8282089: [BACKOUT] Parallel: Refactor PSCardTable::scavenge_contents_parallel
Reviewed-by: tschatzl
This commit is contained in:
parent
834d55c59f
commit
e8224f7de9
@ -117,88 +117,18 @@ class CheckForPreciseMarks : public BasicOopIterateClosure {
|
||||
virtual void do_oop(narrowOop* p) { CheckForPreciseMarks::do_oop_work(p); }
|
||||
};
|
||||
|
||||
static void prefetch_write(void *p) {
|
||||
if (PrefetchScanIntervalInBytes >= 0) {
|
||||
Prefetch::write(p, PrefetchScanIntervalInBytes);
|
||||
}
|
||||
}
|
||||
|
||||
// postcondition: ret is a dirty card or end_card
|
||||
CardTable::CardValue* PSCardTable::find_first_dirty_card(CardValue* const start_card,
|
||||
CardValue* const end_card) {
|
||||
for (CardValue* i_card = start_card; i_card < end_card; ++i_card) {
|
||||
if (*i_card != PSCardTable::clean_card_val()) {
|
||||
return i_card;
|
||||
}
|
||||
}
|
||||
return end_card;
|
||||
}
|
||||
|
||||
// postcondition: ret is a clean card or end_card
|
||||
// Note: if a part of an object is on a dirty card, all cards this object
|
||||
// resides on are considered dirty.
|
||||
CardTable::CardValue* PSCardTable::find_first_clean_card(ObjectStartArray* const start_array,
|
||||
CardValue* const start_card,
|
||||
CardValue* const end_card) {
|
||||
assert(start_card == end_card ||
|
||||
*start_card != PSCardTable::clean_card_val(), "precondition");
|
||||
// Skip the first dirty card.
|
||||
CardValue* i_card = start_card + 1;
|
||||
while (i_card < end_card) {
|
||||
if (*i_card != PSCardTable::clean_card_val()) {
|
||||
i_card++;
|
||||
continue;
|
||||
}
|
||||
assert(i_card - 1 >= start_card, "inv");
|
||||
assert(*(i_card - 1) != PSCardTable::clean_card_val(), "prev card must be dirty");
|
||||
// Find the final obj on the prev dirty card.
|
||||
HeapWord* obj_addr = start_array->object_start(addr_for(i_card)-1);
|
||||
HeapWord* obj_end_addr = obj_addr + cast_to_oop(obj_addr)->size();
|
||||
CardValue* final_card_by_obj = byte_for(obj_end_addr - 1);
|
||||
assert(final_card_by_obj < end_card, "inv");
|
||||
if (final_card_by_obj <= i_card) {
|
||||
return i_card;
|
||||
}
|
||||
// This final obj extends beyond i_card, check if this new card is dirty.
|
||||
if (*final_card_by_obj == PSCardTable::clean_card_val()) {
|
||||
return final_card_by_obj;
|
||||
}
|
||||
// This new card is dirty, continuing the search...
|
||||
i_card = final_card_by_obj + 1;
|
||||
}
|
||||
return end_card;
|
||||
}
|
||||
|
||||
void PSCardTable::clear_cards(CardValue* const start, CardValue* const end) {
|
||||
for (CardValue* i_card = start; i_card < end; ++i_card) {
|
||||
*i_card = clean_card;
|
||||
}
|
||||
}
|
||||
|
||||
void PSCardTable::scan_objects_in_range(PSPromotionManager* pm,
|
||||
HeapWord* start,
|
||||
HeapWord* end) {
|
||||
HeapWord* obj_addr = start;
|
||||
while (obj_addr < end) {
|
||||
oop obj = cast_to_oop(obj_addr);
|
||||
assert(oopDesc::is_oop(obj), "inv");
|
||||
prefetch_write(obj_addr);
|
||||
pm->push_contents(obj);
|
||||
obj_addr += obj->size();
|
||||
}
|
||||
pm->drain_stacks_cond_depth();
|
||||
}
|
||||
|
||||
// We get passed the space_top value to prevent us from traversing into
|
||||
// the old_gen promotion labs, which cannot be safely parsed.
|
||||
|
||||
// Do not call this method if the space is empty.
|
||||
// It is a waste to start tasks and get here only to
|
||||
// do no work. This method is just a no-op if space_top == sp->bottom().
