Merge
This commit is contained in:
commit
e1ae5e1cb0
@ -1,5 +1,5 @@
|
||||
/*
|
||||
* Copyright (c) 2007 Sun Microsystems, Inc. All Rights Reserved.
|
||||
* Copyright 2007-2010 Sun Microsystems, Inc. All Rights Reserved.
|
||||
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
||||
*
|
||||
* This code is free software; you can redistribute it and/or modify it
|
||||
@ -32,11 +32,10 @@ class ConcurrentMarkSweepPolicy : public TwoGenerationCollectorPolicy {
|
||||
ConcurrentMarkSweepPolicy* as_concurrent_mark_sweep_policy() { return this; }
|
||||
|
||||
void initialize_gc_policy_counters();
|
||||
#if 1
|
||||
|
||||
virtual void initialize_size_policy(size_t init_eden_size,
|
||||
size_t init_promo_size,
|
||||
size_t init_survivor_size);
|
||||
#endif
|
||||
|
||||
// Returns true if the incremental mode is enabled.
|
||||
virtual bool has_soft_ended_eden();
|
||||
|
@ -1,5 +1,5 @@
|
||||
/*
|
||||
* Copyright 2001-2009 Sun Microsystems, Inc. All Rights Reserved.
|
||||
* Copyright 2001-2010 Sun Microsystems, Inc. All Rights Reserved.
|
||||
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
||||
*
|
||||
* This code is free software; you can redistribute it and/or modify it
|
||||
@ -1815,8 +1815,19 @@ NOT_PRODUCT(
|
||||
do_compaction_work(clear_all_soft_refs);
|
||||
|
||||
// Has the GC time limit been exceeded?
|
||||
check_gc_time_limit();
|
||||
|
||||
DefNewGeneration* young_gen = _young_gen->as_DefNewGeneration();
|
||||
size_t max_eden_size = young_gen->max_capacity() -
|
||||
young_gen->to()->capacity() -
|
||||
young_gen->from()->capacity();
|
||||
GenCollectedHeap* gch = GenCollectedHeap::heap();
|
||||
GCCause::Cause gc_cause = gch->gc_cause();
|
||||
size_policy()->check_gc_overhead_limit(_young_gen->used(),
|
||||
young_gen->eden()->used(),
|
||||
_cmsGen->max_capacity(),
|
||||
max_eden_size,
|
||||
full,
|
||||
gc_cause,
|
||||
gch->collector_policy());
|
||||
} else {
|
||||
do_mark_sweep_work(clear_all_soft_refs, first_state,
|
||||
should_start_over);
|
||||
@ -1828,55 +1839,6 @@ NOT_PRODUCT(
|
||||
return;
|
||||
}
|
||||
|
||||
void CMSCollector::check_gc_time_limit() {
|
||||
|
||||
// Ignore explicit GC's. Exiting here does not set the flag and
|
||||
// does not reset the count. Updating of the averages for system
|
||||
// GC's is still controlled by UseAdaptiveSizePolicyWithSystemGC.
|
||||
GCCause::Cause gc_cause = GenCollectedHeap::heap()->gc_cause();
|
||||
if (GCCause::is_user_requested_gc(gc_cause) ||
|
||||
GCCause::is_serviceability_requested_gc(gc_cause)) {
|
||||
return;
|
||||
}
|
||||
|
||||
// Calculate the fraction of the CMS generation was freed during
|
||||
// the last collection.
|
||||
// Only consider the STW compacting cost for now.
|
||||
//
|
||||
// Note that the gc time limit test only works for the collections
|
||||
// of the young gen + tenured gen and not for collections of the
|
||||
// permanent gen. That is because the calculation of the space
|
||||
// freed by the collection is the free space in the young gen +
|
||||
// tenured gen.
|
||||
|
||||
double fraction_free =
|
||||
((double)_cmsGen->free())/((double)_cmsGen->max_capacity());
|
||||
if ((100.0 * size_policy()->compacting_gc_cost()) >
|
||||
((double) GCTimeLimit) &&
|
||||
((fraction_free * 100) < GCHeapFreeLimit)) {
|
||||
size_policy()->inc_gc_time_limit_count();
|
||||
if (UseGCOverheadLimit &&
|
||||
(size_policy()->gc_time_limit_count() >
|
||||
AdaptiveSizePolicyGCTimeLimitThreshold)) {
|
||||
size_policy()->set_gc_time_limit_exceeded(true);
|
||||
// Avoid consecutive OOM due to the gc time limit by resetting
|
||||
// the counter.
|
||||
size_policy()->reset_gc_time_limit_count();
|
||||
if (PrintGCDetails) {
|
||||
gclog_or_tty->print_cr(" GC is exceeding overhead limit "
|
||||
"of %d%%", GCTimeLimit);
|
||||
}
|
||||
} else {
|
||||
if (PrintGCDetails) {
|
||||
gclog_or_tty->print_cr(" GC would exceed overhead limit "
|
||||
"of %d%%", GCTimeLimit);
|
||||
}
|
||||
}
|
||||
} else {
|
||||
size_policy()->reset_gc_time_limit_count();
|
||||
}
|
||||
}
|
||||
|
||||
// Resize the perm generation and the tenured generation
|
||||
// after obtaining the free list locks for the
|
||||
// two generations.
|
||||
@ -6182,6 +6144,11 @@ void CMSCollector::reset(bool asynch) {
|
||||
}
|
||||
curAddr = chunk.end();
|
||||
}
|
||||
// A successful mostly concurrent collection has been done.
|
||||
// Because only the full (i.e., concurrent mode failure) collections
|
||||
// are being measured for gc overhead limits, clean the "near" flag
|
||||
// and count.
|
||||
sp->reset_gc_overhead_limit_count();
|
||||
_collectorState = Idling;
|
||||
} else {
|
||||
// already have the lock
|
||||
|
@ -1,5 +1,5 @@
|
||||
/*
|
||||
* Copyright 2001-2009 Sun Microsystems, Inc. All Rights Reserved.
|
||||
* Copyright 2001-2010 Sun Microsystems, Inc. All Rights Reserved.
|
||||
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
||||
*
|
||||
* This code is free software; you can redistribute it and/or modify it
|
||||
@ -570,10 +570,6 @@ class CMSCollector: public CHeapObj {
|
||||
ConcurrentMarkSweepPolicy* _collector_policy;
|
||||
ConcurrentMarkSweepPolicy* collector_policy() { return _collector_policy; }
|
||||
|
||||
// Check whether the gc time limit has been
|
||||
// exceeded and set the size policy flag
|
||||
// appropriately.
|
||||
void check_gc_time_limit();
|
||||
// XXX Move these to CMSStats ??? FIX ME !!!
|
||||
elapsedTimer _inter_sweep_timer; // time between sweeps
|
||||
elapsedTimer _intra_sweep_timer; // time _in_ sweeps
|
||||
|
@ -1,5 +1,5 @@
|
||||
/*
|
||||
* Copyright 2001-2009 Sun Microsystems, Inc. All Rights Reserved.
|
||||
* Copyright 2001-2010 Sun Microsystems, Inc. All Rights Reserved.
|
||||
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
||||
*
|
||||
* This code is free software; you can redistribute it and/or modify it
|
||||
@ -69,9 +69,9 @@ void ConcurrentG1RefineThread::sample_young_list_rs_lengths() {
|
||||
G1CollectorPolicy* g1p = g1h->g1_policy();
|
||||
if (g1p->adaptive_young_list_length()) {
|
||||
int regions_visited = 0;
|
||||
g1h->young_list_rs_length_sampling_init();
|
||||
while (g1h->young_list_rs_length_sampling_more()) {
|
||||
g1h->young_list_rs_length_sampling_next();
|
||||
g1h->young_list()->rs_length_sampling_init();
|
||||
while (g1h->young_list()->rs_length_sampling_more()) {
|
||||
g1h->young_list()->rs_length_sampling_next();
|
||||
++regions_visited;
|
||||
|
||||
// we try to yield every time we visit 10 regions
|
||||
@ -162,6 +162,7 @@ void ConcurrentG1RefineThread::run() {
|
||||
if (_worker_id >= cg1r()->worker_thread_num()) {
|
||||
run_young_rs_sampling();
|
||||
terminate();
|
||||
return;
|
||||
}
|
||||
|
||||
_vtime_start = os::elapsedVTime();
|
||||
|
@ -767,7 +767,8 @@ void ConcurrentMark::checkpointRootsInitialPre() {
|
||||
_has_aborted = false;
|
||||
|
||||
if (G1PrintReachableAtInitialMark) {
|
||||
print_reachable(true, "before");
|
||||
print_reachable("at-cycle-start",
|
||||
true /* use_prev_marking */, true /* all */);
|
||||
}
|
||||
|
||||
// Initialise marking structures. This has to be done in a STW phase.
|
||||
@ -1979,19 +1980,21 @@ void ConcurrentMark::checkpointRootsFinalWork() {
|
||||
|
||||
#ifndef PRODUCT
|
||||
|
||||
class ReachablePrinterOopClosure: public OopClosure {
|
||||
class PrintReachableOopClosure: public OopClosure {
|
||||
private:
|
||||
G1CollectedHeap* _g1h;
|
||||
CMBitMapRO* _bitmap;
|
||||
outputStream* _out;
|
||||
bool _use_prev_marking;
|
||||
bool _all;
|
||||
|
||||
public:
|
||||
ReachablePrinterOopClosure(CMBitMapRO* bitmap,
|
||||
outputStream* out,
|
||||
bool use_prev_marking) :
|
||||
PrintReachableOopClosure(CMBitMapRO* bitmap,
|
||||
outputStream* out,
|
||||
bool use_prev_marking,
|
||||
bool all) :
|
||||
_g1h(G1CollectedHeap::heap()),
|
||||
_bitmap(bitmap), _out(out), _use_prev_marking(use_prev_marking) { }
|
||||
_bitmap(bitmap), _out(out), _use_prev_marking(use_prev_marking), _all(all) { }
|
||||
|
||||
void do_oop(narrowOop* p) { do_oop_work(p); }
|
||||
void do_oop( oop* p) { do_oop_work(p); }
|
||||
@ -2001,9 +2004,11 @@ public:
|
||||
const char* str = NULL;
|
||||
const char* str2 = "";
|
||||
|
||||
if (!_g1h->is_in_g1_reserved(obj))
|
||||
str = "outside G1 reserved";
|
||||
else {
|
||||
if (obj == NULL) {
|
||||
str = "";
|
||||
} else if (!_g1h->is_in_g1_reserved(obj)) {
|
||||
str = " O";
|
||||
} else {
|
||||
HeapRegion* hr = _g1h->heap_region_containing(obj);
|
||||
guarantee(hr != NULL, "invariant");
|
||||
bool over_tams = false;
|
||||
@ -2012,74 +2017,67 @@ public:
|
||||
} else {
|
||||
over_tams = hr->obj_allocated_since_next_marking(obj);
|
||||
}
|
||||
bool marked = _bitmap->isMarked((HeapWord*) obj);
|
||||
|
||||
if (over_tams) {
|
||||
str = "over TAMS";
|
||||
if (_bitmap->isMarked((HeapWord*) obj)) {
|
||||
str = " >";
|
||||
if (marked) {
|
||||
str2 = " AND MARKED";
|
||||
}
|
||||
} else if (_bitmap->isMarked((HeapWord*) obj)) {
|
||||
str = "marked";
|
||||
} else if (marked) {
|
||||
str = " M";
|
||||
} else {
|
||||
str = "#### NOT MARKED ####";
|
||||
str = " NOT";
|
||||
}
|
||||
}
|
||||
|
||||
_out->print_cr(" "PTR_FORMAT" contains "PTR_FORMAT" %s%s",
|
||||
_out->print_cr(" "PTR_FORMAT": "PTR_FORMAT"%s%s",
|
||||
p, (void*) obj, str, str2);
|
||||
}
|
||||
};
|
||||
|
||||
class ReachablePrinterClosure: public BitMapClosure {
|
||||
class PrintReachableObjectClosure : public ObjectClosure {
|
||||
private:
|
||||
CMBitMapRO* _bitmap;
|
||||
outputStream* _out;
|
||||
bool _use_prev_marking;
|
||||
bool _all;
|
||||
HeapRegion* _hr;
|
||||
|
||||
public:
|
||||
ReachablePrinterClosure(CMBitMapRO* bitmap,
|
||||
outputStream* out,
|
||||
bool use_prev_marking) :
|
||||
_bitmap(bitmap), _out(out), _use_prev_marking(use_prev_marking) { }
|
||||
|
||||
bool do_bit(size_t offset) {
|
||||
HeapWord* addr = _bitmap->offsetToHeapWord(offset);
|
||||
ReachablePrinterOopClosure oopCl(_bitmap, _out, _use_prev_marking);
|
||||
|
||||
_out->print_cr(" obj "PTR_FORMAT", offset %10d (marked)", addr, offset);
|
||||
oop(addr)->oop_iterate(&oopCl);
|
||||
_out->print_cr("");
|
||||
|
||||
return true;
|
||||
}
|
||||
};
|
||||
|
||||
class ObjInRegionReachablePrinterClosure : public ObjectClosure {
|
||||
private:
|
||||
CMBitMapRO* _bitmap;
|
||||
outputStream* _out;
|
||||
bool _use_prev_marking;
|
||||
|
||||
public:
|
||||
ObjInRegionReachablePrinterClosure(CMBitMapRO* bitmap,
|
||||
outputStream* out,
|
||||
bool use_prev_marking) :
|
||||
_bitmap(bitmap), _out(out), _use_prev_marking(use_prev_marking) { }
|
||||
PrintReachableObjectClosure(CMBitMapRO* bitmap,
|
||||
outputStream* out,
|
||||
bool use_prev_marking,
|
||||
bool all,
|
||||
HeapRegion* hr) :
|
||||
_bitmap(bitmap), _out(out),
|
||||
_use_prev_marking(use_prev_marking), _all(all), _hr(hr) { }
|
||||
|
||||
void do_object(oop o) {
|
||||
ReachablePrinterOopClosure oopCl(_bitmap, _out, _use_prev_marking);
|
||||
bool over_tams;
|
||||
if (_use_prev_marking) {
|
||||
over_tams = _hr->obj_allocated_since_prev_marking(o);
|
||||
} else {
|
||||
over_tams = _hr->obj_allocated_since_next_marking(o);
|
||||
}
|
||||
bool marked = _bitmap->isMarked((HeapWord*) o);
|
||||
bool print_it = _all || over_tams || marked;
|
||||
|
||||
_out->print_cr(" obj "PTR_FORMAT" (over TAMS)", (void*) o);
|
||||
o->oop_iterate(&oopCl);
|
||||
_out->print_cr("");
|
||||
if (print_it) {
|
||||
_out->print_cr(" "PTR_FORMAT"%s",
|
||||
o, (over_tams) ? " >" : (marked) ? " M" : "");
|
||||
PrintReachableOopClosure oopCl(_bitmap, _out, _use_prev_marking, _all);
|
||||
o->oop_iterate(&oopCl);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
class RegionReachablePrinterClosure : public HeapRegionClosure {
|
||||
class PrintReachableRegionClosure : public HeapRegionClosure {
|
||||
private:
|
||||
CMBitMapRO* _bitmap;
|
||||
outputStream* _out;
|
||||
bool _use_prev_marking;
|
||||
bool _all;
|
||||
|
||||
public:
|
||||
bool doHeapRegion(HeapRegion* hr) {
|
||||
@ -2094,22 +2092,35 @@ public:
|
||||
}
|
||||
_out->print_cr("** ["PTR_FORMAT", "PTR_FORMAT"] top: "PTR_FORMAT" "
|
||||
"TAMS: "PTR_FORMAT, b, e, t, p);
|
||||
_out->print_cr("");
|
||||
_out->cr();
|
||||
|
||||
ObjInRegionReachablePrinterClosure ocl(_bitmap, _out, _use_prev_marking);
|
||||
hr->object_iterate_mem_careful(MemRegion(p, t), &ocl);
|
||||
HeapWord* from = b;
|
||||
HeapWord* to = t;
|
||||
|
||||
if (to > from) {
|
||||
_out->print_cr("Objects in ["PTR_FORMAT", "PTR_FORMAT"]", from, to);
|
||||
_out->cr();
|
||||
PrintReachableObjectClosure ocl(_bitmap, _out,
|
||||
_use_prev_marking, _all, hr);
|
||||
hr->object_iterate_mem_careful(MemRegion(from, to), &ocl);
|
||||
_out->cr();
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
RegionReachablePrinterClosure(CMBitMapRO* bitmap,
|
||||
outputStream* out,
|
||||
bool use_prev_marking) :
|
||||
_bitmap(bitmap), _out(out), _use_prev_marking(use_prev_marking) { }
|
||||
PrintReachableRegionClosure(CMBitMapRO* bitmap,
|
||||
outputStream* out,
|
||||
bool use_prev_marking,
|
||||
bool all) :
|
||||
_bitmap(bitmap), _out(out), _use_prev_marking(use_prev_marking), _all(all) { }
|
||||
};
|
||||
|
||||
void ConcurrentMark::print_reachable(bool use_prev_marking, const char* str) {
|
||||
gclog_or_tty->print_cr("== Doing reachable object dump... ");
|
||||
void ConcurrentMark::print_reachable(const char* str,
|
||||
bool use_prev_marking,
|
||||
bool all) {
|
||||
gclog_or_tty->cr();
|
||||
gclog_or_tty->print_cr("== Doing heap dump... ");
|
||||
|
||||
if (G1PrintReachableBaseFile == NULL) {
|
||||
gclog_or_tty->print_cr(" #### error: no base file defined");
|
||||
@ -2144,19 +2155,14 @@ void ConcurrentMark::print_reachable(bool use_prev_marking, const char* str) {
|
||||
out->print_cr("-- USING %s", (use_prev_marking) ? "PTAMS" : "NTAMS");
|
||||
out->cr();
|
||||
|
||||
RegionReachablePrinterClosure rcl(bitmap, out, use_prev_marking);
|
||||
out->print_cr("--- ITERATING OVER REGIONS WITH TAMS < TOP");
|
||||
out->print_cr("--- ITERATING OVER REGIONS");
|
||||
out->cr();
|
||||
PrintReachableRegionClosure rcl(bitmap, out, use_prev_marking, all);
|
||||
_g1h->heap_region_iterate(&rcl);
|
||||
out->cr();
|
||||
|
||||
ReachablePrinterClosure cl(bitmap, out, use_prev_marking);
|
||||
out->print_cr("--- ITERATING OVER MARKED OBJECTS ON THE BITMAP");
|
||||
out->cr();
|
||||
bitmap->iterate(&cl);
|
||||
out->cr();
|
||||
|
||||
gclog_or_tty->print_cr(" done");
|
||||
gclog_or_tty->flush();
|
||||
}
|
||||
|
||||
#endif // PRODUCT
|
||||
|
@ -1,5 +1,5 @@
|
||||
/*
|
||||
* Copyright 2001-2009 Sun Microsystems, Inc. All Rights Reserved.
|
||||
* Copyright 2001-2010 Sun Microsystems, Inc. All Rights Reserved.
|
||||
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
||||
*
|
||||
* This code is free software; you can redistribute it and/or modify it
|
||||
@ -652,11 +652,24 @@ public:
|
||||
// we do nothing.
|
||||
void markAndGrayObjectIfNecessary(oop p);
|
||||
|
||||
// This iterates over the marking bitmap (either prev or next) and
|
||||
// prints out all objects that are marked on the bitmap and indicates
|
||||
// whether what they point to is also marked or not. It also iterates
|
||||
// the objects over TAMS (either prev or next).
|
||||
void print_reachable(bool use_prev_marking, const char* str);
|
||||
// It iterates over the heap and for each object it comes across it
|
||||
// will dump the contents of its reference fields, as well as
|
||||
// liveness information for the object and its referents. The dump
|
||||
// will be written to a file with the following name:
|
||||
// G1PrintReachableBaseFile + "." + str. use_prev_marking decides
|
||||
// whether the prev (use_prev_marking == true) or next
|
||||
// (use_prev_marking == false) marking information will be used to
|
||||
// determine the liveness of each object / referent. If all is true,
|
||||
// all objects in the heap will be dumped, otherwise only the live
|
||||
// ones. In the dump the following symbols / abbreviations are used:
|
||||
// M : an explicitly live object (its bitmap bit is set)
|
||||
// > : an implicitly live object (over tams)
|
||||
// O : an object outside the G1 heap (typically: in the perm gen)
|
||||
// NOT : a reference field whose referent is not live
|
||||
// AND MARKED : indicates that an object is both explicitly and
|
||||
// implicitly live (it should be one or the other, not both)
|
||||
void print_reachable(const char* str,
|
||||
bool use_prev_marking, bool all) PRODUCT_RETURN;
|
||||
|
||||
// Clear the next marking bitmap (will be called concurrently).
|
||||
void clearNextBitmap();
|
||||
@ -720,6 +733,19 @@ public:
|
||||
// to determine whether any heap regions are located above the finger.
|
||||
void registerCSetRegion(HeapRegion* hr);
|
||||
|
||||
// Registers the maximum region-end associated with a set of
|
||||
// regions with CM. Again this is used to determine whether any
|
||||
// heap regions are located above the finger.
|
||||
void register_collection_set_finger(HeapWord* max_finger) {
|
||||
// max_finger is the highest heap region end of the regions currently
|
||||
// contained in the collection set. If this value is larger than
|
||||
// _min_finger then we need to gray objects.
|
||||
// This routine is like registerCSetRegion but for an entire
|
||||
// collection of regions.
|
||||
if (max_finger > _min_finger)
|
||||
_should_gray_objects = true;
|
||||
}
|
||||
|
||||
// Returns "true" if at least one mark has been completed.
|
||||
bool at_least_one_mark_complete() { return _at_least_one_mark_complete; }
|
||||
|
||||
|
@ -1,5 +1,5 @@
|
||||
/*
|
||||
* Copyright 2001-2009 Sun Microsystems, Inc. All Rights Reserved.
|
||||
* Copyright 2001-2010 Sun Microsystems, Inc. All Rights Reserved.
|
||||
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
||||
*
|
||||
* This code is free software; you can redistribute it and/or modify it
|
||||
@ -30,7 +30,7 @@ size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
|
||||
// turn it on so that the contents of the young list (scan-only /
|
||||
// to-be-collected) are printed at "strategic" points before / during
|
||||
// / after the collection --- this is useful for debugging
|
||||
#define SCAN_ONLY_VERBOSE 0
|
||||
#define YOUNG_LIST_VERBOSE 0
|
||||
// CURRENT STATUS
|
||||
// This file is under construction. Search for "FIXME".
|
||||
|
||||
@ -133,8 +133,7 @@ public:
|
||||
|
||||
YoungList::YoungList(G1CollectedHeap* g1h)
|
||||
: _g1h(g1h), _head(NULL),
|
||||
_scan_only_head(NULL), _scan_only_tail(NULL), _curr_scan_only(NULL),
|
||||
_length(0), _scan_only_length(0),
|
||||
_length(0),
|
||||
_last_sampled_rs_lengths(0),
|
||||
_survivor_head(NULL), _survivor_tail(NULL), _survivor_length(0)
|
||||
{
|
||||
@ -166,48 +165,6 @@ void YoungList::add_survivor_region(HeapRegion* hr) {
|
||||
++_survivor_length;
|
||||
}
|
||||
|
||||
HeapRegion* YoungList::pop_region() {
|
||||
while (_head != NULL) {
|
||||
assert( length() > 0, "list should not be empty" );
|
||||
HeapRegion* ret = _head;
|
||||
_head = ret->get_next_young_region();
|
||||
ret->set_next_young_region(NULL);
|
||||
--_length;
|
||||
assert(ret->is_young(), "region should be very young");
|
||||
|
||||
// Replace 'Survivor' region type with 'Young'. So the region will
|
||||
// be treated as a young region and will not be 'confused' with
|
||||
// newly created survivor regions.
