From e8224f7de9e4649105cfb0dd9e6a588505be4211 Mon Sep 17 00:00:00 2001 From: Albert Mingkun Yang Date: Fri, 18 Feb 2022 09:54:28 +0000 Subject: [PATCH] 8282089: [BACKOUT] Parallel: Refactor PSCardTable::scavenge_contents_parallel Reviewed-by: tschatzl --- src/hotspot/share/gc/parallel/psCardTable.cpp | 312 +++++++++--------- src/hotspot/share/gc/parallel/psCardTable.hpp | 17 +- 2 files changed, 164 insertions(+), 165 deletions(-) diff --git a/src/hotspot/share/gc/parallel/psCardTable.cpp b/src/hotspot/share/gc/parallel/psCardTable.cpp index 55709a19436..8f851d9f26e 100644 --- a/src/hotspot/share/gc/parallel/psCardTable.cpp +++ b/src/hotspot/share/gc/parallel/psCardTable.cpp @@ -117,88 +117,18 @@ class CheckForPreciseMarks : public BasicOopIterateClosure { virtual void do_oop(narrowOop* p) { CheckForPreciseMarks::do_oop_work(p); } }; -static void prefetch_write(void *p) { - if (PrefetchScanIntervalInBytes >= 0) { - Prefetch::write(p, PrefetchScanIntervalInBytes); - } -} - -// postcondition: ret is a dirty card or end_card -CardTable::CardValue* PSCardTable::find_first_dirty_card(CardValue* const start_card, - CardValue* const end_card) { - for (CardValue* i_card = start_card; i_card < end_card; ++i_card) { - if (*i_card != PSCardTable::clean_card_val()) { - return i_card; - } - } - return end_card; -} - -// postcondition: ret is a clean card or end_card -// Note: if a part of an object is on a dirty card, all cards this object -// resides on are considered dirty. -CardTable::CardValue* PSCardTable::find_first_clean_card(ObjectStartArray* const start_array, - CardValue* const start_card, - CardValue* const end_card) { - assert(start_card == end_card || - *start_card != PSCardTable::clean_card_val(), "precondition"); - // Skip the first dirty card. - CardValue* i_card = start_card + 1; - while (i_card < end_card) { - if (*i_card != PSCardTable::clean_card_val()) { - i_card++; - continue; - } - assert(i_card - 1 >= start_card, "inv"); - assert(*(i_card - 1) != PSCardTable::clean_card_val(), "prev card must be dirty"); - // Find the final obj on the prev dirty card. - HeapWord* obj_addr = start_array->object_start(addr_for(i_card)-1); - HeapWord* obj_end_addr = obj_addr + cast_to_oop(obj_addr)->size(); - CardValue* final_card_by_obj = byte_for(obj_end_addr - 1); - assert(final_card_by_obj < end_card, "inv"); - if (final_card_by_obj <= i_card) { - return i_card; - } - // This final obj extends beyond i_card, check if this new card is dirty. - if (*final_card_by_obj == PSCardTable::clean_card_val()) { - return final_card_by_obj; - } - // This new card is dirty, continuing the search... - i_card = final_card_by_obj + 1; - } - return end_card; -} - -void PSCardTable::clear_cards(CardValue* const start, CardValue* const end) { - for (CardValue* i_card = start; i_card < end; ++i_card) { - *i_card = clean_card; - } -} - -void PSCardTable::scan_objects_in_range(PSPromotionManager* pm, - HeapWord* start, - HeapWord* end) { - HeapWord* obj_addr = start; - while (obj_addr < end) { - oop obj = cast_to_oop(obj_addr); - assert(oopDesc::is_oop(obj), "inv"); - prefetch_write(obj_addr); - pm->push_contents(obj); - obj_addr += obj->size(); - } - pm->drain_stacks_cond_depth(); -} - // We get passed the space_top value to prevent us from traversing into // the old_gen promotion labs, which cannot be safely parsed. // Do not call this method if the space is empty. // It is a waste to start tasks and get here only to -// do no work. This method is just a no-op if space_top == sp->bottom(). +// do no work. If this method needs to be called +// when the space is empty, fix the calculation of +// end_card to allow sp_top == sp->bottom(). // The generation (old gen) is divided into slices, which are further // subdivided into stripes, with one stripe per GC thread. The size of -// a stripe is a constant, num_cards_in_stripe. +// a stripe is a constant, ssize. // // +===============+ slice 0 // | stripe 0 | @@ -222,106 +152,188 @@ void PSCardTable::scan_objects_in_range(PSPromotionManager* pm, // In this case there are 4 threads, so 4 stripes. A GC thread first works on // its stripe within