|
||||
// do no work. If this method needs to be called
|
||||
// when the space is empty, fix the calculation of
|
||||
// end_card to allow sp_top == sp->bottom().
|
||||
|
||||
// The generation (old gen) is divided into slices, which are further
|
||||
// subdivided into stripes, with one stripe per GC thread. The size of
|
||||
// a stripe is a constant, num_cards_in_stripe.
|
||||
// a stripe is a constant, ssize.
|
||||
//
|
||||
// +===============+ slice 0
|
||||
// | stripe 0 |
|
||||
@ -222,106 +152,188 @@ void PSCardTable::scan_objects_in_range(PSPromotionManager* pm,
|
||||
// In this case there are 4 threads, so 4 stripes. A GC thread first works on
|
||||
// its stripe within slice 0 and then moves to its stripe in the next slice
|
||||
// until it has exceeded the top of the generation. The distance to stripe in
|
||||
// the next slice is calculated based on the number of stripes. After finishing
|
||||
// stripe 0 in slice 0, the thread finds the stripe 0 in slice 1 by adding
|
||||
// slice_size_in_words to the start of stripe 0 in slice 0 to get to the start
|
||||
// of stripe 0 in slice 1.
|
||||
// the next slice is calculated based on the number of stripes. The next
|
||||
// stripe is at ssize * number_of_stripes (= slice_stride).. So after
|
||||
// finishing stripe 0 in slice 0, the thread finds the stripe 0 in slice1 by
|
||||
// adding slice_stride to the start of stripe 0 in slice 0 to get to the start
|
||||
// of stride 0 in slice 1.
|
||||
|
||||
void PSCardTable::scavenge_contents_parallel(ObjectStartArray* start_array,
|
||||
MutableSpace* sp,
|
||||
HeapWord* space_top,
|
||||
PSPromotionManager* pm,
|
||||
uint stripe_index,
|
||||
uint n_stripes) {
|
||||
const size_t num_cards_in_stripe = 128;
|
||||
const size_t stripe_size_in_words = num_cards_in_stripe * _card_size_in_words;
|
||||
const size_t slice_size_in_words = stripe_size_in_words * n_stripes;
|
||||
uint stripe_number,
|
||||
uint stripe_total) {
|
||||
int ssize = 128; // Naked constant! Work unit = 64k.
|
||||
|
||||
HeapWord* cur_stripe_addr = sp->bottom() + stripe_index * stripe_size_in_words;
|
||||
// It is a waste to get here if empty.
|
||||
assert(sp->bottom() < sp->top(), "Should not be called if empty");
|
||||
oop* sp_top = (oop*)space_top;
|
||||
CardValue* start_card = byte_for(sp->bottom());
|
||||
CardValue* end_card = byte_for(sp_top - 1) + 1;
|
||||
oop* last_scanned = NULL; // Prevent scanning objects more than once
|
||||
// The width of the stripe ssize*stripe_total must be
|
||||
// consistent with the number of stripes so that the complete slice
|
||||
// is covered.
|
||||
size_t slice_width = ssize * stripe_total;
|
||||
for (CardValue* slice = start_card; slice < end_card; slice += slice_width) {
|
||||
CardValue* worker_start_card = slice + stripe_number * ssize;
|
||||
if (worker_start_card >= end_card)
|
||||
return; // We're done.
|
||||
|
||||
for (/* empty */; cur_stripe_addr < space_top; cur_stripe_addr += slice_size_in_words) {
|
||||
// exclusive
|
||||
HeapWord* const cur_stripe_end_addr = MIN2(cur_stripe_addr + stripe_size_in_words,
|
||||
space_top);
|
||||
CardValue* worker_end_card = worker_start_card + ssize;
|
||||
if (worker_end_card > end_card)
|
||||
worker_end_card = end_card;
|
||||
|
||||
// Process a stripe iff it contains any obj-start
|
||||
if (!start_array->object_starts_in_range(cur_stripe_addr, cur_stripe_end_addr)) {
|
||||
// We do not want to scan objects more than once. In order to accomplish
|
||||
// this, we assert that any object with an object head inside our 'slice'
|
||||
// belongs to us. We may need to extend the range of scanned cards if the
|
||||
// last object continues into the next 'slice'.
|
||||
//
|
||||
// Note! ending cards are exclusive!
