6884175: CR cleanup for 6840752: Provide out-of-the-box support for ECC algorithms

Reviewed-by: wetmore
This commit is contained in:
Vinnie Ryan 2009-09-21 23:01:42 +01:00
parent 45eb529e81
commit f13c1a7ce9
58 changed files with 19452 additions and 115 deletions

View File

@ -24,7 +24,7 @@
#
#
# Makefile for building sunec.jar and sunecc native library.
# Makefile for building sunec.jar and sunec native library.
#
# This file was derived from make/com/sun/crypto/provider/Makefile.
#
@ -121,7 +121,15 @@ CLASSDESTDIR = $(TEMPDIR)/classes
#
AUTO_FILES_JAVA_DIRS = $(PKGDIR)
include $(BUILDDIR)/common/Classes.gmk
#
# Exclude the sources that get built by ../other/Makefile
#
AUTO_JAVA_PRUNE = \
ECKeyFactory.java \
ECParameters.java \
ECPrivateKeyImpl.java \
ECPublicKeyImpl.java \
NamedCurve.java
#
# Some licensees do not get the native ECC sources, but we still need to
@ -130,7 +138,7 @@ include $(BUILDDIR)/common/Classes.gmk
#
NATIVE_ECC_AVAILABLE := $(shell \
if [ -d $(SHARE_SRC)/native/$(PKGDIR) ] ; then \
if [ -d $(SHARE_SRC)/native/$(PKGDIR)/impl ] ; then \
$(ECHO) true; \
else \
$(ECHO) false; \
@ -138,7 +146,7 @@ NATIVE_ECC_AVAILABLE := $(shell \
ifeq ($(NATIVE_ECC_AVAILABLE), true)
LIBRARY = sunecc
LIBRARY = sunec
#
# Java files that define native methods
@ -166,12 +174,12 @@ ifeq ($(NATIVE_ECC_AVAILABLE), true)
#
vpath %.cpp $(SHARE_SRC)/native/$(PKGDIR)
vpath %.c $(SHARE_SRC)/native/$(PKGDIR)
vpath %.c $(SHARE_SRC)/native/$(PKGDIR)/impl
#
# Find include files
#
OTHER_INCLUDES += -I$(SHARE_SRC)/native/$(PKGDIR)
OTHER_INCLUDES += -I$(SHARE_SRC)/native/$(PKGDIR)/impl
#
# Compiler flags
@ -191,6 +199,10 @@ ifeq ($(NATIVE_ECC_AVAILABLE), true)
include $(BUILDDIR)/common/Library.gmk
else # NATIVE_ECC_AVAILABLE
include $(BUILDDIR)/common/Classes.gmk
endif # NATIVE_ECC_AVAILABLE
#

View File

@ -44,6 +44,16 @@ AUTO_FILES_JAVA_DIRS = \
sun/security/x509 \
com/sun/net/ssl/internal/ssl
#
# EC classes used by the packages above
#
FILES_java += \
sun/security/ec/ECKeyFactory.java \
sun/security/ec/ECParameters.java \
sun/security/ec/ECPrivateKeyImpl.java \
sun/security/ec/ECPublicKeyImpl.java \
sun/security/ec/NamedCurve.java
#
# Rules
#

View File

@ -39,21 +39,6 @@ import javax.crypto.spec.*;
*/
public final class ECDHKeyAgreement extends KeyAgreementSpi {
// flag indicating whether the native ECC implementation is present
private static boolean implementationPresent = true;
static {
try {
AccessController.doPrivileged(new PrivilegedAction<Void>() {
public Void run() {
System.loadLibrary("sunecc");
return null;
}
});
} catch (UnsatisfiedLinkError e) {
implementationPresent = false;
}
}
// private key, if initialized
private ECPrivateKey privateKey;
@ -65,16 +50,12 @@ public final class ECDHKeyAgreement extends KeyAgreementSpi {
/**
* Constructs a new ECDHKeyAgreement.
*
* @exception ProviderException if the native ECC library is unavailable.
*/
public ECDHKeyAgreement() {
if (!implementationPresent) {
throw new ProviderException("ECDH implementation is not available");
}
}
// see JCE spec
@Override
protected void engineInit(Key key, SecureRandom random)
throws InvalidKeyException {
if (!(key instanceof PrivateKey)) {
@ -86,6 +67,7 @@ public final class ECDHKeyAgreement extends KeyAgreementSpi {
}
// see JCE spec
@Override
protected void engineInit(Key key, AlgorithmParameterSpec params,
SecureRandom random) throws InvalidKeyException,
InvalidAlgorithmParameterException {
@ -97,6 +79,7 @@ public final class ECDHKeyAgreement extends KeyAgreementSpi {
}
// see JCE spec
@Override
protected Key engineDoPhase(Key key, boolean lastPhase)
throws InvalidKeyException, IllegalStateException {
if (privateKey == null) {
@ -130,6 +113,7 @@ public final class ECDHKeyAgreement extends KeyAgreementSpi {
}
// see JCE spec
@Override
protected byte[] engineGenerateSecret() throws IllegalStateException {
if ((privateKey == null) || (publicValue == null)) {
throw new IllegalStateException("Not initialized correctly");
@ -150,6 +134,7 @@ public final class ECDHKeyAgreement extends KeyAgreementSpi {
}
// see JCE spec
@Override
protected int engineGenerateSecret(byte[] sharedSecret, int
offset) throws IllegalStateException, ShortBufferException {
if (offset + secretLen > sharedSecret.length) {
@ -162,6 +147,7 @@ public final class ECDHKeyAgreement extends KeyAgreementSpi {
}
// see JCE spec
@Override
protected SecretKey engineGenerateSecret(String algorithm)
throws IllegalStateException, NoSuchAlgorithmException,
InvalidKeyException {

View File

@ -52,21 +52,6 @@ import sun.security.x509.AlgorithmId;
*/
abstract class ECDSASignature extends SignatureSpi {
// flag indicating whether the native ECC implementation is present
private static boolean implementationPresent = true;
static {
try {
AccessController.doPrivileged(new PrivilegedAction<Void>() {
public Void run() {
System.loadLibrary("sunecc");
return null;
}
});
} catch (UnsatisfiedLinkError e) {
implementationPresent = false;
}
}
// message digest implementation we use
private final MessageDigest messageDigest;
@ -88,24 +73,13 @@ abstract class ECDSASignature extends SignatureSpi {
* @exception ProviderException if the native ECC library is unavailable.
*/
ECDSASignature() {
if (!implementationPresent) {
throw new
ProviderException("ECDSA implementation is not available");
}
messageDigest = null;
}
/**
* Constructs a new ECDSASignature. Used by subclasses.
*
* @exception ProviderException if the native ECC library is unavailable.
*/
ECDSASignature(String digestName) {
if (!implementationPresent) {
throw new
ProviderException("ECDSA implementation is not available");
}
try {
messageDigest = MessageDigest.getInstance(digestName);
} catch (NoSuchAlgorithmException e) {
@ -299,8 +273,8 @@ abstract class ECDSASignature extends SignatureSpi {
byte[] encodedParams = ECParameters.encodeParameters(params); // DER OID
int keySize = params.getCurve().getField().getFieldSize();
// seed is twice the key size (in bytes)
byte[] seed = new byte[((keySize + 7) >> 3) * 2];
// seed is twice the key size (in bytes) plus 1
byte[] seed = new byte[(((keySize + 7) >> 3) + 1) * 2];
if (random == null) {
random = JCAUtil.getSecureRandom();
}
@ -356,6 +330,7 @@ abstract class ECDSASignature extends SignatureSpi {
// Convert the concatenation of R and S into their DER encoding
private byte[] encodeSignature(byte[] signature) throws SignatureException {
try {
int n = signature.length >> 1;

View File

@ -46,20 +46,6 @@ import sun.security.jca.JCAUtil;
*/
public final class ECKeyPairGenerator extends KeyPairGeneratorSpi {
// flag indicating whether the native ECC implementation is present
private static boolean implementationPresent = true;
static {
try {
AccessController.doPrivileged(new PrivilegedAction<Void>() {
public Void run() {
System.loadLibrary("sunecc");
return null;
}
});
} catch (UnsatisfiedLinkError e) {
implementationPresent = false;
}
}
private static final int KEY_SIZE_MIN = 112; // min bits (see ecc_impl.h)
private static final int KEY_SIZE_MAX = 571; // max bits (see ecc_impl.h)
private static final int KEY_SIZE_DEFAULT = 256;
@ -75,13 +61,8 @@ public final class ECKeyPairGenerator extends KeyPairGeneratorSpi {
/**
* Constructs a new ECKeyPairGenerator.
*
* @exception ProviderException if the native ECC library is unavailable.
*/
public ECKeyPairGenerator() {
if (!implementationPresent) {
throw new ProviderException("EC implementation is not available");
}
// initialize to default in case the app does not call initialize()
initialize(KEY_SIZE_DEFAULT, null);
}
@ -133,8 +114,8 @@ public final class ECKeyPairGenerator extends KeyPairGeneratorSpi {
byte[] encodedParams =
ECParameters.encodeParameters((ECParameterSpec)params);
// seed is twice the key size (in bytes)
byte[] seed = new byte[2 * ((keySize + 7) >> 3)];
// seed is twice the key size (in bytes) plus 1
byte[] seed = new byte[(((keySize + 7) >> 3) + 1) * 2];
if (random == null) {
random = JCAUtil.getSecureRandom();
}

View File

@ -39,7 +39,10 @@ import sun.security.action.PutAllAction;
* via JNI to a C++ wrapper class which in turn calls C functions.
* The Java classes are packaged into the signed sunec.jar in the JRE
* extensions directory and the C++ and C functions are packaged into
* libsunecc.so or sunecc.dll in the JRE native libraries directory.
* libsunec.so or sunec.dll in the JRE native libraries directory.
* If the native library is not present then this provider is registered
* with support for fewer ECC algorithms (KeyPairGenerator, Signature and
* KeyAgreement are omitted).
*
* @since 1.7
*/
@ -47,6 +50,22 @@ public final class SunEC extends Provider {
private static final long serialVersionUID = -2279741672933606418L;
// flag indicating whether the full EC implementation is present
// (when native library is absent then fewer EC algorithms are available)
private static boolean useFullImplementation = true;
static {
try {
AccessController.doPrivileged(new PrivilegedAction<Void>() {
public Void run() {
System.loadLibrary("sunec"); // check for native library
return null;
}
});
} catch (UnsatisfiedLinkError e) {
useFullImplementation = false;
}
}
public SunEC() {
super("SunEC", 1.7d, "Sun Elliptic Curve provider (EC, ECDSA, ECDH)");
@ -54,10 +73,10 @@ public final class SunEC extends Provider {
// the provider. Otherwise, create a temporary map and use a
// doPrivileged() call at the end to transfer the contents
if (System.getSecurityManager() == null) {
SunECEntries.putEntries(this);
SunECEntries.putEntries(this, useFullImplementation);
} else {
Map<Object, Object> map = new HashMap<Object, Object>();
SunECEntries.putEntries(map);
SunECEntries.putEntries(map, useFullImplementation);
AccessController.doPrivileged(new PutAllAction(this, map));
}
}

View File

@ -38,7 +38,93 @@ final class SunECEntries {
// empty
}
static void putEntries(Map<Object, Object> map) {
static void putEntries(Map<Object, Object> map,
boolean useFullImplementation) {
/*
* Key Factory engine
*/
map.put("KeyFactory.EC", "sun.security.ec.ECKeyFactory");
map.put("Alg.Alias.KeyFactory.EllipticCurve", "EC");
map.put("KeyFactory.EC ImplementedIn", "Software");
/*
* Algorithm Parameter engine
*/
map.put("AlgorithmParameters.EC", "sun.security.ec.ECParameters");
map.put("Alg.Alias.AlgorithmParameters.EllipticCurve", "EC");
map.put("AlgorithmParameters.EC KeySize", "256");
map.put("AlgorithmParameters.EC ImplementedIn", "Software");
map.put("AlgorithmParameters.EC SupportedCurves",
// A list comprising lists of curve names and object identifiers.
// '[' ( <curve-name> ',' )+ <curve-object-identifier> ']' '|'
// SEC 2 prime curves
"[secp112r1,1.3.132.0.6]|" +
"[secp112r2,1.3.132.0.7]|" +
"[secp128r1,1.3.132.0.28]|" +
"[secp128r2,1.3.132.0.29]|" +
"[secp160k1,1.3.132.0.9]|" +
"[secp160r1,1.3.132.0.8]|" +
"[secp160r2,1.3.132.0.30]|" +
"[secp192k1,1.3.132.0.31]|" +
"[secp192r1,NIST P-192,X9.62 prime192v1,1.2.840.10045.3.1.1]|" +
"[secp224k1,1.3.132.0.32]|" +
"[secp224r1,NIST P-224,1.3.132.0.33]|" +
"[secp256k1,1.3.132.0.10]|" +
"[secp256r1,NIST P-256,X9.62 prime256v1,1.2.840.10045.3.1.7]|" +
"[secp384r1,NIST P-384,1.3.132.0.34]|" +
"[secp521r1,NIST P-521,1.3.132.0.35]|" +
// ANSI X9.62 prime curves
"[X9.62 prime192v2,1.2.840.10045.3.1.2]|" +
"[X9.62 prime192v3,1.2.840.10045.3.1.3]|" +
"[X9.62 prime239v1,1.2.840.10045.3.1.4]|" +
"[X9.62 prime239v2,1.2.840.10045.3.1.5]|" +
"[X9.62 prime239v3,1.2.840.10045.3.1.6]|" +
// SEC 2 binary curves
"[sect113r1,1.3.132.0.4]|" +
"[sect113r2,1.3.132.0.5]|" +
"[sect131r1,1.3.132.0.22]|" +
"[sect131r2,1.3.132.0.23]|" +
"[sect163k1,NIST K-163,1.3.132.0.1]|" +
"[sect163r1,1.3.132.0.2]|" +
"[sect163r2,NIST B-163,1.3.132.0.15]|" +
"[sect193r1,1.3.132.0.24]|" +
"[sect193r2,1.3.132.0.25]|" +
"[sect233k1,NIST K-233,1.3.132.0.26]|" +
"[sect233r1,NIST B-233,1.3.132.0.27]|" +
"[sect239k1,1.3.132.0.3]|" +
"[sect283k1,NIST K-283,1.3.132.0.16]|" +
"[sect283r1,NIST B-283,1.3.132.0.17]|" +
"[sect409k1,NIST K-409,1.3.132.0.36]|" +
"[sect409r1,NIST B-409,1.3.132.0.37]|" +
"[sect571k1,NIST K-571,1.3.132.0.38]|" +
"[sect571r1,NIST B-571,1.3.132.0.39]|" +
// ANSI X9.62 binary curves
"[X9.62 c2tnb191v1,1.2.840.10045.3.0.5]|" +
"[X9.62 c2tnb191v2,1.2.840.10045.3.0.6]|" +
"[X9.62 c2tnb191v3,1.2.840.10045.3.0.7]|" +
"[X9.62 c2tnb239v1,1.2.840.10045.3.0.11]|" +
"[X9.62 c2tnb239v2,1.2.840.10045.3.0.12]|" +
"[X9.62 c2tnb239v3,1.2.840.10045.3.0.13]|" +
"[X9.62 c2tnb359v1,1.2.840.10045.3.0.18]|" +
"[X9.62 c2tnb431r1,1.2.840.10045.3.0.20]");
/*
* Register the algorithms below only when the full ECC implementation
* is available
*/
if (!useFullImplementation) {
return;
}
/*
* Signature engines
@ -62,48 +148,31 @@ final class SunECEntries {
map.put("Signature.SHA384withECDSA SupportedKeyClasses", ecKeyClasses);
map.put("Signature.SHA512withECDSA SupportedKeyClasses", ecKeyClasses);
map.put("Signature.SHA1withECDSA KeySize", "256");
map.put("Signature.NONEwithECDSA ImplementedIn", "Software");
map.put("Signature.SHA1withECDSA ImplementedIn", "Software");
map.put("Signature.SHA256withECDSA ImplementedIn", "Software");
map.put("Signature.SHA384withECDSA ImplementedIn", "Software");
map.put("Signature.SHA512withECDSA ImplementedIn", "Software");
/*
* Key Pair Generator engine
*/
map.put("KeyPairGenerator.EC", "sun.security.ec.ECKeyPairGenerator");
map.put("Alg.Alias.KeyPairGenerator.EllipticCurve", "EC");
/*
* Key Factory engine
*/
map.put("KeyFactory.EC", "sun.security.ec.ECKeyFactory");
map.put("Alg.Alias.KeyFactory.EllipticCurve", "EC");
map.put("KeyPairGenerator.EC KeySize", "256");
/*
* Algorithm Parameter engine
*/
map.put("AlgorithmParameters.EC", "sun.security.ec.ECParameters");
map.put("Alg.Alias.AlgorithmParameters.EllipticCurve", "EC");
map.put("KeyPairGenerator.EC ImplementedIn", "Software");
/*
* Key Agreement engine
*/
map.put("KeyAgreement.ECDH", "sun.security.ec.ECDHKeyAgreement");
map.put("KeyAgreement.ECDH SupportedKeyClasses", ecKeyClasses);
/*
* Key sizes
*/
map.put("Signature.SHA1withECDSA KeySize", "256");
map.put("KeyPairGenerator.EC KeySize", "256");
map.put("AlgorithmParameterGenerator.ECDSA KeySize", "256");
/*
* Implementation type: software or hardware
*/
map.put("Signature.NONEwithECDSA ImplementedIn", "Software");
map.put("Signature.SHA1withECDSA ImplementedIn", "Software");
map.put("Signature.SHA256withECDSA ImplementedIn", "Software");
map.put("Signature.SHA384withECDSA ImplementedIn", "Software");
map.put("Signature.SHA512withECDSA ImplementedIn", "Software");
map.put("KeyPairGenerator.EC ImplementedIn", "Software");
map.put("KeyFactory.EC ImplementedIn", "Software");
map.put("KeyAgreement.ECDH ImplementedIn", "Software");
map.put("AlgorithmParameters.EC ImplementedIn", "Software");
}
}

View File

@ -24,7 +24,7 @@
*/
#include <jni.h>
#include "ecc_impl.h"
#include "impl/ecc_impl.h"
#define ILLEGAL_STATE_EXCEPTION "java/lang/IllegalStateException"
#define INVALID_ALGORITHM_PARAMETER_EXCEPTION \

View File

@ -0,0 +1,72 @@
/* *********************************************************************
*
* Sun elects to have this file available under and governed by the
* Mozilla Public License Version 1.1 ("MPL") (see
* http://www.mozilla.org/MPL/ for full license text). For the avoidance
* of doubt and subject to the following, Sun also elects to allow
* licensees to use this file under the MPL, the GNU General Public
* License version 2 only or the Lesser General Public License version
* 2.1 only. Any references to the "GNU General Public License version 2
* or later" or "GPL" in the following shall be construed to mean the
* GNU General Public License version 2 only. Any references to the "GNU
* Lesser General Public License version 2.1 or later" or "LGPL" in the
* following shall be construed to mean the GNU Lesser General Public
* License version 2.1 only. However, the following notice accompanied
* the original version of this file:
*
* Version: MPL 1.1/GPL 2.0/LGPL 2.1
*
* The contents of this file are subject to the Mozilla Public License Version
* 1.1 (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* Software distributed under the License is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
* for the specific language governing rights and limitations under the
* License.
*
* The Original Code is the Elliptic Curve Cryptography library.
*
* The Initial Developer of the Original Code is
* Sun Microsystems, Inc.
* Portions created by the Initial Developer are Copyright (C) 2003
* the Initial Developer. All Rights Reserved.
*
* Contributor(s):
* Dr Vipul Gupta <vipul.gupta@sun.com>, Sun Microsystems Laboratories
*
* Alternatively, the contents of this file may be used under the terms of
* either the GNU General Public License Version 2 or later (the "GPL"), or
* the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
* in which case the provisions of the GPL or the LGPL are applicable instead
* of those above. If you wish to allow use of your version of this file only
* under the terms of either the GPL or the LGPL, and not to allow others to
* use your version of this file under the terms of the MPL, indicate your
* decision by deleting the provisions above and replace them with the notice
* and other provisions required by the GPL or the LGPL. If you do not delete
* the provisions above, a recipient may use your version of this file under
* the terms of any one of the MPL, the GPL or the LGPL.
*
*********************************************************************** */
/*
* Copyright 2007 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#ifndef __ec_h_
#define __ec_h_
#pragma ident "%Z%%M% %I% %E% SMI"
#define EC_DEBUG 0
#define EC_POINT_FORM_COMPRESSED_Y0 0x02
#define EC_POINT_FORM_COMPRESSED_Y1 0x03
#define EC_POINT_FORM_UNCOMPRESSED 0x04
#define EC_POINT_FORM_HYBRID_Y0 0x06
#define EC_POINT_FORM_HYBRID_Y1 0x07
#define ANSI_X962_CURVE_OID_TOTAL_LEN 10
#define SECG_CURVE_OID_TOTAL_LEN 7
#endif /* __ec_h_ */

View File

@ -0,0 +1,146 @@
/* *********************************************************************
*
* Sun elects to have this file available under and governed by the
* Mozilla Public License Version 1.1 ("MPL") (see
* http://www.mozilla.org/MPL/ for full license text). For the avoidance
* of doubt and subject to the following, Sun also elects to allow
* licensees to use this file under the MPL, the GNU General Public
* License version 2 only or the Lesser General Public License version
* 2.1 only. Any references to the "GNU General Public License version 2
* or later" or "GPL" in the following shall be construed to mean the
* GNU General Public License version 2 only. Any references to the "GNU
* Lesser General Public License version 2.1 or later" or "LGPL" in the
* following shall be construed to mean the GNU Lesser General Public
* License version 2.1 only. However, the following notice accompanied
* the original version of this file:
*
* Version: MPL 1.1/GPL 2.0/LGPL 2.1
*
* The contents of this file are subject to the Mozilla Public License Version
* 1.1 (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* Software distributed under the License is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
* for the specific language governing rights and limitations under the
* License.
*
* The Original Code is the elliptic curve math library for binary polynomial field curves.
*
* The Initial Developer of the Original Code is
* Sun Microsystems, Inc.
* Portions created by the Initial Developer are Copyright (C) 2003
* the Initial Developer. All Rights Reserved.
*
* Contributor(s):
* Douglas Stebila <douglas@stebila.ca>, Sun Microsystems Laboratories
*
* Alternatively, the contents of this file may be used under the terms of
* either the GNU General Public License Version 2 or later (the "GPL"), or
* the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
* in which case the provisions of the GPL or the LGPL are applicable instead
* of those above. If you wish to allow use of your version of this file only
* under the terms of either the GPL or the LGPL, and not to allow others to
* use your version of this file under the terms of the MPL, indicate your
* decision by deleting the provisions above and replace them with the notice
* and other provisions required by the GPL or the LGPL. If you do not delete
* the provisions above, a recipient may use your version of this file under
* the terms of any one of the MPL, the GPL or the LGPL.
*
*********************************************************************** */
/*
* Copyright 2007 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#ifndef _EC2_H
#define _EC2_H
#pragma ident "%Z%%M% %I% %E% SMI"
#include "ecl-priv.h"
/* Checks if point P(px, py) is at infinity. Uses affine coordinates. */
mp_err ec_GF2m_pt_is_inf_aff(const mp_int *px, const mp_int *py);
/* Sets P(px, py) to be the point at infinity. Uses affine coordinates. */
mp_err ec_GF2m_pt_set_inf_aff(mp_int *px, mp_int *py);
/* Computes R = P + Q where R is (rx, ry), P is (px, py) and Q is (qx,
* qy). Uses affine coordinates. */
mp_err ec_GF2m_pt_add_aff(const mp_int *px, const mp_int *py,
const mp_int *qx, const mp_int *qy, mp_int *rx,
mp_int *ry, const ECGroup *group);
/* Computes R = P - Q. Uses affine coordinates. */
mp_err ec_GF2m_pt_sub_aff(const mp_int *px, const mp_int *py,
const mp_int *qx, const mp_int *qy, mp_int *rx,
mp_int *ry, const ECGroup *group);
/* Computes R = 2P. Uses affine coordinates. */
mp_err ec_GF2m_pt_dbl_aff(const mp_int *px, const mp_int *py, mp_int *rx,
mp_int *ry, const ECGroup *group);
/* Validates a point on a GF2m curve. */
mp_err ec_GF2m_validate_point(const mp_int *px, const mp_int *py, const ECGroup *group);
/* by default, this routine is unused and thus doesn't need to be compiled */
#ifdef ECL_ENABLE_GF2M_PT_MUL_AFF
/* Computes R = nP where R is (rx, ry) and P is (px, py). The parameters
* a, b and p are the elliptic curve coefficients and the irreducible that
* determines the field GF2m. Uses affine coordinates. */
mp_err ec_GF2m_pt_mul_aff(const mp_int *n, const mp_int *px,
const mp_int *py, mp_int *rx, mp_int *ry,
const ECGroup *group);
#endif
/* Computes R = nP where R is (rx, ry) and P is (px, py). The parameters
* a, b and p are the elliptic curve coefficients and the irreducible that
* determines the field GF2m. Uses Montgomery projective coordinates. */
mp_err ec_GF2m_pt_mul_mont(const mp_int *n, const mp_int *px,
const mp_int *py, mp_int *rx, mp_int *ry,
const ECGroup *group);
#ifdef ECL_ENABLE_GF2M_PROJ
/* Converts a point P(px, py) from affine coordinates to projective
* coordinates R(rx, ry, rz). */
mp_err ec_GF2m_pt_aff2proj(const mp_int *px, const mp_int *py, mp_int *rx,
mp_int *ry, mp_int *rz, const ECGroup *group);
/* Converts a point P(px, py, pz) from projective coordinates to affine
* coordinates R(rx, ry). */
mp_err ec_GF2m_pt_proj2aff(const mp_int *px, const mp_int *py,
const mp_int *pz, mp_int *rx, mp_int *ry,
const ECGroup *group);
/* Checks if point P(px, py, pz) is at infinity. Uses projective
* coordinates. */
mp_err ec_GF2m_pt_is_inf_proj(const mp_int *px, const mp_int *py,
const mp_int *pz);
/* Sets P(px, py, pz) to be the point at infinity. Uses projective
* coordinates. */
mp_err ec_GF2m_pt_set_inf_proj(mp_int *px, mp_int *py, mp_int *pz);
/* Computes R = P + Q where R is (rx, ry, rz), P is (px, py, pz) and Q is
* (qx, qy, qz). Uses projective coordinates. */
mp_err ec_GF2m_pt_add_proj(const mp_int *px, const mp_int *py,
const mp_int *pz, const mp_int *qx,
const mp_int *qy, mp_int *rx, mp_int *ry,
mp_int *rz, const ECGroup *group);
/* Computes R = 2P. Uses projective coordinates. */
mp_err ec_GF2m_pt_dbl_proj(const mp_int *px, const mp_int *py,
const mp_int *pz, mp_int *rx, mp_int *ry,
mp_int *rz, const ECGroup *group);
/* Computes R = nP where R is (rx, ry) and P is (px, py). The parameters
* a, b and p are the elliptic curve coefficients and the prime that
* determines the field GF2m. Uses projective coordinates. */
mp_err ec_GF2m_pt_mul_proj(const mp_int *n, const mp_int *px,
const mp_int *py, mp_int *rx, mp_int *ry,
const ECGroup *group);
#endif
#endif /* _EC2_H */

View File

@ -0,0 +1,281 @@
/* *********************************************************************
*
* Sun elects to have this file available under and governed by the
* Mozilla Public License Version 1.1 ("MPL") (see
* http://www.mozilla.org/MPL/ for full license text). For the avoidance
* of doubt and subject to the following, Sun also elects to allow
* licensees to use this file under the MPL, the GNU General Public
* License version 2 only or the Lesser General Public License version
* 2.1 only. Any references to the "GNU General Public License version 2
* or later" or "GPL" in the following shall be construed to mean the
* GNU General Public License version 2 only. Any references to the "GNU
* Lesser General Public License version 2.1 or later" or "LGPL" in the
* following shall be construed to mean the GNU Lesser General Public
* License version 2.1 only. However, the following notice accompanied
* the original version of this file:
*
* Version: MPL 1.1/GPL 2.0/LGPL 2.1
*
* The contents of this file are subject to the Mozilla Public License Version
* 1.1 (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* Software distributed under the License is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
* for the specific language governing rights and limitations under the
* License.
*
* The Original Code is the elliptic curve math library for binary polynomial field curves.
*
* The Initial Developer of the Original Code is
* Sun Microsystems, Inc.
* Portions created by the Initial Developer are Copyright (C) 2003
* the Initial Developer. All Rights Reserved.
*
* Contributor(s):
* Sheueling Chang-Shantz <sheueling.chang@sun.com>,
* Stephen Fung <fungstep@hotmail.com>, and
* Douglas Stebila <douglas@stebila.ca>, Sun Microsystems Laboratories.
*
* Alternatively, the contents of this file may be used under the terms of
* either the GNU General Public License Version 2 or later (the "GPL"), or
* the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
* in which case the provisions of the GPL or the LGPL are applicable instead
* of those above. If you wish to allow use of your version of this file only
* under the terms of either the GPL or the LGPL, and not to allow others to
* use your version of this file under the terms of the MPL, indicate your
* decision by deleting the provisions above and replace them with the notice
* and other provisions required by the GPL or the LGPL. If you do not delete
* the provisions above, a recipient may use your version of this file under
* the terms of any one of the MPL, the GPL or the LGPL.
*
*********************************************************************** */
/*
* Copyright 2007 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#pragma ident "%Z%%M% %I% %E% SMI"
#include "ec2.h"
#include "mp_gf2m.h"
#include "mp_gf2m-priv.h"
#include "mpi.h"
#include "mpi-priv.h"
#ifndef _KERNEL
#include <stdlib.h>
#endif
/* Fast reduction for polynomials over a 163-bit curve. Assumes reduction
* polynomial with terms {163, 7, 6, 3, 0}. */
mp_err
ec_GF2m_163_mod(const mp_int *a, mp_int *r, const GFMethod *meth)
{
mp_err res = MP_OKAY;
mp_digit *u, z;
if (a != r) {
MP_CHECKOK(mp_copy(a, r));
}
#ifdef ECL_SIXTY_FOUR_BIT
if (MP_USED(r) < 6) {
MP_CHECKOK(s_mp_pad(r, 6));
}
u = MP_DIGITS(r);
MP_USED(r) = 6;
/* u[5] only has 6 significant bits */
z = u[5];
u[2] ^= (z << 36) ^ (z << 35) ^ (z << 32) ^ (z << 29);
z = u[4];
u[2] ^= (z >> 28) ^ (z >> 29) ^ (z >> 32) ^ (z >> 35);
u[1] ^= (z << 36) ^ (z << 35) ^ (z << 32) ^ (z << 29);
z = u[3];
u[1] ^= (z >> 28) ^ (z >> 29) ^ (z >> 32) ^ (z >> 35);
u[0] ^= (z << 36) ^ (z << 35) ^ (z << 32) ^ (z << 29);
z = u[2] >> 35; /* z only has 29 significant bits */
u[0] ^= (z << 7) ^ (z << 6) ^ (z << 3) ^ z;
/* clear bits above 163 */
u[5] = u[4] = u[3] = 0;
u[2] ^= z << 35;
#else
if (MP_USED(r) < 11) {
MP_CHECKOK(s_mp_pad(r, 11));
}
u = MP_DIGITS(r);
MP_USED(r) = 11;
/* u[11] only has 6 significant bits */
z = u[10];
u[5] ^= (z << 4) ^ (z << 3) ^ z ^ (z >> 3);
u[4] ^= (z << 29);
z = u[9];
u[5] ^= (z >> 28) ^ (z >> 29);
u[4] ^= (z << 4) ^ (z << 3) ^ z ^ (z >> 3);
u[3] ^= (z << 29);
z = u[8];
u[4] ^= (z >> 28) ^ (z >> 29);
u[3] ^= (z << 4) ^ (z << 3) ^ z ^ (z >> 3);
u[2] ^= (z << 29);
z = u[7];
u[3] ^= (z >> 28) ^ (z >> 29);
u[2] ^= (z << 4) ^ (z << 3) ^ z ^ (z >> 3);
u[1] ^= (z << 29);
z = u[6];
u[2] ^= (z >> 28) ^ (z >> 29);
u[1] ^= (z << 4) ^ (z << 3) ^ z ^ (z >> 3);
u[0] ^= (z << 29);
z = u[5] >> 3; /* z only has 29 significant bits */
u[1] ^= (z >> 25) ^ (z >> 26);
u[0] ^= (z << 7) ^ (z << 6) ^ (z << 3) ^ z;
/* clear bits above 163 */
u[11] = u[10] = u[9] = u[8] = u[7] = u[6] = 0;
u[5] ^= z << 3;
#endif
s_mp_clamp(r);
CLEANUP:
return res;
}
/* Fast squaring for polynomials over a 163-bit curve. Assumes reduction
* polynomial with terms {163, 7, 6, 3, 0}. */
mp_err
ec_GF2m_163_sqr(const mp_int *a, mp_int *r, const GFMethod *meth)
{
mp_err res = MP_OKAY;
mp_digit *u, *v;
v = MP_DIGITS(a);
#ifdef ECL_SIXTY_FOUR_BIT
if (MP_USED(a) < 3) {
return mp_bsqrmod(a, meth->irr_arr, r);
}
if (MP_USED(r) < 6) {
MP_CHECKOK(s_mp_pad(r, 6));
}
MP_USED(r) = 6;
#else
if (MP_USED(a) < 6) {
return mp_bsqrmod(a, meth->irr_arr, r);
}
if (MP_USED(r) < 12) {
MP_CHECKOK(s_mp_pad(r, 12));
}
MP_USED(r) = 12;
#endif
u = MP_DIGITS(r);
#ifdef ECL_THIRTY_TWO_BIT
u[11] = gf2m_SQR1(v[5]);
u[10] = gf2m_SQR0(v[5]);
u[9] = gf2m_SQR1(v[4]);
u[8] = gf2m_SQR0(v[4]);
u[7] = gf2m_SQR1(v[3]);
u[6] = gf2m_SQR0(v[3]);
#endif
u[5] = gf2m_SQR1(v[2]);
u[4] = gf2m_SQR0(v[2]);
u[3] = gf2m_SQR1(v[1]);
u[2] = gf2m_SQR0(v[1]);
u[1] = gf2m_SQR1(v[0]);
u[0] = gf2m_SQR0(v[0]);
return ec_GF2m_163_mod(r, r, meth);
CLEANUP:
return res;
}
/* Fast multiplication for polynomials over a 163-bit curve. Assumes
* reduction polynomial with terms {163, 7, 6, 3, 0}. */
mp_err
ec_GF2m_163_mul(const mp_int *a, const mp_int *b, mp_int *r,
const GFMethod *meth)
{
mp_err res = MP_OKAY;
mp_digit a2 = 0, a1 = 0, a0, b2 = 0, b1 = 0, b0;
#ifdef ECL_THIRTY_TWO_BIT
mp_digit a5 = 0, a4 = 0, a3 = 0, b5 = 0, b4 = 0, b3 = 0;
mp_digit rm[6];
#endif
if (a == b) {
return ec_GF2m_163_sqr(a, r, meth);
} else {
switch (MP_USED(a)) {
#ifdef ECL_THIRTY_TWO_BIT
case 6:
a5 = MP_DIGIT(a, 5);
case 5:
a4 = MP_DIGIT(a, 4);
case 4:
a3 = MP_DIGIT(a, 3);
#endif
case 3:
a2 = MP_DIGIT(a, 2);
case 2:
a1 = MP_DIGIT(a, 1);
default:
a0 = MP_DIGIT(a, 0);
}
switch (MP_USED(b)) {
#ifdef ECL_THIRTY_TWO_BIT
case 6:
b5 = MP_DIGIT(b, 5);
case 5:
b4 = MP_DIGIT(b, 4);
case 4:
b3 = MP_DIGIT(b, 3);
#endif
case 3:
b2 = MP_DIGIT(b, 2);
case 2:
b1 = MP_DIGIT(b, 1);
default:
b0 = MP_DIGIT(b, 0);
}
#ifdef ECL_SIXTY_FOUR_BIT
MP_CHECKOK(s_mp_pad(r, 6));
s_bmul_3x3(MP_DIGITS(r), a2, a1, a0, b2, b1, b0);
MP_USED(r) = 6;
s_mp_clamp(r);
#else
MP_CHECKOK(s_mp_pad(r, 12));
s_bmul_3x3(MP_DIGITS(r) + 6, a5, a4, a3, b5, b4, b3);
s_bmul_3x3(MP_DIGITS(r), a2, a1, a0, b2, b1, b0);
s_bmul_3x3(rm, a5 ^ a2, a4 ^ a1, a3 ^ a0, b5 ^ b2, b4 ^ b1,
b3 ^ b0);
rm[5] ^= MP_DIGIT(r, 5) ^ MP_DIGIT(r, 11);
rm[4] ^= MP_DIGIT(r, 4) ^ MP_DIGIT(r, 10);
rm[3] ^= MP_DIGIT(r, 3) ^ MP_DIGIT(r, 9);
rm[2] ^= MP_DIGIT(r, 2) ^ MP_DIGIT(r, 8);
rm[1] ^= MP_DIGIT(r, 1) ^ MP_DIGIT(r, 7);
rm[0] ^= MP_DIGIT(r, 0) ^ MP_DIGIT(r, 6);
MP_DIGIT(r, 8) ^= rm[5];
MP_DIGIT(r, 7) ^= rm[4];
MP_DIGIT(r, 6) ^= rm[3];
MP_DIGIT(r, 5) ^= rm[2];
MP_DIGIT(r, 4) ^= rm[1];
MP_DIGIT(r, 3) ^= rm[0];
MP_USED(r) = 12;
s_mp_clamp(r);
#endif
return ec_GF2m_163_mod(r, r, meth);
}
CLEANUP:
return res;
}
/* Wire in fast field arithmetic for 163-bit curves. */
mp_err
ec_group_set_gf2m163(ECGroup *group, ECCurveName name)
{
group->meth->field_mod = &ec_GF2m_163_mod;
group->meth->field_mul = &ec_GF2m_163_mul;
group->meth->field_sqr = &ec_GF2m_163_sqr;
return MP_OKAY;
}

View File

@ -0,0 +1,298 @@
/* *********************************************************************
*
* Sun elects to have this file available under and governed by the
* Mozilla Public License Version 1.1 ("MPL") (see
* http://www.mozilla.org/MPL/ for full license text). For the avoidance
* of doubt and subject to the following, Sun also elects to allow
* licensees to use this file under the MPL, the GNU General Public
* License version 2 only or the Lesser General Public License version
* 2.1 only. Any references to the "GNU General Public License version 2
* or later" or "GPL" in the following shall be construed to mean the
* GNU General Public License version 2 only. Any references to the "GNU
* Lesser General Public License version 2.1 or later" or "LGPL" in the
* following shall be construed to mean the GNU Lesser General Public
* License version 2.1 only. However, the following notice accompanied
* the original version of this file:
*
* Version: MPL 1.1/GPL 2.0/LGPL 2.1
*
* The contents of this file are subject to the Mozilla Public License Version
* 1.1 (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* Software distributed under the License is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
* for the specific language governing rights and limitations under the
* License.
*
* The Original Code is the elliptic curve math library for binary polynomial field curves.
*
* The Initial Developer of the Original Code is
* Sun Microsystems, Inc.
* Portions created by the Initial Developer are Copyright (C) 2003
* the Initial Developer. All Rights Reserved.
*
* Contributor(s):
* Sheueling Chang-Shantz <sheueling.chang@sun.com>,
* Stephen Fung <fungstep@hotmail.com>, and
* Douglas Stebila <douglas@stebila.ca>, Sun Microsystems Laboratories.
*
* Alternatively, the contents of this file may be used under the terms of
* either the GNU General Public License Version 2 or later (the "GPL"), or
* the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
* in which case the provisions of the GPL or the LGPL are applicable instead
* of those above. If you wish to allow use of your version of this file only
* under the terms of either the GPL or the LGPL, and not to allow others to
* use your version of this file under the terms of the MPL, indicate your
* decision by deleting the provisions above and replace them with the notice
* and other provisions required by the GPL or the LGPL. If you do not delete
* the provisions above, a recipient may use your version of this file under
* the terms of any one of the MPL, the GPL or the LGPL.
*
*********************************************************************** */
/*
* Copyright 2007 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#pragma ident "%Z%%M% %I% %E% SMI"
#include "ec2.h"
#include "mp_gf2m.h"
#include "mp_gf2m-priv.h"
#include "mpi.h"
#include "mpi-priv.h"
#ifndef _KERNEL
#include <stdlib.h>
#endif
/* Fast reduction for polynomials over a 193-bit curve. Assumes reduction
* polynomial with terms {193, 15, 0}. */
mp_err
ec_GF2m_193_mod(const mp_int *a, mp_int *r, const GFMethod *meth)
{
mp_err res = MP_OKAY;
mp_digit *u, z;
if (a != r) {
MP_CHECKOK(mp_copy(a, r));
}
#ifdef ECL_SIXTY_FOUR_BIT
if (MP_USED(r) < 7) {
MP_CHECKOK(s_mp_pad(r, 7));
}
u = MP_DIGITS(r);
MP_USED(r) = 7;
/* u[6] only has 2 significant bits */
z = u[6];
u[3] ^= (z << 14) ^ (z >> 1);
u[2] ^= (z << 63);
z = u[5];
u[3] ^= (z >> 50);
u[2] ^= (z << 14) ^ (z >> 1);
u[1] ^= (z << 63);
z = u[4];
u[2] ^= (z >> 50);
u[1] ^= (z << 14) ^ (z >> 1);
u[0] ^= (z << 63);
z = u[3] >> 1; /* z only has 63 significant bits */
u[1] ^= (z >> 49);
u[0] ^= (z << 15) ^ z;
/* clear bits above 193 */
u[6] = u[5] = u[4] = 0;
u[3] ^= z << 1;
#else
if (MP_USED(r) < 13) {
MP_CHECKOK(s_mp_pad(r, 13));
}
u = MP_DIGITS(r);
MP_USED(r) = 13;
/* u[12] only has 2 significant bits */
z = u[12];
u[6] ^= (z << 14) ^ (z >> 1);
u[5] ^= (z << 31);
z = u[11];
u[6] ^= (z >> 18);
u[5] ^= (z << 14) ^ (z >> 1);
u[4] ^= (z << 31);
z = u[10];
u[5] ^= (z >> 18);
u[4] ^= (z << 14) ^ (z >> 1);
u[3] ^= (z << 31);
z = u[9];
u[4] ^= (z >> 18);
u[3] ^= (z << 14) ^ (z >> 1);
u[2] ^= (z << 31);
z = u[8];
u[3] ^= (z >> 18);
u[2] ^= (z << 14) ^ (z >> 1);
u[1] ^= (z << 31);
z = u[7];
u[2] ^= (z >> 18);
u[1] ^= (z << 14) ^ (z >> 1);
u[0] ^= (z << 31);
z = u[6] >> 1; /* z only has 31 significant bits */
u[1] ^= (z >> 17);
u[0] ^= (z << 15) ^ z;
/* clear bits above 193 */
u[12] = u[11] = u[10] = u[9] = u[8] = u[7] = 0;
u[6] ^= z << 1;
#endif
s_mp_clamp(r);
CLEANUP:
return res;
}
/* Fast squaring for polynomials over a 193-bit curve. Assumes reduction
* polynomial with terms {193, 15, 0}. */
mp_err
ec_GF2m_193_sqr(const mp_int *a, mp_int *r, const GFMethod *meth)
{
mp_err res = MP_OKAY;
mp_digit *u, *v;
v = MP_DIGITS(a);
#ifdef ECL_SIXTY_FOUR_BIT
if (MP_USED(a) < 4) {
return mp_bsqrmod(a, meth->irr_arr, r);
}
if (MP_USED(r) < 7) {
MP_CHECKOK(s_mp_pad(r, 7));
}
MP_USED(r) = 7;
#else
if (MP_USED(a) < 7) {
return mp_bsqrmod(a, meth->irr_arr, r);
}
if (MP_USED(r) < 13) {
MP_CHECKOK(s_mp_pad(r, 13));
}
MP_USED(r) = 13;
#endif
u = MP_DIGITS(r);
#ifdef ECL_THIRTY_TWO_BIT
u[12] = gf2m_SQR0(v[6]);
u[11] = gf2m_SQR1(v[5]);
u[10] = gf2m_SQR0(v[5]);
u[9] = gf2m_SQR1(v[4]);
u[8] = gf2m_SQR0(v[4]);
u[7] = gf2m_SQR1(v[3]);
#endif
u[6] = gf2m_SQR0(v[3]);
u[5] = gf2m_SQR1(v[2]);
u[4] = gf2m_SQR0(v[2]);
u[3] = gf2m_SQR1(v[1]);
u[2] = gf2m_SQR0(v[1]);
u[1] = gf2m_SQR1(v[0]);
u[0] = gf2m_SQR0(v[0]);
return ec_GF2m_193_mod(r, r, meth);
CLEANUP:
return res;
}
/* Fast multiplication for polynomials over a 193-bit curve. Assumes
* reduction polynomial with terms {193, 15, 0}. */
mp_err
ec_GF2m_193_mul(const mp_int *a, const mp_int *b, mp_int *r,
const GFMethod *meth)
{
mp_err res = MP_OKAY;
mp_digit a3 = 0, a2 = 0, a1 = 0, a0, b3 = 0, b2 = 0, b1 = 0, b0;
#ifdef ECL_THIRTY_TWO_BIT
mp_digit a6 = 0, a5 = 0, a4 = 0, b6 = 0, b5 = 0, b4 = 0;
mp_digit rm[8];
#endif
if (a == b) {
return ec_GF2m_193_sqr(a, r, meth);
} else {
switch (MP_USED(a)) {
#ifdef ECL_THIRTY_TWO_BIT
case 7:
a6 = MP_DIGIT(a, 6);
case 6:
a5 = MP_DIGIT(a, 5);
case 5:
a4 = MP_DIGIT(a, 4);
#endif
case 4:
a3 = MP_DIGIT(a, 3);
case 3:
a2 = MP_DIGIT(a, 2);
case 2:
a1 = MP_DIGIT(a, 1);
default:
a0 = MP_DIGIT(a, 0);
}
switch (MP_USED(b)) {
#ifdef ECL_THIRTY_TWO_BIT
case 7:
b6 = MP_DIGIT(b, 6);
case 6:
b5 = MP_DIGIT(b, 5);
case 5:
b4 = MP_DIGIT(b, 4);
#endif
case 4:
b3 = MP_DIGIT(b, 3);
case 3:
b2 = MP_DIGIT(b, 2);
case 2:
b1 = MP_DIGIT(b, 1);
default:
b0 = MP_DIGIT(b, 0);
}
#ifdef ECL_SIXTY_FOUR_BIT
MP_CHECKOK(s_mp_pad(r, 8));
s_bmul_4x4(MP_DIGITS(r), a3, a2, a1, a0, b3, b2, b1, b0);
MP_USED(r) = 8;
s_mp_clamp(r);
#else
MP_CHECKOK(s_mp_pad(r, 14));
s_bmul_3x3(MP_DIGITS(r) + 8, a6, a5, a4, b6, b5, b4);
s_bmul_4x4(MP_DIGITS(r), a3, a2, a1, a0, b3, b2, b1, b0);
s_bmul_4x4(rm, a3, a6 ^ a2, a5 ^ a1, a4 ^ a0, b3, b6 ^ b2, b5 ^ b1,
b4 ^ b0);
rm[7] ^= MP_DIGIT(r, 7);
rm[6] ^= MP_DIGIT(r, 6);
rm[5] ^= MP_DIGIT(r, 5) ^ MP_DIGIT(r, 13);
rm[4] ^= MP_DIGIT(r, 4) ^ MP_DIGIT(r, 12);
rm[3] ^= MP_DIGIT(r, 3) ^ MP_DIGIT(r, 11);
rm[2] ^= MP_DIGIT(r, 2) ^ MP_DIGIT(r, 10);
rm[1] ^= MP_DIGIT(r, 1) ^ MP_DIGIT(r, 9);
rm[0] ^= MP_DIGIT(r, 0) ^ MP_DIGIT(r, 8);
MP_DIGIT(r, 11) ^= rm[7];
MP_DIGIT(r, 10) ^= rm[6];
MP_DIGIT(r, 9) ^= rm[5];
MP_DIGIT(r, 8) ^= rm[4];
MP_DIGIT(r, 7) ^= rm[3];
MP_DIGIT(r, 6) ^= rm[2];
MP_DIGIT(r, 5) ^= rm[1];
MP_DIGIT(r, 4) ^= rm[0];
MP_USED(r) = 14;
s_mp_clamp(r);
#endif
return ec_GF2m_193_mod(r, r, meth);
}
CLEANUP:
return res;
}
/* Wire in fast field arithmetic for 193-bit curves. */
mp_err
ec_group_set_gf2m193(ECGroup *group, ECCurveName name)
{
group->meth->field_mod = &ec_GF2m_193_mod;
group->meth->field_mul = &ec_GF2m_193_mul;
group->meth->field_sqr = &ec_GF2m_193_sqr;
return MP_OKAY;
}

View File

@ -0,0 +1,321 @@
/* *********************************************************************
*
* Sun elects to have this file available under and governed by the
* Mozilla Public License Version 1.1 ("MPL") (see
* http://www.mozilla.org/MPL/ for full license text). For the avoidance
* of doubt and subject to the following, Sun also elects to allow
* licensees to use this file under the MPL, the GNU General Public
* License version 2 only or the Lesser General Public License version
* 2.1 only. Any references to the "GNU General Public License version 2
* or later" or "GPL" in the following shall be construed to mean the
* GNU General Public License version 2 only. Any references to the "GNU
* Lesser General Public License version 2.1 or later" or "LGPL" in the
* following shall be construed to mean the GNU Lesser General Public
* License version 2.1 only. However, the following notice accompanied
* the original version of this file:
*
* Version: MPL 1.1/GPL 2.0/LGPL 2.1
*
* The contents of this file are subject to the Mozilla Public License Version
* 1.1 (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* Software distributed under the License is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
* for the specific language governing rights and limitations under the
* License.
*
* The Original Code is the elliptic curve math library for binary polynomial field curves.
*
* The Initial Developer of the Original Code is
* Sun Microsystems, Inc.
* Portions created by the Initial Developer are Copyright (C) 2003
* the Initial Developer. All Rights Reserved.
*
* Contributor(s):
* Sheueling Chang-Shantz <sheueling.chang@sun.com>,
* Stephen Fung <fungstep@hotmail.com>, and
* Douglas Stebila <douglas@stebila.ca>, Sun Microsystems Laboratories.
*
* Alternatively, the contents of this file may be used under the terms of
* either the GNU General Public License Version 2 or later (the "GPL"), or
* the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
* in which case the provisions of the GPL or the LGPL are applicable instead
* of those above. If you wish to allow use of your version of this file only
* under the terms of either the GPL or the LGPL, and not to allow others to
* use your version of this file under the terms of the MPL, indicate your
* decision by deleting the provisions above and replace them with the notice
* and other provisions required by the GPL or the LGPL. If you do not delete
* the provisions above, a recipient may use your version of this file under
* the terms of any one of the MPL, the GPL or the LGPL.
*
*********************************************************************** */
/*
* Copyright 2007 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#pragma ident "%Z%%M% %I% %E% SMI"
#include "ec2.h"
#include "mp_gf2m.h"
#include "mp_gf2m-priv.h"
#include "mpi.h"
#include "mpi-priv.h"
#ifndef _KERNEL
#include <stdlib.h>
#endif
/* Fast reduction for polynomials over a 233-bit curve. Assumes reduction
* polynomial with terms {233, 74, 0}. */
mp_err
ec_GF2m_233_mod(const mp_int *a, mp_int *r, const GFMethod *meth)
{
mp_err res = MP_OKAY;
mp_digit *u, z;
if (a != r) {
MP_CHECKOK(mp_copy(a, r));
}
#ifdef ECL_SIXTY_FOUR_BIT
if (MP_USED(r) < 8) {
MP_CHECKOK(s_mp_pad(r, 8));
}
u = MP_DIGITS(r);
MP_USED(r) = 8;
/* u[7] only has 18 significant bits */
z = u[7];
u[4] ^= (z << 33) ^ (z >> 41);
u[3] ^= (z << 23);
z = u[6];
u[4] ^= (z >> 31);
u[3] ^= (z << 33) ^ (z >> 41);
u[2] ^= (z << 23);
z = u[5];
u[3] ^= (z >> 31);
u[2] ^= (z << 33) ^ (z >> 41);
u[1] ^= (z << 23);
z = u[4];
u[2] ^= (z >> 31);
u[1] ^= (z << 33) ^ (z >> 41);
u[0] ^= (z << 23);
z = u[3] >> 41; /* z only has 23 significant bits */
u[1] ^= (z << 10);
u[0] ^= z;
/* clear bits above 233 */
u[7] = u[6] = u[5] = u[4] = 0;
u[3] ^= z << 41;
#else
if (MP_USED(r) < 15) {
MP_CHECKOK(s_mp_pad(r, 15));
}
u = MP_DIGITS(r);
MP_USED(r) = 15;
/* u[14] only has 18 significant bits */
z = u[14];
u[9] ^= (z << 1);
u[7] ^= (z >> 9);
u[6] ^= (z << 23);
z = u[13];
u[9] ^= (z >> 31);
u[8] ^= (z << 1);
u[6] ^= (z >> 9);
u[5] ^= (z << 23);
z = u[12];
u[8] ^= (z >> 31);
u[7] ^= (z << 1);
u[5] ^= (z >> 9);
u[4] ^= (z << 23);
z = u[11];
u[7] ^= (z >> 31);
u[6] ^= (z << 1);
u[4] ^= (z >> 9);
u[3] ^= (z << 23);
z = u[10];
u[6] ^= (z >> 31);
u[5] ^= (z << 1);
u[3] ^= (z >> 9);
u[2] ^= (z << 23);
z = u[9];
u[5] ^= (z >> 31);
u[4] ^= (z << 1);
u[2] ^= (z >> 9);
u[1] ^= (z << 23);
z = u[8];
u[4] ^= (z >> 31);
u[3] ^= (z << 1);
u[1] ^= (z >> 9);
u[0] ^= (z << 23);
z = u[7] >> 9; /* z only has 23 significant bits */
u[3] ^= (z >> 22);
u[2] ^= (z << 10);
u[0] ^= z;
/* clear bits above 233 */
u[14] = u[13] = u[12] = u[11] = u[10] = u[9] = u[8] = 0;
u[7] ^= z << 9;
#endif
s_mp_clamp(r);
CLEANUP:
return res;
}
/* Fast squaring for polynomials over a 233-bit curve. Assumes reduction
* polynomial with terms {233, 74, 0}. */
mp_err
ec_GF2m_233_sqr(const mp_int *a, mp_int *r, const GFMethod *meth)
{
mp_err res = MP_OKAY;
mp_digit *u, *v;
v = MP_DIGITS(a);
#ifdef ECL_SIXTY_FOUR_BIT
if (MP_USED(a) < 4) {
return mp_bsqrmod(a, meth->irr_arr, r);
}
if (MP_USED(r) < 8) {
MP_CHECKOK(s_mp_pad(r, 8));
}
MP_USED(r) = 8;
#else
if (MP_USED(a) < 8) {
return mp_bsqrmod(a, meth->irr_arr, r);
}
if (MP_USED(r) < 15) {
MP_CHECKOK(s_mp_pad(r, 15));
}
MP_USED(r) = 15;
#endif
u = MP_DIGITS(r);
#ifdef ECL_THIRTY_TWO_BIT
u[14] = gf2m_SQR0(v[7]);
u[13] = gf2m_SQR1(v[6]);
u[12] = gf2m_SQR0(v[6]);
u[11] = gf2m_SQR1(v[5]);
u[10] = gf2m_SQR0(v[5]);
u[9] = gf2m_SQR1(v[4]);
u[8] = gf2m_SQR0(v[4]);
#endif
u[7] = gf2m_SQR1(v[3]);
u[6] = gf2m_SQR0(v[3]);
u[5] = gf2m_SQR1(v[2]);
u[4] = gf2m_SQR0(v[2]);
u[3] = gf2m_SQR1(v[1]);
u[2] = gf2m_SQR0(v[1]);
u[1] = gf2m_SQR1(v[0]);
u[0] = gf2m_SQR0(v[0]);
return ec_GF2m_233_mod(r, r, meth);
CLEANUP:
return res;
}
/* Fast multiplication for polynomials over a 233-bit curve. Assumes
* reduction polynomial with terms {233, 74, 0}. */
mp_err
ec_GF2m_233_mul(const mp_int *a, const mp_int *b, mp_int *r,
const GFMethod *meth)
{
mp_err res = MP_OKAY;
mp_digit a3 = 0, a2 = 0, a1 = 0, a0, b3 = 0, b2 = 0, b1 = 0, b0;
#ifdef ECL_THIRTY_TWO_BIT
mp_digit a7 = 0, a6 = 0, a5 = 0, a4 = 0, b7 = 0, b6 = 0, b5 = 0, b4 =
0;
mp_digit rm[8];
#endif
if (a == b) {
return ec_GF2m_233_sqr(a, r, meth);
} else {
switch (MP_USED(a)) {
#ifdef ECL_THIRTY_TWO_BIT
case 8:
a7 = MP_DIGIT(a, 7);
case 7:
a6 = MP_DIGIT(a, 6);
case 6:
a5 = MP_DIGIT(a, 5);
case 5:
a4 = MP_DIGIT(a, 4);
#endif
case 4:
a3 = MP_DIGIT(a, 3);
case 3:
a2 = MP_DIGIT(a, 2);
case 2:
a1 = MP_DIGIT(a, 1);
default:
a0 = MP_DIGIT(a, 0);
}
switch (MP_USED(b)) {
#ifdef ECL_THIRTY_TWO_BIT
case 8:
b7 = MP_DIGIT(b, 7);
case 7:
b6 = MP_DIGIT(b, 6);
case 6:
b5 = MP_DIGIT(b, 5);
case 5:
b4 = MP_DIGIT(b, 4);
#endif
case 4:
b3 = MP_DIGIT(b, 3);
case 3:
b2 = MP_DIGIT(b, 2);
case 2:
b1 = MP_DIGIT(b, 1);
default:
b0 = MP_DIGIT(b, 0);
}
#ifdef ECL_SIXTY_FOUR_BIT
MP_CHECKOK(s_mp_pad(r, 8));
s_bmul_4x4(MP_DIGITS(r), a3, a2, a1, a0, b3, b2, b1, b0);
MP_USED(r) = 8;
s_mp_clamp(r);
#else
MP_CHECKOK(s_mp_pad(r, 16));
s_bmul_4x4(MP_DIGITS(r) + 8, a7, a6, a5, a4, b7, b6, b5, b4);
s_bmul_4x4(MP_DIGITS(r), a3, a2, a1, a0, b3, b2, b1, b0);
s_bmul_4x4(rm, a7 ^ a3, a6 ^ a2, a5 ^ a1, a4 ^ a0, b7 ^ b3,
b6 ^ b2, b5 ^ b1, b4 ^ b0);
rm[7] ^= MP_DIGIT(r, 7) ^ MP_DIGIT(r, 15);
rm[6] ^= MP_DIGIT(r, 6) ^ MP_DIGIT(r, 14);
rm[5] ^= MP_DIGIT(r, 5) ^ MP_DIGIT(r, 13);
rm[4] ^= MP_DIGIT(r, 4) ^ MP_DIGIT(r, 12);
rm[3] ^= MP_DIGIT(r, 3) ^ MP_DIGIT(r, 11);
rm[2] ^= MP_DIGIT(r, 2) ^ MP_DIGIT(r, 10);
rm[1] ^= MP_DIGIT(r, 1) ^ MP_DIGIT(r, 9);
rm[0] ^= MP_DIGIT(r, 0) ^ MP_DIGIT(r, 8);
MP_DIGIT(r, 11) ^= rm[7];
MP_DIGIT(r, 10) ^= rm[6];
MP_DIGIT(r, 9) ^= rm[5];
MP_DIGIT(r, 8) ^= rm[4];
MP_DIGIT(r, 7) ^= rm[3];
MP_DIGIT(r, 6) ^= rm[2];
MP_DIGIT(r, 5) ^= rm[1];
MP_DIGIT(r, 4) ^= rm[0];
MP_USED(r) = 16;
s_mp_clamp(r);
#endif
return ec_GF2m_233_mod(r, r, meth);
}
CLEANUP:
return res;
}
/* Wire in fast field arithmetic for 233-bit curves. */
mp_err
ec_group_set_gf2m233(ECGroup *group, ECCurveName name)
{
group->meth->field_mod = &ec_GF2m_233_mod;
group->meth->field_mul = &ec_GF2m_233_mul;
group->meth->field_sqr = &ec_GF2m_233_sqr;
return MP_OKAY;
}