|
||||
if (ret->is_survivor()) {
|
||||
ret->set_young();
|
||||
}
|
||||
|
||||
if (!ret->is_scan_only()) {
|
||||
return ret;
|
||||
}
|
||||
|
||||
// scan-only, we'll add it to the scan-only list
|
||||
if (_scan_only_tail == NULL) {
|
||||
guarantee( _scan_only_head == NULL, "invariant" );
|
||||
|
||||
_scan_only_head = ret;
|
||||
_curr_scan_only = ret;
|
||||
} else {
|
||||
guarantee( _scan_only_head != NULL, "invariant" );
|
||||
_scan_only_tail->set_next_young_region(ret);
|
||||
}
|
||||
guarantee( ret->get_next_young_region() == NULL, "invariant" );
|
||||
_scan_only_tail = ret;
|
||||
|
||||
// no need to be tagged as scan-only any more
|
||||
ret->set_young();
|
||||
|
||||
++_scan_only_length;
|
||||
}
|
||||
assert( length() == 0, "list should be empty" );
|
||||
return NULL;
|
||||
}
|
||||
|
||||
void YoungList::empty_list(HeapRegion* list) {
|
||||
while (list != NULL) {
|
||||
HeapRegion* next = list->get_next_young_region();
|
||||
@ -225,12 +182,6 @@ void YoungList::empty_list() {
|
||||
_head = NULL;
|
||||
_length = 0;
|
||||
|
||||
empty_list(_scan_only_head);
|
||||
_scan_only_head = NULL;
|
||||
_scan_only_tail = NULL;
|
||||
_scan_only_length = 0;
|
||||
_curr_scan_only = NULL;
|
||||
|
||||
empty_list(_survivor_head);
|
||||
_survivor_head = NULL;
|
||||
_survivor_tail = NULL;
|
||||
@ -248,11 +199,11 @@ bool YoungList::check_list_well_formed() {
|
||||
HeapRegion* curr = _head;
|
||||
HeapRegion* last = NULL;
|
||||
while (curr != NULL) {
|
||||
if (!curr->is_young() || curr->is_scan_only()) {
|
||||
if (!curr->is_young()) {
|
||||
gclog_or_tty->print_cr("### YOUNG REGION "PTR_FORMAT"-"PTR_FORMAT" "
|
||||
"incorrectly tagged (%d, %d)",
|
||||
"incorrectly tagged (y: %d, surv: %d)",
|
||||
curr->bottom(), curr->end(),
|
||||
curr->is_young(), curr->is_scan_only());
|
||||
curr->is_young(), curr->is_survivor());
|
||||
ret = false;
|
||||
}
|
||||
++length;
|
||||
@ -267,47 +218,10 @@ bool YoungList::check_list_well_formed() {
|
||||
length, _length);
|
||||
}
|
||||
|
||||
bool scan_only_ret = true;
|
||||
length = 0;
|
||||
curr = _scan_only_head;
|
||||
last = NULL;
|
||||
while (curr != NULL) {
|
||||
if (!curr->is_young() || curr->is_scan_only()) {
|
||||
gclog_or_tty->print_cr("### SCAN-ONLY REGION "PTR_FORMAT"-"PTR_FORMAT" "
|
||||
"incorrectly tagged (%d, %d)",
|
||||
curr->bottom(), curr->end(),
|
||||
curr->is_young(), curr->is_scan_only());
|
||||
scan_only_ret = false;
|
||||
}
|
||||
++length;
|
||||
last = curr;
|
||||
curr = curr->get_next_young_region();
|
||||
}
|
||||
scan_only_ret = scan_only_ret && (length == _scan_only_length);
|
||||
|
||||
if ( (last != _scan_only_tail) ||
|
||||
(_scan_only_head == NULL && _scan_only_tail != NULL) ||
|
||||
(_scan_only_head != NULL && _scan_only_tail == NULL) ) {
|
||||
gclog_or_tty->print_cr("## _scan_only_tail is set incorrectly");
|
||||
scan_only_ret = false;
|
||||
}
|
||||
|
||||
if (_curr_scan_only != NULL && _curr_scan_only != _scan_only_head) {
|
||||
gclog_or_tty->print_cr("### _curr_scan_only is set incorrectly");
|
||||
scan_only_ret = false;
|
||||
}
|
||||
|
||||
if (!scan_only_ret) {
|
||||
gclog_or_tty->print_cr("### SCAN-ONLY LIST seems not well formed!");
|
||||
gclog_or_tty->print_cr("### list has %d entries, _scan_only_length is %d",
|
||||
length, _scan_only_length);
|
||||
}
|
||||
|
||||
return ret && scan_only_ret;
|
||||
return ret;
|
||||
}
|
||||
|
||||
bool YoungList::check_list_empty(bool ignore_scan_only_list,
|
||||
bool check_sample) {
|
||||
bool YoungList::check_list_empty(bool check_sample) {
|
||||
bool ret = true;
|
||||
|
||||
if (_length != 0) {
|
||||
@ -327,28 +241,7 @@ bool YoungList::check_list_empty(bool ignore_scan_only_list,
|
||||
gclog_or_tty->print_cr("### YOUNG LIST does not seem empty");
|
||||
}
|
||||
|
||||
if (ignore_scan_only_list)
|
||||
return ret;
|
||||
|
||||
bool scan_only_ret = true;
|
||||
if (_scan_only_length != 0) {
|
||||
gclog_or_tty->print_cr("### SCAN-ONLY LIST should have 0 length, not %d",
|
||||
_scan_only_length);
|
||||
scan_only_ret = false;
|
||||
}
|
||||
if (_scan_only_head != NULL) {
|
||||
gclog_or_tty->print_cr("### SCAN-ONLY LIST does not have a NULL head");
|
||||
scan_only_ret = false;
|
||||
}
|
||||
if (_scan_only_tail != NULL) {
|
||||
gclog_or_tty->print_cr("### SCAN-ONLY LIST does not have a NULL tail");
|
||||
scan_only_ret = false;
|
||||
}
|
||||
if (!scan_only_ret) {
|
||||
gclog_or_tty->print_cr("### SCAN-ONLY LIST does not seem empty");
|
||||
}
|
||||
|
||||
return ret && scan_only_ret;
|
||||
return ret;
|
||||
}
|
||||
|
||||
void
|
||||
@ -365,7 +258,18 @@ YoungList::rs_length_sampling_more() {
|
||||
void
|
||||
YoungList::rs_length_sampling_next() {
|
||||
assert( _curr != NULL, "invariant" );
|
||||
_sampled_rs_lengths += _curr->rem_set()->occupied();
|
||||
size_t rs_length = _curr->rem_set()->occupied();
|
||||
|
||||
_sampled_rs_lengths += rs_length;
|
||||
|
||||
// The current region may not yet have been added to the
|
||||
// incremental collection set (it gets added when it is
|
||||
// retired as the current allocation region).
|
||||
if (_curr->in_collection_set()) {
|
||||
// Update the collection set policy information for this region
|
||||
_g1h->g1_policy()->update_incremental_cset_info(_curr, rs_length);
|
||||
}
|
||||
|
||||
_curr = _curr->get_next_young_region();
|
||||
if (_curr == NULL) {
|
||||
_last_sampled_rs_lengths = _sampled_rs_lengths;
|
||||
@ -375,54 +279,46 @@ YoungList::rs_length_sampling_next() {
|
||||
|
||||
void
|
||||
YoungList::reset_auxilary_lists() {
|
||||
// We could have just "moved" the scan-only list to the young list.
|
||||
// However, the scan-only list is ordered according to the region
|
||||
// age in descending order, so, by moving one entry at a time, we
|
||||
// ensure that it is recreated in ascending order.
|
||||
|
||||
guarantee( is_empty(), "young list should be empty" );
|
||||
assert(check_list_well_formed(), "young list should be well formed");
|
||||
|
||||
// Add survivor regions to SurvRateGroup.
|
||||
_g1h->g1_policy()->note_start_adding_survivor_regions();
|
||||
_g1h->g1_policy()->finished_recalculating_age_indexes(true /* is_survivors */);
|
||||
|
||||
for (HeapRegion* curr = _survivor_head;
|
||||
curr != NULL;
|
||||
curr = curr->get_next_young_region()) {
|
||||
_g1h->g1_policy()->set_region_survivors(curr);
|
||||
|
||||
// The region is a non-empty survivor so let's add it to
|
||||
// the incremental collection set for the next evacuation
|
||||
// pause.
|
||||
_g1h->g1_policy()->add_region_to_incremental_cset_rhs(curr);
|
||||
}
|
||||
_g1h->g1_policy()->note_stop_adding_survivor_regions();
|
||||
|
||||
_head = _survivor_head;
|
||||
_length = _survivor_length;
|
||||
if (_survivor_head != NULL) {
|
||||
_head = _survivor_head;
|
||||
_length = _survivor_length + _scan_only_length;
|
||||
_survivor_tail->set_next_young_region(_scan_only_head);
|
||||
} else {
|
||||
_head = _scan_only_head;
|
||||
_length = _scan_only_length;
|
||||
assert(_survivor_tail != NULL, "cause it shouldn't be");
|
||||
assert(_survivor_length > 0, "invariant");
|
||||
_survivor_tail->set_next_young_region(NULL);
|
||||
}
|
||||
|
||||
for (HeapRegion* curr = _scan_only_head;
|
||||
curr != NULL;
|
||||
curr = curr->get_next_young_region()) {
|
||||
curr->recalculate_age_in_surv_rate_group();
|
||||
}
|
||||
_scan_only_head = NULL;
|
||||
_scan_only_tail = NULL;
|
||||
_scan_only_length = 0;
|
||||
_curr_scan_only = NULL;
|
||||
// Don't clear the survivor list handles until the start of
|
||||
// the next evacuation pause - we need it in order to re-tag
|
||||
// the survivor regions from this evacuation pause as 'young'
|
||||
// at the start of the next.
|
||||
|
||||
_survivor_head = NULL;
|
||||
_survivor_tail = NULL;
|
||||
_survivor_length = 0;
|
||||
_g1h->g1_policy()->finished_recalculating_age_indexes(false /* is_survivors */);
|
||||
|
||||
assert(check_list_well_formed(), "young list should be well formed");
|
||||
}
|
||||
|
||||
void YoungList::print() {
|
||||
HeapRegion* lists[] = {_head, _scan_only_head, _survivor_head};
|
||||
const char* names[] = {"YOUNG", "SCAN-ONLY", "SURVIVOR"};
|
||||
HeapRegion* lists[] = {_head, _survivor_head};
|
||||
const char* names[] = {"YOUNG", "SURVIVOR"};
|
||||
|
||||
for (unsigned int list = 0; list < ARRAY_SIZE(lists); ++list) {
|
||||
gclog_or_tty->print_cr("%s LIST CONTENTS", names[list]);
|
||||
@ -431,7 +327,7 @@ void YoungList::print() {
|
||||
gclog_or_tty->print_cr(" empty");
|
||||
while (curr != NULL) {
|
||||
gclog_or_tty->print_cr(" [%08x-%08x], t: %08x, P: %08x, N: %08x, C: %08x, "
|
||||
"age: %4d, y: %d, s-o: %d, surv: %d",
|
||||
"age: %4d, y: %d, surv: %d",
|
||||
curr->bottom(), curr->end(),
|
||||
curr->top(),
|
||||
curr->prev_top_at_mark_start(),
|
||||
@ -439,7 +335,6 @@ void YoungList::print() {
|
||||
curr->top_at_conc_mark_count(),
|
||||
curr->age_in_surv_rate_group_cond(),
|
||||
curr->is_young(),
|
||||
curr->is_scan_only(),
|
||||
curr->is_survivor());
|
||||
curr = curr->get_next_young_region();
|
||||
}
|
||||
@ -707,6 +602,12 @@ G1CollectedHeap::attempt_allocation_slow(size_t word_size,
|
||||
// region below.
|
||||
if (_cur_alloc_region != NULL) {
|
||||
// We're finished with the _cur_alloc_region.
|
||||
// As we're builing (at least the young portion) of the collection
|
||||
// set incrementally we'll add the current allocation region to
|
||||
// the collection set here.
|
||||
if (_cur_alloc_region->is_young()) {
|
||||
g1_policy()->add_region_to_incremental_cset_lhs(_cur_alloc_region);
|
||||
}
|
||||
_summary_bytes_used += _cur_alloc_region->used();
|
||||
_cur_alloc_region = NULL;
|
||||
}
|
||||
@ -820,6 +721,12 @@ void G1CollectedHeap::abandon_cur_alloc_region() {
|
||||
_free_regions++;
|
||||
free_region(_cur_alloc_region);
|
||||
} else {
|
||||
// As we're builing (at least the young portion) of the collection
|
||||
// set incrementally we'll add the current allocation region to
|
||||
// the collection set here.
|
||||
if (_cur_alloc_region->is_young()) {
|
||||
g1_policy()->add_region_to_incremental_cset_lhs(_cur_alloc_region);
|
||||
}
|
||||
_summary_bytes_used += _cur_alloc_region->used();
|
||||
}
|
||||
_cur_alloc_region = NULL;
|
||||
@ -913,20 +820,25 @@ void G1CollectedHeap::do_collection(bool full, bool clear_all_soft_refs,
|
||||
}
|
||||
|
||||
if (full && DisableExplicitGC) {
|
||||
gclog_or_tty->print("\n\n\nDisabling Explicit GC\n\n\n");
|
||||
return;
|
||||
}
|
||||
|
||||
assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
|
||||
assert(Thread::current() == VMThread::vm_thread(), "should be in vm thread");
|
||||
|
||||
const bool do_clear_all_soft_refs = clear_all_soft_refs ||
|
||||
collector_policy()->should_clear_all_soft_refs();
|
||||
|
||||
ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
|
||||
|
||||
{
|
||||
IsGCActiveMark x;
|
||||
|
||||
// Timing
|
||||
gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
|
||||
TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
|
||||
TraceTime t(full ? "Full GC (System.gc())" : "Full GC", PrintGC, true, gclog_or_tty);
|
||||
TraceTime t(full ? "Full GC (System.gc())" : "Full GC",
|
||||
PrintGC, true, gclog_or_tty);
|
||||
|
||||
TraceMemoryManagerStats tms(true /* fullGC */);
|
||||
|
||||
@ -970,6 +882,15 @@ void G1CollectedHeap::do_collection(bool full, bool clear_all_soft_refs,
|
||||
g1_rem_set()->as_HRInto_G1RemSet()->cleanupHRRS();
|
||||
tear_down_region_lists();
|
||||
set_used_regions_to_need_zero_fill();
|
||||
|
||||
// We may have added regions to the current incremental collection
|
||||
// set between the last GC or pause and now. We need to clear the
|
||||
// incremental collection set and then start rebuilding it afresh
|
||||
// after this full GC.
|
||||
abandon_collection_set(g1_policy()->inc_cset_head());
|
||||
g1_policy()->clear_incremental_cset();
|
||||
g1_policy()->stop_incremental_cset_building();
|
||||
|
||||
if (g1_policy()->in_young_gc_mode()) {
|
||||
empty_young_list();
|
||||
g1_policy()->set_full_young_gcs(true);
|
||||
@ -985,12 +906,12 @@ void G1CollectedHeap::do_collection(bool full, bool clear_all_soft_refs,
|
||||
ReferenceProcessorIsAliveMutator rp_is_alive_null(ref_processor(), NULL);
|
||||
|
||||
ref_processor()->enable_discovery();
|
||||
ref_processor()->setup_policy(clear_all_soft_refs);
|
||||
ref_processor()->setup_policy(do_clear_all_soft_refs);
|
||||
|
||||
// Do collection work
|
||||
{
|
||||
HandleMark hm; // Discard invalid handles created during gc
|
||||
G1MarkSweep::invoke_at_safepoint(ref_processor(), clear_all_soft_refs);
|
||||
G1MarkSweep::invoke_at_safepoint(ref_processor(), do_clear_all_soft_refs);
|
||||
}
|
||||
// Because freeing humongous regions may have added some unclean
|
||||
// regions, it is necessary to tear down again before rebuilding.
|
||||
@ -1053,6 +974,15 @@ void G1CollectedHeap::do_collection(bool full, bool clear_all_soft_refs,
|
||||
perm()->compute_new_size();
|
||||
}
|
||||
|
||||
// Start a new incremental collection set for the next pause
|
||||
assert(g1_policy()->collection_set() == NULL, "must be");
|
||||
g1_policy()->start_incremental_cset_building();
|
||||
|
||||
// Clear the _cset_fast_test bitmap in anticipation of adding
|
||||
// regions to the incremental collection set for the next
|
||||
// evacuation pause.
|
||||
clear_cset_fast_test();
|
||||
|
||||
double end = os::elapsedTime();
|
||||
g1_policy()->record_full_collection_end();
|
||||
|
||||
@ -1071,7 +1001,9 @@ void G1CollectedHeap::do_collection(bool full, bool clear_all_soft_refs,
|
||||
|
||||
if (g1_policy()->in_young_gc_mode()) {
|
||||
_young_list->reset_sampled_info();
|
||||
assert( check_young_list_empty(false, false),
|
||||
// At this point there should be no regions in the
|
||||
// entire heap tagged as young.
|
||||
assert( check_young_list_empty(true /* check_heap */),
|
||||
"young list should be empty at this point");
|
||||
}
|
||||
|
||||
@ -1208,6 +1140,9 @@ G1CollectedHeap::satisfy_failed_allocation(size_t word_size) {
|
||||
return result;
|
||||
}
|
||||
|
||||
assert(!collector_policy()->should_clear_all_soft_refs(),
|
||||
"Flag should have been handled and cleared prior to this point");
|
||||
|
||||
// What else? We might try synchronous finalization later. If the total
|
||||
// space available is large enough for the allocation, then a more
|
||||
// complete compaction phase than we've tried so far might be
|
||||
@ -1565,6 +1500,20 @@ jint G1CollectedHeap::initialize() {
|
||||
|
||||
_g1h = this;
|
||||
|
||||
_in_cset_fast_test_length = max_regions();
|
||||
_in_cset_fast_test_base = NEW_C_HEAP_ARRAY(bool, _in_cset_fast_test_length);
|
||||
|
||||
// We're biasing _in_cset_fast_test to avoid subtracting the
|
||||
// beginning of the heap every time we want to index; basically
|
||||
// it's the same with what we do with the card table.
|
||||
_in_cset_fast_test = _in_cset_fast_test_base -
|
||||
((size_t) _g1_reserved.start() >> HeapRegion::LogOfHRGrainBytes);
|
||||
|
||||
// Clear the _cset_fast_test bitmap in anticipation of adding
|
||||
// regions to the incremental collection set for the first
|
||||
// evacuation pause.
|
||||
clear_cset_fast_test();
|
||||
|
||||
// Create the ConcurrentMark data structure and thread.
|
||||
// (Must do this late, so that "max_regions" is defined.)
|
||||
_cm = new ConcurrentMark(heap_rs, (int) max_regions());
|
||||
@ -2185,8 +2134,10 @@ public:
|
||||
assert(o != NULL, "Huh?");
|
||||
if (!_g1h->is_obj_dead_cond(o, _use_prev_marking)) {
|
||||
o->oop_iterate(&isLive);
|
||||
if (!_hr->obj_allocated_since_prev_marking(o))
|
||||
_live_bytes += (o->size() * HeapWordSize);
|
||||
if (!_hr->obj_allocated_since_prev_marking(o)) {
|
||||
size_t obj_size = o->size(); // Make sure we don't overflow
|
||||
_live_bytes += (obj_size * HeapWordSize);
|
||||
}
|
||||
}
|
||||
}
|
||||
size_t live_bytes() { return _live_bytes; }
|
||||
@ -2388,8 +2339,8 @@ void G1CollectedHeap::verify(bool allow_dirty,
|
||||
print_on(gclog_or_tty, true /* extended */);
|
||||
gclog_or_tty->print_cr("");
|
||||
if (VerifyDuringGC && G1VerifyDuringGCPrintReachable) {
|
||||
concurrent_mark()->print_reachable(use_prev_marking,
|
||||
"failed-verification");
|
||||
concurrent_mark()->print_reachable("at-verification-failure",
|
||||
use_prev_marking, false /* all */);
|
||||
}
|
||||
gclog_or_tty->flush();
|
||||
}
|
||||
@ -2741,25 +2692,19 @@ G1CollectedHeap::do_collection_pause_at_safepoint() {
|
||||
double start_time_sec = os::elapsedTime();
|
||||
size_t start_used_bytes = used();
|
||||
|
||||
#if YOUNG_LIST_VERBOSE
|
||||
gclog_or_tty->print_cr("\nBefore recording pause start.\nYoung_list:");
|
||||
_young_list->print();
|
||||
g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
|
||||
#endif // YOUNG_LIST_VERBOSE
|
||||
|
||||
g1_policy()->record_collection_pause_start(start_time_sec,
|
||||
start_used_bytes);
|
||||
|
||||
guarantee(_in_cset_fast_test == NULL, "invariant");
|
||||
guarantee(_in_cset_fast_test_base == NULL, "invariant");
|
||||
_in_cset_fast_test_length = max_regions();
|
||||
_in_cset_fast_test_base =
|
||||
NEW_C_HEAP_ARRAY(bool, _in_cset_fast_test_length);
|
||||
memset(_in_cset_fast_test_base, false,
|
||||
_in_cset_fast_test_length * sizeof(bool));
|
||||
// We're biasing _in_cset_fast_test to avoid subtracting the
|
||||
// beginning of the heap every time we want to index; basically
|
||||
// it's the same with what we do with the card table.
|
||||
_in_cset_fast_test = _in_cset_fast_test_base -
|
||||
((size_t) _g1_reserved.start() >> HeapRegion::LogOfHRGrainBytes);
|
||||
|
||||
#if SCAN_ONLY_VERBOSE
|
||||
#if YOUNG_LIST_VERBOSE
|
||||
gclog_or_tty->print_cr("\nAfter recording pause start.\nYoung_list:");
|
||||
_young_list->print();
|
||||
#endif // SCAN_ONLY_VERBOSE
|
||||
#endif // YOUNG_LIST_VERBOSE
|
||||
|
||||
if (g1_policy()->during_initial_mark_pause()) {
|
||||
concurrent_mark()->checkpointRootsInitialPre();
|
||||
@ -2786,12 +2731,15 @@ G1CollectedHeap::do_collection_pause_at_safepoint() {
|
||||
if (mark_in_progress())
|
||||
concurrent_mark()->newCSet();
|
||||
|
||||
// Now choose the CS.
|
||||
g1_policy()->choose_collection_set();
|
||||
#if YOUNG_LIST_VERBOSE
|
||||
gclog_or_tty->print_cr("\nBefore choosing collection set.\nYoung_list:");
|
||||
_young_list->print();
|
||||
g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
|
||||
#endif // YOUNG_LIST_VERBOSE
|
||||
|
||||
// We may abandon a pause if we find no region that will fit in the MMU
|
||||
// pause.
|
||||
bool abandoned = (g1_policy()->collection_set() == NULL);
|
||||
// Now choose the CS. We may abandon a pause if we find no
|
||||
// region that will fit in the MMU pause.
|
||||
bool abandoned = g1_policy()->choose_collection_set();
|
||||
|
||||
// Nothing to do if we were unable to choose a collection set.
|
||||
if (!abandoned) {
|
||||
@ -2809,40 +2757,64 @@ G1CollectedHeap::do_collection_pause_at_safepoint() {
|
||||
|
||||
// Actually do the work...
|
||||
evacuate_collection_set();
|
||||
|
||||
free_collection_set(g1_policy()->collection_set());
|
||||
g1_policy()->clear_collection_set();
|
||||
|
||||
FREE_C_HEAP_ARRAY(bool, _in_cset_fast_test_base);
|
||||
// this is more for peace of mind; we're nulling them here and
|
||||
// we're expecting them to be null at the beginning of the next GC
|
||||
_in_cset_fast_test = NULL;
|
||||
_in_cset_fast_test_base = NULL;
|
||||
|
||||
cleanup_surviving_young_words();
|
||||
|
||||
// Start a new incremental collection set for the next pause.
|
||||
g1_policy()->start_incremental_cset_building();
|
||||
|
||||
// Clear the _cset_fast_test bitmap in anticipation of adding
|
||||
// regions to the incremental collection set for the next
|
||||
// evacuation pause.
|
||||
clear_cset_fast_test();
|
||||
|
||||
if (g1_policy()->in_young_gc_mode()) {
|
||||
_young_list->reset_sampled_info();
|
||||
assert(check_young_list_empty(true),
|
||||
"young list should be empty");
|
||||
|
||||
#if SCAN_ONLY_VERBOSE
|
||||
// Don't check the whole heap at this point as the
|
||||
// GC alloc regions from this pause have been tagged
|
||||
// as survivors and moved on to the survivor list.
|
||||
// Survivor regions will fail the !is_young() check.