|
||||
HeapWord* slice_start = addr_for(worker_start_card);
|
||||
HeapWord* slice_end = MIN2((HeapWord*) sp_top, addr_for(worker_end_card));
|
||||
|
||||
// If there are not objects starting within the chunk, skip it.
|
||||
if (!start_array->object_starts_in_range(slice_start, slice_end)) {
|
||||
continue;
|
||||
}
|
||||
|
||||
// Constraints:
|
||||
// 1. range of cards checked for being dirty or clean: [iter_limit_l, iter_limit_r)
|
||||
// 2. range of cards can be cleared: [clear_limit_l, clear_limit_r)
|
||||
// 3. range of objs (obj-start) can be scanned: [first_obj_addr, cur_stripe_end_addr)
|
||||
|
||||
CardValue* iter_limit_l;
|
||||
CardValue* iter_limit_r;
|
||||
CardValue* clear_limit_l;
|
||||
CardValue* clear_limit_r;
|
||||
|
||||
// Identify left ends and the first obj-start inside this stripe.
|
||||
HeapWord* first_obj_addr = start_array->object_start(cur_stripe_addr);
|
||||
if (first_obj_addr < cur_stripe_addr) {
|
||||
// this obj belongs to previous stripe; can't clear any cards it occupies
|
||||
first_obj_addr += cast_to_oop(first_obj_addr)->size();
|
||||
clear_limit_l = byte_for(first_obj_addr - 1) + 1;
|
||||
iter_limit_l = byte_for(first_obj_addr);
|
||||
} else {
|
||||
assert(first_obj_addr == cur_stripe_addr, "inv");
|
||||
iter_limit_l = clear_limit_l = byte_for(cur_stripe_addr);
|
||||
// Update our beginning addr
|
||||
HeapWord* first_object = start_array->object_start(slice_start);
|
||||
debug_only(oop* first_object_within_slice = (oop*) first_object;)
|
||||
if (first_object < slice_start) {
|
||||
last_scanned = (oop*)(first_object + cast_to_oop(first_object)->size());
|
||||
debug_only(first_object_within_slice = last_scanned;)
|
||||
worker_start_card = byte_for(last_scanned);
|
||||
}
|
||||
|
||||
assert(cur_stripe_addr <= first_obj_addr, "inside this stripe");
|
||||
assert(first_obj_addr <= cur_stripe_end_addr, "can be empty");
|
||||
// Update the ending addr
|
||||
if (slice_end < (HeapWord*)sp_top) {
|
||||
// The subtraction is important! An object may start precisely at slice_end.
|
||||
HeapWord* last_object = start_array->object_start(slice_end - 1);
|
||||
slice_end = last_object + cast_to_oop(last_object)->size();
|
||||
// worker_end_card is exclusive, so bump it one past the end of last_object's
|
||||
// covered span.
|
||||
worker_end_card = byte_for(slice_end) + 1;
|
||||
|
||||
{
|
||||
// Identify right ends.
|
||||
HeapWord* obj_addr = start_array->object_start(cur_stripe_end_addr - 1);
|
||||
HeapWord* obj_end_addr = obj_addr + cast_to_oop(obj_addr)->size();
|
||||
assert(obj_end_addr >= cur_stripe_end_addr, "inv");
|
||||
clear_limit_r = byte_for(obj_end_addr);
|
||||
iter_limit_r = byte_for(obj_end_addr - 1) + 1;
|
||||
if (worker_end_card > end_card)
|
||||
worker_end_card = end_card;
|
||||
}
|
||||
|
||||
assert(iter_limit_l <= clear_limit_l &&
|
||||
clear_limit_r <= iter_limit_r, "clear cards only if we iterate over them");
|
||||
assert(slice_end <= (HeapWord*)sp_top, "Last object in slice crosses space boundary");
|
||||
assert(is_valid_card_address(worker_start_card), "Invalid worker start card");
|
||||
assert(is_valid_card_address(worker_end_card), "Invalid worker end card");
|
||||
// Note that worker_start_card >= worker_end_card is legal, and happens when
|
||||
// an object spans an entire slice.
|
||||
assert(worker_start_card <= end_card, "worker start card beyond end card");
|
||||
assert(worker_end_card <= end_card, "worker end card beyond end card");
|
||||
|
||||
// Process dirty chunks, i.e. consecutive dirty cards [dirty_l, dirty_r),
|
||||
// chunk by chunk inside [iter_limit_l, iter_limit_r).