View File

@ -0,0 +1,368 @@
/* *********************************************************************
*
* Sun elects to have this file available under and governed by the
* Mozilla Public License Version 1.1 ("MPL") (see
* http://www.mozilla.org/MPL/ for full license text). For the avoidance
* of doubt and subject to the following, Sun also elects to allow
* licensees to use this file under the MPL, the GNU General Public
* License version 2 only or the Lesser General Public License version
* 2.1 only. Any references to the "GNU General Public License version 2
* or later" or "GPL" in the following shall be construed to mean the
* GNU General Public License version 2 only. Any references to the "GNU
* Lesser General Public License version 2.1 or later" or "LGPL" in the
* following shall be construed to mean the GNU Lesser General Public
* License version 2.1 only. However, the following notice accompanied
* the original version of this file:
*
* Version: MPL 1.1/GPL 2.0/LGPL 2.1
*
* The contents of this file are subject to the Mozilla Public License Version
* 1.1 (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* Software distributed under the License is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
* for the specific language governing rights and limitations under the
* License.
*
* The Original Code is the elliptic curve math library for binary polynomial field curves.
*
* The Initial Developer of the Original Code is
* Sun Microsystems, Inc.
* Portions created by the Initial Developer are Copyright (C) 2003
* the Initial Developer. All Rights Reserved.
*
* Contributor(s):
* Douglas Stebila <douglas@stebila.ca>, Sun Microsystems Laboratories
*
* Alternatively, the contents of this file may be used under the terms of
* either the GNU General Public License Version 2 or later (the "GPL"), or
* the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
* in which case the provisions of the GPL or the LGPL are applicable instead
* of those above. If you wish to allow use of your version of this file only
* under the terms of either the GPL or the LGPL, and not to allow others to
* use your version of this file under the terms of the MPL, indicate your
* decision by deleting the provisions above and replace them with the notice
* and other provisions required by the GPL or the LGPL. If you do not delete
* the provisions above, a recipient may use your version of this file under
* the terms of any one of the MPL, the GPL or the LGPL.
*
*********************************************************************** */
/*
* Copyright 2007 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#pragma ident "%Z%%M% %I% %E% SMI"
#include "ec2.h"
#include "mplogic.h"
#include "mp_gf2m.h"
#ifndef _KERNEL
#include <stdlib.h>
#endif
/* Checks if point P(px, py) is at infinity. Uses affine coordinates. */
mp_err
ec_GF2m_pt_is_inf_aff(const mp_int *px, const mp_int *py)
{
if ((mp_cmp_z(px) == 0) && (mp_cmp_z(py) == 0)) {
return MP_YES;
} else {
return MP_NO;
}
}
/* Sets P(px, py) to be the point at infinity. Uses affine coordinates. */
mp_err
ec_GF2m_pt_set_inf_aff(mp_int *px, mp_int *py)
{
mp_zero(px);
mp_zero(py);
return MP_OKAY;
}
/* Computes R = P + Q based on IEEE P1363 A.10.2. Elliptic curve points P,
* Q, and R can all be identical. Uses affine coordinates. */
mp_err
ec_GF2m_pt_add_aff(const mp_int *px, const mp_int *py, const mp_int *qx,
const mp_int *qy, mp_int *rx, mp_int *ry,
const ECGroup *group)
{
mp_err res = MP_OKAY;
mp_int lambda, tempx, tempy;
MP_DIGITS(&lambda) = 0;
MP_DIGITS(&tempx) = 0;
MP_DIGITS(&tempy) = 0;
MP_CHECKOK(mp_init(&lambda, FLAG(px)));
MP_CHECKOK(mp_init(&tempx, FLAG(px)));
MP_CHECKOK(mp_init(&tempy, FLAG(px)));
/* if P = inf, then R = Q */
if (ec_GF2m_pt_is_inf_aff(px, py) == 0) {
MP_CHECKOK(mp_copy(qx, rx));
MP_CHECKOK(mp_copy(qy, ry));
res = MP_OKAY;
goto CLEANUP;
}
/* if Q = inf, then R = P */
if (ec_GF2m_pt_is_inf_aff(qx, qy) == 0) {
MP_CHECKOK(mp_copy(px, rx));
MP_CHECKOK(mp_copy(py, ry));
res = MP_OKAY;
goto CLEANUP;
}
/* if px != qx, then lambda = (py+qy) / (px+qx), tempx = a + lambda^2
* + lambda + px + qx */
if (mp_cmp(px, qx) != 0) {
MP_CHECKOK(group->meth->field_add(py, qy, &tempy, group->meth));
MP_CHECKOK(group->meth->field_add(px, qx, &tempx, group->meth));
MP_CHECKOK(group->meth->
field_div(&tempy, &tempx, &lambda, group->meth));
MP_CHECKOK(group->meth->field_sqr(&lambda, &tempx, group->meth));
MP_CHECKOK(group->meth->
field_add(&tempx, &lambda, &tempx, group->meth));
MP_CHECKOK(group->meth->
field_add(&tempx, &group->curvea, &tempx, group->meth));
MP_CHECKOK(group->meth->
field_add(&tempx, px, &tempx, group->meth));
MP_CHECKOK(group->meth->
field_add(&tempx, qx, &tempx, group->meth));
} else {
/* if py != qy or qx = 0, then R = inf */
if (((mp_cmp(py, qy) != 0)) || (mp_cmp_z(qx) == 0)) {
mp_zero(rx);
mp_zero(ry);
res = MP_OKAY;
goto CLEANUP;
}
/* lambda = qx + qy / qx */
MP_CHECKOK(group->meth->field_div(qy, qx, &lambda, group->meth));
MP_CHECKOK(group->meth->
field_add(&lambda, qx, &lambda, group->meth));
/* tempx = a + lambda^2 + lambda */
MP_CHECKOK(group->meth->field_sqr(&lambda, &tempx, group->meth));
MP_CHECKOK(group->meth->
field_add(&tempx, &lambda, &tempx, group->meth));
MP_CHECKOK(group->meth->
field_add(&tempx, &group->curvea, &tempx, group->meth));
}
/* ry = (qx + tempx) * lambda + tempx + qy */
MP_CHECKOK(group->meth->field_add(qx, &tempx, &tempy, group->meth));
MP_CHECKOK(group->meth->
field_mul(&tempy, &lambda, &tempy, group->meth));
MP_CHECKOK(group->meth->
field_add(&tempy, &tempx, &tempy, group->meth));
MP_CHECKOK(group->meth->field_add(&tempy, qy, ry, group->meth));
/* rx = tempx */
MP_CHECKOK(mp_copy(&tempx, rx));
CLEANUP:
mp_clear(&lambda);
mp_clear(&tempx);
mp_clear(&tempy);
return res;
}
/* Computes R = P - Q. Elliptic curve points P, Q, and R can all be
* identical. Uses affine coordinates. */
mp_err
ec_GF2m_pt_sub_aff(const mp_int *px, const mp_int *py, const mp_int *qx,
const mp_int *qy, mp_int *rx, mp_int *ry,
const ECGroup *group)
{
mp_err res = MP_OKAY;
mp_int nqy;
MP_DIGITS(&nqy) = 0;
MP_CHECKOK(mp_init(&nqy, FLAG(px)));
/* nqy = qx+qy */
MP_CHECKOK(group->meth->field_add(qx, qy, &nqy, group->meth));
MP_CHECKOK(group->point_add(px, py, qx, &nqy, rx, ry, group));
CLEANUP:
mp_clear(&nqy);
return res;
}
/* Computes R = 2P. Elliptic curve points P and R can be identical. Uses
* affine coordinates. */
mp_err
ec_GF2m_pt_dbl_aff(const mp_int *px, const mp_int *py, mp_int *rx,
mp_int *ry, const ECGroup *group)
{
return group->point_add(px, py, px, py, rx, ry, group);
}
/* by default, this routine is unused and thus doesn't need to be compiled */
#ifdef ECL_ENABLE_GF2M_PT_MUL_AFF
/* Computes R = nP based on IEEE P1363 A.10.3. Elliptic curve points P and
* R can be identical. Uses affine coordinates. */
mp_err
ec_GF2m_pt_mul_aff(const mp_int *n, const mp_int *px, const mp_int *py,
mp_int *rx, mp_int *ry, const ECGroup *group)
{
mp_err res = MP_OKAY;
mp_int k, k3, qx, qy, sx, sy;
int b1, b3, i, l;
MP_DIGITS(&k) = 0;
MP_DIGITS(&k3) = 0;
MP_DIGITS(&qx) = 0;
MP_DIGITS(&qy) = 0;
MP_DIGITS(&sx) = 0;
MP_DIGITS(&sy) = 0;
MP_CHECKOK(mp_init(&k));
MP_CHECKOK(mp_init(&k3));
MP_CHECKOK(mp_init(&qx));
MP_CHECKOK(mp_init(&qy));
MP_CHECKOK(mp_init(&sx));
MP_CHECKOK(mp_init(&sy));
/* if n = 0 then r = inf */
if (mp_cmp_z(n) == 0) {
mp_zero(rx);
mp_zero(ry);
res = MP_OKAY;
goto CLEANUP;
}
/* Q = P, k = n */
MP_CHECKOK(mp_copy(px, &qx));
MP_CHECKOK(mp_copy(py, &qy));
MP_CHECKOK(mp_copy(n, &k));
/* if n < 0 then Q = -Q, k = -k */
if (mp_cmp_z(n) < 0) {
MP_CHECKOK(group->meth->field_add(&qx, &qy, &qy, group->meth));
MP_CHECKOK(mp_neg(&k, &k));
}
#ifdef ECL_DEBUG /* basic double and add method */
l = mpl_significant_bits(&k) - 1;
MP_CHECKOK(mp_copy(&qx, &sx));
MP_CHECKOK(mp_copy(&qy, &sy));
for (i = l - 1; i >= 0; i--) {
/* S = 2S */
MP_CHECKOK(group->point_dbl(&sx, &sy, &sx, &sy, group));
/* if k_i = 1, then S = S + Q */
if (mpl_get_bit(&k, i) != 0) {
MP_CHECKOK(group->
point_add(&sx, &sy, &qx, &qy, &sx, &sy, group));
}
}
#else /* double and add/subtract method from
* standard */
/* k3 = 3 * k */
MP_CHECKOK(mp_set_int(&k3, 3));
MP_CHECKOK(mp_mul(&k, &k3, &k3));
/* S = Q */
MP_CHECKOK(mp_copy(&qx, &sx));
MP_CHECKOK(mp_copy(&qy, &sy));
/* l = index of high order bit in binary representation of 3*k */
l = mpl_significant_bits(&k3) - 1;
/* for i = l-1 downto 1 */
for (i = l - 1; i >= 1; i--) {
/* S = 2S */
MP_CHECKOK(group->point_dbl(&sx, &sy, &sx, &sy, group));
b3 = MP_GET_BIT(&k3, i);
b1 = MP_GET_BIT(&k, i);
/* if k3_i = 1 and k_i = 0, then S = S + Q */
if ((b3 == 1) && (b1 == 0)) {
MP_CHECKOK(group->
point_add(&sx, &sy, &qx, &qy, &sx, &sy, group));
/* if k3_i = 0 and k_i = 1, then S = S - Q */
} else if ((b3 == 0) && (b1 == 1)) {
MP_CHECKOK(group->
point_sub(&sx, &sy, &qx, &qy, &sx, &sy, group));
}
}
#endif
/* output S */
MP_CHECKOK(mp_copy(&sx, rx));
MP_CHECKOK(mp_copy(&sy, ry));
CLEANUP:
mp_clear(&k);
mp_clear(&k3);
mp_clear(&qx);
mp_clear(&qy);
mp_clear(&sx);
mp_clear(&sy);
return res;
}
#endif
/* Validates a point on a GF2m curve. */
mp_err
ec_GF2m_validate_point(const mp_int *px, const mp_int *py, const ECGroup *group)
{
mp_err res = MP_NO;
mp_int accl, accr, tmp, pxt, pyt;
MP_DIGITS(&accl) = 0;
MP_DIGITS(&accr) = 0;
MP_DIGITS(&tmp) = 0;
MP_DIGITS(&pxt) = 0;
MP_DIGITS(&pyt) = 0;
MP_CHECKOK(mp_init(&accl, FLAG(px)));
MP_CHECKOK(mp_init(&accr, FLAG(px)));
MP_CHECKOK(mp_init(&tmp, FLAG(px)));
MP_CHECKOK(mp_init(&pxt, FLAG(px)));
MP_CHECKOK(mp_init(&pyt, FLAG(px)));
/* 1: Verify that publicValue is not the point at infinity */
if (ec_GF2m_pt_is_inf_aff(px, py) == MP_YES) {
res = MP_NO;
goto CLEANUP;
}
/* 2: Verify that the coordinates of publicValue are elements
* of the field.
*/
if ((MP_SIGN(px) == MP_NEG) || (mp_cmp(px, &group->meth->irr) >= 0) ||
(MP_SIGN(py) == MP_NEG) || (mp_cmp(py, &group->meth->irr) >= 0)) {
res = MP_NO;
goto CLEANUP;
}
/* 3: Verify that publicValue is on the curve. */
if (group->meth->field_enc) {
group->meth->field_enc(px, &pxt, group->meth);
group->meth->field_enc(py, &pyt, group->meth);
} else {
mp_copy(px, &pxt);
mp_copy(py, &pyt);
}
/* left-hand side: y^2 + x*y */
MP_CHECKOK( group->meth->field_sqr(&pyt, &accl, group->meth) );
MP_CHECKOK( group->meth->field_mul(&pxt, &pyt, &tmp, group->meth) );
MP_CHECKOK( group->meth->field_add(&accl, &tmp, &accl, group->meth) );
/* right-hand side: x^3 + a*x^2 + b */
MP_CHECKOK( group->meth->field_sqr(&pxt, &tmp, group->meth) );
MP_CHECKOK( group->meth->field_mul(&pxt, &tmp, &accr, group->meth) );
MP_CHECKOK( group->meth->field_mul(&group->curvea, &tmp, &tmp, group->meth) );
MP_CHECKOK( group->meth->field_add(&tmp, &accr, &accr, group->meth) );
MP_CHECKOK( group->meth->field_add(&accr, &group->curveb, &accr, group->meth) );
/* check LHS - RHS == 0 */
MP_CHECKOK( group->meth->field_add(&accl, &accr, &accr, group->meth) );
if (mp_cmp_z(&accr) != 0) {
res = MP_NO;
goto CLEANUP;
}
/* 4: Verify that the order of the curve times the publicValue
* is the point at infinity.
*/
MP_CHECKOK( ECPoint_mul(group, &group->order, px, py, &pxt, &pyt) );
if (ec_GF2m_pt_is_inf_aff(&pxt, &pyt) != MP_YES) {
res = MP_NO;
goto CLEANUP;
}
res = MP_YES;
CLEANUP:
mp_clear(&accl);
mp_clear(&accr);
mp_clear(&tmp);
mp_clear(&pxt);
mp_clear(&pyt);
return res;
}

View File

@ -0,0 +1,296 @@
/* *********************************************************************
*
* Sun elects to have this file available under and governed by the
* Mozilla Public License Version 1.1 ("MPL") (see
* http://www.mozilla.org/MPL/ for full license text). For the avoidance
* of doubt and subject to the following, Sun also elects to allow
* licensees to use this file under the MPL, the GNU General Public
* License version 2 only or the Lesser General Public License version
* 2.1 only. Any references to the "GNU General Public License version 2
* or later" or "GPL" in the following shall be construed to mean the
* GNU General Public License version 2 only. Any references to the "GNU
* Lesser General Public License version 2.1 or later" or "LGPL" in the
* following shall be construed to mean the GNU Lesser General Public
* License version 2.1 only. However, the following notice accompanied
* the original version of this file:
*
* Version: MPL 1.1/GPL 2.0/LGPL 2.1
*
* The contents of this file are subject to the Mozilla Public License Version
* 1.1 (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* Software distributed under the License is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
* for the specific language governing rights and limitations under the
* License.
*
* The Original Code is the elliptic curve math library for binary polynomial field curves.
*
* The Initial Developer of the Original Code is
* Sun Microsystems, Inc.
* Portions created by the Initial Developer are Copyright (C) 2003
* the Initial Developer. All Rights Reserved.
*
* Contributor(s):
* Sheueling Chang-Shantz <sheueling.chang@sun.com>,
* Stephen Fung <fungstep@hotmail.com>, and
* Douglas Stebila <douglas@stebila.ca>, Sun Microsystems Laboratories.
*
* Alternatively, the contents of this file may be used under the terms of
* either the GNU General Public License Version 2 or later (the "GPL"), or
* the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
* in which case the provisions of the GPL or the LGPL are applicable instead
* of those above. If you wish to allow use of your version of this file only
* under the terms of either the GPL or the LGPL, and not to allow others to
* use your version of this file under the terms of the MPL, indicate your
* decision by deleting the provisions above and replace them with the notice
* and other provisions required by the GPL or the LGPL. If you do not delete
* the provisions above, a recipient may use your version of this file under
* the terms of any one of the MPL, the GPL or the LGPL.
*
*********************************************************************** */
/*
* Copyright 2007 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#pragma ident "%Z%%M% %I% %E% SMI"
#include "ec2.h"
#include "mplogic.h"
#include "mp_gf2m.h"
#ifndef _KERNEL
#include <stdlib.h>
#endif
/* Compute the x-coordinate x/z for the point 2*(x/z) in Montgomery
* projective coordinates. Uses algorithm Mdouble in appendix of Lopez, J.
* and Dahab, R. "Fast multiplication on elliptic curves over GF(2^m)
* without precomputation". modified to not require precomputation of
* c=b^{2^{m-1}}. */
static mp_err
gf2m_Mdouble(mp_int *x, mp_int *z, const ECGroup *group, int kmflag)
{
mp_err res = MP_OKAY;
mp_int t1;
MP_DIGITS(&t1) = 0;
MP_CHECKOK(mp_init(&t1, kmflag));
MP_CHECKOK(group->meth->field_sqr(x, x, group->meth));
MP_CHECKOK(group->meth->field_sqr(z, &t1, group->meth));
MP_CHECKOK(group->meth->field_mul(x, &t1, z, group->meth));
MP_CHECKOK(group->meth->field_sqr(x, x, group->meth));
MP_CHECKOK(group->meth->field_sqr(&t1, &t1, group->meth));
MP_CHECKOK(group->meth->
field_mul(&group->curveb, &t1, &t1, group->meth));
MP_CHECKOK(group->meth->field_add(x, &t1, x, group->meth));
CLEANUP:
mp_clear(&t1);
return res;
}
/* Compute the x-coordinate x1/z1 for the point (x1/z1)+(x2/x2) in
* Montgomery projective coordinates. Uses algorithm Madd in appendix of
* Lopex, J. and Dahab, R. "Fast multiplication on elliptic curves over
* GF(2^m) without precomputation". */
static mp_err
gf2m_Madd(const mp_int *x, mp_int *x1, mp_int *z1, mp_int *x2, mp_int *z2,
const ECGroup *group, int kmflag)
{
mp_err res = MP_OKAY;
mp_int t1, t2;
MP_DIGITS(&t1) = 0;
MP_DIGITS(&t2) = 0;
MP_CHECKOK(mp_init(&t1, kmflag));
MP_CHECKOK(mp_init(&t2, kmflag));
MP_CHECKOK(mp_copy(x, &t1));
MP_CHECKOK(group->meth->field_mul(x1, z2, x1, group->meth));
MP_CHECKOK(group->meth->field_mul(z1, x2, z1, group->meth));
MP_CHECKOK(group->meth->field_mul(x1, z1, &t2, group->meth));
MP_CHECKOK(group->meth->field_add(z1, x1, z1, group->meth));
MP_CHECKOK(group->meth->field_sqr(z1, z1, group->meth));
MP_CHECKOK(group->meth->field_mul(z1, &t1, x1, group->meth));
MP_CHECKOK(group->meth->field_add(x1, &t2, x1, group->meth));
CLEANUP:
mp_clear(&t1);
mp_clear(&t2);
return res;
}
/* Compute the x, y affine coordinates from the point (x1, z1) (x2, z2)
* using Montgomery point multiplication algorithm Mxy() in appendix of
* Lopex, J. and Dahab, R. "Fast multiplication on elliptic curves over
* GF(2^m) without precomputation". Returns: 0 on error 1 if return value
* should be the point at infinity 2 otherwise */
static int
gf2m_Mxy(const mp_int *x, const mp_int *y, mp_int *x1, mp_int *z1,
mp_int *x2, mp_int *z2, const ECGroup *group)
{
mp_err res = MP_OKAY;
int ret = 0;
mp_int t3, t4, t5;
MP_DIGITS(&t3) = 0;
MP_DIGITS(&t4) = 0;
MP_DIGITS(&t5) = 0;
MP_CHECKOK(mp_init(&t3, FLAG(x2)));
MP_CHECKOK(mp_init(&t4, FLAG(x2)));
MP_CHECKOK(mp_init(&t5, FLAG(x2)));
if (mp_cmp_z(z1) == 0) {
mp_zero(x2);
mp_zero(z2);
ret = 1;
goto CLEANUP;
}
if (mp_cmp_z(z2) == 0) {
MP_CHECKOK(mp_copy(x, x2));
MP_CHECKOK(group->meth->field_add(x, y, z2, group->meth));
ret = 2;
goto CLEANUP;
}
MP_CHECKOK(mp_set_int(&t5, 1));
if (group->meth->field_enc) {
MP_CHECKOK(group->meth->field_enc(&t5, &t5, group->meth));
}
MP_CHECKOK(group->meth->field_mul(z1, z2, &t3, group->meth));
MP_CHECKOK(group->meth->field_mul(z1, x, z1, group->meth));
MP_CHECKOK(group->meth->field_add(z1, x1, z1, group->meth));
MP_CHECKOK(group->meth->field_mul(z2, x, z2, group->meth));
MP_CHECKOK(group->meth->field_mul(z2, x1, x1, group->meth));
MP_CHECKOK(group->meth->field_add(z2, x2, z2, group->meth));
MP_CHECKOK(group->meth->field_mul(z2, z1, z2, group->meth));
MP_CHECKOK(group->meth->field_sqr(x, &t4, group->meth));
MP_CHECKOK(group->meth->field_add(&t4, y, &t4, group->meth));
MP_CHECKOK(group->meth->field_mul(&t4, &t3, &t4, group->meth));
MP_CHECKOK(group->meth->field_add(&t4, z2, &t4, group->meth));
MP_CHECKOK(group->meth->field_mul(&t3, x, &t3, group->meth));
MP_CHECKOK(group->meth->field_div(&t5, &t3, &t3, group->meth));
MP_CHECKOK(group->meth->field_mul(&t3, &t4, &t4, group->meth));
MP_CHECKOK(group->meth->field_mul(x1, &t3, x2, group->meth));
MP_CHECKOK(group->meth->field_add(x2, x, z2, group->meth));
MP_CHECKOK(group->meth->field_mul(z2, &t4, z2, group->meth));
MP_CHECKOK(group->meth->field_add(z2, y, z2, group->meth));
ret = 2;
CLEANUP:
mp_clear(&t3);
mp_clear(&t4);
mp_clear(&t5);
if (res == MP_OKAY) {
return ret;
} else {
return 0;
}
}
/* Computes R = nP based on algorithm 2P of Lopex, J. and Dahab, R. "Fast
* multiplication on elliptic curves over GF(2^m) without
* precomputation". Elliptic curve points P and R can be identical. Uses
* Montgomery projective coordinates. */
mp_err
ec_GF2m_pt_mul_mont(const mp_int *n, const mp_int *px, const mp_int *py,
mp_int *rx, mp_int *ry, const ECGroup *group)
{
mp_err res = MP_OKAY;
mp_int x1, x2, z1, z2;
int i, j;
mp_digit top_bit, mask;
MP_DIGITS(&x1) = 0;
MP_DIGITS(&x2) = 0;
MP_DIGITS(&z1) = 0;
MP_DIGITS(&z2) = 0;
MP_CHECKOK(mp_init(&x1, FLAG(n)));
MP_CHECKOK(mp_init(&x2, FLAG(n)));
MP_CHECKOK(mp_init(&z1, FLAG(n)));
MP_CHECKOK(mp_init(&z2, FLAG(n)));
/* if result should be point at infinity */
if ((mp_cmp_z(n) == 0) || (ec_GF2m_pt_is_inf_aff(px, py) == MP_YES)) {
MP_CHECKOK(ec_GF2m_pt_set_inf_aff(rx, ry));
goto CLEANUP;
}
MP_CHECKOK(mp_copy(px, &x1)); /* x1 = px */
MP_CHECKOK(mp_set_int(&z1, 1)); /* z1 = 1 */
MP_CHECKOK(group->meth->field_sqr(&x1, &z2, group->meth)); /* z2 =
* x1^2 =
* px^2 */
MP_CHECKOK(group->meth->field_sqr(&z2, &x2, group->meth));
MP_CHECKOK(group->meth->field_add(&x2, &group->curveb, &x2, group->meth)); /* x2
* =
* px^4
* +
* b
*/
/* find top-most bit and go one past it */
i = MP_USED(n) - 1;
j = MP_DIGIT_BIT - 1;
top_bit = 1;
top_bit <<= MP_DIGIT_BIT - 1;
mask = top_bit;
while (!(MP_DIGITS(n)[i] & mask)) {
mask >>= 1;
j--;
}
mask >>= 1;
j--;
/* if top most bit was at word break, go to next word */
if (!mask) {
i--;
j = MP_DIGIT_BIT - 1;
mask = top_bit;
}
for (; i >= 0; i--) {
for (; j >= 0; j--) {
if (MP_DIGITS(n)[i] & mask) {
MP_CHECKOK(gf2m_Madd(px, &x1, &z1, &x2, &z2, group, FLAG(n)));
MP_CHECKOK(gf2m_Mdouble(&x2, &z2, group, FLAG(n)));
} else {
MP_CHECKOK(gf2m_Madd(px, &x2, &z2, &x1, &z1, group, FLAG(n)));
MP_CHECKOK(gf2m_Mdouble(&x1, &z1, group, FLAG(n)));
}
mask >>= 1;
}
j = MP_DIGIT_BIT - 1;
mask = top_bit;
}
/* convert out of "projective" coordinates */
i = gf2m_Mxy(px, py, &x1, &z1, &x2, &z2, group);
if (i == 0) {
res = MP_BADARG;
goto CLEANUP;
} else if (i == 1) {
MP_CHECKOK(ec_GF2m_pt_set_inf_aff(rx, ry));
} else {
MP_CHECKOK(mp_copy(&x2, rx));
MP_CHECKOK(mp_copy(&z2, ry));
}
CLEANUP:
mp_clear(&x1);
mp_clear(&x2);
mp_clear(&z1);
mp_clear(&z2);
return res;
}

View File

@ -0,0 +1,123 @@
/* *********************************************************************
*
* Sun elects to have this file available under and governed by the
* Mozilla Public License Version 1.1 ("MPL") (see
* http://www.mozilla.org/MPL/ for full license text). For the avoidance
* of doubt and subject to the following, Sun also elects to allow
* licensees to use this file under the MPL, the GNU General Public
* License version 2 only or the Lesser General Public License version
* 2.1 only. Any references to the "GNU General Public License version 2
* or later" or "GPL" in the following shall be construed to mean the
* GNU General Public License version 2 only. Any references to the "GNU
* Lesser General Public License version 2.1 or later" or "LGPL" in the
* following shall be construed to mean the GNU Lesser General Public
* License version 2.1 only. However, the following notice accompanied
* the original version of this file:
*
* Version: MPL 1.1/GPL 2.0/LGPL 2.1
*
* The contents of this file are subject to the Mozilla Public License Version
* 1.1 (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* Software distributed under the License is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
* for the specific language governing rights and limitations under the
* License.
*
* The Original Code is the elliptic curve math library.
*
* The Initial Developer of the Original Code is
* Sun Microsystems, Inc.
* Portions created by the Initial Developer are Copyright (C) 2003
* the Initial Developer. All Rights Reserved.
*
* Contributor(s):
* Stephen Fung <fungstep@hotmail.com>, Sun Microsystems Laboratories
*
* Alternatively, the contents of this file may be used under the terms of
* either the GNU General Public License Version 2 or later (the "GPL"), or
* the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
* in which case the provisions of the GPL or the LGPL are applicable instead
* of those above. If you wish to allow use of your version of this file only
* under the terms of either the GPL or the LGPL, and not to allow others to
* use your version of this file under the terms of the MPL, indicate your
* decision by deleting the provisions above and replace them with the notice
* and other provisions required by the GPL or the LGPL. If you do not delete
* the provisions above, a recipient may use your version of this file under
* the terms of any one of the MPL, the GPL or the LGPL.
*
*********************************************************************** */
/*
* Copyright 2007 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#pragma ident "%Z%%M% %I% %E% SMI"
#include "ecl-priv.h"
/* Returns 2^e as an integer. This is meant to be used for small powers of
* two. */
int
ec_twoTo(int e)
{
int a = 1;
int i;
for (i = 0; i < e; i++) {
a *= 2;
}
return a;
}
/* Computes the windowed non-adjacent-form (NAF) of a scalar. Out should
* be an array of signed char's to output to, bitsize should be the number
* of bits of out, in is the original scalar, and w is the window size.
* NAF is discussed in the paper: D. Hankerson, J. Hernandez and A.
* Menezes, "Software implementation of elliptic curve cryptography over
* binary fields", Proc. CHES 2000. */
mp_err
ec_compute_wNAF(signed char *out, int bitsize, const mp_int *in, int w)
{
mp_int k;
mp_err res = MP_OKAY;
int i, twowm1, mask;
twowm1 = ec_twoTo(w - 1);
mask = 2 * twowm1 - 1;
MP_DIGITS(&k) = 0;
MP_CHECKOK(mp_init_copy(&k, in));
i = 0;
/* Compute wNAF form */
while (mp_cmp_z(&k) > 0) {
if (mp_isodd(&k)) {
out[i] = MP_DIGIT(&k, 0) & mask;
if (out[i] >= twowm1)
out[i] -= 2 * twowm1;
/* Subtract off out[i]. Note mp_sub_d only works with
* unsigned digits */
if (out[i] >= 0) {
mp_sub_d(&k, out[i], &k);
} else {
mp_add_d(&k, -(out[i]), &k);
}
} else {
out[i] = 0;
}
mp_div_2(&k, &k);
i++;
}
/* Zero out the remaining elements of the out array. */
for (; i < bitsize + 1; i++) {
out[i] = 0;
}
CLEANUP:
mp_clear(&k);
return res;
}

View File

@ -0,0 +1,275 @@
/* *********************************************************************
*
* Sun elects to have this file available under and governed by the
* Mozilla Public License Version 1.1 ("MPL") (see
* http://www.mozilla.org/MPL/ for full license text). For the avoidance
* of doubt and subject to the following, Sun also elects to allow
* licensees to use this file under the MPL, the GNU General Public
* License version 2 only or the Lesser General Public License version
* 2.1 only. Any references to the "GNU General Public License version 2
* or later" or "GPL" in the following shall be construed to mean the
* GNU General Public License version 2 only. Any references to the "GNU
* Lesser General Public License version 2.1 or later" or "LGPL" in the
* following shall be construed to mean the GNU Lesser General Public
* License version 2.1 only. However, the following notice accompanied
* the original version of this file:
*
* Version: MPL 1.1/GPL 2.0/LGPL 2.1
*
* The contents of this file are subject to the Mozilla Public License Version
* 1.1 (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* Software distributed under the License is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
* for the specific language governing rights and limitations under the
* License.
*
* The Original Code is the Netscape security libraries.
*
* The Initial Developer of the Original Code is
* Netscape Communications Corporation.
* Portions created by the Initial Developer are Copyright (C) 1994-2000
* the Initial Developer. All Rights Reserved.
*
* Contributor(s):
* Dr Vipul Gupta <vipul.gupta@sun.com> and
* Douglas Stebila <douglas@stebila.ca>, Sun Microsystems Laboratories
*
* Alternatively, the contents of this file may be used under the terms of
* either the GNU General Public License Version 2 or later (the "GPL"), or
* the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
* in which case the provisions of the GPL or the LGPL are applicable instead
* of those above. If you wish to allow use of your version of this file only
* under the terms of either the GPL or the LGPL, and not to allow others to
* use your version of this file under the terms of the MPL, indicate your
* decision by deleting the provisions above and replace them with the notice
* and other provisions required by the GPL or the LGPL. If you do not delete
* the provisions above, a recipient may use your version of this file under
* the terms of any one of the MPL, the GPL or the LGPL.
*
*********************************************************************** */
/*
* Copyright 2007 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#ifndef _ECC_IMPL_H
#define _ECC_IMPL_H
#pragma ident "%Z%%M% %I% %E% SMI"
#ifdef __cplusplus
extern "C" {
#endif
#include <sys/types.h>
#include "ecl-exp.h"
/*
* Multi-platform definitions
*/
#ifdef __linux__
#define B_FALSE FALSE
#define B_TRUE TRUE
typedef unsigned char uint8_t;
typedef unsigned long ulong_t;
typedef enum { B_FALSE, B_TRUE } boolean_t;
#endif /* __linux__ */
#ifdef _WIN32
typedef unsigned char uint8_t;
typedef unsigned long ulong_t;
typedef enum boolean { B_FALSE, B_TRUE } boolean_t;
#endif /* _WIN32 */
#ifndef _KERNEL
#include <stdlib.h>
#endif /* _KERNEL */
#define EC_MAX_DIGEST_LEN 1024 /* max digest that can be signed */
#define EC_MAX_POINT_LEN 145 /* max len of DER encoded Q */
#define EC_MAX_VALUE_LEN 72 /* max len of ANSI X9.62 private value d */
#define EC_MAX_SIG_LEN 144 /* max signature len for supported curves */
#define EC_MIN_KEY_LEN 112 /* min key length in bits */
#define EC_MAX_KEY_LEN 571 /* max key length in bits */
#define EC_MAX_OID_LEN 10 /* max length of OID buffer */
/*
* Various structures and definitions from NSS are here.
*/
#ifdef _KERNEL
#define PORT_ArenaAlloc(a, n, f) kmem_alloc((n), (f))
#define PORT_ArenaZAlloc(a, n, f) kmem_zalloc((n), (f))
#define PORT_ArenaGrow(a, b, c, d) NULL
#define PORT_ZAlloc(n, f) kmem_zalloc((n), (f))
#define PORT_Alloc(n, f) kmem_alloc((n), (f))
#else
#define PORT_ArenaAlloc(a, n, f) malloc((n))
#define PORT_ArenaZAlloc(a, n, f) calloc(1, (n))
#define PORT_ArenaGrow(a, b, c, d) NULL
#define PORT_ZAlloc(n, f) calloc(1, (n))
#define PORT_Alloc(n, f) malloc((n))
#endif
#define PORT_NewArena(b) (char *)12345
#define PORT_ArenaMark(a) NULL
#define PORT_ArenaUnmark(a, b)
#define PORT_ArenaRelease(a, m)
#define PORT_FreeArena(a, b)
#define PORT_Strlen(s) strlen((s))
#define PORT_SetError(e)
#define PRBool boolean_t
#define PR_TRUE B_TRUE
#define PR_FALSE B_FALSE
#ifdef _KERNEL
#define PORT_Assert ASSERT
#define PORT_Memcpy(t, f, l) bcopy((f), (t), (l))
#else
#define PORT_Assert assert
#define PORT_Memcpy(t, f, l) memcpy((t), (f), (l))
#endif
#define CHECK_OK(func) if (func == NULL) goto cleanup
#define CHECK_SEC_OK(func) if (SECSuccess != (rv = func)) goto cleanup
typedef enum {
siBuffer = 0,
siClearDataBuffer = 1,
siCipherDataBuffer = 2,
siDERCertBuffer = 3,
siEncodedCertBuffer = 4,
siDERNameBuffer = 5,
siEncodedNameBuffer = 6,
siAsciiNameString = 7,
siAsciiString = 8,
siDEROID = 9,
siUnsignedInteger = 10,
siUTCTime = 11,
siGeneralizedTime = 12
} SECItemType;
typedef struct SECItemStr SECItem;
struct SECItemStr {
SECItemType type;
unsigned char *data;
unsigned int len;
};
typedef SECItem SECKEYECParams;
typedef enum { ec_params_explicit,
ec_params_named
} ECParamsType;
typedef enum { ec_field_GFp = 1,
ec_field_GF2m
} ECFieldType;
struct ECFieldIDStr {
int size; /* field size in bits */
ECFieldType type;
union {
SECItem prime; /* prime p for (GFp) */
SECItem poly; /* irreducible binary polynomial for (GF2m) */
} u;
int k1; /* first coefficient of pentanomial or
* the only coefficient of trinomial
*/
int k2; /* two remaining coefficients of pentanomial */
int k3;
};
typedef struct ECFieldIDStr ECFieldID;
struct ECCurveStr {
SECItem a; /* contains octet stream encoding of
* field element (X9.62 section 4.3.3)
*/
SECItem b;
SECItem seed;
};
typedef struct ECCurveStr ECCurve;
typedef void PRArenaPool;
struct ECParamsStr {
PRArenaPool * arena;
ECParamsType type;
ECFieldID fieldID;
ECCurve curve;
SECItem base;
SECItem order;
int cofactor;
SECItem DEREncoding;
ECCurveName name;
SECItem curveOID;
};
typedef struct ECParamsStr ECParams;
struct ECPublicKeyStr {
ECParams ecParams;
SECItem publicValue; /* elliptic curve point encoded as
* octet stream.
*/
};
typedef struct ECPublicKeyStr ECPublicKey;
struct ECPrivateKeyStr {
ECParams ecParams;
SECItem publicValue; /* encoded ec point */
SECItem privateValue; /* private big integer */
SECItem version; /* As per SEC 1, Appendix C, Section C.4 */
};
typedef struct ECPrivateKeyStr ECPrivateKey;
typedef enum _SECStatus {
SECBufferTooSmall = -3,
SECWouldBlock = -2,
SECFailure = -1,
SECSuccess = 0
} SECStatus;
#ifdef _KERNEL
#define RNG_GenerateGlobalRandomBytes(p,l) ecc_knzero_random_generator((p), (l))
#else
/*
This function is no longer required because the random bytes are now
supplied by the caller. Force a failure.
*/
#define RNG_GenerateGlobalRandomBytes(p,l) SECFailure
#endif
#define CHECK_MPI_OK(func) if (MP_OKAY > (err = func)) goto cleanup
#define MP_TO_SEC_ERROR(err)
#define SECITEM_TO_MPINT(it, mp) \
CHECK_MPI_OK(mp_read_unsigned_octets((mp), (it).data, (it).len))
extern int ecc_knzero_random_generator(uint8_t *, size_t);
extern ulong_t soft_nzero_random_generator(uint8_t *, ulong_t);
extern SECStatus EC_DecodeParams(const SECItem *, ECParams **, int);
extern SECItem * SECITEM_AllocItem(PRArenaPool *, SECItem *, unsigned int, int);
extern SECStatus SECITEM_CopyItem(PRArenaPool *, SECItem *, const SECItem *,
int);
extern void SECITEM_FreeItem(SECItem *, boolean_t);
/* This function has been modified to accept an array of random bytes */
extern SECStatus EC_NewKey(ECParams *ecParams, ECPrivateKey **privKey,
const unsigned char* random, int randomlen, int);
/* This function has been modified to accept an array of random bytes */
extern SECStatus ECDSA_SignDigest(ECPrivateKey *, SECItem *, const SECItem *,
const unsigned char* random, int randomlen, int);
extern SECStatus ECDSA_VerifyDigest(ECPublicKey *, const SECItem *,
const SECItem *, int);
extern SECStatus ECDH_Derive(SECItem *, ECParams *, SECItem *, boolean_t,
SECItem *, int);
#ifdef __cplusplus
}
#endif
#endif /* _ECC_IMPL_H */

View File

@ -0,0 +1,632 @@
/* *********************************************************************
*
* Sun elects to have this file available under and governed by the
* Mozilla Public License Version 1.1 ("MPL") (see
* http://www.mozilla.org/MPL/ for full license text). For the avoidance
* of doubt and subject to the following, Sun also elects to allow
* licensees to use this file under the MPL, the GNU General Public
* License version 2 only or the Lesser General Public License version
* 2.1 only. Any references to the "GNU General Public License version 2
* or later" or "GPL" in the following shall be construed to mean the
* GNU General Public License version 2 only. Any references to the "GNU
* Lesser General Public License version 2.1 or later" or "LGPL" in the
* following shall be construed to mean the GNU Lesser General Public
* License version 2.1 only. However, the following notice accompanied
* the original version of this file:
*
* Version: MPL 1.1/GPL 2.0/LGPL 2.1
*
* The contents of this file are subject to the Mozilla Public License Version
* 1.1 (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* Software distributed under the License is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
* for the specific language governing rights and limitations under the
* License.
*
* The Original Code is the Elliptic Curve Cryptography library.
*
* The Initial Developer of the Original Code is
* Sun Microsystems, Inc.
* Portions created by the Initial Developer are Copyright (C) 2003
* the Initial Developer. All Rights Reserved.
*
* Contributor(s):
* Dr Vipul Gupta <vipul.gupta@sun.com> and
* Douglas Stebila <douglas@stebila.ca>, Sun Microsystems Laboratories
*
* Alternatively, the contents of this file may be used under the terms of
* either the GNU General Public License Version 2 or later (the "GPL"), or
* the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
* in which case the provisions of the GPL or the LGPL are applicable instead
* of those above. If you wish to allow use of your version of this file only
* under the terms of either the GPL or the LGPL, and not to allow others to
* use your version of this file under the terms of the MPL, indicate your
* decision by deleting the provisions above and replace them with the notice
* and other provisions required by the GPL or the LGPL. If you do not delete
* the provisions above, a recipient may use your version of this file under
* the terms of any one of the MPL, the GPL or the LGPL.
*
*********************************************************************** */
/*
* Copyright 2007 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#pragma ident "%Z%%M% %I% %E% SMI"
#include <sys/types.h>
#ifndef _WIN32
#ifndef __linux__
#include <sys/systm.h>
#endif /* __linux__ */
#include <sys/param.h>
#endif /* _WIN32 */
#ifdef _KERNEL
#include <sys/kmem.h>
#else
#include <string.h>
#endif
#include "ec.h"
#include "ecl-curve.h"
#include "ecc_impl.h"
#define MAX_ECKEY_LEN 72
#define SEC_ASN1_OBJECT_ID 0x06
/*
* Initializes a SECItem from a hexadecimal string
*
* Warning: This function ignores leading 00's, so any leading 00's
* in the hexadecimal string must be optional.
*/
static SECItem *
hexString2SECItem(PRArenaPool *arena, SECItem *item, const char *str,
int kmflag)
{
int i = 0;
int byteval = 0;
int tmp = strlen(str);
if ((tmp % 2) != 0) return NULL;
/* skip leading 00's unless the hex string is "00" */
while ((tmp > 2) && (str[0] == '0') && (str[1] == '0')) {
str += 2;
tmp -= 2;
}
item->data = (unsigned char *) PORT_ArenaAlloc(arena, tmp/2, kmflag);
if (item->data == NULL) return NULL;
item->len = tmp/2;
while (str[i]) {
if ((str[i] >= '0') && (str[i] <= '9'))
tmp = str[i] - '0';
else if ((str[i] >= 'a') && (str[i] <= 'f'))
tmp = str[i] - 'a' + 10;
else if ((str[i] >= 'A') && (str[i] <= 'F'))
tmp = str[i] - 'A' + 10;
else
return NULL;
byteval = byteval * 16 + tmp;
if ((i % 2) != 0) {
item->data[i/2] = byteval;
byteval = 0;
}
i++;
}
return item;
}
static SECStatus
gf_populate_params(ECCurveName name, ECFieldType field_type, ECParams *params,
int kmflag)
{
SECStatus rv = SECFailure;
const ECCurveParams *curveParams;
/* 2 ['0'+'4'] + MAX_ECKEY_LEN * 2 [x,y] * 2 [hex string] + 1 ['\0'] */
char genenc[3 + 2 * 2 * MAX_ECKEY_LEN];
if ((name < ECCurve_noName) || (name > ECCurve_pastLastCurve)) goto cleanup;
params->name = name;
curveParams = ecCurve_map[params->name];
CHECK_OK(curveParams);
params->fieldID.size = curveParams->size;
params->fieldID.type = field_type;
if (field_type == ec_field_GFp) {
CHECK_OK(hexString2SECItem(NULL, &params->fieldID.u.prime,
curveParams->irr, kmflag));
} else {
CHECK_OK(hexString2SECItem(NULL, &params->fieldID.u.poly,
curveParams->irr, kmflag));
}
CHECK_OK(hexString2SECItem(NULL, &params->curve.a,
curveParams->curvea, kmflag));
CHECK_OK(hexString2SECItem(NULL, &params->curve.b,
curveParams->curveb, kmflag));
genenc[0] = '0';
genenc[1] = '4';
genenc[2] = '\0';
strcat(genenc, curveParams->genx);
strcat(genenc, curveParams->geny);
CHECK_OK(hexString2SECItem(NULL, &params->base, genenc, kmflag));
CHECK_OK(hexString2SECItem(NULL, &params->order,
curveParams->order, kmflag));
params->cofactor = curveParams->cofactor;
rv = SECSuccess;
cleanup:
return rv;
}
ECCurveName SECOID_FindOIDTag(const SECItem *);
SECStatus
EC_FillParams(PRArenaPool *arena, const SECItem *encodedParams,
ECParams *params, int kmflag)
{
SECStatus rv = SECFailure;
ECCurveName tag;
SECItem oid = { siBuffer, NULL, 0};
#if EC_DEBUG
int i;
printf("Encoded params in EC_DecodeParams: ");
for (i = 0; i < encodedParams->len; i++) {
printf("%02x:", encodedParams->data[i]);
}
printf("\n");
#endif
if ((encodedParams->len != ANSI_X962_CURVE_OID_TOTAL_LEN) &&
(encodedParams->len != SECG_CURVE_OID_TOTAL_LEN)) {
PORT_SetError(SEC_ERROR_UNSUPPORTED_ELLIPTIC_CURVE);
return SECFailure;
};
oid.len = encodedParams->len - 2;
oid.data = encodedParams->data + 2;
if ((encodedParams->data[0] != SEC_ASN1_OBJECT_ID) ||
((tag = SECOID_FindOIDTag(&oid)) == ECCurve_noName)) {
PORT_SetError(SEC_ERROR_UNSUPPORTED_ELLIPTIC_CURVE);
return SECFailure;
}
params->arena = arena;
params->cofactor = 0;
params->type = ec_params_named;
params->name = ECCurve_noName;
/* For named curves, fill out curveOID */
params->curveOID.len = oid.len;
params->curveOID.data = (unsigned char *) PORT_ArenaAlloc(NULL, oid.len,
kmflag);
if (params->curveOID.data == NULL) goto cleanup;
memcpy(params->curveOID.data, oid.data, oid.len);
#if EC_DEBUG
#ifndef SECOID_FindOIDTagDescription
printf("Curve: %s\n", ecCurve_map[tag]->text);
#else
printf("Curve: %s\n", SECOID_FindOIDTagDescription(tag));
#endif
#endif
switch (tag) {
/* Binary curves */
case ECCurve_X9_62_CHAR2_PNB163V1:
/* Populate params for c2pnb163v1 */
CHECK_SEC_OK( gf_populate_params(ECCurve_X9_62_CHAR2_PNB163V1, ec_field_GF2m,
params, kmflag) );
break;
case ECCurve_X9_62_CHAR2_PNB163V2:
/* Populate params for c2pnb163v2 */
CHECK_SEC_OK( gf_populate_params(ECCurve_X9_62_CHAR2_PNB163V2, ec_field_GF2m,
params, kmflag) );
break;
case ECCurve_X9_62_CHAR2_PNB163V3:
/* Populate params for c2pnb163v3 */
CHECK_SEC_OK( gf_populate_params(ECCurve_X9_62_CHAR2_PNB163V3, ec_field_GF2m,
params, kmflag) );
break;
case ECCurve_X9_62_CHAR2_PNB176V1:
/* Populate params for c2pnb176v1 */
CHECK_SEC_OK( gf_populate_params(ECCurve_X9_62_CHAR2_PNB176V1, ec_field_GF2m,
params, kmflag) );
break;
case ECCurve_X9_62_CHAR2_TNB191V1:
/* Populate params for c2tnb191v1 */
CHECK_SEC_OK( gf_populate_params(ECCurve_X9_62_CHAR2_TNB191V1, ec_field_GF2m,
params, kmflag) );
break;
case ECCurve_X9_62_CHAR2_TNB191V2:
/* Populate params for c2tnb191v2 */
CHECK_SEC_OK( gf_populate_params(ECCurve_X9_62_CHAR2_TNB191V2, ec_field_GF2m,
params, kmflag) );
break;
case ECCurve_X9_62_CHAR2_TNB191V3:
/* Populate params for c2tnb191v3 */
CHECK_SEC_OK( gf_populate_params(ECCurve_X9_62_CHAR2_TNB191V3, ec_field_GF2m,
params, kmflag) );
break;
case ECCurve_X9_62_CHAR2_PNB208W1:
/* Populate params for c2pnb208w1 */
CHECK_SEC_OK( gf_populate_params(ECCurve_X9_62_CHAR2_PNB208W1, ec_field_GF2m,
params, kmflag) );
break;
case ECCurve_X9_62_CHAR2_TNB239V1:
/* Populate params for c2tnb239v1 */
CHECK_SEC_OK( gf_populate_params(ECCurve_X9_62_CHAR2_TNB239V1, ec_field_GF2m,
params, kmflag) );
break;
case ECCurve_X9_62_CHAR2_TNB239V2:
/* Populate params for c2tnb239v2 */
CHECK_SEC_OK( gf_populate_params(ECCurve_X9_62_CHAR2_TNB239V2, ec_field_GF2m,
params, kmflag) );
break;
case ECCurve_X9_62_CHAR2_TNB239V3:
/* Populate params for c2tnb239v3 */
CHECK_SEC_OK( gf_populate_params(ECCurve_X9_62_CHAR2_TNB239V3, ec_field_GF2m,
params, kmflag) );
break;
case ECCurve_X9_62_CHAR2_PNB272W1:
/* Populate params for c2pnb272w1 */
CHECK_SEC_OK( gf_populate_params(ECCurve_X9_62_CHAR2_PNB272W1, ec_field_GF2m,
params, kmflag) );
break;
case ECCurve_X9_62_CHAR2_PNB304W1:
/* Populate params for c2pnb304w1 */
CHECK_SEC_OK( gf_populate_params(ECCurve_X9_62_CHAR2_PNB304W1, ec_field_GF2m,
params, kmflag) );
break;
case ECCurve_X9_62_CHAR2_TNB359V1:
/* Populate params for c2tnb359v1 */
CHECK_SEC_OK( gf_populate_params(ECCurve_X9_62_CHAR2_TNB359V1, ec_field_GF2m,
params, kmflag) );
break;
case ECCurve_X9_62_CHAR2_PNB368W1:
/* Populate params for c2pnb368w1 */
CHECK_SEC_OK( gf_populate_params(ECCurve_X9_62_CHAR2_PNB368W1, ec_field_GF2m,
params, kmflag) );
break;
case ECCurve_X9_62_CHAR2_TNB431R1:
/* Populate params for c2tnb431r1 */
CHECK_SEC_OK( gf_populate_params(ECCurve_X9_62_CHAR2_TNB431R1, ec_field_GF2m,
params, kmflag) );
break;
case ECCurve_SECG_CHAR2_113R1:
/* Populate params for sect113r1 */
CHECK_SEC_OK( gf_populate_params(ECCurve_SECG_CHAR2_113R1, ec_field_GF2m,
params, kmflag) );
break;
case ECCurve_SECG_CHAR2_113R2:
/* Populate params for sect113r2 */
CHECK_SEC_OK( gf_populate_params(ECCurve_SECG_CHAR2_113R2, ec_field_GF2m,
params, kmflag) );
break;
case ECCurve_SECG_CHAR2_131R1:
/* Populate params for sect131r1 */
CHECK_SEC_OK( gf_populate_params(ECCurve_SECG_CHAR2_131R1, ec_field_GF2m,
params, kmflag) );
break;
case ECCurve_SECG_CHAR2_131R2:
/* Populate params for sect131r2 */
CHECK_SEC_OK( gf_populate_params(ECCurve_SECG_CHAR2_131R2, ec_field_GF2m,
params, kmflag) );
break;
case ECCurve_SECG_CHAR2_163K1:
/* Populate params for sect163k1
* (the NIST K-163 curve)
*/
CHECK_SEC_OK( gf_populate_params(ECCurve_SECG_CHAR2_163K1, ec_field_GF2m,
params, kmflag) );
break;
case ECCurve_SECG_CHAR2_163R1:
/* Populate params for sect163r1 */
CHECK_SEC_OK( gf_populate_params(ECCurve_SECG_CHAR2_163R1, ec_field_GF2m,
params, kmflag) );
break;
case ECCurve_SECG_CHAR2_163R2:
/* Populate params for sect163r2
* (the NIST B-163 curve)
*/
CHECK_SEC_OK( gf_populate_params(ECCurve_SECG_CHAR2_163R2, ec_field_GF2m,
params, kmflag) );
break;
case ECCurve_SECG_CHAR2_193R1:
/* Populate params for sect193r1 */
CHECK_SEC_OK( gf_populate_params(ECCurve_SECG_CHAR2_193R1, ec_field_GF2m,
params, kmflag) );
break;
case ECCurve_SECG_CHAR2_193R2:
/* Populate params for sect193r2 */
CHECK_SEC_OK( gf_populate_params(ECCurve_SECG_CHAR2_193R2, ec_field_GF2m,
params, kmflag) );
break;
case ECCurve_SECG_CHAR2_233K1:
/* Populate params for sect233k1
* (the NIST K-233 curve)
*/
CHECK_SEC_OK( gf_populate_params(ECCurve_SECG_CHAR2_233K1, ec_field_GF2m,
params, kmflag) );
break;
case ECCurve_SECG_CHAR2_233R1:
/* Populate params for sect233r1
* (the NIST B-233 curve)
*/
CHECK_SEC_OK( gf_populate_params(ECCurve_SECG_CHAR2_233R1, ec_field_GF2m,
params, kmflag) );
break;
case ECCurve_SECG_CHAR2_239K1:
/* Populate params for sect239k1 */
CHECK_SEC_OK( gf_populate_params(ECCurve_SECG_CHAR2_239K1, ec_field_GF2m,
params, kmflag) );
break;
case ECCurve_SECG_CHAR2_283K1:
/* Populate params for sect283k1
* (the NIST K-283 curve)
*/
CHECK_SEC_OK( gf_populate_params(ECCurve_SECG_CHAR2_283K1, ec_field_GF2m,
params, kmflag) );
break;
case ECCurve_SECG_CHAR2_283R1:
/* Populate params for sect283r1
* (the NIST B-283 curve)
*/
CHECK_SEC_OK( gf_populate_params(ECCurve_SECG_CHAR2_283R1, ec_field_GF2m,
params, kmflag) );
break;
case ECCurve_SECG_CHAR2_409K1:
/* Populate params for sect409k1
* (the NIST K-409 curve)
*/
CHECK_SEC_OK( gf_populate_params(ECCurve_SECG_CHAR2_409K1, ec_field_GF2m,
params, kmflag) );
break;
case ECCurve_SECG_CHAR2_409R1:
/* Populate params for sect409r1
* (the NIST B-409 curve)
*/
CHECK_SEC_OK( gf_populate_params(ECCurve_SECG_CHAR2_409R1, ec_field_GF2m,
params, kmflag) );
break;
case ECCurve_SECG_CHAR2_571K1:
/* Populate params for sect571k1
* (the NIST K-571 curve)
*/
CHECK_SEC_OK( gf_populate_params(ECCurve_SECG_CHAR2_571K1, ec_field_GF2m,
params, kmflag) );
break;
case ECCurve_SECG_CHAR2_571R1:
/* Populate params for sect571r1
* (the NIST B-571 curve)
*/
CHECK_SEC_OK( gf_populate_params(ECCurve_SECG_CHAR2_571R1, ec_field_GF2m,
params, kmflag) );
break;
/* Prime curves */
case ECCurve_X9_62_PRIME_192V1:
/* Populate params for prime192v1 aka secp192r1
* (the NIST P-192 curve)
*/
CHECK_SEC_OK( gf_populate_params(ECCurve_X9_62_PRIME_192V1, ec_field_GFp,
params, kmflag) );
break;
case ECCurve_X9_62_PRIME_192V2:
/* Populate params for prime192v2 */
CHECK_SEC_OK( gf_populate_params(ECCurve_X9_62_PRIME_192V2, ec_field_GFp,
params, kmflag) );
break;
case ECCurve_X9_62_PRIME_192V3:
/* Populate params for prime192v3 */
CHECK_SEC_OK( gf_populate_params(ECCurve_X9_62_PRIME_192V3, ec_field_GFp,
params, kmflag) );
break;
case ECCurve_X9_62_PRIME_239V1:
/* Populate params for prime239v1 */
CHECK_SEC_OK( gf_populate_params(ECCurve_X9_62_PRIME_239V1, ec_field_GFp,
params, kmflag) );
break;
case ECCurve_X9_62_PRIME_239V2:
/* Populate params for prime239v2 */
CHECK_SEC_OK( gf_populate_params(ECCurve_X9_62_PRIME_239V2, ec_field_GFp,
params, kmflag) );
break;
case ECCurve_X9_62_PRIME_239V3:
/* Populate params for prime239v3 */
CHECK_SEC_OK( gf_populate_params(ECCurve_X9_62_PRIME_239V3, ec_field_GFp,
params, kmflag) );
break;
case ECCurve_X9_62_PRIME_256V1:
/* Populate params for prime256v1 aka secp256r1
* (the NIST P-256 curve)
*/
CHECK_SEC_OK( gf_populate_params(ECCurve_X9_62_PRIME_256V1, ec_field_GFp,
params, kmflag) );
break;
case ECCurve_SECG_PRIME_112R1:
/* Populate params for secp112r1 */
CHECK_SEC_OK( gf_populate_params(ECCurve_SECG_PRIME_112R1, ec_field_GFp,
params, kmflag) );
break;
case ECCurve_SECG_PRIME_112R2:
/* Populate params for secp112r2 */
CHECK_SEC_OK( gf_populate_params(ECCurve_SECG_PRIME_112R2, ec_field_GFp,
params, kmflag) );
break;
case ECCurve_SECG_PRIME_128R1:
/* Populate params for secp128r1 */
CHECK_SEC_OK( gf_populate_params(ECCurve_SECG_PRIME_128R1, ec_field_GFp,
params, kmflag) );
break;
case ECCurve_SECG_PRIME_128R2:
/* Populate params for secp128r2 */
CHECK_SEC_OK( gf_populate_params(ECCurve_SECG_PRIME_128R2, ec_field_GFp,
params, kmflag) );
break;
case ECCurve_SECG_PRIME_160K1:
/* Populate params for secp160k1 */
CHECK_SEC_OK( gf_populate_params(ECCurve_SECG_PRIME_160K1, ec_field_GFp,
params, kmflag) );
break;
case ECCurve_SECG_PRIME_160R1:
/* Populate params for secp160r1 */
CHECK_SEC_OK( gf_populate_params(ECCurve_SECG_PRIME_160R1, ec_field_GFp,
params, kmflag) );
break;
case ECCurve_SECG_PRIME_160R2:
/* Populate params for secp160r1 */
CHECK_SEC_OK( gf_populate_params(ECCurve_SECG_PRIME_160R2, ec_field_GFp,
params, kmflag) );
break;
case ECCurve_SECG_PRIME_192K1:
/* Populate params for secp192k1 */
CHECK_SEC_OK( gf_populate_params(ECCurve_SECG_PRIME_192K1, ec_field_GFp,
params, kmflag) );
break;
case ECCurve_SECG_PRIME_224K1:
/* Populate params for secp224k1 */
CHECK_SEC_OK( gf_populate_params(ECCurve_SECG_PRIME_224K1, ec_field_GFp,
params, kmflag) );
break;
case ECCurve_SECG_PRIME_224R1:
/* Populate params for secp224r1
* (the NIST P-224 curve)
*/
CHECK_SEC_OK( gf_populate_params(ECCurve_SECG_PRIME_224R1, ec_field_GFp,
params, kmflag) );
break;
case ECCurve_SECG_PRIME_256K1:
/* Populate params for secp256k1 */
CHECK_SEC_OK( gf_populate_params(ECCurve_SECG_PRIME_256K1, ec_field_GFp,
params, kmflag) );
break;
case ECCurve_SECG_PRIME_384R1:
/* Populate params for secp384r1
* (the NIST P-384 curve)
*/
CHECK_SEC_OK( gf_populate_params(ECCurve_SECG_PRIME_384R1, ec_field_GFp,
params, kmflag) );
break;
case ECCurve_SECG_PRIME_521R1:
/* Populate params for secp521r1
* (the NIST P-521 curve)
*/
CHECK_SEC_OK( gf_populate_params(ECCurve_SECG_PRIME_521R1, ec_field_GFp,
params, kmflag) );
break;
default:
break;
};
cleanup:
if (!params->cofactor) {
PORT_SetError(SEC_ERROR_UNSUPPORTED_ELLIPTIC_CURVE);
#if EC_DEBUG
printf("Unrecognized curve, returning NULL params\n");
#endif
}
return rv;
}
SECStatus
EC_DecodeParams(const SECItem *encodedParams, ECParams **ecparams, int kmflag)
{
PRArenaPool *arena;
ECParams *params;
SECStatus rv = SECFailure;
/* Initialize an arena for the ECParams structure */
if (!(arena = PORT_NewArena(NSS_FREEBL_DEFAULT_CHUNKSIZE)))
return SECFailure;
params = (ECParams *)PORT_ArenaZAlloc(NULL, sizeof(ECParams), kmflag);
if (!params) {
PORT_FreeArena(NULL, B_TRUE);
return SECFailure;
}
/* Copy the encoded params */
SECITEM_AllocItem(arena, &(params->DEREncoding), encodedParams->len,
kmflag);
memcpy(params->DEREncoding.data, encodedParams->data, encodedParams->len);
/* Fill out the rest of the ECParams structure based on
* the encoded params
*/
rv = EC_FillParams(NULL, encodedParams, params, kmflag);
if (rv == SECFailure) {
PORT_FreeArena(NULL, B_TRUE);
return SECFailure;
} else {
*ecparams = params;;
return SECSuccess;
}
}

