
psScavenge.cpp biasedLocking.hpp
psScavenge.cpp cardTableExtension.hpp
psScavenge.cpp collectorPolicy.hpp
psScavenge.cpp fprofiler.hpp
psScavenge.cpp gcCause.hpp
psScavenge.cpp gcLocker.inline.hpp
psScavenge.cpp gcTaskManager.hpp
psScavenge.cpp generationSizer.hpp
psScavenge.cpp handles.inline.hpp
psScavenge.cpp isGCActiveMark.hpp
psScavenge.cpp oop.inline.hpp

View File

@ -1,5 +1,5 @@
//
// Copyright (c) 2007 Sun Microsystems, Inc. All Rights Reserved.
// Copyright 2007-2010 Sun Microsystems, Inc. All Rights Reserved.
// DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
//
// This code is free software; you can redistribute it and/or modify it
@ -29,6 +29,7 @@ adaptiveSizePolicy.hpp allocation.hpp
adaptiveSizePolicy.hpp universe.hpp
adaptiveSizePolicy.cpp adaptiveSizePolicy.hpp
adaptiveSizePolicy.cpp collectorPolicy.hpp
adaptiveSizePolicy.cpp gcCause.hpp
adaptiveSizePolicy.cpp ostream.hpp
adaptiveSizePolicy.cpp timer.hpp

View File

@ -1,5 +1,5 @@
/*
* Copyright 2001-2009 Sun Microsystems, Inc. All Rights Reserved.
* Copyright 2001-2010 Sun Microsystems, Inc. All Rights Reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -892,6 +892,10 @@ void ParNewGeneration::collect(bool full,
}
swap_spaces();
// A successful scavenge should restart the GC time limit count which is
// for full GC's.
size_policy->reset_gc_overhead_limit_count();
assert(to()->is_empty(), "to space should be empty now");
} else {
assert(HandlePromotionFailure,

View File

@ -1,5 +1,5 @@
/*
* Copyright 2001-2009 Sun Microsystems, Inc. All Rights Reserved.
* Copyright 2001-2010 Sun Microsystems, Inc. All Rights Reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -54,15 +54,16 @@ jint ParallelScavengeHeap::initialize() {
CollectedHeap::pre_initialize();
// Cannot be initialized until after the flags are parsed
GenerationSizer flag_parser;
// GenerationSizer flag_parser;
_collector_policy = new GenerationSizer();
size_t yg_min_size = flag_parser.min_young_gen_size();
size_t yg_max_size = flag_parser.max_young_gen_size();
size_t og_min_size = flag_parser.min_old_gen_size();
size_t og_max_size = flag_parser.max_old_gen_size();
size_t yg_min_size = _collector_policy->min_young_gen_size();
size_t yg_max_size = _collector_policy->max_young_gen_size();
size_t og_min_size = _collector_policy->min_old_gen_size();
size_t og_max_size = _collector_policy->max_old_gen_size();
// Why isn't there a min_perm_gen_size()?
size_t pg_min_size = flag_parser.perm_gen_size();
size_t pg_max_size = flag_parser.max_perm_gen_size();
size_t pg_min_size = _collector_policy->perm_gen_size();
size_t pg_max_size = _collector_policy->max_perm_gen_size();
trace_gen_sizes("ps heap raw",
pg_min_size, pg_max_size,
@ -89,12 +90,14 @@ jint ParallelScavengeHeap::initialize() {
// move to the common code.
yg_min_size = align_size_up(yg_min_size, yg_align);
yg_max_size = align_size_up(yg_max_size, yg_align);
size_t yg_cur_size = align_size_up(flag_parser.young_gen_size(), yg_align);
size_t yg_cur_size =
align_size_up(_collector_policy->young_gen_size(), yg_align);
yg_cur_size = MAX2(yg_cur_size, yg_min_size);
og_min_size = align_size_up(og_min_size, og_align);
og_max_size = align_size_up(og_max_size, og_align);
size_t og_cur_size = align_size_up(flag_parser.old_gen_size(), og_align);
size_t og_cur_size =
align_size_up(_collector_policy->old_gen_size(), og_align);
og_cur_size = MAX2(og_cur_size, og_min_size);
pg_min_size = align_size_up(pg_min_size, pg_align);
@ -355,6 +358,11 @@ HeapWord* ParallelScavengeHeap::mem_allocate(
assert(Thread::current() != (Thread*)VMThread::vm_thread(), "should not be in vm thread");
assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
// In general gc_overhead_limit_was_exceeded should be false so
// set it so here and reset it to true only if the gc time
// limit is being exceeded as checked below.
*gc_overhead_limit_was_exceeded = false;
HeapWord* result = young_gen()->allocate(size, is_tlab);
uint loop_count = 0;
@ -428,24 +436,6 @@ HeapWord* ParallelScavengeHeap::mem_allocate(
if (result == NULL) {
// Exit the loop if if the gc time limit has been exceeded.
// The allocation must have failed above (result must be NULL),
// and the most recent collection must have exceeded the
// gc time limit. Exit the loop so that an out-of-memory
// will be thrown (returning a NULL will do that), but
// clear gc_time_limit_exceeded so that the next collection
// will succeeded if the applications decides to handle the
// out-of-memory and tries to go on.
*gc_overhead_limit_was_exceeded = size_policy()->gc_time_limit_exceeded();
if (size_policy()->gc_time_limit_exceeded()) {
size_policy()->set_gc_time_limit_exceeded(false);
if (PrintGCDetails && Verbose) {
gclog_or_tty->print_cr("ParallelScavengeHeap::mem_allocate: "
"return NULL because gc_time_limit_exceeded is set");
}
return NULL;
}
// Generate a VM operation
VM_ParallelGCFailedAllocation op(size, is_tlab, gc_count);
VMThread::execute(&op);
@ -463,16 +453,34 @@ HeapWord* ParallelScavengeHeap::mem_allocate(
assert(op.result() == NULL, "must be NULL if gc_locked() is true");
continue; // retry and/or stall as necessary
}
// If a NULL result is being returned, an out-of-memory
// will be thrown now. Clear the gc_time_limit_exceeded
// flag to avoid the following situation.
// gc_time_limit_exceeded is set during a collection
// the collection fails to return enough space and an OOM is thrown
// the next GC is skipped because the gc_time_limit_exceeded
// flag is set and another OOM is thrown
if (op.result() == NULL) {
size_policy()->set_gc_time_limit_exceeded(false);
// Exit the loop if the gc time limit has been exceeded.
// The allocation must have failed above ("result" guarding
// this path is NULL) and the most recent collection has exceeded the
// gc overhead limit (although enough may have been collected to
// satisfy the allocation). Exit the loop so that an out-of-memory
// will be thrown (return a NULL ignoring the contents of
// op.result()),
// but clear gc_overhead_limit_exceeded so that the next collection
// starts with a clean slate (i.e., forgets about previous overhead
// excesses). Fill op.result() with a filler object so that the
// heap remains parsable.
const bool limit_exceeded = size_policy()->gc_overhead_limit_exceeded();
const bool softrefs_clear = collector_policy()->all_soft_refs_clear();
assert(!limit_exceeded || softrefs_clear, "Should have been cleared");
if (limit_exceeded && softrefs_clear) {
*gc_overhead_limit_was_exceeded = true;
size_policy()->set_gc_overhead_limit_exceeded(false);
if (PrintGCDetails && Verbose) {
gclog_or_tty->print_cr("ParallelScavengeHeap::mem_allocate: "
"return NULL because gc_overhead_limit_exceeded is set");
}
if (op.result() != NULL) {
CollectedHeap::fill_with_object(op.result(), size);
}
return NULL;
}
return op.result();
}
}
@ -613,14 +621,15 @@ HeapWord* ParallelScavengeHeap::permanent_mem_allocate(size_t size) {
// and the most recent collection must have exceeded the
// gc time limit. Exit the loop so that an out-of-memory
// will be thrown (returning a NULL will do that), but
// clear gc_time_limit_exceeded so that the next collection
// clear gc_overhead_limit_exceeded so that the next collection
// will succeeded if the applications decides to handle the
// out-of-memory and tries to go on.
if (size_policy()->gc_time_limit_exceeded()) {
size_policy()->set_gc_time_limit_exceeded(false);
const bool limit_exceeded = size_policy()->gc_overhead_limit_exceeded();
if (limit_exceeded) {
size_policy()->set_gc_overhead_limit_exceeded(false);
if (PrintGCDetails && Verbose) {
gclog_or_tty->print_cr("ParallelScavengeHeap::permanent_mem_allocate: "
"return NULL because gc_time_limit_exceeded is set");
gclog_or_tty->print_cr("ParallelScavengeHeap::permanent_mem_allocate:"
" return NULL because gc_overhead_limit_exceeded is set");
}
assert(result == NULL, "Allocation did not fail");
return NULL;
@ -643,14 +652,15 @@ HeapWord* ParallelScavengeHeap::permanent_mem_allocate(size_t size) {
continue; // retry and/or stall as necessary
}
// If a NULL results is being returned, an out-of-memory
// will be thrown now. Clear the gc_time_limit_exceeded
// will be thrown now. Clear the gc_overhead_limit_exceeded
// flag to avoid the following situation.
// gc_time_limit_exceeded is set during a collection
// gc_overhead_limit_exceeded is set during a collection
// the collection fails to return enough space and an OOM is thrown
// the next GC is skipped because the gc_time_limit_exceeded
// flag is set and another OOM is thrown
// a subsequent GC prematurely throws an out-of-memory because
// the gc_overhead_limit_exceeded counts did not start
// again from 0.
if (op.result() == NULL) {
size_policy()->set_gc_time_limit_exceeded(false);
size_policy()->reset_gc_overhead_limit_count();
}
return op.result();
}