slice 0 and then moves to its stripe in the next slice // until it has exceeded the top of the generation. The distance to stripe in -// the next slice is calculated based on the number of stripes. After finishing -// stripe 0 in slice 0, the thread finds the stripe 0 in slice 1 by adding -// slice_size_in_words to the start of stripe 0 in slice 0 to get to the start -// of stripe 0 in slice 1. +// the next slice is calculated based on the number of stripes. The next +// stripe is at ssize * number_of_stripes (= slice_stride).. So after +// finishing stripe 0 in slice 0, the thread finds the stripe 0 in slice1 by +// adding slice_stride to the start of stripe 0 in slice 0 to get to the start +// of stride 0 in slice 1. void PSCardTable::scavenge_contents_parallel(ObjectStartArray* start_array, MutableSpace* sp, HeapWord* space_top, PSPromotionManager* pm, - uint stripe_index, - uint n_stripes) { - const size_t num_cards_in_stripe = 128; - const size_t stripe_size_in_words = num_cards_in_stripe * _card_size_in_words; - const size_t slice_size_in_words = stripe_size_in_words * n_stripes; + uint stripe_number, + uint stripe_total) { + int ssize = 128; // Naked constant! Work unit = 64k. - HeapWord* cur_stripe_addr = sp->bottom() + stripe_index * stripe_size_in_words; + // It is a waste to get here if empty. + assert(sp->bottom() < sp->top(), "Should not be called if empty"); + oop* sp_top = (oop*)space_top; + CardValue* start_card = byte_for(sp->bottom()); + CardValue* end_card = byte_for(sp_top - 1) + 1; + oop* last_scanned = NULL; // Prevent scanning objects more than once + // The width of the stripe ssize*stripe_total must be + // consistent with the number of stripes so that the complete slice + // is covered. + size_t slice_width = ssize * stripe_total; + for (CardValue* slice = start_card; slice < end_card; slice += slice_width) { + CardValue* worker_start_card = slice + stripe_number * ssize; + if (worker_start_card >= end_card) + return; // We're done. - for (/* empty */; cur_stripe_addr < space_top; cur_stripe_addr += slice_size_in_words) { - // exclusive - HeapWord* const cur_stripe_end_addr = MIN2(cur_stripe_addr + stripe_size_in_words, - space_top); + CardValue* worker_end_card = worker_start_card + ssize; + if (worker_end_card > end_card) + worker_end_card = end_card; - // Process a stripe iff it contains any obj-start - if (!start_array->object_starts_in_range(cur_stripe_addr, cur_stripe_end_addr)) { + // We do not want to scan objects more than once. In order to accomplish + // this, we assert that any object with an object head inside our 'slice' + // belongs to us. We may need to extend the range of scanned cards if the + // last object continues into the next 'slice'. + // + // Note! ending cards are exclusive! + HeapWord* slice_start = addr_for(worker_start_card); + HeapWord* slice_end = MIN2((HeapWord*) sp_top, addr_for(worker_end_card)); + + // If there are not objects starting within the chunk, skip it. + if (!start_array->object_starts_in_range(slice_start, slice_end)) { continue; } - - // Constraints: - // 1. range of cards checked for being dirty or clean: [iter_limit_l, iter_limit_r) - // 2. range of cards can be cleared: [clear_limit_l, clear_limit_r) - // 3. range of objs (obj-start) can be scanned: [first_obj_addr, cur_stripe_end_addr) - - CardValue* iter_limit_l; - CardValue* iter_limit_r; - CardValue* clear_limit_l; - CardValue* clear_limit_r; - - // Identify left ends and the first obj-start inside this stripe. - HeapWord* first_obj_addr = start_array->object_start(cur_stripe_addr); - if (first_obj_addr < cur_stripe_addr) { - // this obj belongs to previous stripe; can't clear any cards it occupies - first_obj_addr += cast_to_oop(first_obj_addr)->size(); - clear_limit_l = byte_for(first_obj_addr - 1) + 1; - iter_limit_l = byte_for(first_obj_addr); - } else { - assert(first_obj_addr == cur_stripe_addr, "inv"); - iter_limit_l = clear_limit_l = byte_for(cur_stripe_addr); + // Update our beginning addr + HeapWord* first_object = start_array->object_start(slice_start); + debug_only(oop* first_object_within_slice = (oop*) first_object;) + if (first_object < slice_start) { + last_scanned = (oop*)(first_object + cast_to_oop(first_object)->size()); + debug_only(first_object_within_slice = last_scanned;) + worker_start_card = byte_for(last_scanned); } - assert(cur_stripe_addr <= first_obj_addr, "inside this stripe"); - assert(first_obj_addr <= cur_stripe_end_addr, "can be empty"); + // Update the ending addr + if (slice_end < (HeapWord*)sp_top) { + // The subtraction is important! An object may start precisely at slice_end. + HeapWord* last_object = start_array->object_start(slice_end - 1); + slice_end = last_object + cast_to_oop(last_object)->size(); + // worker_end_card is exclusive, so bump it one past the end of last_object's + // covered span. + worker_end_card = byte_for(slice_end) + 1; - { - // Identify right ends. - HeapWord* obj_addr = start_array->object_start(cur_stripe_end_addr - 1); - HeapWord* obj_end_addr = obj_addr + cast_to_oop(obj_addr)->size(); - assert(obj_end_addr >= cur_stripe_end_addr, "inv"); - clear_limit_r = byte_for(obj_end_addr); - iter_limit_r = byte_for(obj_end_addr - 1) + 1; + if (worker_end_card > end_card) + worker_end_card = end_card; } - assert(iter_limit_l <= clear_limit_l && - clear_limit_r <= iter_limit_r, "clear cards only if we iterate over them"); + assert(slice_end <= (HeapWord*)sp_top, "Last object in slice crosses space boundary"); + assert(is_valid_card_address(worker_start_card), "Invalid worker start card"); + assert(is_valid_card_address(worker_end_card), "Invalid worker end card"); + // Note that worker_start_card >= worker_end_card is legal, and happens when + // an object spans an entire slice. + assert(worker_start_card <= end_card, "worker start card beyond end card"); + assert(worker_end_card <= end_card, "worker end card beyond end card"); - // Process dirty chunks, i.e. consecutive dirty cards [dirty_l, dirty_r), - // chunk by chunk inside [iter_limit_l, iter_limit_r). - CardValue* dirty_l; - CardValue* dirty_r; - - for (CardValue* cur_card = iter_limit_l; cur_card < iter_limit_r; cur_card = dirty_r + 1) { - dirty_l = find_first_dirty_card(cur_card, iter_limit_r); - dirty_r = find_first_clean_card(start_array, dirty_l, iter_limit_r); - assert(dirty_l <= dirty_r, "inv"); - - // empty - if (dirty_l == dirty_r) { - assert(dirty_r == iter_limit_r, "no more dirty cards in this stripe"); - break; + CardValue* current_card = worker_start_card; + while (current_card < worker_end_card) { + // Find an unclean card. + while (current_card < worker_end_card && card_is_clean(*current_card)) { + current_card++; } + CardValue* first_unclean_card = current_card; - assert(*dirty_l != clean_card, "inv"); - assert(*dirty_r == clean_card || dirty_r == iter_limit_r, "inv"); + // Find the end of a run of contiguous unclean cards + while (current_card < worker_end_card && !card_is_clean(*current_card)) { + while (current_card < worker_end_card && !card_is_clean(*current_card)) { + current_card++; + } - // Process this non-empty dirty chunk in two steps: - { - // 1. Clear card in [dirty_l, dirty_r) subject to [clear_limit_l, clear_limit_r) constraint - clear_cards(MAX2(dirty_l, clear_limit_l), - MIN2(dirty_r, clear_limit_r)); + if (current_card < worker_end_card) { + // Some objects may be large enough to span several cards. If such + // an object has more than one dirty card, separated by a clean card, + // we will attempt to scan it twice. The test against "last_scanned" + // prevents the redundant object scan, but it does not prevent newly + // marked cards from being cleaned. + HeapWord* last_object_in_dirty_region = start_array->object_start(addr_for(current_card)-1); + size_t size_of_last_object = cast_to_oop(last_object_in_dirty_region)->size(); + HeapWord* end_of_last_object = last_object_in_dirty_region + size_of_last_object; + CardValue* ending_card_of_last_object = byte_for(end_of_last_object); + assert(ending_card_of_last_object <= worker_end_card, "ending_card_of_last_object is greater than worker_end_card"); + if (ending_card_of_last_object > current_card) { + // This means the object spans the next complete card. + // We need to bump the current_card to