|
||||
assert(check_young_list_empty(false /* check_heap */),
|
||||
"young list should be empty");
|
||||
|
||||
#if YOUNG_LIST_VERBOSE
|
||||
gclog_or_tty->print_cr("Before recording survivors.\nYoung List:");
|
||||
_young_list->print();
|
||||
#endif // SCAN_ONLY_VERBOSE
|
||||
#endif // YOUNG_LIST_VERBOSE
|
||||
|
||||
g1_policy()->record_survivor_regions(_young_list->survivor_length(),
|
||||
_young_list->first_survivor_region(),
|
||||
_young_list->last_survivor_region());
|
||||
|
||||
_young_list->reset_auxilary_lists();
|
||||
}
|
||||
} else {
|
||||
if (_in_cset_fast_test != NULL) {
|
||||
assert(_in_cset_fast_test_base != NULL, "Since _in_cset_fast_test isn't");
|
||||
FREE_C_HEAP_ARRAY(bool, _in_cset_fast_test_base);
|
||||
// this is more for peace of mind; we're nulling them here and
|
||||
// we're expecting them to be null at the beginning of the next GC
|
||||
_in_cset_fast_test = NULL;
|
||||
_in_cset_fast_test_base = NULL;
|
||||
}
|
||||
// We have abandoned the current collection. This can only happen
|
||||
// if we're not doing young or partially young collections, and
|
||||
// we didn't find an old region that we're able to collect within
|
||||
// the allowed time.
|
||||
|
||||
assert(g1_policy()->collection_set() == NULL, "should be");
|
||||
assert(_young_list->length() == 0, "because it should be");
|
||||
|
||||
// This should be a no-op.
|
||||
abandon_collection_set(g1_policy()->inc_cset_head());
|
||||
|
||||
g1_policy()->clear_incremental_cset();
|
||||
g1_policy()->stop_incremental_cset_building();
|
||||
|
||||
// Start a new incremental collection set for the next pause.
|
||||
g1_policy()->start_incremental_cset_building();
|
||||
|
||||
// Clear the _cset_fast_test bitmap in anticipation of adding
|
||||
// regions to the incremental collection set for the next
|
||||
// evacuation pause.
|
||||
clear_cset_fast_test();
|
||||
|
||||
// This looks confusing, because the DPT should really be empty
|
||||
// at this point -- since we have not done any collection work,
|
||||
// there should not be any derived pointers in the table to update;
|
||||
@ -2876,9 +2848,11 @@ G1CollectedHeap::do_collection_pause_at_safepoint() {
|
||||
doConcurrentMark();
|
||||
}
|
||||
|
||||
#if SCAN_ONLY_VERBOSE
|
||||
#if YOUNG_LIST_VERBOSE
|
||||
gclog_or_tty->print_cr("\nEnd of the pause.\nYoung_list:");
|
||||
_young_list->print();
|
||||
#endif // SCAN_ONLY_VERBOSE
|
||||
g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
|
||||
#endif // YOUNG_LIST_VERBOSE
|
||||
|
||||
double end_time_sec = os::elapsedTime();
|
||||
double pause_time_ms = (end_time_sec - start_time_sec) * MILLIUNITS;
|
||||
@ -2936,6 +2910,25 @@ G1CollectedHeap::do_collection_pause_at_safepoint() {
|
||||
}
|
||||
}
|
||||
|
||||
size_t G1CollectedHeap::desired_plab_sz(GCAllocPurpose purpose)
|
||||
{
|
||||
size_t gclab_word_size;
|
||||
switch (purpose) {
|
||||
case GCAllocForSurvived:
|
||||
gclab_word_size = YoungPLABSize;
|
||||
break;
|
||||
case GCAllocForTenured:
|
||||
gclab_word_size = OldPLABSize;
|
||||
break;
|
||||
default:
|
||||
assert(false, "unknown GCAllocPurpose");
|
||||
gclab_word_size = OldPLABSize;
|
||||
break;
|
||||
}
|
||||
return gclab_word_size;
|
||||
}
|
||||
|
||||
|
||||
void G1CollectedHeap::set_gc_alloc_region(int purpose, HeapRegion* r) {
|
||||
assert(purpose >= 0 && purpose < GCAllocPurposeCount, "invalid purpose");
|
||||
// make sure we don't call set_gc_alloc_region() multiple times on
|
||||
@ -3109,6 +3102,11 @@ void G1CollectedHeap::get_gc_alloc_regions() {
|
||||
} else {
|
||||
// the region was retained from the last collection
|
||||
++_gc_alloc_region_counts[ap];
|
||||
if (G1PrintHeapRegions) {
|
||||
gclog_or_tty->print_cr("new alloc region %d:["PTR_FORMAT", "PTR_FORMAT"], "
|
||||
"top "PTR_FORMAT,
|
||||
alloc_region->hrs_index(), alloc_region->bottom(), alloc_region->end(), alloc_region->top());
|
||||
}
|
||||
}
|
||||
|
||||
if (alloc_region != NULL) {
|
||||
@ -3665,6 +3663,8 @@ G1ParScanThreadState::G1ParScanThreadState(G1CollectedHeap* g1h, int queue_num)
|
||||
_g1_rem(g1h->g1_rem_set()),
|
||||
_hash_seed(17), _queue_num(queue_num),
|
||||
_term_attempts(0),
|
||||
_surviving_alloc_buffer(g1h->desired_plab_sz(GCAllocForSurvived)),
|
||||
_tenured_alloc_buffer(g1h->desired_plab_sz(GCAllocForTenured)),
|
||||
_age_table(false),
|
||||
#if G1_DETAILED_STATS
|
||||
_pushes(0), _pops(0), _steals(0),
|
||||
@ -3691,6 +3691,9 @@ G1ParScanThreadState::G1ParScanThreadState(G1CollectedHeap* g1h, int queue_num)
|
||||
|
||||
_overflowed_refs = new OverflowQueue(10);
|
||||
|
||||
_alloc_buffers[GCAllocForSurvived] = &_surviving_alloc_buffer;
|
||||
_alloc_buffers[GCAllocForTenured] = &_tenured_alloc_buffer;
|
||||
|
||||
_start = os::elapsedTime();
|
||||
}
|
||||
|
||||
@ -3988,16 +3991,13 @@ public:
|
||||
|
||||
OopsInHeapRegionClosure *scan_root_cl;
|
||||
OopsInHeapRegionClosure *scan_perm_cl;
|
||||
OopsInHeapRegionClosure *scan_so_cl;
|
||||
|
||||
if (_g1h->g1_policy()->during_initial_mark_pause()) {
|
||||
scan_root_cl = &scan_mark_root_cl;
|
||||
scan_perm_cl = &scan_mark_perm_cl;
|
||||
scan_so_cl = &scan_mark_heap_rs_cl;
|
||||
} else {
|
||||
scan_root_cl = &only_scan_root_cl;
|
||||
scan_perm_cl = &only_scan_perm_cl;
|
||||
scan_so_cl = &only_scan_heap_rs_cl;
|
||||
}
|
||||
|
||||
pss.start_strong_roots();
|
||||
@ -4005,7 +4005,6 @@ public:
|
||||
SharedHeap::SO_AllClasses,
|
||||
scan_root_cl,
|
||||
&push_heap_rs_cl,
|
||||
scan_so_cl,
|
||||
scan_perm_cl,
|
||||
i);
|
||||
pss.end_strong_roots();
|
||||
@ -4067,7 +4066,6 @@ g1_process_strong_roots(bool collecting_perm_gen,
|
||||
SharedHeap::ScanningOption so,
|
||||
OopClosure* scan_non_heap_roots,
|
||||
OopsInHeapRegionClosure* scan_rs,
|
||||
OopsInHeapRegionClosure* scan_so,
|
||||
OopsInGenClosure* scan_perm,
|
||||
int worker_i) {
|
||||
// First scan the strong roots, including the perm gen.
|
||||
@ -4087,6 +4085,7 @@ g1_process_strong_roots(bool collecting_perm_gen,
|
||||
&buf_scan_non_heap_roots,
|
||||
&eager_scan_code_roots,
|
||||
&buf_scan_perm);
|
||||
|
||||
// Finish up any enqueued closure apps.
|
||||
buf_scan_non_heap_roots.done();
|
||||
buf_scan_perm.done();
|
||||
@ -4109,9 +4108,6 @@ g1_process_strong_roots(bool collecting_perm_gen,
|
||||
|
||||
// XXX What should this be doing in the parallel case?
|
||||
g1_policy()->record_collection_pause_end_CH_strong_roots();
|
||||
if (scan_so != NULL) {
|
||||
scan_scan_only_set(scan_so, worker_i);
|
||||
}
|
||||
// Now scan the complement of the collection set.
|
||||
if (scan_rs != NULL) {
|
||||
g1_rem_set()->oops_into_collection_set_do(scan_rs, worker_i);
|
||||
@ -4124,54 +4120,6 @@ g1_process_strong_roots(bool collecting_perm_gen,
|
||||
_process_strong_tasks->all_tasks_completed();
|
||||
}
|
||||
|
||||
void
|
||||
G1CollectedHeap::scan_scan_only_region(HeapRegion* r,
|
||||
OopsInHeapRegionClosure* oc,
|
||||
int worker_i) {
|
||||
HeapWord* startAddr = r->bottom();
|
||||
HeapWord* endAddr = r->used_region().end();
|
||||
|
||||
oc->set_region(r);
|
||||
|
||||
HeapWord* p = r->bottom();
|
||||
HeapWord* t = r->top();
|
||||
guarantee( p == r->next_top_at_mark_start(), "invariant" );
|
||||
while (p < t) {
|
||||
oop obj = oop(p);
|
||||
p += obj->oop_iterate(oc);
|
||||
}
|
||||
}
|
||||
|
||||
void
|
||||
G1CollectedHeap::scan_scan_only_set(OopsInHeapRegionClosure* oc,
|
||||
int worker_i) {
|
||||
double start = os::elapsedTime();
|
||||
|
||||
BufferingOopsInHeapRegionClosure boc(oc);
|
||||
|
||||
FilterInHeapRegionAndIntoCSClosure scan_only(this, &boc);
|
||||
FilterAndMarkInHeapRegionAndIntoCSClosure scan_and_mark(this, &boc, concurrent_mark());
|
||||
|
||||
OopsInHeapRegionClosure *foc;
|
||||
if (g1_policy()->during_initial_mark_pause())
|
||||
foc = &scan_and_mark;
|
||||
else
|
||||
foc = &scan_only;
|
||||
|
||||
HeapRegion* hr;
|
||||
int n = 0;
|
||||
while ((hr = _young_list->par_get_next_scan_only_region()) != NULL) {
|
||||
scan_scan_only_region(hr, foc, worker_i);
|
||||
++n;
|
||||
}
|
||||
boc.done();
|
||||
|
||||
double closure_app_s = boc.closure_app_seconds();
|
||||
g1_policy()->record_obj_copy_time(worker_i, closure_app_s * 1000.0);
|
||||
double ms = (os::elapsedTime() - start - closure_app_s)*1000.0;
|
||||
g1_policy()->record_scan_only_time(worker_i, ms, n);
|
||||
}
|
||||
|
||||
void
|
||||
G1CollectedHeap::g1_process_weak_roots(OopClosure* root_closure,
|
||||
OopClosure* non_root_closure) {
|
||||
@ -4370,17 +4318,14 @@ void G1CollectedHeap::dirtyCardsForYoungRegions(CardTableModRefBS* ct_bs, HeapRe
|
||||
class G1ParCleanupCTTask : public AbstractGangTask {
|
||||
CardTableModRefBS* _ct_bs;
|
||||
G1CollectedHeap* _g1h;
|
||||
HeapRegion* volatile _so_head;
|
||||
HeapRegion* volatile _su_head;
|
||||
public:
|
||||
G1ParCleanupCTTask(CardTableModRefBS* ct_bs,
|
||||
G1CollectedHeap* g1h,
|
||||
HeapRegion* scan_only_list,
|
||||
HeapRegion* survivor_list) :
|
||||
AbstractGangTask("G1 Par Cleanup CT Task"),
|
||||
_ct_bs(ct_bs),
|
||||
_g1h(g1h),
|
||||
_so_head(scan_only_list),
|
||||
_su_head(survivor_list)
|
||||
{ }
|
||||
|
||||
@ -4389,14 +4334,13 @@ public:
|
||||
while (r = _g1h->pop_dirty_cards_region()) {
|
||||
clear_cards(r);
|
||||
}
|
||||
// Redirty the cards of the scan-only and survivor regions.
|
||||
dirty_list(&this->_so_head);
|
||||
// Redirty the cards of the survivor regions.
|
||||
dirty_list(&this->_su_head);
|
||||
}
|
||||
|
||||
void clear_cards(HeapRegion* r) {
|
||||
// Cards for Survivor and Scan-Only regions will be dirtied later.
|
||||
if (!r->is_scan_only() && !r->is_survivor()) {
|
||||
// Cards for Survivor regions will be dirtied later.
|
||||
if (!r->is_survivor()) {
|
||||
_ct_bs->clear(MemRegion(r->bottom(), r->end()));
|
||||
}
|
||||
}
|
||||
@ -4429,7 +4373,7 @@ public:
|
||||
virtual bool doHeapRegion(HeapRegion* r)
|
||||
{
|
||||
MemRegion mr(r->bottom(), r->end());
|
||||
if (r->is_scan_only() || r->is_survivor()) {
|
||||
if (r->is_survivor()) {
|
||||
_ct_bs->verify_dirty_region(mr);
|
||||
} else {
|
||||
_ct_bs->verify_clean_region(mr);
|
||||
@ -4445,8 +4389,8 @@ void G1CollectedHeap::cleanUpCardTable() {
|
||||
|
||||
// Iterate over the dirty cards region list.
|
||||
G1ParCleanupCTTask cleanup_task(ct_bs, this,
|
||||
_young_list->first_scan_only_region(),
|
||||
_young_list->first_survivor_region());
|
||||
|
||||
if (ParallelGCThreads > 0) {
|
||||
set_par_threads(workers()->total_workers());
|
||||
workers()->run_task(&cleanup_task);
|
||||
@ -4462,12 +4406,12 @@ void G1CollectedHeap::cleanUpCardTable() {
|
||||
}
|
||||
r->set_next_dirty_cards_region(NULL);
|
||||
}
|
||||
// now, redirty the cards of the scan-only and survivor regions
|
||||
// now, redirty the cards of the survivor regions
|
||||
// (it seemed faster to do it this way, instead of iterating over
|
||||
// all regions and then clearing / dirtying as appropriate)
|
||||
dirtyCardsForYoungRegions(ct_bs, _young_list->first_scan_only_region());
|
||||
dirtyCardsForYoungRegions(ct_bs, _young_list->first_survivor_region());
|
||||
}
|
||||
|
||||
double elapsed = os::elapsedTime() - start;
|
||||
g1_policy()->record_clear_ct_time( elapsed * 1000.0);
|
||||
#ifndef PRODUCT
|
||||
@ -4488,6 +4432,11 @@ void G1CollectedHeap::free_collection_set(HeapRegion* cs_head) {
|
||||
double young_time_ms = 0.0;
|
||||
double non_young_time_ms = 0.0;
|
||||
|
||||
// Since the collection set is a superset of the the young list,
|
||||
// all we need to do to clear the young list is clear its
|
||||
// head and length, and unlink any young regions in the code below
|
||||
_young_list->clear();
|
||||
|
||||
G1CollectorPolicy* policy = g1_policy();
|
||||
|
||||
double start_sec = os::elapsedTime();
|
||||
@ -4531,6 +4480,12 @@ void G1CollectedHeap::free_collection_set(HeapRegion* cs_head) {
|
||||
guarantee( (size_t)index < policy->young_cset_length(), "invariant" );
|
||||
size_t words_survived = _surviving_young_words[index];
|
||||
cur->record_surv_words_in_group(words_survived);
|
||||
|
||||
// At this point the we have 'popped' cur from the collection set
|
||||
// (linked via next_in_collection_set()) but it is still in the
|
||||
// young list (linked via next_young_region()). Clear the
|
||||
// _next_young_region field.
|
||||
cur->set_next_young_region(NULL);
|
||||
} else {
|
||||
int index = cur->young_index_in_cset();
|
||||
guarantee( index == -1, "invariant" );
|
||||
@ -4546,7 +4501,6 @@ void G1CollectedHeap::free_collection_set(HeapRegion* cs_head) {
|
||||
"Should not have empty regions in a CS.");
|
||||
free_region(cur);
|
||||
} else {
|
||||
guarantee( !cur->is_scan_only(), "should not be scan only" );
|
||||
cur->uninstall_surv_rate_group();
|
||||
if (cur->is_young())
|
||||
cur->set_young_index_in_cset(-1);
|
||||
@ -4570,6 +4524,27 @@ void G1CollectedHeap::free_collection_set(HeapRegion* cs_head) {
|
||||
policy->record_non_young_free_cset_time_ms(non_young_time_ms);
|
||||
}
|
||||
|
||||
// This routine is similar to the above but does not record
|
||||
// any policy statistics or update free lists; we are abandoning
|
||||
// the current incremental collection set in preparation of a
|
||||
// full collection. After the full GC we will start to build up
|
||||
// the incremental collection set again.
|
||||
// This is only called when we're doing a full collection
|
||||
// and is immediately followed by the tearing down of the young list.
|
||||
|
||||
void G1CollectedHeap::abandon_collection_set(HeapRegion* cs_head) {
|
||||
HeapRegion* cur = cs_head;
|
||||
|
||||
while (cur != NULL) {
|
||||
HeapRegion* next = cur->next_in_collection_set();
|
||||
assert(cur->in_collection_set(), "bad CS");
|
||||
cur->set_next_in_collection_set(NULL);
|
||||
cur->set_in_collection_set(false);
|
||||
cur->set_young_index_in_cset(-1);
|
||||
cur = next;
|
||||
}
|
||||
}
|
||||
|
||||
HeapRegion*
|
||||
G1CollectedHeap::alloc_region_from_unclean_list_locked(bool zero_filled) {
|
||||
assert(ZF_mon->owned_by_self(), "Precondition");
|
||||
@ -4936,12 +4911,10 @@ public:
|
||||
bool success() { return _success; }
|
||||
};
|
||||
|
||||
bool G1CollectedHeap::check_young_list_empty(bool ignore_scan_only_list,
|
||||
bool check_sample) {
|
||||
bool ret = true;
|
||||
bool G1CollectedHeap::check_young_list_empty(bool check_heap, bool check_sample) {
|
||||
bool ret = _young_list->check_list_empty(check_sample);
|
||||
|
||||
ret = _young_list->check_list_empty(ignore_scan_only_list, check_sample);
|
||||
if (!ignore_scan_only_list) {
|
||||
if (check_heap) {
|
||||
NoYoungRegionsClosure closure;
|
||||
heap_region_iterate(&closure);
|
||||
ret = ret && closure.success();
|
||||
|
@ -1,5 +1,5 @@
|
||||
/*
|
||||
* Copyright 2001-2009 Sun Microsystems, Inc. All Rights Reserved.
|
||||
* Copyright 2001-2010 Sun Microsystems, Inc. All Rights Reserved.
|
||||
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
||||
*
|
||||
* This code is free software; you can redistribute it and/or modify it
|
||||
@ -81,33 +81,29 @@ private:
|
||||
|
||||
HeapRegion* _head;
|
||||
|
||||
HeapRegion* _scan_only_head;
|
||||
HeapRegion* _scan_only_tail;
|
||||
HeapRegion* _survivor_head;
|
||||
HeapRegion* _survivor_tail;
|
||||
|
||||
HeapRegion* _curr;
|
||||
|
||||
size_t _length;
|
||||
size_t _scan_only_length;
|
||||
size_t _survivor_length;
|
||||
|
||||
size_t _last_sampled_rs_lengths;
|
||||
size_t _sampled_rs_lengths;
|
||||
HeapRegion* _curr;
|
||||
HeapRegion* _curr_scan_only;
|
||||
|
||||
HeapRegion* _survivor_head;
|
||||
HeapRegion* _survivor_tail;
|
||||
size_t _survivor_length;
|
||||
|
||||
void empty_list(HeapRegion* list);
|
||||
void empty_list(HeapRegion* list);
|
||||
|
||||
public:
|
||||
YoungList(G1CollectedHeap* g1h);
|
||||
|
||||
void push_region(HeapRegion* hr);
|
||||
void add_survivor_region(HeapRegion* hr);
|
||||
HeapRegion* pop_region();
|
||||
void empty_list();
|
||||
bool is_empty() { return _length == 0; }
|
||||
size_t length() { return _length; }
|
||||
size_t scan_only_length() { return _scan_only_length; }
|
||||
size_t survivor_length() { return _survivor_length; }
|
||||
void push_region(HeapRegion* hr);
|
||||
void add_survivor_region(HeapRegion* hr);
|
||||
|
||||
void empty_list();
|
||||
bool is_empty() { return _length == 0; }
|
||||
size_t length() { return _length; }
|
||||
size_t survivor_length() { return _survivor_length; }
|
||||
|
||||
void rs_length_sampling_init();
|
||||
bool rs_length_sampling_more();
|
||||
@ -120,22 +116,21 @@ public:
|
||||
|
||||
// for development purposes
|
||||
void reset_auxilary_lists();
|
||||
void clear() { _head = NULL; _length = 0; }
|
||||
|
||||
void clear_survivors() {
|
||||
_survivor_head = NULL;
|
||||
_survivor_tail = NULL;
|
||||
_survivor_length = 0;
|
||||
}
|
||||
|
||||
HeapRegion* first_region() { return _head; }
|
||||
HeapRegion* first_scan_only_region() { return _scan_only_head; }
|
||||
HeapRegion* first_survivor_region() { return _survivor_head; }
|
||||
HeapRegion* last_survivor_region() { return _survivor_tail; }
|
||||
HeapRegion* par_get_next_scan_only_region() {
|
||||
MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
|
||||
HeapRegion* ret = _curr_scan_only;
|
||||
if (ret != NULL)
|
||||
_curr_scan_only = ret->get_next_young_region();
|
||||
return ret;
|
||||
}
|
||||
|
||||
// debugging
|
||||
bool check_list_well_formed();
|
||||
bool check_list_empty(bool ignore_scan_only_list,
|
||||
bool check_sample = true);
|
||||
bool check_list_empty(bool check_sample = true);
|
||||
void print();
|
||||
};
|
||||
|
||||
@ -232,6 +227,9 @@ private:
|
||||
// current collection.
|
||||
HeapRegion* _gc_alloc_region_list;
|
||||
|
||||
// Determines PLAB size for a particular allocation purpose.
|
||||
static size_t desired_plab_sz(GCAllocPurpose purpose);
|
||||
|
||||
// When called by par thread, require par_alloc_during_gc_lock() to be held.
|
||||
void push_gc_alloc_region(HeapRegion* hr);
|
||||
|
||||
@ -402,8 +400,7 @@ public:
|
||||
assert(_in_cset_fast_test_base != NULL, "sanity");
|
||||
assert(r->in_collection_set(), "invariant");
|
||||
int index = r->hrs_index();
|
||||
assert(0 <= (size_t) index && (size_t) index < _in_cset_fast_test_length,
|
||||
"invariant");
|
||||
assert(0 <= index && (size_t) index < _in_cset_fast_test_length, "invariant");
|
||||
assert(!_in_cset_fast_test_base[index], "invariant");
|
||||
_in_cset_fast_test_base[index] = true;
|
||||
}
|
||||
@ -428,6 +425,12 @@ public:
|
||||
}
|
||||
}
|
||||
|
||||
void clear_cset_fast_test() {
|
||||
assert(_in_cset_fast_test_base != NULL, "sanity");
|
||||
memset(_in_cset_fast_test_base, false,
|
||||
_in_cset_fast_test_length * sizeof(bool));
|
||||
}
|
||||
|
||||
protected:
|
||||
|
||||
// Shrink the garbage-first heap by at most the given size (in bytes!).
|
||||
@ -473,6 +476,10 @@ protected:
|
||||
// regions.
|
||||
void free_collection_set(HeapRegion* cs_head);
|
||||
|
||||
// Abandon the current collection set without recording policy
|
||||
// statistics or updating free lists.
|
||||
void abandon_collection_set(HeapRegion* cs_head);
|
||||
|
||||
// Applies "scan_non_heap_roots" to roots outside the heap,
|
||||
// "scan_rs" to roots inside the heap (having done "set_region" to
|
||||
// indicate the region in which the root resides), and does "scan_perm"
|
||||
@ -485,16 +492,9 @@ protected:
|
||||
SharedHeap::ScanningOption so,
|
||||
OopClosure* scan_non_heap_roots,
|
||||
OopsInHeapRegionClosure* scan_rs,
|
||||
OopsInHeapRegionClosure* scan_so,
|
||||
OopsInGenClosure* scan_perm,
|
||||
int worker_i);
|
||||
|
||||
void scan_scan_only_set(OopsInHeapRegionClosure* oc,
|
||||
int worker_i);
|
||||
void scan_scan_only_region(HeapRegion* hr,
|
||||
OopsInHeapRegionClosure* oc,
|
||||
int worker_i);
|
||||
|
||||
// Apply "blk" to all the weak roots of the system. These include
|
||||
// JNI weak roots, the code cache, system dictionary, symbol table,
|
||||
// string table, and referents of reachable weak refs.