|
||||
CardValue* dirty_l;
|
||||
CardValue* dirty_r;
|
||||
|
||||
for (CardValue* cur_card = iter_limit_l; cur_card < iter_limit_r; cur_card = dirty_r + 1) {
|
||||
dirty_l = find_first_dirty_card(cur_card, iter_limit_r);
|
||||
dirty_r = find_first_clean_card(start_array, dirty_l, iter_limit_r);
|
||||
assert(dirty_l <= dirty_r, "inv");
|
||||
|
||||
// empty
|
||||
if (dirty_l == dirty_r) {
|
||||
assert(dirty_r == iter_limit_r, "no more dirty cards in this stripe");
|
||||
break;
|
||||
CardValue* current_card = worker_start_card;
|
||||
while (current_card < worker_end_card) {
|
||||
// Find an unclean card.
|
||||
while (current_card < worker_end_card && card_is_clean(*current_card)) {
|
||||
current_card++;
|
||||
}
|
||||
CardValue* first_unclean_card = current_card;
|
||||
|
||||
assert(*dirty_l != clean_card, "inv");
|
||||
assert(*dirty_r == clean_card || dirty_r == iter_limit_r, "inv");
|
||||
// Find the end of a run of contiguous unclean cards
|
||||
while (current_card < worker_end_card && !card_is_clean(*current_card)) {
|
||||
while (current_card < worker_end_card && !card_is_clean(*current_card)) {
|
||||
current_card++;
|
||||
}
|
||||
|
||||
// Process this non-empty dirty chunk in two steps:
|
||||
{
|
||||
// 1. Clear card in [dirty_l, dirty_r) subject to [clear_limit_l, clear_limit_r) constraint
|
||||
clear_cards(MAX2(dirty_l, clear_limit_l),
|
||||
MIN2(dirty_r, clear_limit_r));
|
||||
if (current_card < worker_end_card) {
|
||||
// Some objects may be large enough to span several cards. If such
|
||||
// an object has more than one dirty card, separated by a clean card,
|
||||
// we will attempt to scan it twice. The test against "last_scanned"
|
||||
// prevents the redundant object scan, but it does not prevent newly
|
||||
// marked cards from being cleaned.
|
||||
HeapWord* last_object_in_dirty_region = start_array->object_start(addr_for(current_card)-1);
|
||||
size_t size_of_last_object = cast_to_oop(last_object_in_dirty_region)->size();
|
||||
HeapWord* end_of_last_object = last_object_in_dirty_region + size_of_last_object;
|
||||
CardValue* ending_card_of_last_object = byte_for(end_of_last_object);
|
||||
assert(ending_card_of_last_object <= worker_end_card, "ending_card_of_last_object is greater than worker_end_card");
|
||||
if (ending_card_of_last_object > current_card) {
|
||||
// This means the object spans the next complete card.
|
||||
// We need to bump the current_card to ending_card_of_last_object
|
||||
current_card = ending_card_of_last_object;
|
||||
}
|
||||
}
|
||||
}
|
||||
CardValue* following_clean_card = current_card;
|
||||
|
||||
{
|
||||
// 2. Scan objs in [dirty_l, dirty_r) subject to [first_obj_addr, cur_stripe_end_addr) constraint
|
||||
HeapWord* obj_l = MAX2(start_array->object_start(addr_for(dirty_l)),
|
||||
first_obj_addr);
|
||||
if (first_unclean_card < worker_end_card) {
|
||||
oop* p = (oop*) start_array->object_start(addr_for(first_unclean_card));
|
||||
assert((HeapWord*)p <= addr_for(first_unclean_card), "checking");
|
||||
// "p" should always be >= "last_scanned" because newly GC dirtied
|
||||
// cards are no longer scanned again (see comment at end
|
||||
// of loop on the increment of "current_card"). Test that
|
||||
// hypothesis before removing this code.
|
||||
// If this code is removed, deal with the first time through
|
||||
// the loop when the last_scanned is the object starting in
|
||||
// the previous slice.