ending_card_of_last_object + current_card = ending_card_of_last_object; + } + } } + CardValue* following_clean_card = current_card; - { - // 2. Scan objs in [dirty_l, dirty_r) subject to [first_obj_addr, cur_stripe_end_addr) constraint - HeapWord* obj_l = MAX2(start_array->object_start(addr_for(dirty_l)), - first_obj_addr); + if (first_unclean_card < worker_end_card) { + oop* p = (oop*) start_array->object_start(addr_for(first_unclean_card)); + assert((HeapWord*)p <= addr_for(first_unclean_card), "checking"); + // "p" should always be >= "last_scanned" because newly GC dirtied + // cards are no longer scanned again (see comment at end + // of loop on the increment of "current_card"). Test that + // hypothesis before removing this code. + // If this code is removed, deal with the first time through + // the loop when the last_scanned is the object starting in + // the previous slice. + assert((p >= last_scanned) || + (last_scanned == first_object_within_slice), + "Should no longer be possible"); + if (p < last_scanned) { + // Avoid scanning more than once; this can happen because + // newgen cards set by GC may a different set than the + // originally dirty set + p = last_scanned; + } + oop* to = (oop*)addr_for(following_clean_card); - HeapWord* obj_r = MIN2(addr_for(dirty_r), - cur_stripe_end_addr); + // Test slice_end first! + if ((HeapWord*)to > slice_end) { + to = (oop*)slice_end; + } else if (to > sp_top) { + to = sp_top; + } - scan_objects_in_range(pm, obj_l, obj_r); + // we know which cards to scan, now clear them + if (first_unclean_card <= worker_start_card+1) + first_unclean_card = worker_start_card+1; + if (following_clean_card >= worker_end_card-1) + following_clean_card = worker_end_card-1; + + while (first_unclean_card < following_clean_card) { + *first_unclean_card++ = clean_card; + } + + const int interval = PrefetchScanIntervalInBytes; + // scan all objects in the range + if (interval != 0) { + while (p < to) { + Prefetch::write(p, interval); + oop m = cast_to_oop(p); + assert(oopDesc::is_oop_or_null(m), "Expected an oop or NULL for header field at " PTR_FORMAT, p2i(m)); + pm->push_contents(m); + p += m->size(); + } + pm->drain_stacks_cond_depth(); + } else { + while (p < to) { + oop m = cast_to_oop(p); + assert(oopDesc::is_oop_or_null(m), "Expected an oop or NULL for header field at " PTR_FORMAT, p2i(m)); + pm->push_contents(m); + p += m->size(); + } + pm->drain_stacks_cond_depth(); + } + last_scanned = p; } + // "current_card" is still the "following_clean_card" or + // the current_card is >= the worker_end_card so the + // loop will not execute again. + assert((current_card == following_clean_card) || + (current_card >= worker_end_card), + "current_card should only be incremented if it still equals " + "following_clean_card"); + // Increment current_card so that it is not processed again. + // It may now be dirty because a old-to-young pointer was + // found on it an updated. If it is now dirty, it cannot be + // be safely cleaned in the next iteration. + current_card++; } } } diff --git a/src/hotspot/share/gc/parallel/psCardTable.hpp b/src/hotspot/share/gc/parallel/psCardTable.hpp index eb8f3ddbb2b..bfbaab7d7fc 100644 --- a/src/hotspot/share/gc/parallel/psCardTable.hpp +++ b/src/hotspot/share/gc/parallel/psCardTable.hpp @@ -42,19 +42,6 @@ class PSCardTable: public CardTable { verify_card = CT_MR_BS_last_reserved + 5 }; - CardValue* find_first_dirty_card(CardValue* const start_card, - CardValue* const end_card); - - CardValue* find_first_clean_card(ObjectStartArray* start_array, - CardValue* const start_card, - CardValue* const end_card); - - void clear_cards(CardValue* const start, CardValue* const end); - - void scan_objects_in_range(PSPromotionManager* pm, - HeapWord* start, - HeapWord* end); - public: PSCardTable(MemRegion whole_heap) : CardTable(whole_heap) {} @@ -66,8 +53,8 @@ class PSCardTable: public CardTable { MutableSpace* sp, HeapWord* space_top, PSPromotionManager* pm, - uint stripe_index, - uint n_stripes); + uint stripe_number, + uint stripe_total); bool addr_is_marked_imprecise(void *addr); bool addr_is_marked_precise(void *addr);