|
||||
@ -1133,36 +1133,14 @@ public:
|
||||
void set_region_short_lived_locked(HeapRegion* hr);
|
||||
// add appropriate methods for any other surv rate groups
|
||||
|
||||
void young_list_rs_length_sampling_init() {
|
||||
_young_list->rs_length_sampling_init();
|
||||
}
|
||||
bool young_list_rs_length_sampling_more() {
|
||||
return _young_list->rs_length_sampling_more();
|
||||
}
|
||||
void young_list_rs_length_sampling_next() {
|
||||
_young_list->rs_length_sampling_next();
|
||||
}
|
||||
size_t young_list_sampled_rs_lengths() {
|
||||
return _young_list->sampled_rs_lengths();
|
||||
}
|
||||
|
||||
size_t young_list_length() { return _young_list->length(); }
|
||||
size_t young_list_scan_only_length() {
|
||||
return _young_list->scan_only_length(); }
|
||||
|
||||
HeapRegion* pop_region_from_young_list() {
|
||||
return _young_list->pop_region();
|
||||
}
|
||||
|
||||
HeapRegion* young_list_first_region() {
|
||||
return _young_list->first_region();
|
||||
}
|
||||
YoungList* young_list() { return _young_list; }
|
||||
|
||||
// debugging
|
||||
bool check_young_list_well_formed() {
|
||||
return _young_list->check_list_well_formed();
|
||||
}
|
||||
bool check_young_list_empty(bool ignore_scan_only_list,
|
||||
|
||||
bool check_young_list_empty(bool check_heap,
|
||||
bool check_sample = true);
|
||||
|
||||
// *** Stuff related to concurrent marking. It's not clear to me that so
|
||||
@ -1367,12 +1345,18 @@ private:
|
||||
return BitsPerWord << shifter();
|
||||
}
|
||||
|
||||
static size_t gclab_word_size() {
|
||||
return G1ParallelGCAllocBufferSize / HeapWordSize;
|
||||
size_t gclab_word_size() const {
|
||||
return _gclab_word_size;
|
||||
}
|
||||
|
||||
static size_t bitmap_size_in_bits() {
|
||||
size_t bits_in_bitmap = gclab_word_size() >> shifter();
|
||||
// Calculates actual GCLab size in words
|
||||
size_t gclab_real_word_size() const {
|
||||
return bitmap_size_in_bits(pointer_delta(_real_end_word, _start_word))
|
||||
/ BitsPerWord;
|
||||
}
|
||||
|
||||
static size_t bitmap_size_in_bits(size_t gclab_word_size) {
|
||||
size_t bits_in_bitmap = gclab_word_size >> shifter();
|
||||
// We are going to ensure that the beginning of a word in this
|
||||
// bitmap also corresponds to the beginning of a word in the
|
||||
// global marking bitmap. To handle the case where a GCLab
|
||||
@ -1382,13 +1366,13 @@ private:
|
||||
return bits_in_bitmap + BitsPerWord - 1;
|
||||
}
|
||||
public:
|
||||
GCLabBitMap(HeapWord* heap_start)
|
||||
: BitMap(bitmap_size_in_bits()),
|
||||
GCLabBitMap(HeapWord* heap_start, size_t gclab_word_size)
|
||||
: BitMap(bitmap_size_in_bits(gclab_word_size)),
|
||||
_cm(G1CollectedHeap::heap()->concurrent_mark()),
|
||||
_shifter(shifter()),
|
||||
_bitmap_word_covers_words(bitmap_word_covers_words()),
|
||||
_heap_start(heap_start),
|
||||
_gclab_word_size(gclab_word_size()),
|
||||
_gclab_word_size(gclab_word_size),
|
||||
_real_start_word(NULL),
|
||||
_real_end_word(NULL),
|
||||
_start_word(NULL)
|
||||
@ -1483,7 +1467,7 @@ public:
|
||||
mark_bitmap->mostly_disjoint_range_union(this,
|
||||
0, // always start from the start of the bitmap
|
||||
_start_word,
|
||||
size_in_words());
|
||||
gclab_real_word_size());
|
||||
_cm->grayRegionIfNecessary(MemRegion(_real_start_word, _real_end_word));
|
||||
|
||||
#ifndef PRODUCT
|
||||
@ -1495,9 +1479,10 @@ public:
|
||||
}
|
||||
}
|
||||
|
||||
static size_t bitmap_size_in_words() {
|
||||
return (bitmap_size_in_bits() + BitsPerWord - 1) / BitsPerWord;
|
||||
size_t bitmap_size_in_words() const {
|
||||
return (bitmap_size_in_bits(gclab_word_size()) + BitsPerWord - 1) / BitsPerWord;
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
class G1ParGCAllocBuffer: public ParGCAllocBuffer {
|
||||
@ -1507,10 +1492,10 @@ private:
|
||||
GCLabBitMap _bitmap;
|
||||
|
||||
public:
|
||||
G1ParGCAllocBuffer() :
|
||||
ParGCAllocBuffer(G1ParallelGCAllocBufferSize / HeapWordSize),
|
||||
G1ParGCAllocBuffer(size_t gclab_word_size) :
|
||||
ParGCAllocBuffer(gclab_word_size),
|
||||
_during_marking(G1CollectedHeap::heap()->mark_in_progress()),
|
||||
_bitmap(G1CollectedHeap::heap()->reserved_region().start()),
|
||||
_bitmap(G1CollectedHeap::heap()->reserved_region().start(), gclab_word_size),
|
||||
_retired(false)
|
||||
{ }
|
||||
|
||||
@ -1549,8 +1534,10 @@ protected:
|
||||
typedef GrowableArray<StarTask> OverflowQueue;
|
||||
OverflowQueue* _overflowed_refs;
|
||||
|
||||
G1ParGCAllocBuffer _alloc_buffers[GCAllocPurposeCount];
|
||||
ageTable _age_table;
|
||||
G1ParGCAllocBuffer _surviving_alloc_buffer;
|
||||
G1ParGCAllocBuffer _tenured_alloc_buffer;
|
||||
G1ParGCAllocBuffer* _alloc_buffers[GCAllocPurposeCount];
|
||||
ageTable _age_table;
|
||||
|
||||
size_t _alloc_buffer_waste;
|
||||
size_t _undo_waste;
|
||||
@ -1619,7 +1606,7 @@ public:
|
||||
ageTable* age_table() { return &_age_table; }
|
||||
|
||||
G1ParGCAllocBuffer* alloc_buffer(GCAllocPurpose purpose) {
|
||||
return &_alloc_buffers[purpose];
|
||||
return _alloc_buffers[purpose];
|
||||
}
|
||||
|
||||
size_t alloc_buffer_waste() { return _alloc_buffer_waste; }
|
||||
@ -1684,15 +1671,15 @@ public:
|
||||
HeapWord* allocate_slow(GCAllocPurpose purpose, size_t word_sz) {
|
||||
|
||||
HeapWord* obj = NULL;
|
||||
if (word_sz * 100 <
|
||||
(size_t)(G1ParallelGCAllocBufferSize / HeapWordSize) *
|
||||
ParallelGCBufferWastePct) {
|
||||
size_t gclab_word_size = _g1h->desired_plab_sz(purpose);
|
||||
if (word_sz * 100 < gclab_word_size * ParallelGCBufferWastePct) {
|
||||
G1ParGCAllocBuffer* alloc_buf = alloc_buffer(purpose);
|
||||
assert(gclab_word_size == alloc_buf->word_sz(),
|
||||
"dynamic resizing is not supported");
|
||||
add_to_alloc_buffer_waste(alloc_buf->words_remaining());
|
||||
alloc_buf->retire(false, false);
|
||||
|
||||
HeapWord* buf =
|
||||
_g1h->par_allocate_during_gc(purpose, G1ParallelGCAllocBufferSize / HeapWordSize);
|
||||
HeapWord* buf = _g1h->par_allocate_during_gc(purpose, gclab_word_size);
|
||||
if (buf == NULL) return NULL; // Let caller handle allocation failure.
|
||||
// Otherwise.
|
||||
alloc_buf->set_buf(buf);
|
||||
@ -1786,9 +1773,9 @@ public:
|
||||
|
||||
void retire_alloc_buffers() {
|
||||
for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
|
||||
size_t waste = _alloc_buffers[ap].words_remaining();
|
||||
size_t waste = _alloc_buffers[ap]->words_remaining();
|
||||
add_to_alloc_buffer_waste(waste);
|
||||
_alloc_buffers[ap].retire(true, false);
|
||||
_alloc_buffers[ap]->retire(true, false);
|
||||
}
|
||||
}
|
||||
|
||||
|
File diff suppressed because it is too large
Load Diff
@ -1,5 +1,5 @@
|
||||
/*
|
||||
* Copyright 2001-2009 Sun Microsystems, Inc. All Rights Reserved.
|
||||
* Copyright 2001-2010 Sun Microsystems, Inc. All Rights Reserved.
|
||||
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
||||
*
|
||||
* This code is free software; you can redistribute it and/or modify it
|
||||
@ -61,7 +61,6 @@ class MainBodySummary: public CHeapObj {
|
||||
define_num_seq(parallel) // parallel only
|
||||
define_num_seq(ext_root_scan)
|
||||
define_num_seq(mark_stack_scan)
|
||||
define_num_seq(scan_only)
|
||||
define_num_seq(update_rs)
|
||||
define_num_seq(scan_rs)
|
||||
define_num_seq(scan_new_refs) // Only for temp use; added to
|
||||
@ -174,8 +173,6 @@ protected:
|
||||
|
||||
double* _par_last_ext_root_scan_times_ms;
|
||||
double* _par_last_mark_stack_scan_times_ms;
|
||||
double* _par_last_scan_only_times_ms;
|
||||
double* _par_last_scan_only_regions_scanned;
|
||||
double* _par_last_update_rs_start_times_ms;
|
||||
double* _par_last_update_rs_times_ms;
|
||||
double* _par_last_update_rs_processed_buffers;
|
||||
@ -196,7 +193,6 @@ protected:
|
||||
bool _adaptive_young_list_length;
|
||||
size_t _young_list_min_length;
|
||||
size_t _young_list_target_length;
|
||||
size_t _young_list_so_prefix_length;
|
||||
size_t _young_list_fixed_length;
|
||||
|
||||
size_t _young_cset_length;
|
||||
@ -234,7 +230,6 @@ private:
|
||||
TruncatedSeq* _pending_card_diff_seq;
|
||||
TruncatedSeq* _rs_length_diff_seq;
|
||||
TruncatedSeq* _cost_per_card_ms_seq;
|
||||
TruncatedSeq* _cost_per_scan_only_region_ms_seq;
|
||||
TruncatedSeq* _fully_young_cards_per_entry_ratio_seq;
|
||||
TruncatedSeq* _partially_young_cards_per_entry_ratio_seq;
|
||||
TruncatedSeq* _cost_per_entry_ms_seq;
|
||||
@ -249,19 +244,16 @@ private:
|
||||
TruncatedSeq* _rs_lengths_seq;
|
||||
|
||||
TruncatedSeq* _cost_per_byte_ms_during_cm_seq;
|
||||
TruncatedSeq* _cost_per_scan_only_region_ms_during_cm_seq;
|
||||
|
||||
TruncatedSeq* _young_gc_eff_seq;
|
||||
|
||||
TruncatedSeq* _max_conc_overhead_seq;
|
||||
|
||||
size_t _recorded_young_regions;
|
||||
size_t _recorded_scan_only_regions;
|
||||
size_t _recorded_non_young_regions;
|
||||
size_t _recorded_region_num;
|
||||
|
||||
size_t _free_regions_at_end_of_collection;
|
||||
size_t _scan_only_regions_at_end_of_collection;
|
||||
|
||||
size_t _recorded_rs_lengths;
|
||||
size_t _max_rs_lengths;
|
||||
@ -277,7 +269,6 @@ private:
|
||||
double _predicted_survival_ratio;
|
||||
double _predicted_rs_update_time_ms;
|
||||
double _predicted_rs_scan_time_ms;
|
||||
double _predicted_scan_only_scan_time_ms;
|
||||
double _predicted_object_copy_time_ms;
|
||||
double _predicted_constant_other_time_ms;
|
||||
double _predicted_young_other_time_ms;
|
||||
@ -344,8 +335,6 @@ public:
|
||||
bool verify_young_ages();
|
||||
#endif // PRODUCT
|
||||
|
||||
void tag_scan_only(size_t short_lived_scan_only_length);
|
||||
|
||||
double get_new_prediction(TruncatedSeq* seq) {
|
||||
return MAX2(seq->davg() + sigma() * seq->dsd(),
|
||||
seq->davg() * confidence_factor(seq->num()));
|
||||
@ -431,23 +420,6 @@ public:
|
||||
get_new_prediction(_partially_young_cost_per_entry_ms_seq);
|
||||
}
|
||||
|
||||
double predict_scan_only_time_ms_during_cm(size_t scan_only_region_num) {
|
||||
if (_cost_per_scan_only_region_ms_during_cm_seq->num() < 3)
|
||||
return 1.5 * (double) scan_only_region_num *
|
||||
get_new_prediction(_cost_per_scan_only_region_ms_seq);
|
||||
else
|
||||
return (double) scan_only_region_num *
|
||||
get_new_prediction(_cost_per_scan_only_region_ms_during_cm_seq);
|
||||
}
|
||||
|
||||
double predict_scan_only_time_ms(size_t scan_only_region_num) {
|
||||
if (_in_marking_window_im)
|
||||
return predict_scan_only_time_ms_during_cm(scan_only_region_num);
|
||||
else
|
||||
return (double) scan_only_region_num *
|
||||
get_new_prediction(_cost_per_scan_only_region_ms_seq);
|
||||
}
|
||||
|
||||
double predict_object_copy_time_ms_during_cm(size_t bytes_to_copy) {
|
||||
if (_cost_per_byte_ms_during_cm_seq->num() < 3)
|
||||
return 1.1 * (double) bytes_to_copy *
|
||||
@ -490,24 +462,21 @@ public:
|
||||
size_t predict_bytes_to_copy(HeapRegion* hr);
|
||||
double predict_region_elapsed_time_ms(HeapRegion* hr, bool young);
|
||||
|
||||
// for use by: calculate_optimal_so_length(length)
|
||||
void predict_gc_eff(size_t young_region_num,
|
||||
size_t so_length,
|
||||
double base_time_ms,
|
||||
double *gc_eff,
|
||||
double *pause_time_ms);
|
||||
|
||||
// for use by: calculate_young_list_target_config(rs_length)
|
||||
bool predict_gc_eff(size_t young_region_num,
|
||||
size_t so_length,
|
||||
double base_time_with_so_ms,
|
||||
size_t init_free_regions,
|
||||
double target_pause_time_ms,
|
||||
double* gc_eff);
|
||||
// for use by: calculate_young_list_target_length(rs_length)
|
||||
bool predict_will_fit(size_t young_region_num,
|
||||
double base_time_ms,
|
||||
size_t init_free_regions,
|
||||
double target_pause_time_ms);
|
||||
|
||||
void start_recording_regions();
|
||||
void record_cset_region(HeapRegion* hr, bool young);
|
||||
void record_scan_only_regions(size_t scan_only_length);
|
||||
void record_cset_region_info(HeapRegion* hr, bool young);
|
||||
void record_non_young_cset_region(HeapRegion* hr);
|
||||
|
||||
void set_recorded_young_regions(size_t n_regions);
|
||||
void set_recorded_young_bytes(size_t bytes);
|
||||
void set_recorded_rs_lengths(size_t rs_lengths);
|
||||
void set_predicted_bytes_to_copy(size_t bytes);
|
||||
|
||||
void end_recording_regions();
|
||||
|
||||
void record_vtime_diff_ms(double vtime_diff_ms) {
|
||||
@ -638,11 +607,74 @@ protected:
|
||||
void update_recent_gc_times(double end_time_sec, double elapsed_ms);
|
||||
|
||||
// The head of the list (via "next_in_collection_set()") representing the
|
||||
// current collection set.
|
||||
// current collection set. Set from the incrementally built collection
|
||||
// set at the start of the pause.
|
||||
HeapRegion* _collection_set;
|
||||
|
||||
// The number of regions in the collection set. Set from the incrementally
|
||||
// built collection set at the start of an evacuation pause.
|
||||
size_t _collection_set_size;
|
||||
|
||||
// The number of bytes in the collection set before the pause. Set from
|
||||
// the incrementally built collection set at the start of an evacuation
|
||||
// pause.
|
||||
size_t _collection_set_bytes_used_before;
|
||||
|
||||
// The associated information that is maintained while the incremental
|
||||
// collection set is being built with young regions. Used to populate
|
||||
// the recorded info for the evacuation pause.
|
||||
|
||||
enum CSetBuildType {
|
||||
Active, // We are actively building the collection set
|
||||
Inactive // We are not actively building the collection set
|
||||
};
|
||||
|
||||
CSetBuildType _inc_cset_build_state;
|
||||
|
||||
// The head of the incrementally built collection set.
|
||||
HeapRegion* _inc_cset_head;
|
||||
|
||||
// The tail of the incrementally built collection set.
|
||||
HeapRegion* _inc_cset_tail;
|
||||
|
||||
// The number of regions in the incrementally built collection set.
|
||||
// Used to set _collection_set_size at the start of an evacuation
|
||||
// pause.
|
||||
size_t _inc_cset_size;
|
||||
|
||||
// Used as the index in the surving young words structure
|
||||
// which tracks the amount of space, for each young region,
|
||||
// that survives the pause.
|
||||
size_t _inc_cset_young_index;
|
||||
|
||||
// The number of bytes in the incrementally built collection set.
|
||||
// Used to set _collection_set_bytes_used_before at the start of
|
||||
// an evacuation pause.
|
||||
size_t _inc_cset_bytes_used_before;
|
||||
|
||||
// Used to record the highest end of heap region in collection set
|
||||
HeapWord* _inc_cset_max_finger;
|
||||
|
||||
// The number of recorded used bytes in the young regions
|
||||
// of the collection set. This is the sum of the used() bytes
|
||||
// of retired young regions in the collection set.
|
||||
size_t _inc_cset_recorded_young_bytes;
|
||||
|
||||
// The RSet lengths recorded for regions in the collection set
|
||||
// (updated by the periodic sampling of the regions in the
|
||||
// young list/collection set).
|
||||
size_t _inc_cset_recorded_rs_lengths;
|
||||
|
||||
// The predicted elapsed time it will take to collect the regions
|
||||
// in the collection set (updated by the periodic sampling of the
|
||||
// regions in the young list/collection set).
|
||||
double _inc_cset_predicted_elapsed_time_ms;
|
||||
|
||||
// The predicted bytes to copy for the regions in the collection
|
||||
// set (updated by the periodic sampling of the regions in the
|
||||
// young list/collection set).
|
||||
size_t _inc_cset_predicted_bytes_to_copy;
|
||||
|
||||
// Info about marking.
|
||||
int _n_marks; // Sticky at 2, so we know when we've done at least 2.
|
||||
|
||||
@ -761,9 +793,8 @@ protected:
|
||||
double _mark_closure_time_ms;
|
||||
|
||||
void calculate_young_list_min_length();
|
||||
void calculate_young_list_target_config();
|
||||
void calculate_young_list_target_config(size_t rs_lengths);
|
||||
size_t calculate_optimal_so_length(size_t young_list_length);
|
||||
void calculate_young_list_target_length();
|
||||
void calculate_young_list_target_length(size_t rs_lengths);
|
||||
|
||||
public:
|
||||
|
||||
@ -868,11 +899,6 @@ public:
|
||||
_par_last_mark_stack_scan_times_ms[worker_i] = ms;
|
||||
}
|
||||
|
||||
void record_scan_only_time(int worker_i, double ms, int n) {
|
||||
_par_last_scan_only_times_ms[worker_i] = ms;
|
||||
_par_last_scan_only_regions_scanned[worker_i] = (double) n;
|
||||
}
|
||||
|
||||
void record_satb_drain_time(double ms) {
|
||||
_cur_satb_drain_time_ms = ms;
|
||||
_satb_drain_time_set = true;
|
||||
@ -987,20 +1013,67 @@ public:
|
||||
// Choose a new collection set. Marks the chosen regions as being
|
||||
// "in_collection_set", and links them together. The head and number of
|
||||
// the collection set are available via access methods.
|
||||
virtual void choose_collection_set() = 0;
|
||||
|
||||
void clear_collection_set() { _collection_set = NULL; }
|
||||
virtual bool choose_collection_set() = 0;
|
||||
|
||||
// The head of the list (via "next_in_collection_set()") representing the
|
||||
// current collection set.
|
||||
HeapRegion* collection_set() { return _collection_set; }
|
||||
|
||||
void clear_collection_set() { _collection_set = NULL; }
|
||||
|
||||
// The number of elements in the current collection set.
|
||||
size_t collection_set_size() { return _collection_set_size; }
|
||||
|
||||
// Add "hr" to the CS.
|
||||
void add_to_collection_set(HeapRegion* hr);
|
||||
|
||||
// Incremental CSet Support
|
||||
|
||||
// The head of the incrementally built collection set.
|
||||
HeapRegion* inc_cset_head() { return _inc_cset_head; }
|
||||
|
||||
// The tail of the incrementally built collection set.
|
||||
HeapRegion* inc_set_tail() { return _inc_cset_tail; }
|
||||
|
||||
// The number of elements in the incrementally built collection set.
|
||||
size_t inc_cset_size() { return _inc_cset_size; }
|
||||
|
||||
// Initialize incremental collection set info.
|
||||
void start_incremental_cset_building();
|
||||
|
||||
void clear_incremental_cset() {
|
||||
_inc_cset_head = NULL;
|
||||
_inc_cset_tail = NULL;
|
||||
}
|
||||
|
||||
// Stop adding regions to the incremental collection set
|
||||
void stop_incremental_cset_building() { _inc_cset_build_state = Inactive; }
|
||||
|
||||
// Add/remove information about hr to the aggregated information
|
||||
// for the incrementally built collection set.
|
||||
void add_to_incremental_cset_info(HeapRegion* hr, size_t rs_length);
|
||||
void remove_from_incremental_cset_info(HeapRegion* hr);
|
||||
|
||||
// Update information about hr in the aggregated information for
|
||||
// the incrementally built collection set.
|
||||
void update_incremental_cset_info(HeapRegion* hr, size_t new_rs_length);
|
||||
|
||||
private:
|
||||
// Update the incremental cset information when adding a region
|
||||
// (should not be called directly).
|
||||
void add_region_to_incremental_cset_common(HeapRegion* hr);
|
||||
|
||||
public:
|
||||
// Add hr to the LHS of the incremental collection set.
|
||||
void add_region_to_incremental_cset_lhs(HeapRegion* hr);
|
||||
|
||||
// Add hr to the RHS of the incremental collection set.
|
||||
void add_region_to_incremental_cset_rhs(HeapRegion* hr);
|
||||
|
||||
#ifndef PRODUCT
|
||||
void print_collection_set(HeapRegion* list_head, outputStream* st);
|
||||
#endif // !PRODUCT
|
||||
|
||||
bool initiate_conc_mark_if_possible() { return _initiate_conc_mark_if_possible; }
|
||||
void set_initiate_conc_mark_if_possible() { _initiate_conc_mark_if_possible = true; }
|
||||
void clear_initiate_conc_mark_if_possible() { _initiate_conc_mark_if_possible = false; }
|
||||
@ -1191,7 +1264,7 @@ class G1CollectorPolicy_BestRegionsFirst: public G1CollectorPolicy {
|
||||
// If the estimated is less then desirable, resize if possible.
|
||||
void expand_if_possible(size_t numRegions);
|
||||
|
||||
virtual void choose_collection_set();
|
||||
virtual bool choose_collection_set();
|
||||
virtual void record_collection_pause_start(double start_time_sec,
|
||||
size_t start_used);
|
||||
virtual void record_concurrent_mark_cleanup_end(size_t freed_bytes,
|
||||
|
@ -1,5 +1,5 @@
|
||||
/*
|
||||
* Copyright 2001-2009 Sun Microsystems, Inc. All Rights Reserved.
|
||||
* Copyright 2001-2010 Sun Microsystems, Inc. All Rights Reserved.
|
||||
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
||||
*
|
||||
* This code is free software; you can redistribute it and/or modify it
|
||||
@ -31,6 +31,12 @@ void G1MarkSweep::invoke_at_safepoint(ReferenceProcessor* rp,
|
||||
bool clear_all_softrefs) {
|
||||
assert(SafepointSynchronize::is_at_safepoint(), "must be at a safepoint");
|
||||
|
||||
SharedHeap* sh = SharedHeap::heap();
|
||||
#ifdef ASSERT
|
||||
if (sh->collector_policy()->should_clear_all_soft_refs()) {
|
||||
assert(clear_all_softrefs, "Policy should have been checked earler");
|
||||
}
|
||||
#endif
|
||||
// hook up weak ref data so it can be used during Mark-Sweep
|
||||
assert(GenMarkSweep::ref_processor() == NULL, "no stomping");
|
||||
assert(rp != NULL, "should be non-NULL");
|
||||
@ -44,7 +50,6 @@ void G1MarkSweep::invoke_at_safepoint(ReferenceProcessor* rp,
|
||||
|
||||
// Increment the invocation count for the permanent generation, since it is
|
||||
// implicitly collected whenever we do a full mark sweep collection.