View File

@ -1,5 +1,5 @@
/*
* Copyright 2001-2009 Sun Microsystems, Inc. All Rights Reserved.
* Copyright 2001-2010 Sun Microsystems, Inc. All Rights Reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -25,6 +25,8 @@
class AdjoiningGenerations;
class GCTaskManager;
class PSAdaptiveSizePolicy;
class GenerationSizer;
class CollectorPolicy;
class ParallelScavengeHeap : public CollectedHeap {
friend class VMStructs;
@ -43,6 +45,8 @@ class ParallelScavengeHeap : public CollectedHeap {
size_t _young_gen_alignment;
size_t _old_gen_alignment;
GenerationSizer* _collector_policy;
inline size_t set_alignment(size_t& var, size_t val);
// Collection of generations that are adjacent in the
@ -72,6 +76,9 @@ class ParallelScavengeHeap : public CollectedHeap {
return CollectedHeap::ParallelScavengeHeap;
}
CollectorPolicy* collector_policy() const { return (CollectorPolicy*) _collector_policy; }
// GenerationSizer* collector_policy() const { return _collector_policy; }
static PSYoungGen* young_gen() { return _young_gen; }
static PSOldGen* old_gen() { return _old_gen; }
static PSPermGen* perm_gen() { return _perm_gen; }

View File

@ -1,5 +1,5 @@
/*
* Copyright 2002-2007 Sun Microsystems, Inc. All Rights Reserved.
* Copyright 2002-2010 Sun Microsystems, Inc. All Rights Reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -184,18 +184,19 @@ void PSAdaptiveSizePolicy::clear_generation_free_space_flags() {
set_change_young_gen_for_maj_pauses(0);
}
// If this is not a full GC, only test and modify the young generation.
void PSAdaptiveSizePolicy::compute_generation_free_space(size_t young_live,
size_t eden_live,
size_t old_live,
size_t perm_live,
size_t cur_eden,
size_t max_old_gen_size,
size_t max_eden_size,
bool is_full_gc,
GCCause::Cause gc_cause) {
void PSAdaptiveSizePolicy::compute_generation_free_space(
size_t young_live,
size_t eden_live,
size_t old_live,
size_t perm_live,
size_t cur_eden,
size_t max_old_gen_size,
size_t max_eden_size,
bool is_full_gc,
GCCause::Cause gc_cause,
CollectorPolicy* collector_policy) {
// Update statistics
// Time statistics are updated as we go, update footprint stats here
@ -380,91 +381,16 @@ void PSAdaptiveSizePolicy::compute_generation_free_space(size_t young_live,
// Is too much time being spent in GC?
// Is the heap trying to grow beyond it's limits?
const size_t free_in_old_gen = (size_t)(max_old_gen_size - avg_old_live()->average());
const size_t free_in_old_gen =
(size_t)(max_old_gen_size - avg_old_live()->average());
if (desired_promo_size > free_in_old_gen && desired_eden_size > eden_limit) {
// eden_limit is the upper limit on the size of eden based on
// the maximum size of the young generation and the sizes
// of the survivor space.
// The question being asked is whether the gc costs are high
// and the space being recovered by a collection is low.
// free_in_young_gen is the free space in the young generation
// after a collection and promo_live is the free space in the old
// generation after a collection.
//
// Use the minimum of the current value of the live in the
// young gen or the average of the live in the young gen.
// If the current value drops quickly, that should be taken
// into account (i.e., don't trigger if the amount of free
// space has suddenly jumped up). If the current is much
// higher than the average, use the average since it represents
// the longer term behavor.
const size_t live_in_eden = MIN2(eden_live, (size_t) avg_eden_live()->average());
const size_t free_in_eden = eden_limit > live_in_eden ?
eden_limit - live_in_eden : 0;
const size_t total_free_limit = free_in_old_gen + free_in_eden;
const size_t total_mem = max_old_gen_size + max_eden_size;
const double mem_free_limit = total_mem * (GCHeapFreeLimit/100.0);
if (PrintAdaptiveSizePolicy && (Verbose ||
(total_free_limit < (size_t) mem_free_limit))) {
gclog_or_tty->print_cr(
"PSAdaptiveSizePolicy::compute_generation_free_space limits:"
" promo_limit: " SIZE_FORMAT
" eden_limit: " SIZE_FORMAT
" total_free_limit: " SIZE_FORMAT
" max_old_gen_size: " SIZE_FORMAT
" max_eden_size: " SIZE_FORMAT
" mem_free_limit: " SIZE_FORMAT,
promo_limit, eden_limit, total_free_limit,
max_old_gen_size, max_eden_size,
(size_t) mem_free_limit);
}
if (is_full_gc) {
if (gc_cost() > gc_cost_limit &&
total_free_limit < (size_t) mem_free_limit) {
// Collections, on average, are taking too much time, and
// gc_cost() > gc_cost_limit
// we have too little space available after a full gc.
// total_free_limit < mem_free_limit
// where
// total_free_limit is the free space available in
// both generations
// total_mem is the total space available for allocation
// in both generations (survivor spaces are not included
// just as they are not included in eden_limit).
// mem_free_limit is a fraction of total_mem judged to be an
// acceptable amount that is still unused.
// The heap can ask for the value of this variable when deciding
// whether to thrown an OutOfMemory error.
// Note that the gc time limit test only works for the collections
// of the young gen + tenured gen and not for collections of the
// permanent gen. That is because the calculation of the space
// freed by the collection is the free space in the young gen +
// tenured gen.
// Ignore explicit GC's. Ignoring explicit GC's at this level
// is the equivalent of the GC did not happen as far as the
// overhead calculation is concerted (i.e., the flag is not set
// and the count is not affected). Also the average will not
// have been updated unless UseAdaptiveSizePolicyWithSystemGC is on.
if (!GCCause::is_user_requested_gc(gc_cause) &&
!GCCause::is_serviceability_requested_gc(gc_cause)) {
inc_gc_time_limit_count();
if (UseGCOverheadLimit &&
(gc_time_limit_count() > AdaptiveSizePolicyGCTimeLimitThreshold)){
// All conditions have been met for throwing an out-of-memory
_gc_time_limit_exceeded = true;
// Avoid consecutive OOM due to the gc time limit by resetting
// the counter.
reset_gc_time_limit_count();
}
_print_gc_time_limit_would_be_exceeded = true;
}
} else {
// Did not exceed overhead limits
reset_gc_time_limit_count();
}
}
check_gc_overhead_limit(young_live,
eden_live,
max_old_gen_size,
max_eden_size,
is_full_gc,
gc_cause,
collector_policy);
}