View File

@ -0,0 +1,710 @@
/* *********************************************************************
*
* Sun elects to have this file available under and governed by the
* Mozilla Public License Version 1.1 ("MPL") (see
* http://www.mozilla.org/MPL/ for full license text). For the avoidance
* of doubt and subject to the following, Sun also elects to allow
* licensees to use this file under the MPL, the GNU General Public
* License version 2 only or the Lesser General Public License version
* 2.1 only. Any references to the "GNU General Public License version 2
* or later" or "GPL" in the following shall be construed to mean the
* GNU General Public License version 2 only. Any references to the "GNU
* Lesser General Public License version 2.1 or later" or "LGPL" in the
* following shall be construed to mean the GNU Lesser General Public
* License version 2.1 only. However, the following notice accompanied
* the original version of this file:
*
* Version: MPL 1.1/GPL 2.0/LGPL 2.1
*
* The contents of this file are subject to the Mozilla Public License Version
* 1.1 (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* Software distributed under the License is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
* for the specific language governing rights and limitations under the
* License.
*
* The Original Code is the elliptic curve math library.
*
* The Initial Developer of the Original Code is
* Sun Microsystems, Inc.
* Portions created by the Initial Developer are Copyright (C) 2003
* the Initial Developer. All Rights Reserved.
*
* Contributor(s):
* Douglas Stebila <douglas@stebila.ca>, Sun Microsystems Laboratories
*
* Alternatively, the contents of this file may be used under the terms of
* either the GNU General Public License Version 2 or later (the "GPL"), or
* the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
* in which case the provisions of the GPL or the LGPL are applicable instead
* of those above. If you wish to allow use of your version of this file only
* under the terms of either the GPL or the LGPL, and not to allow others to
* use your version of this file under the terms of the MPL, indicate your
* decision by deleting the provisions above and replace them with the notice
* and other provisions required by the GPL or the LGPL. If you do not delete
* the provisions above, a recipient may use your version of this file under
* the terms of any one of the MPL, the GPL or the LGPL.
*
*********************************************************************** */
/*
* Copyright 2007 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#ifndef _ECL_CURVE_H
#define _ECL_CURVE_H
#pragma ident "%Z%%M% %I% %E% SMI"
#include "ecl-exp.h"
#ifndef _KERNEL
#include <stdlib.h>
#endif
/* NIST prime curves */
static const ECCurveParams ecCurve_NIST_P192 = {
"NIST-P192", ECField_GFp, 192,
"FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFFFFFFFFFFFF",
"FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFFFFFFFFFFFC",
"64210519E59C80E70FA7E9AB72243049FEB8DEECC146B9B1",
"188DA80EB03090F67CBF20EB43A18800F4FF0AFD82FF1012",
"07192B95FFC8DA78631011ED6B24CDD573F977A11E794811",
"FFFFFFFFFFFFFFFFFFFFFFFF99DEF836146BC9B1B4D22831", 1
};
static const ECCurveParams ecCurve_NIST_P224 = {
"NIST-P224", ECField_GFp, 224,
"FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF000000000000000000000001",
"FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFFFFFFFFFFFFFFFFFFFE",
"B4050A850C04B3ABF54132565044B0B7D7BFD8BA270B39432355FFB4",
"B70E0CBD6BB4BF7F321390B94A03C1D356C21122343280D6115C1D21",
"BD376388B5F723FB4C22DFE6CD4375A05A07476444D5819985007E34",
"FFFFFFFFFFFFFFFFFFFFFFFFFFFF16A2E0B8F03E13DD29455C5C2A3D", 1
};
static const ECCurveParams ecCurve_NIST_P256 = {
"NIST-P256", ECField_GFp, 256,
"FFFFFFFF00000001000000000000000000000000FFFFFFFFFFFFFFFFFFFFFFFF",
"FFFFFFFF00000001000000000000000000000000FFFFFFFFFFFFFFFFFFFFFFFC",
"5AC635D8AA3A93E7B3EBBD55769886BC651D06B0CC53B0F63BCE3C3E27D2604B",
"6B17D1F2E12C4247F8BCE6E563A440F277037D812DEB33A0F4A13945D898C296",
"4FE342E2FE1A7F9B8EE7EB4A7C0F9E162BCE33576B315ECECBB6406837BF51F5",
"FFFFFFFF00000000FFFFFFFFFFFFFFFFBCE6FAADA7179E84F3B9CAC2FC632551", 1
};
static const ECCurveParams ecCurve_NIST_P384 = {
"NIST-P384", ECField_GFp, 384,
"FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFFFF0000000000000000FFFFFFFF",
"FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFFFF0000000000000000FFFFFFFC",
"B3312FA7E23EE7E4988E056BE3F82D19181D9C6EFE8141120314088F5013875AC656398D8A2ED19D2A85C8EDD3EC2AEF",
"AA87CA22BE8B05378EB1C71EF320AD746E1D3B628BA79B9859F741E082542A385502F25DBF55296C3A545E3872760AB7",
"3617DE4A96262C6F5D9E98BF9292DC29F8F41DBD289A147CE9DA3113B5F0B8C00A60B1CE1D7E819D7A431D7C90EA0E5F",
"FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFC7634D81F4372DDF581A0DB248B0A77AECEC196ACCC52973",
1
};
static const ECCurveParams ecCurve_NIST_P521 = {
"NIST-P521", ECField_GFp, 521,
"01FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF",
"01FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFC",
"0051953EB9618E1C9A1F929A21A0B68540EEA2DA725B99B315F3B8B489918EF109E156193951EC7E937B1652C0BD3BB1BF073573DF883D2C34F1EF451FD46B503F00",
"00C6858E06B70404E9CD9E3ECB662395B4429C648139053FB521F828AF606B4D3DBAA14B5E77EFE75928FE1DC127A2FFA8DE3348B3C1856A429BF97E7E31C2E5BD66",
"011839296A789A3BC0045C8A5FB42C7D1BD998F54449579B446817AFBD17273E662C97EE72995EF42640C550B9013FAD0761353C7086A272C24088BE94769FD16650",
"01FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFA51868783BF2F966B7FCC0148F709A5D03BB5C9B8899C47AEBB6FB71E91386409",
1
};
/* NIST binary curves */
static const ECCurveParams ecCurve_NIST_K163 = {
"NIST-K163", ECField_GF2m, 163,
"0800000000000000000000000000000000000000C9",
"000000000000000000000000000000000000000001",
"000000000000000000000000000000000000000001",
"02FE13C0537BBC11ACAA07D793DE4E6D5E5C94EEE8",
"0289070FB05D38FF58321F2E800536D538CCDAA3D9",
"04000000000000000000020108A2E0CC0D99F8A5EF", 2
};
static const ECCurveParams ecCurve_NIST_B163 = {
"NIST-B163", ECField_GF2m, 163,
"0800000000000000000000000000000000000000C9",
"000000000000000000000000000000000000000001",
"020A601907B8C953CA1481EB10512F78744A3205FD",
"03F0EBA16286A2D57EA0991168D4994637E8343E36",
"00D51FBC6C71A0094FA2CDD545B11C5C0C797324F1",
"040000000000000000000292FE77E70C12A4234C33", 2
};
static const ECCurveParams ecCurve_NIST_K233 = {
"NIST-K233", ECField_GF2m, 233,
"020000000000000000000000000000000000000004000000000000000001",
"000000000000000000000000000000000000000000000000000000000000",
"000000000000000000000000000000000000000000000000000000000001",
"017232BA853A7E731AF129F22FF4149563A419C26BF50A4C9D6EEFAD6126",
"01DB537DECE819B7F70F555A67C427A8CD9BF18AEB9B56E0C11056FAE6A3",
"008000000000000000000000000000069D5BB915BCD46EFB1AD5F173ABDF", 4
};
static const ECCurveParams ecCurve_NIST_B233 = {
"NIST-B233", ECField_GF2m, 233,
"020000000000000000000000000000000000000004000000000000000001",
"000000000000000000000000000000000000000000000000000000000001",
"0066647EDE6C332C7F8C0923BB58213B333B20E9CE4281FE115F7D8F90AD",
"00FAC9DFCBAC8313BB2139F1BB755FEF65BC391F8B36F8F8EB7371FD558B",
"01006A08A41903350678E58528BEBF8A0BEFF867A7CA36716F7E01F81052",
"01000000000000000000000000000013E974E72F8A6922031D2603CFE0D7", 2
};
static const ECCurveParams ecCurve_NIST_K283 = {
"NIST-K283", ECField_GF2m, 283,
"0800000000000000000000000000000000000000000000000000000000000000000010A1",
"000000000000000000000000000000000000000000000000000000000000000000000000",
"000000000000000000000000000000000000000000000000000000000000000000000001",
"0503213F78CA44883F1A3B8162F188E553CD265F23C1567A16876913B0C2AC2458492836",
"01CCDA380F1C9E318D90F95D07E5426FE87E45C0E8184698E45962364E34116177DD2259",
"01FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFE9AE2ED07577265DFF7F94451E061E163C61", 4
};
static const ECCurveParams ecCurve_NIST_B283 = {
"NIST-B283", ECField_GF2m, 283,
"0800000000000000000000000000000000000000000000000000000000000000000010A1",
"000000000000000000000000000000000000000000000000000000000000000000000001",
"027B680AC8B8596DA5A4AF8A19A0303FCA97FD7645309FA2A581485AF6263E313B79A2F5",
"05F939258DB7DD90E1934F8C70B0DFEC2EED25B8557EAC9C80E2E198F8CDBECD86B12053",
"03676854FE24141CB98FE6D4B20D02B4516FF702350EDDB0826779C813F0DF45BE8112F4",
"03FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEF90399660FC938A90165B042A7CEFADB307", 2
};
static const ECCurveParams ecCurve_NIST_K409 = {
"NIST-K409", ECField_GF2m, 409,
"02000000000000000000000000000000000000000000000000000000000000000000000000000000008000000000000000000001",
"00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000",
"00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001",
"0060F05F658F49C1AD3AB1890F7184210EFD0987E307C84C27ACCFB8F9F67CC2C460189EB5AAAA62EE222EB1B35540CFE9023746",
"01E369050B7C4E42ACBA1DACBF04299C3460782F918EA427E6325165E9EA10E3DA5F6C42E9C55215AA9CA27A5863EC48D8E0286B",
"007FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFE5F83B2D4EA20400EC4557D5ED3E3E7CA5B4B5C83B8E01E5FCF", 4
};
static const ECCurveParams ecCurve_NIST_B409 = {
"NIST-B409", ECField_GF2m, 409,
"02000000000000000000000000000000000000000000000000000000000000000000000000000000008000000000000000000001",
"00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001",
"0021A5C2C8EE9FEB5C4B9A753B7B476B7FD6422EF1F3DD674761FA99D6AC27C8A9A197B272822F6CD57A55AA4F50AE317B13545F",
"015D4860D088DDB3496B0C6064756260441CDE4AF1771D4DB01FFE5B34E59703DC255A868A1180515603AEAB60794E54BB7996A7",
"0061B1CFAB6BE5F32BBFA78324ED106A7636B9C5A7BD198D0158AA4F5488D08F38514F1FDF4B4F40D2181B3681C364BA0273C706",
"010000000000000000000000000000000000000000000000000001E2AAD6A612F33307BE5FA47C3C9E052F838164CD37D9A21173", 2
};
static const ECCurveParams ecCurve_NIST_K571 = {
"NIST-K571", ECField_GF2m, 571,
"080000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000425",
"000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000",
"000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001",
"026EB7A859923FBC82189631F8103FE4AC9CA2970012D5D46024804801841CA44370958493B205E647DA304DB4CEB08CBBD1BA39494776FB988B47174DCA88C7E2945283A01C8972",
"0349DC807F4FBF374F4AEADE3BCA95314DD58CEC9F307A54FFC61EFC006D8A2C9D4979C0AC44AEA74FBEBBB9F772AEDCB620B01A7BA7AF1B320430C8591984F601CD4C143EF1C7A3",
"020000000000000000000000000000000000000000000000000000000000000000000000131850E1F19A63E4B391A8DB917F4138B630D84BE5D639381E91DEB45CFE778F637C1001", 4
};
static const ECCurveParams ecCurve_NIST_B571 = {
"NIST-B571", ECField_GF2m, 571,
"080000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000425",
"000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001",
"02F40E7E2221F295DE297117B7F3D62F5C6A97FFCB8CEFF1CD6BA8CE4A9A18AD84FFABBD8EFA59332BE7AD6756A66E294AFD185A78FF12AA520E4DE739BACA0C7FFEFF7F2955727A",
"0303001D34B856296C16C0D40D3CD7750A93D1D2955FA80AA5F40FC8DB7B2ABDBDE53950F4C0D293CDD711A35B67FB1499AE60038614F1394ABFA3B4C850D927E1E7769C8EEC2D19",
"037BF27342DA639B6DCCFFFEB73D69D78C6C27A6009CBBCA1980F8533921E8A684423E43BAB08A576291AF8F461BB2A8B3531D2F0485C19B16E2F1516E23DD3C1A4827AF1B8AC15B",
"03FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFE661CE18FF55987308059B186823851EC7DD9CA1161DE93D5174D66E8382E9BB2FE84E47", 2
};
/* ANSI X9.62 prime curves */
static const ECCurveParams ecCurve_X9_62_PRIME_192V2 = {
"X9.62 P-192V2", ECField_GFp, 192,
"FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFFFFFFFFFFFF",
"FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFFFFFFFFFFFC",
"CC22D6DFB95C6B25E49C0D6364A4E5980C393AA21668D953",
"EEA2BAE7E1497842F2DE7769CFE9C989C072AD696F48034A",
"6574D11D69B6EC7A672BB82A083DF2F2B0847DE970B2DE15",
"FFFFFFFFFFFFFFFFFFFFFFFE5FB1A724DC80418648D8DD31", 1
};
static const ECCurveParams ecCurve_X9_62_PRIME_192V3 = {
"X9.62 P-192V3", ECField_GFp, 192,
"FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFFFFFFFFFFFF",
"FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFFFFFFFFFFFC",
"22123DC2395A05CAA7423DAECCC94760A7D462256BD56916",
"7D29778100C65A1DA1783716588DCE2B8B4AEE8E228F1896",
"38A90F22637337334B49DCB66A6DC8F9978ACA7648A943B0",
"FFFFFFFFFFFFFFFFFFFFFFFF7A62D031C83F4294F640EC13", 1
};
static const ECCurveParams ecCurve_X9_62_PRIME_239V1 = {
"X9.62 P-239V1", ECField_GFp, 239,
"7FFFFFFFFFFFFFFFFFFFFFFF7FFFFFFFFFFF8000000000007FFFFFFFFFFF",
"7FFFFFFFFFFFFFFFFFFFFFFF7FFFFFFFFFFF8000000000007FFFFFFFFFFC",
"6B016C3BDCF18941D0D654921475CA71A9DB2FB27D1D37796185C2942C0A",
"0FFA963CDCA8816CCC33B8642BEDF905C3D358573D3F27FBBD3B3CB9AAAF",
"7DEBE8E4E90A5DAE6E4054CA530BA04654B36818CE226B39FCCB7B02F1AE",
"7FFFFFFFFFFFFFFFFFFFFFFF7FFFFF9E5E9A9F5D9071FBD1522688909D0B", 1
};
static const ECCurveParams ecCurve_X9_62_PRIME_239V2 = {
"X9.62 P-239V2", ECField_GFp, 239,
"7FFFFFFFFFFFFFFFFFFFFFFF7FFFFFFFFFFF8000000000007FFFFFFFFFFF",
"7FFFFFFFFFFFFFFFFFFFFFFF7FFFFFFFFFFF8000000000007FFFFFFFFFFC",
"617FAB6832576CBBFED50D99F0249C3FEE58B94BA0038C7AE84C8C832F2C",
"38AF09D98727705120C921BB5E9E26296A3CDCF2F35757A0EAFD87B830E7",
"5B0125E4DBEA0EC7206DA0FC01D9B081329FB555DE6EF460237DFF8BE4BA",
"7FFFFFFFFFFFFFFFFFFFFFFF800000CFA7E8594377D414C03821BC582063", 1
};
static const ECCurveParams ecCurve_X9_62_PRIME_239V3 = {
"X9.62 P-239V3", ECField_GFp, 239,
"7FFFFFFFFFFFFFFFFFFFFFFF7FFFFFFFFFFF8000000000007FFFFFFFFFFF",
"7FFFFFFFFFFFFFFFFFFFFFFF7FFFFFFFFFFF8000000000007FFFFFFFFFFC",
"255705FA2A306654B1F4CB03D6A750A30C250102D4988717D9BA15AB6D3E",
"6768AE8E18BB92CFCF005C949AA2C6D94853D0E660BBF854B1C9505FE95A",
"1607E6898F390C06BC1D552BAD226F3B6FCFE48B6E818499AF18E3ED6CF3",
"7FFFFFFFFFFFFFFFFFFFFFFF7FFFFF975DEB41B3A6057C3C432146526551", 1
};
/* ANSI X9.62 binary curves */
static const ECCurveParams ecCurve_X9_62_CHAR2_PNB163V1 = {
"X9.62 C2-PNB163V1", ECField_GF2m, 163,
"080000000000000000000000000000000000000107",
"072546B5435234A422E0789675F432C89435DE5242",
"00C9517D06D5240D3CFF38C74B20B6CD4D6F9DD4D9",
"07AF69989546103D79329FCC3D74880F33BBE803CB",
"01EC23211B5966ADEA1D3F87F7EA5848AEF0B7CA9F",
"0400000000000000000001E60FC8821CC74DAEAFC1", 2
};
static const ECCurveParams ecCurve_X9_62_CHAR2_PNB163V2 = {
"X9.62 C2-PNB163V2", ECField_GF2m, 163,
"080000000000000000000000000000000000000107",
"0108B39E77C4B108BED981ED0E890E117C511CF072",
"0667ACEB38AF4E488C407433FFAE4F1C811638DF20",
"0024266E4EB5106D0A964D92C4860E2671DB9B6CC5",
"079F684DDF6684C5CD258B3890021B2386DFD19FC5",
"03FFFFFFFFFFFFFFFFFFFDF64DE1151ADBB78F10A7", 2
};
static const ECCurveParams ecCurve_X9_62_CHAR2_PNB163V3 = {
"X9.62 C2-PNB163V3", ECField_GF2m, 163,
"080000000000000000000000000000000000000107",
"07A526C63D3E25A256A007699F5447E32AE456B50E",
"03F7061798EB99E238FD6F1BF95B48FEEB4854252B",
"02F9F87B7C574D0BDECF8A22E6524775F98CDEBDCB",
"05B935590C155E17EA48EB3FF3718B893DF59A05D0",
"03FFFFFFFFFFFFFFFFFFFE1AEE140F110AFF961309", 2
};
static const ECCurveParams ecCurve_X9_62_CHAR2_PNB176V1 = {
"X9.62 C2-PNB176V1", ECField_GF2m, 176,
"0100000000000000000000000000000000080000000007",
"E4E6DB2995065C407D9D39B8D0967B96704BA8E9C90B",
"5DDA470ABE6414DE8EC133AE28E9BBD7FCEC0AE0FFF2",
"8D16C2866798B600F9F08BB4A8E860F3298CE04A5798",
"6FA4539C2DADDDD6BAB5167D61B436E1D92BB16A562C",
"00010092537397ECA4F6145799D62B0A19CE06FE26AD", 0xFF6E
};
static const ECCurveParams ecCurve_X9_62_CHAR2_TNB191V1 = {
"X9.62 C2-TNB191V1", ECField_GF2m, 191,
"800000000000000000000000000000000000000000000201",
"2866537B676752636A68F56554E12640276B649EF7526267",
"2E45EF571F00786F67B0081B9495A3D95462F5DE0AA185EC",
"36B3DAF8A23206F9C4F299D7B21A9C369137F2C84AE1AA0D",
"765BE73433B3F95E332932E70EA245CA2418EA0EF98018FB",
"40000000000000000000000004A20E90C39067C893BBB9A5", 2
};
static const ECCurveParams ecCurve_X9_62_CHAR2_TNB191V2 = {
"X9.62 C2-TNB191V2", ECField_GF2m, 191,
"800000000000000000000000000000000000000000000201",
"401028774D7777C7B7666D1366EA432071274F89FF01E718",
"0620048D28BCBD03B6249C99182B7C8CD19700C362C46A01",
"3809B2B7CC1B28CC5A87926AAD83FD28789E81E2C9E3BF10",
"17434386626D14F3DBF01760D9213A3E1CF37AEC437D668A",
"20000000000000000000000050508CB89F652824E06B8173", 4
};
static const ECCurveParams ecCurve_X9_62_CHAR2_TNB191V3 = {
"X9.62 C2-TNB191V3", ECField_GF2m, 191,
"800000000000000000000000000000000000000000000201",
"6C01074756099122221056911C77D77E77A777E7E7E77FCB",
"71FE1AF926CF847989EFEF8DB459F66394D90F32AD3F15E8",
"375D4CE24FDE434489DE8746E71786015009E66E38A926DD",
"545A39176196575D985999366E6AD34CE0A77CD7127B06BE",
"155555555555555555555555610C0B196812BFB6288A3EA3", 6
};
static const ECCurveParams ecCurve_X9_62_CHAR2_PNB208W1 = {
"X9.62 C2-PNB208W1", ECField_GF2m, 208,
"010000000000000000000000000000000800000000000000000007",
"0000000000000000000000000000000000000000000000000000",
"C8619ED45A62E6212E1160349E2BFA844439FAFC2A3FD1638F9E",
"89FDFBE4ABE193DF9559ECF07AC0CE78554E2784EB8C1ED1A57A",
"0F55B51A06E78E9AC38A035FF520D8B01781BEB1A6BB08617DE3",
"000101BAF95C9723C57B6C21DA2EFF2D5ED588BDD5717E212F9D", 0xFE48
};
static const ECCurveParams ecCurve_X9_62_CHAR2_TNB239V1 = {
"X9.62 C2-TNB239V1", ECField_GF2m, 239,
"800000000000000000000000000000000000000000000000001000000001",
"32010857077C5431123A46B808906756F543423E8D27877578125778AC76",
"790408F2EEDAF392B012EDEFB3392F30F4327C0CA3F31FC383C422AA8C16",
"57927098FA932E7C0A96D3FD5B706EF7E5F5C156E16B7E7C86038552E91D",
"61D8EE5077C33FECF6F1A16B268DE469C3C7744EA9A971649FC7A9616305",
"2000000000000000000000000000000F4D42FFE1492A4993F1CAD666E447", 4
};
static const ECCurveParams ecCurve_X9_62_CHAR2_TNB239V2 = {
"X9.62 C2-TNB239V2", ECField_GF2m, 239,
"800000000000000000000000000000000000000000000000001000000001",
"4230017757A767FAE42398569B746325D45313AF0766266479B75654E65F",
"5037EA654196CFF0CD82B2C14A2FCF2E3FF8775285B545722F03EACDB74B",
"28F9D04E900069C8DC47A08534FE76D2B900B7D7EF31F5709F200C4CA205",
"5667334C45AFF3B5A03BAD9DD75E2C71A99362567D5453F7FA6E227EC833",
"1555555555555555555555555555553C6F2885259C31E3FCDF154624522D", 6
};
static const ECCurveParams ecCurve_X9_62_CHAR2_TNB239V3 = {
"X9.62 C2-TNB239V3", ECField_GF2m, 239,
"800000000000000000000000000000000000000000000000001000000001",
"01238774666A67766D6676F778E676B66999176666E687666D8766C66A9F",
"6A941977BA9F6A435199ACFC51067ED587F519C5ECB541B8E44111DE1D40",
"70F6E9D04D289C4E89913CE3530BFDE903977D42B146D539BF1BDE4E9C92",
"2E5A0EAF6E5E1305B9004DCE5C0ED7FE59A35608F33837C816D80B79F461",
"0CCCCCCCCCCCCCCCCCCCCCCCCCCCCCAC4912D2D9DF903EF9888B8A0E4CFF", 0xA
};
static const ECCurveParams ecCurve_X9_62_CHAR2_PNB272W1 = {
"X9.62 C2-PNB272W1", ECField_GF2m, 272,
"010000000000000000000000000000000000000000000000000000010000000000000B",
"91A091F03B5FBA4AB2CCF49C4EDD220FB028712D42BE752B2C40094DBACDB586FB20",
"7167EFC92BB2E3CE7C8AAAFF34E12A9C557003D7C73A6FAF003F99F6CC8482E540F7",
"6108BABB2CEEBCF787058A056CBE0CFE622D7723A289E08A07AE13EF0D10D171DD8D",
"10C7695716851EEF6BA7F6872E6142FBD241B830FF5EFCACECCAB05E02005DDE9D23",
"000100FAF51354E0E39E4892DF6E319C72C8161603FA45AA7B998A167B8F1E629521",
0xFF06
};
static const ECCurveParams ecCurve_X9_62_CHAR2_PNB304W1 = {
"X9.62 C2-PNB304W1", ECField_GF2m, 304,
"010000000000000000000000000000000000000000000000000000000000000000000000000807",
"FD0D693149A118F651E6DCE6802085377E5F882D1B510B44160074C1288078365A0396C8E681",
"BDDB97E555A50A908E43B01C798EA5DAA6788F1EA2794EFCF57166B8C14039601E55827340BE",
"197B07845E9BE2D96ADB0F5F3C7F2CFFBD7A3EB8B6FEC35C7FD67F26DDF6285A644F740A2614",
"E19FBEB76E0DA171517ECF401B50289BF014103288527A9B416A105E80260B549FDC1B92C03B",
"000101D556572AABAC800101D556572AABAC8001022D5C91DD173F8FB561DA6899164443051D", 0xFE2E
};
static const ECCurveParams ecCurve_X9_62_CHAR2_TNB359V1 = {
"X9.62 C2-TNB359V1", ECField_GF2m, 359,
"800000000000000000000000000000000000000000000000000000000000000000000000100000000000000001",
"5667676A654B20754F356EA92017D946567C46675556F19556A04616B567D223A5E05656FB549016A96656A557",
"2472E2D0197C49363F1FE7F5B6DB075D52B6947D135D8CA445805D39BC345626089687742B6329E70680231988",
"3C258EF3047767E7EDE0F1FDAA79DAEE3841366A132E163ACED4ED2401DF9C6BDCDE98E8E707C07A2239B1B097",
"53D7E08529547048121E9C95F3791DD804963948F34FAE7BF44EA82365DC7868FE57E4AE2DE211305A407104BD",
"01AF286BCA1AF286BCA1AF286BCA1AF286BCA1AF286BC9FB8F6B85C556892C20A7EB964FE7719E74F490758D3B", 0x4C
};
static const ECCurveParams ecCurve_X9_62_CHAR2_PNB368W1 = {
"X9.62 C2-PNB368W1", ECField_GF2m, 368,
"0100000000000000000000000000000000000000000000000000000000000000000000002000000000000000000007",
"E0D2EE25095206F5E2A4F9ED229F1F256E79A0E2B455970D8D0D865BD94778C576D62F0AB7519CCD2A1A906AE30D",
"FC1217D4320A90452C760A58EDCD30C8DD069B3C34453837A34ED50CB54917E1C2112D84D164F444F8F74786046A",
"1085E2755381DCCCE3C1557AFA10C2F0C0C2825646C5B34A394CBCFA8BC16B22E7E789E927BE216F02E1FB136A5F",
"7B3EB1BDDCBA62D5D8B2059B525797FC73822C59059C623A45FF3843CEE8F87CD1855ADAA81E2A0750B80FDA2310",
"00010090512DA9AF72B08349D98A5DD4C7B0532ECA51CE03E2D10F3B7AC579BD87E909AE40A6F131E9CFCE5BD967", 0xFF70
};
static const ECCurveParams ecCurve_X9_62_CHAR2_TNB431R1 = {
"X9.62 C2-TNB431R1", ECField_GF2m, 431,
"800000000000000000000000000000000000000000000000000000000000000000000000000001000000000000000000000000000001",
"1A827EF00DD6FC0E234CAF046C6A5D8A85395B236CC4AD2CF32A0CADBDC9DDF620B0EB9906D0957F6C6FEACD615468DF104DE296CD8F",
"10D9B4A3D9047D8B154359ABFB1B7F5485B04CEB868237DDC9DEDA982A679A5A919B626D4E50A8DD731B107A9962381FB5D807BF2618",
"120FC05D3C67A99DE161D2F4092622FECA701BE4F50F4758714E8A87BBF2A658EF8C21E7C5EFE965361F6C2999C0C247B0DBD70CE6B7",
"20D0AF8903A96F8D5FA2C255745D3C451B302C9346D9B7E485E7BCE41F6B591F3E8F6ADDCBB0BC4C2F947A7DE1A89B625D6A598B3760",
"0340340340340340340340340340340340340340340340340340340323C313FAB50589703B5EC68D3587FEC60D161CC149C1AD4A91", 0x2760
};
/* SEC2 prime curves */
static const ECCurveParams ecCurve_SECG_PRIME_112R1 = {
"SECP-112R1", ECField_GFp, 112,
"DB7C2ABF62E35E668076BEAD208B",
"DB7C2ABF62E35E668076BEAD2088",
"659EF8BA043916EEDE8911702B22",
"09487239995A5EE76B55F9C2F098",
"A89CE5AF8724C0A23E0E0FF77500",
"DB7C2ABF62E35E7628DFAC6561C5", 1
};
static const ECCurveParams ecCurve_SECG_PRIME_112R2 = {
"SECP-112R2", ECField_GFp, 112,
"DB7C2ABF62E35E668076BEAD208B",
"6127C24C05F38A0AAAF65C0EF02C",
"51DEF1815DB5ED74FCC34C85D709",
"4BA30AB5E892B4E1649DD0928643",
"adcd46f5882e3747def36e956e97",
"36DF0AAFD8B8D7597CA10520D04B", 4
};
static const ECCurveParams ecCurve_SECG_PRIME_128R1 = {
"SECP-128R1", ECField_GFp, 128,
"FFFFFFFDFFFFFFFFFFFFFFFFFFFFFFFF",
"FFFFFFFDFFFFFFFFFFFFFFFFFFFFFFFC",
"E87579C11079F43DD824993C2CEE5ED3",
"161FF7528B899B2D0C28607CA52C5B86",
"CF5AC8395BAFEB13C02DA292DDED7A83",
"FFFFFFFE0000000075A30D1B9038A115", 1
};
static const ECCurveParams ecCurve_SECG_PRIME_128R2 = {
"SECP-128R2", ECField_GFp, 128,
"FFFFFFFDFFFFFFFFFFFFFFFFFFFFFFFF",
"D6031998D1B3BBFEBF59CC9BBFF9AEE1",
"5EEEFCA380D02919DC2C6558BB6D8A5D",
"7B6AA5D85E572983E6FB32A7CDEBC140",
"27B6916A894D3AEE7106FE805FC34B44",
"3FFFFFFF7FFFFFFFBE0024720613B5A3", 4
};
static const ECCurveParams ecCurve_SECG_PRIME_160K1 = {
"SECP-160K1", ECField_GFp, 160,
"FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFAC73",
"0000000000000000000000000000000000000000",
"0000000000000000000000000000000000000007",
"3B4C382CE37AA192A4019E763036F4F5DD4D7EBB",
"938CF935318FDCED6BC28286531733C3F03C4FEE",
"0100000000000000000001B8FA16DFAB9ACA16B6B3", 1
};
static const ECCurveParams ecCurve_SECG_PRIME_160R1 = {
"SECP-160R1", ECField_GFp, 160,
"FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF7FFFFFFF",
"FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF7FFFFFFC",
"1C97BEFC54BD7A8B65ACF89F81D4D4ADC565FA45",
"4A96B5688EF573284664698968C38BB913CBFC82",
"23A628553168947D59DCC912042351377AC5FB32",
"0100000000000000000001F4C8F927AED3CA752257", 1
};
static const ECCurveParams ecCurve_SECG_PRIME_160R2 = {
"SECP-160R2", ECField_GFp, 160,
"FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFAC73",
"FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFAC70",
"B4E134D3FB59EB8BAB57274904664D5AF50388BA",
"52DCB034293A117E1F4FF11B30F7199D3144CE6D",
"FEAFFEF2E331F296E071FA0DF9982CFEA7D43F2E",
"0100000000000000000000351EE786A818F3A1A16B", 1
};
static const ECCurveParams ecCurve_SECG_PRIME_192K1 = {
"SECP-192K1", ECField_GFp, 192,
"FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFEE37",
"000000000000000000000000000000000000000000000000",
"000000000000000000000000000000000000000000000003",
"DB4FF10EC057E9AE26B07D0280B7F4341DA5D1B1EAE06C7D",
"9B2F2F6D9C5628A7844163D015BE86344082AA88D95E2F9D",
"FFFFFFFFFFFFFFFFFFFFFFFE26F2FC170F69466A74DEFD8D", 1
};
static const ECCurveParams ecCurve_SECG_PRIME_224K1 = {
"SECP-224K1", ECField_GFp, 224,
"FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFE56D",
"00000000000000000000000000000000000000000000000000000000",
"00000000000000000000000000000000000000000000000000000005",
"A1455B334DF099DF30FC28A169A467E9E47075A90F7E650EB6B7A45C",
"7E089FED7FBA344282CAFBD6F7E319F7C0B0BD59E2CA4BDB556D61A5",
"010000000000000000000000000001DCE8D2EC6184CAF0A971769FB1F7", 1
};
static const ECCurveParams ecCurve_SECG_PRIME_256K1 = {
"SECP-256K1", ECField_GFp, 256,
"FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F",
"0000000000000000000000000000000000000000000000000000000000000000",
"0000000000000000000000000000000000000000000000000000000000000007",
"79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798",
"483ADA7726A3C4655DA4FBFC0E1108A8FD17B448A68554199C47D08FFB10D4B8",
"FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141", 1
};
/* SEC2 binary curves */
static const ECCurveParams ecCurve_SECG_CHAR2_113R1 = {
"SECT-113R1", ECField_GF2m, 113,
"020000000000000000000000000201",
"003088250CA6E7C7FE649CE85820F7",
"00E8BEE4D3E2260744188BE0E9C723",
"009D73616F35F4AB1407D73562C10F",
"00A52830277958EE84D1315ED31886",
"0100000000000000D9CCEC8A39E56F", 2
};
static const ECCurveParams ecCurve_SECG_CHAR2_113R2 = {
"SECT-113R2", ECField_GF2m, 113,
"020000000000000000000000000201",
"00689918DBEC7E5A0DD6DFC0AA55C7",
"0095E9A9EC9B297BD4BF36E059184F",
"01A57A6A7B26CA5EF52FCDB8164797",
"00B3ADC94ED1FE674C06E695BABA1D",
"010000000000000108789B2496AF93", 2
};
static const ECCurveParams ecCurve_SECG_CHAR2_131R1 = {
"SECT-131R1", ECField_GF2m, 131,
"080000000000000000000000000000010D",
"07A11B09A76B562144418FF3FF8C2570B8",
"0217C05610884B63B9C6C7291678F9D341",
"0081BAF91FDF9833C40F9C181343638399",
"078C6E7EA38C001F73C8134B1B4EF9E150",
"0400000000000000023123953A9464B54D", 2
};
static const ECCurveParams ecCurve_SECG_CHAR2_131R2 = {
"SECT-131R2", ECField_GF2m, 131,
"080000000000000000000000000000010D",
"03E5A88919D7CAFCBF415F07C2176573B2",
"04B8266A46C55657AC734CE38F018F2192",
"0356DCD8F2F95031AD652D23951BB366A8",
"0648F06D867940A5366D9E265DE9EB240F",
"0400000000000000016954A233049BA98F", 2
};
static const ECCurveParams ecCurve_SECG_CHAR2_163R1 = {
"SECT-163R1", ECField_GF2m, 163,
"0800000000000000000000000000000000000000C9",
"07B6882CAAEFA84F9554FF8428BD88E246D2782AE2",
"0713612DCDDCB40AAB946BDA29CA91F73AF958AFD9",
"0369979697AB43897789566789567F787A7876A654",
"00435EDB42EFAFB2989D51FEFCE3C80988F41FF883",
"03FFFFFFFFFFFFFFFFFFFF48AAB689C29CA710279B", 2
};
static const ECCurveParams ecCurve_SECG_CHAR2_193R1 = {
"SECT-193R1", ECField_GF2m, 193,
"02000000000000000000000000000000000000000000008001",
"0017858FEB7A98975169E171F77B4087DE098AC8A911DF7B01",
"00FDFB49BFE6C3A89FACADAA7A1E5BBC7CC1C2E5D831478814",
"01F481BC5F0FF84A74AD6CDF6FDEF4BF6179625372D8C0C5E1",
"0025E399F2903712CCF3EA9E3A1AD17FB0B3201B6AF7CE1B05",
"01000000000000000000000000C7F34A778F443ACC920EBA49", 2
};
static const ECCurveParams ecCurve_SECG_CHAR2_193R2 = {
"SECT-193R2", ECField_GF2m, 193,
"02000000000000000000000000000000000000000000008001",
"0163F35A5137C2CE3EA6ED8667190B0BC43ECD69977702709B",
"00C9BB9E8927D4D64C377E2AB2856A5B16E3EFB7F61D4316AE",
"00D9B67D192E0367C803F39E1A7E82CA14A651350AAE617E8F",
"01CE94335607C304AC29E7DEFBD9CA01F596F927224CDECF6C",
"010000000000000000000000015AAB561B005413CCD4EE99D5", 2
};
static const ECCurveParams ecCurve_SECG_CHAR2_239K1 = {
"SECT-239K1", ECField_GF2m, 239,
"800000000000000000004000000000000000000000000000000000000001",
"000000000000000000000000000000000000000000000000000000000000",
"000000000000000000000000000000000000000000000000000000000001",
"29A0B6A887A983E9730988A68727A8B2D126C44CC2CC7B2A6555193035DC",
"76310804F12E549BDB011C103089E73510ACB275FC312A5DC6B76553F0CA",
"2000000000000000000000000000005A79FEC67CB6E91F1C1DA800E478A5", 4
};
/* WTLS curves */
static const ECCurveParams ecCurve_WTLS_1 = {
"WTLS-1", ECField_GF2m, 113,
"020000000000000000000000000201",
"000000000000000000000000000001",
"000000000000000000000000000001",
"01667979A40BA497E5D5C270780617",
"00F44B4AF1ECC2630E08785CEBCC15",
"00FFFFFFFFFFFFFFFDBF91AF6DEA73", 2
};
static const ECCurveParams ecCurve_WTLS_8 = {
"WTLS-8", ECField_GFp, 112,
"FFFFFFFFFFFFFFFFFFFFFFFFFDE7",
"0000000000000000000000000000",
"0000000000000000000000000003",
"0000000000000000000000000001",
"0000000000000000000000000002",
"0100000000000001ECEA551AD837E9", 1
};
static const ECCurveParams ecCurve_WTLS_9 = {
"WTLS-9", ECField_GFp, 160,
"FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFC808F",
"0000000000000000000000000000000000000000",
"0000000000000000000000000000000000000003",
"0000000000000000000000000000000000000001",
"0000000000000000000000000000000000000002",
"0100000000000000000001CDC98AE0E2DE574ABF33", 1
};
/* mapping between ECCurveName enum and pointers to ECCurveParams */
static const ECCurveParams *ecCurve_map[] = {
NULL, /* ECCurve_noName */
&ecCurve_NIST_P192, /* ECCurve_NIST_P192 */
&ecCurve_NIST_P224, /* ECCurve_NIST_P224 */
&ecCurve_NIST_P256, /* ECCurve_NIST_P256 */
&ecCurve_NIST_P384, /* ECCurve_NIST_P384 */
&ecCurve_NIST_P521, /* ECCurve_NIST_P521 */
&ecCurve_NIST_K163, /* ECCurve_NIST_K163 */
&ecCurve_NIST_B163, /* ECCurve_NIST_B163 */
&ecCurve_NIST_K233, /* ECCurve_NIST_K233 */
&ecCurve_NIST_B233, /* ECCurve_NIST_B233 */
&ecCurve_NIST_K283, /* ECCurve_NIST_K283 */
&ecCurve_NIST_B283, /* ECCurve_NIST_B283 */
&ecCurve_NIST_K409, /* ECCurve_NIST_K409 */
&ecCurve_NIST_B409, /* ECCurve_NIST_B409 */
&ecCurve_NIST_K571, /* ECCurve_NIST_K571 */
&ecCurve_NIST_B571, /* ECCurve_NIST_B571 */
&ecCurve_X9_62_PRIME_192V2, /* ECCurve_X9_62_PRIME_192V2 */
&ecCurve_X9_62_PRIME_192V3, /* ECCurve_X9_62_PRIME_192V3 */
&ecCurve_X9_62_PRIME_239V1, /* ECCurve_X9_62_PRIME_239V1 */
&ecCurve_X9_62_PRIME_239V2, /* ECCurve_X9_62_PRIME_239V2 */
&ecCurve_X9_62_PRIME_239V3, /* ECCurve_X9_62_PRIME_239V3 */
&ecCurve_X9_62_CHAR2_PNB163V1, /* ECCurve_X9_62_CHAR2_PNB163V1 */
&ecCurve_X9_62_CHAR2_PNB163V2, /* ECCurve_X9_62_CHAR2_PNB163V2 */
&ecCurve_X9_62_CHAR2_PNB163V3, /* ECCurve_X9_62_CHAR2_PNB163V3 */
&ecCurve_X9_62_CHAR2_PNB176V1, /* ECCurve_X9_62_CHAR2_PNB176V1 */
&ecCurve_X9_62_CHAR2_TNB191V1, /* ECCurve_X9_62_CHAR2_TNB191V1 */
&ecCurve_X9_62_CHAR2_TNB191V2, /* ECCurve_X9_62_CHAR2_TNB191V2 */
&ecCurve_X9_62_CHAR2_TNB191V3, /* ECCurve_X9_62_CHAR2_TNB191V3 */
&ecCurve_X9_62_CHAR2_PNB208W1, /* ECCurve_X9_62_CHAR2_PNB208W1 */
&ecCurve_X9_62_CHAR2_TNB239V1, /* ECCurve_X9_62_CHAR2_TNB239V1 */
&ecCurve_X9_62_CHAR2_TNB239V2, /* ECCurve_X9_62_CHAR2_TNB239V2 */
&ecCurve_X9_62_CHAR2_TNB239V3, /* ECCurve_X9_62_CHAR2_TNB239V3 */
&ecCurve_X9_62_CHAR2_PNB272W1, /* ECCurve_X9_62_CHAR2_PNB272W1 */
&ecCurve_X9_62_CHAR2_PNB304W1, /* ECCurve_X9_62_CHAR2_PNB304W1 */
&ecCurve_X9_62_CHAR2_TNB359V1, /* ECCurve_X9_62_CHAR2_TNB359V1 */
&ecCurve_X9_62_CHAR2_PNB368W1, /* ECCurve_X9_62_CHAR2_PNB368W1 */
&ecCurve_X9_62_CHAR2_TNB431R1, /* ECCurve_X9_62_CHAR2_TNB431R1 */
&ecCurve_SECG_PRIME_112R1, /* ECCurve_SECG_PRIME_112R1 */
&ecCurve_SECG_PRIME_112R2, /* ECCurve_SECG_PRIME_112R2 */
&ecCurve_SECG_PRIME_128R1, /* ECCurve_SECG_PRIME_128R1 */
&ecCurve_SECG_PRIME_128R2, /* ECCurve_SECG_PRIME_128R2 */
&ecCurve_SECG_PRIME_160K1, /* ECCurve_SECG_PRIME_160K1 */
&ecCurve_SECG_PRIME_160R1, /* ECCurve_SECG_PRIME_160R1 */
&ecCurve_SECG_PRIME_160R2, /* ECCurve_SECG_PRIME_160R2 */
&ecCurve_SECG_PRIME_192K1, /* ECCurve_SECG_PRIME_192K1 */
&ecCurve_SECG_PRIME_224K1, /* ECCurve_SECG_PRIME_224K1 */
&ecCurve_SECG_PRIME_256K1, /* ECCurve_SECG_PRIME_256K1 */
&ecCurve_SECG_CHAR2_113R1, /* ECCurve_SECG_CHAR2_113R1 */
&ecCurve_SECG_CHAR2_113R2, /* ECCurve_SECG_CHAR2_113R2 */
&ecCurve_SECG_CHAR2_131R1, /* ECCurve_SECG_CHAR2_131R1 */
&ecCurve_SECG_CHAR2_131R2, /* ECCurve_SECG_CHAR2_131R2 */
&ecCurve_SECG_CHAR2_163R1, /* ECCurve_SECG_CHAR2_163R1 */
&ecCurve_SECG_CHAR2_193R1, /* ECCurve_SECG_CHAR2_193R1 */
&ecCurve_SECG_CHAR2_193R2, /* ECCurve_SECG_CHAR2_193R2 */
&ecCurve_SECG_CHAR2_239K1, /* ECCurve_SECG_CHAR2_239K1 */
&ecCurve_WTLS_1, /* ECCurve_WTLS_1 */
&ecCurve_WTLS_8, /* ECCurve_WTLS_8 */
&ecCurve_WTLS_9, /* ECCurve_WTLS_9 */
NULL /* ECCurve_pastLastCurve */
};
#endif /* _ECL_CURVE_H */

View File

@ -0,0 +1,216 @@
/* *********************************************************************
*
* Sun elects to have this file available under and governed by the
* Mozilla Public License Version 1.1 ("MPL") (see
* http://www.mozilla.org/MPL/ for full license text). For the avoidance
* of doubt and subject to the following, Sun also elects to allow
* licensees to use this file under the MPL, the GNU General Public
* License version 2 only or the Lesser General Public License version
* 2.1 only. Any references to the "GNU General Public License version 2
* or later" or "GPL" in the following shall be construed to mean the
* GNU General Public License version 2 only. Any references to the "GNU
* Lesser General Public License version 2.1 or later" or "LGPL" in the
* following shall be construed to mean the GNU Lesser General Public
* License version 2.1 only. However, the following notice accompanied
* the original version of this file:
*
* Version: MPL 1.1/GPL 2.0/LGPL 2.1
*
* The contents of this file are subject to the Mozilla Public License Version
* 1.1 (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* Software distributed under the License is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
* for the specific language governing rights and limitations under the
* License.
*
* The Original Code is the elliptic curve math library.
*
* The Initial Developer of the Original Code is
* Sun Microsystems, Inc.
* Portions created by the Initial Developer are Copyright (C) 2003
* the Initial Developer. All Rights Reserved.
*
* Contributor(s):
* Douglas Stebila <douglas@stebila.ca>, Sun Microsystems Laboratories
*
* Alternatively, the contents of this file may be used under the terms of
* either the GNU General Public License Version 2 or later (the "GPL"), or
* the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
* in which case the provisions of the GPL or the LGPL are applicable instead
* of those above. If you wish to allow use of your version of this file only
* under the terms of either the GPL or the LGPL, and not to allow others to
* use your version of this file under the terms of the MPL, indicate your
* decision by deleting the provisions above and replace them with the notice
* and other provisions required by the GPL or the LGPL. If you do not delete
* the provisions above, a recipient may use your version of this file under
* the terms of any one of the MPL, the GPL or the LGPL.
*
*********************************************************************** */
/*
* Copyright 2007 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#ifndef _ECL_EXP_H
#define _ECL_EXP_H
#pragma ident "%Z%%M% %I% %E% SMI"
/* Curve field type */
typedef enum {
ECField_GFp,
ECField_GF2m
} ECField;
/* Hexadecimal encoding of curve parameters */
struct ECCurveParamsStr {
char *text;
ECField field;
unsigned int size;
char *irr;
char *curvea;
char *curveb;
char *genx;
char *geny;
char *order;
int cofactor;
};
typedef struct ECCurveParamsStr ECCurveParams;
/* Named curve parameters */
typedef enum {
ECCurve_noName = 0,
/* NIST prime curves */
ECCurve_NIST_P192,
ECCurve_NIST_P224,
ECCurve_NIST_P256,
ECCurve_NIST_P384,
ECCurve_NIST_P521,
/* NIST binary curves */
ECCurve_NIST_K163,
ECCurve_NIST_B163,
ECCurve_NIST_K233,
ECCurve_NIST_B233,
ECCurve_NIST_K283,
ECCurve_NIST_B283,
ECCurve_NIST_K409,
ECCurve_NIST_B409,
ECCurve_NIST_K571,
ECCurve_NIST_B571,
/* ANSI X9.62 prime curves */
/* ECCurve_X9_62_PRIME_192V1 == ECCurve_NIST_P192 */
ECCurve_X9_62_PRIME_192V2,
ECCurve_X9_62_PRIME_192V3,
ECCurve_X9_62_PRIME_239V1,
ECCurve_X9_62_PRIME_239V2,
ECCurve_X9_62_PRIME_239V3,
/* ECCurve_X9_62_PRIME_256V1 == ECCurve_NIST_P256 */
/* ANSI X9.62 binary curves */
ECCurve_X9_62_CHAR2_PNB163V1,
ECCurve_X9_62_CHAR2_PNB163V2,
ECCurve_X9_62_CHAR2_PNB163V3,
ECCurve_X9_62_CHAR2_PNB176V1,
ECCurve_X9_62_CHAR2_TNB191V1,
ECCurve_X9_62_CHAR2_TNB191V2,
ECCurve_X9_62_CHAR2_TNB191V3,
ECCurve_X9_62_CHAR2_PNB208W1,
ECCurve_X9_62_CHAR2_TNB239V1,
ECCurve_X9_62_CHAR2_TNB239V2,
ECCurve_X9_62_CHAR2_TNB239V3,
ECCurve_X9_62_CHAR2_PNB272W1,
ECCurve_X9_62_CHAR2_PNB304W1,
ECCurve_X9_62_CHAR2_TNB359V1,
ECCurve_X9_62_CHAR2_PNB368W1,
ECCurve_X9_62_CHAR2_TNB431R1,
/* SEC2 prime curves */
ECCurve_SECG_PRIME_112R1,
ECCurve_SECG_PRIME_112R2,
ECCurve_SECG_PRIME_128R1,
ECCurve_SECG_PRIME_128R2,
ECCurve_SECG_PRIME_160K1,
ECCurve_SECG_PRIME_160R1,
ECCurve_SECG_PRIME_160R2,
ECCurve_SECG_PRIME_192K1,
/* ECCurve_SECG_PRIME_192R1 == ECCurve_NIST_P192 */
ECCurve_SECG_PRIME_224K1,
/* ECCurve_SECG_PRIME_224R1 == ECCurve_NIST_P224 */
ECCurve_SECG_PRIME_256K1,
/* ECCurve_SECG_PRIME_256R1 == ECCurve_NIST_P256 */
/* ECCurve_SECG_PRIME_384R1 == ECCurve_NIST_P384 */
/* ECCurve_SECG_PRIME_521R1 == ECCurve_NIST_P521 */
/* SEC2 binary curves */
ECCurve_SECG_CHAR2_113R1,
ECCurve_SECG_CHAR2_113R2,
ECCurve_SECG_CHAR2_131R1,
ECCurve_SECG_CHAR2_131R2,
/* ECCurve_SECG_CHAR2_163K1 == ECCurve_NIST_K163 */
ECCurve_SECG_CHAR2_163R1,
/* ECCurve_SECG_CHAR2_163R2 == ECCurve_NIST_B163 */
ECCurve_SECG_CHAR2_193R1,
ECCurve_SECG_CHAR2_193R2,
/* ECCurve_SECG_CHAR2_233K1 == ECCurve_NIST_K233 */
/* ECCurve_SECG_CHAR2_233R1 == ECCurve_NIST_B233 */
ECCurve_SECG_CHAR2_239K1,
/* ECCurve_SECG_CHAR2_283K1 == ECCurve_NIST_K283 */
/* ECCurve_SECG_CHAR2_283R1 == ECCurve_NIST_B283 */
/* ECCurve_SECG_CHAR2_409K1 == ECCurve_NIST_K409 */
/* ECCurve_SECG_CHAR2_409R1 == ECCurve_NIST_B409 */
/* ECCurve_SECG_CHAR2_571K1 == ECCurve_NIST_K571 */
/* ECCurve_SECG_CHAR2_571R1 == ECCurve_NIST_B571 */
/* WTLS curves */
ECCurve_WTLS_1,
/* there is no WTLS 2 curve */
/* ECCurve_WTLS_3 == ECCurve_NIST_K163 */
/* ECCurve_WTLS_4 == ECCurve_SECG_CHAR2_113R1 */
/* ECCurve_WTLS_5 == ECCurve_X9_62_CHAR2_PNB163V1 */
/* ECCurve_WTLS_6 == ECCurve_SECG_PRIME_112R1 */
/* ECCurve_WTLS_7 == ECCurve_SECG_PRIME_160R1 */
ECCurve_WTLS_8,
ECCurve_WTLS_9,
/* ECCurve_WTLS_10 == ECCurve_NIST_K233 */
/* ECCurve_WTLS_11 == ECCurve_NIST_B233 */
/* ECCurve_WTLS_12 == ECCurve_NIST_P224 */
ECCurve_pastLastCurve
} ECCurveName;
/* Aliased named curves */
#define ECCurve_X9_62_PRIME_192V1 ECCurve_NIST_P192
#define ECCurve_X9_62_PRIME_256V1 ECCurve_NIST_P256
#define ECCurve_SECG_PRIME_192R1 ECCurve_NIST_P192
#define ECCurve_SECG_PRIME_224R1 ECCurve_NIST_P224
#define ECCurve_SECG_PRIME_256R1 ECCurve_NIST_P256
#define ECCurve_SECG_PRIME_384R1 ECCurve_NIST_P384
#define ECCurve_SECG_PRIME_521R1 ECCurve_NIST_P521
#define ECCurve_SECG_CHAR2_163K1 ECCurve_NIST_K163
#define ECCurve_SECG_CHAR2_163R2 ECCurve_NIST_B163
#define ECCurve_SECG_CHAR2_233K1 ECCurve_NIST_K233
#define ECCurve_SECG_CHAR2_233R1 ECCurve_NIST_B233
#define ECCurve_SECG_CHAR2_283K1 ECCurve_NIST_K283
#define ECCurve_SECG_CHAR2_283R1 ECCurve_NIST_B283
#define ECCurve_SECG_CHAR2_409K1 ECCurve_NIST_K409
#define ECCurve_SECG_CHAR2_409R1 ECCurve_NIST_B409
#define ECCurve_SECG_CHAR2_571K1 ECCurve_NIST_K571
#define ECCurve_SECG_CHAR2_571R1 ECCurve_NIST_B571
#define ECCurve_WTLS_3 ECCurve_NIST_K163
#define ECCurve_WTLS_4 ECCurve_SECG_CHAR2_113R1
#define ECCurve_WTLS_5 ECCurve_X9_62_CHAR2_PNB163V1
#define ECCurve_WTLS_6 ECCurve_SECG_PRIME_112R1
#define ECCurve_WTLS_7 ECCurve_SECG_PRIME_160R1
#define ECCurve_WTLS_10 ECCurve_NIST_K233
#define ECCurve_WTLS_11 ECCurve_NIST_B233
#define ECCurve_WTLS_12 ECCurve_NIST_P224
#endif /* _ECL_EXP_H */