|
||||
SharedHeap* sh = SharedHeap::heap();
|
||||
sh->perm_gen()->stat_record()->invocations++;
|
||||
|
||||
bool marked_for_unloading = false;
|
||||
|
@ -1,5 +1,5 @@
|
||||
/*
|
||||
* Copyright 2001-2009 Sun Microsystems, Inc. All Rights Reserved.
|
||||
* Copyright 2001-2010 Sun Microsystems, Inc. All Rights Reserved.
|
||||
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
||||
*
|
||||
* This code is free software; you can redistribute it and/or modify it
|
||||
@ -28,9 +28,6 @@
|
||||
|
||||
#define G1_FLAGS(develop, develop_pd, product, product_pd, diagnostic, experimental, notproduct, manageable, product_rw) \
|
||||
\
|
||||
product(intx, G1ParallelGCAllocBufferSize, 8*K, \
|
||||
"Size of parallel G1 allocation buffers in to-space.") \
|
||||
\
|
||||
product(intx, G1ConfidencePercent, 50, \
|
||||
"Confidence level for MMU/pause predictions") \
|
||||
\
|
||||
@ -229,10 +226,6 @@
|
||||
"the number of regions for which we'll print a surv rate " \
|
||||
"summary.") \
|
||||
\
|
||||
develop(bool, G1UseScanOnlyPrefix, false, \
|
||||
"It determines whether the system will calculate an optimum " \
|
||||
"scan-only set.") \
|
||||
\
|
||||
product(intx, G1ReservePercent, 10, \
|
||||
"It determines the minimum reserve we should have in the heap " \
|
||||
"to minimize the probability of promotion failure.") \
|
||||
|
@ -1,5 +1,5 @@
|
||||
/*
|
||||
* Copyright 2001-2009 Sun Microsystems, Inc. All Rights Reserved.
|
||||
* Copyright 2001-2010 Sun Microsystems, Inc. All Rights Reserved.
|
||||
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
||||
*
|
||||
* This code is free software; you can redistribute it and/or modify it
|
||||
@ -75,6 +75,16 @@ public:
|
||||
virtual void do_oop(narrowOop* p) { do_oop_work(p); }
|
||||
virtual void do_oop( oop* p) { do_oop_work(p); }
|
||||
|
||||
void print_object(outputStream* out, oop obj) {
|
||||
#ifdef PRODUCT
|
||||
klassOop k = obj->klass();
|
||||
const char* class_name = instanceKlass::cast(k)->external_name();
|
||||
out->print_cr("class name %s", class_name);
|
||||
#else // PRODUCT
|
||||
obj->print_on(out);
|
||||
#endif // PRODUCT
|
||||
}
|
||||
|
||||
template <class T> void do_oop_work(T* p) {
|
||||
assert(_containing_obj != NULL, "Precondition");
|
||||
assert(!_g1h->is_obj_dead_cond(_containing_obj, _use_prev_marking),
|
||||
@ -90,21 +100,29 @@ public:
|
||||
gclog_or_tty->print_cr("----------");
|
||||
}
|
||||
if (!_g1h->is_in_closed_subset(obj)) {
|
||||
HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p);
|
||||
gclog_or_tty->print_cr("Field "PTR_FORMAT
|
||||
" of live obj "PTR_FORMAT
|
||||
" points to obj "PTR_FORMAT
|
||||
" not in the heap.",
|
||||
p, (void*) _containing_obj, (void*) obj);
|
||||
" of live obj "PTR_FORMAT" in region "
|
||||
"["PTR_FORMAT", "PTR_FORMAT")",
|
||||
p, (void*) _containing_obj,
|
||||
from->bottom(), from->end());
|
||||
print_object(gclog_or_tty, _containing_obj);
|
||||
gclog_or_tty->print_cr("points to obj "PTR_FORMAT" not in the heap",
|
||||
(void*) obj);
|
||||
} else {
|
||||
HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p);
|
||||
HeapRegion* to = _g1h->heap_region_containing((HeapWord*)obj);
|
||||
gclog_or_tty->print_cr("Field "PTR_FORMAT
|
||||
" of live obj "PTR_FORMAT
|
||||
" points to dead obj "PTR_FORMAT".",
|
||||
p, (void*) _containing_obj, (void*) obj);
|
||||
" of live obj "PTR_FORMAT" in region "
|
||||
"["PTR_FORMAT", "PTR_FORMAT")",
|
||||
p, (void*) _containing_obj,
|
||||
from->bottom(), from->end());
|
||||
print_object(gclog_or_tty, _containing_obj);
|
||||
gclog_or_tty->print_cr("points to dead obj "PTR_FORMAT" in region "
|
||||
"["PTR_FORMAT", "PTR_FORMAT")",
|
||||
(void*) obj, to->bottom(), to->end());
|
||||
print_object(gclog_or_tty, obj);
|
||||
}
|
||||
gclog_or_tty->print_cr("Live obj:");
|
||||
_containing_obj->print_on(gclog_or_tty);
|
||||
gclog_or_tty->print_cr("Bad referent:");
|
||||
obj->print_on(gclog_or_tty);
|
||||
gclog_or_tty->print_cr("----------");
|
||||
_failures = true;
|
||||
failed = true;
|
||||
@ -432,7 +450,9 @@ HeapRegion(G1BlockOffsetSharedArray* sharedOffsetArray,
|
||||
_young_type(NotYoung), _next_young_region(NULL),
|
||||
_next_dirty_cards_region(NULL),
|
||||
_young_index_in_cset(-1), _surv_rate_group(NULL), _age_index(-1),
|
||||
_rem_set(NULL), _zfs(NotZeroFilled)
|
||||
_rem_set(NULL), _zfs(NotZeroFilled),
|
||||
_recorded_rs_length(0), _predicted_elapsed_time_ms(0),
|
||||
_predicted_bytes_to_copy(0)
|
||||
{
|
||||
_orig_end = mr.end();
|
||||
// Note that initialize() will set the start of the unmarked area of the
|
||||
@ -715,7 +735,7 @@ void HeapRegion::print_on(outputStream* st) const {
|
||||
else
|
||||
st->print(" ");
|
||||
if (is_young())
|
||||
st->print(is_scan_only() ? " SO" : (is_survivor() ? " SU" : " Y "));
|
||||
st->print(is_survivor() ? " SU" : " Y ");
|
||||
else
|
||||
st->print(" ");
|
||||
if (is_empty())
|
||||
@ -723,6 +743,8 @@ void HeapRegion::print_on(outputStream* st) const {
|
||||
else
|
||||
st->print(" ");
|
||||
st->print(" %5d", _gc_time_stamp);
|
||||
st->print(" PTAMS "PTR_FORMAT" NTAMS "PTR_FORMAT,
|
||||
prev_top_at_mark_start(), next_top_at_mark_start());
|
||||
G1OffsetTableContigSpace::print_on(st);
|
||||
}
|
||||
|
||||
|
@ -1,5 +1,5 @@
|
||||
/*
|
||||
* Copyright 2001-2009 Sun Microsystems, Inc. All Rights Reserved.
|
||||
* Copyright 2001-2010 Sun Microsystems, Inc. All Rights Reserved.
|
||||
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
||||
*
|
||||
* This code is free software; you can redistribute it and/or modify it
|
||||
@ -247,7 +247,6 @@ class HeapRegion: public G1OffsetTableContigSpace {
|
||||
|
||||
enum YoungType {
|
||||
NotYoung, // a region is not young
|
||||
ScanOnly, // a region is young and scan-only
|
||||
Young, // a region is young
|
||||
Survivor // a region is young and it contains
|
||||
// survivor
|
||||
@ -292,6 +291,20 @@ class HeapRegion: public G1OffsetTableContigSpace {
|
||||
_young_type = new_type;
|
||||
}
|
||||
|
||||
// Cached attributes used in the collection set policy information
|
||||
|
||||
// The RSet length that was added to the total value
|
||||
// for the collection set.
|
||||
size_t _recorded_rs_length;
|
||||
|
||||
// The predicted elapsed time that was added to total value
|
||||
// for the collection set.
|
||||
double _predicted_elapsed_time_ms;
|
||||
|
||||
// The predicted number of bytes to copy that was added to
|
||||
// the total value for the collection set.
|
||||
size_t _predicted_bytes_to_copy;
|
||||
|
||||
public:
|
||||
// If "is_zeroed" is "true", the region "mr" can be assumed to contain zeros.
|
||||
HeapRegion(G1BlockOffsetSharedArray* sharedOffsetArray,
|
||||
@ -614,7 +627,6 @@ class HeapRegion: public G1OffsetTableContigSpace {
|
||||
// </PREDICTION>
|
||||
|
||||
bool is_young() const { return _young_type != NotYoung; }
|
||||
bool is_scan_only() const { return _young_type == ScanOnly; }
|
||||
bool is_survivor() const { return _young_type == Survivor; }
|
||||
|
||||
int young_index_in_cset() const { return _young_index_in_cset; }
|
||||
@ -629,12 +641,6 @@ class HeapRegion: public G1OffsetTableContigSpace {
|
||||
return _surv_rate_group->age_in_group(_age_index);
|
||||
}
|
||||
|
||||
void recalculate_age_in_surv_rate_group() {
|
||||
assert( _surv_rate_group != NULL, "pre-condition" );
|
||||
assert( _age_index > -1, "pre-condition" );
|
||||
_age_index = _surv_rate_group->recalculate_age_index(_age_index);
|
||||
}
|
||||
|
||||
void record_surv_words_in_group(size_t words_survived) {
|
||||
assert( _surv_rate_group != NULL, "pre-condition" );
|
||||
assert( _age_index > -1, "pre-condition" );
|
||||
@ -676,8 +682,6 @@ class HeapRegion: public G1OffsetTableContigSpace {
|
||||
|
||||
void set_young() { set_young_type(Young); }
|
||||
|
||||
void set_scan_only() { set_young_type(ScanOnly); }
|
||||
|
||||
void set_survivor() { set_young_type(Survivor); }
|
||||
|
||||
void set_not_young() { set_young_type(NotYoung); }
|
||||
@ -775,6 +779,22 @@ class HeapRegion: public G1OffsetTableContigSpace {
|
||||
_zero_filler = NULL;
|
||||
}
|
||||
|
||||
size_t recorded_rs_length() const { return _recorded_rs_length; }
|
||||
double predicted_elapsed_time_ms() const { return _predicted_elapsed_time_ms; }
|
||||
size_t predicted_bytes_to_copy() const { return _predicted_bytes_to_copy; }
|
||||
|
||||
void set_recorded_rs_length(size_t rs_length) {
|
||||
_recorded_rs_length = rs_length;
|
||||
}
|
||||
|
||||
void set_predicted_elapsed_time_ms(double ms) {
|
||||
_predicted_elapsed_time_ms = ms;
|
||||
}
|
||||
|
||||
void set_predicted_bytes_to_copy(size_t bytes) {
|
||||
_predicted_bytes_to_copy = bytes;
|
||||
}
|
||||
|
||||
#define HeapRegion_OOP_SINCE_SAVE_MARKS_DECL(OopClosureType, nv_suffix) \
|
||||
virtual void oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl);
|
||||
SPECIALIZED_SINCE_SAVE_MARKS_CLOSURES(HeapRegion_OOP_SINCE_SAVE_MARKS_DECL)
|
||||
|
@ -662,8 +662,6 @@ void OtherRegionsTable::add_reference(OopOrNarrowOopStar from, int tid) {
|
||||
prt = PosParPRT::alloc(from_hr);
|
||||
}
|
||||
prt->init(from_hr);
|
||||
// Record the outgoing pointer in the from_region's outgoing bitmap.
|
||||
from_hr->rem_set()->add_outgoing_reference(hr());
|
||||
|
||||
PosParPRT* first_prt = _fine_grain_regions[ind];
|
||||
prt->set_next(first_prt); // XXX Maybe move to init?
|
||||
@ -1073,11 +1071,7 @@ int HeapRegionRemSet::num_par_rem_sets() {
|
||||
|
||||
HeapRegionRemSet::HeapRegionRemSet(G1BlockOffsetSharedArray* bosa,
|
||||
HeapRegion* hr)
|
||||
: _bosa(bosa), _other_regions(hr),
|
||||
_outgoing_region_map(G1CollectedHeap::heap()->max_regions(),
|
||||
false /* in-resource-area */),
|
||||
_iter_state(Unclaimed)
|
||||
{}
|
||||
: _bosa(bosa), _other_regions(hr), _iter_state(Unclaimed) { }
|
||||
|
||||
|
||||
void HeapRegionRemSet::setup_remset_size() {
|
||||
@ -1148,30 +1142,11 @@ void HeapRegionRemSet::par_cleanup() {
|
||||
PosParPRT::par_contract_all();
|
||||
}
|
||||
|
||||
void HeapRegionRemSet::add_outgoing_reference(HeapRegion* to_hr) {
|
||||
_outgoing_region_map.par_at_put(to_hr->hrs_index(), 1);
|
||||
}
|
||||
|
||||
void HeapRegionRemSet::clear() {
|
||||
clear_outgoing_entries();
|
||||
_outgoing_region_map.clear();
|
||||
_other_regions.clear();
|
||||
assert(occupied() == 0, "Should be clear.");
|
||||
}
|
||||
|
||||
void HeapRegionRemSet::clear_outgoing_entries() {
|
||||
G1CollectedHeap* g1h = G1CollectedHeap::heap();
|
||||
size_t i = _outgoing_region_map.get_next_one_offset(0);
|
||||
while (i < _outgoing_region_map.size()) {
|
||||
HeapRegion* to_region = g1h->region_at(i);
|
||||
if (!to_region->in_collection_set()) {
|
||||
to_region->rem_set()->clear_incoming_entry(hr());
|
||||
}
|
||||
i = _outgoing_region_map.get_next_one_offset(i+1);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void HeapRegionRemSet::scrub(CardTableModRefBS* ctbs,
|
||||
BitMap* region_bm, BitMap* card_bm) {
|
||||
_other_regions.scrub(ctbs, region_bm, card_bm);
|
||||
|
@ -179,13 +179,6 @@ private:
|
||||
|
||||
OtherRegionsTable _other_regions;
|
||||
|
||||
// One set bit for every region that has an entry for this one.
|
||||
BitMap _outgoing_region_map;
|
||||
|
||||
// Clear entries for the current region in any rem sets named in
|
||||
// the _outgoing_region_map.
|
||||
void clear_outgoing_entries();
|
||||
|
||||
enum ParIterState { Unclaimed, Claimed, Complete };
|
||||
volatile ParIterState _iter_state;
|
||||
volatile jlong _iter_claimed;
|
||||
@ -243,10 +236,6 @@ public:
|
||||
_other_regions.add_reference(from, tid);
|
||||
}
|
||||
|
||||
// Records the fact that the current region contains an outgoing
|
||||
// reference into "to_hr".
|
||||
void add_outgoing_reference(HeapRegion* to_hr);
|
||||
|
||||
// Removes any entries shown by the given bitmaps to contain only dead
|
||||
// objects.
|
||||
void scrub(CardTableModRefBS* ctbs, BitMap* region_bm, BitMap* card_bm);
|
||||
|
@ -1,5 +1,5 @@
|
||||
/*
|
||||
* Copyright 2001-2009 Sun Microsystems, Inc. All Rights Reserved.
|
||||
* Copyright 2001-2010 Sun Microsystems, Inc. All Rights Reserved.
|
||||
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
||||
*
|
||||
* This code is free software; you can redistribute it and/or modify it
|
||||
@ -55,7 +55,6 @@ SurvRateGroup::SurvRateGroup(G1CollectorPolicy* g1p,
|
||||
void SurvRateGroup::reset()
|
||||
{
|
||||
_all_regions_allocated = 0;
|
||||
_scan_only_prefix = 0;
|
||||
_setup_seq_num = 0;
|
||||
_stats_arrays_length = 0;
|
||||
_accum_surv_rate = 0.0;
|
||||
@ -74,7 +73,7 @@ void SurvRateGroup::reset()
|
||||
void
|
||||
SurvRateGroup::start_adding_regions() {
|
||||
_setup_seq_num = _stats_arrays_length;
|
||||
_region_num = _scan_only_prefix;
|
||||
_region_num = 0;
|
||||
_accum_surv_rate = 0.0;
|
||||
|
||||
#if 0
|
||||
@ -163,12 +162,6 @@ SurvRateGroup::next_age_index() {
|
||||
return (int) ++_all_regions_allocated;
|
||||
}
|
||||
|
||||
void
|
||||
SurvRateGroup::record_scan_only_prefix(size_t scan_only_prefix) {
|
||||
guarantee( scan_only_prefix <= _region_num, "pre-condition" );
|
||||
_scan_only_prefix = scan_only_prefix;
|
||||
}
|
||||
|
||||
void
|
||||
SurvRateGroup::record_surviving_words(int age_in_group, size_t surv_words) {
|
||||
guarantee( 0 <= age_in_group && (size_t) age_in_group < _region_num,
|
||||
@ -218,13 +211,12 @@ SurvRateGroup::all_surviving_words_recorded(bool propagate) {
|
||||
#ifndef PRODUCT
|
||||
void
|
||||
SurvRateGroup::print() {
|
||||
gclog_or_tty->print_cr("Surv Rate Group: %s (%d entries, %d scan-only)",
|
||||
_name, _region_num, _scan_only_prefix);
|
||||
gclog_or_tty->print_cr("Surv Rate Group: %s (%d entries)",
|
||||
_name, _region_num);
|
||||
for (size_t i = 0; i < _region_num; ++i) {
|
||||
gclog_or_tty->print_cr(" age %4d surv rate %6.2lf %% pred %6.2lf %%%s",
|
||||
gclog_or_tty->print_cr(" age %4d surv rate %6.2lf %% pred %6.2lf %%",
|
||||
i, _surv_rate[i] * 100.0,
|
||||
_g1p->get_new_prediction(_surv_rate_pred[i]) * 100.0,
|
||||
(i < _scan_only_prefix) ? " S-O" : " ");
|
||||
_g1p->get_new_prediction(_surv_rate_pred[i]) * 100.0);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -1,5 +1,5 @@
|
||||
/*
|
||||
* Copyright 2001-2009 Sun Microsystems, Inc. All Rights Reserved.
|
||||
* Copyright 2001-2010 Sun Microsystems, Inc. All Rights Reserved.
|
||||
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
||||
*
|
||||
* This code is free software; you can redistribute it and/or modify it
|
||||
@ -41,7 +41,6 @@ private:
|
||||
|
||||
int _all_regions_allocated;
|
||||
size_t _region_num;
|
||||
size_t _scan_only_prefix;
|
||||
size_t _setup_seq_num;
|
||||
|
||||
public:
|
||||
@ -51,13 +50,11 @@ public:
|
||||
void reset();
|
||||
void start_adding_regions();
|
||||
void stop_adding_regions();
|
||||
void record_scan_only_prefix(size_t scan_only_prefix);
|
||||
void record_surviving_words(int age_in_group, size_t surv_words);
|
||||
void all_surviving_words_recorded(bool propagate);
|
||||
const char* name() { return _name; }
|
||||
|
||||
size_t region_num() { return _region_num; }
|
||||
size_t scan_only_length() { return _scan_only_prefix; }
|
||||
double accum_surv_rate_pred(int age) {
|
||||
assert(age >= 0, "must be");
|
||||
if ((size_t)age < _stats_arrays_length)
|
||||
@ -82,17 +79,12 @@ public:
|
||||
|
||||
int next_age_index();
|
||||
int age_in_group(int age_index) {
|
||||
int ret = (int) (_all_regions_allocated - age_index);
|
||||
int ret = (int) (_all_regions_allocated - age_index);
|
||||
assert( ret >= 0, "invariant" );
|
||||
return ret;
|
||||
}
|
||||
int recalculate_age_index(int age_index) {
|
||||
int new_age_index = (int) _scan_only_prefix - age_in_group(age_index);
|
||||
guarantee( new_age_index >= 0, "invariant" );
|
||||
return new_age_index;
|
||||
}
|
||||
void finished_recalculating_age_indexes() {
|
||||
_all_regions_allocated = (int) _scan_only_prefix;
|
||||
_all_regions_allocated = 0;
|
||||
}
|
||||
|
||||
#ifndef PRODUCT
|
||||
|
@ -1,5 +1,5 @@
|
||||
//
|
||||
// Copyright 2001-2009 Sun Microsystems, Inc. All Rights Reserved.
|
||||
// Copyright 2001-2010 Sun Microsystems, Inc. All Rights Reserved.
|
||||
// DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
||||
//
|
||||
// This code is free software; you can redistribute it and/or modify it
|
||||
@ -161,8 +161,10 @@ parMarkBitMap.cpp psParallelCompact.hpp
|
||||
parMarkBitMap.hpp bitMap.inline.hpp
|
||||
parMarkBitMap.hpp psVirtualspace.hpp
|
||||
|
||||
psAdaptiveSizePolicy.cpp collectorPolicy.hpp
|
||||
psAdaptiveSizePolicy.cpp gcPolicyCounters.hpp
|
||||
psAdaptiveSizePolicy.cpp gcCause.hpp
|
||||
psAdaptiveSizePolicy.cpp generationSizer.hpp
|
||||
psAdaptiveSizePolicy.cpp psAdaptiveSizePolicy.hpp
|
||||
psAdaptiveSizePolicy.cpp psGCAdaptivePolicyCounters.hpp
|
||||
psAdaptiveSizePolicy.cpp psScavenge.hpp
|
||||
@ -215,6 +217,7 @@ psMarkSweep.cpp events.hpp
|
||||
psMarkSweep.cpp fprofiler.hpp
|
||||
psMarkSweep.cpp gcCause.hpp
|
||||
psMarkSweep.cpp gcLocker.inline.hpp
|
||||
psMarkSweep.cpp generationSizer.hpp
|
||||
psMarkSweep.cpp isGCActiveMark.hpp
|
||||
psMarkSweep.cpp oop.inline.hpp
|
||||
psMarkSweep.cpp memoryService.hpp
|
||||
@ -256,6 +259,7 @@ psParallelCompact.cpp fprofiler.hpp
|
||||
psParallelCompact.cpp gcCause.hpp
|
||||
psParallelCompact.cpp gcLocker.inline.hpp
|
||||
psParallelCompact.cpp gcTaskManager.hpp
|
||||
psParallelCompact.cpp generationSizer.hpp
|
||||
psParallelCompact.cpp isGCActiveMark.hpp
|
||||
psParallelCompact.cpp management.hpp
|
||||
psParallelCompact.cpp memoryService.hpp
|
||||
@ -344,10 +348,12 @@ psPromotionLAB.hpp objectStartArray.hpp
|
||||
psScavenge.cpp psAdaptiveSizePolicy.hpp
|
||||
psScavenge.cpp biasedLocking.hpp
|
||||
psScavenge.cpp cardTableExtension.hpp
|
||||
psScavenge.cpp collectorPolicy.hpp
|
||||
psScavenge.cpp fprofiler.hpp
|
||||
psScavenge.cpp gcCause.hpp
|
||||
psScavenge.cpp gcLocker.inline.hpp
|
||||
psScavenge.cpp gcTaskManager.hpp
|
||||
psScavenge.cpp generationSizer.hpp
|
||||
psScavenge.cpp handles.inline.hpp
|
||||
psScavenge.cpp isGCActiveMark.hpp
|
||||
psScavenge.cpp oop.inline.hpp
|
||||
|
@ -1,5 +1,5 @@
|
||||
//
|
||||
// Copyright (c) 2007 Sun Microsystems, Inc. All Rights Reserved.
|
||||
// Copyright 2007-2010 Sun Microsystems, Inc. All Rights Reserved.
|
||||
// DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
||||
//
|
||||
// This code is free software; you can redistribute it and/or modify it
|
||||
@ -29,6 +29,7 @@ adaptiveSizePolicy.hpp allocation.hpp
|
||||
adaptiveSizePolicy.hpp universe.hpp
|
||||
|
||||
adaptiveSizePolicy.cpp adaptiveSizePolicy.hpp
|
||||
adaptiveSizePolicy.cpp collectorPolicy.hpp
|
||||
adaptiveSizePolicy.cpp gcCause.hpp
|
||||
adaptiveSizePolicy.cpp ostream.hpp
|
||||
adaptiveSizePolicy.cpp timer.hpp
|
||||
|
@ -1,5 +1,5 @@
|
||||
/*
|
||||
* Copyright 2001-2009 Sun Microsystems, Inc. All Rights Reserved.