|
||||
assert((p >= last_scanned) ||
|
||||
(last_scanned == first_object_within_slice),
|
||||
"Should no longer be possible");
|
||||
if (p < last_scanned) {
|
||||
// Avoid scanning more than once; this can happen because
|
||||
// newgen cards set by GC may a different set than the
|
||||
// originally dirty set
|
||||
p = last_scanned;
|
||||
}
|
||||
oop* to = (oop*)addr_for(following_clean_card);
|
||||
|
||||
HeapWord* obj_r = MIN2(addr_for(dirty_r),
|
||||
cur_stripe_end_addr);
|
||||
// Test slice_end first!
|
||||
if ((HeapWord*)to > slice_end) {
|
||||
to = (oop*)slice_end;
|
||||
} else if (to > sp_top) {
|
||||
to = sp_top;
|
||||
}
|
||||
|
||||
scan_objects_in_range(pm, obj_l, obj_r);
|
||||
// we know which cards to scan, now clear them
|
||||
if (first_unclean_card <= worker_start_card+1)
|
||||
first_unclean_card = worker_start_card+1;
|
||||
if (following_clean_card >= worker_end_card-1)
|
||||
following_clean_card = worker_end_card-1;
|
||||
|
||||
while (first_unclean_card < following_clean_card) {
|
||||
*first_unclean_card++ = clean_card;
|
||||
}
|
||||
|
||||
const int interval = PrefetchScanIntervalInBytes;
|
||||
// scan all objects in the range
|
||||
if (interval != 0) {
|
||||
while (p < to) {
|
||||
Prefetch::write(p, interval);
|
||||
oop m = cast_to_oop(p);
|
||||
assert(oopDesc::is_oop_or_null(m), "Expected an oop or NULL for header field at " PTR_FORMAT, p2i(m));
|
||||
pm->push_contents(m);
|
||||
p += m->size();
|
||||
}
|
||||
pm->drain_stacks_cond_depth();
|
||||
} else {
|
||||
while (p < to) {
|
||||
oop m = cast_to_oop(p);
|
||||
assert(oopDesc::is_oop_or_null(m), "Expected an oop or NULL for header field at " PTR_FORMAT, p2i(m));
|
||||
pm->push_contents(m);
|
||||
p += m->size();
|
||||
}
|
||||
pm->drain_stacks_cond_depth();
|
||||
}
|
||||
last_scanned = p;
|
||||
}
|
||||
// "current_card" is still the "following_clean_card" or
|
||||
// the current_card is >= the worker_end_card so the
|
||||
// loop will not execute again.
|
||||
assert((current_card == following_clean_card) ||
|
||||
(current_card >= worker_end_card),
|
||||
"current_card should only be incremented if it still equals "
|
||||
"following_clean_card");
|
||||
// Increment current_card so that it is not processed again.
|
||||
// It may now be dirty because a old-to-young pointer was
|
||||
// found on it an updated. If it is now dirty, it cannot be
|
||||
// be safely cleaned in the next iteration.
|
||||
current_card++;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -42,19 +42,6 @@ class PSCardTable: public CardTable {
|
||||
verify_card = CT_MR_BS_last_reserved + 5
|
||||
};
|
||||
|
||||
CardValue* find_first_dirty_card(CardValue* const start_card,
|
||||
CardValue* const end_card);
|
||||
|
||||
CardValue* find_first_clean_card(ObjectStartArray* start_array,
|
||||
CardValue* const start_card,
|
||||
CardValue* const end_card);
|
||||
|
||||
void clear_cards(CardValue* const start, CardValue* const end);
|
||||
|
||||
void scan_objects_in_range(PSPromotionManager* pm,
|
||||
HeapWord* start,
|
||||
HeapWord* end);
|
||||
|
||||
public:
|
||||
PSCardTable(MemRegion whole_heap) : CardTable(whole_heap) {}
|
||||
|
||||
@ -66,8 +53,8 @@ class PSCardTable: public CardTable {
|
||||
MutableSpace* sp,
|
||||
HeapWord* space_top,
|
||||
PSPromotionManager* pm,
|
||||
uint stripe_index,
|
||||
uint n_stripes);
|
||||
uint stripe_number,
|
||||
uint stripe_total);
|
||||
|
||||
bool addr_is_marked_imprecise(void *addr);
|
||||
bool addr_is_marked_precise(void *addr);
|
||||
|
Loading…
Reference in New Issue
Block a user