View File

@ -0,0 +1,304 @@
/* *********************************************************************
*
* Sun elects to have this file available under and governed by the
* Mozilla Public License Version 1.1 ("MPL") (see
* http://www.mozilla.org/MPL/ for full license text). For the avoidance
* of doubt and subject to the following, Sun also elects to allow
* licensees to use this file under the MPL, the GNU General Public
* License version 2 only or the Lesser General Public License version
* 2.1 only. Any references to the "GNU General Public License version 2
* or later" or "GPL" in the following shall be construed to mean the
* GNU General Public License version 2 only. Any references to the "GNU
* Lesser General Public License version 2.1 or later" or "LGPL" in the
* following shall be construed to mean the GNU Lesser General Public
* License version 2.1 only. However, the following notice accompanied
* the original version of this file:
*
* Version: MPL 1.1/GPL 2.0/LGPL 2.1
*
* The contents of this file are subject to the Mozilla Public License Version
* 1.1 (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* Software distributed under the License is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
* for the specific language governing rights and limitations under the
* License.
*
* The Original Code is the elliptic curve math library.
*
* The Initial Developer of the Original Code is
* Sun Microsystems, Inc.
* Portions created by the Initial Developer are Copyright (C) 2003
* the Initial Developer. All Rights Reserved.
*
* Contributor(s):
* Stephen Fung <fungstep@hotmail.com> and
* Douglas Stebila <douglas@stebila.ca>, Sun Microsystems Laboratories
*
* Alternatively, the contents of this file may be used under the terms of
* either the GNU General Public License Version 2 or later (the "GPL"), or
* the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
* in which case the provisions of the GPL or the LGPL are applicable instead
* of those above. If you wish to allow use of your version of this file only
* under the terms of either the GPL or the LGPL, and not to allow others to
* use your version of this file under the terms of the MPL, indicate your
* decision by deleting the provisions above and replace them with the notice
* and other provisions required by the GPL or the LGPL. If you do not delete
* the provisions above, a recipient may use your version of this file under
* the terms of any one of the MPL, the GPL or the LGPL.
*
*********************************************************************** */
/*
* Copyright 2007 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#ifndef _ECL_PRIV_H
#define _ECL_PRIV_H
#pragma ident "%Z%%M% %I% %E% SMI"
#include "ecl.h"
#include "mpi.h"
#include "mplogic.h"
/* MAX_FIELD_SIZE_DIGITS is the maximum size of field element supported */
/* the following needs to go away... */
#if defined(MP_USE_LONG_LONG_DIGIT) || defined(MP_USE_LONG_DIGIT)
#define ECL_SIXTY_FOUR_BIT
#else
#define ECL_THIRTY_TWO_BIT
#endif
#define ECL_CURVE_DIGITS(curve_size_in_bits) \
(((curve_size_in_bits)+(sizeof(mp_digit)*8-1))/(sizeof(mp_digit)*8))
#define ECL_BITS (sizeof(mp_digit)*8)
#define ECL_MAX_FIELD_SIZE_DIGITS (80/sizeof(mp_digit))
/* Gets the i'th bit in the binary representation of a. If i >= length(a),
* then return 0. (The above behaviour differs from mpl_get_bit, which
* causes an error if i >= length(a).) */
#define MP_GET_BIT(a, i) \
((i) >= mpl_significant_bits((a))) ? 0 : mpl_get_bit((a), (i))
#if !defined(MP_NO_MP_WORD) && !defined(MP_NO_ADD_WORD)
#define MP_ADD_CARRY(a1, a2, s, cin, cout) \
{ mp_word w; \
w = ((mp_word)(cin)) + (a1) + (a2); \
s = ACCUM(w); \
cout = CARRYOUT(w); }
#define MP_SUB_BORROW(a1, a2, s, bin, bout) \
{ mp_word w; \
w = ((mp_word)(a1)) - (a2) - (bin); \
s = ACCUM(w); \
bout = (w >> MP_DIGIT_BIT) & 1; }
#else
/* NOTE,
* cin and cout could be the same variable.
* bin and bout could be the same variable.
* a1 or a2 and s could be the same variable.
* don't trash those outputs until their respective inputs have
* been read. */
#define MP_ADD_CARRY(a1, a2, s, cin, cout) \
{ mp_digit tmp,sum; \
tmp = (a1); \
sum = tmp + (a2); \
tmp = (sum < tmp); /* detect overflow */ \
s = sum += (cin); \
cout = tmp + (sum < (cin)); }
#define MP_SUB_BORROW(a1, a2, s, bin, bout) \
{ mp_digit tmp; \
tmp = (a1); \
s = tmp - (a2); \
tmp = (s > tmp); /* detect borrow */ \
if ((bin) && !s--) tmp++; \
bout = tmp; }
#endif
struct GFMethodStr;
typedef struct GFMethodStr GFMethod;
struct GFMethodStr {
/* Indicates whether the structure was constructed from dynamic memory
* or statically created. */
int constructed;
/* Irreducible that defines the field. For prime fields, this is the
* prime p. For binary polynomial fields, this is the bitstring
* representation of the irreducible polynomial. */
mp_int irr;
/* For prime fields, the value irr_arr[0] is the number of bits in the
* field. For binary polynomial fields, the irreducible polynomial
* f(t) is represented as an array of unsigned int[], where f(t) is
* of the form: f(t) = t^p[0] + t^p[1] + ... + t^p[4] where m = p[0]
* > p[1] > ... > p[4] = 0. */
unsigned int irr_arr[5];
/* Field arithmetic methods. All methods (except field_enc and
* field_dec) are assumed to take field-encoded parameters and return
* field-encoded values. All methods (except field_enc and field_dec)
* are required to be implemented. */
mp_err (*field_add) (const mp_int *a, const mp_int *b, mp_int *r,
const GFMethod *meth);
mp_err (*field_neg) (const mp_int *a, mp_int *r, const GFMethod *meth);
mp_err (*field_sub) (const mp_int *a, const mp_int *b, mp_int *r,
const GFMethod *meth);
mp_err (*field_mod) (const mp_int *a, mp_int *r, const GFMethod *meth);
mp_err (*field_mul) (const mp_int *a, const mp_int *b, mp_int *r,
const GFMethod *meth);
mp_err (*field_sqr) (const mp_int *a, mp_int *r, const GFMethod *meth);
mp_err (*field_div) (const mp_int *a, const mp_int *b, mp_int *r,
const GFMethod *meth);
mp_err (*field_enc) (const mp_int *a, mp_int *r, const GFMethod *meth);
mp_err (*field_dec) (const mp_int *a, mp_int *r, const GFMethod *meth);
/* Extra storage for implementation-specific data. Any memory
* allocated to these extra fields will be cleared by extra_free. */
void *extra1;
void *extra2;
void (*extra_free) (GFMethod *meth);
};
/* Construct generic GFMethods. */
GFMethod *GFMethod_consGFp(const mp_int *irr);
GFMethod *GFMethod_consGFp_mont(const mp_int *irr);
GFMethod *GFMethod_consGF2m(const mp_int *irr,
const unsigned int irr_arr[5]);
/* Free the memory allocated (if any) to a GFMethod object. */
void GFMethod_free(GFMethod *meth);
struct ECGroupStr {
/* Indicates whether the structure was constructed from dynamic memory
* or statically created. */
int constructed;
/* Field definition and arithmetic. */
GFMethod *meth;
/* Textual representation of curve name, if any. */
char *text;
#ifdef _KERNEL
int text_len;
#endif
/* Curve parameters, field-encoded. */
mp_int curvea, curveb;
/* x and y coordinates of the base point, field-encoded. */
mp_int genx, geny;
/* Order and cofactor of the base point. */
mp_int order;
int cofactor;
/* Point arithmetic methods. All methods are assumed to take
* field-encoded parameters and return field-encoded values. All
* methods (except base_point_mul and points_mul) are required to be
* implemented. */
mp_err (*point_add) (const mp_int *px, const mp_int *py,
const mp_int *qx, const mp_int *qy, mp_int *rx,
mp_int *ry, const ECGroup *group);
mp_err (*point_sub) (const mp_int *px, const mp_int *py,
const mp_int *qx, const mp_int *qy, mp_int *rx,
mp_int *ry, const ECGroup *group);
mp_err (*point_dbl) (const mp_int *px, const mp_int *py, mp_int *rx,
mp_int *ry, const ECGroup *group);
mp_err (*point_mul) (const mp_int *n, const mp_int *px,
const mp_int *py, mp_int *rx, mp_int *ry,
const ECGroup *group);
mp_err (*base_point_mul) (const mp_int *n, mp_int *rx, mp_int *ry,
const ECGroup *group);
mp_err (*points_mul) (const mp_int *k1, const mp_int *k2,
const mp_int *px, const mp_int *py, mp_int *rx,
mp_int *ry, const ECGroup *group);
mp_err (*validate_point) (const mp_int *px, const mp_int *py, const ECGroup *group);
/* Extra storage for implementation-specific data. Any memory
* allocated to these extra fields will be cleared by extra_free. */
void *extra1;
void *extra2;
void (*extra_free) (ECGroup *group);
};
/* Wrapper functions for generic prime field arithmetic. */
mp_err ec_GFp_add(const mp_int *a, const mp_int *b, mp_int *r,
const GFMethod *meth);
mp_err ec_GFp_neg(const mp_int *a, mp_int *r, const GFMethod *meth);
mp_err ec_GFp_sub(const mp_int *a, const mp_int *b, mp_int *r,
const GFMethod *meth);
/* fixed length in-line adds. Count is in words */
mp_err ec_GFp_add_3(const mp_int *a, const mp_int *b, mp_int *r,
const GFMethod *meth);
mp_err ec_GFp_add_4(const mp_int *a, const mp_int *b, mp_int *r,
const GFMethod *meth);
mp_err ec_GFp_add_5(const mp_int *a, const mp_int *b, mp_int *r,
const GFMethod *meth);
mp_err ec_GFp_add_6(const mp_int *a, const mp_int *b, mp_int *r,
const GFMethod *meth);
mp_err ec_GFp_sub_3(const mp_int *a, const mp_int *b, mp_int *r,
const GFMethod *meth);
mp_err ec_GFp_sub_4(const mp_int *a, const mp_int *b, mp_int *r,
const GFMethod *meth);
mp_err ec_GFp_sub_5(const mp_int *a, const mp_int *b, mp_int *r,
const GFMethod *meth);
mp_err ec_GFp_sub_6(const mp_int *a, const mp_int *b, mp_int *r,
const GFMethod *meth);
mp_err ec_GFp_mod(const mp_int *a, mp_int *r, const GFMethod *meth);
mp_err ec_GFp_mul(const mp_int *a, const mp_int *b, mp_int *r,
const GFMethod *meth);
mp_err ec_GFp_sqr(const mp_int *a, mp_int *r, const GFMethod *meth);
mp_err ec_GFp_div(const mp_int *a, const mp_int *b, mp_int *r,
const GFMethod *meth);
/* Wrapper functions for generic binary polynomial field arithmetic. */
mp_err ec_GF2m_add(const mp_int *a, const mp_int *b, mp_int *r,
const GFMethod *meth);
mp_err ec_GF2m_neg(const mp_int *a, mp_int *r, const GFMethod *meth);
mp_err ec_GF2m_mod(const mp_int *a, mp_int *r, const GFMethod *meth);
mp_err ec_GF2m_mul(const mp_int *a, const mp_int *b, mp_int *r,
const GFMethod *meth);
mp_err ec_GF2m_sqr(const mp_int *a, mp_int *r, const GFMethod *meth);
mp_err ec_GF2m_div(const mp_int *a, const mp_int *b, mp_int *r,
const GFMethod *meth);
/* Montgomery prime field arithmetic. */
mp_err ec_GFp_mul_mont(const mp_int *a, const mp_int *b, mp_int *r,
const GFMethod *meth);
mp_err ec_GFp_sqr_mont(const mp_int *a, mp_int *r, const GFMethod *meth);
mp_err ec_GFp_div_mont(const mp_int *a, const mp_int *b, mp_int *r,
const GFMethod *meth);
mp_err ec_GFp_enc_mont(const mp_int *a, mp_int *r, const GFMethod *meth);
mp_err ec_GFp_dec_mont(const mp_int *a, mp_int *r, const GFMethod *meth);
void ec_GFp_extra_free_mont(GFMethod *meth);
/* point multiplication */
mp_err ec_pts_mul_basic(const mp_int *k1, const mp_int *k2,
const mp_int *px, const mp_int *py, mp_int *rx,
mp_int *ry, const ECGroup *group);
mp_err ec_pts_mul_simul_w2(const mp_int *k1, const mp_int *k2,
const mp_int *px, const mp_int *py, mp_int *rx,
mp_int *ry, const ECGroup *group);
/* Computes the windowed non-adjacent-form (NAF) of a scalar. Out should
* be an array of signed char's to output to, bitsize should be the number
* of bits of out, in is the original scalar, and w is the window size.
* NAF is discussed in the paper: D. Hankerson, J. Hernandez and A.
* Menezes, "Software implementation of elliptic curve cryptography over
* binary fields", Proc. CHES 2000. */
mp_err ec_compute_wNAF(signed char *out, int bitsize, const mp_int *in,
int w);
/* Optimized field arithmetic */
mp_err ec_group_set_gfp192(ECGroup *group, ECCurveName);
mp_err ec_group_set_gfp224(ECGroup *group, ECCurveName);
mp_err ec_group_set_gfp256(ECGroup *group, ECCurveName);
mp_err ec_group_set_gfp384(ECGroup *group, ECCurveName);
mp_err ec_group_set_gfp521(ECGroup *group, ECCurveName);
mp_err ec_group_set_gf2m163(ECGroup *group, ECCurveName name);
mp_err ec_group_set_gf2m193(ECGroup *group, ECCurveName name);
mp_err ec_group_set_gf2m233(ECGroup *group, ECCurveName name);
/* Optimized floating-point arithmetic */
#ifdef ECL_USE_FP
mp_err ec_group_set_secp160r1_fp(ECGroup *group);
mp_err ec_group_set_nistp192_fp(ECGroup *group);
mp_err ec_group_set_nistp224_fp(ECGroup *group);
#endif
#endif /* _ECL_PRIV_H */

View File

@ -0,0 +1,475 @@
/* *********************************************************************
*
* Sun elects to have this file available under and governed by the
* Mozilla Public License Version 1.1 ("MPL") (see
* http://www.mozilla.org/MPL/ for full license text). For the avoidance
* of doubt and subject to the following, Sun also elects to allow
* licensees to use this file under the MPL, the GNU General Public
* License version 2 only or the Lesser General Public License version
* 2.1 only. Any references to the "GNU General Public License version 2
* or later" or "GPL" in the following shall be construed to mean the
* GNU General Public License version 2 only. Any references to the "GNU
* Lesser General Public License version 2.1 or later" or "LGPL" in the
* following shall be construed to mean the GNU Lesser General Public
* License version 2.1 only. However, the following notice accompanied
* the original version of this file:
*
* Version: MPL 1.1/GPL 2.0/LGPL 2.1
*
* The contents of this file are subject to the Mozilla Public License Version
* 1.1 (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* Software distributed under the License is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
* for the specific language governing rights and limitations under the
* License.
*
* The Original Code is the elliptic curve math library.
*
* The Initial Developer of the Original Code is
* Sun Microsystems, Inc.
* Portions created by the Initial Developer are Copyright (C) 2003
* the Initial Developer. All Rights Reserved.
*
* Contributor(s):
* Douglas Stebila <douglas@stebila.ca>, Sun Microsystems Laboratories
*
* Alternatively, the contents of this file may be used under the terms of
* either the GNU General Public License Version 2 or later (the "GPL"), or
* the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
* in which case the provisions of the GPL or the LGPL are applicable instead
* of those above. If you wish to allow use of your version of this file only
* under the terms of either the GPL or the LGPL, and not to allow others to
* use your version of this file under the terms of the MPL, indicate your
* decision by deleting the provisions above and replace them with the notice
* and other provisions required by the GPL or the LGPL. If you do not delete
* the provisions above, a recipient may use your version of this file under
* the terms of any one of the MPL, the GPL or the LGPL.
*
*********************************************************************** */
/*
* Copyright 2007 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#pragma ident "%Z%%M% %I% %E% SMI"
#include "mpi.h"
#include "mplogic.h"
#include "ecl.h"
#include "ecl-priv.h"
#include "ec2.h"
#include "ecp.h"
#ifndef _KERNEL
#include <stdlib.h>
#include <string.h>
#endif
/* Allocate memory for a new ECGroup object. */
ECGroup *
ECGroup_new(int kmflag)
{
mp_err res = MP_OKAY;
ECGroup *group;
#ifdef _KERNEL
group = (ECGroup *) kmem_alloc(sizeof(ECGroup), kmflag);
#else
group = (ECGroup *) malloc(sizeof(ECGroup));
#endif
if (group == NULL)
return NULL;
group->constructed = MP_YES;
group->meth = NULL;
group->text = NULL;
MP_DIGITS(&group->curvea) = 0;
MP_DIGITS(&group->curveb) = 0;
MP_DIGITS(&group->genx) = 0;
MP_DIGITS(&group->geny) = 0;
MP_DIGITS(&group->order) = 0;
group->base_point_mul = NULL;
group->points_mul = NULL;
group->validate_point = NULL;
group->extra1 = NULL;
group->extra2 = NULL;
group->extra_free = NULL;
MP_CHECKOK(mp_init(&group->curvea, kmflag));
MP_CHECKOK(mp_init(&group->curveb, kmflag));
MP_CHECKOK(mp_init(&group->genx, kmflag));
MP_CHECKOK(mp_init(&group->geny, kmflag));
MP_CHECKOK(mp_init(&group->order, kmflag));
CLEANUP:
if (res != MP_OKAY) {
ECGroup_free(group);
return NULL;
}
return group;
}
/* Construct a generic ECGroup for elliptic curves over prime fields. */
ECGroup *
ECGroup_consGFp(const mp_int *irr, const mp_int *curvea,
const mp_int *curveb, const mp_int *genx,
const mp_int *geny, const mp_int *order, int cofactor)
{
mp_err res = MP_OKAY;
ECGroup *group = NULL;
group = ECGroup_new(FLAG(irr));
if (group == NULL)
return NULL;
group->meth = GFMethod_consGFp(irr);
if (group->meth == NULL) {
res = MP_MEM;
goto CLEANUP;
}
MP_CHECKOK(mp_copy(curvea, &group->curvea));
MP_CHECKOK(mp_copy(curveb, &group->curveb));
MP_CHECKOK(mp_copy(genx, &group->genx));
MP_CHECKOK(mp_copy(geny, &group->geny));
MP_CHECKOK(mp_copy(order, &group->order));
group->cofactor = cofactor;
group->point_add = &ec_GFp_pt_add_aff;
group->point_sub = &ec_GFp_pt_sub_aff;
group->point_dbl = &ec_GFp_pt_dbl_aff;
group->point_mul = &ec_GFp_pt_mul_jm_wNAF;
group->base_point_mul = NULL;
group->points_mul = &ec_GFp_pts_mul_jac;
group->validate_point = &ec_GFp_validate_point;
CLEANUP:
if (res != MP_OKAY) {
ECGroup_free(group);
return NULL;
}
return group;
}
/* Construct a generic ECGroup for elliptic curves over prime fields with
* field arithmetic implemented in Montgomery coordinates. */
ECGroup *
ECGroup_consGFp_mont(const mp_int *irr, const mp_int *curvea,
const mp_int *curveb, const mp_int *genx,
const mp_int *geny, const mp_int *order, int cofactor)
{
mp_err res = MP_OKAY;
ECGroup *group = NULL;
group = ECGroup_new(FLAG(irr));
if (group == NULL)
return NULL;
group->meth = GFMethod_consGFp_mont(irr);
if (group->meth == NULL) {
res = MP_MEM;
goto CLEANUP;
}
MP_CHECKOK(group->meth->
field_enc(curvea, &group->curvea, group->meth));
MP_CHECKOK(group->meth->
field_enc(curveb, &group->curveb, group->meth));
MP_CHECKOK(group->meth->field_enc(genx, &group->genx, group->meth));
MP_CHECKOK(group->meth->field_enc(geny, &group->geny, group->meth));
MP_CHECKOK(mp_copy(order, &group->order));
group->cofactor = cofactor;
group->point_add = &ec_GFp_pt_add_aff;
group->point_sub = &ec_GFp_pt_sub_aff;
group->point_dbl = &ec_GFp_pt_dbl_aff;
group->point_mul = &ec_GFp_pt_mul_jm_wNAF;
group->base_point_mul = NULL;
group->points_mul = &ec_GFp_pts_mul_jac;
group->validate_point = &ec_GFp_validate_point;
CLEANUP:
if (res != MP_OKAY) {
ECGroup_free(group);
return NULL;
}
return group;
}
#ifdef NSS_ECC_MORE_THAN_SUITE_B
/* Construct a generic ECGroup for elliptic curves over binary polynomial
* fields. */
ECGroup *
ECGroup_consGF2m(const mp_int *irr, const unsigned int irr_arr[5],
const mp_int *curvea, const mp_int *curveb,
const mp_int *genx, const mp_int *geny,
const mp_int *order, int cofactor)
{
mp_err res = MP_OKAY;
ECGroup *group = NULL;
group = ECGroup_new(FLAG(irr));
if (group == NULL)
return NULL;
group->meth = GFMethod_consGF2m(irr, irr_arr);
if (group->meth == NULL) {
res = MP_MEM;
goto CLEANUP;
}
MP_CHECKOK(mp_copy(curvea, &group->curvea));
MP_CHECKOK(mp_copy(curveb, &group->curveb));
MP_CHECKOK(mp_copy(genx, &group->genx));
MP_CHECKOK(mp_copy(geny, &group->geny));
MP_CHECKOK(mp_copy(order, &group->order));
group->cofactor = cofactor;
group->point_add = &ec_GF2m_pt_add_aff;
group->point_sub = &ec_GF2m_pt_sub_aff;
group->point_dbl = &ec_GF2m_pt_dbl_aff;
group->point_mul = &ec_GF2m_pt_mul_mont;
group->base_point_mul = NULL;
group->points_mul = &ec_pts_mul_basic;
group->validate_point = &ec_GF2m_validate_point;
CLEANUP:
if (res != MP_OKAY) {
ECGroup_free(group);
return NULL;
}
return group;
}
#endif
/* Construct ECGroup from hex parameters and name, if any. Called by
* ECGroup_fromHex and ECGroup_fromName. */
ECGroup *
ecgroup_fromNameAndHex(const ECCurveName name,
const ECCurveParams * params, int kmflag)
{
mp_int irr, curvea, curveb, genx, geny, order;
int bits;
ECGroup *group = NULL;
mp_err res = MP_OKAY;
/* initialize values */
MP_DIGITS(&irr) = 0;
MP_DIGITS(&curvea) = 0;
MP_DIGITS(&curveb) = 0;
MP_DIGITS(&genx) = 0;
MP_DIGITS(&geny) = 0;
MP_DIGITS(&order) = 0;
MP_CHECKOK(mp_init(&irr, kmflag));
MP_CHECKOK(mp_init(&curvea, kmflag));
MP_CHECKOK(mp_init(&curveb, kmflag));
MP_CHECKOK(mp_init(&genx, kmflag));
MP_CHECKOK(mp_init(&geny, kmflag));
MP_CHECKOK(mp_init(&order, kmflag));
MP_CHECKOK(mp_read_radix(&irr, params->irr, 16));
MP_CHECKOK(mp_read_radix(&curvea, params->curvea, 16));
MP_CHECKOK(mp_read_radix(&curveb, params->curveb, 16));
MP_CHECKOK(mp_read_radix(&genx, params->genx, 16));
MP_CHECKOK(mp_read_radix(&geny, params->geny, 16));
MP_CHECKOK(mp_read_radix(&order, params->order, 16));
/* determine number of bits */
bits = mpl_significant_bits(&irr) - 1;
if (bits < MP_OKAY) {
res = bits;
goto CLEANUP;
}
/* determine which optimizations (if any) to use */
if (params->field == ECField_GFp) {
#ifdef NSS_ECC_MORE_THAN_SUITE_B
switch (name) {
#ifdef ECL_USE_FP
case ECCurve_SECG_PRIME_160R1:
group =
ECGroup_consGFp(&irr, &curvea, &curveb, &genx, &geny,
&order, params->cofactor);
if (group == NULL) { res = MP_UNDEF; goto CLEANUP; }
MP_CHECKOK(ec_group_set_secp160r1_fp(group));
break;
#endif
case ECCurve_SECG_PRIME_192R1:
#ifdef ECL_USE_FP
group =
ECGroup_consGFp(&irr, &curvea, &curveb, &genx, &geny,
&order, params->cofactor);
if (group == NULL) { res = MP_UNDEF; goto CLEANUP; }
MP_CHECKOK(ec_group_set_nistp192_fp(group));
#else
group =
ECGroup_consGFp(&irr, &curvea, &curveb, &genx, &geny,
&order, params->cofactor);
if (group == NULL) { res = MP_UNDEF; goto CLEANUP; }
MP_CHECKOK(ec_group_set_gfp192(group, name));
#endif
break;
case ECCurve_SECG_PRIME_224R1:
#ifdef ECL_USE_FP
group =
ECGroup_consGFp(&irr, &curvea, &curveb, &genx, &geny,
&order, params->cofactor);
if (group == NULL) { res = MP_UNDEF; goto CLEANUP; }
MP_CHECKOK(ec_group_set_nistp224_fp(group));
#else
group =
ECGroup_consGFp(&irr, &curvea, &curveb, &genx, &geny,
&order, params->cofactor);
if (group == NULL) { res = MP_UNDEF; goto CLEANUP; }
MP_CHECKOK(ec_group_set_gfp224(group, name));
#endif
break;
case ECCurve_SECG_PRIME_256R1:
group =
ECGroup_consGFp(&irr, &curvea, &curveb, &genx, &geny,
&order, params->cofactor);
if (group == NULL) { res = MP_UNDEF; goto CLEANUP; }
MP_CHECKOK(ec_group_set_gfp256(group, name));
break;
case ECCurve_SECG_PRIME_521R1:
group =
ECGroup_consGFp(&irr, &curvea, &curveb, &genx, &geny,
&order, params->cofactor);
if (group == NULL) { res = MP_UNDEF; goto CLEANUP; }
MP_CHECKOK(ec_group_set_gfp521(group, name));
break;
default:
/* use generic arithmetic */
#endif
group =
ECGroup_consGFp_mont(&irr, &curvea, &curveb, &genx, &geny,
&order, params->cofactor);
if (group == NULL) { res = MP_UNDEF; goto CLEANUP; }
#ifdef NSS_ECC_MORE_THAN_SUITE_B
}
} else if (params->field == ECField_GF2m) {
group = ECGroup_consGF2m(&irr, NULL, &curvea, &curveb, &genx, &geny, &order, params->cofactor);
if (group == NULL) { res = MP_UNDEF; goto CLEANUP; }
if ((name == ECCurve_NIST_K163) ||
(name == ECCurve_NIST_B163) ||
(name == ECCurve_SECG_CHAR2_163R1)) {
MP_CHECKOK(ec_group_set_gf2m163(group, name));
} else if ((name == ECCurve_SECG_CHAR2_193R1) ||
(name == ECCurve_SECG_CHAR2_193R2)) {
MP_CHECKOK(ec_group_set_gf2m193(group, name));
} else if ((name == ECCurve_NIST_K233) ||
(name == ECCurve_NIST_B233)) {
MP_CHECKOK(ec_group_set_gf2m233(group, name));
}
#endif
} else {
res = MP_UNDEF;
goto CLEANUP;
}
/* set name, if any */
if ((group != NULL) && (params->text != NULL)) {
#ifdef _KERNEL
int n = strlen(params->text) + 1;
group->text = kmem_alloc(n, kmflag);
if (group->text == NULL) {
res = MP_MEM;
goto CLEANUP;
}
bcopy(params->text, group->text, n);
group->text_len = n;
#else
group->text = strdup(params->text);
if (group->text == NULL) {
res = MP_MEM;
}
#endif
}
CLEANUP:
mp_clear(&irr);
mp_clear(&curvea);
mp_clear(&curveb);
mp_clear(&genx);
mp_clear(&geny);
mp_clear(&order);
if (res != MP_OKAY) {
ECGroup_free(group);
return NULL;
}
return group;
}
/* Construct ECGroup from hexadecimal representations of parameters. */
ECGroup *
ECGroup_fromHex(const ECCurveParams * params, int kmflag)
{
return ecgroup_fromNameAndHex(ECCurve_noName, params, kmflag);
}
/* Construct ECGroup from named parameters. */
ECGroup *
ECGroup_fromName(const ECCurveName name, int kmflag)
{
ECGroup *group = NULL;
ECCurveParams *params = NULL;
mp_err res = MP_OKAY;
params = EC_GetNamedCurveParams(name, kmflag);
if (params == NULL) {
res = MP_UNDEF;
goto CLEANUP;
}
/* construct actual group */
group = ecgroup_fromNameAndHex(name, params, kmflag);
if (group == NULL) {
res = MP_UNDEF;
goto CLEANUP;
}
CLEANUP:
EC_FreeCurveParams(params);
if (res != MP_OKAY) {
ECGroup_free(group);
return NULL;
}
return group;
}
/* Validates an EC public key as described in Section 5.2.2 of X9.62. */
mp_err ECPoint_validate(const ECGroup *group, const mp_int *px, const
mp_int *py)
{
/* 1: Verify that publicValue is not the point at infinity */
/* 2: Verify that the coordinates of publicValue are elements
* of the field.
*/
/* 3: Verify that publicValue is on the curve. */
/* 4: Verify that the order of the curve times the publicValue
* is the point at infinity.
*/
return group->validate_point(px, py, group);
}
/* Free the memory allocated (if any) to an ECGroup object. */
void
ECGroup_free(ECGroup *group)
{
if (group == NULL)
return;
GFMethod_free(group->meth);
if (group->constructed == MP_NO)
return;
mp_clear(&group->curvea);
mp_clear(&group->curveb);
mp_clear(&group->genx);
mp_clear(&group->geny);
mp_clear(&group->order);
if (group->text != NULL)
#ifdef _KERNEL
kmem_free(group->text, group->text_len);
#else
free(group->text);
#endif
if (group->extra_free != NULL)
group->extra_free(group);
#ifdef _KERNEL
kmem_free(group, sizeof (ECGroup));
#else
free(group);
#endif
}

View File

@ -0,0 +1,111 @@
/* *********************************************************************
*
* Sun elects to have this file available under and governed by the
* Mozilla Public License Version 1.1 ("MPL") (see
* http://www.mozilla.org/MPL/ for full license text). For the avoidance
* of doubt and subject to the following, Sun also elects to allow
* licensees to use this file under the MPL, the GNU General Public
* License version 2 only or the Lesser General Public License version
* 2.1 only. Any references to the "GNU General Public License version 2
* or later" or "GPL" in the following shall be construed to mean the
* GNU General Public License version 2 only. Any references to the "GNU
* Lesser General Public License version 2.1 or later" or "LGPL" in the
* following shall be construed to mean the GNU Lesser General Public
* License version 2.1 only. However, the following notice accompanied
* the original version of this file:
*
* Version: MPL 1.1/GPL 2.0/LGPL 2.1
*
* The contents of this file are subject to the Mozilla Public License Version
* 1.1 (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* Software distributed under the License is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
* for the specific language governing rights and limitations under the
* License.
*
* The Original Code is the elliptic curve math library.
*
* The Initial Developer of the Original Code is
* Sun Microsystems, Inc.
* Portions created by the Initial Developer are Copyright (C) 2003
* the Initial Developer. All Rights Reserved.
*
* Contributor(s):
* Douglas Stebila <douglas@stebila.ca>, Sun Microsystems Laboratories
*
* Alternatively, the contents of this file may be used under the terms of
* either the GNU General Public License Version 2 or later (the "GPL"), or
* the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
* in which case the provisions of the GPL or the LGPL are applicable instead
* of those above. If you wish to allow use of your version of this file only
* under the terms of either the GPL or the LGPL, and not to allow others to
* use your version of this file under the terms of the MPL, indicate your
* decision by deleting the provisions above and replace them with the notice
* and other provisions required by the GPL or the LGPL. If you do not delete
* the provisions above, a recipient may use your version of this file under
* the terms of any one of the MPL, the GPL or the LGPL.
*
*********************************************************************** */
/*
* Copyright 2007 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#ifndef _ECL_H
#define _ECL_H
#pragma ident "%Z%%M% %I% %E% SMI"
/* Although this is not an exported header file, code which uses elliptic
* curve point operations will need to include it. */
#include "ecl-exp.h"
#include "mpi.h"
struct ECGroupStr;
typedef struct ECGroupStr ECGroup;
/* Construct ECGroup from hexadecimal representations of parameters. */
ECGroup *ECGroup_fromHex(const ECCurveParams * params, int kmflag);
/* Construct ECGroup from named parameters. */
ECGroup *ECGroup_fromName(const ECCurveName name, int kmflag);
/* Free an allocated ECGroup. */
void ECGroup_free(ECGroup *group);
/* Construct ECCurveParams from an ECCurveName */
ECCurveParams *EC_GetNamedCurveParams(const ECCurveName name, int kmflag);
/* Duplicates an ECCurveParams */
ECCurveParams *ECCurveParams_dup(const ECCurveParams * params, int kmflag);
/* Free an allocated ECCurveParams */
void EC_FreeCurveParams(ECCurveParams * params);
/* Elliptic curve scalar-point multiplication. Computes Q(x, y) = k * P(x,
* y). If x, y = NULL, then P is assumed to be the generator (base point)
* of the group of points on the elliptic curve. Input and output values
* are assumed to be NOT field-encoded. */
mp_err ECPoint_mul(const ECGroup *group, const mp_int *k, const mp_int *px,
const mp_int *py, mp_int *qx, mp_int *qy);
/* Elliptic curve scalar-point multiplication. Computes Q(x, y) = k1 * G +
* k2 * P(x, y), where G is the generator (base point) of the group of
* points on the elliptic curve. Input and output values are assumed to
* be NOT field-encoded. */
mp_err ECPoints_mul(const ECGroup *group, const mp_int *k1,
const mp_int *k2, const mp_int *px, const mp_int *py,
mp_int *qx, mp_int *qy);
/* Validates an EC public key as described in Section 5.2.2 of X9.62.
* Returns MP_YES if the public key is valid, MP_NO if the public key
* is invalid, or an error code if the validation could not be
* performed. */
mp_err ECPoint_validate(const ECGroup *group, const mp_int *px, const
mp_int *py);
#endif /* _ECL_H */

View File

@ -0,0 +1,216 @@
/* *********************************************************************
*
* Sun elects to have this file available under and governed by the
* Mozilla Public License Version 1.1 ("MPL") (see
* http://www.mozilla.org/MPL/ for full license text). For the avoidance
* of doubt and subject to the following, Sun also elects to allow
* licensees to use this file under the MPL, the GNU General Public
* License version 2 only or the Lesser General Public License version
* 2.1 only. Any references to the "GNU General Public License version 2
* or later" or "GPL" in the following shall be construed to mean the
* GNU General Public License version 2 only. Any references to the "GNU
* Lesser General Public License version 2.1 or later" or "LGPL" in the
* following shall be construed to mean the GNU Lesser General Public
* License version 2.1 only. However, the following notice accompanied
* the original version of this file:
*
* Version: MPL 1.1/GPL 2.0/LGPL 2.1
*
* The contents of this file are subject to the Mozilla Public License Version
* 1.1 (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* Software distributed under the License is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
* for the specific language governing rights and limitations under the
* License.
*
* The Original Code is the elliptic curve math library.
*
* The Initial Developer of the Original Code is
* Sun Microsystems, Inc.
* Portions created by the Initial Developer are Copyright (C) 2003
* the Initial Developer. All Rights Reserved.
*
* Contributor(s):
* Douglas Stebila <douglas@stebila.ca>, Sun Microsystems Laboratories
*
* Alternatively, the contents of this file may be used under the terms of
* either the GNU General Public License Version 2 or later (the "GPL"), or
* the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
* in which case the provisions of the GPL or the LGPL are applicable instead
* of those above. If you wish to allow use of your version of this file only
* under the terms of either the GPL or the LGPL, and not to allow others to
* use your version of this file under the terms of the MPL, indicate your
* decision by deleting the provisions above and replace them with the notice
* and other provisions required by the GPL or the LGPL. If you do not delete
* the provisions above, a recipient may use your version of this file under
* the terms of any one of the MPL, the GPL or the LGPL.
*
*********************************************************************** */
/*
* Copyright 2007 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#pragma ident "%Z%%M% %I% %E% SMI"
#include "ecl.h"
#include "ecl-curve.h"
#include "ecl-priv.h"
#ifndef _KERNEL
#include <stdlib.h>
#include <string.h>
#endif
#define CHECK(func) if ((func) == NULL) { res = 0; goto CLEANUP; }
/* Duplicates an ECCurveParams */
ECCurveParams *
ECCurveParams_dup(const ECCurveParams * params, int kmflag)
{
int res = 1;
ECCurveParams *ret = NULL;
#ifdef _KERNEL
ret = (ECCurveParams *) kmem_zalloc(sizeof(ECCurveParams), kmflag);
#else
CHECK(ret = (ECCurveParams *) calloc(1, sizeof(ECCurveParams)));
#endif
if (params->text != NULL) {
#ifdef _KERNEL
ret->text = kmem_alloc(strlen(params->text) + 1, kmflag);
bcopy(params->text, ret->text, strlen(params->text) + 1);
#else
CHECK(ret->text = strdup(params->text));
#endif
}
ret->field = params->field;
ret->size = params->size;
if (params->irr != NULL) {
#ifdef _KERNEL
ret->irr = kmem_alloc(strlen(params->irr) + 1, kmflag);
bcopy(params->irr, ret->irr, strlen(params->irr) + 1);
#else
CHECK(ret->irr = strdup(params->irr));
#endif
}
if (params->curvea != NULL) {
#ifdef _KERNEL
ret->curvea = kmem_alloc(strlen(params->curvea) + 1, kmflag);
bcopy(params->curvea, ret->curvea, strlen(params->curvea) + 1);
#else
CHECK(ret->curvea = strdup(params->curvea));
#endif
}
if (params->curveb != NULL) {
#ifdef _KERNEL
ret->curveb = kmem_alloc(strlen(params->curveb) + 1, kmflag);
bcopy(params->curveb, ret->curveb, strlen(params->curveb) + 1);
#else
CHECK(ret->curveb = strdup(params->curveb));
#endif
}
if (params->genx != NULL) {
#ifdef _KERNEL
ret->genx = kmem_alloc(strlen(params->genx) + 1, kmflag);
bcopy(params->genx, ret->genx, strlen(params->genx) + 1);
#else
CHECK(ret->genx = strdup(params->genx));
#endif
}
if (params->geny != NULL) {
#ifdef _KERNEL
ret->geny = kmem_alloc(strlen(params->geny) + 1, kmflag);
bcopy(params->geny, ret->geny, strlen(params->geny) + 1);
#else
CHECK(ret->geny = strdup(params->geny));
#endif
}
if (params->order != NULL) {
#ifdef _KERNEL
ret->order = kmem_alloc(strlen(params->order) + 1, kmflag);
bcopy(params->order, ret->order, strlen(params->order) + 1);
#else
CHECK(ret->order = strdup(params->order));
#endif
}
ret->cofactor = params->cofactor;
CLEANUP:
if (res != 1) {
EC_FreeCurveParams(ret);
return NULL;
}
return ret;
}
#undef CHECK
/* Construct ECCurveParams from an ECCurveName */
ECCurveParams *
EC_GetNamedCurveParams(const ECCurveName name, int kmflag)
{
if ((name <= ECCurve_noName) || (ECCurve_pastLastCurve <= name) ||
(ecCurve_map[name] == NULL)) {
return NULL;
} else {
return ECCurveParams_dup(ecCurve_map[name], kmflag);
}
}
/* Free the memory allocated (if any) to an ECCurveParams object. */
void
EC_FreeCurveParams(ECCurveParams * params)
{
if (params == NULL)
return;
if (params->text != NULL)
#ifdef _KERNEL
kmem_free(params->text, strlen(params->text) + 1);
#else
free(params->text);
#endif
if (params->irr != NULL)
#ifdef _KERNEL
kmem_free(params->irr, strlen(params->irr) + 1);
#else
free(params->irr);
#endif
if (params->curvea != NULL)
#ifdef _KERNEL
kmem_free(params->curvea, strlen(params->curvea) + 1);
#else
free(params->curvea);
#endif
if (params->curveb != NULL)
#ifdef _KERNEL
kmem_free(params->curveb, strlen(params->curveb) + 1);
#else
free(params->curveb);
#endif
if (params->genx != NULL)
#ifdef _KERNEL
kmem_free(params->genx, strlen(params->genx) + 1);
#else
free(params->genx);
#endif
if (params->geny != NULL)
#ifdef _KERNEL
kmem_free(params->geny, strlen(params->geny) + 1);
#else
free(params->geny);
#endif
if (params->order != NULL)
#ifdef _KERNEL
kmem_free(params->order, strlen(params->order) + 1);
#else
free(params->order);
#endif
#ifdef _KERNEL
kmem_free(params, sizeof(ECCurveParams));
#else
free(params);
#endif
}

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,378 @@
/* *********************************************************************
*
* Sun elects to have this file available under and governed by the
* Mozilla Public License Version 1.1 ("MPL") (see
* http://www.mozilla.org/MPL/ for full license text). For the avoidance
* of doubt and subject to the following, Sun also elects to allow
* licensees to use this file under the MPL, the GNU General Public
* License version 2 only or the Lesser General Public License version
* 2.1 only. Any references to the "GNU General Public License version 2
* or later" or "GPL" in the following shall be construed to mean the
* GNU General Public License version 2 only. Any references to the "GNU
* Lesser General Public License version 2.1 or later" or "LGPL" in the
* following shall be construed to mean the GNU Lesser General Public
* License version 2.1 only. However, the following notice accompanied
* the original version of this file:
*
* Version: MPL 1.1/GPL 2.0/LGPL 2.1
*
* The contents of this file are subject to the Mozilla Public License Version
* 1.1 (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* Software distributed under the License is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
* for the specific language governing rights and limitations under the
* License.
*
* The Original Code is the elliptic curve math library.
*
* The Initial Developer of the Original Code is
* Sun Microsystems, Inc.
* Portions created by the Initial Developer are Copyright (C) 2003
* the Initial Developer. All Rights Reserved.
*
* Contributor(s):
* Douglas Stebila <douglas@stebila.ca>, Sun Microsystems Laboratories
*
* Alternatively, the contents of this file may be used under the terms of
* either the GNU General Public License Version 2 or later (the "GPL"), or
* the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
* in which case the provisions of the GPL or the LGPL are applicable instead
* of those above. If you wish to allow use of your version of this file only
* under the terms of either the GPL or the LGPL, and not to allow others to
* use your version of this file under the terms of the MPL, indicate your
* decision by deleting the provisions above and replace them with the notice
* and other provisions required by the GPL or the LGPL. If you do not delete
* the provisions above, a recipient may use your version of this file under
* the terms of any one of the MPL, the GPL or the LGPL.
*
*********************************************************************** */
/*
* Copyright 2007 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#pragma ident "%Z%%M% %I% %E% SMI"
#include "mpi.h"
#include "mplogic.h"
#include "ecl.h"
#include "ecl-priv.h"
#ifndef _KERNEL
#include <stdlib.h>
#endif
/* Elliptic curve scalar-point multiplication. Computes R(x, y) = k * P(x,
* y). If x, y = NULL, then P is assumed to be the generator (base point)
* of the group of points on the elliptic curve. Input and output values
* are assumed to be NOT field-encoded. */
mp_err
ECPoint_mul(const ECGroup *group, const mp_int *k, const mp_int *px,
const mp_int *py, mp_int *rx, mp_int *ry)
{
mp_err res = MP_OKAY;
mp_int kt;
ARGCHK((k != NULL) && (group != NULL), MP_BADARG);
MP_DIGITS(&kt) = 0;
/* want scalar to be less than or equal to group order */
if (mp_cmp(k, &group->order) > 0) {
MP_CHECKOK(mp_init(&kt, FLAG(k)));
MP_CHECKOK(mp_mod(k, &group->order, &kt));
} else {
MP_SIGN(&kt) = MP_ZPOS;
MP_USED(&kt) = MP_USED(k);
MP_ALLOC(&kt) = MP_ALLOC(k);
MP_DIGITS(&kt) = MP_DIGITS(k);
}
if ((px == NULL) || (py == NULL)) {
if (group->base_point_mul) {
MP_CHECKOK(group->base_point_mul(&kt, rx, ry, group));
} else {
MP_CHECKOK(group->
point_mul(&kt, &group->genx, &group->geny, rx, ry,
group));
}
} else {
if (group->meth->field_enc) {
MP_CHECKOK(group->meth->field_enc(px, rx, group->meth));
MP_CHECKOK(group->meth->field_enc(py, ry, group->meth));
MP_CHECKOK(group->point_mul(&kt, rx, ry, rx, ry, group));
} else {
MP_CHECKOK(group->point_mul(&kt, px, py, rx, ry, group));
}
}
if (group->meth->field_dec) {
MP_CHECKOK(group->meth->field_dec(rx, rx, group->meth));
MP_CHECKOK(group->meth->field_dec(ry, ry, group->meth));
}
CLEANUP:
if (MP_DIGITS(&kt) != MP_DIGITS(k)) {
mp_clear(&kt);
}
return res;
}
/* Elliptic curve scalar-point multiplication. Computes R(x, y) = k1 * G +
* k2 * P(x, y), where G is the generator (base point) of the group of
* points on the elliptic curve. Allows k1 = NULL or { k2, P } = NULL.
* Input and output values are assumed to be NOT field-encoded. */
mp_err
ec_pts_mul_basic(const mp_int *k1, const mp_int *k2, const mp_int *px,
const mp_int *py, mp_int *rx, mp_int *ry,
const ECGroup *group)
{
mp_err res = MP_OKAY;
mp_int sx, sy;
ARGCHK(group != NULL, MP_BADARG);
ARGCHK(!((k1 == NULL)
&& ((k2 == NULL) || (px == NULL)
|| (py == NULL))), MP_BADARG);
/* if some arguments are not defined used ECPoint_mul */
if (k1 == NULL) {
return ECPoint_mul(group, k2, px, py, rx, ry);
} else if ((k2 == NULL) || (px == NULL) || (py == NULL)) {
return ECPoint_mul(group, k1, NULL, NULL, rx, ry);
}
MP_DIGITS(&sx) = 0;
MP_DIGITS(&sy) = 0;
MP_CHECKOK(mp_init(&sx, FLAG(k1)));
MP_CHECKOK(mp_init(&sy, FLAG(k1)));
MP_CHECKOK(ECPoint_mul(group, k1, NULL, NULL, &sx, &sy));
MP_CHECKOK(ECPoint_mul(group, k2, px, py, rx, ry));
if (group->meth->field_enc) {
MP_CHECKOK(group->meth->field_enc(&sx, &sx, group->meth));
MP_CHECKOK(group->meth->field_enc(&sy, &sy, group->meth));
MP_CHECKOK(group->meth->field_enc(rx, rx, group->meth));
MP_CHECKOK(group->meth->field_enc(ry, ry, group->meth));
}
MP_CHECKOK(group->point_add(&sx, &sy, rx, ry, rx, ry, group));
if (group->meth->field_dec) {
MP_CHECKOK(group->meth->field_dec(rx, rx, group->meth));
MP_CHECKOK(group->meth->field_dec(ry, ry, group->meth));
}
CLEANUP:
mp_clear(&sx);
mp_clear(&sy);
return res;
}
/* Elliptic curve scalar-point multiplication. Computes R(x, y) = k1 * G +
* k2 * P(x, y), where G is the generator (base point) of the group of
* points on the elliptic curve. Allows k1 = NULL or { k2, P } = NULL.
* Input and output values are assumed to be NOT field-encoded. Uses
* algorithm 15 (simultaneous multiple point multiplication) from Brown,
* Hankerson, Lopez, Menezes. Software Implementation of the NIST
* Elliptic Curves over Prime Fields. */
mp_err
ec_pts_mul_simul_w2(const mp_int *k1, const mp_int *k2, const mp_int *px,
const mp_int *py, mp_int *rx, mp_int *ry,
const ECGroup *group)
{
mp_err res = MP_OKAY;
mp_int precomp[4][4][2];
const mp_int *a, *b;
int i, j;
int ai, bi, d;
ARGCHK(group != NULL, MP_BADARG);
ARGCHK(!((k1 == NULL)
&& ((k2 == NULL) || (px == NULL)
|| (py == NULL))), MP_BADARG);
/* if some arguments are not defined used ECPoint_mul */
if (k1 == NULL) {
return ECPoint_mul(group, k2, px, py, rx, ry);
} else if ((k2 == NULL) || (px == NULL) || (py == NULL)) {
return ECPoint_mul(group, k1, NULL, NULL, rx, ry);
}
/* initialize precomputation table */
for (i = 0; i < 4; i++) {
for (j = 0; j < 4; j++) {
MP_DIGITS(&precomp[i][j][0]) = 0;
MP_DIGITS(&precomp[i][j][1]) = 0;
}
}
for (i = 0; i < 4; i++) {
for (j = 0; j < 4; j++) {
MP_CHECKOK( mp_init_size(&precomp[i][j][0],
ECL_MAX_FIELD_SIZE_DIGITS, FLAG(k1)) );
MP_CHECKOK( mp_init_size(&precomp[i][j][1],
ECL_MAX_FIELD_SIZE_DIGITS, FLAG(k1)) );
}
}
/* fill precomputation table */
/* assign {k1, k2} = {a, b} such that len(a) >= len(b) */
if (mpl_significant_bits(k1) < mpl_significant_bits(k2)) {
a = k2;
b = k1;
if (group->meth->field_enc) {
MP_CHECKOK(group->meth->
field_enc(px, &precomp[1][0][0], group->meth));
MP_CHECKOK(group->meth->
field_enc(py, &precomp[1][0][1], group->meth));
} else {
MP_CHECKOK(mp_copy(px, &precomp[1][0][0]));
MP_CHECKOK(mp_copy(py, &precomp[1][0][1]));
}
MP_CHECKOK(mp_copy(&group->genx, &precomp[0][1][0]));
MP_CHECKOK(mp_copy(&group->geny, &precomp[0][1][1]));
} else {
a = k1;
b = k2;
MP_CHECKOK(mp_copy(&group->genx, &precomp[1][0][0]));
MP_CHECKOK(mp_copy(&group->geny, &precomp[1][0][1]));
if (group->meth->field_enc) {
MP_CHECKOK(group->meth->
field_enc(px, &precomp[0][1][0], group->meth));
MP_CHECKOK(group->meth->
field_enc(py, &precomp[0][1][1], group->meth));
} else {
MP_CHECKOK(mp_copy(px, &precomp[0][1][0]));
MP_CHECKOK(mp_copy(py, &precomp[0][1][1]));
}
}
/* precompute [*][0][*] */
mp_zero(&precomp[0][0][0]);
mp_zero(&precomp[0][0][1]);
MP_CHECKOK(group->
point_dbl(&precomp[1][0][0], &precomp[1][0][1],
&precomp[2][0][0], &precomp[2][0][1], group));
MP_CHECKOK(group->
point_add(&precomp[1][0][0], &precomp[1][0][1],
&precomp[2][0][0], &precomp[2][0][1],
&precomp[3][0][0], &precomp[3][0][1], group));
/* precompute [*][1][*] */
for (i = 1; i < 4; i++) {
MP_CHECKOK(group->
point_add(&precomp[0][1][0], &precomp[0][1][1],
&precomp[i][0][0], &precomp[i][0][1],
&precomp[i][1][0], &precomp[i][1][1], group));
}
/* precompute [*][2][*] */
MP_CHECKOK(group->
point_dbl(&precomp[0][1][0], &precomp[0][1][1],
&precomp[0][2][0], &precomp[0][2][1], group));
for (i = 1; i < 4; i++) {
MP_CHECKOK(group->
point_add(&precomp[0][2][0], &precomp[0][2][1],
&precomp[i][0][0], &precomp[i][0][1],
&precomp[i][2][0], &precomp[i][2][1], group));
}
/* precompute [*][3][*] */
MP_CHECKOK(group->
point_add(&precomp[0][1][0], &precomp[0][1][1],
&precomp[0][2][0], &precomp[0][2][1],
&precomp[0][3][0], &precomp[0][3][1], group));
for (i = 1; i < 4; i++) {
MP_CHECKOK(group->
point_add(&precomp[0][3][0], &precomp[0][3][1],
&precomp[i][0][0], &precomp[i][0][1],
&precomp[i][3][0], &precomp[i][3][1], group));
}
d = (mpl_significant_bits(a) + 1) / 2;
/* R = inf */
mp_zero(rx);
mp_zero(ry);
for (i = d - 1; i >= 0; i--) {
ai = MP_GET_BIT(a, 2 * i + 1);
ai <<= 1;
ai |= MP_GET_BIT(a, 2 * i);
bi = MP_GET_BIT(b, 2 * i + 1);
bi <<= 1;
bi |= MP_GET_BIT(b, 2 * i);
/* R = 2^2 * R */
MP_CHECKOK(group->point_dbl(rx, ry, rx, ry, group));
MP_CHECKOK(group->point_dbl(rx, ry, rx, ry, group));
/* R = R + (ai * A + bi * B) */
MP_CHECKOK(group->
point_add(rx, ry, &precomp[ai][bi][0],
&precomp[ai][bi][1], rx, ry, group));
}
if (group->meth->field_dec) {
MP_CHECKOK(group->meth->field_dec(rx, rx, group->meth));
MP_CHECKOK(group->meth->field_dec(ry, ry, group->meth));
}
CLEANUP:
for (i = 0; i < 4; i++) {
for (j = 0; j < 4; j++) {
mp_clear(&precomp[i][j][0]);
mp_clear(&precomp[i][j][1]);
}
}
return res;
}
/* Elliptic curve scalar-point multiplication. Computes R(x, y) = k1 * G +
* k2 * P(x, y), where G is the generator (base point) of the group of
* points on the elliptic curve. Allows k1 = NULL or { k2, P } = NULL.
* Input and output values are assumed to be NOT field-encoded. */
mp_err
ECPoints_mul(const ECGroup *group, const mp_int *k1, const mp_int *k2,
const mp_int *px, const mp_int *py, mp_int *rx, mp_int *ry)
{
mp_err res = MP_OKAY;
mp_int k1t, k2t;
const mp_int *k1p, *k2p;
MP_DIGITS(&k1t) = 0;
MP_DIGITS(&k2t) = 0;
ARGCHK(group != NULL, MP_BADARG);
/* want scalar to be less than or equal to group order */
if (k1 != NULL) {
if (mp_cmp(k1, &group->order) >= 0) {
MP_CHECKOK(mp_init(&k1t, FLAG(k1)));
MP_CHECKOK(mp_mod(k1, &group->order, &k1t));
k1p = &k1t;
} else {
k1p = k1;
}
} else {
k1p = k1;
}
if (k2 != NULL) {
if (mp_cmp(k2, &group->order) >= 0) {
MP_CHECKOK(mp_init(&k2t, FLAG(k2)));
MP_CHECKOK(mp_mod(k2, &group->order, &k2t));
k2p = &k2t;
} else {
k2p = k2;
}
} else {
k2p = k2;
}
/* if points_mul is defined, then use it */
if (group->points_mul) {
res = group->points_mul(k1p, k2p, px, py, rx, ry, group);
} else {
res = ec_pts_mul_simul_w2(k1p, k2p, px, py, rx, ry, group);
}
CLEANUP:
mp_clear(&k1t);
mp_clear(&k2t);
return res;
}