|
||||
* Copyright 2001-2010 Sun Microsystems, Inc. All Rights Reserved.
|
||||
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
||||
*
|
||||
* This code is free software; you can redistribute it and/or modify it
|
||||
@ -892,6 +892,10 @@ void ParNewGeneration::collect(bool full,
|
||||
}
|
||||
swap_spaces();
|
||||
|
||||
// A successful scavenge should restart the GC time limit count which is
|
||||
// for full GC's.
|
||||
size_policy->reset_gc_overhead_limit_count();
|
||||
|
||||
assert(to()->is_empty(), "to space should be empty now");
|
||||
} else {
|
||||
assert(HandlePromotionFailure,
|
||||
|
@ -1,5 +1,5 @@
|
||||
/*
|
||||
* Copyright 2001-2009 Sun Microsystems, Inc. All Rights Reserved.
|
||||
* Copyright 2001-2010 Sun Microsystems, Inc. All Rights Reserved.
|
||||
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
||||
*
|
||||
* This code is free software; you can redistribute it and/or modify it
|
||||
@ -54,15 +54,16 @@ jint ParallelScavengeHeap::initialize() {
|
||||
CollectedHeap::pre_initialize();
|
||||
|
||||
// Cannot be initialized until after the flags are parsed
|
||||
GenerationSizer flag_parser;
|
||||
// GenerationSizer flag_parser;
|
||||
_collector_policy = new GenerationSizer();
|
||||
|
||||
size_t yg_min_size = flag_parser.min_young_gen_size();
|
||||
size_t yg_max_size = flag_parser.max_young_gen_size();
|
||||
size_t og_min_size = flag_parser.min_old_gen_size();
|
||||
size_t og_max_size = flag_parser.max_old_gen_size();
|
||||
size_t yg_min_size = _collector_policy->min_young_gen_size();
|
||||
size_t yg_max_size = _collector_policy->max_young_gen_size();
|
||||
size_t og_min_size = _collector_policy->min_old_gen_size();
|
||||
size_t og_max_size = _collector_policy->max_old_gen_size();
|
||||
// Why isn't there a min_perm_gen_size()?
|
||||
size_t pg_min_size = flag_parser.perm_gen_size();
|
||||
size_t pg_max_size = flag_parser.max_perm_gen_size();
|
||||
size_t pg_min_size = _collector_policy->perm_gen_size();
|
||||
size_t pg_max_size = _collector_policy->max_perm_gen_size();
|
||||
|
||||
trace_gen_sizes("ps heap raw",
|
||||
pg_min_size, pg_max_size,
|
||||
@ -89,12 +90,14 @@ jint ParallelScavengeHeap::initialize() {
|
||||
// move to the common code.
|
||||
yg_min_size = align_size_up(yg_min_size, yg_align);
|
||||
yg_max_size = align_size_up(yg_max_size, yg_align);
|
||||
size_t yg_cur_size = align_size_up(flag_parser.young_gen_size(), yg_align);
|
||||
size_t yg_cur_size =
|
||||
align_size_up(_collector_policy->young_gen_size(), yg_align);
|
||||
yg_cur_size = MAX2(yg_cur_size, yg_min_size);
|
||||
|
||||
og_min_size = align_size_up(og_min_size, og_align);
|
||||
og_max_size = align_size_up(og_max_size, og_align);
|
||||
size_t og_cur_size = align_size_up(flag_parser.old_gen_size(), og_align);
|
||||
size_t og_cur_size =
|
||||
align_size_up(_collector_policy->old_gen_size(), og_align);
|
||||
og_cur_size = MAX2(og_cur_size, og_min_size);
|
||||
|
||||
pg_min_size = align_size_up(pg_min_size, pg_align);
|
||||
@ -355,6 +358,11 @@ HeapWord* ParallelScavengeHeap::mem_allocate(
|
||||
assert(Thread::current() != (Thread*)VMThread::vm_thread(), "should not be in vm thread");
|
||||
assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
|
||||
|
||||
// In general gc_overhead_limit_was_exceeded should be false so
|
||||
// set it so here and reset it to true only if the gc time
|
||||
// limit is being exceeded as checked below.
|
||||
*gc_overhead_limit_was_exceeded = false;
|
||||
|
||||
HeapWord* result = young_gen()->allocate(size, is_tlab);
|
||||
|
||||
uint loop_count = 0;
|
||||
@ -428,24 +436,6 @@ HeapWord* ParallelScavengeHeap::mem_allocate(
|
||||
|
||||
if (result == NULL) {
|
||||
|
||||
// Exit the loop if if the gc time limit has been exceeded.
|
||||
// The allocation must have failed above (result must be NULL),
|
||||
// and the most recent collection must have exceeded the
|
||||
// gc time limit. Exit the loop so that an out-of-memory
|
||||
// will be thrown (returning a NULL will do that), but
|
||||
// clear gc_time_limit_exceeded so that the next collection
|
||||
// will succeeded if the applications decides to handle the
|
||||
// out-of-memory and tries to go on.
|
||||
*gc_overhead_limit_was_exceeded = size_policy()->gc_time_limit_exceeded();
|
||||
if (size_policy()->gc_time_limit_exceeded()) {
|
||||
size_policy()->set_gc_time_limit_exceeded(false);
|
||||
if (PrintGCDetails && Verbose) {
|
||||
gclog_or_tty->print_cr("ParallelScavengeHeap::mem_allocate: "
|
||||
"return NULL because gc_time_limit_exceeded is set");
|
||||
}
|
||||
return NULL;
|
||||
}
|
||||
|
||||
// Generate a VM operation
|
||||
VM_ParallelGCFailedAllocation op(size, is_tlab, gc_count);
|
||||
VMThread::execute(&op);
|
||||
@ -463,16 +453,34 @@ HeapWord* ParallelScavengeHeap::mem_allocate(
|
||||
assert(op.result() == NULL, "must be NULL if gc_locked() is true");
|
||||
continue; // retry and/or stall as necessary
|
||||
}
|
||||
// If a NULL result is being returned, an out-of-memory
|
||||
// will be thrown now. Clear the gc_time_limit_exceeded
|
||||
// flag to avoid the following situation.
|
||||
// gc_time_limit_exceeded is set during a collection
|
||||
// the collection fails to return enough space and an OOM is thrown
|
||||
// the next GC is skipped because the gc_time_limit_exceeded
|
||||
// flag is set and another OOM is thrown
|
||||
if (op.result() == NULL) {
|
||||
size_policy()->set_gc_time_limit_exceeded(false);
|
||||
|
||||
// Exit the loop if the gc time limit has been exceeded.
|
||||
// The allocation must have failed above ("result" guarding
|
||||
// this path is NULL) and the most recent collection has exceeded the
|
||||
// gc overhead limit (although enough may have been collected to
|
||||
// satisfy the allocation). Exit the loop so that an out-of-memory
|
||||
// will be thrown (return a NULL ignoring the contents of
|
||||
// op.result()),
|
||||
// but clear gc_overhead_limit_exceeded so that the next collection
|
||||
// starts with a clean slate (i.e., forgets about previous overhead
|
||||
// excesses). Fill op.result() with a filler object so that the
|
||||
// heap remains parsable.
|
||||
const bool limit_exceeded = size_policy()->gc_overhead_limit_exceeded();
|
||||
const bool softrefs_clear = collector_policy()->all_soft_refs_clear();
|
||||
assert(!limit_exceeded || softrefs_clear, "Should have been cleared");
|
||||
if (limit_exceeded && softrefs_clear) {
|
||||
*gc_overhead_limit_was_exceeded = true;
|
||||
size_policy()->set_gc_overhead_limit_exceeded(false);
|
||||
if (PrintGCDetails && Verbose) {
|
||||
gclog_or_tty->print_cr("ParallelScavengeHeap::mem_allocate: "
|
||||
"return NULL because gc_overhead_limit_exceeded is set");
|
||||
}
|
||||
if (op.result() != NULL) {
|
||||
CollectedHeap::fill_with_object(op.result(), size);
|
||||
}
|
||||
return NULL;
|
||||
}
|
||||
|
||||
return op.result();
|
||||
}
|
||||
}
|
||||
@ -613,14 +621,15 @@ HeapWord* ParallelScavengeHeap::permanent_mem_allocate(size_t size) {
|
||||
// and the most recent collection must have exceeded the
|
||||
// gc time limit. Exit the loop so that an out-of-memory
|
||||
// will be thrown (returning a NULL will do that), but
|
||||
// clear gc_time_limit_exceeded so that the next collection
|
||||
// clear gc_overhead_limit_exceeded so that the next collection
|
||||
// will succeeded if the applications decides to handle the
|
||||
// out-of-memory and tries to go on.
|
||||
if (size_policy()->gc_time_limit_exceeded()) {
|
||||
size_policy()->set_gc_time_limit_exceeded(false);
|
||||
const bool limit_exceeded = size_policy()->gc_overhead_limit_exceeded();
|
||||
if (limit_exceeded) {
|
||||
size_policy()->set_gc_overhead_limit_exceeded(false);
|
||||
if (PrintGCDetails && Verbose) {
|
||||
gclog_or_tty->print_cr("ParallelScavengeHeap::permanent_mem_allocate: "
|
||||
"return NULL because gc_time_limit_exceeded is set");
|
||||
gclog_or_tty->print_cr("ParallelScavengeHeap::permanent_mem_allocate:"
|
||||
" return NULL because gc_overhead_limit_exceeded is set");
|
||||
}
|
||||
assert(result == NULL, "Allocation did not fail");
|
||||
return NULL;
|
||||
@ -643,14 +652,15 @@ HeapWord* ParallelScavengeHeap::permanent_mem_allocate(size_t size) {
|
||||
continue; // retry and/or stall as necessary
|
||||
}
|
||||
// If a NULL results is being returned, an out-of-memory
|
||||
// will be thrown now. Clear the gc_time_limit_exceeded
|
||||
// will be thrown now. Clear the gc_overhead_limit_exceeded
|
||||
// flag to avoid the following situation.
|
||||
// gc_time_limit_exceeded is set during a collection
|
||||
// gc_overhead_limit_exceeded is set during a collection
|
||||
// the collection fails to return enough space and an OOM is thrown
|
||||
// the next GC is skipped because the gc_time_limit_exceeded
|
||||
// flag is set and another OOM is thrown
|
||||
// a subsequent GC prematurely throws an out-of-memory because
|
||||
// the gc_overhead_limit_exceeded counts did not start
|
||||
// again from 0.
|
||||
if (op.result() == NULL) {
|
||||
size_policy()->set_gc_time_limit_exceeded(false);
|
||||
size_policy()->reset_gc_overhead_limit_count();
|
||||
}
|
||||
return op.result();
|
||||
}
|
||||
|
@ -1,5 +1,5 @@
|
||||
/*
|
||||
* Copyright 2001-2009 Sun Microsystems, Inc. All Rights Reserved.
|
||||
* Copyright 2001-2010 Sun Microsystems, Inc. All Rights Reserved.
|
||||
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
||||
*
|
||||
* This code is free software; you can redistribute it and/or modify it
|
||||
@ -25,6 +25,8 @@
|
||||
class AdjoiningGenerations;
|
||||
class GCTaskManager;
|
||||
class PSAdaptiveSizePolicy;
|
||||
class GenerationSizer;
|
||||
class CollectorPolicy;
|
||||
|
||||
class ParallelScavengeHeap : public CollectedHeap {
|
||||
friend class VMStructs;
|
||||
@ -43,6 +45,8 @@ class ParallelScavengeHeap : public CollectedHeap {
|
||||
size_t _young_gen_alignment;
|
||||
size_t _old_gen_alignment;
|
||||
|
||||
GenerationSizer* _collector_policy;
|
||||
|
||||
inline size_t set_alignment(size_t& var, size_t val);
|
||||
|
||||
// Collection of generations that are adjacent in the
|
||||
@ -72,6 +76,9 @@ class ParallelScavengeHeap : public CollectedHeap {
|
||||
return CollectedHeap::ParallelScavengeHeap;
|
||||
}
|
||||
|
||||
CollectorPolicy* collector_policy() const { return (CollectorPolicy*) _collector_policy; }
|
||||
// GenerationSizer* collector_policy() const { return _collector_policy; }
|
||||
|
||||
static PSYoungGen* young_gen() { return _young_gen; }
|
||||
static PSOldGen* old_gen() { return _old_gen; }
|
||||
static PSPermGen* perm_gen() { return _perm_gen; }
|
||||
|
@ -1,5 +1,5 @@
|
||||
/*
|
||||
* Copyright 2002-2007 Sun Microsystems, Inc. All Rights Reserved.
|
||||
* Copyright 2002-2010 Sun Microsystems, Inc. All Rights Reserved.
|
||||
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
||||
*
|
||||
* This code is free software; you can redistribute it and/or modify it
|
||||
@ -184,18 +184,19 @@ void PSAdaptiveSizePolicy::clear_generation_free_space_flags() {
|
||||
set_change_young_gen_for_maj_pauses(0);
|
||||
}
|
||||
|
||||
|
||||
// If this is not a full GC, only test and modify the young generation.
|
||||
|
||||
void PSAdaptiveSizePolicy::compute_generation_free_space(size_t young_live,
|
||||
size_t eden_live,
|
||||
size_t old_live,
|
||||
size_t perm_live,
|
||||
size_t cur_eden,
|
||||
size_t max_old_gen_size,
|
||||
size_t max_eden_size,
|
||||
bool is_full_gc,
|
||||
GCCause::Cause gc_cause) {
|
||||
void PSAdaptiveSizePolicy::compute_generation_free_space(
|
||||
size_t young_live,
|
||||
size_t eden_live,
|
||||
size_t old_live,
|
||||
size_t perm_live,
|
||||
size_t cur_eden,
|
||||
size_t max_old_gen_size,
|
||||
size_t max_eden_size,
|
||||
bool is_full_gc,
|
||||
GCCause::Cause gc_cause,
|
||||
CollectorPolicy* collector_policy) {
|
||||
|
||||
// Update statistics
|
||||
// Time statistics are updated as we go, update footprint stats here
|
||||
@ -380,91 +381,16 @@ void PSAdaptiveSizePolicy::compute_generation_free_space(size_t young_live,
|
||||
// Is too much time being spent in GC?
|
||||
// Is the heap trying to grow beyond it's limits?
|
||||
|
||||
const size_t free_in_old_gen = (size_t)(max_old_gen_size - avg_old_live()->average());
|
||||
const size_t free_in_old_gen =
|
||||
(size_t)(max_old_gen_size - avg_old_live()->average());
|
||||
if (desired_promo_size > free_in_old_gen && desired_eden_size > eden_limit) {
|
||||
|
||||
// eden_limit is the upper limit on the size of eden based on
|
||||
// the maximum size of the young generation and the sizes
|
||||
// of the survivor space.
|
||||
// The question being asked is whether the gc costs are high
|
||||
// and the space being recovered by a collection is low.
|
||||
// free_in_young_gen is the free space in the young generation
|
||||
// after a collection and promo_live is the free space in the old
|
||||
// generation after a collection.
|
||||
//
|
||||
// Use the minimum of the current value of the live in the
|
||||
// young gen or the average of the live in the young gen.
|
||||
// If the current value drops quickly, that should be taken
|
||||
// into account (i.e., don't trigger if the amount of free
|
||||
// space has suddenly jumped up). If the current is much
|
||||
// higher than the average, use the average since it represents
|
||||
// the longer term behavor.
|
||||
const size_t live_in_eden = MIN2(eden_live, (size_t) avg_eden_live()->average());
|
||||
const size_t free_in_eden = eden_limit > live_in_eden ?
|
||||
eden_limit - live_in_eden : 0;
|
||||
const size_t total_free_limit = free_in_old_gen + free_in_eden;
|
||||
const size_t total_mem = max_old_gen_size + max_eden_size;
|
||||
const double mem_free_limit = total_mem * (GCHeapFreeLimit/100.0);
|
||||
if (PrintAdaptiveSizePolicy && (Verbose ||
|
||||
(total_free_limit < (size_t) mem_free_limit))) {
|
||||
gclog_or_tty->print_cr(
|
||||
"PSAdaptiveSizePolicy::compute_generation_free_space limits:"
|
||||
" promo_limit: " SIZE_FORMAT
|
||||
" eden_limit: " SIZE_FORMAT
|
||||
" total_free_limit: " SIZE_FORMAT
|
||||
" max_old_gen_size: " SIZE_FORMAT
|
||||
" max_eden_size: " SIZE_FORMAT
|
||||
" mem_free_limit: " SIZE_FORMAT,
|
||||
promo_limit, eden_limit, total_free_limit,
|
||||
max_old_gen_size, max_eden_size,
|
||||
(size_t) mem_free_limit);
|
||||
}
|
||||
|
||||
if (is_full_gc) {
|
||||
if (gc_cost() > gc_cost_limit &&
|
||||
total_free_limit < (size_t) mem_free_limit) {
|
||||
// Collections, on average, are taking too much time, and
|
||||
// gc_cost() > gc_cost_limit
|
||||
// we have too little space available after a full gc.
|
||||
// total_free_limit < mem_free_limit
|
||||
// where
|
||||
// total_free_limit is the free space available in
|
||||
// both generations
|
||||
// total_mem is the total space available for allocation
|
||||
// in both generations (survivor spaces are not included
|
||||
// just as they are not included in eden_limit).
|
||||
// mem_free_limit is a fraction of total_mem judged to be an
|
||||
// acceptable amount that is still unused.
|
||||
// The heap can ask for the value of this variable when deciding
|
||||
// whether to thrown an OutOfMemory error.
|
||||
// Note that the gc time limit test only works for the collections
|
||||
// of the young gen + tenured gen and not for collections of the
|
||||
// permanent gen. That is because the calculation of the space
|
||||
// freed by the collection is the free space in the young gen +
|
||||
// tenured gen.
|
||||
// Ignore explicit GC's. Ignoring explicit GC's at this level
|
||||
// is the equivalent of the GC did not happen as far as the
|
||||
// overhead calculation is concerted (i.e., the flag is not set
|
||||
// and the count is not affected). Also the average will not
|
||||
// have been updated unless UseAdaptiveSizePolicyWithSystemGC is on.
|
||||
if (!GCCause::is_user_requested_gc(gc_cause) &&
|
||||
!GCCause::is_serviceability_requested_gc(gc_cause)) {
|
||||
inc_gc_time_limit_count();
|
||||
if (UseGCOverheadLimit &&
|
||||
(gc_time_limit_count() > AdaptiveSizePolicyGCTimeLimitThreshold)){
|
||||
// All conditions have been met for throwing an out-of-memory
|
||||
_gc_time_limit_exceeded = true;
|
||||
// Avoid consecutive OOM due to the gc time limit by resetting
|
||||
// the counter.
|
||||
reset_gc_time_limit_count();
|
||||
}
|
||||
_print_gc_time_limit_would_be_exceeded = true;
|
||||
}
|
||||
} else {
|
||||
// Did not exceed overhead limits
|
||||
reset_gc_time_limit_count();
|
||||
}
|
||||
}
|
||||
check_gc_overhead_limit(young_live,
|
||||
eden_live,
|
||||
max_old_gen_size,
|
||||
max_eden_size,
|
||||
is_full_gc,
|
||||
gc_cause,
|
||||
collector_policy);
|
||||
}
|
||||
|
||||
|
||||
|
@ -1,5 +1,5 @@
|
||||
/*
|
||||
* Copyright 2002-2007 Sun Microsystems, Inc. All Rights Reserved.
|
||||
* Copyright 2002-2010 Sun Microsystems, Inc. All Rights Reserved.
|
||||
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
||||
*
|
||||
* This code is free software; you can redistribute it and/or modify it
|
||||
@ -45,6 +45,7 @@
|
||||
|
||||
// Forward decls
|
||||
class elapsedTimer;
|
||||
class GenerationSizer;
|
||||
|
||||
class PSAdaptiveSizePolicy : public AdaptiveSizePolicy {
|
||||
friend class PSGCAdaptivePolicyCounters;
|
||||
@ -340,7 +341,8 @@ class PSAdaptiveSizePolicy : public AdaptiveSizePolicy {
|
||||
size_t max_old_gen_size,
|
||||
size_t max_eden_size,
|
||||
bool is_full_gc,
|
||||
GCCause::Cause gc_cause);
|
||||
GCCause::Cause gc_cause,
|
||||
CollectorPolicy* collector_policy);
|
||||
|
||||
// Calculates new survivor space size; returns a new tenuring threshold
|
||||
// value. Stores new survivor size in _survivor_size.
|
||||
|
@ -1,5 +1,5 @@
|
||||
/*
|
||||
* Copyright 2003-2006 Sun Microsystems, Inc. All Rights Reserved.
|
||||
* Copyright 2003-2010 Sun Microsystems, Inc. All Rights Reserved.
|
||||
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
||||
*
|
||||
* This code is free software; you can redistribute it and/or modify it
|
||||
@ -117,11 +117,13 @@ PSGCAdaptivePolicyCounters::PSGCAdaptivePolicyCounters(const char* name_arg,
|
||||
PerfData::U_Bytes, (jlong) ps_size_policy()->avg_base_footprint()->average(), CHECK);
|
||||
|
||||
cname = PerfDataManager::counter_name(name_space(), "gcTimeLimitExceeded");
|
||||
_gc_time_limit_exceeded = PerfDataManager::create_variable(SUN_GC, cname,
|
||||
PerfData::U_Events, ps_size_policy()->gc_time_limit_exceeded(), CHECK);
|
||||
_gc_overhead_limit_exceeded_counter =
|
||||
PerfDataManager::create_variable(SUN_GC, cname,
|
||||
PerfData::U_Events, ps_size_policy()->gc_overhead_limit_exceeded(), CHECK);
|
||||
|
||||
cname = PerfDataManager::counter_name(name_space(), "liveAtLastFullGc");
|
||||
_live_at_last_full_gc = PerfDataManager::create_variable(SUN_GC, cname,
|
||||
_live_at_last_full_gc_counter =
|
||||
PerfDataManager::create_variable(SUN_GC, cname,
|
||||
PerfData::U_Bytes, ps_size_policy()->live_at_last_full_gc(), CHECK);
|
||||
|
||||
cname = PerfDataManager::counter_name(name_space(), "majorPauseOldSlope");
|
||||
@ -189,6 +191,8 @@ void PSGCAdaptivePolicyCounters::update_counters_from_policy() {
|
||||
update_minor_pause_old_slope();
|
||||
update_major_pause_young_slope();
|
||||
update_minor_collection_slope_counter();
|
||||
update_gc_overhead_limit_exceeded_counter();
|
||||
update_live_at_last_full_gc_counter();
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -1,5 +1,5 @@
|
||||
/*
|
||||
* Copyright 2003-2005 Sun Microsystems, Inc. All Rights Reserved.
|
||||
* Copyright 2003-2010 Sun Microsystems, Inc. All Rights Reserved.
|
||||
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
||||
*
|
||||
* This code is free software; you can redistribute it and/or modify it
|
||||
@ -44,8 +44,8 @@ class PSGCAdaptivePolicyCounters : public GCAdaptivePolicyCounters {
|
||||
PerfVariable* _live_space;
|
||||
PerfVariable* _free_space;
|
||||
PerfVariable* _avg_base_footprint;
|
||||
PerfVariable* _gc_time_limit_exceeded;
|
||||
PerfVariable* _live_at_last_full_gc;
|
||||
PerfVariable* _gc_overhead_limit_exceeded_counter;
|
||||
PerfVariable* _live_at_last_full_gc_counter;
|
||||
PerfVariable* _old_capacity;
|
||||
PerfVariable* _boundary_moved;
|
||||
|
||||
@ -169,6 +169,14 @@ class PSGCAdaptivePolicyCounters : public GCAdaptivePolicyCounters {
|
||||
(jlong)(ps_size_policy()->major_pause_young_slope() * 1000)
|
||||
);
|
||||
}
|
||||
inline void update_gc_overhead_limit_exceeded_counter() {
|
||||
_gc_overhead_limit_exceeded_counter->set_value(
|
||||
(jlong) ps_size_policy()->gc_overhead_limit_exceeded());
|
||||
}
|
||||
inline void update_live_at_last_full_gc_counter() {
|
||||
_live_at_last_full_gc_counter->set_value(
|
||||
(jlong)(ps_size_policy()->live_at_last_full_gc()));
|
||||
}
|
||||
|
||||
inline void update_scavenge_skipped(int cause) {
|
||||
_scavenge_skipped->set_value(cause);
|
||||
|
@ -1,5 +1,5 @@
|
||||
/*
|
||||
* Copyright 2001-2009 Sun Microsystems, Inc. All Rights Reserved.