View File

@ -1,5 +1,5 @@
/*
* Copyright 2002-2007 Sun Microsystems, Inc. All Rights Reserved.
* Copyright 2002-2010 Sun Microsystems, Inc. All Rights Reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -45,6 +45,7 @@
// Forward decls
class elapsedTimer;
class GenerationSizer;
class PSAdaptiveSizePolicy : public AdaptiveSizePolicy {
friend class PSGCAdaptivePolicyCounters;
@ -340,7 +341,8 @@ class PSAdaptiveSizePolicy : public AdaptiveSizePolicy {
size_t max_old_gen_size,
size_t max_eden_size,
bool is_full_gc,
GCCause::Cause gc_cause);
GCCause::Cause gc_cause,
CollectorPolicy* collector_policy);
// Calculates new survivor space size; returns a new tenuring threshold
// value. Stores new survivor size in _survivor_size.

View File

@ -1,5 +1,5 @@
/*
* Copyright 2003-2006 Sun Microsystems, Inc. All Rights Reserved.
* Copyright 2003-2010 Sun Microsystems, Inc. All Rights Reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -117,11 +117,13 @@ PSGCAdaptivePolicyCounters::PSGCAdaptivePolicyCounters(const char* name_arg,
PerfData::U_Bytes, (jlong) ps_size_policy()->avg_base_footprint()->average(), CHECK);
cname = PerfDataManager::counter_name(name_space(), "gcTimeLimitExceeded");
_gc_time_limit_exceeded = PerfDataManager::create_variable(SUN_GC, cname,
PerfData::U_Events, ps_size_policy()->gc_time_limit_exceeded(), CHECK);
_gc_overhead_limit_exceeded_counter =
PerfDataManager::create_variable(SUN_GC, cname,
PerfData::U_Events, ps_size_policy()->gc_overhead_limit_exceeded(), CHECK);
cname = PerfDataManager::counter_name(name_space(), "liveAtLastFullGc");
_live_at_last_full_gc = PerfDataManager::create_variable(SUN_GC, cname,
_live_at_last_full_gc_counter =
PerfDataManager::create_variable(SUN_GC, cname,
PerfData::U_Bytes, ps_size_policy()->live_at_last_full_gc(), CHECK);
cname = PerfDataManager::counter_name(name_space(), "majorPauseOldSlope");
@ -189,6 +191,8 @@ void PSGCAdaptivePolicyCounters::update_counters_from_policy() {
update_minor_pause_old_slope();
update_major_pause_young_slope();
update_minor_collection_slope_counter();
update_gc_overhead_limit_exceeded_counter();
update_live_at_last_full_gc_counter();
}
}

View File

@ -1,5 +1,5 @@
/*
* Copyright 2003-2005 Sun Microsystems, Inc. All Rights Reserved.
* Copyright 2003-2010 Sun Microsystems, Inc. All Rights Reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -44,8 +44,8 @@ class PSGCAdaptivePolicyCounters : public GCAdaptivePolicyCounters {
PerfVariable* _live_space;
PerfVariable* _free_space;
PerfVariable* _avg_base_footprint;
PerfVariable* _gc_time_limit_exceeded;
PerfVariable* _live_at_last_full_gc;
PerfVariable* _gc_overhead_limit_exceeded_counter;
PerfVariable* _live_at_last_full_gc_counter;
PerfVariable* _old_capacity;
PerfVariable* _boundary_moved;
@ -169,6 +169,14 @@ class PSGCAdaptivePolicyCounters : public GCAdaptivePolicyCounters {
(jlong)(ps_size_policy()->major_pause_young_slope() * 1000)
);
}
inline void update_gc_overhead_limit_exceeded_counter() {
_gc_overhead_limit_exceeded_counter->set_value(
(jlong) ps_size_policy()->gc_overhead_limit_exceeded());
}
inline void update_live_at_last_full_gc_counter() {
_live_at_last_full_gc_counter->set_value(
(jlong)(ps_size_policy()->live_at_last_full_gc()));
}
inline void update_scavenge_skipped(int cause) {
_scavenge_skipped->set_value(cause);