View File

@ -0,0 +1,160 @@
/* *********************************************************************
*
* Sun elects to have this file available under and governed by the
* Mozilla Public License Version 1.1 ("MPL") (see
* http://www.mozilla.org/MPL/ for full license text). For the avoidance
* of doubt and subject to the following, Sun also elects to allow
* licensees to use this file under the MPL, the GNU General Public
* License version 2 only or the Lesser General Public License version
* 2.1 only. Any references to the "GNU General Public License version 2
* or later" or "GPL" in the following shall be construed to mean the
* GNU General Public License version 2 only. Any references to the "GNU
* Lesser General Public License version 2.1 or later" or "LGPL" in the
* following shall be construed to mean the GNU Lesser General Public
* License version 2.1 only. However, the following notice accompanied
* the original version of this file:
*
* Version: MPL 1.1/GPL 2.0/LGPL 2.1
*
* The contents of this file are subject to the Mozilla Public License Version
* 1.1 (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* Software distributed under the License is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
* for the specific language governing rights and limitations under the
* License.
*
* The Original Code is the elliptic curve math library for prime field curves.
*
* The Initial Developer of the Original Code is
* Sun Microsystems, Inc.
* Portions created by the Initial Developer are Copyright (C) 2003
* the Initial Developer. All Rights Reserved.
*
* Contributor(s):
* Douglas Stebila <douglas@stebila.ca>, Sun Microsystems Laboratories
*
* Alternatively, the contents of this file may be used under the terms of
* either the GNU General Public License Version 2 or later (the "GPL"), or
* the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
* in which case the provisions of the GPL or the LGPL are applicable instead
* of those above. If you wish to allow use of your version of this file only
* under the terms of either the GPL or the LGPL, and not to allow others to
* use your version of this file under the terms of the MPL, indicate your
* decision by deleting the provisions above and replace them with the notice
* and other provisions required by the GPL or the LGPL. If you do not delete
* the provisions above, a recipient may use your version of this file under
* the terms of any one of the MPL, the GPL or the LGPL.
*
*********************************************************************** */
/*
* Copyright 2007 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#ifndef _ECP_H
#define _ECP_H
#pragma ident "%Z%%M% %I% %E% SMI"
#include "ecl-priv.h"
/* Checks if point P(px, py) is at infinity. Uses affine coordinates. */
mp_err ec_GFp_pt_is_inf_aff(const mp_int *px, const mp_int *py);
/* Sets P(px, py) to be the point at infinity. Uses affine coordinates. */
mp_err ec_GFp_pt_set_inf_aff(mp_int *px, mp_int *py);
/* Computes R = P + Q where R is (rx, ry), P is (px, py) and Q is (qx,
* qy). Uses affine coordinates. */
mp_err ec_GFp_pt_add_aff(const mp_int *px, const mp_int *py,
const mp_int *qx, const mp_int *qy, mp_int *rx,
mp_int *ry, const ECGroup *group);
/* Computes R = P - Q. Uses affine coordinates. */
mp_err ec_GFp_pt_sub_aff(const mp_int *px, const mp_int *py,
const mp_int *qx, const mp_int *qy, mp_int *rx,
mp_int *ry, const ECGroup *group);
/* Computes R = 2P. Uses affine coordinates. */
mp_err ec_GFp_pt_dbl_aff(const mp_int *px, const mp_int *py, mp_int *rx,
mp_int *ry, const ECGroup *group);
/* Validates a point on a GFp curve. */
mp_err ec_GFp_validate_point(const mp_int *px, const mp_int *py, const ECGroup *group);
#ifdef ECL_ENABLE_GFP_PT_MUL_AFF
/* Computes R = nP where R is (rx, ry) and P is (px, py). The parameters
* a, b and p are the elliptic curve coefficients and the prime that
* determines the field GFp. Uses affine coordinates. */
mp_err ec_GFp_pt_mul_aff(const mp_int *n, const mp_int *px,
const mp_int *py, mp_int *rx, mp_int *ry,
const ECGroup *group);
#endif
/* Converts a point P(px, py) from affine coordinates to Jacobian
* projective coordinates R(rx, ry, rz). */
mp_err ec_GFp_pt_aff2jac(const mp_int *px, const mp_int *py, mp_int *rx,
mp_int *ry, mp_int *rz, const ECGroup *group);
/* Converts a point P(px, py, pz) from Jacobian projective coordinates to
* affine coordinates R(rx, ry). */
mp_err ec_GFp_pt_jac2aff(const mp_int *px, const mp_int *py,
const mp_int *pz, mp_int *rx, mp_int *ry,
const ECGroup *group);
/* Checks if point P(px, py, pz) is at infinity. Uses Jacobian
* coordinates. */
mp_err ec_GFp_pt_is_inf_jac(const mp_int *px, const mp_int *py,
const mp_int *pz);
/* Sets P(px, py, pz) to be the point at infinity. Uses Jacobian
* coordinates. */
mp_err ec_GFp_pt_set_inf_jac(mp_int *px, mp_int *py, mp_int *pz);
/* Computes R = P + Q where R is (rx, ry, rz), P is (px, py, pz) and Q is
* (qx, qy, qz). Uses Jacobian coordinates. */
mp_err ec_GFp_pt_add_jac_aff(const mp_int *px, const mp_int *py,
const mp_int *pz, const mp_int *qx,
const mp_int *qy, mp_int *rx, mp_int *ry,
mp_int *rz, const ECGroup *group);
/* Computes R = 2P. Uses Jacobian coordinates. */
mp_err ec_GFp_pt_dbl_jac(const mp_int *px, const mp_int *py,
const mp_int *pz, mp_int *rx, mp_int *ry,
mp_int *rz, const ECGroup *group);
#ifdef ECL_ENABLE_GFP_PT_MUL_JAC
/* Computes R = nP where R is (rx, ry) and P is (px, py). The parameters
* a, b and p are the elliptic curve coefficients and the prime that
* determines the field GFp. Uses Jacobian coordinates. */
mp_err ec_GFp_pt_mul_jac(const mp_int *n, const mp_int *px,
const mp_int *py, mp_int *rx, mp_int *ry,
const ECGroup *group);
#endif
/* Computes R(x, y) = k1 * G + k2 * P(x, y), where G is the generator
* (base point) of the group of points on the elliptic curve. Allows k1 =
* NULL or { k2, P } = NULL. Implemented using mixed Jacobian-affine
* coordinates. Input and output values are assumed to be NOT
* field-encoded and are in affine form. */
mp_err
ec_GFp_pts_mul_jac(const mp_int *k1, const mp_int *k2, const mp_int *px,
const mp_int *py, mp_int *rx, mp_int *ry,
const ECGroup *group);
/* Computes R = nP where R is (rx, ry) and P is the base point. Elliptic
* curve points P and R can be identical. Uses mixed Modified-Jacobian
* co-ordinates for doubling and Chudnovsky Jacobian coordinates for
* additions. Assumes input is already field-encoded using field_enc, and
* returns output that is still field-encoded. Uses 5-bit window NAF
* method (algorithm 11) for scalar-point multiplication from Brown,
* Hankerson, Lopez, Menezes. Software Implementation of the NIST Elliptic
* Curves Over Prime Fields. */
mp_err
ec_GFp_pt_mul_jm_wNAF(const mp_int *n, const mp_int *px, const mp_int *py,
mp_int *rx, mp_int *ry, const ECGroup *group);
#endif /* _ECP_H */

View File

@ -0,0 +1,538 @@
/* *********************************************************************
*
* Sun elects to have this file available under and governed by the
* Mozilla Public License Version 1.1 ("MPL") (see
* http://www.mozilla.org/MPL/ for full license text). For the avoidance
* of doubt and subject to the following, Sun also elects to allow
* licensees to use this file under the MPL, the GNU General Public
* License version 2 only or the Lesser General Public License version
* 2.1 only. Any references to the "GNU General Public License version 2
* or later" or "GPL" in the following shall be construed to mean the
* GNU General Public License version 2 only. Any references to the "GNU
* Lesser General Public License version 2.1 or later" or "LGPL" in the
* following shall be construed to mean the GNU Lesser General Public
* License version 2.1 only. However, the following notice accompanied
* the original version of this file:
*
* Version: MPL 1.1/GPL 2.0/LGPL 2.1
*
* The contents of this file are subject to the Mozilla Public License Version
* 1.1 (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* Software distributed under the License is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
* for the specific language governing rights and limitations under the
* License.
*
* The Original Code is the elliptic curve math library for prime field curves.
*
* The Initial Developer of the Original Code is
* Sun Microsystems, Inc.
* Portions created by the Initial Developer are Copyright (C) 2003
* the Initial Developer. All Rights Reserved.
*
* Contributor(s):
* Douglas Stebila <douglas@stebila.ca>, Sun Microsystems Laboratories
*
* Alternatively, the contents of this file may be used under the terms of
* either the GNU General Public License Version 2 or later (the "GPL"), or
* the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
* in which case the provisions of the GPL or the LGPL are applicable instead
* of those above. If you wish to allow use of your version of this file only
* under the terms of either the GPL or the LGPL, and not to allow others to
* use your version of this file under the terms of the MPL, indicate your
* decision by deleting the provisions above and replace them with the notice
* and other provisions required by the GPL or the LGPL. If you do not delete
* the provisions above, a recipient may use your version of this file under
* the terms of any one of the MPL, the GPL or the LGPL.
*
*********************************************************************** */
/*
* Copyright 2007 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#pragma ident "%Z%%M% %I% %E% SMI"
#include "ecp.h"
#include "mpi.h"
#include "mplogic.h"
#include "mpi-priv.h"
#ifndef _KERNEL
#include <stdlib.h>
#endif
#define ECP192_DIGITS ECL_CURVE_DIGITS(192)
/* Fast modular reduction for p192 = 2^192 - 2^64 - 1. a can be r. Uses
* algorithm 7 from Brown, Hankerson, Lopez, Menezes. Software
* Implementation of the NIST Elliptic Curves over Prime Fields. */
mp_err
ec_GFp_nistp192_mod(const mp_int *a, mp_int *r, const GFMethod *meth)
{
mp_err res = MP_OKAY;
mp_size a_used = MP_USED(a);
mp_digit r3;
#ifndef MPI_AMD64_ADD
mp_digit carry;
#endif
#ifdef ECL_THIRTY_TWO_BIT
mp_digit a5a = 0, a5b = 0, a4a = 0, a4b = 0, a3a = 0, a3b = 0;
mp_digit r0a, r0b, r1a, r1b, r2a, r2b;
#else
mp_digit a5 = 0, a4 = 0, a3 = 0;
mp_digit r0, r1, r2;
#endif
/* reduction not needed if a is not larger than field size */
if (a_used < ECP192_DIGITS) {
if (a == r) {
return MP_OKAY;
}
return mp_copy(a, r);
}
/* for polynomials larger than twice the field size, use regular
* reduction */
if (a_used > ECP192_DIGITS*2) {
MP_CHECKOK(mp_mod(a, &meth->irr, r));
} else {
/* copy out upper words of a */
#ifdef ECL_THIRTY_TWO_BIT
/* in all the math below,
* nXb is most signifiant, nXa is least significant */
switch (a_used) {
case 12:
a5b = MP_DIGIT(a, 11);
case 11:
a5a = MP_DIGIT(a, 10);
case 10:
a4b = MP_DIGIT(a, 9);
case 9:
a4a = MP_DIGIT(a, 8);
case 8:
a3b = MP_DIGIT(a, 7);
case 7:
a3a = MP_DIGIT(a, 6);
}
r2b= MP_DIGIT(a, 5);
r2a= MP_DIGIT(a, 4);
r1b = MP_DIGIT(a, 3);
r1a = MP_DIGIT(a, 2);
r0b = MP_DIGIT(a, 1);
r0a = MP_DIGIT(a, 0);
/* implement r = (a2,a1,a0)+(a5,a5,a5)+(a4,a4,0)+(0,a3,a3) */
MP_ADD_CARRY(r0a, a3a, r0a, 0, carry);
MP_ADD_CARRY(r0b, a3b, r0b, carry, carry);
MP_ADD_CARRY(r1a, a3a, r1a, carry, carry);
MP_ADD_CARRY(r1b, a3b, r1b, carry, carry);
MP_ADD_CARRY(r2a, a4a, r2a, carry, carry);
MP_ADD_CARRY(r2b, a4b, r2b, carry, carry);
r3 = carry; carry = 0;
MP_ADD_CARRY(r0a, a5a, r0a, 0, carry);
MP_ADD_CARRY(r0b, a5b, r0b, carry, carry);
MP_ADD_CARRY(r1a, a5a, r1a, carry, carry);
MP_ADD_CARRY(r1b, a5b, r1b, carry, carry);
MP_ADD_CARRY(r2a, a5a, r2a, carry, carry);
MP_ADD_CARRY(r2b, a5b, r2b, carry, carry);
r3 += carry;
MP_ADD_CARRY(r1a, a4a, r1a, 0, carry);
MP_ADD_CARRY(r1b, a4b, r1b, carry, carry);
MP_ADD_CARRY(r2a, 0, r2a, carry, carry);
MP_ADD_CARRY(r2b, 0, r2b, carry, carry);
r3 += carry;
/* reduce out the carry */
while (r3) {
MP_ADD_CARRY(r0a, r3, r0a, 0, carry);
MP_ADD_CARRY(r0b, 0, r0b, carry, carry);
MP_ADD_CARRY(r1a, r3, r1a, carry, carry);
MP_ADD_CARRY(r1b, 0, r1b, carry, carry);
MP_ADD_CARRY(r2a, 0, r2a, carry, carry);
MP_ADD_CARRY(r2b, 0, r2b, carry, carry);
r3 = carry;
}
/* check for final reduction */
/*
* our field is 0xffffffffffffffff, 0xfffffffffffffffe,
* 0xffffffffffffffff. That means we can only be over and need
* one more reduction
* if r2 == 0xffffffffffffffffff (same as r2+1 == 0)
* and
* r1 == 0xffffffffffffffffff or
* r1 == 0xfffffffffffffffffe and r0 = 0xfffffffffffffffff
* In all cases, we subtract the field (or add the 2's
* complement value (1,1,0)). (r0, r1, r2)
*/
if (((r2b == 0xffffffff) && (r2a == 0xffffffff)
&& (r1b == 0xffffffff) ) &&
((r1a == 0xffffffff) ||
(r1a == 0xfffffffe) && (r0a == 0xffffffff) &&
(r0b == 0xffffffff)) ) {
/* do a quick subtract */
MP_ADD_CARRY(r0a, 1, r0a, 0, carry);
r0b += carry;
r1a = r1b = r2a = r2b = 0;
}
/* set the lower words of r */
if (a != r) {
MP_CHECKOK(s_mp_pad(r, 6));
}
MP_DIGIT(r, 5) = r2b;
MP_DIGIT(r, 4) = r2a;
MP_DIGIT(r, 3) = r1b;
MP_DIGIT(r, 2) = r1a;
MP_DIGIT(r, 1) = r0b;
MP_DIGIT(r, 0) = r0a;
MP_USED(r) = 6;
#else
switch (a_used) {
case 6:
a5 = MP_DIGIT(a, 5);
case 5:
a4 = MP_DIGIT(a, 4);
case 4:
a3 = MP_DIGIT(a, 3);
}
r2 = MP_DIGIT(a, 2);
r1 = MP_DIGIT(a, 1);
r0 = MP_DIGIT(a, 0);
/* implement r = (a2,a1,a0)+(a5,a5,a5)+(a4,a4,0)+(0,a3,a3) */
#ifndef MPI_AMD64_ADD
MP_ADD_CARRY(r0, a3, r0, 0, carry);
MP_ADD_CARRY(r1, a3, r1, carry, carry);
MP_ADD_CARRY(r2, a4, r2, carry, carry);
r3 = carry;
MP_ADD_CARRY(r0, a5, r0, 0, carry);
MP_ADD_CARRY(r1, a5, r1, carry, carry);
MP_ADD_CARRY(r2, a5, r2, carry, carry);
r3 += carry;
MP_ADD_CARRY(r1, a4, r1, 0, carry);
MP_ADD_CARRY(r2, 0, r2, carry, carry);
r3 += carry;
#else
r2 = MP_DIGIT(a, 2);
r1 = MP_DIGIT(a, 1);
r0 = MP_DIGIT(a, 0);
/* set the lower words of r */
__asm__ (
"xorq %3,%3 \n\t"
"addq %4,%0 \n\t"
"adcq %4,%1 \n\t"
"adcq %5,%2 \n\t"
"adcq $0,%3 \n\t"
"addq %6,%0 \n\t"
"adcq %6,%1 \n\t"
"adcq %6,%2 \n\t"
"adcq $0,%3 \n\t"
"addq %5,%1 \n\t"
"adcq $0,%2 \n\t"
"adcq $0,%3 \n\t"
: "=r"(r0), "=r"(r1), "=r"(r2), "=r"(r3), "=r"(a3),
"=r"(a4), "=r"(a5)
: "0" (r0), "1" (r1), "2" (r2), "3" (r3),
"4" (a3), "5" (a4), "6"(a5)
: "%cc" );
#endif
/* reduce out the carry */
while (r3) {
#ifndef MPI_AMD64_ADD
MP_ADD_CARRY(r0, r3, r0, 0, carry);
MP_ADD_CARRY(r1, r3, r1, carry, carry);
MP_ADD_CARRY(r2, 0, r2, carry, carry);
r3 = carry;
#else
a3=r3;
__asm__ (
"xorq %3,%3 \n\t"
"addq %4,%0 \n\t"
"adcq %4,%1 \n\t"
"adcq $0,%2 \n\t"
"adcq $0,%3 \n\t"
: "=r"(r0), "=r"(r1), "=r"(r2), "=r"(r3), "=r"(a3)
: "0" (r0), "1" (r1), "2" (r2), "3" (r3), "4"(a3)
: "%cc" );
#endif
}
/* check for final reduction */
/*
* our field is 0xffffffffffffffff, 0xfffffffffffffffe,
* 0xffffffffffffffff. That means we can only be over and need
* one more reduction
* if r2 == 0xffffffffffffffffff (same as r2+1 == 0)
* and
* r1 == 0xffffffffffffffffff or
* r1 == 0xfffffffffffffffffe and r0 = 0xfffffffffffffffff
* In all cases, we subtract the field (or add the 2's
* complement value (1,1,0)). (r0, r1, r2)
*/
if (r3 || ((r2 == MP_DIGIT_MAX) &&
((r1 == MP_DIGIT_MAX) ||
((r1 == (MP_DIGIT_MAX-1)) && (r0 == MP_DIGIT_MAX))))) {
/* do a quick subtract */
r0++;
r1 = r2 = 0;
}
/* set the lower words of r */
if (a != r) {
MP_CHECKOK(s_mp_pad(r, 3));
}
MP_DIGIT(r, 2) = r2;
MP_DIGIT(r, 1) = r1;
MP_DIGIT(r, 0) = r0;
MP_USED(r) = 3;
#endif
}
CLEANUP:
return res;
}
#ifndef ECL_THIRTY_TWO_BIT
/* Compute the sum of 192 bit curves. Do the work in-line since the
* number of words are so small, we don't want to overhead of mp function
* calls. Uses optimized modular reduction for p192.
*/
mp_err
ec_GFp_nistp192_add(const mp_int *a, const mp_int *b, mp_int *r,
const GFMethod *meth)
{
mp_err res = MP_OKAY;
mp_digit a0 = 0, a1 = 0, a2 = 0;
mp_digit r0 = 0, r1 = 0, r2 = 0;
mp_digit carry;
switch(MP_USED(a)) {
case 3:
a2 = MP_DIGIT(a,2);
case 2:
a1 = MP_DIGIT(a,1);
case 1:
a0 = MP_DIGIT(a,0);
}
switch(MP_USED(b)) {
case 3:
r2 = MP_DIGIT(b,2);
case 2:
r1 = MP_DIGIT(b,1);
case 1:
r0 = MP_DIGIT(b,0);
}
#ifndef MPI_AMD64_ADD
MP_ADD_CARRY(a0, r0, r0, 0, carry);
MP_ADD_CARRY(a1, r1, r1, carry, carry);
MP_ADD_CARRY(a2, r2, r2, carry, carry);
#else
__asm__ (
"xorq %3,%3 \n\t"
"addq %4,%0 \n\t"
"adcq %5,%1 \n\t"
"adcq %6,%2 \n\t"
"adcq $0,%3 \n\t"
: "=r"(r0), "=r"(r1), "=r"(r2), "=r"(carry)
: "r" (a0), "r" (a1), "r" (a2), "0" (r0),
"1" (r1), "2" (r2)
: "%cc" );
#endif
/* Do quick 'subract' if we've gone over
* (add the 2's complement of the curve field) */
if (carry || ((r2 == MP_DIGIT_MAX) &&
((r1 == MP_DIGIT_MAX) ||
((r1 == (MP_DIGIT_MAX-1)) && (r0 == MP_DIGIT_MAX))))) {
#ifndef MPI_AMD64_ADD
MP_ADD_CARRY(r0, 1, r0, 0, carry);
MP_ADD_CARRY(r1, 1, r1, carry, carry);
MP_ADD_CARRY(r2, 0, r2, carry, carry);
#else
__asm__ (
"addq $1,%0 \n\t"
"adcq $1,%1 \n\t"
"adcq $0,%2 \n\t"
: "=r"(r0), "=r"(r1), "=r"(r2)
: "0" (r0), "1" (r1), "2" (r2)
: "%cc" );
#endif
}
MP_CHECKOK(s_mp_pad(r, 3));
MP_DIGIT(r, 2) = r2;
MP_DIGIT(r, 1) = r1;
MP_DIGIT(r, 0) = r0;
MP_SIGN(r) = MP_ZPOS;
MP_USED(r) = 3;
s_mp_clamp(r);
CLEANUP:
return res;
}
/* Compute the diff of 192 bit curves. Do the work in-line since the
* number of words are so small, we don't want to overhead of mp function
* calls. Uses optimized modular reduction for p192.
*/
mp_err
ec_GFp_nistp192_sub(const mp_int *a, const mp_int *b, mp_int *r,
const GFMethod *meth)
{
mp_err res = MP_OKAY;
mp_digit b0 = 0, b1 = 0, b2 = 0;
mp_digit r0 = 0, r1 = 0, r2 = 0;
mp_digit borrow;
switch(MP_USED(a)) {
case 3:
r2 = MP_DIGIT(a,2);
case 2:
r1 = MP_DIGIT(a,1);
case 1:
r0 = MP_DIGIT(a,0);
}
switch(MP_USED(b)) {
case 3:
b2 = MP_DIGIT(b,2);
case 2:
b1 = MP_DIGIT(b,1);
case 1:
b0 = MP_DIGIT(b,0);
}
#ifndef MPI_AMD64_ADD
MP_SUB_BORROW(r0, b0, r0, 0, borrow);
MP_SUB_BORROW(r1, b1, r1, borrow, borrow);
MP_SUB_BORROW(r2, b2, r2, borrow, borrow);
#else
__asm__ (
"xorq %3,%3 \n\t"
"subq %4,%0 \n\t"
"sbbq %5,%1 \n\t"
"sbbq %6,%2 \n\t"
"adcq $0,%3 \n\t"
: "=r"(r0), "=r"(r1), "=r"(r2), "=r"(borrow)
: "r" (b0), "r" (b1), "r" (b2), "0" (r0),
"1" (r1), "2" (r2)
: "%cc" );
#endif
/* Do quick 'add' if we've gone under 0
* (subtract the 2's complement of the curve field) */
if (borrow) {
#ifndef MPI_AMD64_ADD
MP_SUB_BORROW(r0, 1, r0, 0, borrow);
MP_SUB_BORROW(r1, 1, r1, borrow, borrow);
MP_SUB_BORROW(r2, 0, r2, borrow, borrow);
#else
__asm__ (
"subq $1,%0 \n\t"
"sbbq $1,%1 \n\t"
"sbbq $0,%2 \n\t"
: "=r"(r0), "=r"(r1), "=r"(r2)
: "0" (r0), "1" (r1), "2" (r2)
: "%cc" );
#endif
}
MP_CHECKOK(s_mp_pad(r, 3));
MP_DIGIT(r, 2) = r2;
MP_DIGIT(r, 1) = r1;
MP_DIGIT(r, 0) = r0;
MP_SIGN(r) = MP_ZPOS;
MP_USED(r) = 3;
s_mp_clamp(r);
CLEANUP:
return res;
}
#endif
/* Compute the square of polynomial a, reduce modulo p192. Store the
* result in r. r could be a. Uses optimized modular reduction for p192.
*/
mp_err
ec_GFp_nistp192_sqr(const mp_int *a, mp_int *r, const GFMethod *meth)
{
mp_err res = MP_OKAY;
MP_CHECKOK(mp_sqr(a, r));
MP_CHECKOK(ec_GFp_nistp192_mod(r, r, meth));
CLEANUP:
return res;
}
/* Compute the product of two polynomials a and b, reduce modulo p192.
* Store the result in r. r could be a or b; a could be b. Uses
* optimized modular reduction for p192. */
mp_err
ec_GFp_nistp192_mul(const mp_int *a, const mp_int *b, mp_int *r,
const GFMethod *meth)
{
mp_err res = MP_OKAY;
MP_CHECKOK(mp_mul(a, b, r));
MP_CHECKOK(ec_GFp_nistp192_mod(r, r, meth));
CLEANUP:
return res;
}
/* Divides two field elements. If a is NULL, then returns the inverse of
* b. */
mp_err
ec_GFp_nistp192_div(const mp_int *a, const mp_int *b, mp_int *r,
const GFMethod *meth)
{
mp_err res = MP_OKAY;
mp_int t;
/* If a is NULL, then return the inverse of b, otherwise return a/b. */
if (a == NULL) {
return mp_invmod(b, &meth->irr, r);
} else {
/* MPI doesn't support divmod, so we implement it using invmod and
* mulmod. */
MP_CHECKOK(mp_init(&t, FLAG(b)));
MP_CHECKOK(mp_invmod(b, &meth->irr, &t));
MP_CHECKOK(mp_mul(a, &t, r));
MP_CHECKOK(ec_GFp_nistp192_mod(r, r, meth));
CLEANUP:
mp_clear(&t);
return res;
}
}
/* Wire in fast field arithmetic and precomputation of base point for
* named curves. */
mp_err
ec_group_set_gfp192(ECGroup *group, ECCurveName name)
{
if (name == ECCurve_NIST_P192) {
group->meth->field_mod = &ec_GFp_nistp192_mod;
group->meth->field_mul = &ec_GFp_nistp192_mul;
group->meth->field_sqr = &ec_GFp_nistp192_sqr;
group->meth->field_div = &ec_GFp_nistp192_div;
#ifndef ECL_THIRTY_TWO_BIT
group->meth->field_add = &ec_GFp_nistp192_add;
group->meth->field_sub = &ec_GFp_nistp192_sub;
#endif
}
return MP_OKAY;
}

View File

@ -0,0 +1,394 @@
/* *********************************************************************
*
* Sun elects to have this file available under and governed by the
* Mozilla Public License Version 1.1 ("MPL") (see
* http://www.mozilla.org/MPL/ for full license text). For the avoidance
* of doubt and subject to the following, Sun also elects to allow
* licensees to use this file under the MPL, the GNU General Public
* License version 2 only or the Lesser General Public License version
* 2.1 only. Any references to the "GNU General Public License version 2
* or later" or "GPL" in the following shall be construed to mean the
* GNU General Public License version 2 only. Any references to the "GNU
* Lesser General Public License version 2.1 or later" or "LGPL" in the
* following shall be construed to mean the GNU Lesser General Public
* License version 2.1 only. However, the following notice accompanied
* the original version of this file:
*
* Version: MPL 1.1/GPL 2.0/LGPL 2.1
*
* The contents of this file are subject to the Mozilla Public License Version
* 1.1 (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* Software distributed under the License is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
* for the specific language governing rights and limitations under the
* License.
*
* The Original Code is the elliptic curve math library for prime field curves.
*
* The Initial Developer of the Original Code is
* Sun Microsystems, Inc.
* Portions created by the Initial Developer are Copyright (C) 2003
* the Initial Developer. All Rights Reserved.
*
* Contributor(s):
* Douglas Stebila <douglas@stebila.ca>, Sun Microsystems Laboratories
*
* Alternatively, the contents of this file may be used under the terms of
* either the GNU General Public License Version 2 or later (the "GPL"), or
* the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
* in which case the provisions of the GPL or the LGPL are applicable instead
* of those above. If you wish to allow use of your version of this file only
* under the terms of either the GPL or the LGPL, and not to allow others to
* use your version of this file under the terms of the MPL, indicate your
* decision by deleting the provisions above and replace them with the notice
* and other provisions required by the GPL or the LGPL. If you do not delete
* the provisions above, a recipient may use your version of this file under
* the terms of any one of the MPL, the GPL or the LGPL.
*
*********************************************************************** */
/*
* Copyright 2007 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#pragma ident "%Z%%M% %I% %E% SMI"
#include "ecp.h"
#include "mpi.h"
#include "mplogic.h"
#include "mpi-priv.h"
#ifndef _KERNEL
#include <stdlib.h>
#endif
#define ECP224_DIGITS ECL_CURVE_DIGITS(224)
/* Fast modular reduction for p224 = 2^224 - 2^96 + 1. a can be r. Uses
* algorithm 7 from Brown, Hankerson, Lopez, Menezes. Software
* Implementation of the NIST Elliptic Curves over Prime Fields. */
mp_err
ec_GFp_nistp224_mod(const mp_int *a, mp_int *r, const GFMethod *meth)
{
mp_err res = MP_OKAY;
mp_size a_used = MP_USED(a);
int r3b;
mp_digit carry;
#ifdef ECL_THIRTY_TWO_BIT
mp_digit a6a = 0, a6b = 0,
a5a = 0, a5b = 0, a4a = 0, a4b = 0, a3a = 0, a3b = 0;
mp_digit r0a, r0b, r1a, r1b, r2a, r2b, r3a;
#else
mp_digit a6 = 0, a5 = 0, a4 = 0, a3b = 0, a5a = 0;
mp_digit a6b = 0, a6a_a5b = 0, a5b = 0, a5a_a4b = 0, a4a_a3b = 0;
mp_digit r0, r1, r2, r3;
#endif
/* reduction not needed if a is not larger than field size */
if (a_used < ECP224_DIGITS) {
if (a == r) return MP_OKAY;
return mp_copy(a, r);
}
/* for polynomials larger than twice the field size, use regular
* reduction */
if (a_used > ECL_CURVE_DIGITS(224*2)) {
MP_CHECKOK(mp_mod(a, &meth->irr, r));
} else {
#ifdef ECL_THIRTY_TWO_BIT
/* copy out upper words of a */
switch (a_used) {
case 14:
a6b = MP_DIGIT(a, 13);
case 13:
a6a = MP_DIGIT(a, 12);
case 12:
a5b = MP_DIGIT(a, 11);
case 11:
a5a = MP_DIGIT(a, 10);
case 10:
a4b = MP_DIGIT(a, 9);
case 9:
a4a = MP_DIGIT(a, 8);
case 8:
a3b = MP_DIGIT(a, 7);
}
r3a = MP_DIGIT(a, 6);
r2b= MP_DIGIT(a, 5);
r2a= MP_DIGIT(a, 4);
r1b = MP_DIGIT(a, 3);
r1a = MP_DIGIT(a, 2);
r0b = MP_DIGIT(a, 1);
r0a = MP_DIGIT(a, 0);
/* implement r = (a3a,a2,a1,a0)
+(a5a, a4,a3b, 0)
+( 0, a6,a5b, 0)
-( 0 0, 0|a6b, a6a|a5b )
-( a6b, a6a|a5b, a5a|a4b, a4a|a3b ) */
MP_ADD_CARRY (r1b, a3b, r1b, 0, carry);
MP_ADD_CARRY (r2a, a4a, r2a, carry, carry);
MP_ADD_CARRY (r2b, a4b, r2b, carry, carry);
MP_ADD_CARRY (r3a, a5a, r3a, carry, carry);
r3b = carry;
MP_ADD_CARRY (r1b, a5b, r1b, 0, carry);
MP_ADD_CARRY (r2a, a6a, r2a, carry, carry);
MP_ADD_CARRY (r2b, a6b, r2b, carry, carry);
MP_ADD_CARRY (r3a, 0, r3a, carry, carry);
r3b += carry;
MP_SUB_BORROW(r0a, a3b, r0a, 0, carry);
MP_SUB_BORROW(r0b, a4a, r0b, carry, carry);
MP_SUB_BORROW(r1a, a4b, r1a, carry, carry);
MP_SUB_BORROW(r1b, a5a, r1b, carry, carry);
MP_SUB_BORROW(r2a, a5b, r2a, carry, carry);
MP_SUB_BORROW(r2b, a6a, r2b, carry, carry);
MP_SUB_BORROW(r3a, a6b, r3a, carry, carry);
r3b -= carry;
MP_SUB_BORROW(r0a, a5b, r0a, 0, carry);
MP_SUB_BORROW(r0b, a6a, r0b, carry, carry);
MP_SUB_BORROW(r1a, a6b, r1a, carry, carry);
if (carry) {
MP_SUB_BORROW(r1b, 0, r1b, carry, carry);
MP_SUB_BORROW(r2a, 0, r2a, carry, carry);
MP_SUB_BORROW(r2b, 0, r2b, carry, carry);
MP_SUB_BORROW(r3a, 0, r3a, carry, carry);
r3b -= carry;
}
while (r3b > 0) {
int tmp;
MP_ADD_CARRY(r1b, r3b, r1b, 0, carry);
if (carry) {
MP_ADD_CARRY(r2a, 0, r2a, carry, carry);
MP_ADD_CARRY(r2b, 0, r2b, carry, carry);
MP_ADD_CARRY(r3a, 0, r3a, carry, carry);
}
tmp = carry;
MP_SUB_BORROW(r0a, r3b, r0a, 0, carry);
if (carry) {
MP_SUB_BORROW(r0b, 0, r0b, carry, carry);
MP_SUB_BORROW(r1a, 0, r1a, carry, carry);
MP_SUB_BORROW(r1b, 0, r1b, carry, carry);
MP_SUB_BORROW(r2a, 0, r2a, carry, carry);
MP_SUB_BORROW(r2b, 0, r2b, carry, carry);
MP_SUB_BORROW(r3a, 0, r3a, carry, carry);
tmp -= carry;
}
r3b = tmp;
}
while (r3b < 0) {
mp_digit maxInt = MP_DIGIT_MAX;
MP_ADD_CARRY (r0a, 1, r0a, 0, carry);
MP_ADD_CARRY (r0b, 0, r0b, carry, carry);
MP_ADD_CARRY (r1a, 0, r1a, carry, carry);
MP_ADD_CARRY (r1b, maxInt, r1b, carry, carry);
MP_ADD_CARRY (r2a, maxInt, r2a, carry, carry);
MP_ADD_CARRY (r2b, maxInt, r2b, carry, carry);
MP_ADD_CARRY (r3a, maxInt, r3a, carry, carry);
r3b += carry;
}
/* check for final reduction */
/* now the only way we are over is if the top 4 words are all ones */
if ((r3a == MP_DIGIT_MAX) && (r2b == MP_DIGIT_MAX)
&& (r2a == MP_DIGIT_MAX) && (r1b == MP_DIGIT_MAX) &&
((r1a != 0) || (r0b != 0) || (r0a != 0)) ) {
/* one last subraction */
MP_SUB_BORROW(r0a, 1, r0a, 0, carry);
MP_SUB_BORROW(r0b, 0, r0b, carry, carry);
MP_SUB_BORROW(r1a, 0, r1a, carry, carry);
r1b = r2a = r2b = r3a = 0;
}
if (a != r) {
MP_CHECKOK(s_mp_pad(r, 7));
}
/* set the lower words of r */
MP_SIGN(r) = MP_ZPOS;
MP_USED(r) = 7;
MP_DIGIT(r, 6) = r3a;
MP_DIGIT(r, 5) = r2b;
MP_DIGIT(r, 4) = r2a;
MP_DIGIT(r, 3) = r1b;
MP_DIGIT(r, 2) = r1a;
MP_DIGIT(r, 1) = r0b;
MP_DIGIT(r, 0) = r0a;
#else
/* copy out upper words of a */
switch (a_used) {
case 7:
a6 = MP_DIGIT(a, 6);
a6b = a6 >> 32;
a6a_a5b = a6 << 32;
case 6:
a5 = MP_DIGIT(a, 5);
a5b = a5 >> 32;
a6a_a5b |= a5b;
a5b = a5b << 32;
a5a_a4b = a5 << 32;
a5a = a5 & 0xffffffff;
case 5:
a4 = MP_DIGIT(a, 4);
a5a_a4b |= a4 >> 32;
a4a_a3b = a4 << 32;
case 4:
a3b = MP_DIGIT(a, 3) >> 32;
a4a_a3b |= a3b;
a3b = a3b << 32;
}
r3 = MP_DIGIT(a, 3) & 0xffffffff;
r2 = MP_DIGIT(a, 2);
r1 = MP_DIGIT(a, 1);
r0 = MP_DIGIT(a, 0);
/* implement r = (a3a,a2,a1,a0)
+(a5a, a4,a3b, 0)
+( 0, a6,a5b, 0)
-( 0 0, 0|a6b, a6a|a5b )
-( a6b, a6a|a5b, a5a|a4b, a4a|a3b ) */
MP_ADD_CARRY (r1, a3b, r1, 0, carry);
MP_ADD_CARRY (r2, a4 , r2, carry, carry);
MP_ADD_CARRY (r3, a5a, r3, carry, carry);
MP_ADD_CARRY (r1, a5b, r1, 0, carry);
MP_ADD_CARRY (r2, a6 , r2, carry, carry);
MP_ADD_CARRY (r3, 0, r3, carry, carry);
MP_SUB_BORROW(r0, a4a_a3b, r0, 0, carry);
MP_SUB_BORROW(r1, a5a_a4b, r1, carry, carry);
MP_SUB_BORROW(r2, a6a_a5b, r2, carry, carry);
MP_SUB_BORROW(r3, a6b , r3, carry, carry);
MP_SUB_BORROW(r0, a6a_a5b, r0, 0, carry);
MP_SUB_BORROW(r1, a6b , r1, carry, carry);
if (carry) {
MP_SUB_BORROW(r2, 0, r2, carry, carry);
MP_SUB_BORROW(r3, 0, r3, carry, carry);
}
/* if the value is negative, r3 has a 2's complement
* high value */
r3b = (int)(r3 >>32);
while (r3b > 0) {
r3 &= 0xffffffff;
MP_ADD_CARRY(r1,((mp_digit)r3b) << 32, r1, 0, carry);
if (carry) {
MP_ADD_CARRY(r2, 0, r2, carry, carry);
MP_ADD_CARRY(r3, 0, r3, carry, carry);
}
MP_SUB_BORROW(r0, r3b, r0, 0, carry);
if (carry) {
MP_SUB_BORROW(r1, 0, r1, carry, carry);
MP_SUB_BORROW(r2, 0, r2, carry, carry);
MP_SUB_BORROW(r3, 0, r3, carry, carry);
}
r3b = (int)(r3 >>32);
}
while (r3b < 0) {
MP_ADD_CARRY (r0, 1, r0, 0, carry);
MP_ADD_CARRY (r1, MP_DIGIT_MAX <<32, r1, carry, carry);
MP_ADD_CARRY (r2, MP_DIGIT_MAX, r2, carry, carry);
MP_ADD_CARRY (r3, MP_DIGIT_MAX >> 32, r3, carry, carry);
r3b = (int)(r3 >>32);
}
/* check for final reduction */
/* now the only way we are over is if the top 4 words are all ones */
if ((r3 == (MP_DIGIT_MAX >> 32)) && (r2 == MP_DIGIT_MAX)
&& ((r1 & MP_DIGIT_MAX << 32)== MP_DIGIT_MAX << 32) &&
((r1 != MP_DIGIT_MAX << 32 ) || (r0 != 0)) ) {
/* one last subraction */
MP_SUB_BORROW(r0, 1, r0, 0, carry);
MP_SUB_BORROW(r1, 0, r1, carry, carry);
r2 = r3 = 0;
}
if (a != r) {
MP_CHECKOK(s_mp_pad(r, 4));
}
/* set the lower words of r */
MP_SIGN(r) = MP_ZPOS;
MP_USED(r) = 4;
MP_DIGIT(r, 3) = r3;
MP_DIGIT(r, 2) = r2;
MP_DIGIT(r, 1) = r1;
MP_DIGIT(r, 0) = r0;
#endif
}
CLEANUP:
return res;
}
/* Compute the square of polynomial a, reduce modulo p224. Store the
* result in r. r could be a. Uses optimized modular reduction for p224.
*/
mp_err
ec_GFp_nistp224_sqr(const mp_int *a, mp_int *r, const GFMethod *meth)
{
mp_err res = MP_OKAY;
MP_CHECKOK(mp_sqr(a, r));
MP_CHECKOK(ec_GFp_nistp224_mod(r, r, meth));
CLEANUP:
return res;
}
/* Compute the product of two polynomials a and b, reduce modulo p224.
* Store the result in r. r could be a or b; a could be b. Uses
* optimized modular reduction for p224. */
mp_err
ec_GFp_nistp224_mul(const mp_int *a, const mp_int *b, mp_int *r,
const GFMethod *meth)
{
mp_err res = MP_OKAY;
MP_CHECKOK(mp_mul(a, b, r));
MP_CHECKOK(ec_GFp_nistp224_mod(r, r, meth));
CLEANUP:
return res;
}
/* Divides two field elements. If a is NULL, then returns the inverse of
* b. */
mp_err
ec_GFp_nistp224_div(const mp_int *a, const mp_int *b, mp_int *r,
const GFMethod *meth)
{
mp_err res = MP_OKAY;
mp_int t;
/* If a is NULL, then return the inverse of b, otherwise return a/b. */
if (a == NULL) {
return mp_invmod(b, &meth->irr, r);
} else {
/* MPI doesn't support divmod, so we implement it using invmod and
* mulmod. */
MP_CHECKOK(mp_init(&t, FLAG(b)));
MP_CHECKOK(mp_invmod(b, &meth->irr, &t));
MP_CHECKOK(mp_mul(a, &t, r));
MP_CHECKOK(ec_GFp_nistp224_mod(r, r, meth));
CLEANUP:
mp_clear(&t);
return res;
}
}
/* Wire in fast field arithmetic and precomputation of base point for
* named curves. */
mp_err
ec_group_set_gfp224(ECGroup *group, ECCurveName name)
{
if (name == ECCurve_NIST_P224) {
group->meth->field_mod = &ec_GFp_nistp224_mod;
group->meth->field_mul = &ec_GFp_nistp224_mul;
group->meth->field_sqr = &ec_GFp_nistp224_sqr;
group->meth->field_div = &ec_GFp_nistp224_div;
}
return MP_OKAY;
}

View File

@ -0,0 +1,451 @@
/* *********************************************************************
*
* Sun elects to have this file available under and governed by the
* Mozilla Public License Version 1.1 ("MPL") (see
* http://www.mozilla.org/MPL/ for full license text). For the avoidance
* of doubt and subject to the following, Sun also elects to allow
* licensees to use this file under the MPL, the GNU General Public
* License version 2 only or the Lesser General Public License version
* 2.1 only. Any references to the "GNU General Public License version 2
* or later" or "GPL" in the following shall be construed to mean the
* GNU General Public License version 2 only. Any references to the "GNU
* Lesser General Public License version 2.1 or later" or "LGPL" in the
* following shall be construed to mean the GNU Lesser General Public
* License version 2.1 only. However, the following notice accompanied
* the original version of this file:
*
* Version: MPL 1.1/GPL 2.0/LGPL 2.1
*
* The contents of this file are subject to the Mozilla Public License Version
* 1.1 (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* Software distributed under the License is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
* for the specific language governing rights and limitations under the
* License.
*
* The Original Code is the elliptic curve math library for prime field curves.
*
* The Initial Developer of the Original Code is
* Sun Microsystems, Inc.
* Portions created by the Initial Developer are Copyright (C) 2003
* the Initial Developer. All Rights Reserved.
*
* Contributor(s):
* Douglas Stebila <douglas@stebila.ca>
*
* Alternatively, the contents of this file may be used under the terms of
* either the GNU General Public License Version 2 or later (the "GPL"), or
* the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
* in which case the provisions of the GPL or the LGPL are applicable instead
* of those above. If you wish to allow use of your version of this file only
* under the terms of either the GPL or the LGPL, and not to allow others to
* use your version of this file under the terms of the MPL, indicate your
* decision by deleting the provisions above and replace them with the notice
* and other provisions required by the GPL or the LGPL. If you do not delete
* the provisions above, a recipient may use your version of this file under
* the terms of any one of the MPL, the GPL or the LGPL.
*
*********************************************************************** */
/*
* Copyright 2007 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#pragma ident "%Z%%M% %I% %E% SMI"
#include "ecp.h"
#include "mpi.h"
#include "mplogic.h"
#include "mpi-priv.h"
#ifndef _KERNEL
#include <stdlib.h>
#endif
/* Fast modular reduction for p256 = 2^256 - 2^224 + 2^192+ 2^96 - 1. a can be r.
* Uses algorithm 2.29 from Hankerson, Menezes, Vanstone. Guide to
* Elliptic Curve Cryptography. */
mp_err
ec_GFp_nistp256_mod(const mp_int *a, mp_int *r, const GFMethod *meth)
{
mp_err res = MP_OKAY;
mp_size a_used = MP_USED(a);
int a_bits = mpl_significant_bits(a);
mp_digit carry;
#ifdef ECL_THIRTY_TWO_BIT
mp_digit a8=0, a9=0, a10=0, a11=0, a12=0, a13=0, a14=0, a15=0;
mp_digit r0, r1, r2, r3, r4, r5, r6, r7;
int r8; /* must be a signed value ! */
#else
mp_digit a4=0, a5=0, a6=0, a7=0;
mp_digit a4h, a4l, a5h, a5l, a6h, a6l, a7h, a7l;
mp_digit r0, r1, r2, r3;
int r4; /* must be a signed value ! */
#endif
/* for polynomials larger than twice the field size
* use regular reduction */
if (a_bits < 256) {
if (a == r) return MP_OKAY;
return mp_copy(a,r);
}
if (a_bits > 512) {
MP_CHECKOK(mp_mod(a, &meth->irr, r));
} else {
#ifdef ECL_THIRTY_TWO_BIT
switch (a_used) {
case 16:
a15 = MP_DIGIT(a,15);
case 15:
a14 = MP_DIGIT(a,14);
case 14:
a13 = MP_DIGIT(a,13);
case 13:
a12 = MP_DIGIT(a,12);
case 12:
a11 = MP_DIGIT(a,11);
case 11:
a10 = MP_DIGIT(a,10);
case 10:
a9 = MP_DIGIT(a,9);
case 9:
a8 = MP_DIGIT(a,8);
}
r0 = MP_DIGIT(a,0);
r1 = MP_DIGIT(a,1);
r2 = MP_DIGIT(a,2);
r3 = MP_DIGIT(a,3);
r4 = MP_DIGIT(a,4);
r5 = MP_DIGIT(a,5);
r6 = MP_DIGIT(a,6);
r7 = MP_DIGIT(a,7);
/* sum 1 */
MP_ADD_CARRY(r3, a11, r3, 0, carry);
MP_ADD_CARRY(r4, a12, r4, carry, carry);
MP_ADD_CARRY(r5, a13, r5, carry, carry);
MP_ADD_CARRY(r6, a14, r6, carry, carry);
MP_ADD_CARRY(r7, a15, r7, carry, carry);
r8 = carry;
MP_ADD_CARRY(r3, a11, r3, 0, carry);
MP_ADD_CARRY(r4, a12, r4, carry, carry);
MP_ADD_CARRY(r5, a13, r5, carry, carry);
MP_ADD_CARRY(r6, a14, r6, carry, carry);
MP_ADD_CARRY(r7, a15, r7, carry, carry);
r8 += carry;
/* sum 2 */
MP_ADD_CARRY(r3, a12, r3, 0, carry);
MP_ADD_CARRY(r4, a13, r4, carry, carry);
MP_ADD_CARRY(r5, a14, r5, carry, carry);
MP_ADD_CARRY(r6, a15, r6, carry, carry);
MP_ADD_CARRY(r7, 0, r7, carry, carry);
r8 += carry;
/* combine last bottom of sum 3 with second sum 2 */
MP_ADD_CARRY(r0, a8, r0, 0, carry);
MP_ADD_CARRY(r1, a9, r1, carry, carry);
MP_ADD_CARRY(r2, a10, r2, carry, carry);
MP_ADD_CARRY(r3, a12, r3, carry, carry);
MP_ADD_CARRY(r4, a13, r4, carry, carry);
MP_ADD_CARRY(r5, a14, r5, carry, carry);
MP_ADD_CARRY(r6, a15, r6, carry, carry);
MP_ADD_CARRY(r7, a15, r7, carry, carry); /* from sum 3 */
r8 += carry;
/* sum 3 (rest of it)*/
MP_ADD_CARRY(r6, a14, r6, 0, carry);
MP_ADD_CARRY(r7, 0, r7, carry, carry);
r8 += carry;
/* sum 4 (rest of it)*/
MP_ADD_CARRY(r0, a9, r0, 0, carry);
MP_ADD_CARRY(r1, a10, r1, carry, carry);
MP_ADD_CARRY(r2, a11, r2, carry, carry);
MP_ADD_CARRY(r3, a13, r3, carry, carry);
MP_ADD_CARRY(r4, a14, r4, carry, carry);
MP_ADD_CARRY(r5, a15, r5, carry, carry);
MP_ADD_CARRY(r6, a13, r6, carry, carry);
MP_ADD_CARRY(r7, a8, r7, carry, carry);
r8 += carry;
/* diff 5 */
MP_SUB_BORROW(r0, a11, r0, 0, carry);
MP_SUB_BORROW(r1, a12, r1, carry, carry);
MP_SUB_BORROW(r2, a13, r2, carry, carry);
MP_SUB_BORROW(r3, 0, r3, carry, carry);
MP_SUB_BORROW(r4, 0, r4, carry, carry);
MP_SUB_BORROW(r5, 0, r5, carry, carry);
MP_SUB_BORROW(r6, a8, r6, carry, carry);
MP_SUB_BORROW(r7, a10, r7, carry, carry);
r8 -= carry;
/* diff 6 */
MP_SUB_BORROW(r0, a12, r0, 0, carry);
MP_SUB_BORROW(r1, a13, r1, carry, carry);
MP_SUB_BORROW(r2, a14, r2, carry, carry);
MP_SUB_BORROW(r3, a15, r3, carry, carry);
MP_SUB_BORROW(r4, 0, r4, carry, carry);
MP_SUB_BORROW(r5, 0, r5, carry, carry);
MP_SUB_BORROW(r6, a9, r6, carry, carry);
MP_SUB_BORROW(r7, a11, r7, carry, carry);
r8 -= carry;
/* diff 7 */
MP_SUB_BORROW(r0, a13, r0, 0, carry);
MP_SUB_BORROW(r1, a14, r1, carry, carry);
MP_SUB_BORROW(r2, a15, r2, carry, carry);
MP_SUB_BORROW(r3, a8, r3, carry, carry);
MP_SUB_BORROW(r4, a9, r4, carry, carry);
MP_SUB_BORROW(r5, a10, r5, carry, carry);
MP_SUB_BORROW(r6, 0, r6, carry, carry);
MP_SUB_BORROW(r7, a12, r7, carry, carry);
r8 -= carry;
/* diff 8 */
MP_SUB_BORROW(r0, a14, r0, 0, carry);
MP_SUB_BORROW(r1, a15, r1, carry, carry);
MP_SUB_BORROW(r2, 0, r2, carry, carry);
MP_SUB_BORROW(r3, a9, r3, carry, carry);
MP_SUB_BORROW(r4, a10, r4, carry, carry);
MP_SUB_BORROW(r5, a11, r5, carry, carry);
MP_SUB_BORROW(r6, 0, r6, carry, carry);
MP_SUB_BORROW(r7, a13, r7, carry, carry);
r8 -= carry;
/* reduce the overflows */
while (r8 > 0) {
mp_digit r8_d = r8;
MP_ADD_CARRY(r0, r8_d, r0, 0, carry);
MP_ADD_CARRY(r1, 0, r1, carry, carry);
MP_ADD_CARRY(r2, 0, r2, carry, carry);
MP_ADD_CARRY(r3, -r8_d, r3, carry, carry);
MP_ADD_CARRY(r4, MP_DIGIT_MAX, r4, carry, carry);
MP_ADD_CARRY(r5, MP_DIGIT_MAX, r5, carry, carry);
MP_ADD_CARRY(r6, -(r8_d+1), r6, carry, carry);
MP_ADD_CARRY(r7, (r8_d-1), r7, carry, carry);
r8 = carry;
}
/* reduce the underflows */
while (r8 < 0) {
mp_digit r8_d = -r8;
MP_SUB_BORROW(r0, r8_d, r0, 0, carry);
MP_SUB_BORROW(r1, 0, r1, carry, carry);
MP_SUB_BORROW(r2, 0, r2, carry, carry);
MP_SUB_BORROW(r3, -r8_d, r3, carry, carry);
MP_SUB_BORROW(r4, MP_DIGIT_MAX, r4, carry, carry);
MP_SUB_BORROW(r5, MP_DIGIT_MAX, r5, carry, carry);
MP_SUB_BORROW(r6, -(r8_d+1), r6, carry, carry);
MP_SUB_BORROW(r7, (r8_d-1), r7, carry, carry);
r8 = -carry;
}
if (a != r) {
MP_CHECKOK(s_mp_pad(r,8));
}
MP_SIGN(r) = MP_ZPOS;
MP_USED(r) = 8;
MP_DIGIT(r,7) = r7;
MP_DIGIT(r,6) = r6;
MP_DIGIT(r,5) = r5;
MP_DIGIT(r,4) = r4;
MP_DIGIT(r,3) = r3;
MP_DIGIT(r,2) = r2;
MP_DIGIT(r,1) = r1;
MP_DIGIT(r,0) = r0;
/* final reduction if necessary */
if ((r7 == MP_DIGIT_MAX) &&
((r6 > 1) || ((r6 == 1) &&
(r5 || r4 || r3 ||
((r2 == MP_DIGIT_MAX) && (r1 == MP_DIGIT_MAX)
&& (r0 == MP_DIGIT_MAX)))))) {
MP_CHECKOK(mp_sub(r, &meth->irr, r));
}
#ifdef notdef
/* smooth the negatives */
while (MP_SIGN(r) != MP_ZPOS) {
MP_CHECKOK(mp_add(r, &meth->irr, r));
}
while (MP_USED(r) > 8) {
MP_CHECKOK(mp_sub(r, &meth->irr, r));
}
/* final reduction if necessary */
if (MP_DIGIT(r,7) >= MP_DIGIT(&meth->irr,7)) {
if (mp_cmp(r,&meth->irr) != MP_LT) {
MP_CHECKOK(mp_sub(r, &meth->irr, r));
}
}
#endif
s_mp_clamp(r);
#else
switch (a_used) {
case 8:
a7 = MP_DIGIT(a,7);
case 7:
a6 = MP_DIGIT(a,6);
case 6:
a5 = MP_DIGIT(a,5);
case 5:
a4 = MP_DIGIT(a,4);
}
a7l = a7 << 32;
a7h = a7 >> 32;
a6l = a6 << 32;
a6h = a6 >> 32;
a5l = a5 << 32;
a5h = a5 >> 32;
a4l = a4 << 32;
a4h = a4 >> 32;
r3 = MP_DIGIT(a,3);
r2 = MP_DIGIT(a,2);
r1 = MP_DIGIT(a,1);
r0 = MP_DIGIT(a,0);
/* sum 1 */
MP_ADD_CARRY(r1, a5h << 32, r1, 0, carry);
MP_ADD_CARRY(r2, a6, r2, carry, carry);
MP_ADD_CARRY(r3, a7, r3, carry, carry);
r4 = carry;
MP_ADD_CARRY(r1, a5h << 32, r1, 0, carry);
MP_ADD_CARRY(r2, a6, r2, carry, carry);
MP_ADD_CARRY(r3, a7, r3, carry, carry);
r4 += carry;
/* sum 2 */
MP_ADD_CARRY(r1, a6l, r1, 0, carry);
MP_ADD_CARRY(r2, a6h | a7l, r2, carry, carry);
MP_ADD_CARRY(r3, a7h, r3, carry, carry);
r4 += carry;
MP_ADD_CARRY(r1, a6l, r1, 0, carry);
MP_ADD_CARRY(r2, a6h | a7l, r2, carry, carry);
MP_ADD_CARRY(r3, a7h, r3, carry, carry);
r4 += carry;
/* sum 3 */
MP_ADD_CARRY(r0, a4, r0, 0, carry);
MP_ADD_CARRY(r1, a5l >> 32, r1, carry, carry);
MP_ADD_CARRY(r2, 0, r2, carry, carry);
MP_ADD_CARRY(r3, a7, r3, carry, carry);
r4 += carry;
/* sum 4 */
MP_ADD_CARRY(r0, a4h | a5l, r0, 0, carry);
MP_ADD_CARRY(r1, a5h|(a6h<<32), r1, carry, carry);
MP_ADD_CARRY(r2, a7, r2, carry, carry);
MP_ADD_CARRY(r3, a6h | a4l, r3, carry, carry);
r4 += carry;
/* diff 5 */
MP_SUB_BORROW(r0, a5h | a6l, r0, 0, carry);
MP_SUB_BORROW(r1, a6h, r1, carry, carry);
MP_SUB_BORROW(r2, 0, r2, carry, carry);
MP_SUB_BORROW(r3, (a4l>>32)|a5l,r3, carry, carry);
r4 -= carry;
/* diff 6 */
MP_SUB_BORROW(r0, a6, r0, 0, carry);
MP_SUB_BORROW(r1, a7, r1, carry, carry);
MP_SUB_BORROW(r2, 0, r2, carry, carry);
MP_SUB_BORROW(r3, a4h|(a5h<<32),r3, carry, carry);
r4 -= carry;
/* diff 7 */
MP_SUB_BORROW(r0, a6h|a7l, r0, 0, carry);
MP_SUB_BORROW(r1, a7h|a4l, r1, carry, carry);
MP_SUB_BORROW(r2, a4h|a5l, r2, carry, carry);
MP_SUB_BORROW(r3, a6l, r3, carry, carry);
r4 -= carry;
/* diff 8 */
MP_SUB_BORROW(r0, a7, r0, 0, carry);
MP_SUB_BORROW(r1, a4h<<32, r1, carry, carry);
MP_SUB_BORROW(r2, a5, r2, carry, carry);
MP_SUB_BORROW(r3, a6h<<32, r3, carry, carry);
r4 -= carry;
/* reduce the overflows */
while (r4 > 0) {
mp_digit r4_long = r4;
mp_digit r4l = (r4_long << 32);
MP_ADD_CARRY(r0, r4_long, r0, 0, carry);
MP_ADD_CARRY(r1, -r4l, r1, carry, carry);
MP_ADD_CARRY(r2, MP_DIGIT_MAX, r2, carry, carry);
MP_ADD_CARRY(r3, r4l-r4_long-1,r3, carry, carry);
r4 = carry;
}
/* reduce the underflows */
while (r4 < 0) {
mp_digit r4_long = -r4;
mp_digit r4l = (r4_long << 32);
MP_SUB_BORROW(r0, r4_long, r0, 0, carry);
MP_SUB_BORROW(r1, -r4l, r1, carry, carry);
MP_SUB_BORROW(r2, MP_DIGIT_MAX, r2, carry, carry);
MP_SUB_BORROW(r3, r4l-r4_long-1,r3, carry, carry);
r4 = -carry;
}
if (a != r) {
MP_CHECKOK(s_mp_pad(r,4));
}
MP_SIGN(r) = MP_ZPOS;
MP_USED(r) = 4;
MP_DIGIT(r,3) = r3;
MP_DIGIT(r,2) = r2;
MP_DIGIT(r,1) = r1;
MP_DIGIT(r,0) = r0;
/* final reduction if necessary */
if ((r3 > 0xFFFFFFFF00000001ULL) ||
((r3 == 0xFFFFFFFF00000001ULL) &&
(r2 || (r1 >> 32)||
(r1 == 0xFFFFFFFFULL && r0 == MP_DIGIT_MAX)))) {
/* very rare, just use mp_sub */
MP_CHECKOK(mp_sub(r, &meth->irr, r));
}
s_mp_clamp(r);
#endif
}
CLEANUP:
return res;
}
/* Compute the square of polynomial a, reduce modulo p256. Store the
* result in r. r could be a. Uses optimized modular reduction for p256.
*/
mp_err
ec_GFp_nistp256_sqr(const mp_int *a, mp_int *r, const GFMethod *meth)
{
mp_err res = MP_OKAY;
MP_CHECKOK(mp_sqr(a, r));
MP_CHECKOK(ec_GFp_nistp256_mod(r, r, meth));
CLEANUP:
return res;
}
/* Compute the product of two polynomials a and b, reduce modulo p256.
* Store the result in r. r could be a or b; a could be b. Uses
* optimized modular reduction for p256. */
mp_err
ec_GFp_nistp256_mul(const mp_int *a, const mp_int *b, mp_int *r,
const GFMethod *meth)
{
mp_err res = MP_OKAY;
MP_CHECKOK(mp_mul(a, b, r));
MP_CHECKOK(ec_GFp_nistp256_mod(r, r, meth));
CLEANUP:
return res;
}
/* Wire in fast field arithmetic and precomputation of base point for
* named curves. */
mp_err
ec_group_set_gfp256(ECGroup *group, ECCurveName name)
{
if (name == ECCurve_NIST_P256) {
group->meth->field_mod = &ec_GFp_nistp256_mod;
group->meth->field_mul = &ec_GFp_nistp256_mul;
group->meth->field_sqr = &ec_GFp_nistp256_sqr;
}
return MP_OKAY;
}