|
||||
* Copyright 2001-2010 Sun Microsystems, Inc. All Rights Reserved.
|
||||
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
||||
*
|
||||
* This code is free software; you can redistribute it and/or modify it
|
||||
@ -46,6 +46,12 @@ void PSMarkSweep::initialize() {
|
||||
//
|
||||
// Note that this method should only be called from the vm_thread while
|
||||
// at a safepoint!
|
||||
//
|
||||
// Note that the all_soft_refs_clear flag in the collector policy
|
||||
// may be true because this method can be called without intervening
|
||||
// activity. For example when the heap space is tight and full measure
|
||||
// are being taken to free space.
|
||||
|
||||
void PSMarkSweep::invoke(bool maximum_heap_compaction) {
|
||||
assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
|
||||
assert(Thread::current() == (Thread*)VMThread::vm_thread(), "should be in vm thread");
|
||||
@ -54,24 +60,18 @@ void PSMarkSweep::invoke(bool maximum_heap_compaction) {
|
||||
ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
|
||||
GCCause::Cause gc_cause = heap->gc_cause();
|
||||
PSAdaptiveSizePolicy* policy = heap->size_policy();
|
||||
IsGCActiveMark mark;
|
||||
|
||||
// Before each allocation/collection attempt, find out from the
|
||||
// policy object if GCs are, on the whole, taking too long. If so,
|
||||
// bail out without attempting a collection. The exceptions are
|
||||
// for explicitly requested GC's.
|
||||
if (!policy->gc_time_limit_exceeded() ||
|
||||
GCCause::is_user_requested_gc(gc_cause) ||
|
||||
GCCause::is_serviceability_requested_gc(gc_cause)) {
|
||||
IsGCActiveMark mark;
|
||||
|
||||
if (ScavengeBeforeFullGC) {
|
||||
PSScavenge::invoke_no_policy();
|
||||
}
|
||||
|
||||
int count = (maximum_heap_compaction)?1:MarkSweepAlwaysCompactCount;
|
||||
IntFlagSetting flag_setting(MarkSweepAlwaysCompactCount, count);
|
||||
PSMarkSweep::invoke_no_policy(maximum_heap_compaction);
|
||||
if (ScavengeBeforeFullGC) {
|
||||
PSScavenge::invoke_no_policy();
|
||||
}
|
||||
|
||||
const bool clear_all_soft_refs =
|
||||
heap->collector_policy()->should_clear_all_soft_refs();
|
||||
|
||||
int count = (maximum_heap_compaction)?1:MarkSweepAlwaysCompactCount;
|
||||
IntFlagSetting flag_setting(MarkSweepAlwaysCompactCount, count);
|
||||
PSMarkSweep::invoke_no_policy(clear_all_soft_refs || maximum_heap_compaction);
|
||||
}
|
||||
|
||||
// This method contains no policy. You should probably
|
||||
@ -89,6 +89,10 @@ void PSMarkSweep::invoke_no_policy(bool clear_all_softrefs) {
|
||||
assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
|
||||
PSAdaptiveSizePolicy* size_policy = heap->size_policy();
|
||||
|
||||
// The scope of casr should end after code that can change
|
||||
// CollectorPolicy::_should_clear_all_soft_refs.
|
||||
ClearedAllSoftRefs casr(clear_all_softrefs, heap->collector_policy());
|
||||
|
||||
PSYoungGen* young_gen = heap->young_gen();
|
||||
PSOldGen* old_gen = heap->old_gen();
|
||||
PSPermGen* perm_gen = heap->perm_gen();
|
||||
@ -275,7 +279,8 @@ void PSMarkSweep::invoke_no_policy(bool clear_all_softrefs) {
|
||||
old_gen->max_gen_size(),
|
||||
max_eden_size,
|
||||
true /* full gc*/,
|
||||
gc_cause);
|
||||
gc_cause,
|
||||
heap->collector_policy());
|
||||
|
||||
heap->resize_old_gen(size_policy->calculated_old_free_size_in_bytes());
|
||||
|
||||
@ -326,19 +331,6 @@ void PSMarkSweep::invoke_no_policy(bool clear_all_softrefs) {
|
||||
// Track memory usage and detect low memory
|
||||
MemoryService::track_memory_usage();
|
||||
heap->update_counters();
|
||||
|
||||
if (PrintGCDetails) {
|
||||
if (size_policy->print_gc_time_limit_would_be_exceeded()) {
|
||||
if (size_policy->gc_time_limit_exceeded()) {
|
||||
gclog_or_tty->print_cr(" GC time is exceeding GCTimeLimit "
|
||||
"of %d%%", GCTimeLimit);
|
||||
} else {
|
||||
gclog_or_tty->print_cr(" GC time would exceed GCTimeLimit "
|
||||
"of %d%%", GCTimeLimit);
|
||||
}
|
||||
}
|
||||
size_policy->set_print_gc_time_limit_would_be_exceeded(false);
|
||||
}
|
||||
}
|
||||
|
||||
if (VerifyAfterGC && heap->total_collections() >= VerifyGCStartAt) {
|
||||
|
@ -1,5 +1,5 @@
|
||||
/*
|
||||
* Copyright 2005-2009 Sun Microsystems, Inc. All Rights Reserved.
|
||||
* Copyright 2005-2010 Sun Microsystems, Inc. All Rights Reserved.
|
||||
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
||||
*
|
||||
* This code is free software; you can redistribute it and/or modify it
|
||||
@ -1923,31 +1923,32 @@ void PSParallelCompact::summary_phase(ParCompactionManager* cm,
|
||||
//
|
||||
// Note that this method should only be called from the vm_thread while at a
|
||||
// safepoint.
|
||||
//
|
||||
// Note that the all_soft_refs_clear flag in the collector policy
|
||||
// may be true because this method can be called without intervening
|
||||
// activity. For example when the heap space is tight and full measure
|
||||
// are being taken to free space.
|
||||
void PSParallelCompact::invoke(bool maximum_heap_compaction) {
|
||||
assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
|
||||
assert(Thread::current() == (Thread*)VMThread::vm_thread(),
|
||||
"should be in vm thread");
|
||||
|
||||
ParallelScavengeHeap* heap = gc_heap();
|
||||
GCCause::Cause gc_cause = heap->gc_cause();
|
||||
assert(!heap->is_gc_active(), "not reentrant");
|
||||
|
||||
PSAdaptiveSizePolicy* policy = heap->size_policy();
|
||||
IsGCActiveMark mark;
|
||||
|
||||
// Before each allocation/collection attempt, find out from the
|
||||
// policy object if GCs are, on the whole, taking too long. If so,
|
||||
// bail out without attempting a collection. The exceptions are
|
||||
// for explicitly requested GC's.
|
||||
if (!policy->gc_time_limit_exceeded() ||
|
||||
GCCause::is_user_requested_gc(gc_cause) ||
|
||||
GCCause::is_serviceability_requested_gc(gc_cause)) {
|
||||
IsGCActiveMark mark;
|
||||
|
||||
if (ScavengeBeforeFullGC) {
|
||||
PSScavenge::invoke_no_policy();
|
||||
}
|
||||
|
||||
PSParallelCompact::invoke_no_policy(maximum_heap_compaction);
|
||||
if (ScavengeBeforeFullGC) {
|
||||
PSScavenge::invoke_no_policy();
|
||||
}
|
||||
|
||||
const bool clear_all_soft_refs =
|
||||
heap->collector_policy()->should_clear_all_soft_refs();
|
||||
|
||||
PSParallelCompact::invoke_no_policy(clear_all_soft_refs ||
|
||||
maximum_heap_compaction);
|
||||
}
|
||||
|
||||
bool ParallelCompactData::region_contains(size_t region_index, HeapWord* addr) {
|
||||
@ -1976,6 +1977,11 @@ void PSParallelCompact::invoke_no_policy(bool maximum_heap_compaction) {
|
||||
PSPermGen* perm_gen = heap->perm_gen();
|
||||
PSAdaptiveSizePolicy* size_policy = heap->size_policy();
|
||||
|
||||
// The scope of casr should end after code that can change
|
||||
// CollectorPolicy::_should_clear_all_soft_refs.
|
||||
ClearedAllSoftRefs casr(maximum_heap_compaction,
|
||||
heap->collector_policy());
|
||||
|
||||
if (ZapUnusedHeapArea) {
|
||||
// Save information needed to minimize mangling
|
||||
heap->record_gen_tops_before_GC();
|
||||
@ -2109,7 +2115,8 @@ void PSParallelCompact::invoke_no_policy(bool maximum_heap_compaction) {
|
||||
old_gen->max_gen_size(),
|
||||
max_eden_size,
|
||||
true /* full gc*/,
|
||||
gc_cause);
|
||||
gc_cause,
|
||||
heap->collector_policy());
|
||||
|
||||
heap->resize_old_gen(
|
||||
size_policy->calculated_old_free_size_in_bytes());
|
||||
@ -2157,19 +2164,6 @@ void PSParallelCompact::invoke_no_policy(bool maximum_heap_compaction) {
|
||||
// Track memory usage and detect low memory
|
||||
MemoryService::track_memory_usage();
|
||||
heap->update_counters();
|
||||
|
||||
if (PrintGCDetails) {
|
||||
if (size_policy->print_gc_time_limit_would_be_exceeded()) {
|
||||
if (size_policy->gc_time_limit_exceeded()) {
|
||||
gclog_or_tty->print_cr(" GC time is exceeding GCTimeLimit "
|
||||
"of %d%%", GCTimeLimit);
|
||||
} else {
|
||||
gclog_or_tty->print_cr(" GC time would exceed GCTimeLimit "
|
||||
"of %d%%", GCTimeLimit);
|
||||
}
|
||||
}
|
||||
size_policy->set_print_gc_time_limit_would_be_exceeded(false);
|
||||
}
|
||||
}
|
||||
|
||||
if (VerifyAfterGC && heap->total_collections() >= VerifyGCStartAt) {
|
||||
|
@ -1,5 +1,5 @@
|
||||
/*
|
||||
* Copyright 2002-2009 Sun Microsystems, Inc. All Rights Reserved.
|
||||
* Copyright 2002-2010 Sun Microsystems, Inc. All Rights Reserved.
|
||||
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
||||
*
|
||||
* This code is free software; you can redistribute it and/or modify it
|
||||
@ -187,8 +187,7 @@ void PSRefProcTaskExecutor::execute(EnqueueTask& task)
|
||||
//
|
||||
// Note that this method should only be called from the vm_thread while
|
||||
// at a safepoint!
|
||||
void PSScavenge::invoke()
|
||||
{
|
||||
void PSScavenge::invoke() {
|
||||
assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
|
||||
assert(Thread::current() == (Thread*)VMThread::vm_thread(), "should be in vm thread");
|
||||
assert(!Universe::heap()->is_gc_active(), "not reentrant");
|
||||
@ -197,29 +196,25 @@ void PSScavenge::invoke()
|
||||
assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
|
||||
|
||||
PSAdaptiveSizePolicy* policy = heap->size_policy();
|
||||
IsGCActiveMark mark;
|
||||
|
||||
// Before each allocation/collection attempt, find out from the
|
||||
// policy object if GCs are, on the whole, taking too long. If so,
|
||||
// bail out without attempting a collection.
|
||||
if (!policy->gc_time_limit_exceeded()) {
|
||||
IsGCActiveMark mark;
|
||||
bool scavenge_was_done = PSScavenge::invoke_no_policy();
|
||||
|
||||
bool scavenge_was_done = PSScavenge::invoke_no_policy();
|
||||
|
||||
PSGCAdaptivePolicyCounters* counters = heap->gc_policy_counters();
|
||||
PSGCAdaptivePolicyCounters* counters = heap->gc_policy_counters();
|
||||
if (UsePerfData)
|
||||
counters->update_full_follows_scavenge(0);
|
||||
if (!scavenge_was_done ||
|
||||
policy->should_full_GC(heap->old_gen()->free_in_bytes())) {
|
||||
if (UsePerfData)
|
||||
counters->update_full_follows_scavenge(0);
|
||||
if (!scavenge_was_done ||
|
||||
policy->should_full_GC(heap->old_gen()->free_in_bytes())) {
|
||||
if (UsePerfData)
|
||||
counters->update_full_follows_scavenge(full_follows_scavenge);
|
||||
counters->update_full_follows_scavenge(full_follows_scavenge);
|
||||
GCCauseSetter gccs(heap, GCCause::_adaptive_size_policy);
|
||||
CollectorPolicy* cp = heap->collector_policy();
|
||||
const bool clear_all_softrefs = cp->should_clear_all_soft_refs();
|
||||
|
||||
GCCauseSetter gccs(heap, GCCause::_adaptive_size_policy);
|
||||
if (UseParallelOldGC) {
|
||||
PSParallelCompact::invoke_no_policy(false);
|
||||
} else {
|
||||
PSMarkSweep::invoke_no_policy(false);
|
||||
}
|
||||
if (UseParallelOldGC) {
|
||||
PSParallelCompact::invoke_no_policy(clear_all_softrefs);
|
||||
} else {
|
||||
PSMarkSweep::invoke_no_policy(clear_all_softrefs);
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -447,6 +442,9 @@ bool PSScavenge::invoke_no_policy() {
|
||||
size_t promoted = old_gen->used_in_bytes() - old_gen_used_before;
|
||||
size_policy->update_averages(_survivor_overflow, survived, promoted);
|
||||
|
||||
// A successful scavenge should restart the GC time limit count which is
|
||||
// for full GC's.
|
||||
size_policy->reset_gc_overhead_limit_count();
|
||||
if (UseAdaptiveSizePolicy) {
|
||||
// Calculate the new survivor size and tenuring threshold
|
||||
|
||||
@ -523,7 +521,8 @@ bool PSScavenge::invoke_no_policy() {
|
||||
old_gen->max_gen_size(),
|
||||
max_eden_size,
|
||||
false /* full gc*/,
|
||||
gc_cause);
|
||||
gc_cause,
|
||||
heap->collector_policy());
|
||||
|
||||
}
|
||||
// Resize the young generation at every collection
|
||||
|
@ -1,5 +1,5 @@
|
||||
/*
|
||||
* Copyright 2004-2006 Sun Microsystems, Inc. All Rights Reserved.
|
||||
* Copyright 2004-2010 Sun Microsystems, Inc. All Rights Reserved.
|
||||
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
||||
*
|
||||
* This code is free software; you can redistribute it and/or modify it
|
||||
@ -44,13 +44,15 @@ AdaptiveSizePolicy::AdaptiveSizePolicy(size_t init_eden_size,
|
||||
_survivor_size(init_survivor_size),
|
||||
_gc_pause_goal_sec(gc_pause_goal_sec),
|
||||
_throughput_goal(1.0 - double(1.0 / (1.0 + (double) gc_cost_ratio))),
|
||||
_gc_time_limit_exceeded(false),
|
||||
_print_gc_time_limit_would_be_exceeded(false),
|
||||
_gc_time_limit_count(0),
|
||||
_gc_overhead_limit_exceeded(false),
|
||||
_print_gc_overhead_limit_would_be_exceeded(false),
|
||||
_gc_overhead_limit_count(0),
|
||||
_latest_minor_mutator_interval_seconds(0),
|
||||
_threshold_tolerance_percent(1.0 + ThresholdTolerance/100.0),
|
||||
_young_gen_change_for_minor_throughput(0),
|
||||
_old_gen_change_for_major_throughput(0) {
|
||||
assert(AdaptiveSizePolicyGCTimeLimitThreshold > 0,
|
||||
"No opportunity to clear SoftReferences before GC overhead limit");
|
||||
_avg_minor_pause =
|
||||
new AdaptivePaddedAverage(AdaptiveTimeWeight, PausePadding);
|
||||
_avg_minor_interval = new AdaptiveWeightedAverage(AdaptiveTimeWeight);
|
||||
@ -278,6 +280,147 @@ void AdaptiveSizePolicy::clear_generation_free_space_flags() {
|
||||
set_decide_at_full_gc(0);
|
||||
}
|
||||
|
||||
void AdaptiveSizePolicy::check_gc_overhead_limit(
|
||||
size_t young_live,
|
||||
size_t eden_live,
|
||||
size_t max_old_gen_size,
|
||||
size_t max_eden_size,
|
||||
bool is_full_gc,
|
||||
GCCause::Cause gc_cause,
|
||||
CollectorPolicy* collector_policy) {
|
||||
|
||||
// Ignore explicit GC's. Exiting here does not set the flag and
|
||||
// does not reset the count. Updating of the averages for system
|
||||
// GC's is still controlled by UseAdaptiveSizePolicyWithSystemGC.
|
||||
if (GCCause::is_user_requested_gc(gc_cause) ||
|
||||
GCCause::is_serviceability_requested_gc(gc_cause)) {
|
||||
return;
|
||||
}
|
||||
// eden_limit is the upper limit on the size of eden based on
|
||||
// the maximum size of the young generation and the sizes
|
||||
// of the survivor space.
|
||||
// The question being asked is whether the gc costs are high
|
||||
// and the space being recovered by a collection is low.
|
||||
// free_in_young_gen is the free space in the young generation
|
||||
// after a collection and promo_live is the free space in the old
|
||||
// generation after a collection.
|
||||
//
|
||||
// Use the minimum of the current value of the live in the
|
||||
// young gen or the average of the live in the young gen.
|
||||
// If the current value drops quickly, that should be taken
|
||||
// into account (i.e., don't trigger if the amount of free
|
||||
// space has suddenly jumped up). If the current is much
|
||||
// higher than the average, use the average since it represents
|
||||
// the longer term behavor.
|
||||
const size_t live_in_eden =
|
||||
MIN2(eden_live, (size_t) avg_eden_live()->average());
|
||||
const size_t free_in_eden = max_eden_size > live_in_eden ?
|
||||
max_eden_size - live_in_eden : 0;
|
||||
const size_t free_in_old_gen = (size_t)(max_old_gen_size - avg_old_live()->average());
|
||||
const size_t total_free_limit = free_in_old_gen + free_in_eden;
|
||||
const size_t total_mem = max_old_gen_size + max_eden_size;
|
||||
const double mem_free_limit = total_mem * (GCHeapFreeLimit/100.0);
|
||||
const double mem_free_old_limit = max_old_gen_size * (GCHeapFreeLimit/100.0);
|
||||
const double mem_free_eden_limit = max_eden_size * (GCHeapFreeLimit/100.0);
|
||||
const double gc_cost_limit = GCTimeLimit/100.0;
|
||||
size_t promo_limit = (size_t)(max_old_gen_size - avg_old_live()->average());
|
||||
// But don't force a promo size below the current promo size. Otherwise,
|
||||
// the promo size will shrink for no good reason.
|
||||
promo_limit = MAX2(promo_limit, _promo_size);
|
||||
|
||||
|
||||
if (PrintAdaptiveSizePolicy && (Verbose ||
|
||||
(free_in_old_gen < (size_t) mem_free_old_limit &&
|
||||
free_in_eden < (size_t) mem_free_eden_limit))) {
|
||||
gclog_or_tty->print_cr(
|
||||
"PSAdaptiveSizePolicy::compute_generation_free_space limits:"
|
||||
" promo_limit: " SIZE_FORMAT
|
||||
" max_eden_size: " SIZE_FORMAT
|
||||
" total_free_limit: " SIZE_FORMAT
|
||||
" max_old_gen_size: " SIZE_FORMAT
|
||||
" max_eden_size: " SIZE_FORMAT
|
||||
" mem_free_limit: " SIZE_FORMAT,
|
||||
promo_limit, max_eden_size, total_free_limit,
|
||||
max_old_gen_size, max_eden_size,
|
||||
(size_t) mem_free_limit);
|
||||
}
|
||||
|
||||
bool print_gc_overhead_limit_would_be_exceeded = false;
|
||||
if (is_full_gc) {
|
||||
if (gc_cost() > gc_cost_limit &&
|
||||
free_in_old_gen < (size_t) mem_free_old_limit &&
|
||||
free_in_eden < (size_t) mem_free_eden_limit) {
|
||||
// Collections, on average, are taking too much time, and
|
||||
// gc_cost() > gc_cost_limit
|
||||
// we have too little space available after a full gc.
|
||||
// total_free_limit < mem_free_limit
|
||||
// where
|
||||
// total_free_limit is the free space available in
|
||||
// both generations
|
||||
// total_mem is the total space available for allocation
|
||||
// in both generations (survivor spaces are not included
|
||||
// just as they are not included in eden_limit).
|
||||
// mem_free_limit is a fraction of total_mem judged to be an
|
||||
// acceptable amount that is still unused.
|
||||
// The heap can ask for the value of this variable when deciding
|
||||
// whether to thrown an OutOfMemory error.
|
||||
// Note that the gc time limit test only works for the collections
|
||||
// of the young gen + tenured gen and not for collections of the
|
||||
// permanent gen. That is because the calculation of the space
|
||||
// freed by the collection is the free space in the young gen +
|
||||
// tenured gen.
|
||||
// At this point the GC overhead limit is being exceeded.
|
||||
inc_gc_overhead_limit_count();
|
||||
if (UseGCOverheadLimit) {
|
||||
if (gc_overhead_limit_count() >=
|
||||
AdaptiveSizePolicyGCTimeLimitThreshold){
|
||||
// All conditions have been met for throwing an out-of-memory
|
||||
set_gc_overhead_limit_exceeded(true);
|
||||
// Avoid consecutive OOM due to the gc time limit by resetting
|
||||
// the counter.
|
||||
reset_gc_overhead_limit_count();
|
||||
} else {
|
||||
// The required consecutive collections which exceed the
|
||||
// GC time limit may or may not have been reached. We
|
||||
// are approaching that condition and so as not to
|
||||
// throw an out-of-memory before all SoftRef's have been
|
||||
// cleared, set _should_clear_all_soft_refs in CollectorPolicy.
|
||||
// The clearing will be done on the next GC.
|
||||
bool near_limit = gc_overhead_limit_near();
|
||||
if (near_limit) {
|
||||
collector_policy->set_should_clear_all_soft_refs(true);
|
||||
if (PrintGCDetails && Verbose) {
|
||||
gclog_or_tty->print_cr(" Nearing GC overhead limit, "
|
||||
"will be clearing all SoftReference");
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
// Set this even when the overhead limit will not
|
||||
// cause an out-of-memory. Diagnostic message indicating
|
||||
// that the overhead limit is being exceeded is sometimes
|
||||
// printed.
|
||||
print_gc_overhead_limit_would_be_exceeded = true;
|
||||
|
||||
} else {
|
||||
// Did not exceed overhead limits
|
||||
reset_gc_overhead_limit_count();
|
||||
}
|
||||
}
|
||||
|
||||
if (UseGCOverheadLimit && PrintGCDetails && Verbose) {
|
||||
if (gc_overhead_limit_exceeded()) {
|
||||
gclog_or_tty->print_cr(" GC is exceeding overhead limit "
|
||||
"of %d%%", GCTimeLimit);
|
||||
reset_gc_overhead_limit_count();
|
||||
} else if (print_gc_overhead_limit_would_be_exceeded) {
|
||||
assert(gc_overhead_limit_count() > 0, "Should not be printing");
|
||||
gclog_or_tty->print_cr(" GC would exceed overhead limit "
|
||||
"of %d%% %d consecutive time(s)",
|
||||
GCTimeLimit, gc_overhead_limit_count());
|
||||
}
|
||||
}
|
||||
}
|
||||
// Printing
|
||||
|
||||
bool AdaptiveSizePolicy::print_adaptive_size_policy_on(outputStream* st) const {
|
||||
|
@ -1,5 +1,5 @@
|
||||
/*
|
||||
* Copyright 2004-2006 Sun Microsystems, Inc. All Rights Reserved.
|
||||
* Copyright 2004-2010 Sun Microsystems, Inc. All Rights Reserved.
|
||||
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
||||
*
|
||||
* This code is free software; you can redistribute it and/or modify it
|
||||
@ -27,6 +27,7 @@
|
||||
|
||||
// Forward decls
|
||||
class elapsedTimer;
|
||||
class CollectorPolicy;
|
||||
|
||||
class AdaptiveSizePolicy : public CHeapObj {
|
||||
friend class GCAdaptivePolicyCounters;
|
||||
@ -75,13 +76,16 @@ class AdaptiveSizePolicy : public CHeapObj {
|
||||
|
||||
// This is a hint for the heap: we've detected that gc times
|
||||
// are taking longer than GCTimeLimit allows.
|
||||
bool _gc_time_limit_exceeded;
|
||||
// Use for diagnostics only. If UseGCTimeLimit is false,
|
||||
bool _gc_overhead_limit_exceeded;
|
||||
// Use for diagnostics only. If UseGCOverheadLimit is false,
|
||||
// this variable is still set.