View File

@ -1,5 +1,5 @@
/*
* Copyright 2001-2009 Sun Microsystems, Inc. All Rights Reserved.
* Copyright 2001-2010 Sun Microsystems, Inc. All Rights Reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -46,6 +46,12 @@ void PSMarkSweep::initialize() {
//
// Note that this method should only be called from the vm_thread while
// at a safepoint!
//
// Note that the all_soft_refs_clear flag in the collector policy
// may be true because this method can be called without intervening
// activity. For example when the heap space is tight and full measure
// are being taken to free space.
void PSMarkSweep::invoke(bool maximum_heap_compaction) {
assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
assert(Thread::current() == (Thread*)VMThread::vm_thread(), "should be in vm thread");
@ -54,24 +60,18 @@ void PSMarkSweep::invoke(bool maximum_heap_compaction) {
ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
GCCause::Cause gc_cause = heap->gc_cause();
PSAdaptiveSizePolicy* policy = heap->size_policy();
IsGCActiveMark mark;
// Before each allocation/collection attempt, find out from the
// policy object if GCs are, on the whole, taking too long. If so,
// bail out without attempting a collection. The exceptions are
// for explicitly requested GC's.
if (!policy->gc_time_limit_exceeded() ||
GCCause::is_user_requested_gc(gc_cause) ||
GCCause::is_serviceability_requested_gc(gc_cause)) {
IsGCActiveMark mark;
if (ScavengeBeforeFullGC) {
PSScavenge::invoke_no_policy();
}
int count = (maximum_heap_compaction)?1:MarkSweepAlwaysCompactCount;
IntFlagSetting flag_setting(MarkSweepAlwaysCompactCount, count);
PSMarkSweep::invoke_no_policy(maximum_heap_compaction);
if (ScavengeBeforeFullGC) {
PSScavenge::invoke_no_policy();
}
const bool clear_all_soft_refs =
heap->collector_policy()->should_clear_all_soft_refs();
int count = (maximum_heap_compaction)?1:MarkSweepAlwaysCompactCount;
IntFlagSetting flag_setting(MarkSweepAlwaysCompactCount, count);
PSMarkSweep::invoke_no_policy(clear_all_soft_refs || maximum_heap_compaction);
}
// This method contains no policy. You should probably
@ -89,6 +89,10 @@ void PSMarkSweep::invoke_no_policy(bool clear_all_softrefs) {
assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
PSAdaptiveSizePolicy* size_policy = heap->size_policy();
// The scope of casr should end after code that can change
// CollectorPolicy::_should_clear_all_soft_refs.
ClearedAllSoftRefs casr(clear_all_softrefs, heap->collector_policy());
PSYoungGen* young_gen = heap->young_gen();
PSOldGen* old_gen = heap->old_gen();
PSPermGen* perm_gen = heap->perm_gen();
@ -275,7 +279,8 @@ void PSMarkSweep::invoke_no_policy(bool clear_all_softrefs) {
old_gen->max_gen_size(),
max_eden_size,
true /* full gc*/,
gc_cause);
gc_cause,
heap->collector_policy());
heap->resize_old_gen(size_policy->calculated_old_free_size_in_bytes());
@ -326,19 +331,6 @@ void PSMarkSweep::invoke_no_policy(bool clear_all_softrefs) {
// Track memory usage and detect low memory
MemoryService::track_memory_usage();
heap->update_counters();
if (PrintGCDetails) {
if (size_policy->print_gc_time_limit_would_be_exceeded()) {
if (size_policy->gc_time_limit_exceeded()) {
gclog_or_tty->print_cr(" GC time is exceeding GCTimeLimit "
"of %d%%", GCTimeLimit);
} else {
gclog_or_tty->print_cr(" GC time would exceed GCTimeLimit "
"of %d%%", GCTimeLimit);
}
}
size_policy->set_print_gc_time_limit_would_be_exceeded(false);
}
}
if (VerifyAfterGC && heap->total_collections() >= VerifyGCStartAt) {

View File

@ -1,5 +1,5 @@
/*
* Copyright 2005-2009 Sun Microsystems, Inc. All Rights Reserved.
* Copyright 2005-2010 Sun Microsystems, Inc. All Rights Reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -1923,31 +1923,32 @@ void PSParallelCompact::summary_phase(ParCompactionManager* cm,
//
// Note that this method should only be called from the vm_thread while at a
// safepoint.
//
// Note that the all_soft_refs_clear flag in the collector policy
// may be true because this method can be called without intervening
// activity. For example when the heap space is tight and full measure
// are being taken to free space.
void PSParallelCompact::invoke(bool maximum_heap_compaction) {
assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
assert(Thread::current() == (Thread*)VMThread::vm_thread(),
"should be in vm thread");
ParallelScavengeHeap* heap = gc_heap();
GCCause::Cause gc_cause = heap->gc_cause();
assert(!heap->is_gc_active(), "not reentrant");
PSAdaptiveSizePolicy* policy = heap->size_policy();
IsGCActiveMark mark;
// Before each allocation/collection attempt, find out from the
// policy object if GCs are, on the whole, taking too long. If so,
// bail out without attempting a collection. The exceptions are
// for explicitly requested GC's.
if (!policy->gc_time_limit_exceeded() ||
GCCause::is_user_requested_gc(gc_cause) ||
GCCause::is_serviceability_requested_gc(gc_cause)) {
IsGCActiveMark mark;
if (ScavengeBeforeFullGC) {
PSScavenge::invoke_no_policy();
}
PSParallelCompact::invoke_no_policy(maximum_heap_compaction);
if (ScavengeBeforeFullGC) {
PSScavenge::invoke_no_policy();
}
const bool clear_all_soft_refs =
heap->collector_policy()->should_clear_all_soft_refs();
PSParallelCompact::invoke_no_policy(clear_all_soft_refs ||
maximum_heap_compaction);
}
bool ParallelCompactData::region_contains(size_t region_index, HeapWord* addr) {
@ -1976,6 +1977,11 @@ void PSParallelCompact::invoke_no_policy(bool maximum_heap_compaction) {
PSPermGen* perm_gen = heap->perm_gen();
PSAdaptiveSizePolicy* size_policy = heap->size_policy();
// The scope of casr should end after code that can change
// CollectorPolicy::_should_clear_all_soft_refs.
ClearedAllSoftRefs casr(maximum_heap_compaction,
heap->collector_policy());
if (ZapUnusedHeapArea) {
// Save information needed to minimize mangling
heap->record_gen_tops_before_GC();
@ -2109,7 +2115,8 @@ void PSParallelCompact::invoke_no_policy(bool maximum_heap_compaction) {
old_gen->max_gen_size(),
max_eden_size,
true /* full gc*/,
gc_cause);
gc_cause,
heap->collector_policy());
heap->resize_old_gen(
size_policy->calculated_old_free_size_in_bytes());
@ -2157,19 +2164,6 @@ void PSParallelCompact::invoke_no_policy(bool maximum_heap_compaction) {
// Track memory usage and detect low memory
MemoryService::track_memory_usage();
heap->update_counters();
if (PrintGCDetails) {
if (size_policy->print_gc_time_limit_would_be_exceeded()) {
if (size_policy->gc_time_limit_exceeded()) {
gclog_or_tty->print_cr(" GC time is exceeding GCTimeLimit "
"of %d%%", GCTimeLimit);
} else {
gclog_or_tty->print_cr(" GC time would exceed GCTimeLimit "
"of %d%%", GCTimeLimit);
}
}
size_policy->set_print_gc_time_limit_would_be_exceeded(false);
}
}
if (VerifyAfterGC && heap->total_collections() >= VerifyGCStartAt) {