View File

@ -0,0 +1,315 @@
/* *********************************************************************
*
* Sun elects to have this file available under and governed by the
* Mozilla Public License Version 1.1 ("MPL") (see
* http://www.mozilla.org/MPL/ for full license text). For the avoidance
* of doubt and subject to the following, Sun also elects to allow
* licensees to use this file under the MPL, the GNU General Public
* License version 2 only or the Lesser General Public License version
* 2.1 only. Any references to the "GNU General Public License version 2
* or later" or "GPL" in the following shall be construed to mean the
* GNU General Public License version 2 only. Any references to the "GNU
* Lesser General Public License version 2.1 or later" or "LGPL" in the
* following shall be construed to mean the GNU Lesser General Public
* License version 2.1 only. However, the following notice accompanied
* the original version of this file:
*
* Version: MPL 1.1/GPL 2.0/LGPL 2.1
*
* The contents of this file are subject to the Mozilla Public License Version
* 1.1 (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* Software distributed under the License is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
* for the specific language governing rights and limitations under the
* License.
*
* The Original Code is the elliptic curve math library for prime field curves.
*
* The Initial Developer of the Original Code is
* Sun Microsystems, Inc.
* Portions created by the Initial Developer are Copyright (C) 2003
* the Initial Developer. All Rights Reserved.
*
* Contributor(s):
* Douglas Stebila <douglas@stebila.ca>
*
* Alternatively, the contents of this file may be used under the terms of
* either the GNU General Public License Version 2 or later (the "GPL"), or
* the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
* in which case the provisions of the GPL or the LGPL are applicable instead
* of those above. If you wish to allow use of your version of this file only
* under the terms of either the GPL or the LGPL, and not to allow others to
* use your version of this file under the terms of the MPL, indicate your
* decision by deleting the provisions above and replace them with the notice
* and other provisions required by the GPL or the LGPL. If you do not delete
* the provisions above, a recipient may use your version of this file under
* the terms of any one of the MPL, the GPL or the LGPL.
*
*********************************************************************** */
/*
* Copyright 2007 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#pragma ident "%Z%%M% %I% %E% SMI"
#include "ecp.h"
#include "mpi.h"
#include "mplogic.h"
#include "mpi-priv.h"
#ifndef _KERNEL
#include <stdlib.h>
#endif
/* Fast modular reduction for p384 = 2^384 - 2^128 - 2^96 + 2^32 - 1. a can be r.
* Uses algorithm 2.30 from Hankerson, Menezes, Vanstone. Guide to
* Elliptic Curve Cryptography. */
mp_err
ec_GFp_nistp384_mod(const mp_int *a, mp_int *r, const GFMethod *meth)
{
mp_err res = MP_OKAY;
int a_bits = mpl_significant_bits(a);
int i;
/* m1, m2 are statically-allocated mp_int of exactly the size we need */
mp_int m[10];
#ifdef ECL_THIRTY_TWO_BIT
mp_digit s[10][12];
for (i = 0; i < 10; i++) {
MP_SIGN(&m[i]) = MP_ZPOS;
MP_ALLOC(&m[i]) = 12;
MP_USED(&m[i]) = 12;
MP_DIGITS(&m[i]) = s[i];
}
#else
mp_digit s[10][6];
for (i = 0; i < 10; i++) {
MP_SIGN(&m[i]) = MP_ZPOS;
MP_ALLOC(&m[i]) = 6;
MP_USED(&m[i]) = 6;
MP_DIGITS(&m[i]) = s[i];
}
#endif
#ifdef ECL_THIRTY_TWO_BIT
/* for polynomials larger than twice the field size or polynomials
* not using all words, use regular reduction */
if ((a_bits > 768) || (a_bits <= 736)) {
MP_CHECKOK(mp_mod(a, &meth->irr, r));
} else {
for (i = 0; i < 12; i++) {
s[0][i] = MP_DIGIT(a, i);
}
s[1][0] = 0;
s[1][1] = 0;
s[1][2] = 0;
s[1][3] = 0;
s[1][4] = MP_DIGIT(a, 21);
s[1][5] = MP_DIGIT(a, 22);
s[1][6] = MP_DIGIT(a, 23);
s[1][7] = 0;
s[1][8] = 0;
s[1][9] = 0;
s[1][10] = 0;
s[1][11] = 0;
for (i = 0; i < 12; i++) {
s[2][i] = MP_DIGIT(a, i+12);
}
s[3][0] = MP_DIGIT(a, 21);
s[3][1] = MP_DIGIT(a, 22);
s[3][2] = MP_DIGIT(a, 23);
for (i = 3; i < 12; i++) {
s[3][i] = MP_DIGIT(a, i+9);
}
s[4][0] = 0;
s[4][1] = MP_DIGIT(a, 23);
s[4][2] = 0;
s[4][3] = MP_DIGIT(a, 20);
for (i = 4; i < 12; i++) {
s[4][i] = MP_DIGIT(a, i+8);
}
s[5][0] = 0;
s[5][1] = 0;
s[5][2] = 0;
s[5][3] = 0;
s[5][4] = MP_DIGIT(a, 20);
s[5][5] = MP_DIGIT(a, 21);
s[5][6] = MP_DIGIT(a, 22);
s[5][7] = MP_DIGIT(a, 23);
s[5][8] = 0;
s[5][9] = 0;
s[5][10] = 0;
s[5][11] = 0;
s[6][0] = MP_DIGIT(a, 20);
s[6][1] = 0;
s[6][2] = 0;
s[6][3] = MP_DIGIT(a, 21);
s[6][4] = MP_DIGIT(a, 22);
s[6][5] = MP_DIGIT(a, 23);
s[6][6] = 0;
s[6][7] = 0;
s[6][8] = 0;
s[6][9] = 0;
s[6][10] = 0;
s[6][11] = 0;
s[7][0] = MP_DIGIT(a, 23);
for (i = 1; i < 12; i++) {
s[7][i] = MP_DIGIT(a, i+11);
}
s[8][0] = 0;
s[8][1] = MP_DIGIT(a, 20);
s[8][2] = MP_DIGIT(a, 21);
s[8][3] = MP_DIGIT(a, 22);
s[8][4] = MP_DIGIT(a, 23);
s[8][5] = 0;
s[8][6] = 0;
s[8][7] = 0;
s[8][8] = 0;
s[8][9] = 0;
s[8][10] = 0;
s[8][11] = 0;
s[9][0] = 0;
s[9][1] = 0;
s[9][2] = 0;
s[9][3] = MP_DIGIT(a, 23);
s[9][4] = MP_DIGIT(a, 23);
s[9][5] = 0;
s[9][6] = 0;
s[9][7] = 0;
s[9][8] = 0;
s[9][9] = 0;
s[9][10] = 0;
s[9][11] = 0;
MP_CHECKOK(mp_add(&m[0], &m[1], r));
MP_CHECKOK(mp_add(r, &m[1], r));
MP_CHECKOK(mp_add(r, &m[2], r));
MP_CHECKOK(mp_add(r, &m[3], r));
MP_CHECKOK(mp_add(r, &m[4], r));
MP_CHECKOK(mp_add(r, &m[5], r));
MP_CHECKOK(mp_add(r, &m[6], r));
MP_CHECKOK(mp_sub(r, &m[7], r));
MP_CHECKOK(mp_sub(r, &m[8], r));
MP_CHECKOK(mp_submod(r, &m[9], &meth->irr, r));
s_mp_clamp(r);
}
#else
/* for polynomials larger than twice the field size or polynomials
* not using all words, use regular reduction */
if ((a_bits > 768) || (a_bits <= 736)) {
MP_CHECKOK(mp_mod(a, &meth->irr, r));
} else {
for (i = 0; i < 6; i++) {
s[0][i] = MP_DIGIT(a, i);
}
s[1][0] = 0;
s[1][1] = 0;
s[1][2] = (MP_DIGIT(a, 10) >> 32) | (MP_DIGIT(a, 11) << 32);
s[1][3] = MP_DIGIT(a, 11) >> 32;
s[1][4] = 0;
s[1][5] = 0;
for (i = 0; i < 6; i++) {
s[2][i] = MP_DIGIT(a, i+6);
}
s[3][0] = (MP_DIGIT(a, 10) >> 32) | (MP_DIGIT(a, 11) << 32);
s[3][1] = (MP_DIGIT(a, 11) >> 32) | (MP_DIGIT(a, 6) << 32);
for (i = 2; i < 6; i++) {
s[3][i] = (MP_DIGIT(a, i+4) >> 32) | (MP_DIGIT(a, i+5) << 32);
}
s[4][0] = (MP_DIGIT(a, 11) >> 32) << 32;
s[4][1] = MP_DIGIT(a, 10) << 32;
for (i = 2; i < 6; i++) {
s[4][i] = MP_DIGIT(a, i+4);
}
s[5][0] = 0;
s[5][1] = 0;
s[5][2] = MP_DIGIT(a, 10);
s[5][3] = MP_DIGIT(a, 11);
s[5][4] = 0;
s[5][5] = 0;
s[6][0] = (MP_DIGIT(a, 10) << 32) >> 32;
s[6][1] = (MP_DIGIT(a, 10) >> 32) << 32;
s[6][2] = MP_DIGIT(a, 11);
s[6][3] = 0;
s[6][4] = 0;
s[6][5] = 0;
s[7][0] = (MP_DIGIT(a, 11) >> 32) | (MP_DIGIT(a, 6) << 32);
for (i = 1; i < 6; i++) {
s[7][i] = (MP_DIGIT(a, i+5) >> 32) | (MP_DIGIT(a, i+6) << 32);
}
s[8][0] = MP_DIGIT(a, 10) << 32;
s[8][1] = (MP_DIGIT(a, 10) >> 32) | (MP_DIGIT(a, 11) << 32);
s[8][2] = MP_DIGIT(a, 11) >> 32;
s[8][3] = 0;
s[8][4] = 0;
s[8][5] = 0;
s[9][0] = 0;
s[9][1] = (MP_DIGIT(a, 11) >> 32) << 32;
s[9][2] = MP_DIGIT(a, 11) >> 32;
s[9][3] = 0;
s[9][4] = 0;
s[9][5] = 0;
MP_CHECKOK(mp_add(&m[0], &m[1], r));
MP_CHECKOK(mp_add(r, &m[1], r));
MP_CHECKOK(mp_add(r, &m[2], r));
MP_CHECKOK(mp_add(r, &m[3], r));
MP_CHECKOK(mp_add(r, &m[4], r));
MP_CHECKOK(mp_add(r, &m[5], r));
MP_CHECKOK(mp_add(r, &m[6], r));
MP_CHECKOK(mp_sub(r, &m[7], r));
MP_CHECKOK(mp_sub(r, &m[8], r));
MP_CHECKOK(mp_submod(r, &m[9], &meth->irr, r));
s_mp_clamp(r);
}
#endif
CLEANUP:
return res;
}
/* Compute the square of polynomial a, reduce modulo p384. Store the
* result in r. r could be a. Uses optimized modular reduction for p384.
*/
mp_err
ec_GFp_nistp384_sqr(const mp_int *a, mp_int *r, const GFMethod *meth)
{
mp_err res = MP_OKAY;
MP_CHECKOK(mp_sqr(a, r));
MP_CHECKOK(ec_GFp_nistp384_mod(r, r, meth));
CLEANUP:
return res;
}
/* Compute the product of two polynomials a and b, reduce modulo p384.
* Store the result in r. r could be a or b; a could be b. Uses
* optimized modular reduction for p384. */
mp_err
ec_GFp_nistp384_mul(const mp_int *a, const mp_int *b, mp_int *r,
const GFMethod *meth)
{
mp_err res = MP_OKAY;
MP_CHECKOK(mp_mul(a, b, r));
MP_CHECKOK(ec_GFp_nistp384_mod(r, r, meth));
CLEANUP:
return res;
}
/* Wire in fast field arithmetic and precomputation of base point for
* named curves. */
mp_err
ec_group_set_gfp384(ECGroup *group, ECCurveName name)
{
if (name == ECCurve_NIST_P384) {
group->meth->field_mod = &ec_GFp_nistp384_mod;
group->meth->field_mul = &ec_GFp_nistp384_mul;
group->meth->field_sqr = &ec_GFp_nistp384_sqr;
}
return MP_OKAY;
}

View File

@ -0,0 +1,192 @@
/* *********************************************************************
*
* Sun elects to have this file available under and governed by the
* Mozilla Public License Version 1.1 ("MPL") (see
* http://www.mozilla.org/MPL/ for full license text). For the avoidance
* of doubt and subject to the following, Sun also elects to allow
* licensees to use this file under the MPL, the GNU General Public
* License version 2 only or the Lesser General Public License version
* 2.1 only. Any references to the "GNU General Public License version 2
* or later" or "GPL" in the following shall be construed to mean the
* GNU General Public License version 2 only. Any references to the "GNU
* Lesser General Public License version 2.1 or later" or "LGPL" in the
* following shall be construed to mean the GNU Lesser General Public
* License version 2.1 only. However, the following notice accompanied
* the original version of this file:
*
* Version: MPL 1.1/GPL 2.0/LGPL 2.1
*
* The contents of this file are subject to the Mozilla Public License Version
* 1.1 (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* Software distributed under the License is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
* for the specific language governing rights and limitations under the
* License.
*
* The Original Code is the elliptic curve math library for prime field curves.
*
* The Initial Developer of the Original Code is
* Sun Microsystems, Inc.
* Portions created by the Initial Developer are Copyright (C) 2003
* the Initial Developer. All Rights Reserved.
*
* Contributor(s):
* Douglas Stebila <douglas@stebila.ca>
*
* Alternatively, the contents of this file may be used under the terms of
* either the GNU General Public License Version 2 or later (the "GPL"), or
* the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
* in which case the provisions of the GPL or the LGPL are applicable instead
* of those above. If you wish to allow use of your version of this file only
* under the terms of either the GPL or the LGPL, and not to allow others to
* use your version of this file under the terms of the MPL, indicate your
* decision by deleting the provisions above and replace them with the notice
* and other provisions required by the GPL or the LGPL. If you do not delete
* the provisions above, a recipient may use your version of this file under
* the terms of any one of the MPL, the GPL or the LGPL.
*
*********************************************************************** */
/*
* Copyright 2007 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#pragma ident "%Z%%M% %I% %E% SMI"
#include "ecp.h"
#include "mpi.h"
#include "mplogic.h"
#include "mpi-priv.h"
#ifndef _KERNEL
#include <stdlib.h>
#endif
#define ECP521_DIGITS ECL_CURVE_DIGITS(521)
/* Fast modular reduction for p521 = 2^521 - 1. a can be r. Uses
* algorithm 2.31 from Hankerson, Menezes, Vanstone. Guide to
* Elliptic Curve Cryptography. */
mp_err
ec_GFp_nistp521_mod(const mp_int *a, mp_int *r, const GFMethod *meth)
{
mp_err res = MP_OKAY;
int a_bits = mpl_significant_bits(a);
int i;
/* m1, m2 are statically-allocated mp_int of exactly the size we need */
mp_int m1;
mp_digit s1[ECP521_DIGITS] = { 0 };
MP_SIGN(&m1) = MP_ZPOS;
MP_ALLOC(&m1) = ECP521_DIGITS;
MP_USED(&m1) = ECP521_DIGITS;
MP_DIGITS(&m1) = s1;
if (a_bits < 521) {
if (a==r) return MP_OKAY;
return mp_copy(a, r);
}
/* for polynomials larger than twice the field size or polynomials
* not using all words, use regular reduction */
if (a_bits > (521*2)) {
MP_CHECKOK(mp_mod(a, &meth->irr, r));
} else {
#define FIRST_DIGIT (ECP521_DIGITS-1)
for (i = FIRST_DIGIT; i < MP_USED(a)-1; i++) {
s1[i-FIRST_DIGIT] = (MP_DIGIT(a, i) >> 9)
| (MP_DIGIT(a, 1+i) << (MP_DIGIT_BIT-9));
}
s1[i-FIRST_DIGIT] = MP_DIGIT(a, i) >> 9;
if ( a != r ) {
MP_CHECKOK(s_mp_pad(r,ECP521_DIGITS));
for (i = 0; i < ECP521_DIGITS; i++) {
MP_DIGIT(r,i) = MP_DIGIT(a, i);
}
}
MP_USED(r) = ECP521_DIGITS;
MP_DIGIT(r,FIRST_DIGIT) &= 0x1FF;
MP_CHECKOK(s_mp_add(r, &m1));
if (MP_DIGIT(r, FIRST_DIGIT) & 0x200) {
MP_CHECKOK(s_mp_add_d(r,1));
MP_DIGIT(r,FIRST_DIGIT) &= 0x1FF;
}
s_mp_clamp(r);
}
CLEANUP:
return res;
}
/* Compute the square of polynomial a, reduce modulo p521. Store the
* result in r. r could be a. Uses optimized modular reduction for p521.
*/
mp_err
ec_GFp_nistp521_sqr(const mp_int *a, mp_int *r, const GFMethod *meth)
{
mp_err res = MP_OKAY;
MP_CHECKOK(mp_sqr(a, r));
MP_CHECKOK(ec_GFp_nistp521_mod(r, r, meth));
CLEANUP:
return res;
}
/* Compute the product of two polynomials a and b, reduce modulo p521.
* Store the result in r. r could be a or b; a could be b. Uses
* optimized modular reduction for p521. */
mp_err
ec_GFp_nistp521_mul(const mp_int *a, const mp_int *b, mp_int *r,
const GFMethod *meth)
{
mp_err res = MP_OKAY;
MP_CHECKOK(mp_mul(a, b, r));
MP_CHECKOK(ec_GFp_nistp521_mod(r, r, meth));
CLEANUP:
return res;
}
/* Divides two field elements. If a is NULL, then returns the inverse of
* b. */
mp_err
ec_GFp_nistp521_div(const mp_int *a, const mp_int *b, mp_int *r,
const GFMethod *meth)
{
mp_err res = MP_OKAY;
mp_int t;
/* If a is NULL, then return the inverse of b, otherwise return a/b. */
if (a == NULL) {
return mp_invmod(b, &meth->irr, r);
} else {
/* MPI doesn't support divmod, so we implement it using invmod and
* mulmod. */
MP_CHECKOK(mp_init(&t, FLAG(b)));
MP_CHECKOK(mp_invmod(b, &meth->irr, &t));
MP_CHECKOK(mp_mul(a, &t, r));
MP_CHECKOK(ec_GFp_nistp521_mod(r, r, meth));
CLEANUP:
mp_clear(&t);
return res;
}
}
/* Wire in fast field arithmetic and precomputation of base point for
* named curves. */
mp_err
ec_group_set_gfp521(ECGroup *group, ECCurveName name)
{
if (name == ECCurve_NIST_P521) {
group->meth->field_mod = &ec_GFp_nistp521_mod;
group->meth->field_mul = &ec_GFp_nistp521_mul;
group->meth->field_sqr = &ec_GFp_nistp521_sqr;
group->meth->field_div = &ec_GFp_nistp521_div;
}
return MP_OKAY;
}

View File

@ -0,0 +1,379 @@
/* *********************************************************************
*
* Sun elects to have this file available under and governed by the
* Mozilla Public License Version 1.1 ("MPL") (see
* http://www.mozilla.org/MPL/ for full license text). For the avoidance
* of doubt and subject to the following, Sun also elects to allow
* licensees to use this file under the MPL, the GNU General Public
* License version 2 only or the Lesser General Public License version
* 2.1 only. Any references to the "GNU General Public License version 2
* or later" or "GPL" in the following shall be construed to mean the
* GNU General Public License version 2 only. Any references to the "GNU
* Lesser General Public License version 2.1 or later" or "LGPL" in the
* following shall be construed to mean the GNU Lesser General Public
* License version 2.1 only. However, the following notice accompanied
* the original version of this file:
*
* Version: MPL 1.1/GPL 2.0/LGPL 2.1
*
* The contents of this file are subject to the Mozilla Public License Version
* 1.1 (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* Software distributed under the License is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
* for the specific language governing rights and limitations under the
* License.
*
* The Original Code is the elliptic curve math library for prime field curves.
*
* The Initial Developer of the Original Code is
* Sun Microsystems, Inc.
* Portions created by the Initial Developer are Copyright (C) 2003
* the Initial Developer. All Rights Reserved.
*
* Contributor(s):
* Sheueling Chang-Shantz <sheueling.chang@sun.com>,
* Stephen Fung <fungstep@hotmail.com>, and
* Douglas Stebila <douglas@stebila.ca>, Sun Microsystems Laboratories.
* Bodo Moeller <moeller@cdc.informatik.tu-darmstadt.de>,
* Nils Larsch <nla@trustcenter.de>, and
* Lenka Fibikova <fibikova@exp-math.uni-essen.de>, the OpenSSL Project
*
* Alternatively, the contents of this file may be used under the terms of
* either the GNU General Public License Version 2 or later (the "GPL"), or
* the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
* in which case the provisions of the GPL or the LGPL are applicable instead
* of those above. If you wish to allow use of your version of this file only
* under the terms of either the GPL or the LGPL, and not to allow others to
* use your version of this file under the terms of the MPL, indicate your
* decision by deleting the provisions above and replace them with the notice
* and other provisions required by the GPL or the LGPL. If you do not delete
* the provisions above, a recipient may use your version of this file under
* the terms of any one of the MPL, the GPL or the LGPL.
*
*********************************************************************** */
/*
* Copyright 2007 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#pragma ident "%Z%%M% %I% %E% SMI"
#include "ecp.h"
#include "mplogic.h"
#ifndef _KERNEL
#include <stdlib.h>
#endif
/* Checks if point P(px, py) is at infinity. Uses affine coordinates. */
mp_err
ec_GFp_pt_is_inf_aff(const mp_int *px, const mp_int *py)
{
if ((mp_cmp_z(px) == 0) && (mp_cmp_z(py) == 0)) {
return MP_YES;
} else {
return MP_NO;
}
}
/* Sets P(px, py) to be the point at infinity. Uses affine coordinates. */
mp_err
ec_GFp_pt_set_inf_aff(mp_int *px, mp_int *py)
{
mp_zero(px);
mp_zero(py);
return MP_OKAY;
}
/* Computes R = P + Q based on IEEE P1363 A.10.1. Elliptic curve points P,
* Q, and R can all be identical. Uses affine coordinates. Assumes input
* is already field-encoded using field_enc, and returns output that is
* still field-encoded. */
mp_err
ec_GFp_pt_add_aff(const mp_int *px, const mp_int *py, const mp_int *qx,
const mp_int *qy, mp_int *rx, mp_int *ry,
const ECGroup *group)
{
mp_err res = MP_OKAY;
mp_int lambda, temp, tempx, tempy;
MP_DIGITS(&lambda) = 0;
MP_DIGITS(&temp) = 0;
MP_DIGITS(&tempx) = 0;
MP_DIGITS(&tempy) = 0;
MP_CHECKOK(mp_init(&lambda, FLAG(px)));
MP_CHECKOK(mp_init(&temp, FLAG(px)));
MP_CHECKOK(mp_init(&tempx, FLAG(px)));
MP_CHECKOK(mp_init(&tempy, FLAG(px)));
/* if P = inf, then R = Q */
if (ec_GFp_pt_is_inf_aff(px, py) == 0) {
MP_CHECKOK(mp_copy(qx, rx));
MP_CHECKOK(mp_copy(qy, ry));
res = MP_OKAY;
goto CLEANUP;
}
/* if Q = inf, then R = P */
if (ec_GFp_pt_is_inf_aff(qx, qy) == 0) {
MP_CHECKOK(mp_copy(px, rx));
MP_CHECKOK(mp_copy(py, ry));
res = MP_OKAY;
goto CLEANUP;
}
/* if px != qx, then lambda = (py-qy) / (px-qx) */
if (mp_cmp(px, qx) != 0) {
MP_CHECKOK(group->meth->field_sub(py, qy, &tempy, group->meth));
MP_CHECKOK(group->meth->field_sub(px, qx, &tempx, group->meth));
MP_CHECKOK(group->meth->
field_div(&tempy, &tempx, &lambda, group->meth));
} else {
/* if py != qy or qy = 0, then R = inf */
if (((mp_cmp(py, qy) != 0)) || (mp_cmp_z(qy) == 0)) {
mp_zero(rx);
mp_zero(ry);
res = MP_OKAY;
goto CLEANUP;
}
/* lambda = (3qx^2+a) / (2qy) */
MP_CHECKOK(group->meth->field_sqr(qx, &tempx, group->meth));
MP_CHECKOK(mp_set_int(&temp, 3));
if (group->meth->field_enc) {
MP_CHECKOK(group->meth->field_enc(&temp, &temp, group->meth));
}
MP_CHECKOK(group->meth->
field_mul(&tempx, &temp, &tempx, group->meth));
MP_CHECKOK(group->meth->
field_add(&tempx, &group->curvea, &tempx, group->meth));
MP_CHECKOK(mp_set_int(&temp, 2));
if (group->meth->field_enc) {
MP_CHECKOK(group->meth->field_enc(&temp, &temp, group->meth));
}
MP_CHECKOK(group->meth->field_mul(qy, &temp, &tempy, group->meth));
MP_CHECKOK(group->meth->
field_div(&tempx, &tempy, &lambda, group->meth));
}
/* rx = lambda^2 - px - qx */
MP_CHECKOK(group->meth->field_sqr(&lambda, &tempx, group->meth));
MP_CHECKOK(group->meth->field_sub(&tempx, px, &tempx, group->meth));
MP_CHECKOK(group->meth->field_sub(&tempx, qx, &tempx, group->meth));
/* ry = (x1-x2) * lambda - y1 */
MP_CHECKOK(group->meth->field_sub(qx, &tempx, &tempy, group->meth));
MP_CHECKOK(group->meth->
field_mul(&tempy, &lambda, &tempy, group->meth));
MP_CHECKOK(group->meth->field_sub(&tempy, qy, &tempy, group->meth));
MP_CHECKOK(mp_copy(&tempx, rx));
MP_CHECKOK(mp_copy(&tempy, ry));
CLEANUP:
mp_clear(&lambda);
mp_clear(&temp);
mp_clear(&tempx);
mp_clear(&tempy);
return res;
}
/* Computes R = P - Q. Elliptic curve points P, Q, and R can all be
* identical. Uses affine coordinates. Assumes input is already
* field-encoded using field_enc, and returns output that is still
* field-encoded. */
mp_err
ec_GFp_pt_sub_aff(const mp_int *px, const mp_int *py, const mp_int *qx,
const mp_int *qy, mp_int *rx, mp_int *ry,
const ECGroup *group)
{
mp_err res = MP_OKAY;
mp_int nqy;
MP_DIGITS(&nqy) = 0;
MP_CHECKOK(mp_init(&nqy, FLAG(px)));
/* nqy = -qy */
MP_CHECKOK(group->meth->field_neg(qy, &nqy, group->meth));
res = group->point_add(px, py, qx, &nqy, rx, ry, group);
CLEANUP:
mp_clear(&nqy);
return res;
}
/* Computes R = 2P. Elliptic curve points P and R can be identical. Uses
* affine coordinates. Assumes input is already field-encoded using
* field_enc, and returns output that is still field-encoded. */
mp_err
ec_GFp_pt_dbl_aff(const mp_int *px, const mp_int *py, mp_int *rx,
mp_int *ry, const ECGroup *group)
{
return ec_GFp_pt_add_aff(px, py, px, py, rx, ry, group);
}
/* by default, this routine is unused and thus doesn't need to be compiled */
#ifdef ECL_ENABLE_GFP_PT_MUL_AFF
/* Computes R = nP based on IEEE P1363 A.10.3. Elliptic curve points P and
* R can be identical. Uses affine coordinates. Assumes input is already
* field-encoded using field_enc, and returns output that is still
* field-encoded. */
mp_err
ec_GFp_pt_mul_aff(const mp_int *n, const mp_int *px, const mp_int *py,
mp_int *rx, mp_int *ry, const ECGroup *group)
{
mp_err res = MP_OKAY;
mp_int k, k3, qx, qy, sx, sy;
int b1, b3, i, l;
MP_DIGITS(&k) = 0;
MP_DIGITS(&k3) = 0;
MP_DIGITS(&qx) = 0;
MP_DIGITS(&qy) = 0;
MP_DIGITS(&sx) = 0;
MP_DIGITS(&sy) = 0;
MP_CHECKOK(mp_init(&k));
MP_CHECKOK(mp_init(&k3));
MP_CHECKOK(mp_init(&qx));
MP_CHECKOK(mp_init(&qy));
MP_CHECKOK(mp_init(&sx));
MP_CHECKOK(mp_init(&sy));
/* if n = 0 then r = inf */
if (mp_cmp_z(n) == 0) {
mp_zero(rx);
mp_zero(ry);
res = MP_OKAY;
goto CLEANUP;
}
/* Q = P, k = n */
MP_CHECKOK(mp_copy(px, &qx));
MP_CHECKOK(mp_copy(py, &qy));
MP_CHECKOK(mp_copy(n, &k));
/* if n < 0 then Q = -Q, k = -k */
if (mp_cmp_z(n) < 0) {
MP_CHECKOK(group->meth->field_neg(&qy, &qy, group->meth));
MP_CHECKOK(mp_neg(&k, &k));
}
#ifdef ECL_DEBUG /* basic double and add method */
l = mpl_significant_bits(&k) - 1;
MP_CHECKOK(mp_copy(&qx, &sx));
MP_CHECKOK(mp_copy(&qy, &sy));
for (i = l - 1; i >= 0; i--) {
/* S = 2S */
MP_CHECKOK(group->point_dbl(&sx, &sy, &sx, &sy, group));
/* if k_i = 1, then S = S + Q */
if (mpl_get_bit(&k, i) != 0) {
MP_CHECKOK(group->
point_add(&sx, &sy, &qx, &qy, &sx, &sy, group));
}
}
#else /* double and add/subtract method from
* standard */
/* k3 = 3 * k */
MP_CHECKOK(mp_set_int(&k3, 3));
MP_CHECKOK(mp_mul(&k, &k3, &k3));
/* S = Q */
MP_CHECKOK(mp_copy(&qx, &sx));
MP_CHECKOK(mp_copy(&qy, &sy));
/* l = index of high order bit in binary representation of 3*k */
l = mpl_significant_bits(&k3) - 1;
/* for i = l-1 downto 1 */
for (i = l - 1; i >= 1; i--) {
/* S = 2S */
MP_CHECKOK(group->point_dbl(&sx, &sy, &sx, &sy, group));
b3 = MP_GET_BIT(&k3, i);
b1 = MP_GET_BIT(&k, i);
/* if k3_i = 1 and k_i = 0, then S = S + Q */
if ((b3 == 1) && (b1 == 0)) {
MP_CHECKOK(group->
point_add(&sx, &sy, &qx, &qy, &sx, &sy, group));
/* if k3_i = 0 and k_i = 1, then S = S - Q */
} else if ((b3 == 0) && (b1 == 1)) {
MP_CHECKOK(group->
point_sub(&sx, &sy, &qx, &qy, &sx, &sy, group));
}
}
#endif
/* output S */
MP_CHECKOK(mp_copy(&sx, rx));
MP_CHECKOK(mp_copy(&sy, ry));
CLEANUP:
mp_clear(&k);
mp_clear(&k3);
mp_clear(&qx);
mp_clear(&qy);
mp_clear(&sx);
mp_clear(&sy);
return res;
}
#endif
/* Validates a point on a GFp curve. */
mp_err
ec_GFp_validate_point(const mp_int *px, const mp_int *py, const ECGroup *group)
{
mp_err res = MP_NO;
mp_int accl, accr, tmp, pxt, pyt;
MP_DIGITS(&accl) = 0;
MP_DIGITS(&accr) = 0;
MP_DIGITS(&tmp) = 0;
MP_DIGITS(&pxt) = 0;
MP_DIGITS(&pyt) = 0;
MP_CHECKOK(mp_init(&accl, FLAG(px)));
MP_CHECKOK(mp_init(&accr, FLAG(px)));
MP_CHECKOK(mp_init(&tmp, FLAG(px)));
MP_CHECKOK(mp_init(&pxt, FLAG(px)));
MP_CHECKOK(mp_init(&pyt, FLAG(px)));
/* 1: Verify that publicValue is not the point at infinity */
if (ec_GFp_pt_is_inf_aff(px, py) == MP_YES) {
res = MP_NO;
goto CLEANUP;
}
/* 2: Verify that the coordinates of publicValue are elements
* of the field.
*/
if ((MP_SIGN(px) == MP_NEG) || (mp_cmp(px, &group->meth->irr) >= 0) ||
(MP_SIGN(py) == MP_NEG) || (mp_cmp(py, &group->meth->irr) >= 0)) {
res = MP_NO;
goto CLEANUP;
}
/* 3: Verify that publicValue is on the curve. */
if (group->meth->field_enc) {
group->meth->field_enc(px, &pxt, group->meth);
group->meth->field_enc(py, &pyt, group->meth);
} else {
mp_copy(px, &pxt);
mp_copy(py, &pyt);
}
/* left-hand side: y^2 */
MP_CHECKOK( group->meth->field_sqr(&pyt, &accl, group->meth) );
/* right-hand side: x^3 + a*x + b */
MP_CHECKOK( group->meth->field_sqr(&pxt, &tmp, group->meth) );
MP_CHECKOK( group->meth->field_mul(&pxt, &tmp, &accr, group->meth) );
MP_CHECKOK( group->meth->field_mul(&group->curvea, &pxt, &tmp, group->meth) );
MP_CHECKOK( group->meth->field_add(&tmp, &accr, &accr, group->meth) );
MP_CHECKOK( group->meth->field_add(&accr, &group->curveb, &accr, group->meth) );
/* check LHS - RHS == 0 */
MP_CHECKOK( group->meth->field_sub(&accl, &accr, &accr, group->meth) );
if (mp_cmp_z(&accr) != 0) {
res = MP_NO;
goto CLEANUP;
}
/* 4: Verify that the order of the curve times the publicValue
* is the point at infinity.
*/
MP_CHECKOK( ECPoint_mul(group, &group->order, px, py, &pxt, &pyt) );
if (ec_GFp_pt_is_inf_aff(&pxt, &pyt) != MP_YES) {
res = MP_NO;
goto CLEANUP;
}
res = MP_YES;
CLEANUP:
mp_clear(&accl);
mp_clear(&accr);
mp_clear(&tmp);
mp_clear(&pxt);
mp_clear(&pyt);
return res;
}

View File

@ -0,0 +1,575 @@
/* *********************************************************************
*
* Sun elects to have this file available under and governed by the
* Mozilla Public License Version 1.1 ("MPL") (see
* http://www.mozilla.org/MPL/ for full license text). For the avoidance
* of doubt and subject to the following, Sun also elects to allow
* licensees to use this file under the MPL, the GNU General Public
* License version 2 only or the Lesser General Public License version
* 2.1 only. Any references to the "GNU General Public License version 2
* or later" or "GPL" in the following shall be construed to mean the
* GNU General Public License version 2 only. Any references to the "GNU
* Lesser General Public License version 2.1 or later" or "LGPL" in the
* following shall be construed to mean the GNU Lesser General Public
* License version 2.1 only. However, the following notice accompanied
* the original version of this file:
*
* Version: MPL 1.1/GPL 2.0/LGPL 2.1
*
* The contents of this file are subject to the Mozilla Public License Version
* 1.1 (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* Software distributed under the License is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
* for the specific language governing rights and limitations under the
* License.
*
* The Original Code is the elliptic curve math library for prime field curves.
*
* The Initial Developer of the Original Code is
* Sun Microsystems, Inc.
* Portions created by the Initial Developer are Copyright (C) 2003
* the Initial Developer. All Rights Reserved.
*
* Contributor(s):
* Sheueling Chang-Shantz <sheueling.chang@sun.com>,
* Stephen Fung <fungstep@hotmail.com>, and
* Douglas Stebila <douglas@stebila.ca>, Sun Microsystems Laboratories.
* Bodo Moeller <moeller@cdc.informatik.tu-darmstadt.de>,
* Nils Larsch <nla@trustcenter.de>, and
* Lenka Fibikova <fibikova@exp-math.uni-essen.de>, the OpenSSL Project
*
* Alternatively, the contents of this file may be used under the terms of
* either the GNU General Public License Version 2 or later (the "GPL"), or
* the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
* in which case the provisions of the GPL or the LGPL are applicable instead
* of those above. If you wish to allow use of your version of this file only
* under the terms of either the GPL or the LGPL, and not to allow others to
* use your version of this file under the terms of the MPL, indicate your
* decision by deleting the provisions above and replace them with the notice
* and other provisions required by the GPL or the LGPL. If you do not delete
* the provisions above, a recipient may use your version of this file under
* the terms of any one of the MPL, the GPL or the LGPL.
*
*********************************************************************** */
/*
* Copyright 2007 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#pragma ident "%Z%%M% %I% %E% SMI"
#include "ecp.h"
#include "mplogic.h"
#ifndef _KERNEL
#include <stdlib.h>
#endif
#ifdef ECL_DEBUG
#include <assert.h>
#endif
/* Converts a point P(px, py) from affine coordinates to Jacobian
* projective coordinates R(rx, ry, rz). Assumes input is already
* field-encoded using field_enc, and returns output that is still
* field-encoded. */
mp_err
ec_GFp_pt_aff2jac(const mp_int *px, const mp_int *py, mp_int *rx,
mp_int *ry, mp_int *rz, const ECGroup *group)
{
mp_err res = MP_OKAY;
if (ec_GFp_pt_is_inf_aff(px, py) == MP_YES) {
MP_CHECKOK(ec_GFp_pt_set_inf_jac(rx, ry, rz));
} else {
MP_CHECKOK(mp_copy(px, rx));
MP_CHECKOK(mp_copy(py, ry));
MP_CHECKOK(mp_set_int(rz, 1));
if (group->meth->field_enc) {
MP_CHECKOK(group->meth->field_enc(rz, rz, group->meth));
}
}
CLEANUP:
return res;
}
/* Converts a point P(px, py, pz) from Jacobian projective coordinates to
* affine coordinates R(rx, ry). P and R can share x and y coordinates.
* Assumes input is already field-encoded using field_enc, and returns
* output that is still field-encoded. */
mp_err
ec_GFp_pt_jac2aff(const mp_int *px, const mp_int *py, const mp_int *pz,
mp_int *rx, mp_int *ry, const ECGroup *group)
{
mp_err res = MP_OKAY;
mp_int z1, z2, z3;
MP_DIGITS(&z1) = 0;
MP_DIGITS(&z2) = 0;
MP_DIGITS(&z3) = 0;
MP_CHECKOK(mp_init(&z1, FLAG(px)));
MP_CHECKOK(mp_init(&z2, FLAG(px)));
MP_CHECKOK(mp_init(&z3, FLAG(px)));
/* if point at infinity, then set point at infinity and exit */
if (ec_GFp_pt_is_inf_jac(px, py, pz) == MP_YES) {
MP_CHECKOK(ec_GFp_pt_set_inf_aff(rx, ry));
goto CLEANUP;
}
/* transform (px, py, pz) into (px / pz^2, py / pz^3) */
if (mp_cmp_d(pz, 1) == 0) {
MP_CHECKOK(mp_copy(px, rx));
MP_CHECKOK(mp_copy(py, ry));
} else {
MP_CHECKOK(group->meth->field_div(NULL, pz, &z1, group->meth));
MP_CHECKOK(group->meth->field_sqr(&z1, &z2, group->meth));
MP_CHECKOK(group->meth->field_mul(&z1, &z2, &z3, group->meth));
MP_CHECKOK(group->meth->field_mul(px, &z2, rx, group->meth));
MP_CHECKOK(group->meth->field_mul(py, &z3, ry, group->meth));
}
CLEANUP:
mp_clear(&z1);
mp_clear(&z2);
mp_clear(&z3);
return res;
}
/* Checks if point P(px, py, pz) is at infinity. Uses Jacobian
* coordinates. */
mp_err
ec_GFp_pt_is_inf_jac(const mp_int *px, const mp_int *py, const mp_int *pz)
{
return mp_cmp_z(pz);
}
/* Sets P(px, py, pz) to be the point at infinity. Uses Jacobian
* coordinates. */
mp_err
ec_GFp_pt_set_inf_jac(mp_int *px, mp_int *py, mp_int *pz)
{
mp_zero(pz);
return MP_OKAY;
}
/* Computes R = P + Q where R is (rx, ry, rz), P is (px, py, pz) and Q is
* (qx, qy, 1). Elliptic curve points P, Q, and R can all be identical.
* Uses mixed Jacobian-affine coordinates. Assumes input is already
* field-encoded using field_enc, and returns output that is still
* field-encoded. Uses equation (2) from Brown, Hankerson, Lopez, and
* Menezes. Software Implementation of the NIST Elliptic Curves Over Prime
* Fields. */
mp_err
ec_GFp_pt_add_jac_aff(const mp_int *px, const mp_int *py, const mp_int *pz,
const mp_int *qx, const mp_int *qy, mp_int *rx,
mp_int *ry, mp_int *rz, const ECGroup *group)
{
mp_err res = MP_OKAY;
mp_int A, B, C, D, C2, C3;
MP_DIGITS(&A) = 0;
MP_DIGITS(&B) = 0;
MP_DIGITS(&C) = 0;
MP_DIGITS(&D) = 0;
MP_DIGITS(&C2) = 0;
MP_DIGITS(&C3) = 0;
MP_CHECKOK(mp_init(&A, FLAG(px)));
MP_CHECKOK(mp_init(&B, FLAG(px)));
MP_CHECKOK(mp_init(&C, FLAG(px)));
MP_CHECKOK(mp_init(&D, FLAG(px)));
MP_CHECKOK(mp_init(&C2, FLAG(px)));
MP_CHECKOK(mp_init(&C3, FLAG(px)));
/* If either P or Q is the point at infinity, then return the other
* point */
if (ec_GFp_pt_is_inf_jac(px, py, pz) == MP_YES) {
MP_CHECKOK(ec_GFp_pt_aff2jac(qx, qy, rx, ry, rz, group));
goto CLEANUP;
}
if (ec_GFp_pt_is_inf_aff(qx, qy) == MP_YES) {
MP_CHECKOK(mp_copy(px, rx));
MP_CHECKOK(mp_copy(py, ry));
MP_CHECKOK(mp_copy(pz, rz));
goto CLEANUP;
}
/* A = qx * pz^2, B = qy * pz^3 */
MP_CHECKOK(group->meth->field_sqr(pz, &A, group->meth));
MP_CHECKOK(group->meth->field_mul(&A, pz, &B, group->meth));
MP_CHECKOK(group->meth->field_mul(&A, qx, &A, group->meth));
MP_CHECKOK(group->meth->field_mul(&B, qy, &B, group->meth));
/* C = A - px, D = B - py */
MP_CHECKOK(group->meth->field_sub(&A, px, &C, group->meth));
MP_CHECKOK(group->meth->field_sub(&B, py, &D, group->meth));
/* C2 = C^2, C3 = C^3 */
MP_CHECKOK(group->meth->field_sqr(&C, &C2, group->meth));
MP_CHECKOK(group->meth->field_mul(&C, &C2, &C3, group->meth));
/* rz = pz * C */
MP_CHECKOK(group->meth->field_mul(pz, &C, rz, group->meth));
/* C = px * C^2 */
MP_CHECKOK(group->meth->field_mul(px, &C2, &C, group->meth));
/* A = D^2 */
MP_CHECKOK(group->meth->field_sqr(&D, &A, group->meth));
/* rx = D^2 - (C^3 + 2 * (px * C^2)) */
MP_CHECKOK(group->meth->field_add(&C, &C, rx, group->meth));
MP_CHECKOK(group->meth->field_add(&C3, rx, rx, group->meth));
MP_CHECKOK(group->meth->field_sub(&A, rx, rx, group->meth));
/* C3 = py * C^3 */
MP_CHECKOK(group->meth->field_mul(py, &C3, &C3, group->meth));
/* ry = D * (px * C^2 - rx) - py * C^3 */
MP_CHECKOK(group->meth->field_sub(&C, rx, ry, group->meth));
MP_CHECKOK(group->meth->field_mul(&D, ry, ry, group->meth));
MP_CHECKOK(group->meth->field_sub(ry, &C3, ry, group->meth));
CLEANUP:
mp_clear(&A);
mp_clear(&B);
mp_clear(&C);
mp_clear(&D);
mp_clear(&C2);
mp_clear(&C3);
return res;
}
/* Computes R = 2P. Elliptic curve points P and R can be identical. Uses
* Jacobian coordinates.
*
* Assumes input is already field-encoded using field_enc, and returns
* output that is still field-encoded.
*
* This routine implements Point Doubling in the Jacobian Projective
* space as described in the paper "Efficient elliptic curve exponentiation
* using mixed coordinates", by H. Cohen, A Miyaji, T. Ono.
*/
mp_err
ec_GFp_pt_dbl_jac(const mp_int *px, const mp_int *py, const mp_int *pz,
mp_int *rx, mp_int *ry, mp_int *rz, const ECGroup *group)
{
mp_err res = MP_OKAY;
mp_int t0, t1, M, S;
MP_DIGITS(&t0) = 0;
MP_DIGITS(&t1) = 0;
MP_DIGITS(&M) = 0;
MP_DIGITS(&S) = 0;
MP_CHECKOK(mp_init(&t0, FLAG(px)));
MP_CHECKOK(mp_init(&t1, FLAG(px)));
MP_CHECKOK(mp_init(&M, FLAG(px)));
MP_CHECKOK(mp_init(&S, FLAG(px)));
if (ec_GFp_pt_is_inf_jac(px, py, pz) == MP_YES) {
MP_CHECKOK(ec_GFp_pt_set_inf_jac(rx, ry, rz));
goto CLEANUP;
}
if (mp_cmp_d(pz, 1) == 0) {
/* M = 3 * px^2 + a */
MP_CHECKOK(group->meth->field_sqr(px, &t0, group->meth));
MP_CHECKOK(group->meth->field_add(&t0, &t0, &M, group->meth));
MP_CHECKOK(group->meth->field_add(&t0, &M, &t0, group->meth));
MP_CHECKOK(group->meth->
field_add(&t0, &group->curvea, &M, group->meth));
} else if (mp_cmp_int(&group->curvea, -3, FLAG(px)) == 0) {
/* M = 3 * (px + pz^2) * (px - pz^2) */
MP_CHECKOK(group->meth->field_sqr(pz, &M, group->meth));
MP_CHECKOK(group->meth->field_add(px, &M, &t0, group->meth));
MP_CHECKOK(group->meth->field_sub(px, &M, &t1, group->meth));
MP_CHECKOK(group->meth->field_mul(&t0, &t1, &M, group->meth));
MP_CHECKOK(group->meth->field_add(&M, &M, &t0, group->meth));
MP_CHECKOK(group->meth->field_add(&t0, &M, &M, group->meth));
} else {
/* M = 3 * (px^2) + a * (pz^4) */
MP_CHECKOK(group->meth->field_sqr(px, &t0, group->meth));
MP_CHECKOK(group->meth->field_add(&t0, &t0, &M, group->meth));
MP_CHECKOK(group->meth->field_add(&t0, &M, &t0, group->meth));
MP_CHECKOK(group->meth->field_sqr(pz, &M, group->meth));
MP_CHECKOK(group->meth->field_sqr(&M, &M, group->meth));
MP_CHECKOK(group->meth->
field_mul(&M, &group->curvea, &M, group->meth));
MP_CHECKOK(group->meth->field_add(&M, &t0, &M, group->meth));
}
/* rz = 2 * py * pz */
/* t0 = 4 * py^2 */
if (mp_cmp_d(pz, 1) == 0) {
MP_CHECKOK(group->meth->field_add(py, py, rz, group->meth));
MP_CHECKOK(group->meth->field_sqr(rz, &t0, group->meth));
} else {
MP_CHECKOK(group->meth->field_add(py, py, &t0, group->meth));
MP_CHECKOK(group->meth->field_mul(&t0, pz, rz, group->meth));
MP_CHECKOK(group->meth->field_sqr(&t0, &t0, group->meth));
}
/* S = 4 * px * py^2 = px * (2 * py)^2 */
MP_CHECKOK(group->meth->field_mul(px, &t0, &S, group->meth));
/* rx = M^2 - 2 * S */
MP_CHECKOK(group->meth->field_add(&S, &S, &t1, group->meth));
MP_CHECKOK(group->meth->field_sqr(&M, rx, group->meth));
MP_CHECKOK(group->meth->field_sub(rx, &t1, rx, group->meth));
/* ry = M * (S - rx) - 8 * py^4 */
MP_CHECKOK(group->meth->field_sqr(&t0, &t1, group->meth));
if (mp_isodd(&t1)) {
MP_CHECKOK(mp_add(&t1, &group->meth->irr, &t1));
}
MP_CHECKOK(mp_div_2(&t1, &t1));
MP_CHECKOK(group->meth->field_sub(&S, rx, &S, group->meth));
MP_CHECKOK(group->meth->field_mul(&M, &S, &M, group->meth));
MP_CHECKOK(group->meth->field_sub(&M, &t1, ry, group->meth));
CLEANUP:
mp_clear(&t0);
mp_clear(&t1);
mp_clear(&M);
mp_clear(&S);
return res;
}
/* by default, this routine is unused and thus doesn't need to be compiled */
#ifdef ECL_ENABLE_GFP_PT_MUL_JAC
/* Computes R = nP where R is (rx, ry) and P is (px, py). The parameters
* a, b and p are the elliptic curve coefficients and the prime that
* determines the field GFp. Elliptic curve points P and R can be
* identical. Uses mixed Jacobian-affine coordinates. Assumes input is
* already field-encoded using field_enc, and returns output that is still
* field-encoded. Uses 4-bit window method. */
mp_err
ec_GFp_pt_mul_jac(const mp_int *n, const mp_int *px, const mp_int *py,
mp_int *rx, mp_int *ry, const ECGroup *group)
{
mp_err res = MP_OKAY;
mp_int precomp[16][2], rz;
int i, ni, d;
MP_DIGITS(&rz) = 0;
for (i = 0; i < 16; i++) {
MP_DIGITS(&precomp[i][0]) = 0;
MP_DIGITS(&precomp[i][1]) = 0;
}
ARGCHK(group != NULL, MP_BADARG);
ARGCHK((n != NULL) && (px != NULL) && (py != NULL), MP_BADARG);
/* initialize precomputation table */
for (i = 0; i < 16; i++) {
MP_CHECKOK(mp_init(&precomp[i][0]));
MP_CHECKOK(mp_init(&precomp[i][1]));
}
/* fill precomputation table */
mp_zero(&precomp[0][0]);
mp_zero(&precomp[0][1]);
MP_CHECKOK(mp_copy(px, &precomp[1][0]));
MP_CHECKOK(mp_copy(py, &precomp[1][1]));
for (i = 2; i < 16; i++) {
MP_CHECKOK(group->
point_add(&precomp[1][0], &precomp[1][1],
&precomp[i - 1][0], &precomp[i - 1][1],
&precomp[i][0], &precomp[i][1], group));
}
d = (mpl_significant_bits(n) + 3) / 4;
/* R = inf */
MP_CHECKOK(mp_init(&rz));
MP_CHECKOK(ec_GFp_pt_set_inf_jac(rx, ry, &rz));
for (i = d - 1; i >= 0; i--) {
/* compute window ni */
ni = MP_GET_BIT(n, 4 * i + 3);
ni <<= 1;
ni |= MP_GET_BIT(n, 4 * i + 2);
ni <<= 1;
ni |= MP_GET_BIT(n, 4 * i + 1);
ni <<= 1;
ni |= MP_GET_BIT(n, 4 * i);
/* R = 2^4 * R */
MP_CHECKOK(ec_GFp_pt_dbl_jac(rx, ry, &rz, rx, ry, &rz, group));
MP_CHECKOK(ec_GFp_pt_dbl_jac(rx, ry, &rz, rx, ry, &rz, group));
MP_CHECKOK(ec_GFp_pt_dbl_jac(rx, ry, &rz, rx, ry, &rz, group));
MP_CHECKOK(ec_GFp_pt_dbl_jac(rx, ry, &rz, rx, ry, &rz, group));
/* R = R + (ni * P) */
MP_CHECKOK(ec_GFp_pt_add_jac_aff
(rx, ry, &rz, &precomp[ni][0], &precomp[ni][1], rx, ry,
&rz, group));
}
/* convert result S to affine coordinates */
MP_CHECKOK(ec_GFp_pt_jac2aff(rx, ry, &rz, rx, ry, group));
CLEANUP:
mp_clear(&rz);
for (i = 0; i < 16; i++) {
mp_clear(&precomp[i][0]);
mp_clear(&precomp[i][1]);
}
return res;
}
#endif
/* Elliptic curve scalar-point multiplication. Computes R(x, y) = k1 * G +
* k2 * P(x, y), where G is the generator (base point) of the group of
* points on the elliptic curve. Allows k1 = NULL or { k2, P } = NULL.
* Uses mixed Jacobian-affine coordinates. Input and output values are
* assumed to be NOT field-encoded. Uses algorithm 15 (simultaneous
* multiple point multiplication) from Brown, Hankerson, Lopez, Menezes.
* Software Implementation of the NIST Elliptic Curves over Prime Fields. */
mp_err
ec_GFp_pts_mul_jac(const mp_int *k1, const mp_int *k2, const mp_int *px,
const mp_int *py, mp_int *rx, mp_int *ry,
const ECGroup *group)
{
mp_err res = MP_OKAY;
mp_int precomp[4][4][2];
mp_int rz;
const mp_int *a, *b;
int i, j;
int ai, bi, d;
for (i = 0; i < 4; i++) {
for (j = 0; j < 4; j++) {
MP_DIGITS(&precomp[i][j][0]) = 0;
MP_DIGITS(&precomp[i][j][1]) = 0;
}
}
MP_DIGITS(&rz) = 0;
ARGCHK(group != NULL, MP_BADARG);
ARGCHK(!((k1 == NULL)
&& ((k2 == NULL) || (px == NULL)
|| (py == NULL))), MP_BADARG);
/* if some arguments are not defined used ECPoint_mul */
if (k1 == NULL) {
return ECPoint_mul(group, k2, px, py, rx, ry);
} else if ((k2 == NULL) || (px == NULL) || (py == NULL)) {
return ECPoint_mul(group, k1, NULL, NULL, rx, ry);
}
/* initialize precomputation table */
for (i = 0; i < 4; i++) {
for (j = 0; j < 4; j++) {
MP_CHECKOK(mp_init(&precomp[i][j][0], FLAG(k1)));
MP_CHECKOK(mp_init(&precomp[i][j][1], FLAG(k1)));
}
}
/* fill precomputation table */
/* assign {k1, k2} = {a, b} such that len(a) >= len(b) */
if (mpl_significant_bits(k1) < mpl_significant_bits(k2)) {
a = k2;
b = k1;
if (group->meth->field_enc) {
MP_CHECKOK(group->meth->
field_enc(px, &precomp[1][0][0], group->meth));
MP_CHECKOK(group->meth->
field_enc(py, &precomp[1][0][1], group->meth));
} else {
MP_CHECKOK(mp_copy(px, &precomp[1][0][0]));
MP_CHECKOK(mp_copy(py, &precomp[1][0][1]));
}
MP_CHECKOK(mp_copy(&group->genx, &precomp[0][1][0]));
MP_CHECKOK(mp_copy(&group->geny, &precomp[0][1][1]));
} else {
a = k1;
b = k2;
MP_CHECKOK(mp_copy(&group->genx, &precomp[1][0][0]));
MP_CHECKOK(mp_copy(&group->geny, &precomp[1][0][1]));
if (group->meth->field_enc) {
MP_CHECKOK(group->meth->
field_enc(px, &precomp[0][1][0], group->meth));
MP_CHECKOK(group->meth->
field_enc(py, &precomp[0][1][1], group->meth));
} else {
MP_CHECKOK(mp_copy(px, &precomp[0][1][0]));
MP_CHECKOK(mp_copy(py, &precomp[0][1][1]));
}
}
/* precompute [*][0][*] */
mp_zero(&precomp[0][0][0]);
mp_zero(&precomp[0][0][1]);
MP_CHECKOK(group->
point_dbl(&precomp[1][0][0], &precomp[1][0][1],
&precomp[2][0][0], &precomp[2][0][1], group));
MP_CHECKOK(group->
point_add(&precomp[1][0][0], &precomp[1][0][1],
&precomp[2][0][0], &precomp[2][0][1],
&precomp[3][0][0], &precomp[3][0][1], group));
/* precompute [*][1][*] */
for (i = 1; i < 4; i++) {
MP_CHECKOK(group->
point_add(&precomp[0][1][0], &precomp[0][1][1],
&precomp[i][0][0], &precomp[i][0][1],
&precomp[i][1][0], &precomp[i][1][1], group));
}
/* precompute [*][2][*] */
MP_CHECKOK(group->
point_dbl(&precomp[0][1][0], &precomp[0][1][1],
&precomp[0][2][0], &precomp[0][2][1], group));
for (i = 1; i < 4; i++) {
MP_CHECKOK(group->
point_add(&precomp[0][2][0], &precomp[0][2][1],
&precomp[i][0][0], &precomp[i][0][1],
&precomp[i][2][0], &precomp[i][2][1], group));
}
/* precompute [*][3][*] */
MP_CHECKOK(group->
point_add(&precomp[0][1][0], &precomp[0][1][1],
&precomp[0][2][0], &precomp[0][2][1],
&precomp[0][3][0], &precomp[0][3][1], group));
for (i = 1; i < 4; i++) {
MP_CHECKOK(group->
point_add(&precomp[0][3][0], &precomp[0][3][1],
&precomp[i][0][0], &precomp[i][0][1],
&precomp[i][3][0], &precomp[i][3][1], group));
}
d = (mpl_significant_bits(a) + 1) / 2;
/* R = inf */
MP_CHECKOK(mp_init(&rz, FLAG(k1)));
MP_CHECKOK(ec_GFp_pt_set_inf_jac(rx, ry, &rz));
for (i = d - 1; i >= 0; i--) {
ai = MP_GET_BIT(a, 2 * i + 1);
ai <<= 1;
ai |= MP_GET_BIT(a, 2 * i);
bi = MP_GET_BIT(b, 2 * i + 1);
bi <<= 1;
bi |= MP_GET_BIT(b, 2 * i);
/* R = 2^2 * R */
MP_CHECKOK(ec_GFp_pt_dbl_jac(rx, ry, &rz, rx, ry, &rz, group));
MP_CHECKOK(ec_GFp_pt_dbl_jac(rx, ry, &rz, rx, ry, &rz, group));
/* R = R + (ai * A + bi * B) */
MP_CHECKOK(ec_GFp_pt_add_jac_aff
(rx, ry, &rz, &precomp[ai][bi][0], &precomp[ai][bi][1],
rx, ry, &rz, group));
}
MP_CHECKOK(ec_GFp_pt_jac2aff(rx, ry, &rz, rx, ry, group));
if (group->meth->field_dec) {
MP_CHECKOK(group->meth->field_dec(rx, rx, group->meth));
MP_CHECKOK(group->meth->field_dec(ry, ry, group->meth));
}
CLEANUP:
mp_clear(&rz);
for (i = 0; i < 4; i++) {
for (j = 0; j < 4; j++) {
mp_clear(&precomp[i][j][0]);
mp_clear(&precomp[i][j][1]);
}
}
return res;
}