|
||||
bool _print_gc_time_limit_would_be_exceeded;
|
||||
bool _print_gc_overhead_limit_would_be_exceeded;
|
||||
// Count of consecutive GC that have exceeded the
|
||||
// GC time limit criterion.
|
||||
uint _gc_time_limit_count;
|
||||
uint _gc_overhead_limit_count;
|
||||
// This flag signals that GCTimeLimit is being exceeded
|
||||
// but may not have done so for the required number of consequetive
|
||||
// collections.
|
||||
|
||||
// Minor collection timers used to determine both
|
||||
// pause and interval times for collections.
|
||||
@ -406,22 +410,21 @@ class AdaptiveSizePolicy : public CHeapObj {
|
||||
// Most heaps will choose to throw an OutOfMemoryError when
|
||||
// this occurs but it is up to the heap to request this information
|
||||
// of the policy
|
||||
bool gc_time_limit_exceeded() {
|
||||
return _gc_time_limit_exceeded;
|
||||
bool gc_overhead_limit_exceeded() {
|
||||
return _gc_overhead_limit_exceeded;
|
||||
}
|
||||
void set_gc_time_limit_exceeded(bool v) {
|
||||
_gc_time_limit_exceeded = v;
|
||||
}
|
||||
bool print_gc_time_limit_would_be_exceeded() {
|
||||
return _print_gc_time_limit_would_be_exceeded;
|
||||
}
|
||||
void set_print_gc_time_limit_would_be_exceeded(bool v) {
|
||||
_print_gc_time_limit_would_be_exceeded = v;
|
||||
void set_gc_overhead_limit_exceeded(bool v) {
|
||||
_gc_overhead_limit_exceeded = v;
|
||||
}
|
||||
|
||||
uint gc_time_limit_count() { return _gc_time_limit_count; }
|
||||
void reset_gc_time_limit_count() { _gc_time_limit_count = 0; }
|
||||
void inc_gc_time_limit_count() { _gc_time_limit_count++; }
|
||||
// Tests conditions indicate the GC overhead limit is being approached.
|
||||
bool gc_overhead_limit_near() {
|
||||
return gc_overhead_limit_count() >=
|
||||
(AdaptiveSizePolicyGCTimeLimitThreshold - 1);
|
||||
}
|
||||
uint gc_overhead_limit_count() { return _gc_overhead_limit_count; }
|
||||
void reset_gc_overhead_limit_count() { _gc_overhead_limit_count = 0; }
|
||||
void inc_gc_overhead_limit_count() { _gc_overhead_limit_count++; }
|
||||
// accessors for flags recording the decisions to resize the
|
||||
// generations to meet the pause goal.
|
||||
|
||||
@ -436,6 +439,16 @@ class AdaptiveSizePolicy : public CHeapObj {
|
||||
int decide_at_full_gc() { return _decide_at_full_gc; }
|
||||
void set_decide_at_full_gc(int v) { _decide_at_full_gc = v; }
|
||||
|
||||
// Check the conditions for an out-of-memory due to excessive GC time.
|
||||
// Set _gc_overhead_limit_exceeded if all the conditions have been met.
|
||||
void check_gc_overhead_limit(size_t young_live,
|
||||
size_t eden_live,
|
||||
size_t max_old_gen_size,
|
||||
size_t max_eden_size,
|
||||
bool is_full_gc,
|
||||
GCCause::Cause gc_cause,
|
||||
CollectorPolicy* collector_policy);
|
||||
|
||||
// Printing support
|
||||
virtual bool print_adaptive_size_policy_on(outputStream* st) const;
|
||||
bool print_adaptive_size_policy_on(outputStream* st, int
|
||||
|
@ -115,11 +115,25 @@ bool VM_GC_HeapInspection::skip_operation() const {
|
||||
void VM_GC_HeapInspection::doit() {
|
||||
HandleMark hm;
|
||||
CollectedHeap* ch = Universe::heap();
|
||||
ch->ensure_parsability(false); // must happen, even if collection does
|
||||
// not happen (e.g. due to GC_locker)
|
||||
if (_full_gc) {
|
||||
ch->collect_as_vm_thread(GCCause::_heap_inspection);
|
||||
} else {
|
||||
// make the heap parsable (no need to retire TLABs)
|
||||
ch->ensure_parsability(false);
|
||||
// The collection attempt below would be skipped anyway if
|
||||
// the gc locker is held. The following dump may then be a tad
|
||||
// misleading to someone expecting only live objects to show
|
||||
// up in the dump (see CR 6944195). Just issue a suitable warning
|
||||
// in that case and do not attempt to do a collection.
|
||||
// The latter is a subtle point, because even a failed attempt
|
||||
// to GC will, in fact, induce one in the future, which we
|
||||
// probably want to avoid in this case because the GC that we may
|
||||
// be about to attempt holds value for us only
|
||||
// if it happens now and not if it happens in the eventual
|
||||
// future.
|
||||
if (GC_locker::is_active()) {
|
||||
warning("GC locker is held; pre-dump GC was skipped");
|
||||
} else {
|
||||
ch->collect_as_vm_thread(GCCause::_heap_inspection);
|
||||
}
|
||||
}
|
||||
HeapInspection::heap_inspection(_out, _need_prologue /* need_prologue */);
|
||||
}
|
||||
|
@ -1,5 +1,5 @@
|
||||
/*
|
||||
* Copyright 2005-2008 Sun Microsystems, Inc. All Rights Reserved.
|
||||
* Copyright 2005-2010 Sun Microsystems, Inc. All Rights Reserved.
|
||||
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
||||
*
|
||||
* This code is free software; you can redistribute it and/or modify it
|
||||
@ -89,8 +89,19 @@ class VM_GC_Operation: public VM_Operation {
|
||||
if (full) {
|
||||
_full_gc_count_before = full_gc_count_before;
|
||||
}
|
||||
// In ParallelScavengeHeap::mem_allocate() collections can be
|
||||
// executed within a loop and _all_soft_refs_clear can be set
|
||||
// true after they have been cleared by a collection and another
|
||||
// collection started so that _all_soft_refs_clear can be true
|
||||
// when this collection is started. Don't assert that
|
||||
// _all_soft_refs_clear have to be false here even though
|
||||
// mutators have run. Soft refs will be cleared again in this
|
||||
// collection.
|
||||
}
|
||||
~VM_GC_Operation() {
|
||||
CollectedHeap* ch = Universe::heap();
|
||||
ch->collector_policy()->set_all_soft_refs_clear(false);
|
||||
}
|
||||
~VM_GC_Operation() {}
|
||||
|
||||
// Acquire the reference synchronization lock
|
||||
virtual bool doit_prologue();
|
||||
|
@ -1,5 +1,5 @@
|
||||
/*
|
||||
* Copyright 2001-2009 Sun Microsystems, Inc. All Rights Reserved.
|
||||
* Copyright 2001-2010 Sun Microsystems, Inc. All Rights Reserved.
|
||||
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
||||
*
|
||||
* This code is free software; you can redistribute it and/or modify it
|
||||
@ -31,6 +31,7 @@ class BarrierSet;
|
||||
class ThreadClosure;
|
||||
class AdaptiveSizePolicy;
|
||||
class Thread;
|
||||
class CollectorPolicy;
|
||||
|
||||
//
|
||||
// CollectedHeap
|
||||
@ -506,6 +507,9 @@ class CollectedHeap : public CHeapObj {
|
||||
// Return the AdaptiveSizePolicy for the heap.
|
||||
virtual AdaptiveSizePolicy* size_policy() = 0;
|
||||
|
||||
// Return the CollectorPolicy for the heap
|
||||
virtual CollectorPolicy* collector_policy() const = 0;
|
||||
|
||||
// Iterate over all the ref-containing fields of all objects, calling
|
||||
// "cl.do_oop" on each. This includes objects in permanent memory.
|
||||
virtual void oop_iterate(OopClosure* cl) = 0;
|
||||
|
@ -1,5 +1,5 @@
|
||||
/*
|
||||
* Copyright 2001-2008 Sun Microsystems, Inc. All Rights Reserved.
|
||||
* Copyright 2001-2010 Sun Microsystems, Inc. All Rights Reserved.
|
||||
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
||||
*
|
||||
* This code is free software; you can redistribute it and/or modify it
|
||||
@ -112,6 +112,11 @@ void CollectorPolicy::initialize_perm_generation(PermGen::Name pgnm) {
|
||||
}
|
||||
}
|
||||
|
||||
bool CollectorPolicy::use_should_clear_all_soft_refs(bool v) {
|
||||
bool result = _should_clear_all_soft_refs;
|
||||
set_should_clear_all_soft_refs(false);
|
||||
return result;
|
||||
}
|
||||
|
||||
GenRemSet* CollectorPolicy::create_rem_set(MemRegion whole_heap,
|
||||
int max_covered_regions) {
|
||||
@ -126,6 +131,17 @@ GenRemSet* CollectorPolicy::create_rem_set(MemRegion whole_heap,
|
||||
}
|
||||
}
|
||||
|
||||
void CollectorPolicy::cleared_all_soft_refs() {
|
||||
// If near gc overhear limit, continue to clear SoftRefs. SoftRefs may
|
||||
// have been cleared in the last collection but if the gc overhear
|
||||
// limit continues to be near, SoftRefs should still be cleared.
|
||||
if (size_policy() != NULL) {
|
||||
_should_clear_all_soft_refs = size_policy()->gc_overhead_limit_near();
|
||||
}
|
||||
_all_soft_refs_clear = true;
|
||||
}
|
||||
|
||||
|
||||
// GenCollectorPolicy methods.
|
||||
|
||||
size_t GenCollectorPolicy::scale_by_NewRatio_aligned(size_t base_size) {
|
||||
@ -489,6 +505,12 @@ HeapWord* GenCollectorPolicy::mem_allocate_work(size_t size,
|
||||
|
||||
debug_only(gch->check_for_valid_allocation_state());
|
||||
assert(gch->no_gc_in_progress(), "Allocation during gc not allowed");
|
||||
|
||||
// In general gc_overhead_limit_was_exceeded should be false so
|
||||
// set it so here and reset it to true only if the gc time
|
||||
// limit is being exceeded as checked below.
|
||||
*gc_overhead_limit_was_exceeded = false;
|
||||
|
||||
HeapWord* result = NULL;
|
||||
|
||||
// Loop until the allocation is satisified,
|
||||
@ -524,12 +546,6 @@ HeapWord* GenCollectorPolicy::mem_allocate_work(size_t size,
|
||||
return result;
|
||||
}
|
||||
|
||||
// There are NULL's returned for different circumstances below.
|
||||
// In general gc_overhead_limit_was_exceeded should be false so
|
||||
// set it so here and reset it to true only if the gc time
|
||||
// limit is being exceeded as checked below.
|
||||
*gc_overhead_limit_was_exceeded = false;
|
||||
|
||||
if (GC_locker::is_active_and_needs_gc()) {
|
||||
if (is_tlab) {
|
||||
return NULL; // Caller will retry allocating individual object
|
||||
@ -568,18 +584,6 @@ HeapWord* GenCollectorPolicy::mem_allocate_work(size_t size,
|
||||
gc_count_before = Universe::heap()->total_collections();
|
||||
}
|
||||
|
||||
// Allocation has failed and a collection is about
|
||||
// to be done. If the gc time limit was exceeded the
|
||||
// last time a collection was done, return NULL so
|
||||
// that an out-of-memory will be thrown. Clear
|
||||
// gc_time_limit_exceeded so that subsequent attempts
|
||||
// at a collection will be made.
|
||||
if (size_policy()->gc_time_limit_exceeded()) {
|
||||
*gc_overhead_limit_was_exceeded = true;
|
||||
size_policy()->set_gc_time_limit_exceeded(false);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
VM_GenCollectForAllocation op(size,
|
||||
is_tlab,
|
||||
gc_count_before);
|
||||
@ -590,6 +594,24 @@ HeapWord* GenCollectorPolicy::mem_allocate_work(size_t size,
|
||||
assert(result == NULL, "must be NULL if gc_locked() is true");
|
||||
continue; // retry and/or stall as necessary
|
||||
}
|
||||
|
||||
// Allocation has failed and a collection
|
||||
// has been done. If the gc time limit was exceeded the
|
||||
// this time, return NULL so that an out-of-memory
|
||||
// will be thrown. Clear gc_overhead_limit_exceeded
|
||||
// so that the overhead exceeded does not persist.
|
||||
|
||||
const bool limit_exceeded = size_policy()->gc_overhead_limit_exceeded();
|
||||
const bool softrefs_clear = all_soft_refs_clear();
|
||||
assert(!limit_exceeded || softrefs_clear, "Should have been cleared");
|
||||
if (limit_exceeded && softrefs_clear) {
|
||||
*gc_overhead_limit_was_exceeded = true;
|
||||
size_policy()->set_gc_overhead_limit_exceeded(false);
|
||||
if (op.result() != NULL) {
|
||||
CollectedHeap::fill_with_object(op.result(), size);
|
||||
}
|
||||
return NULL;
|
||||
}
|
||||
assert(result == NULL || gch->is_in_reserved(result),
|
||||
"result not in heap");
|
||||
return result;
|
||||
@ -688,6 +710,9 @@ HeapWord* GenCollectorPolicy::satisfy_failed_allocation(size_t size,
|
||||
return result;
|
||||
}
|
||||
|
||||
assert(!should_clear_all_soft_refs(),
|
||||
"Flag should have been handled and cleared prior to this point");
|
||||
|
||||
// What else? We might try synchronous finalization later. If the total
|
||||
// space available is large enough for the allocation, then a more
|
||||
// complete compaction phase than we've tried so far might be
|
||||
|
@ -1,5 +1,5 @@
|
||||
/*
|
||||
* Copyright 2001-2008 Sun Microsystems, Inc. All Rights Reserved.
|
||||
* Copyright 2001-2010 Sun Microsystems, Inc. All Rights Reserved.
|
||||
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
||||
*
|
||||
* This code is free software; you can redistribute it and/or modify it
|
||||
@ -69,12 +69,28 @@ class CollectorPolicy : public CHeapObj {
|
||||
size_t _min_alignment;
|
||||
size_t _max_alignment;
|
||||
|
||||
// The sizing of the heap are controlled by a sizing policy.
|
||||
AdaptiveSizePolicy* _size_policy;
|
||||
|
||||
// Set to true when policy wants soft refs cleared.
|
||||
// Reset to false by gc after it clears all soft refs.
|
||||
bool _should_clear_all_soft_refs;
|
||||
// Set to true by the GC if the just-completed gc cleared all
|
||||
// softrefs. This is set to true whenever a gc clears all softrefs, and
|
||||
// set to false each time gc returns to the mutator. For example, in the
|
||||
// ParallelScavengeHeap case the latter would be done toward the end of
|
||||
// mem_allocate() where it returns op.result()
|
||||
bool _all_soft_refs_clear;
|
||||
|
||||
CollectorPolicy() :
|
||||
_min_alignment(1),
|
||||
_max_alignment(1),
|
||||
_initial_heap_byte_size(0),
|
||||
_max_heap_byte_size(0),
|
||||
_min_heap_byte_size(0)
|
||||
_min_heap_byte_size(0),
|
||||
_size_policy(NULL),
|
||||
_should_clear_all_soft_refs(false),
|
||||
_all_soft_refs_clear(false)
|
||||
{}
|
||||
|
||||
public:
|
||||
@ -98,6 +114,19 @@ class CollectorPolicy : public CHeapObj {
|
||||
G1CollectorPolicyKind
|
||||
};
|
||||
|
||||
AdaptiveSizePolicy* size_policy() { return _size_policy; }
|
||||
bool should_clear_all_soft_refs() { return _should_clear_all_soft_refs; }
|
||||
void set_should_clear_all_soft_refs(bool v) { _should_clear_all_soft_refs = v; }
|
||||
// Returns the current value of _should_clear_all_soft_refs.
|
||||
// _should_clear_all_soft_refs is set to false as a side effect.
|
||||
bool use_should_clear_all_soft_refs(bool v);
|
||||
bool all_soft_refs_clear() { return _all_soft_refs_clear; }
|
||||
void set_all_soft_refs_clear(bool v) { _all_soft_refs_clear = v; }
|
||||
|
||||
// Called by the GC after Soft Refs have been cleared to indicate
|
||||
// that the request in _should_clear_all_soft_refs has been fulfilled.
|
||||
void cleared_all_soft_refs();
|
||||
|
||||
// Identification methods.
|
||||
virtual GenCollectorPolicy* as_generation_policy() { return NULL; }
|
||||
virtual TwoGenerationCollectorPolicy* as_two_generation_policy() { return NULL; }
|
||||
@ -165,6 +194,22 @@ class CollectorPolicy : public CHeapObj {
|
||||
|
||||
};
|
||||
|
||||
class ClearedAllSoftRefs : public StackObj {
|
||||
bool _clear_all_soft_refs;
|
||||
CollectorPolicy* _collector_policy;
|
||||
public:
|
||||
ClearedAllSoftRefs(bool clear_all_soft_refs,
|
||||
CollectorPolicy* collector_policy) :
|
||||
_clear_all_soft_refs(clear_all_soft_refs),
|
||||
_collector_policy(collector_policy) {}
|
||||
|
||||
~ClearedAllSoftRefs() {
|
||||
if (_clear_all_soft_refs) {
|
||||
_collector_policy->cleared_all_soft_refs();
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
class GenCollectorPolicy : public CollectorPolicy {
|
||||
protected:
|
||||
size_t _min_gen0_size;
|
||||
@ -173,10 +218,6 @@ class GenCollectorPolicy : public CollectorPolicy {
|
||||
|
||||
GenerationSpec **_generations;
|
||||
|
||||
// The sizing of the different generations in the heap are controlled
|
||||
// by a sizing policy.
|
||||
AdaptiveSizePolicy* _size_policy;
|
||||
|
||||
// Return true if an allocation should be attempted in the older
|
||||
// generation if it fails in the younger generation. Return
|
||||
// false, otherwise.
|
||||
@ -236,14 +277,11 @@ class GenCollectorPolicy : public CollectorPolicy {
|
||||
virtual size_t large_typearray_limit();
|
||||
|
||||
// Adaptive size policy
|
||||
AdaptiveSizePolicy* size_policy() { return _size_policy; }
|
||||
virtual void initialize_size_policy(size_t init_eden_size,
|
||||
size_t init_promo_size,
|
||||
size_t init_survivor_size);
|
||||
|
||||
};
|
||||
|
||||
|
||||
// All of hotspot's current collectors are subtypes of this
|
||||
// class. Currently, these collectors all use the same gen[0],
|
||||
// but have different gen[1] types. If we add another subtype
|
||||
|
@ -1,5 +1,5 @@
|
||||
/*
|
||||
* Copyright 2001-2008 Sun Microsystems, Inc. All Rights Reserved.
|
||||
* Copyright 2001-2010 Sun Microsystems, Inc. All Rights Reserved.
|
||||
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
||||
*
|
||||
* This code is free software; you can redistribute it and/or modify it
|
||||
@ -594,6 +594,10 @@ void DefNewGeneration::collect(bool full,
|
||||
_tenuring_threshold =
|
||||
age_table()->compute_tenuring_threshold(to()->capacity()/HeapWordSize);
|
||||
|
||||
// A successful scavenge should restart the GC time limit count which is
|
||||
// for full GC's.
|
||||
AdaptiveSizePolicy* size_policy = gch->gen_policy()->size_policy();
|
||||
size_policy->reset_gc_overhead_limit_count();
|
||||
if (PrintGC && !PrintGCDetails) {
|
||||
gch->print_heap_change(gch_prev_used);
|
||||
}
|
||||
|
@ -1,5 +1,5 @@
|
||||
/*
|
||||
* Copyright 2000-2009 Sun Microsystems, Inc. All Rights Reserved.
|
||||
* Copyright 2000-2010 Sun Microsystems, Inc. All Rights Reserved.
|
||||
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
||||
*
|
||||
* This code is free software; you can redistribute it and/or modify it
|
||||
@ -428,7 +428,8 @@ void GenCollectedHeap::do_collection(bool full,
|
||||
assert(my_thread->is_VM_thread() ||
|
||||
my_thread->is_ConcurrentGC_thread(),
|
||||
"incorrect thread type capability");
|
||||
assert(Heap_lock->is_locked(), "the requesting thread should have the Heap_lock");
|
||||
assert(Heap_lock->is_locked(),
|
||||
"the requesting thread should have the Heap_lock");
|
||||
guarantee(!is_gc_active(), "collection is not reentrant");
|
||||
assert(max_level < n_gens(), "sanity check");
|
||||
|
||||
@ -436,6 +437,11 @@ void GenCollectedHeap::do_collection(bool full,
|
||||
return; // GC is disabled (e.g. JNI GetXXXCritical operation)
|
||||
}
|
||||
|
||||
const bool do_clear_all_soft_refs = clear_all_soft_refs ||
|
||||
collector_policy()->should_clear_all_soft_refs();
|
||||
|
||||
ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
|
||||
|
||||
const size_t perm_prev_used = perm_gen()->used();
|
||||
|
||||
if (PrintHeapAtGC) {
|
||||
@ -560,11 +566,11 @@ void GenCollectedHeap::do_collection(bool full,
|
||||
if (rp->discovery_is_atomic()) {
|
||||
rp->verify_no_references_recorded();
|
||||
rp->enable_discovery();
|
||||
rp->setup_policy(clear_all_soft_refs);
|
||||
rp->setup_policy(do_clear_all_soft_refs);
|
||||
} else {
|
||||
// collect() below will enable discovery as appropriate
|
||||
}
|
||||
_gens[i]->collect(full, clear_all_soft_refs, size, is_tlab);
|
||||
_gens[i]->collect(full, do_clear_all_soft_refs, size, is_tlab);
|
||||
if (!rp->enqueuing_is_done()) {
|
||||
rp->enqueue_discovered_references();
|
||||
} else {
|
||||
|
@ -1,5 +1,5 @@
|
||||
/*
|
||||
* Copyright 2001-2009 Sun Microsystems, Inc. All Rights Reserved.
|
||||
* Copyright 2001-2010 Sun Microsystems, Inc. All Rights Reserved.
|
||||
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
||||
*
|
||||
* This code is free software; you can redistribute it and/or modify it
|
||||
@ -29,6 +29,13 @@ void GenMarkSweep::invoke_at_safepoint(int level, ReferenceProcessor* rp,
|
||||
bool clear_all_softrefs) {
|
||||
assert(SafepointSynchronize::is_at_safepoint(), "must be at a safepoint");
|
||||
|
||||
GenCollectedHeap* gch = GenCollectedHeap::heap();
|
||||
#ifdef ASSERT
|
||||
if (gch->collector_policy()->should_clear_all_soft_refs()) {
|
||||
assert(clear_all_softrefs, "Policy should have been checked earlier");
|
||||
}
|
||||
#endif
|
||||
|
||||
// hook up weak ref data so it can be used during Mark-Sweep
|
||||
assert(ref_processor() == NULL, "no stomping");
|
||||
assert(rp != NULL, "should be non-NULL");
|
||||
@ -44,7 +51,6 @@ void GenMarkSweep::invoke_at_safepoint(int level, ReferenceProcessor* rp,
|
||||
|
||||
// Increment the invocation count for the permanent generation, since it is
|
||||
// implicitly collected whenever we do a full mark sweep collection.
|
||||
GenCollectedHeap* gch = GenCollectedHeap::heap();
|
||||
gch->perm_gen()->stat_record()->invocations++;
|
||||
|
||||
// Capture heap size before collection for printing.
|
||||
|
@ -1,5 +1,5 @@
|
||||
/*
|
||||
* Copyright (c) 2007 Sun Microsystems, Inc. All Rights Reserved.
|
||||
* Copyright 2007-2010 Sun Microsystems, Inc. All Rights Reserved.
|
||||
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
||||
*
|
||||
* This code is free software; you can redistribute it and/or modify it
|
||||
@ -45,7 +45,7 @@ size_t G1MemoryPoolSuper::eden_space_committed(G1CollectedHeap* g1h) {
|
||||
|
||||
// See the comment at the top of g1MemoryPool.hpp
|
||||
size_t G1MemoryPoolSuper::eden_space_used(G1CollectedHeap* g1h) {
|
||||
size_t young_list_length = g1h->young_list_length();
|
||||
size_t young_list_length = g1h->young_list()->length();
|
||||
size_t eden_used = young_list_length * HeapRegion::GrainBytes;
|
||||
size_t survivor_used = survivor_space_used(g1h);
|
||||
eden_used = subtract_up_to_zero(eden_used, survivor_used);
|
||||
|
Loading…
x
Reference in New Issue
Block a user