View File

@ -1,5 +1,5 @@
/*
* Copyright 2002-2009 Sun Microsystems, Inc. All Rights Reserved.
* Copyright 2002-2010 Sun Microsystems, Inc. All Rights Reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -187,8 +187,7 @@ void PSRefProcTaskExecutor::execute(EnqueueTask& task)
//
// Note that this method should only be called from the vm_thread while
// at a safepoint!
void PSScavenge::invoke()
{
void PSScavenge::invoke() {
assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
assert(Thread::current() == (Thread*)VMThread::vm_thread(), "should be in vm thread");
assert(!Universe::heap()->is_gc_active(), "not reentrant");
@ -197,29 +196,25 @@ void PSScavenge::invoke()
assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
PSAdaptiveSizePolicy* policy = heap->size_policy();
IsGCActiveMark mark;
// Before each allocation/collection attempt, find out from the
// policy object if GCs are, on the whole, taking too long. If so,
// bail out without attempting a collection.
if (!policy->gc_time_limit_exceeded()) {
IsGCActiveMark mark;
bool scavenge_was_done = PSScavenge::invoke_no_policy();
bool scavenge_was_done = PSScavenge::invoke_no_policy();
PSGCAdaptivePolicyCounters* counters = heap->gc_policy_counters();
PSGCAdaptivePolicyCounters* counters = heap->gc_policy_counters();
if (UsePerfData)
counters->update_full_follows_scavenge(0);
if (!scavenge_was_done ||
policy->should_full_GC(heap->old_gen()->free_in_bytes())) {
if (UsePerfData)
counters->update_full_follows_scavenge(0);
if (!scavenge_was_done ||
policy->should_full_GC(heap->old_gen()->free_in_bytes())) {
if (UsePerfData)
counters->update_full_follows_scavenge(full_follows_scavenge);
counters->update_full_follows_scavenge(full_follows_scavenge);
GCCauseSetter gccs(heap, GCCause::_adaptive_size_policy);
CollectorPolicy* cp = heap->collector_policy();
const bool clear_all_softrefs = cp->should_clear_all_soft_refs();
GCCauseSetter gccs(heap, GCCause::_adaptive_size_policy);
if (UseParallelOldGC) {
PSParallelCompact::invoke_no_policy(false);
} else {
PSMarkSweep::invoke_no_policy(false);
}
if (UseParallelOldGC) {
PSParallelCompact::invoke_no_policy(clear_all_softrefs);
} else {
PSMarkSweep::invoke_no_policy(clear_all_softrefs);
}
}
}
@ -447,6 +442,9 @@ bool PSScavenge::invoke_no_policy() {
size_t promoted = old_gen->used_in_bytes() - old_gen_used_before;
size_policy->update_averages(_survivor_overflow, survived, promoted);
// A successful scavenge should restart the GC time limit count which is
// for full GC's.
size_policy->reset_gc_overhead_limit_count();
if (UseAdaptiveSizePolicy) {
// Calculate the new survivor size and tenuring threshold
@ -523,7 +521,8 @@ bool PSScavenge::invoke_no_policy() {
old_gen->max_gen_size(),
max_eden_size,
false /* full gc*/,
gc_cause);
gc_cause,
heap->collector_policy());
}
// Resize the young generation at every collection

View File

@ -1,5 +1,5 @@
/*
* Copyright 2004-2006 Sun Microsystems, Inc. All Rights Reserved.
* Copyright 2004-2010 Sun Microsystems, Inc. All Rights Reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -44,13 +44,15 @@ AdaptiveSizePolicy::AdaptiveSizePolicy(size_t init_eden_size,
_survivor_size(init_survivor_size),
_gc_pause_goal_sec(gc_pause_goal_sec),
_throughput_goal(1.0 - double(1.0 / (1.0 + (double) gc_cost_ratio))),
_gc_time_limit_exceeded(false),
_print_gc_time_limit_would_be_exceeded(false),
_gc_time_limit_count(0),
_gc_overhead_limit_exceeded(false),
_print_gc_overhead_limit_would_be_exceeded(false),
_gc_overhead_limit_count(0),
_latest_minor_mutator_interval_seconds(0),
_threshold_tolerance_percent(1.0 + ThresholdTolerance/100.0),
_young_gen_change_for_minor_throughput(0),
_old_gen_change_for_major_throughput(0) {
assert(AdaptiveSizePolicyGCTimeLimitThreshold > 0,
"No opportunity to clear SoftReferences before GC overhead limit");
_avg_minor_pause =
new AdaptivePaddedAverage(AdaptiveTimeWeight, PausePadding);
_avg_minor_interval = new AdaptiveWeightedAverage(AdaptiveTimeWeight);
@ -278,6 +280,147 @@ void AdaptiveSizePolicy::clear_generation_free_space_flags() {
set_decide_at_full_gc(0);
}
void AdaptiveSizePolicy::check_gc_overhead_limit(
size_t young_live,
size_t eden_live,
size_t max_old_gen_size,
size_t max_eden_size,
bool is_full_gc,
GCCause::Cause gc_cause,
CollectorPolicy* collector_policy) {
// Ignore explicit GC's. Exiting here does not set the flag and
// does not reset the count. Updating of the averages for system
// GC's is still controlled by UseAdaptiveSizePolicyWithSystemGC.
if (GCCause::is_user_requested_gc(gc_cause) ||
GCCause::is_serviceability_requested_gc(gc_cause)) {
return;
}
// eden_limit is the upper limit on the size of eden based on
// the maximum size of the young generation and the sizes
// of the survivor space.
// The question being asked is whether the gc costs are high
// and the space being recovered by a collection is low.
// free_in_young_gen is the free space in the young generation
// after a collection and promo_live is the free space in the old
// generation after a collection.
//
// Use the minimum of the current value of the live in the
// young gen or the average of the live in the young gen.
// If the current value drops quickly, that should be taken
// into account (i.e., don't trigger if the amount of free
// space has suddenly jumped up). If the current is much
// higher than the average, use the average since it represents
// the longer term behavor.
const size_t live_in_eden =
MIN2(eden_live, (size_t) avg_eden_live()->average());
const size_t free_in_eden = max_eden_size > live_in_eden ?
max_eden_size - live_in_eden : 0;
const size_t free_in_old_gen = (size_t)(max_old_gen_size - avg_old_live()->average());
const size_t total_free_limit = free_in_old_gen + free_in_eden;
const size_t total_mem = max_old_gen_size + max_eden_size;
const double mem_free_limit = total_mem * (GCHeapFreeLimit/100.0);
const double mem_free_old_limit = max_old_gen_size * (GCHeapFreeLimit/100.0);
const double mem_free_eden_limit = max_eden_size * (GCHeapFreeLimit/100.0);
const double gc_cost_limit = GCTimeLimit/100.0;
size_t promo_limit = (size_t)(max_old_gen_size - avg_old_live()->average());
// But don't force a promo size below the current promo size. Otherwise,
// the promo size will shrink for no good reason.
promo_limit = MAX2(promo_limit, _promo_size);
if (PrintAdaptiveSizePolicy && (Verbose ||
(free_in_old_gen < (size_t) mem_free_old_limit &&
free_in_eden < (size_t) mem_free_eden_limit))) {
gclog_or_tty->print_cr(
"PSAdaptiveSizePolicy::compute_generation_free_space limits:"
" promo_limit: " SIZE_FORMAT
" max_eden_size: " SIZE_FORMAT
" total_free_limit: " SIZE_FORMAT
" max_old_gen_size: " SIZE_FORMAT
" max_eden_size: " SIZE_FORMAT
" mem_free_limit: " SIZE_FORMAT,
promo_limit, max_eden_size, total_free_limit,
max_old_gen_size, max_eden_size,
(size_t) mem_free_limit);
}
bool print_gc_overhead_limit_would_be_exceeded = false;
if (is_full_gc) {
if (gc_cost() > gc_cost_limit &&
free_in_old_gen < (size_t) mem_free_old_limit &&
free_in_eden < (size_t) mem_free_eden_limit) {
// Collections, on average, are taking too much time, and
// gc_cost() > gc_cost_limit
// we have too little space available after a full gc.
// total_free_limit < mem_free_limit
// where
// total_free_limit is the free space available in
// both generations
// total_mem is the total space available for allocation
// in both generations (survivor spaces are not included
// just as they are not included in eden_limit).
// mem_free_limit is a fraction of total_mem judged to be an
// acceptable amount that is still unused.
// The heap can ask for the value of this variable when deciding
// whether to thrown an OutOfMemory error.
// Note that the gc time limit test only works for the collections
// of the young gen + tenured gen and not for collections of the
// permanent gen. That is because the calculation of the space
// freed by the collection is the free space in the young gen +
// tenured gen.
// At this point the GC overhead limit is being exceeded.
inc_gc_overhead_limit_count();
if (UseGCOverheadLimit) {
if (gc_overhead_limit_count() >=
AdaptiveSizePolicyGCTimeLimitThreshold){
// All conditions have been met for throwing an out-of-memory
set_gc_overhead_limit_exceeded(true);
// Avoid consecutive OOM due to the gc time limit by resetting
// the counter.
reset_gc_overhead_limit_count();
} else {
// The required consecutive collections which exceed the
// GC time limit may or may not have been reached. We
// are approaching that condition and so as not to
// throw an out-of-memory before all SoftRef's have been
// cleared, set _should_clear_all_soft_refs in CollectorPolicy.
// The clearing will be done on the next GC.
bool near_limit = gc_overhead_limit_near();
if (near_limit) {
collector_policy->set_should_clear_all_soft_refs(true);
if (PrintGCDetails && Verbose) {
gclog_or_tty->print_cr(" Nearing GC overhead limit, "
"will be clearing all SoftReference");
}
}
}
}
// Set this even when the overhead limit will not
// cause an out-of-memory. Diagnostic message indicating
// that the overhead limit is being exceeded is sometimes
// printed.
print_gc_overhead_limit_would_be_exceeded = true;
} else {
// Did not exceed overhead limits
reset_gc_overhead_limit_count();
}
}
if (UseGCOverheadLimit && PrintGCDetails && Verbose) {
if (gc_overhead_limit_exceeded()) {
gclog_or_tty->print_cr(" GC is exceeding overhead limit "
"of %d%%", GCTimeLimit);
reset_gc_overhead_limit_count();
} else if (print_gc_overhead_limit_would_be_exceeded) {
assert(gc_overhead_limit_count() > 0, "Should not be printing");
gclog_or_tty->print_cr(" GC would exceed overhead limit "
"of %d%% %d consecutive time(s)",
GCTimeLimit, gc_overhead_limit_count());
}
}
}
// Printing
bool AdaptiveSizePolicy::print_adaptive_size_policy_on(outputStream* st) const {