View File

@ -0,0 +1,353 @@
/* *********************************************************************
*
* Sun elects to have this file available under and governed by the
* Mozilla Public License Version 1.1 ("MPL") (see
* http://www.mozilla.org/MPL/ for full license text). For the avoidance
* of doubt and subject to the following, Sun also elects to allow
* licensees to use this file under the MPL, the GNU General Public
* License version 2 only or the Lesser General Public License version
* 2.1 only. Any references to the "GNU General Public License version 2
* or later" or "GPL" in the following shall be construed to mean the
* GNU General Public License version 2 only. Any references to the "GNU
* Lesser General Public License version 2.1 or later" or "LGPL" in the
* following shall be construed to mean the GNU Lesser General Public
* License version 2.1 only. However, the following notice accompanied
* the original version of this file:
*
* Version: MPL 1.1/GPL 2.0/LGPL 2.1
*
* The contents of this file are subject to the Mozilla Public License Version
* 1.1 (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* Software distributed under the License is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
* for the specific language governing rights and limitations under the
* License.
*
* The Original Code is the elliptic curve math library for prime field curves.
*
* The Initial Developer of the Original Code is
* Sun Microsystems, Inc.
* Portions created by the Initial Developer are Copyright (C) 2003
* the Initial Developer. All Rights Reserved.
*
* Contributor(s):
* Stephen Fung <fungstep@hotmail.com>, Sun Microsystems Laboratories
*
* Alternatively, the contents of this file may be used under the terms of
* either the GNU General Public License Version 2 or later (the "GPL"), or
* the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
* in which case the provisions of the GPL or the LGPL are applicable instead
* of those above. If you wish to allow use of your version of this file only
* under the terms of either the GPL or the LGPL, and not to allow others to
* use your version of this file under the terms of the MPL, indicate your
* decision by deleting the provisions above and replace them with the notice
* and other provisions required by the GPL or the LGPL. If you do not delete
* the provisions above, a recipient may use your version of this file under
* the terms of any one of the MPL, the GPL or the LGPL.
*
*********************************************************************** */
/*
* Copyright 2007 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#pragma ident "%Z%%M% %I% %E% SMI"
#include "ecp.h"
#include "ecl-priv.h"
#include "mplogic.h"
#ifndef _KERNEL
#include <stdlib.h>
#endif
#define MAX_SCRATCH 6
/* Computes R = 2P. Elliptic curve points P and R can be identical. Uses
* Modified Jacobian coordinates.
*
* Assumes input is already field-encoded using field_enc, and returns
* output that is still field-encoded.
*
*/
mp_err
ec_GFp_pt_dbl_jm(const mp_int *px, const mp_int *py, const mp_int *pz,
const mp_int *paz4, mp_int *rx, mp_int *ry, mp_int *rz,
mp_int *raz4, mp_int scratch[], const ECGroup *group)
{
mp_err res = MP_OKAY;
mp_int *t0, *t1, *M, *S;
t0 = &scratch[0];
t1 = &scratch[1];
M = &scratch[2];
S = &scratch[3];
#if MAX_SCRATCH < 4
#error "Scratch array defined too small "
#endif
/* Check for point at infinity */
if (ec_GFp_pt_is_inf_jac(px, py, pz) == MP_YES) {
/* Set r = pt at infinity by setting rz = 0 */
MP_CHECKOK(ec_GFp_pt_set_inf_jac(rx, ry, rz));
goto CLEANUP;
}
/* M = 3 (px^2) + a*(pz^4) */
MP_CHECKOK(group->meth->field_sqr(px, t0, group->meth));
MP_CHECKOK(group->meth->field_add(t0, t0, M, group->meth));
MP_CHECKOK(group->meth->field_add(t0, M, t0, group->meth));
MP_CHECKOK(group->meth->field_add(t0, paz4, M, group->meth));
/* rz = 2 * py * pz */
MP_CHECKOK(group->meth->field_mul(py, pz, S, group->meth));
MP_CHECKOK(group->meth->field_add(S, S, rz, group->meth));
/* t0 = 2y^2 , t1 = 8y^4 */
MP_CHECKOK(group->meth->field_sqr(py, t0, group->meth));
MP_CHECKOK(group->meth->field_add(t0, t0, t0, group->meth));
MP_CHECKOK(group->meth->field_sqr(t0, t1, group->meth));
MP_CHECKOK(group->meth->field_add(t1, t1, t1, group->meth));
/* S = 4 * px * py^2 = 2 * px * t0 */
MP_CHECKOK(group->meth->field_mul(px, t0, S, group->meth));
MP_CHECKOK(group->meth->field_add(S, S, S, group->meth));
/* rx = M^2 - 2S */
MP_CHECKOK(group->meth->field_sqr(M, rx, group->meth));
MP_CHECKOK(group->meth->field_sub(rx, S, rx, group->meth));
MP_CHECKOK(group->meth->field_sub(rx, S, rx, group->meth));
/* ry = M * (S - rx) - t1 */
MP_CHECKOK(group->meth->field_sub(S, rx, S, group->meth));
MP_CHECKOK(group->meth->field_mul(S, M, ry, group->meth));
MP_CHECKOK(group->meth->field_sub(ry, t1, ry, group->meth));
/* ra*z^4 = 2*t1*(apz4) */
MP_CHECKOK(group->meth->field_mul(paz4, t1, raz4, group->meth));
MP_CHECKOK(group->meth->field_add(raz4, raz4, raz4, group->meth));
CLEANUP:
return res;
}
/* Computes R = P + Q where R is (rx, ry, rz), P is (px, py, pz) and Q is
* (qx, qy, 1). Elliptic curve points P, Q, and R can all be identical.
* Uses mixed Modified_Jacobian-affine coordinates. Assumes input is
* already field-encoded using field_enc, and returns output that is still
* field-encoded. */
mp_err
ec_GFp_pt_add_jm_aff(const mp_int *px, const mp_int *py, const mp_int *pz,
const mp_int *paz4, const mp_int *qx,
const mp_int *qy, mp_int *rx, mp_int *ry, mp_int *rz,
mp_int *raz4, mp_int scratch[], const ECGroup *group)
{
mp_err res = MP_OKAY;
mp_int *A, *B, *C, *D, *C2, *C3;
A = &scratch[0];
B = &scratch[1];
C = &scratch[2];
D = &scratch[3];
C2 = &scratch[4];
C3 = &scratch[5];
#if MAX_SCRATCH < 6
#error "Scratch array defined too small "
#endif
/* If either P or Q is the point at infinity, then return the other
* point */
if (ec_GFp_pt_is_inf_jac(px, py, pz) == MP_YES) {
MP_CHECKOK(ec_GFp_pt_aff2jac(qx, qy, rx, ry, rz, group));
MP_CHECKOK(group->meth->field_sqr(rz, raz4, group->meth));
MP_CHECKOK(group->meth->field_sqr(raz4, raz4, group->meth));
MP_CHECKOK(group->meth->
field_mul(raz4, &group->curvea, raz4, group->meth));
goto CLEANUP;
}
if (ec_GFp_pt_is_inf_aff(qx, qy) == MP_YES) {
MP_CHECKOK(mp_copy(px, rx));
MP_CHECKOK(mp_copy(py, ry));
MP_CHECKOK(mp_copy(pz, rz));
MP_CHECKOK(mp_copy(paz4, raz4));
goto CLEANUP;
}
/* A = qx * pz^2, B = qy * pz^3 */
MP_CHECKOK(group->meth->field_sqr(pz, A, group->meth));
MP_CHECKOK(group->meth->field_mul(A, pz, B, group->meth));
MP_CHECKOK(group->meth->field_mul(A, qx, A, group->meth));
MP_CHECKOK(group->meth->field_mul(B, qy, B, group->meth));
/* C = A - px, D = B - py */
MP_CHECKOK(group->meth->field_sub(A, px, C, group->meth));
MP_CHECKOK(group->meth->field_sub(B, py, D, group->meth));
/* C2 = C^2, C3 = C^3 */
MP_CHECKOK(group->meth->field_sqr(C, C2, group->meth));
MP_CHECKOK(group->meth->field_mul(C, C2, C3, group->meth));
/* rz = pz * C */
MP_CHECKOK(group->meth->field_mul(pz, C, rz, group->meth));
/* C = px * C^2 */
MP_CHECKOK(group->meth->field_mul(px, C2, C, group->meth));
/* A = D^2 */
MP_CHECKOK(group->meth->field_sqr(D, A, group->meth));
/* rx = D^2 - (C^3 + 2 * (px * C^2)) */
MP_CHECKOK(group->meth->field_add(C, C, rx, group->meth));
MP_CHECKOK(group->meth->field_add(C3, rx, rx, group->meth));
MP_CHECKOK(group->meth->field_sub(A, rx, rx, group->meth));
/* C3 = py * C^3 */
MP_CHECKOK(group->meth->field_mul(py, C3, C3, group->meth));
/* ry = D * (px * C^2 - rx) - py * C^3 */
MP_CHECKOK(group->meth->field_sub(C, rx, ry, group->meth));
MP_CHECKOK(group->meth->field_mul(D, ry, ry, group->meth));
MP_CHECKOK(group->meth->field_sub(ry, C3, ry, group->meth));
/* raz4 = a * rz^4 */
MP_CHECKOK(group->meth->field_sqr(rz, raz4, group->meth));
MP_CHECKOK(group->meth->field_sqr(raz4, raz4, group->meth));
MP_CHECKOK(group->meth->
field_mul(raz4, &group->curvea, raz4, group->meth));
CLEANUP:
return res;
}
/* Computes R = nP where R is (rx, ry) and P is the base point. Elliptic
* curve points P and R can be identical. Uses mixed Modified-Jacobian
* co-ordinates for doubling and Chudnovsky Jacobian coordinates for
* additions. Assumes input is already field-encoded using field_enc, and
* returns output that is still field-encoded. Uses 5-bit window NAF
* method (algorithm 11) for scalar-point multiplication from Brown,
* Hankerson, Lopez, Menezes. Software Implementation of the NIST Elliptic
* Curves Over Prime Fields. */
mp_err
ec_GFp_pt_mul_jm_wNAF(const mp_int *n, const mp_int *px, const mp_int *py,
mp_int *rx, mp_int *ry, const ECGroup *group)
{
mp_err res = MP_OKAY;
mp_int precomp[16][2], rz, tpx, tpy;
mp_int raz4;
mp_int scratch[MAX_SCRATCH];
signed char *naf = NULL;
int i, orderBitSize;
MP_DIGITS(&rz) = 0;
MP_DIGITS(&raz4) = 0;
MP_DIGITS(&tpx) = 0;
MP_DIGITS(&tpy) = 0;
for (i = 0; i < 16; i++) {
MP_DIGITS(&precomp[i][0]) = 0;
MP_DIGITS(&precomp[i][1]) = 0;
}
for (i = 0; i < MAX_SCRATCH; i++) {
MP_DIGITS(&scratch[i]) = 0;
}
ARGCHK(group != NULL, MP_BADARG);
ARGCHK((n != NULL) && (px != NULL) && (py != NULL), MP_BADARG);
/* initialize precomputation table */
MP_CHECKOK(mp_init(&tpx, FLAG(n)));
MP_CHECKOK(mp_init(&tpy, FLAG(n)));;
MP_CHECKOK(mp_init(&rz, FLAG(n)));
MP_CHECKOK(mp_init(&raz4, FLAG(n)));
for (i = 0; i < 16; i++) {
MP_CHECKOK(mp_init(&precomp[i][0], FLAG(n)));
MP_CHECKOK(mp_init(&precomp[i][1], FLAG(n)));
}
for (i = 0; i < MAX_SCRATCH; i++) {
MP_CHECKOK(mp_init(&scratch[i], FLAG(n)));
}
/* Set out[8] = P */
MP_CHECKOK(mp_copy(px, &precomp[8][0]));
MP_CHECKOK(mp_copy(py, &precomp[8][1]));
/* Set (tpx, tpy) = 2P */
MP_CHECKOK(group->
point_dbl(&precomp[8][0], &precomp[8][1], &tpx, &tpy,
group));
/* Set 3P, 5P, ..., 15P */
for (i = 8; i < 15; i++) {
MP_CHECKOK(group->
point_add(&precomp[i][0], &precomp[i][1], &tpx, &tpy,
&precomp[i + 1][0], &precomp[i + 1][1],
group));
}
/* Set -15P, -13P, ..., -P */
for (i = 0; i < 8; i++) {
MP_CHECKOK(mp_copy(&precomp[15 - i][0], &precomp[i][0]));
MP_CHECKOK(group->meth->
field_neg(&precomp[15 - i][1], &precomp[i][1],
group->meth));
}
/* R = inf */
MP_CHECKOK(ec_GFp_pt_set_inf_jac(rx, ry, &rz));
orderBitSize = mpl_significant_bits(&group->order);
/* Allocate memory for NAF */
#ifdef _KERNEL
naf = (signed char *) kmem_alloc((orderBitSize + 1), FLAG(n));
#else
naf = (signed char *) malloc(sizeof(signed char) * (orderBitSize + 1));
if (naf == NULL) {
res = MP_MEM;
goto CLEANUP;
}
#endif
/* Compute 5NAF */
ec_compute_wNAF(naf, orderBitSize, n, 5);
/* wNAF method */
for (i = orderBitSize; i >= 0; i--) {
/* R = 2R */
ec_GFp_pt_dbl_jm(rx, ry, &rz, &raz4, rx, ry, &rz,
&raz4, scratch, group);
if (naf[i] != 0) {
ec_GFp_pt_add_jm_aff(rx, ry, &rz, &raz4,
&precomp[(naf[i] + 15) / 2][0],
&precomp[(naf[i] + 15) / 2][1], rx, ry,
&rz, &raz4, scratch, group);
}
}
/* convert result S to affine coordinates */
MP_CHECKOK(ec_GFp_pt_jac2aff(rx, ry, &rz, rx, ry, group));
CLEANUP:
for (i = 0; i < MAX_SCRATCH; i++) {
mp_clear(&scratch[i]);
}
for (i = 0; i < 16; i++) {
mp_clear(&precomp[i][0]);
mp_clear(&precomp[i][1]);
}
mp_clear(&tpx);
mp_clear(&tpy);
mp_clear(&rz);
mp_clear(&raz4);
#ifdef _KERNEL
kmem_free(naf, (orderBitSize + 1));
#else
free(naf);
#endif
return res;
}

View File

@ -0,0 +1,223 @@
/* *********************************************************************
*
* Sun elects to have this file available under and governed by the
* Mozilla Public License Version 1.1 ("MPL") (see
* http://www.mozilla.org/MPL/ for full license text). For the avoidance
* of doubt and subject to the following, Sun also elects to allow
* licensees to use this file under the MPL, the GNU General Public
* License version 2 only or the Lesser General Public License version
* 2.1 only. Any references to the "GNU General Public License version 2
* or later" or "GPL" in the following shall be construed to mean the
* GNU General Public License version 2 only. Any references to the "GNU
* Lesser General Public License version 2.1 or later" or "LGPL" in the
* following shall be construed to mean the GNU Lesser General Public
* License version 2.1 only. However, the following notice accompanied
* the original version of this file:
*
* Version: MPL 1.1/GPL 2.0/LGPL 2.1
*
* The contents of this file are subject to the Mozilla Public License Version
* 1.1 (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* Software distributed under the License is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
* for the specific language governing rights and limitations under the
* License.
*
* The Original Code is the elliptic curve math library.
*
* The Initial Developer of the Original Code is
* Sun Microsystems, Inc.
* Portions created by the Initial Developer are Copyright (C) 2003
* the Initial Developer. All Rights Reserved.
*
* Contributor(s):
* Douglas Stebila <douglas@stebila.ca>, Sun Microsystems Laboratories
*
* Alternatively, the contents of this file may be used under the terms of
* either the GNU General Public License Version 2 or later (the "GPL"), or
* the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
* in which case the provisions of the GPL or the LGPL are applicable instead
* of those above. If you wish to allow use of your version of this file only
* under the terms of either the GPL or the LGPL, and not to allow others to
* use your version of this file under the terms of the MPL, indicate your
* decision by deleting the provisions above and replace them with the notice
* and other provisions required by the GPL or the LGPL. If you do not delete
* the provisions above, a recipient may use your version of this file under
* the terms of any one of the MPL, the GPL or the LGPL.
*
*********************************************************************** */
/*
* Copyright 2007 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#pragma ident "%Z%%M% %I% %E% SMI"
/* Uses Montgomery reduction for field arithmetic. See mpi/mpmontg.c for
* code implementation. */
#include "mpi.h"
#include "mplogic.h"
#include "mpi-priv.h"
#include "ecl-priv.h"
#include "ecp.h"
#ifndef _KERNEL
#include <stdlib.h>
#include <stdio.h>
#endif
/* Construct a generic GFMethod for arithmetic over prime fields with
* irreducible irr. */
GFMethod *
GFMethod_consGFp_mont(const mp_int *irr)
{
mp_err res = MP_OKAY;
int i;
GFMethod *meth = NULL;
mp_mont_modulus *mmm;
meth = GFMethod_consGFp(irr);
if (meth == NULL)
return NULL;
#ifdef _KERNEL
mmm = (mp_mont_modulus *) kmem_alloc(sizeof(mp_mont_modulus),
FLAG(irr));
#else
mmm = (mp_mont_modulus *) malloc(sizeof(mp_mont_modulus));
#endif
if (mmm == NULL) {
res = MP_MEM;
goto CLEANUP;
}
meth->field_mul = &ec_GFp_mul_mont;
meth->field_sqr = &ec_GFp_sqr_mont;
meth->field_div = &ec_GFp_div_mont;
meth->field_enc = &ec_GFp_enc_mont;
meth->field_dec = &ec_GFp_dec_mont;
meth->extra1 = mmm;
meth->extra2 = NULL;
meth->extra_free = &ec_GFp_extra_free_mont;
mmm->N = meth->irr;
i = mpl_significant_bits(&meth->irr);
i += MP_DIGIT_BIT - 1;
mmm->b = i - i % MP_DIGIT_BIT;
mmm->n0prime = 0 - s_mp_invmod_radix(MP_DIGIT(&meth->irr, 0));
CLEANUP:
if (res != MP_OKAY) {
GFMethod_free(meth);
return NULL;
}
return meth;
}
/* Wrapper functions for generic prime field arithmetic. */
/* Field multiplication using Montgomery reduction. */
mp_err
ec_GFp_mul_mont(const mp_int *a, const mp_int *b, mp_int *r,
const GFMethod *meth)
{
mp_err res = MP_OKAY;
#ifdef MP_MONT_USE_MP_MUL
/* if MP_MONT_USE_MP_MUL is defined, then the function s_mp_mul_mont
* is not implemented and we have to use mp_mul and s_mp_redc directly
*/
MP_CHECKOK(mp_mul(a, b, r));
MP_CHECKOK(s_mp_redc(r, (mp_mont_modulus *) meth->extra1));
#else
mp_int s;
MP_DIGITS(&s) = 0;
/* s_mp_mul_mont doesn't allow source and destination to be the same */
if ((a == r) || (b == r)) {
MP_CHECKOK(mp_init(&s, FLAG(a)));
MP_CHECKOK(s_mp_mul_mont
(a, b, &s, (mp_mont_modulus *) meth->extra1));
MP_CHECKOK(mp_copy(&s, r));
mp_clear(&s);
} else {
return s_mp_mul_mont(a, b, r, (mp_mont_modulus *) meth->extra1);
}
#endif
CLEANUP:
return res;
}
/* Field squaring using Montgomery reduction. */
mp_err
ec_GFp_sqr_mont(const mp_int *a, mp_int *r, const GFMethod *meth)
{
return ec_GFp_mul_mont(a, a, r, meth);
}
/* Field division using Montgomery reduction. */
mp_err
ec_GFp_div_mont(const mp_int *a, const mp_int *b, mp_int *r,
const GFMethod *meth)
{
mp_err res = MP_OKAY;
/* if A=aZ represents a encoded in montgomery coordinates with Z and #
* and \ respectively represent multiplication and division in
* montgomery coordinates, then A\B = (a/b)Z = (A/B)Z and Binv =
* (1/b)Z = (1/B)(Z^2) where B # Binv = Z */
MP_CHECKOK(ec_GFp_div(a, b, r, meth));
MP_CHECKOK(ec_GFp_enc_mont(r, r, meth));
if (a == NULL) {
MP_CHECKOK(ec_GFp_enc_mont(r, r, meth));
}
CLEANUP:
return res;
}
/* Encode a field element in Montgomery form. See s_mp_to_mont in
* mpi/mpmontg.c */
mp_err
ec_GFp_enc_mont(const mp_int *a, mp_int *r, const GFMethod *meth)
{
mp_mont_modulus *mmm;
mp_err res = MP_OKAY;
mmm = (mp_mont_modulus *) meth->extra1;
MP_CHECKOK(mpl_lsh(a, r, mmm->b));
MP_CHECKOK(mp_mod(r, &mmm->N, r));
CLEANUP:
return res;
}
/* Decode a field element from Montgomery form. */
mp_err
ec_GFp_dec_mont(const mp_int *a, mp_int *r, const GFMethod *meth)
{
mp_err res = MP_OKAY;
if (a != r) {
MP_CHECKOK(mp_copy(a, r));
}
MP_CHECKOK(s_mp_redc(r, (mp_mont_modulus *) meth->extra1));
CLEANUP:
return res;
}
/* Free the memory allocated to the extra fields of Montgomery GFMethod
* object. */
void
ec_GFp_extra_free_mont(GFMethod *meth)
{
if (meth->extra1 != NULL) {
#ifdef _KERNEL
kmem_free(meth->extra1, sizeof(mp_mont_modulus));
#else
free(meth->extra1);
#endif
meth->extra1 = NULL;
}
}

View File

@ -0,0 +1,82 @@
/* *********************************************************************
*
* Sun elects to have this file available under and governed by the
* Mozilla Public License Version 1.1 ("MPL") (see
* http://www.mozilla.org/MPL/ for full license text). For the avoidance
* of doubt and subject to the following, Sun also elects to allow
* licensees to use this file under the MPL, the GNU General Public
* License version 2 only or the Lesser General Public License version
* 2.1 only. Any references to the "GNU General Public License version 2
* or later" or "GPL" in the following shall be construed to mean the
* GNU General Public License version 2 only. Any references to the "GNU
* Lesser General Public License version 2.1 or later" or "LGPL" in the
* following shall be construed to mean the GNU Lesser General Public
* License version 2.1 only. However, the following notice accompanied
* the original version of this file:
*
* Version: MPL 1.1/GPL 2.0/LGPL 2.1
*
* The contents of this file are subject to the Mozilla Public License Version
* 1.1 (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* Software distributed under the License is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
* for the specific language governing rights and limitations under the
* License.
*
* The Original Code is the Netscape security libraries.
*
* The Initial Developer of the Original Code is
* Netscape Communications Corporation.
* Portions created by the Initial Developer are Copyright (C) 1994-2000
* the Initial Developer. All Rights Reserved.
*
* Contributor(s):
* Dr Vipul Gupta <vipul.gupta@sun.com>, Sun Microsystems Laboratories
*
* Alternatively, the contents of this file may be used under the terms of
* either the GNU General Public License Version 2 or later (the "GPL"), or
* the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
* in which case the provisions of the GPL or the LGPL are applicable instead
* of those above. If you wish to allow use of your version of this file only
* under the terms of either the GPL or the LGPL, and not to allow others to
* use your version of this file under the terms of the MPL, indicate your
* decision by deleting the provisions above and replace them with the notice
* and other provisions required by the GPL or the LGPL. If you do not delete
* the provisions above, a recipient may use your version of this file under
* the terms of any one of the MPL, the GPL or the LGPL.
*
*********************************************************************** */
/*
* Copyright 2007 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#ifndef _LOGTAB_H
#define _LOGTAB_H
#pragma ident "%Z%%M% %I% %E% SMI"
const float s_logv_2[] = {
0.000000000f, 0.000000000f, 1.000000000f, 0.630929754f, /* 0 1 2 3 */
0.500000000f, 0.430676558f, 0.386852807f, 0.356207187f, /* 4 5 6 7 */
0.333333333f, 0.315464877f, 0.301029996f, 0.289064826f, /* 8 9 10 11 */
0.278942946f, 0.270238154f, 0.262649535f, 0.255958025f, /* 12 13 14 15 */
0.250000000f, 0.244650542f, 0.239812467f, 0.235408913f, /* 16 17 18 19 */
0.231378213f, 0.227670249f, 0.224243824f, 0.221064729f, /* 20 21 22 23 */
0.218104292f, 0.215338279f, 0.212746054f, 0.210309918f, /* 24 25 26 27 */
0.208014598f, 0.205846832f, 0.203795047f, 0.201849087f, /* 28 29 30 31 */
0.200000000f, 0.198239863f, 0.196561632f, 0.194959022f, /* 32 33 34 35 */
0.193426404f, 0.191958720f, 0.190551412f, 0.189200360f, /* 36 37 38 39 */
0.187901825f, 0.186652411f, 0.185449023f, 0.184288833f, /* 40 41 42 43 */
0.183169251f, 0.182087900f, 0.181042597f, 0.180031327f, /* 44 45 46 47 */
0.179052232f, 0.178103594f, 0.177183820f, 0.176291434f, /* 48 49 50 51 */
0.175425064f, 0.174583430f, 0.173765343f, 0.172969690f, /* 52 53 54 55 */
0.172195434f, 0.171441601f, 0.170707280f, 0.169991616f, /* 56 57 58 59 */
0.169293808f, 0.168613099f, 0.167948779f, 0.167300179f, /* 60 61 62 63 */
0.166666667f
};
#endif /* _LOGTAB_H */

View File

@ -0,0 +1,122 @@
/* *********************************************************************
*
* Sun elects to have this file available under and governed by the
* Mozilla Public License Version 1.1 ("MPL") (see
* http://www.mozilla.org/MPL/ for full license text). For the avoidance
* of doubt and subject to the following, Sun also elects to allow
* licensees to use this file under the MPL, the GNU General Public
* License version 2 only or the Lesser General Public License version
* 2.1 only. Any references to the "GNU General Public License version 2
* or later" or "GPL" in the following shall be construed to mean the
* GNU General Public License version 2 only. Any references to the "GNU
* Lesser General Public License version 2.1 or later" or "LGPL" in the
* following shall be construed to mean the GNU Lesser General Public
* License version 2.1 only. However, the following notice accompanied
* the original version of this file:
*
* Version: MPL 1.1/GPL 2.0/LGPL 2.1
*
* The contents of this file are subject to the Mozilla Public License Version
* 1.1 (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* Software distributed under the License is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
* for the specific language governing rights and limitations under the
* License.
*
* The Original Code is the Multi-precision Binary Polynomial Arithmetic Library.
*
* The Initial Developer of the Original Code is
* Sun Microsystems, Inc.
* Portions created by the Initial Developer are Copyright (C) 2003
* the Initial Developer. All Rights Reserved.
*
* Contributor(s):
* Sheueling Chang Shantz <sheueling.chang@sun.com> and
* Douglas Stebila <douglas@stebila.ca> of Sun Laboratories.
*
* Alternatively, the contents of this file may be used under the terms of
* either the GNU General Public License Version 2 or later (the "GPL"), or
* the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
* in which case the provisions of the GPL or the LGPL are applicable instead
* of those above. If you wish to allow use of your version of this file only
* under the terms of either the GPL or the LGPL, and not to allow others to
* use your version of this file under the terms of the MPL, indicate your
* decision by deleting the provisions above and replace them with the notice
* and other provisions required by the GPL or the LGPL. If you do not delete
* the provisions above, a recipient may use your version of this file under
* the terms of any one of the MPL, the GPL or the LGPL.
*
*********************************************************************** */
/*
* Copyright 2007 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#ifndef _MP_GF2M_PRIV_H_
#define _MP_GF2M_PRIV_H_
#pragma ident "%Z%%M% %I% %E% SMI"
#include "mpi-priv.h"
extern const mp_digit mp_gf2m_sqr_tb[16];
#if defined(MP_USE_UINT_DIGIT)
#define MP_DIGIT_BITS 32
#else
#define MP_DIGIT_BITS 64
#endif
/* Platform-specific macros for fast binary polynomial squaring. */
#if MP_DIGIT_BITS == 32
#define gf2m_SQR1(w) \
mp_gf2m_sqr_tb[(w) >> 28 & 0xF] << 24 | mp_gf2m_sqr_tb[(w) >> 24 & 0xF] << 16 | \
mp_gf2m_sqr_tb[(w) >> 20 & 0xF] << 8 | mp_gf2m_sqr_tb[(w) >> 16 & 0xF]
#define gf2m_SQR0(w) \
mp_gf2m_sqr_tb[(w) >> 12 & 0xF] << 24 | mp_gf2m_sqr_tb[(w) >> 8 & 0xF] << 16 | \
mp_gf2m_sqr_tb[(w) >> 4 & 0xF] << 8 | mp_gf2m_sqr_tb[(w) & 0xF]
#else
#define gf2m_SQR1(w) \
mp_gf2m_sqr_tb[(w) >> 60 & 0xF] << 56 | mp_gf2m_sqr_tb[(w) >> 56 & 0xF] << 48 | \
mp_gf2m_sqr_tb[(w) >> 52 & 0xF] << 40 | mp_gf2m_sqr_tb[(w) >> 48 & 0xF] << 32 | \
mp_gf2m_sqr_tb[(w) >> 44 & 0xF] << 24 | mp_gf2m_sqr_tb[(w) >> 40 & 0xF] << 16 | \
mp_gf2m_sqr_tb[(w) >> 36 & 0xF] << 8 | mp_gf2m_sqr_tb[(w) >> 32 & 0xF]
#define gf2m_SQR0(w) \
mp_gf2m_sqr_tb[(w) >> 28 & 0xF] << 56 | mp_gf2m_sqr_tb[(w) >> 24 & 0xF] << 48 | \
mp_gf2m_sqr_tb[(w) >> 20 & 0xF] << 40 | mp_gf2m_sqr_tb[(w) >> 16 & 0xF] << 32 | \
mp_gf2m_sqr_tb[(w) >> 12 & 0xF] << 24 | mp_gf2m_sqr_tb[(w) >> 8 & 0xF] << 16 | \
mp_gf2m_sqr_tb[(w) >> 4 & 0xF] << 8 | mp_gf2m_sqr_tb[(w) & 0xF]
#endif
/* Multiply two binary polynomials mp_digits a, b.
* Result is a polynomial with degree < 2 * MP_DIGIT_BITS - 1.
* Output in two mp_digits rh, rl.
*/
void s_bmul_1x1(mp_digit *rh, mp_digit *rl, const mp_digit a, const mp_digit b);
/* Compute xor-multiply of two binary polynomials (a1, a0) x (b1, b0)
* result is a binary polynomial in 4 mp_digits r[4].
* The caller MUST ensure that r has the right amount of space allocated.
*/
void s_bmul_2x2(mp_digit *r, const mp_digit a1, const mp_digit a0, const mp_digit b1,
const mp_digit b0);
/* Compute xor-multiply of two binary polynomials (a2, a1, a0) x (b2, b1, b0)
* result is a binary polynomial in 6 mp_digits r[6].
* The caller MUST ensure that r has the right amount of space allocated.
*/
void s_bmul_3x3(mp_digit *r, const mp_digit a2, const mp_digit a1, const mp_digit a0,
const mp_digit b2, const mp_digit b1, const mp_digit b0);
/* Compute xor-multiply of two binary polynomials (a3, a2, a1, a0) x (b3, b2, b1, b0)
* result is a binary polynomial in 8 mp_digits r[8].
* The caller MUST ensure that r has the right amount of space allocated.
*/
void s_bmul_4x4(mp_digit *r, const mp_digit a3, const mp_digit a2, const mp_digit a1,
const mp_digit a0, const mp_digit b3, const mp_digit b2, const mp_digit b1,
const mp_digit b0);
#endif /* _MP_GF2M_PRIV_H_ */

View File

@ -0,0 +1,624 @@
/* *********************************************************************
*
* Sun elects to have this file available under and governed by the
* Mozilla Public License Version 1.1 ("MPL") (see
* http://www.mozilla.org/MPL/ for full license text). For the avoidance
* of doubt and subject to the following, Sun also elects to allow
* licensees to use this file under the MPL, the GNU General Public
* License version 2 only or the Lesser General Public License version
* 2.1 only. Any references to the "GNU General Public License version 2
* or later" or "GPL" in the following shall be construed to mean the
* GNU General Public License version 2 only. Any references to the "GNU
* Lesser General Public License version 2.1 or later" or "LGPL" in the
* following shall be construed to mean the GNU Lesser General Public
* License version 2.1 only. However, the following notice accompanied
* the original version of this file:
*
* Version: MPL 1.1/GPL 2.0/LGPL 2.1
*
* The contents of this file are subject to the Mozilla Public License Version
* 1.1 (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* Software distributed under the License is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
* for the specific language governing rights and limitations under the
* License.
*
* The Original Code is the Multi-precision Binary Polynomial Arithmetic Library.
*
* The Initial Developer of the Original Code is
* Sun Microsystems, Inc.
* Portions created by the Initial Developer are Copyright (C) 2003
* the Initial Developer. All Rights Reserved.
*
* Contributor(s):
* Sheueling Chang Shantz <sheueling.chang@sun.com> and
* Douglas Stebila <douglas@stebila.ca> of Sun Laboratories.
*
* Alternatively, the contents of this file may be used under the terms of
* either the GNU General Public License Version 2 or later (the "GPL"), or
* the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
* in which case the provisions of the GPL or the LGPL are applicable instead
* of those above. If you wish to allow use of your version of this file only
* under the terms of either the GPL or the LGPL, and not to allow others to
* use your version of this file under the terms of the MPL, indicate your
* decision by deleting the provisions above and replace them with the notice
* and other provisions required by the GPL or the LGPL. If you do not delete
* the provisions above, a recipient may use your version of this file under
* the terms of any one of the MPL, the GPL or the LGPL.
*
*********************************************************************** */
/*
* Copyright 2007 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#pragma ident "%Z%%M% %I% %E% SMI"
#include "mp_gf2m.h"
#include "mp_gf2m-priv.h"
#include "mplogic.h"
#include "mpi-priv.h"
const mp_digit mp_gf2m_sqr_tb[16] =
{
0, 1, 4, 5, 16, 17, 20, 21,
64, 65, 68, 69, 80, 81, 84, 85
};
/* Multiply two binary polynomials mp_digits a, b.
* Result is a polynomial with degree < 2 * MP_DIGIT_BITS - 1.
* Output in two mp_digits rh, rl.
*/
#if MP_DIGIT_BITS == 32
void
s_bmul_1x1(mp_digit *rh, mp_digit *rl, const mp_digit a, const mp_digit b)
{
register mp_digit h, l, s;
mp_digit tab[8], top2b = a >> 30;
register mp_digit a1, a2, a4;
a1 = a & (0x3FFFFFFF); a2 = a1 << 1; a4 = a2 << 1;
tab[0] = 0; tab[1] = a1; tab[2] = a2; tab[3] = a1^a2;
tab[4] = a4; tab[5] = a1^a4; tab[6] = a2^a4; tab[7] = a1^a2^a4;
s = tab[b & 0x7]; l = s;
s = tab[b >> 3 & 0x7]; l ^= s << 3; h = s >> 29;
s = tab[b >> 6 & 0x7]; l ^= s << 6; h ^= s >> 26;
s = tab[b >> 9 & 0x7]; l ^= s << 9; h ^= s >> 23;
s = tab[b >> 12 & 0x7]; l ^= s << 12; h ^= s >> 20;
s = tab[b >> 15 & 0x7]; l ^= s << 15; h ^= s >> 17;
s = tab[b >> 18 & 0x7]; l ^= s << 18; h ^= s >> 14;
s = tab[b >> 21 & 0x7]; l ^= s << 21; h ^= s >> 11;
s = tab[b >> 24 & 0x7]; l ^= s << 24; h ^= s >> 8;
s = tab[b >> 27 & 0x7]; l ^= s << 27; h ^= s >> 5;
s = tab[b >> 30 ]; l ^= s << 30; h ^= s >> 2;
/* compensate for the top two bits of a */
if (top2b & 01) { l ^= b << 30; h ^= b >> 2; }
if (top2b & 02) { l ^= b << 31; h ^= b >> 1; }
*rh = h; *rl = l;
}
#else
void
s_bmul_1x1(mp_digit *rh, mp_digit *rl, const mp_digit a, const mp_digit b)
{
register mp_digit h, l, s;
mp_digit tab[16], top3b = a >> 61;
register mp_digit a1, a2, a4, a8;
a1 = a & (0x1FFFFFFFFFFFFFFFULL); a2 = a1 << 1;
a4 = a2 << 1; a8 = a4 << 1;
tab[ 0] = 0; tab[ 1] = a1; tab[ 2] = a2; tab[ 3] = a1^a2;
tab[ 4] = a4; tab[ 5] = a1^a4; tab[ 6] = a2^a4; tab[ 7] = a1^a2^a4;
tab[ 8] = a8; tab[ 9] = a1^a8; tab[10] = a2^a8; tab[11] = a1^a2^a8;
tab[12] = a4^a8; tab[13] = a1^a4^a8; tab[14] = a2^a4^a8; tab[15] = a1^a2^a4^a8;
s = tab[b & 0xF]; l = s;
s = tab[b >> 4 & 0xF]; l ^= s << 4; h = s >> 60;
s = tab[b >> 8 & 0xF]; l ^= s << 8; h ^= s >> 56;
s = tab[b >> 12 & 0xF]; l ^= s << 12; h ^= s >> 52;
s = tab[b >> 16 & 0xF]; l ^= s << 16; h ^= s >> 48;
s = tab[b >> 20 & 0xF]; l ^= s << 20; h ^= s >> 44;
s = tab[b >> 24 & 0xF]; l ^= s << 24; h ^= s >> 40;
s = tab[b >> 28 & 0xF]; l ^= s << 28; h ^= s >> 36;
s = tab[b >> 32 & 0xF]; l ^= s << 32; h ^= s >> 32;
s = tab[b >> 36 & 0xF]; l ^= s << 36; h ^= s >> 28;
s = tab[b >> 40 & 0xF]; l ^= s << 40; h ^= s >> 24;
s = tab[b >> 44 & 0xF]; l ^= s << 44; h ^= s >> 20;
s = tab[b >> 48 & 0xF]; l ^= s << 48; h ^= s >> 16;
s = tab[b >> 52 & 0xF]; l ^= s << 52; h ^= s >> 12;
s = tab[b >> 56 & 0xF]; l ^= s << 56; h ^= s >> 8;
s = tab[b >> 60 ]; l ^= s << 60; h ^= s >> 4;
/* compensate for the top three bits of a */
if (top3b & 01) { l ^= b << 61; h ^= b >> 3; }
if (top3b & 02) { l ^= b << 62; h ^= b >> 2; }
if (top3b & 04) { l ^= b << 63; h ^= b >> 1; }
*rh = h; *rl = l;
}
#endif
/* Compute xor-multiply of two binary polynomials (a1, a0) x (b1, b0)
* result is a binary polynomial in 4 mp_digits r[4].
* The caller MUST ensure that r has the right amount of space allocated.
*/
void
s_bmul_2x2(mp_digit *r, const mp_digit a1, const mp_digit a0, const mp_digit b1,
const mp_digit b0)
{
mp_digit m1, m0;
/* r[3] = h1, r[2] = h0; r[1] = l1; r[0] = l0 */
s_bmul_1x1(r+3, r+2, a1, b1);
s_bmul_1x1(r+1, r, a0, b0);
s_bmul_1x1(&m1, &m0, a0 ^ a1, b0 ^ b1);
/* Correction on m1 ^= l1 ^ h1; m0 ^= l0 ^ h0; */
r[2] ^= m1 ^ r[1] ^ r[3]; /* h0 ^= m1 ^ l1 ^ h1; */
r[1] = r[3] ^ r[2] ^ r[0] ^ m1 ^ m0; /* l1 ^= l0 ^ h0 ^ m0; */
}
/* Compute xor-multiply of two binary polynomials (a2, a1, a0) x (b2, b1, b0)
* result is a binary polynomial in 6 mp_digits r[6].
* The caller MUST ensure that r has the right amount of space allocated.
*/
void
s_bmul_3x3(mp_digit *r, const mp_digit a2, const mp_digit a1, const mp_digit a0,
const mp_digit b2, const mp_digit b1, const mp_digit b0)
{
mp_digit zm[4];
s_bmul_1x1(r+5, r+4, a2, b2); /* fill top 2 words */
s_bmul_2x2(zm, a1, a2^a0, b1, b2^b0); /* fill middle 4 words */
s_bmul_2x2(r, a1, a0, b1, b0); /* fill bottom 4 words */
zm[3] ^= r[3];
zm[2] ^= r[2];
zm[1] ^= r[1] ^ r[5];
zm[0] ^= r[0] ^ r[4];
r[5] ^= zm[3];
r[4] ^= zm[2];
r[3] ^= zm[1];
r[2] ^= zm[0];
}
/* Compute xor-multiply of two binary polynomials (a3, a2, a1, a0) x (b3, b2, b1, b0)
* result is a binary polynomial in 8 mp_digits r[8].
* The caller MUST ensure that r has the right amount of space allocated.
*/
void s_bmul_4x4(mp_digit *r, const mp_digit a3, const mp_digit a2, const mp_digit a1,
const mp_digit a0, const mp_digit b3, const mp_digit b2, const mp_digit b1,
const mp_digit b0)
{
mp_digit zm[4];
s_bmul_2x2(r+4, a3, a2, b3, b2); /* fill top 4 words */
s_bmul_2x2(zm, a3^a1, a2^a0, b3^b1, b2^b0); /* fill middle 4 words */
s_bmul_2x2(r, a1, a0, b1, b0); /* fill bottom 4 words */
zm[3] ^= r[3] ^ r[7];
zm[2] ^= r[2] ^ r[6];
zm[1] ^= r[1] ^ r[5];
zm[0] ^= r[0] ^ r[4];
r[5] ^= zm[3];
r[4] ^= zm[2];
r[3] ^= zm[1];
r[2] ^= zm[0];
}
/* Compute addition of two binary polynomials a and b,
* store result in c; c could be a or b, a and b could be equal;
* c is the bitwise XOR of a and b.
*/
mp_err
mp_badd(const mp_int *a, const mp_int *b, mp_int *c)
{
mp_digit *pa, *pb, *pc;
mp_size ix;
mp_size used_pa, used_pb;
mp_err res = MP_OKAY;
/* Add all digits up to the precision of b. If b had more
* precision than a initially, swap a, b first
*/
if (MP_USED(a) >= MP_USED(b)) {
pa = MP_DIGITS(a);
pb = MP_DIGITS(b);
used_pa = MP_USED(a);
used_pb = MP_USED(b);
} else {
pa = MP_DIGITS(b);
pb = MP_DIGITS(a);
used_pa = MP_USED(b);
used_pb = MP_USED(a);
}
/* Make sure c has enough precision for the output value */
MP_CHECKOK( s_mp_pad(c, used_pa) );
/* Do word-by-word xor */
pc = MP_DIGITS(c);
for (ix = 0; ix < used_pb; ix++) {
(*pc++) = (*pa++) ^ (*pb++);
}
/* Finish the rest of digits until we're actually done */
for (; ix < used_pa; ++ix) {
*pc++ = *pa++;
}
MP_USED(c) = used_pa;
MP_SIGN(c) = ZPOS;
s_mp_clamp(c);
CLEANUP:
return res;
}
#define s_mp_div2(a) MP_CHECKOK( mpl_rsh((a), (a), 1) );
/* Compute binary polynomial multiply d = a * b */
static void
s_bmul_d(const mp_digit *a, mp_size a_len, mp_digit b, mp_digit *d)
{
mp_digit a_i, a0b0, a1b1, carry = 0;
while (a_len--) {
a_i = *a++;
s_bmul_1x1(&a1b1, &a0b0, a_i, b);
*d++ = a0b0 ^ carry;
carry = a1b1;
}
*d = carry;
}
/* Compute binary polynomial xor multiply accumulate d ^= a * b */
static void
s_bmul_d_add(const mp_digit *a, mp_size a_len, mp_digit b, mp_digit *d)
{
mp_digit a_i, a0b0, a1b1, carry = 0;
while (a_len--) {
a_i = *a++;
s_bmul_1x1(&a1b1, &a0b0, a_i, b);
*d++ ^= a0b0 ^ carry;
carry = a1b1;
}
*d ^= carry;
}
/* Compute binary polynomial xor multiply c = a * b.
* All parameters may be identical.
*/
mp_err
mp_bmul(const mp_int *a, const mp_int *b, mp_int *c)
{
mp_digit *pb, b_i;
mp_int tmp;
mp_size ib, a_used, b_used;
mp_err res = MP_OKAY;
MP_DIGITS(&tmp) = 0;
ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG);
if (a == c) {
MP_CHECKOK( mp_init_copy(&tmp, a) );
if (a == b)
b = &tmp;
a = &tmp;
} else if (b == c) {
MP_CHECKOK( mp_init_copy(&tmp, b) );
b = &tmp;
}
if (MP_USED(a) < MP_USED(b)) {
const mp_int *xch = b; /* switch a and b if b longer */
b = a;
a = xch;
}
MP_USED(c) = 1; MP_DIGIT(c, 0) = 0;
MP_CHECKOK( s_mp_pad(c, USED(a) + USED(b)) );
pb = MP_DIGITS(b);
s_bmul_d(MP_DIGITS(a), MP_USED(a), *pb++, MP_DIGITS(c));
/* Outer loop: Digits of b */
a_used = MP_USED(a);
b_used = MP_USED(b);
MP_USED(c) = a_used + b_used;
for (ib = 1; ib < b_used; ib++) {
b_i = *pb++;
/* Inner product: Digits of a */
if (b_i)
s_bmul_d_add(MP_DIGITS(a), a_used, b_i, MP_DIGITS(c) + ib);
else
MP_DIGIT(c, ib + a_used) = b_i;
}
s_mp_clamp(c);
SIGN(c) = ZPOS;
CLEANUP:
mp_clear(&tmp);
return res;
}
/* Compute modular reduction of a and store result in r.
* r could be a.
* For modular arithmetic, the irreducible polynomial f(t) is represented
* as an array of int[], where f(t) is of the form:
* f(t) = t^p[0] + t^p[1] + ... + t^p[k]
* where m = p[0] > p[1] > ... > p[k] = 0.
*/
mp_err
mp_bmod(const mp_int *a, const unsigned int p[], mp_int *r)
{
int j, k;
int n, dN, d0, d1;
mp_digit zz, *z, tmp;
mp_size used;
mp_err res = MP_OKAY;
/* The algorithm does the reduction in place in r,
* if a != r, copy a into r first so reduction can be done in r
*/
if (a != r) {
MP_CHECKOK( mp_copy(a, r) );
}
z = MP_DIGITS(r);
/* start reduction */
dN = p[0] / MP_DIGIT_BITS;
used = MP_USED(r);
for (j = used - 1; j > dN;) {
zz = z[j];
if (zz == 0) {
j--; continue;
}
z[j] = 0;
for (k = 1; p[k] > 0; k++) {
/* reducing component t^p[k] */
n = p[0] - p[k];
d0 = n % MP_DIGIT_BITS;
d1 = MP_DIGIT_BITS - d0;
n /= MP_DIGIT_BITS;
z[j-n] ^= (zz>>d0);
if (d0)
z[j-n-1] ^= (zz<<d1);
}
/* reducing component t^0 */
n = dN;
d0 = p[0] % MP_DIGIT_BITS;
d1 = MP_DIGIT_BITS - d0;
z[j-n] ^= (zz >> d0);
if (d0)
z[j-n-1] ^= (zz << d1);
}
/* final round of reduction */
while (j == dN) {
d0 = p[0] % MP_DIGIT_BITS;
zz = z[dN] >> d0;
if (zz == 0) break;
d1 = MP_DIGIT_BITS - d0;
/* clear up the top d1 bits */
if (d0) z[dN] = (z[dN] << d1) >> d1;
*z ^= zz; /* reduction t^0 component */
for (k = 1; p[k] > 0; k++) {
/* reducing component t^p[k]*/
n = p[k] / MP_DIGIT_BITS;
d0 = p[k] % MP_DIGIT_BITS;
d1 = MP_DIGIT_BITS - d0;
z[n] ^= (zz << d0);
tmp = zz >> d1;
if (d0 && tmp)
z[n+1] ^= tmp;
}
}
s_mp_clamp(r);
CLEANUP:
return res;
}
/* Compute the product of two polynomials a and b, reduce modulo p,
* Store the result in r. r could be a or b; a could be b.
*/
mp_err
mp_bmulmod(const mp_int *a, const mp_int *b, const unsigned int p[], mp_int *r)
{
mp_err res;
if (a == b) return mp_bsqrmod(a, p, r);
if ((res = mp_bmul(a, b, r) ) != MP_OKAY)
return res;
return mp_bmod(r, p, r);
}
/* Compute binary polynomial squaring c = a*a mod p .
* Parameter r and a can be identical.
*/
mp_err
mp_bsqrmod(const mp_int *a, const unsigned int p[], mp_int *r)
{
mp_digit *pa, *pr, a_i;
mp_int tmp;
mp_size ia, a_used;
mp_err res;
ARGCHK(a != NULL && r != NULL, MP_BADARG);
MP_DIGITS(&tmp) = 0;
if (a == r) {
MP_CHECKOK( mp_init_copy(&tmp, a) );
a = &tmp;
}
MP_USED(r) = 1; MP_DIGIT(r, 0) = 0;
MP_CHECKOK( s_mp_pad(r, 2*USED(a)) );
pa = MP_DIGITS(a);
pr = MP_DIGITS(r);
a_used = MP_USED(a);
MP_USED(r) = 2 * a_used;
for (ia = 0; ia < a_used; ia++) {
a_i = *pa++;
*pr++ = gf2m_SQR0(a_i);
*pr++ = gf2m_SQR1(a_i);
}
MP_CHECKOK( mp_bmod(r, p, r) );
s_mp_clamp(r);
SIGN(r) = ZPOS;
CLEANUP:
mp_clear(&tmp);
return res;
}
/* Compute binary polynomial y/x mod p, y divided by x, reduce modulo p.
* Store the result in r. r could be x or y, and x could equal y.
* Uses algorithm Modular_Division_GF(2^m) from
* Chang-Shantz, S. "From Euclid's GCD to Montgomery Multiplication to
* the Great Divide".
*/
int
mp_bdivmod(const mp_int *y, const mp_int *x, const mp_int *pp,
const unsigned int p[], mp_int *r)
{
mp_int aa, bb, uu;
mp_int *a, *b, *u, *v;
mp_err res = MP_OKAY;
MP_DIGITS(&aa) = 0;
MP_DIGITS(&bb) = 0;
MP_DIGITS(&uu) = 0;
MP_CHECKOK( mp_init_copy(&aa, x) );
MP_CHECKOK( mp_init_copy(&uu, y) );
MP_CHECKOK( mp_init_copy(&bb, pp) );
MP_CHECKOK( s_mp_pad(r, USED(pp)) );
MP_USED(r) = 1; MP_DIGIT(r, 0) = 0;
a = &aa; b= &bb; u=&uu; v=r;
/* reduce x and y mod p */
MP_CHECKOK( mp_bmod(a, p, a) );
MP_CHECKOK( mp_bmod(u, p, u) );
while (!mp_isodd(a)) {
s_mp_div2(a);
if (mp_isodd(u)) {
MP_CHECKOK( mp_badd(u, pp, u) );
}
s_mp_div2(u);
}
do {
if (mp_cmp_mag(b, a) > 0) {
MP_CHECKOK( mp_badd(b, a, b) );
MP_CHECKOK( mp_badd(v, u, v) );
do {
s_mp_div2(b);
if (mp_isodd(v)) {
MP_CHECKOK( mp_badd(v, pp, v) );
}
s_mp_div2(v);
} while (!mp_isodd(b));
}
else if ((MP_DIGIT(a,0) == 1) && (MP_USED(a) == 1))
break;
else {
MP_CHECKOK( mp_badd(a, b, a) );
MP_CHECKOK( mp_badd(u, v, u) );
do {
s_mp_div2(a);
if (mp_isodd(u)) {
MP_CHECKOK( mp_badd(u, pp, u) );
}
s_mp_div2(u);
} while (!mp_isodd(a));
}
} while (1);
MP_CHECKOK( mp_copy(u, r) );
CLEANUP:
/* XXX this appears to be a memory leak in the NSS code */
mp_clear(&aa);
mp_clear(&bb);
mp_clear(&uu);
return res;
}
/* Convert the bit-string representation of a polynomial a into an array
* of integers corresponding to the bits with non-zero coefficient.
* Up to max elements of the array will be filled. Return value is total
* number of coefficients that would be extracted if array was large enough.
*/
int
mp_bpoly2arr(const mp_int *a, unsigned int p[], int max)
{
int i, j, k;
mp_digit top_bit, mask;
top_bit = 1;
top_bit <<= MP_DIGIT_BIT - 1;
for (k = 0; k < max; k++) p[k] = 0;
k = 0;
for (i = MP_USED(a) - 1; i >= 0; i--) {
mask = top_bit;
for (j = MP_DIGIT_BIT - 1; j >= 0; j--) {
if (MP_DIGITS(a)[i] & mask) {
if (k < max) p[k] = MP_DIGIT_BIT * i + j;
k++;
}
mask >>= 1;
}
}
return k;
}
/* Convert the coefficient array representation of a polynomial to a
* bit-string. The array must be terminated by 0.
*/
mp_err
mp_barr2poly(const unsigned int p[], mp_int *a)
{
mp_err res = MP_OKAY;
int i;
mp_zero(a);
for (i = 0; p[i] > 0; i++) {
MP_CHECKOK( mpl_set_bit(a, p[i], 1) );
}
MP_CHECKOK( mpl_set_bit(a, 0, 1) );
CLEANUP:
return res;
}