View File

@ -1,5 +1,5 @@
/*
* Copyright 2004-2006 Sun Microsystems, Inc. All Rights Reserved.
* Copyright 2004-2010 Sun Microsystems, Inc. All Rights Reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -27,6 +27,7 @@
// Forward decls
class elapsedTimer;
class CollectorPolicy;
class AdaptiveSizePolicy : public CHeapObj {
friend class GCAdaptivePolicyCounters;
@ -75,13 +76,16 @@ class AdaptiveSizePolicy : public CHeapObj {
// This is a hint for the heap: we've detected that gc times
// are taking longer than GCTimeLimit allows.
bool _gc_time_limit_exceeded;
// Use for diagnostics only. If UseGCTimeLimit is false,
bool _gc_overhead_limit_exceeded;
// Use for diagnostics only. If UseGCOverheadLimit is false,
// this variable is still set.
bool _print_gc_time_limit_would_be_exceeded;
bool _print_gc_overhead_limit_would_be_exceeded;
// Count of consecutive GC that have exceeded the
// GC time limit criterion.
uint _gc_time_limit_count;
uint _gc_overhead_limit_count;
// This flag signals that GCTimeLimit is being exceeded
// but may not have done so for the required number of consequetive
// collections.
// Minor collection timers used to determine both
// pause and interval times for collections.
@ -406,22 +410,21 @@ class AdaptiveSizePolicy : public CHeapObj {
// Most heaps will choose to throw an OutOfMemoryError when
// this occurs but it is up to the heap to request this information
// of the policy
bool gc_time_limit_exceeded() {
return _gc_time_limit_exceeded;
bool gc_overhead_limit_exceeded() {
return _gc_overhead_limit_exceeded;
}
void set_gc_time_limit_exceeded(bool v) {
_gc_time_limit_exceeded = v;
}
bool print_gc_time_limit_would_be_exceeded() {
return _print_gc_time_limit_would_be_exceeded;
}
void set_print_gc_time_limit_would_be_exceeded(bool v) {
_print_gc_time_limit_would_be_exceeded = v;
void set_gc_overhead_limit_exceeded(bool v) {
_gc_overhead_limit_exceeded = v;
}
uint gc_time_limit_count() { return _gc_time_limit_count; }
void reset_gc_time_limit_count() { _gc_time_limit_count = 0; }
void inc_gc_time_limit_count() { _gc_time_limit_count++; }
// Tests conditions indicate the GC overhead limit is being approached.
bool gc_overhead_limit_near() {
return gc_overhead_limit_count() >=
(AdaptiveSizePolicyGCTimeLimitThreshold - 1);
}
uint gc_overhead_limit_count() { return _gc_overhead_limit_count; }
void reset_gc_overhead_limit_count() { _gc_overhead_limit_count = 0; }
void inc_gc_overhead_limit_count() { _gc_overhead_limit_count++; }
// accessors for flags recording the decisions to resize the
// generations to meet the pause goal.
@ -436,6 +439,16 @@ class AdaptiveSizePolicy : public CHeapObj {
int decide_at_full_gc() { return _decide_at_full_gc; }
void set_decide_at_full_gc(int v) { _decide_at_full_gc = v; }
// Check the conditions for an out-of-memory due to excessive GC time.
// Set _gc_overhead_limit_exceeded if all the conditions have been met.
void check_gc_overhead_limit(size_t young_live,
size_t eden_live,
size_t max_old_gen_size,
size_t max_eden_size,
bool is_full_gc,
GCCause::Cause gc_cause,
CollectorPolicy* collector_policy);
// Printing support
virtual bool print_adaptive_size_policy_on(outputStream* st) const;
bool print_adaptive_size_policy_on(outputStream* st, int

View File

@ -115,11 +115,25 @@ bool VM_GC_HeapInspection::skip_operation() const {
void VM_GC_HeapInspection::doit() {
HandleMark hm;
CollectedHeap* ch = Universe::heap();
ch->ensure_parsability(false); // must happen, even if collection does
// not happen (e.g. due to GC_locker)
if (_full_gc) {
ch->collect_as_vm_thread(GCCause::_heap_inspection);
} else {
// make the heap parsable (no need to retire TLABs)
ch->ensure_parsability(false);
// The collection attempt below would be skipped anyway if
// the gc locker is held. The following dump may then be a tad
// misleading to someone expecting only live objects to show
// up in the dump (see CR 6944195). Just issue a suitable warning
// in that case and do not attempt to do a collection.
// The latter is a subtle point, because even a failed attempt
// to GC will, in fact, induce one in the future, which we
// probably want to avoid in this case because the GC that we may
// be about to attempt holds value for us only
// if it happens now and not if it happens in the eventual
// future.
if (GC_locker::is_active()) {
warning("GC locker is held; pre-dump GC was skipped");
} else {
ch->collect_as_vm_thread(GCCause::_heap_inspection);
}
}
HeapInspection::heap_inspection(_out, _need_prologue /* need_prologue */);
}

View File

@ -1,5 +1,5 @@
/*
* Copyright 2005-2008 Sun Microsystems, Inc. All Rights Reserved.
* Copyright 2005-2010 Sun Microsystems, Inc. All Rights Reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -89,8 +89,19 @@ class VM_GC_Operation: public VM_Operation {
if (full) {
_full_gc_count_before = full_gc_count_before;
}
// In ParallelScavengeHeap::mem_allocate() collections can be
// executed within a loop and _all_soft_refs_clear can be set
// true after they have been cleared by a collection and another
// collection started so that _all_soft_refs_clear can be true
// when this collection is started. Don't assert that
// _all_soft_refs_clear have to be false here even though
// mutators have run. Soft refs will be cleared again in this
// collection.
}
~VM_GC_Operation() {
CollectedHeap* ch = Universe::heap();
ch->collector_policy()->set_all_soft_refs_clear(false);
}
~VM_GC_Operation() {}
// Acquire the reference synchronization lock
virtual bool doit_prologue();

View File

@ -1,5 +1,5 @@
/*
* Copyright 2001-2009 Sun Microsystems, Inc. All Rights Reserved.
* Copyright 2001-2010 Sun Microsystems, Inc. All Rights Reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -31,6 +31,7 @@ class BarrierSet;
class ThreadClosure;
class AdaptiveSizePolicy;
class Thread;
class CollectorPolicy;
//
// CollectedHeap
@ -506,6 +507,9 @@ class CollectedHeap : public CHeapObj {
// Return the AdaptiveSizePolicy for the heap.
virtual AdaptiveSizePolicy* size_policy() = 0;
// Return the CollectorPolicy for the heap
virtual CollectorPolicy* collector_policy() const = 0;
// Iterate over all the ref-containing fields of all objects, calling
// "cl.do_oop" on each. This includes objects in permanent memory.
virtual void oop_iterate(OopClosure* cl) = 0;

View File

@ -1,5 +1,5 @@
/*
* Copyright 2001-2008 Sun Microsystems, Inc. All Rights Reserved.
* Copyright 2001-2010 Sun Microsystems, Inc. All Rights Reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -112,6 +112,11 @@ void CollectorPolicy::initialize_perm_generation(PermGen::Name pgnm) {
}
}
bool CollectorPolicy::use_should_clear_all_soft_refs(bool v) {
bool result = _should_clear_all_soft_refs;
set_should_clear_all_soft_refs(false);
return result;
}
GenRemSet* CollectorPolicy::create_rem_set(MemRegion whole_heap,
int max_covered_regions) {
@ -126,6 +131,17 @@ GenRemSet* CollectorPolicy::create_rem_set(MemRegion whole_heap,
}
}
void CollectorPolicy::cleared_all_soft_refs() {
// If near gc overhear limit, continue to clear SoftRefs. SoftRefs may
// have been cleared in the last collection but if the gc overhear
// limit continues to be near, SoftRefs should still be cleared.
if (size_policy() != NULL) {
_should_clear_all_soft_refs = size_policy()->gc_overhead_limit_near();
}
_all_soft_refs_clear = true;
}
// GenCollectorPolicy methods.
size_t GenCollectorPolicy::scale_by_NewRatio_aligned(size_t base_size) {
@ -489,6 +505,12 @@ HeapWord* GenCollectorPolicy::mem_allocate_work(size_t size,
debug_only(gch->check_for_valid_allocation_state());
assert(gch->no_gc_in_progress(), "Allocation during gc not allowed");
// In general gc_overhead_limit_was_exceeded should be false so
// set it so here and reset it to true only if the gc time
// limit is being exceeded as checked below.
*gc_overhead_limit_was_exceeded = false;
HeapWord* result = NULL;
// Loop until the allocation is satisified,
@ -524,12 +546,6 @@ HeapWord* GenCollectorPolicy::mem_allocate_work(size_t size,
return result;
}
// There are NULL's returned for different circumstances below.
// In general gc_overhead_limit_was_exceeded should be false so
// set it so here and reset it to true only if the gc time
// limit is being exceeded as checked below.
*gc_overhead_limit_was_exceeded = false;
if (GC_locker::is_active_and_needs_gc()) {
if (is_tlab) {
return NULL; // Caller will retry allocating individual object
@ -568,18 +584,6 @@ HeapWord* GenCollectorPolicy::mem_allocate_work(size_t size,
gc_count_before = Universe::heap()->total_collections();
}
// Allocation has failed and a collection is about
// to be done. If the gc time limit was exceeded the
// last time a collection was done, return NULL so
// that an out-of-memory will be thrown. Clear
// gc_time_limit_exceeded so that subsequent attempts
// at a collection will be made.
if (size_policy()->gc_time_limit_exceeded()) {
*gc_overhead_limit_was_exceeded = true;
size_policy()->set_gc_time_limit_exceeded(false);
return NULL;
}
VM_GenCollectForAllocation op(size,
is_tlab,
gc_count_before);
@ -590,6 +594,24 @@ HeapWord* GenCollectorPolicy::mem_allocate_work(size_t size,
assert(result == NULL, "must be NULL if gc_locked() is true");
continue; // retry and/or stall as necessary
}
// Allocation has failed and a collection
// has been done. If the gc time limit was exceeded the
// this time, return NULL so that an out-of-memory
// will be thrown. Clear gc_overhead_limit_exceeded
// so that the overhead exceeded does not persist.
const bool limit_exceeded = size_policy()->gc_overhead_limit_exceeded();
const bool softrefs_clear = all_soft_refs_clear();
assert(!limit_exceeded || softrefs_clear, "Should have been cleared");
if (limit_exceeded && softrefs_clear) {
*gc_overhead_limit_was_exceeded = true;
size_policy()->set_gc_overhead_limit_exceeded(false);
if (op.result() != NULL) {
CollectedHeap::fill_with_object(op.result(), size);
}
return NULL;
}
assert(result == NULL || gch->is_in_reserved(result),
"result not in heap");
return result;
@ -688,6 +710,9 @@ HeapWord* GenCollectorPolicy::satisfy_failed_allocation(size_t size,
return result;
}
assert(!should_clear_all_soft_refs(),
"Flag should have been handled and cleared prior to this point");
// What else? We might try synchronous finalization later. If the total
// space available is large enough for the allocation, then a more
// complete compaction phase than we've tried so far might be

View File

@ -1,5 +1,5 @@
/*
* Copyright 2001-2008 Sun Microsystems, Inc. All Rights Reserved.
* Copyright 2001-2010 Sun Microsystems, Inc. All Rights Reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -69,12 +69,28 @@ class CollectorPolicy : public CHeapObj {
size_t _min_alignment;
size_t _max_alignment;
// The sizing of the heap are controlled by a sizing policy.
AdaptiveSizePolicy* _size_policy;
// Set to true when policy wants soft refs cleared.
// Reset to false by gc after it clears all soft refs.
bool _should_clear_all_soft_refs;
// Set to true by the GC if the just-completed gc cleared all
// softrefs. This is set to true whenever a gc clears all softrefs, and
// set to false each time gc returns to the mutator. For example, in the
// ParallelScavengeHeap case the latter would be done toward the end of
// mem_allocate() where it returns op.result()
bool _all_soft_refs_clear;
CollectorPolicy() :
_min_alignment(1),
_max_alignment(1),
_initial_heap_byte_size(0),
_max_heap_byte_size(0),
_min_heap_byte_size(0)
_min_heap_byte_size(0),
_size_policy(NULL),
_should_clear_all_soft_refs(false),
_all_soft_refs_clear(false)
{}
public:
@ -98,6 +114,19 @@ class CollectorPolicy : public CHeapObj {
G1CollectorPolicyKind
};
AdaptiveSizePolicy* size_policy() { return _size_policy; }
bool should_clear_all_soft_refs() { return _should_clear_all_soft_refs; }
void set_should_clear_all_soft_refs(bool v) { _should_clear_all_soft_refs = v; }
// Returns the current value of _should_clear_all_soft_refs.
// _should_clear_all_soft_refs is set to false as a side effect.
bool use_should_clear_all_soft_refs(bool v);
bool all_soft_refs_clear() { return _all_soft_refs_clear; }
void set_all_soft_refs_clear(bool v) { _all_soft_refs_clear = v; }
// Called by the GC after Soft Refs have been cleared to indicate
// that the request in _should_clear_all_soft_refs has been fulfilled.
void cleared_all_soft_refs();
// Identification methods.
virtual GenCollectorPolicy* as_generation_policy() { return NULL; }
virtual TwoGenerationCollectorPolicy* as_two_generation_policy() { return NULL; }
@ -165,6 +194,22 @@ class CollectorPolicy : public CHeapObj {
};
class ClearedAllSoftRefs : public StackObj {
bool _clear_all_soft_refs;
CollectorPolicy* _collector_policy;
public:
ClearedAllSoftRefs(bool clear_all_soft_refs,
CollectorPolicy* collector_policy) :
_clear_all_soft_refs(clear_all_soft_refs),
_collector_policy(collector_policy) {}
~ClearedAllSoftRefs() {
if (_clear_all_soft_refs) {
_collector_policy->cleared_all_soft_refs();
}
}
};
class GenCollectorPolicy : public CollectorPolicy {
protected:
size_t _min_gen0_size;
@ -173,10 +218,6 @@ class GenCollectorPolicy : public CollectorPolicy {
GenerationSpec **_generations;
// The sizing of the different generations in the heap are controlled
// by a sizing policy.
AdaptiveSizePolicy* _size_policy;
// Return true if an allocation should be attempted in the older
// generation if it fails in the younger generation. Return
// false, otherwise.
@ -236,14 +277,11 @@ class GenCollectorPolicy : public CollectorPolicy {
virtual size_t large_typearray_limit();
// Adaptive size policy
AdaptiveSizePolicy* size_policy() { return _size_policy; }
virtual void initialize_size_policy(size_t init_eden_size,
size_t init_promo_size,
size_t init_survivor_size);
};
// All of hotspot's current collectors are subtypes of this
// class. Currently, these collectors all use the same gen[0],
// but have different gen[1] types. If we add another subtype

View File

@ -1,5 +1,5 @@
/*
* Copyright 2001-2008 Sun Microsystems, Inc. All Rights Reserved.
* Copyright 2001-2010 Sun Microsystems, Inc. All Rights Reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -594,6 +594,10 @@ void DefNewGeneration::collect(bool full,
_tenuring_threshold =
age_table()->compute_tenuring_threshold(to()->capacity()/HeapWordSize);
// A successful scavenge should restart the GC time limit count which is
// for full GC's.
AdaptiveSizePolicy* size_policy = gch->gen_policy()->size_policy();
size_policy->reset_gc_overhead_limit_count();
if (PrintGC && !PrintGCDetails) {
gch->print_heap_change(gch_prev_used);
}

View File

@ -1,5 +1,5 @@
/*
* Copyright 2000-2009 Sun Microsystems, Inc. All Rights Reserved.
* Copyright 2000-2010 Sun Microsystems, Inc. All Rights Reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -428,7 +428,8 @@ void GenCollectedHeap::do_collection(bool full,
assert(my_thread->is_VM_thread() ||
my_thread->is_ConcurrentGC_thread(),
"incorrect thread type capability");
assert(Heap_lock->is_locked(), "the requesting thread should have the Heap_lock");
assert(Heap_lock->is_locked(),
"the requesting thread should have the Heap_lock");
guarantee(!is_gc_active(), "collection is not reentrant");
assert(max_level < n_gens(), "sanity check");
@ -436,6 +437,11 @@ void GenCollectedHeap::do_collection(bool full,
return; // GC is disabled (e.g. JNI GetXXXCritical operation)
}
const bool do_clear_all_soft_refs = clear_all_soft_refs ||
collector_policy()->should_clear_all_soft_refs();
ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
const size_t perm_prev_used = perm_gen()->used();
if (PrintHeapAtGC) {
@ -560,11 +566,11 @@ void GenCollectedHeap::do_collection(bool full,
if (rp->discovery_is_atomic()) {
rp->verify_no_references_recorded();
rp->enable_discovery();
rp->setup_policy(clear_all_soft_refs);
rp->setup_policy(do_clear_all_soft_refs);
} else {
// collect() below will enable discovery as appropriate
}
_gens[i]->collect(full, clear_all_soft_refs, size, is_tlab);
_gens[i]->collect(full, do_clear_all_soft_refs, size, is_tlab);
if (!rp->enqueuing_is_done()) {
rp->enqueue_discovered_references();
} else {

View File

@ -1,5 +1,5 @@
/*
* Copyright 2001-2009 Sun Microsystems, Inc. All Rights Reserved.
* Copyright 2001-2010 Sun Microsystems, Inc. All Rights Reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -29,6 +29,13 @@ void GenMarkSweep::invoke_at_safepoint(int level, ReferenceProcessor* rp,
bool clear_all_softrefs) {
assert(SafepointSynchronize::is_at_safepoint(), "must be at a safepoint");
GenCollectedHeap* gch = GenCollectedHeap::heap();
#ifdef ASSERT
if (gch->collector_policy()->should_clear_all_soft_refs()) {
assert(clear_all_softrefs, "Policy should have been checked earlier");
}
#endif
// hook up weak ref data so it can be used during Mark-Sweep
assert(ref_processor() == NULL, "no stomping");
assert(rp != NULL, "should be non-NULL");
@ -44,7 +51,6 @@ void GenMarkSweep::invoke_at_safepoint(int level, ReferenceProcessor* rp,
// Increment the invocation count for the permanent generation, since it is
// implicitly collected whenever we do a full mark sweep collection.
GenCollectedHeap* gch = GenCollectedHeap::heap();
gch->perm_gen()->stat_record()->invocations++;
// Capture heap size before collection for printing.

View File

@ -1,5 +1,5 @@
/*
* Copyright (c) 2007 Sun Microsystems, Inc. All Rights Reserved.
* Copyright 2007-2010 Sun Microsystems, Inc. All Rights Reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -45,7 +45,7 @@ size_t G1MemoryPoolSuper::eden_space_committed(G1CollectedHeap* g1h) {
// See the comment at the top of g1MemoryPool.hpp
size_t G1MemoryPoolSuper::eden_space_used(G1CollectedHeap* g1h) {
size_t young_list_length = g1h->young_list_length();
size_t young_list_length = g1h->young_list()->length();
size_t eden_used = young_list_length * HeapRegion::GrainBytes;
size_t survivor_used = survivor_space_used(g1h);
eden_used = subtract_up_to_zero(eden_used, survivor_used);