View File

@ -0,0 +1,83 @@
/* *********************************************************************
*
* Sun elects to have this file available under and governed by the
* Mozilla Public License Version 1.1 ("MPL") (see
* http://www.mozilla.org/MPL/ for full license text). For the avoidance
* of doubt and subject to the following, Sun also elects to allow
* licensees to use this file under the MPL, the GNU General Public
* License version 2 only or the Lesser General Public License version
* 2.1 only. Any references to the "GNU General Public License version 2
* or later" or "GPL" in the following shall be construed to mean the
* GNU General Public License version 2 only. Any references to the "GNU
* Lesser General Public License version 2.1 or later" or "LGPL" in the
* following shall be construed to mean the GNU Lesser General Public
* License version 2.1 only. However, the following notice accompanied
* the original version of this file:
*
* Version: MPL 1.1/GPL 2.0/LGPL 2.1
*
* The contents of this file are subject to the Mozilla Public License Version
* 1.1 (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* Software distributed under the License is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
* for the specific language governing rights and limitations under the
* License.
*
* The Original Code is the Multi-precision Binary Polynomial Arithmetic Library.
*
* The Initial Developer of the Original Code is
* Sun Microsystems, Inc.
* Portions created by the Initial Developer are Copyright (C) 2003
* the Initial Developer. All Rights Reserved.
*
* Contributor(s):
* Sheueling Chang Shantz <sheueling.chang@sun.com> and
* Douglas Stebila <douglas@stebila.ca> of Sun Laboratories.
*
* Alternatively, the contents of this file may be used under the terms of
* either the GNU General Public License Version 2 or later (the "GPL"), or
* the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
* in which case the provisions of the GPL or the LGPL are applicable instead
* of those above. If you wish to allow use of your version of this file only
* under the terms of either the GPL or the LGPL, and not to allow others to
* use your version of this file under the terms of the MPL, indicate your
* decision by deleting the provisions above and replace them with the notice
* and other provisions required by the GPL or the LGPL. If you do not delete
* the provisions above, a recipient may use your version of this file under
* the terms of any one of the MPL, the GPL or the LGPL.
*
*********************************************************************** */
/*
* Copyright 2007 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#ifndef _MP_GF2M_H_
#define _MP_GF2M_H_
#pragma ident "%Z%%M% %I% %E% SMI"
#include "mpi.h"
mp_err mp_badd(const mp_int *a, const mp_int *b, mp_int *c);
mp_err mp_bmul(const mp_int *a, const mp_int *b, mp_int *c);
/* For modular arithmetic, the irreducible polynomial f(t) is represented
* as an array of int[], where f(t) is of the form:
* f(t) = t^p[0] + t^p[1] + ... + t^p[k]
* where m = p[0] > p[1] > ... > p[k] = 0.
*/
mp_err mp_bmod(const mp_int *a, const unsigned int p[], mp_int *r);
mp_err mp_bmulmod(const mp_int *a, const mp_int *b, const unsigned int p[],
mp_int *r);
mp_err mp_bsqrmod(const mp_int *a, const unsigned int p[], mp_int *r);
mp_err mp_bdivmod(const mp_int *y, const mp_int *x, const mp_int *pp,
const unsigned int p[], mp_int *r);
int mp_bpoly2arr(const mp_int *a, unsigned int p[], int max);
mp_err mp_barr2poly(const unsigned int p[], mp_int *a);
#endif /* _MP_GF2M_H_ */

View File

@ -0,0 +1,130 @@
/* *********************************************************************
*
* Sun elects to have this file available under and governed by the
* Mozilla Public License Version 1.1 ("MPL") (see
* http://www.mozilla.org/MPL/ for full license text). For the avoidance
* of doubt and subject to the following, Sun also elects to allow
* licensees to use this file under the MPL, the GNU General Public
* License version 2 only or the Lesser General Public License version
* 2.1 only. Any references to the "GNU General Public License version 2
* or later" or "GPL" in the following shall be construed to mean the
* GNU General Public License version 2 only. Any references to the "GNU
* Lesser General Public License version 2.1 or later" or "LGPL" in the
* following shall be construed to mean the GNU Lesser General Public
* License version 2.1 only. However, the following notice accompanied
* the original version of this file:
*
* Version: MPL 1.1/GPL 2.0/LGPL 2.1
*
* The contents of this file are subject to the Mozilla Public License Version
* 1.1 (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* Software distributed under the License is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
* for the specific language governing rights and limitations under the
* License.
*
* The Original Code is the MPI Arbitrary Precision Integer Arithmetic library.
*
* The Initial Developer of the Original Code is
* Michael J. Fromberger.
* Portions created by the Initial Developer are Copyright (C) 1997
* the Initial Developer. All Rights Reserved.
*
* Contributor(s):
* Netscape Communications Corporation
*
* Alternatively, the contents of this file may be used under the terms of
* either the GNU General Public License Version 2 or later (the "GPL"), or
* the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
* in which case the provisions of the GPL or the LGPL are applicable instead
* of those above. If you wish to allow use of your version of this file only
* under the terms of either the GPL or the LGPL, and not to allow others to
* use your version of this file under the terms of the MPL, indicate your
* decision by deleting the provisions above and replace them with the notice
* and other provisions required by the GPL or the LGPL. If you do not delete
* the provisions above, a recipient may use your version of this file under
* the terms of any one of the MPL, the GPL or the LGPL.
*
*********************************************************************** */
/*
* Copyright 2007 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#ifndef _MPI_CONFIG_H
#define _MPI_CONFIG_H
#pragma ident "%Z%%M% %I% %E% SMI"
/* $Id: mpi-config.h,v 1.5 2004/04/25 15:03:10 gerv%gerv.net Exp $ */
/*
For boolean options,
0 = no
1 = yes
Other options are documented individually.
*/
#ifndef MP_IOFUNC
#define MP_IOFUNC 0 /* include mp_print() ? */
#endif
#ifndef MP_MODARITH
#define MP_MODARITH 1 /* include modular arithmetic ? */
#endif
#ifndef MP_NUMTH
#define MP_NUMTH 1 /* include number theoretic functions? */
#endif
#ifndef MP_LOGTAB
#define MP_LOGTAB 1 /* use table of logs instead of log()? */
#endif
#ifndef MP_MEMSET
#define MP_MEMSET 1 /* use memset() to zero buffers? */
#endif
#ifndef MP_MEMCPY
#define MP_MEMCPY 1 /* use memcpy() to copy buffers? */
#endif
#ifndef MP_CRYPTO
#define MP_CRYPTO 1 /* erase memory on free? */
#endif
#ifndef MP_ARGCHK
/*
0 = no parameter checks
1 = runtime checks, continue execution and return an error to caller
2 = assertions; dump core on parameter errors
*/
#ifdef DEBUG
#define MP_ARGCHK 2 /* how to check input arguments */
#else
#define MP_ARGCHK 1 /* how to check input arguments */
#endif
#endif
#ifndef MP_DEBUG
#define MP_DEBUG 0 /* print diagnostic output? */
#endif
#ifndef MP_DEFPREC
#define MP_DEFPREC 64 /* default precision, in digits */
#endif
#ifndef MP_MACRO
#define MP_MACRO 0 /* use macros for frequent calls? */
#endif
#ifndef MP_SQUARE
#define MP_SQUARE 1 /* use separate squaring code? */
#endif
#endif /* _MPI_CONFIG_H */

View File

@ -0,0 +1,340 @@
/* *********************************************************************
*
* Sun elects to have this file available under and governed by the
* Mozilla Public License Version 1.1 ("MPL") (see
* http://www.mozilla.org/MPL/ for full license text). For the avoidance
* of doubt and subject to the following, Sun also elects to allow
* licensees to use this file under the MPL, the GNU General Public
* License version 2 only or the Lesser General Public License version
* 2.1 only. Any references to the "GNU General Public License version 2
* or later" or "GPL" in the following shall be construed to mean the
* GNU General Public License version 2 only. Any references to the "GNU
* Lesser General Public License version 2.1 or later" or "LGPL" in the
* following shall be construed to mean the GNU Lesser General Public
* License version 2.1 only. However, the following notice accompanied
* the original version of this file:
*
* Arbitrary precision integer arithmetic library
*
* NOTE WELL: the content of this header file is NOT part of the "public"
* API for the MPI library, and may change at any time.
* Application programs that use libmpi should NOT include this header file.
*
* Version: MPL 1.1/GPL 2.0/LGPL 2.1
*
* The contents of this file are subject to the Mozilla Public License Version
* 1.1 (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* Software distributed under the License is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
* for the specific language governing rights and limitations under the
* License.
*
* The Original Code is the MPI Arbitrary Precision Integer Arithmetic library.
*
* The Initial Developer of the Original Code is
* Michael J. Fromberger.
* Portions created by the Initial Developer are Copyright (C) 1998
* the Initial Developer. All Rights Reserved.
*
* Contributor(s):
* Netscape Communications Corporation
*
* Alternatively, the contents of this file may be used under the terms of
* either the GNU General Public License Version 2 or later (the "GPL"), or
* the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
* in which case the provisions of the GPL or the LGPL are applicable instead
* of those above. If you wish to allow use of your version of this file only
* under the terms of either the GPL or the LGPL, and not to allow others to
* use your version of this file under the terms of the MPL, indicate your
* decision by deleting the provisions above and replace them with the notice
* and other provisions required by the GPL or the LGPL. If you do not delete
* the provisions above, a recipient may use your version of this file under
* the terms of any one of the MPL, the GPL or the LGPL.
*
*********************************************************************** */
/*
* Copyright 2007 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#ifndef _MPI_PRIV_H
#define _MPI_PRIV_H
#pragma ident "%Z%%M% %I% %E% SMI"
/* $Id: mpi-priv.h,v 1.20 2005/11/22 07:16:43 relyea%netscape.com Exp $ */
#include "mpi.h"
#ifndef _KERNEL
#include <stdlib.h>
#include <string.h>
#include <ctype.h>
#endif /* _KERNEL */
#if MP_DEBUG
#include <stdio.h>
#define DIAG(T,V) {fprintf(stderr,T);mp_print(V,stderr);fputc('\n',stderr);}
#else
#define DIAG(T,V)
#endif
/* If we aren't using a wired-in logarithm table, we need to include
the math library to get the log() function
*/
/* {{{ s_logv_2[] - log table for 2 in various bases */
#if MP_LOGTAB
/*
A table of the logs of 2 for various bases (the 0 and 1 entries of
this table are meaningless and should not be referenced).
This table is used to compute output lengths for the mp_toradix()
function. Since a number n in radix r takes up about log_r(n)
digits, we estimate the output size by taking the least integer
greater than log_r(n), where:
log_r(n) = log_2(n) * log_r(2)
This table, therefore, is a table of log_r(2) for 2 <= r <= 36,
which are the output bases supported.
*/
extern const float s_logv_2[];
#define LOG_V_2(R) s_logv_2[(R)]
#else
/*
If MP_LOGTAB is not defined, use the math library to compute the
logarithms on the fly. Otherwise, use the table.
Pick which works best for your system.
*/
#include <math.h>
#define LOG_V_2(R) (log(2.0)/log(R))
#endif /* if MP_LOGTAB */
/* }}} */
/* {{{ Digit arithmetic macros */
/*
When adding and multiplying digits, the results can be larger than
can be contained in an mp_digit. Thus, an mp_word is used. These
macros mask off the upper and lower digits of the mp_word (the
mp_word may be more than 2 mp_digits wide, but we only concern
ourselves with the low-order 2 mp_digits)
*/
#define CARRYOUT(W) (mp_digit)((W)>>DIGIT_BIT)
#define ACCUM(W) (mp_digit)(W)
#define MP_MIN(a,b) (((a) < (b)) ? (a) : (b))
#define MP_MAX(a,b) (((a) > (b)) ? (a) : (b))
#define MP_HOWMANY(a,b) (((a) + (b) - 1)/(b))
#define MP_ROUNDUP(a,b) (MP_HOWMANY(a,b) * (b))
/* }}} */
/* {{{ Comparison constants */
#define MP_LT -1
#define MP_EQ 0
#define MP_GT 1
/* }}} */
/* {{{ private function declarations */
/*
If MP_MACRO is false, these will be defined as actual functions;
otherwise, suitable macro definitions will be used. This works
around the fact that ANSI C89 doesn't support an 'inline' keyword
(although I hear C9x will ... about bloody time). At present, the
macro definitions are identical to the function bodies, but they'll
expand in place, instead of generating a function call.
I chose these particular functions to be made into macros because
some profiling showed they are called a lot on a typical workload,
and yet they are primarily housekeeping.
*/
#if MP_MACRO == 0
void s_mp_setz(mp_digit *dp, mp_size count); /* zero digits */
void s_mp_copy(const mp_digit *sp, mp_digit *dp, mp_size count); /* copy */
void *s_mp_alloc(size_t nb, size_t ni, int flag); /* general allocator */
void s_mp_free(void *ptr, mp_size); /* general free function */
extern unsigned long mp_allocs;
extern unsigned long mp_frees;
extern unsigned long mp_copies;
#else
/* Even if these are defined as macros, we need to respect the settings
of the MP_MEMSET and MP_MEMCPY configuration options...
*/
#if MP_MEMSET == 0
#define s_mp_setz(dp, count) \
{int ix;for(ix=0;ix<(count);ix++)(dp)[ix]=0;}
#else
#define s_mp_setz(dp, count) memset(dp, 0, (count) * sizeof(mp_digit))
#endif /* MP_MEMSET */
#if MP_MEMCPY == 0
#define s_mp_copy(sp, dp, count) \
{int ix;for(ix=0;ix<(count);ix++)(dp)[ix]=(sp)[ix];}
#else
#define s_mp_copy(sp, dp, count) memcpy(dp, sp, (count) * sizeof(mp_digit))
#endif /* MP_MEMCPY */
#define s_mp_alloc(nb, ni) calloc(nb, ni)
#define s_mp_free(ptr) {if(ptr) free(ptr);}
#endif /* MP_MACRO */
mp_err s_mp_grow(mp_int *mp, mp_size min); /* increase allocated size */
mp_err s_mp_pad(mp_int *mp, mp_size min); /* left pad with zeroes */
#if MP_MACRO == 0
void s_mp_clamp(mp_int *mp); /* clip leading zeroes */
#else
#define s_mp_clamp(mp)\
{ mp_size used = MP_USED(mp); \
while (used > 1 && DIGIT(mp, used - 1) == 0) --used; \
MP_USED(mp) = used; \
}
#endif /* MP_MACRO */
void s_mp_exch(mp_int *a, mp_int *b); /* swap a and b in place */
mp_err s_mp_lshd(mp_int *mp, mp_size p); /* left-shift by p digits */
void s_mp_rshd(mp_int *mp, mp_size p); /* right-shift by p digits */
mp_err s_mp_mul_2d(mp_int *mp, mp_digit d); /* multiply by 2^d in place */
void s_mp_div_2d(mp_int *mp, mp_digit d); /* divide by 2^d in place */
void s_mp_mod_2d(mp_int *mp, mp_digit d); /* modulo 2^d in place */
void s_mp_div_2(mp_int *mp); /* divide by 2 in place */
mp_err s_mp_mul_2(mp_int *mp); /* multiply by 2 in place */
mp_err s_mp_norm(mp_int *a, mp_int *b, mp_digit *pd);
/* normalize for division */
mp_err s_mp_add_d(mp_int *mp, mp_digit d); /* unsigned digit addition */
mp_err s_mp_sub_d(mp_int *mp, mp_digit d); /* unsigned digit subtract */
mp_err s_mp_mul_d(mp_int *mp, mp_digit d); /* unsigned digit multiply */
mp_err s_mp_div_d(mp_int *mp, mp_digit d, mp_digit *r);
/* unsigned digit divide */
mp_err s_mp_reduce(mp_int *x, const mp_int *m, const mp_int *mu);
/* Barrett reduction */
mp_err s_mp_add(mp_int *a, const mp_int *b); /* magnitude addition */
mp_err s_mp_add_3arg(const mp_int *a, const mp_int *b, mp_int *c);
mp_err s_mp_sub(mp_int *a, const mp_int *b); /* magnitude subtract */
mp_err s_mp_sub_3arg(const mp_int *a, const mp_int *b, mp_int *c);
mp_err s_mp_add_offset(mp_int *a, mp_int *b, mp_size offset);
/* a += b * RADIX^offset */
mp_err s_mp_mul(mp_int *a, const mp_int *b); /* magnitude multiply */
#if MP_SQUARE
mp_err s_mp_sqr(mp_int *a); /* magnitude square */
#else
#define s_mp_sqr(a) s_mp_mul(a, a)
#endif
mp_err s_mp_div(mp_int *rem, mp_int *div, mp_int *quot); /* magnitude div */
mp_err s_mp_exptmod(const mp_int *a, const mp_int *b, const mp_int *m, mp_int *c);
mp_err s_mp_2expt(mp_int *a, mp_digit k); /* a = 2^k */
int s_mp_cmp(const mp_int *a, const mp_int *b); /* magnitude comparison */
int s_mp_cmp_d(const mp_int *a, mp_digit d); /* magnitude digit compare */
int s_mp_ispow2(const mp_int *v); /* is v a power of 2? */
int s_mp_ispow2d(mp_digit d); /* is d a power of 2? */
int s_mp_tovalue(char ch, int r); /* convert ch to value */
char s_mp_todigit(mp_digit val, int r, int low); /* convert val to digit */
int s_mp_outlen(int bits, int r); /* output length in bytes */
mp_digit s_mp_invmod_radix(mp_digit P); /* returns (P ** -1) mod RADIX */
mp_err s_mp_invmod_odd_m( const mp_int *a, const mp_int *m, mp_int *c);
mp_err s_mp_invmod_2d( const mp_int *a, mp_size k, mp_int *c);
mp_err s_mp_invmod_even_m(const mp_int *a, const mp_int *m, mp_int *c);
#ifdef NSS_USE_COMBA
#define IS_POWER_OF_2(a) ((a) && !((a) & ((a)-1)))
void s_mp_mul_comba_4(const mp_int *A, const mp_int *B, mp_int *C);
void s_mp_mul_comba_8(const mp_int *A, const mp_int *B, mp_int *C);
void s_mp_mul_comba_16(const mp_int *A, const mp_int *B, mp_int *C);
void s_mp_mul_comba_32(const mp_int *A, const mp_int *B, mp_int *C);
void s_mp_sqr_comba_4(const mp_int *A, mp_int *B);
void s_mp_sqr_comba_8(const mp_int *A, mp_int *B);
void s_mp_sqr_comba_16(const mp_int *A, mp_int *B);
void s_mp_sqr_comba_32(const mp_int *A, mp_int *B);
#endif /* end NSS_USE_COMBA */
/* ------ mpv functions, operate on arrays of digits, not on mp_int's ------ */
#if defined (__OS2__) && defined (__IBMC__)
#define MPI_ASM_DECL __cdecl
#else
#define MPI_ASM_DECL
#endif
#ifdef MPI_AMD64
mp_digit MPI_ASM_DECL s_mpv_mul_set_vec64(mp_digit*, mp_digit *, mp_size, mp_digit);
mp_digit MPI_ASM_DECL s_mpv_mul_add_vec64(mp_digit*, const mp_digit*, mp_size, mp_digit);
/* c = a * b */
#define s_mpv_mul_d(a, a_len, b, c) \
((unsigned long*)c)[a_len] = s_mpv_mul_set_vec64(c, a, a_len, b)
/* c += a * b */
#define s_mpv_mul_d_add(a, a_len, b, c) \
((unsigned long*)c)[a_len] = s_mpv_mul_add_vec64(c, a, a_len, b)
#else
void MPI_ASM_DECL s_mpv_mul_d(const mp_digit *a, mp_size a_len,
mp_digit b, mp_digit *c);
void MPI_ASM_DECL s_mpv_mul_d_add(const mp_digit *a, mp_size a_len,
mp_digit b, mp_digit *c);
#endif
void MPI_ASM_DECL s_mpv_mul_d_add_prop(const mp_digit *a,
mp_size a_len, mp_digit b,
mp_digit *c);
void MPI_ASM_DECL s_mpv_sqr_add_prop(const mp_digit *a,
mp_size a_len,
mp_digit *sqrs);
mp_err MPI_ASM_DECL s_mpv_div_2dx1d(mp_digit Nhi, mp_digit Nlo,
mp_digit divisor, mp_digit *quot, mp_digit *rem);
/* c += a * b * (MP_RADIX ** offset); */
#define s_mp_mul_d_add_offset(a, b, c, off) \
(s_mpv_mul_d_add_prop(MP_DIGITS(a), MP_USED(a), b, MP_DIGITS(c) + off), MP_OKAY)
typedef struct {
mp_int N; /* modulus N */
mp_digit n0prime; /* n0' = - (n0 ** -1) mod MP_RADIX */
mp_size b; /* R == 2 ** b, also b = # significant bits in N */
} mp_mont_modulus;
mp_err s_mp_mul_mont(const mp_int *a, const mp_int *b, mp_int *c,
mp_mont_modulus *mmm);
mp_err s_mp_redc(mp_int *T, mp_mont_modulus *mmm);
/*
* s_mpi_getProcessorLineSize() returns the size in bytes of the cache line
* if a cache exists, or zero if there is no cache. If more than one
* cache line exists, it should return the smallest line size (which is
* usually the L1 cache).
*
* mp_modexp uses this information to make sure that private key information
* isn't being leaked through the cache.
*
* see mpcpucache.c for the implementation.
*/
unsigned long s_mpi_getProcessorLineSize();
/* }}} */
#endif /* _MPI_PRIV_H */

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,409 @@
/* *********************************************************************
*
* Sun elects to have this file available under and governed by the
* Mozilla Public License Version 1.1 ("MPL") (see
* http://www.mozilla.org/MPL/ for full license text). For the avoidance
* of doubt and subject to the following, Sun also elects to allow
* licensees to use this file under the MPL, the GNU General Public
* License version 2 only or the Lesser General Public License version
* 2.1 only. Any references to the "GNU General Public License version 2
* or later" or "GPL" in the following shall be construed to mean the
* GNU General Public License version 2 only. Any references to the "GNU
* Lesser General Public License version 2.1 or later" or "LGPL" in the
* following shall be construed to mean the GNU Lesser General Public
* License version 2.1 only. However, the following notice accompanied
* the original version of this file:
*
*
* Arbitrary precision integer arithmetic library
*
* Version: MPL 1.1/GPL 2.0/LGPL 2.1
*
* The contents of this file are subject to the Mozilla Public License Version
* 1.1 (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* Software distributed under the License is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
* for the specific language governing rights and limitations under the
* License.
*
* The Original Code is the MPI Arbitrary Precision Integer Arithmetic library.
*
* The Initial Developer of the Original Code is
* Michael J. Fromberger.
* Portions created by the Initial Developer are Copyright (C) 1998
* the Initial Developer. All Rights Reserved.
*
* Contributor(s):
* Netscape Communications Corporation
*
* Alternatively, the contents of this file may be used under the terms of
* either the GNU General Public License Version 2 or later (the "GPL"), or
* the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
* in which case the provisions of the GPL or the LGPL are applicable instead
* of those above. If you wish to allow use of your version of this file only
* under the terms of either the GPL or the LGPL, and not to allow others to
* use your version of this file under the terms of the MPL, indicate your
* decision by deleting the provisions above and replace them with the notice
* and other provisions required by the GPL or the LGPL. If you do not delete
* the provisions above, a recipient may use your version of this file under
* the terms of any one of the MPL, the GPL or the LGPL.
*
*********************************************************************** */
/*
* Copyright 2007 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#ifndef _MPI_H
#define _MPI_H
#pragma ident "%Z%%M% %I% %E% SMI"
/* $Id: mpi.h,v 1.22 2004/04/27 23:04:36 gerv%gerv.net Exp $ */
#include "mpi-config.h"
#ifndef _WIN32
#include <sys/param.h>
#endif /* _WIN32 */
#ifdef _KERNEL
#include <sys/debug.h>
#include <sys/systm.h>
#define assert ASSERT
#define labs(a) (a >= 0 ? a : -a)
#define UCHAR_MAX 255
#define memset(s, c, n) bzero(s, n)
#define memcpy(a,b,c) bcopy((caddr_t)b, (caddr_t)a, c)
/*
* Generic #define's to cover missing things in the kernel
*/
#ifndef isdigit
#define isdigit(x) ((x) >= '0' && (x) <= '9')
#endif
#ifndef isupper
#define isupper(x) (((unsigned)(x) >= 'A') && ((unsigned)(x) <= 'Z'))
#endif
#ifndef islower
#define islower(x) (((unsigned)(x) >= 'a') && ((unsigned)(x) <= 'z'))
#endif
#ifndef isalpha
#define isalpha(x) (isupper(x) || islower(x))
#endif
#ifndef toupper
#define toupper(x) (islower(x) ? (x) - 'a' + 'A' : (x))
#endif
#ifndef tolower
#define tolower(x) (isupper(x) ? (x) + 'a' - 'A' : (x))
#endif
#ifndef isspace
#define isspace(x) (((x) == ' ') || ((x) == '\r') || ((x) == '\n') || \
((x) == '\t') || ((x) == '\b'))
#endif
#endif /* _KERNEL */
#if MP_DEBUG
#undef MP_IOFUNC
#define MP_IOFUNC 1
#endif
#if MP_IOFUNC
#include <stdio.h>
#include <ctype.h>
#endif
#ifndef _KERNEL
#include <limits.h>
#endif
#if defined(BSDI)
#undef ULLONG_MAX
#endif
#if defined( macintosh )
#include <Types.h>
#elif defined( _WIN32_WCE)
/* #include <sys/types.h> What do we need here ?? */
#else
#include <sys/types.h>
#endif
#define MP_NEG 1
#define MP_ZPOS 0
#define MP_OKAY 0 /* no error, all is well */
#define MP_YES 0 /* yes (boolean result) */
#define MP_NO -1 /* no (boolean result) */
#define MP_MEM -2 /* out of memory */
#define MP_RANGE -3 /* argument out of range */
#define MP_BADARG -4 /* invalid parameter */
#define MP_UNDEF -5 /* answer is undefined */
#define MP_LAST_CODE MP_UNDEF
typedef unsigned int mp_sign;
typedef unsigned int mp_size;
typedef int mp_err;
typedef int mp_flag;
#define MP_32BIT_MAX 4294967295U
#if !defined(ULONG_MAX)
#error "ULONG_MAX not defined"
#elif !defined(UINT_MAX)
#error "UINT_MAX not defined"
#elif !defined(USHRT_MAX)
#error "USHRT_MAX not defined"
#endif
#if defined(ULONG_LONG_MAX) /* GCC, HPUX */
#define MP_ULONG_LONG_MAX ULONG_LONG_MAX
#elif defined(ULLONG_MAX) /* Solaris */
#define MP_ULONG_LONG_MAX ULLONG_MAX
/* MP_ULONG_LONG_MAX was defined to be ULLONG_MAX */
#elif defined(ULONGLONG_MAX) /* IRIX, AIX */
#define MP_ULONG_LONG_MAX ULONGLONG_MAX
#endif
/* We only use unsigned long for mp_digit iff long is more than 32 bits. */
#if !defined(MP_USE_UINT_DIGIT) && ULONG_MAX > MP_32BIT_MAX
typedef unsigned long mp_digit;
#define MP_DIGIT_MAX ULONG_MAX
#define MP_DIGIT_FMT "%016lX" /* printf() format for 1 digit */
#define MP_HALF_DIGIT_MAX UINT_MAX
#undef MP_NO_MP_WORD
#define MP_NO_MP_WORD 1
#undef MP_USE_LONG_DIGIT
#define MP_USE_LONG_DIGIT 1
#undef MP_USE_LONG_LONG_DIGIT
#elif !defined(MP_USE_UINT_DIGIT) && defined(MP_ULONG_LONG_MAX)
typedef unsigned long long mp_digit;
#define MP_DIGIT_MAX MP_ULONG_LONG_MAX
#define MP_DIGIT_FMT "%016llX" /* printf() format for 1 digit */
#define MP_HALF_DIGIT_MAX UINT_MAX
#undef MP_NO_MP_WORD
#define MP_NO_MP_WORD 1
#undef MP_USE_LONG_LONG_DIGIT
#define MP_USE_LONG_LONG_DIGIT 1
#undef MP_USE_LONG_DIGIT
#else
typedef unsigned int mp_digit;
#define MP_DIGIT_MAX UINT_MAX
#define MP_DIGIT_FMT "%08X" /* printf() format for 1 digit */
#define MP_HALF_DIGIT_MAX USHRT_MAX
#undef MP_USE_UINT_DIGIT
#define MP_USE_UINT_DIGIT 1
#undef MP_USE_LONG_LONG_DIGIT
#undef MP_USE_LONG_DIGIT
#endif
#if !defined(MP_NO_MP_WORD)
#if defined(MP_USE_UINT_DIGIT) && \
(defined(MP_ULONG_LONG_MAX) || (ULONG_MAX > UINT_MAX))
#if (ULONG_MAX > UINT_MAX)
typedef unsigned long mp_word;
typedef long mp_sword;
#define MP_WORD_MAX ULONG_MAX
#else
typedef unsigned long long mp_word;
typedef long long mp_sword;
#define MP_WORD_MAX MP_ULONG_LONG_MAX
#endif
#else
#define MP_NO_MP_WORD 1
#endif
#endif /* !defined(MP_NO_MP_WORD) */
#if !defined(MP_WORD_MAX) && defined(MP_DEFINE_SMALL_WORD)
typedef unsigned int mp_word;
typedef int mp_sword;
#define MP_WORD_MAX UINT_MAX
#endif
#ifndef CHAR_BIT
#define CHAR_BIT 8
#endif
#define MP_DIGIT_BIT (CHAR_BIT*sizeof(mp_digit))
#define MP_WORD_BIT (CHAR_BIT*sizeof(mp_word))
#define MP_RADIX (1+(mp_word)MP_DIGIT_MAX)
#define MP_HALF_DIGIT_BIT (MP_DIGIT_BIT/2)
#define MP_HALF_RADIX (1+(mp_digit)MP_HALF_DIGIT_MAX)
/* MP_HALF_RADIX really ought to be called MP_SQRT_RADIX, but it's named
** MP_HALF_RADIX because it's the radix for MP_HALF_DIGITs, and it's
** consistent with the other _HALF_ names.
*/
/* Macros for accessing the mp_int internals */
#define MP_FLAG(MP) ((MP)->flag)
#define MP_SIGN(MP) ((MP)->sign)
#define MP_USED(MP) ((MP)->used)
#define MP_ALLOC(MP) ((MP)->alloc)
#define MP_DIGITS(MP) ((MP)->dp)
#define MP_DIGIT(MP,N) (MP)->dp[(N)]
/* This defines the maximum I/O base (minimum is 2) */
#define MP_MAX_RADIX 64
typedef struct {
mp_sign flag; /* KM_SLEEP/KM_NOSLEEP */
mp_sign sign; /* sign of this quantity */
mp_size alloc; /* how many digits allocated */
mp_size used; /* how many digits used */
mp_digit *dp; /* the digits themselves */
} mp_int;
/* Default precision */
mp_size mp_get_prec(void);
void mp_set_prec(mp_size prec);
/* Memory management */
mp_err mp_init(mp_int *mp, int kmflag);
mp_err mp_init_size(mp_int *mp, mp_size prec, int kmflag);
mp_err mp_init_copy(mp_int *mp, const mp_int *from);
mp_err mp_copy(const mp_int *from, mp_int *to);
void mp_exch(mp_int *mp1, mp_int *mp2);
void mp_clear(mp_int *mp);
void mp_zero(mp_int *mp);
void mp_set(mp_int *mp, mp_digit d);
mp_err mp_set_int(mp_int *mp, long z);
#define mp_set_long(mp,z) mp_set_int(mp,z)
mp_err mp_set_ulong(mp_int *mp, unsigned long z);
/* Single digit arithmetic */
mp_err mp_add_d(const mp_int *a, mp_digit d, mp_int *b);
mp_err mp_sub_d(const mp_int *a, mp_digit d, mp_int *b);
mp_err mp_mul_d(const mp_int *a, mp_digit d, mp_int *b);
mp_err mp_mul_2(const mp_int *a, mp_int *c);
mp_err mp_div_d(const mp_int *a, mp_digit d, mp_int *q, mp_digit *r);
mp_err mp_div_2(const mp_int *a, mp_int *c);
mp_err mp_expt_d(const mp_int *a, mp_digit d, mp_int *c);
/* Sign manipulations */
mp_err mp_abs(const mp_int *a, mp_int *b);
mp_err mp_neg(const mp_int *a, mp_int *b);
/* Full arithmetic */
mp_err mp_add(const mp_int *a, const mp_int *b, mp_int *c);
mp_err mp_sub(const mp_int *a, const mp_int *b, mp_int *c);
mp_err mp_mul(const mp_int *a, const mp_int *b, mp_int *c);
#if MP_SQUARE
mp_err mp_sqr(const mp_int *a, mp_int *b);
#else
#define mp_sqr(a, b) mp_mul(a, a, b)
#endif
mp_err mp_div(const mp_int *a, const mp_int *b, mp_int *q, mp_int *r);
mp_err mp_div_2d(const mp_int *a, mp_digit d, mp_int *q, mp_int *r);
mp_err mp_expt(mp_int *a, mp_int *b, mp_int *c);
mp_err mp_2expt(mp_int *a, mp_digit k);
mp_err mp_sqrt(const mp_int *a, mp_int *b);
/* Modular arithmetic */
#if MP_MODARITH
mp_err mp_mod(const mp_int *a, const mp_int *m, mp_int *c);
mp_err mp_mod_d(const mp_int *a, mp_digit d, mp_digit *c);
mp_err mp_addmod(const mp_int *a, const mp_int *b, const mp_int *m, mp_int *c);
mp_err mp_submod(const mp_int *a, const mp_int *b, const mp_int *m, mp_int *c);
mp_err mp_mulmod(const mp_int *a, const mp_int *b, const mp_int *m, mp_int *c);
#if MP_SQUARE
mp_err mp_sqrmod(const mp_int *a, const mp_int *m, mp_int *c);
#else
#define mp_sqrmod(a, m, c) mp_mulmod(a, a, m, c)
#endif
mp_err mp_exptmod(const mp_int *a, const mp_int *b, const mp_int *m, mp_int *c);
mp_err mp_exptmod_d(const mp_int *a, mp_digit d, const mp_int *m, mp_int *c);
#endif /* MP_MODARITH */
/* Comparisons */
int mp_cmp_z(const mp_int *a);
int mp_cmp_d(const mp_int *a, mp_digit d);
int mp_cmp(const mp_int *a, const mp_int *b);
int mp_cmp_mag(mp_int *a, mp_int *b);
int mp_cmp_int(const mp_int *a, long z, int kmflag);
int mp_isodd(const mp_int *a);
int mp_iseven(const mp_int *a);
/* Number theoretic */
#if MP_NUMTH
mp_err mp_gcd(mp_int *a, mp_int *b, mp_int *c);
mp_err mp_lcm(mp_int *a, mp_int *b, mp_int *c);
mp_err mp_xgcd(const mp_int *a, const mp_int *b, mp_int *g, mp_int *x, mp_int *y);
mp_err mp_invmod(const mp_int *a, const mp_int *m, mp_int *c);
mp_err mp_invmod_xgcd(const mp_int *a, const mp_int *m, mp_int *c);
#endif /* end MP_NUMTH */
/* Input and output */
#if MP_IOFUNC
void mp_print(mp_int *mp, FILE *ofp);
#endif /* end MP_IOFUNC */
/* Base conversion */
mp_err mp_read_raw(mp_int *mp, char *str, int len);
int mp_raw_size(mp_int *mp);
mp_err mp_toraw(mp_int *mp, char *str);
mp_err mp_read_radix(mp_int *mp, const char *str, int radix);
mp_err mp_read_variable_radix(mp_int *a, const char * str, int default_radix);
int mp_radix_size(mp_int *mp, int radix);
mp_err mp_toradix(mp_int *mp, char *str, int radix);
int mp_tovalue(char ch, int r);
#define mp_tobinary(M, S) mp_toradix((M), (S), 2)
#define mp_tooctal(M, S) mp_toradix((M), (S), 8)
#define mp_todecimal(M, S) mp_toradix((M), (S), 10)
#define mp_tohex(M, S) mp_toradix((M), (S), 16)
/* Error strings */
const char *mp_strerror(mp_err ec);
/* Octet string conversion functions */
mp_err mp_read_unsigned_octets(mp_int *mp, const unsigned char *str, mp_size len);
int mp_unsigned_octet_size(const mp_int *mp);
mp_err mp_to_unsigned_octets(const mp_int *mp, unsigned char *str, mp_size maxlen);
mp_err mp_to_signed_octets(const mp_int *mp, unsigned char *str, mp_size maxlen);
mp_err mp_to_fixlen_octets(const mp_int *mp, unsigned char *str, mp_size len);
/* Miscellaneous */
mp_size mp_trailing_zeros(const mp_int *mp);
#define MP_CHECKOK(x) if (MP_OKAY > (res = (x))) goto CLEANUP
#define MP_CHECKERR(x) if (MP_OKAY > (res = (x))) goto CLEANUP
#if defined(MP_API_COMPATIBLE)
#define NEG MP_NEG
#define ZPOS MP_ZPOS
#define DIGIT_MAX MP_DIGIT_MAX
#define DIGIT_BIT MP_DIGIT_BIT
#define DIGIT_FMT MP_DIGIT_FMT
#define RADIX MP_RADIX
#define MAX_RADIX MP_MAX_RADIX
#define FLAG(MP) MP_FLAG(MP)
#define SIGN(MP) MP_SIGN(MP)
#define USED(MP) MP_USED(MP)
#define ALLOC(MP) MP_ALLOC(MP)
#define DIGITS(MP) MP_DIGITS(MP)
#define DIGIT(MP,N) MP_DIGIT(MP,N)
#if MP_ARGCHK == 1
#define ARGCHK(X,Y) {if(!(X)){return (Y);}}
#elif MP_ARGCHK == 2
#ifdef _KERNEL
#define ARGCHK(X,Y) ASSERT(X)
#else
#include <assert.h>
#define ARGCHK(X,Y) assert(X)
#endif
#else
#define ARGCHK(X,Y) /* */
#endif
#endif /* defined MP_API_COMPATIBLE */
#endif /* _MPI_H */

View File

@ -0,0 +1,242 @@
/* *********************************************************************
*
* Sun elects to have this file available under and governed by the
* Mozilla Public License Version 1.1 ("MPL") (see
* http://www.mozilla.org/MPL/ for full license text). For the avoidance
* of doubt and subject to the following, Sun also elects to allow
* licensees to use this file under the MPL, the GNU General Public
* License version 2 only or the Lesser General Public License version
* 2.1 only. Any references to the "GNU General Public License version 2
* or later" or "GPL" in the following shall be construed to mean the
* GNU General Public License version 2 only. Any references to the "GNU
* Lesser General Public License version 2.1 or later" or "LGPL" in the
* following shall be construed to mean the GNU Lesser General Public
* License version 2.1 only. However, the following notice accompanied
* the original version of this file:
*
*
* Bitwise logical operations on MPI values
*
* Version: MPL 1.1/GPL 2.0/LGPL 2.1
*
* The contents of this file are subject to the Mozilla Public License Version
* 1.1 (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* Software distributed under the License is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
* for the specific language governing rights and limitations under the
* License.
*
* The Original Code is the MPI Arbitrary Precision Integer Arithmetic library.
*
* The Initial Developer of the Original Code is
* Michael J. Fromberger.
* Portions created by the Initial Developer are Copyright (C) 1998
* the Initial Developer. All Rights Reserved.
*
* Contributor(s):
*
* Alternatively, the contents of this file may be used under the terms of
* either the GNU General Public License Version 2 or later (the "GPL"), or
* the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
* in which case the provisions of the GPL or the LGPL are applicable instead
* of those above. If you wish to allow use of your version of this file only
* under the terms of either the GPL or the LGPL, and not to allow others to
* use your version of this file under the terms of the MPL, indicate your
* decision by deleting the provisions above and replace them with the notice
* and other provisions required by the GPL or the LGPL. If you do not delete
* the provisions above, a recipient may use your version of this file under
* the terms of any one of the MPL, the GPL or the LGPL.
*
*********************************************************************** */
/*
* Copyright 2007 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#pragma ident "%Z%%M% %I% %E% SMI"
/* $Id: mplogic.c,v 1.15 2004/04/27 23:04:36 gerv%gerv.net Exp $ */
#include "mpi-priv.h"
#include "mplogic.h"
/* {{{ Lookup table for population count */
static unsigned char bitc[] = {
0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4,
1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8
};
/* }}} */
/*
mpl_rsh(a, b, d) - b = a >> d
mpl_lsh(a, b, d) - b = a << d
*/
/* {{{ mpl_rsh(a, b, d) */
mp_err mpl_rsh(const mp_int *a, mp_int *b, mp_digit d)
{
mp_err res;
ARGCHK(a != NULL && b != NULL, MP_BADARG);
if((res = mp_copy(a, b)) != MP_OKAY)
return res;
s_mp_div_2d(b, d);
return MP_OKAY;
} /* end mpl_rsh() */
/* }}} */
/* {{{ mpl_lsh(a, b, d) */
mp_err mpl_lsh(const mp_int *a, mp_int *b, mp_digit d)
{
mp_err res;
ARGCHK(a != NULL && b != NULL, MP_BADARG);
if((res = mp_copy(a, b)) != MP_OKAY)
return res;
return s_mp_mul_2d(b, d);
} /* end mpl_lsh() */
/* }}} */
/*------------------------------------------------------------------------*/
/*
mpl_set_bit
Returns MP_OKAY or some error code.
Grows a if needed to set a bit to 1.
*/
mp_err mpl_set_bit(mp_int *a, mp_size bitNum, mp_size value)
{
mp_size ix;
mp_err rv;
mp_digit mask;
ARGCHK(a != NULL, MP_BADARG);
ix = bitNum / MP_DIGIT_BIT;
if (ix + 1 > MP_USED(a)) {
rv = s_mp_pad(a, ix + 1);
if (rv != MP_OKAY)
return rv;
}
bitNum = bitNum % MP_DIGIT_BIT;
mask = (mp_digit)1 << bitNum;
if (value)
MP_DIGIT(a,ix) |= mask;
else
MP_DIGIT(a,ix) &= ~mask;
s_mp_clamp(a);
return MP_OKAY;
}
/*
mpl_get_bit
returns 0 or 1 or some (negative) error code.
*/
mp_err mpl_get_bit(const mp_int *a, mp_size bitNum)
{
mp_size bit, ix;
mp_err rv;
ARGCHK(a != NULL, MP_BADARG);
ix = bitNum / MP_DIGIT_BIT;
ARGCHK(ix <= MP_USED(a) - 1, MP_RANGE);
bit = bitNum % MP_DIGIT_BIT;
rv = (mp_err)(MP_DIGIT(a, ix) >> bit) & 1;
return rv;
}
/*
mpl_get_bits
- Extracts numBits bits from a, where the least significant extracted bit
is bit lsbNum. Returns a negative value if error occurs.
- Because sign bit is used to indicate error, maximum number of bits to
be returned is the lesser of (a) the number of bits in an mp_digit, or
(b) one less than the number of bits in an mp_err.
- lsbNum + numbits can be greater than the number of significant bits in
integer a, as long as bit lsbNum is in the high order digit of a.
*/
mp_err mpl_get_bits(const mp_int *a, mp_size lsbNum, mp_size numBits)
{
mp_size rshift = (lsbNum % MP_DIGIT_BIT);
mp_size lsWndx = (lsbNum / MP_DIGIT_BIT);
mp_digit * digit = MP_DIGITS(a) + lsWndx;
mp_digit mask = ((1 << numBits) - 1);
ARGCHK(numBits < CHAR_BIT * sizeof mask, MP_BADARG);
ARGCHK(MP_HOWMANY(lsbNum, MP_DIGIT_BIT) <= MP_USED(a), MP_RANGE);
if ((numBits + lsbNum % MP_DIGIT_BIT <= MP_DIGIT_BIT) ||
(lsWndx + 1 >= MP_USED(a))) {
mask &= (digit[0] >> rshift);
} else {
mask &= ((digit[0] >> rshift) | (digit[1] << (MP_DIGIT_BIT - rshift)));
}
return (mp_err)mask;
}
/*
mpl_significant_bits
returns number of significnant bits in abs(a).
returns 1 if value is zero.
*/
mp_err mpl_significant_bits(const mp_int *a)
{
mp_err bits = 0;
int ix;
ARGCHK(a != NULL, MP_BADARG);
ix = MP_USED(a);
for (ix = MP_USED(a); ix > 0; ) {
mp_digit d;
d = MP_DIGIT(a, --ix);
if (d) {
while (d) {
++bits;
d >>= 1;
}
break;
}
}
bits += ix * MP_DIGIT_BIT;
if (!bits)
bits = 1;
return bits;
}
/*------------------------------------------------------------------------*/
/* HERE THERE BE DRAGONS */

View File

@ -0,0 +1,105 @@
/* *********************************************************************
*
* Sun elects to have this file available under and governed by the
* Mozilla Public License Version 1.1 ("MPL") (see
* http://www.mozilla.org/MPL/ for full license text). For the avoidance
* of doubt and subject to the following, Sun also elects to allow
* licensees to use this file under the MPL, the GNU General Public
* License version 2 only or the Lesser General Public License version
* 2.1 only. Any references to the "GNU General Public License version 2
* or later" or "GPL" in the following shall be construed to mean the
* GNU General Public License version 2 only. Any references to the "GNU
* Lesser General Public License version 2.1 or later" or "LGPL" in the
* following shall be construed to mean the GNU Lesser General Public
* License version 2.1 only. However, the following notice accompanied
* the original version of this file:
*
*
* Bitwise logical operations on MPI values
*
* Version: MPL 1.1/GPL 2.0/LGPL 2.1
*
* The contents of this file are subject to the Mozilla Public License Version
* 1.1 (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* Software distributed under the License is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
* for the specific language governing rights and limitations under the
* License.
*
* The Original Code is the MPI Arbitrary Precision Integer Arithmetic library.
*
* The Initial Developer of the Original Code is
* Michael J. Fromberger.
* Portions created by the Initial Developer are Copyright (C) 1998
* the Initial Developer. All Rights Reserved.
*
* Contributor(s):
*
* Alternatively, the contents of this file may be used under the terms of
* either the GNU General Public License Version 2 or later (the "GPL"), or
* the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
* in which case the provisions of the GPL or the LGPL are applicable instead
* of those above. If you wish to allow use of your version of this file only
* under the terms of either the GPL or the LGPL, and not to allow others to
* use your version of this file under the terms of the MPL, indicate your
* decision by deleting the provisions above and replace them with the notice
* and other provisions required by the GPL or the LGPL. If you do not delete
* the provisions above, a recipient may use your version of this file under
* the terms of any one of the MPL, the GPL or the LGPL.
*
*********************************************************************** */
/*
* Copyright 2007 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#ifndef _MPLOGIC_H
#define _MPLOGIC_H
#pragma ident "%Z%%M% %I% %E% SMI"
/* $Id: mplogic.h,v 1.7 2004/04/27 23:04:36 gerv%gerv.net Exp $ */
#include "mpi.h"
/*
The logical operations treat an mp_int as if it were a bit vector,
without regard to its sign (an mp_int is represented in a signed
magnitude format). Values are treated as if they had an infinite
string of zeros left of the most-significant bit.
*/
/* Parity results */
#define MP_EVEN MP_YES
#define MP_ODD MP_NO
/* Bitwise functions */
mp_err mpl_not(mp_int *a, mp_int *b); /* one's complement */
mp_err mpl_and(mp_int *a, mp_int *b, mp_int *c); /* bitwise AND */
mp_err mpl_or(mp_int *a, mp_int *b, mp_int *c); /* bitwise OR */
mp_err mpl_xor(mp_int *a, mp_int *b, mp_int *c); /* bitwise XOR */
/* Shift functions */
mp_err mpl_rsh(const mp_int *a, mp_int *b, mp_digit d); /* right shift */
mp_err mpl_lsh(const mp_int *a, mp_int *b, mp_digit d); /* left shift */
/* Bit count and parity */
mp_err mpl_num_set(mp_int *a, int *num); /* count set bits */
mp_err mpl_num_clear(mp_int *a, int *num); /* count clear bits */
mp_err mpl_parity(mp_int *a); /* determine parity */
/* Get & Set the value of a bit */
mp_err mpl_set_bit(mp_int *a, mp_size bitNum, mp_size value);
mp_err mpl_get_bit(const mp_int *a, mp_size bitNum);
mp_err mpl_get_bits(const mp_int *a, mp_size lsbNum, mp_size numBits);
mp_err mpl_significant_bits(const mp_int *a);
#endif /* _MPLOGIC_H */

View File

@ -0,0 +1,199 @@
/* *********************************************************************
*
* Sun elects to have this file available under and governed by the
* Mozilla Public License Version 1.1 ("MPL") (see
* http://www.mozilla.org/MPL/ for full license text). For the avoidance
* of doubt and subject to the following, Sun also elects to allow
* licensees to use this file under the MPL, the GNU General Public
* License version 2 only or the Lesser General Public License version
* 2.1 only. Any references to the "GNU General Public License version 2
* or later" or "GPL" in the following shall be construed to mean the
* GNU General Public License version 2 only. Any references to the "GNU
* Lesser General Public License version 2.1 or later" or "LGPL" in the
* following shall be construed to mean the GNU Lesser General Public
* License version 2.1 only. However, the following notice accompanied
* the original version of this file:
*
* Version: MPL 1.1/GPL 2.0/LGPL 2.1
*
* The contents of this file are subject to the Mozilla Public License Version
* 1.1 (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* Software distributed under the License is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
* for the specific language governing rights and limitations under the
* License.
*
* The Original Code is the Netscape security libraries.
*
* The Initial Developer of the Original Code is
* Netscape Communications Corporation.
* Portions created by the Initial Developer are Copyright (C) 2000
* the Initial Developer. All Rights Reserved.
*
* Contributor(s):
* Sheueling Chang Shantz <sheueling.chang@sun.com>,
* Stephen Fung <stephen.fung@sun.com>, and
* Douglas Stebila <douglas@stebila.ca> of Sun Laboratories.
*
* Alternatively, the contents of this file may be used under the terms of
* either the GNU General Public License Version 2 or later (the "GPL"), or
* the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
* in which case the provisions of the GPL or the LGPL are applicable instead
* of those above. If you wish to allow use of your version of this file only
* under the terms of either the GPL or the LGPL, and not to allow others to
* use your version of this file under the terms of the MPL, indicate your
* decision by deleting the provisions above and replace them with the notice
* and other provisions required by the GPL or the LGPL. If you do not delete
* the provisions above, a recipient may use your version of this file under
* the terms of any one of the MPL, the GPL or the LGPL.
*
*********************************************************************** */
/*
* Copyright 2007 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#pragma ident "%Z%%M% %I% %E% SMI"
/* $Id: mpmontg.c,v 1.20 2006/08/29 02:41:38 nelson%bolyard.com Exp $ */
/* This file implements moduluar exponentiation using Montgomery's
* method for modular reduction. This file implements the method
* described as "Improvement 1" in the paper "A Cryptogrpahic Library for
* the Motorola DSP56000" by Stephen R. Dusse' and Burton S. Kaliski Jr.
* published in "Advances in Cryptology: Proceedings of EUROCRYPT '90"
* "Lecture Notes in Computer Science" volume 473, 1991, pg 230-244,
* published by Springer Verlag.
*/
#define MP_USING_CACHE_SAFE_MOD_EXP 1
#ifndef _KERNEL
#include <string.h>
#include <stddef.h> /* ptrdiff_t */
#endif
#include "mpi-priv.h"
#include "mplogic.h"
#include "mpprime.h"
#ifdef MP_USING_MONT_MULF
#include "montmulf.h"
#endif
/* if MP_CHAR_STORE_SLOW is defined, we */
/* need to know endianness of this platform. */
#ifdef MP_CHAR_STORE_SLOW
#if !defined(MP_IS_BIG_ENDIAN) && !defined(MP_IS_LITTLE_ENDIAN)
#error "You must define MP_IS_BIG_ENDIAN or MP_IS_LITTLE_ENDIAN\n" \
" if you define MP_CHAR_STORE_SLOW."
#endif
#endif
#ifndef STATIC
#define STATIC
#endif
#define MAX_ODD_INTS 32 /* 2 ** (WINDOW_BITS - 1) */
#ifndef _KERNEL
#if defined(_WIN32_WCE)
#define ABORT res = MP_UNDEF; goto CLEANUP
#else
#define ABORT abort()
#endif
#else
#define ABORT res = MP_UNDEF; goto CLEANUP
#endif /* _KERNEL */
/* computes T = REDC(T), 2^b == R */
mp_err s_mp_redc(mp_int *T, mp_mont_modulus *mmm)
{
mp_err res;
mp_size i;
i = MP_USED(T) + MP_USED(&mmm->N) + 2;
MP_CHECKOK( s_mp_pad(T, i) );
for (i = 0; i < MP_USED(&mmm->N); ++i ) {
mp_digit m_i = MP_DIGIT(T, i) * mmm->n0prime;
/* T += N * m_i * (MP_RADIX ** i); */
MP_CHECKOK( s_mp_mul_d_add_offset(&mmm->N, m_i, T, i) );
}
s_mp_clamp(T);
/* T /= R */
s_mp_div_2d(T, mmm->b);
if ((res = s_mp_cmp(T, &mmm->N)) >= 0) {
/* T = T - N */
MP_CHECKOK( s_mp_sub(T, &mmm->N) );
#ifdef DEBUG
if ((res = mp_cmp(T, &mmm->N)) >= 0) {
res = MP_UNDEF;
goto CLEANUP;
}
#endif
}
res = MP_OKAY;
CLEANUP:
return res;
}
#if !defined(MP_ASSEMBLY_MUL_MONT) && !defined(MP_MONT_USE_MP_MUL)
mp_err s_mp_mul_mont(const mp_int *a, const mp_int *b, mp_int *c,
mp_mont_modulus *mmm)
{
mp_digit *pb;
mp_digit m_i;
mp_err res;
mp_size ib;
mp_size useda, usedb;
ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG);
if (MP_USED(a) < MP_USED(b)) {
const mp_int *xch = b; /* switch a and b, to do fewer outer loops */
b = a;
a = xch;
}
MP_USED(c) = 1; MP_DIGIT(c, 0) = 0;
ib = MP_USED(a) + MP_MAX(MP_USED(b), MP_USED(&mmm->N)) + 2;
if((res = s_mp_pad(c, ib)) != MP_OKAY)
goto CLEANUP;
useda = MP_USED(a);
pb = MP_DIGITS(b);
s_mpv_mul_d(MP_DIGITS(a), useda, *pb++, MP_DIGITS(c));
s_mp_setz(MP_DIGITS(c) + useda + 1, ib - (useda + 1));
m_i = MP_DIGIT(c, 0) * mmm->n0prime;
s_mp_mul_d_add_offset(&mmm->N, m_i, c, 0);
/* Outer loop: Digits of b */
usedb = MP_USED(b);
for (ib = 1; ib < usedb; ib++) {
mp_digit b_i = *pb++;
/* Inner product: Digits of a */
if (b_i)
s_mpv_mul_d_add_prop(MP_DIGITS(a), useda, b_i, MP_DIGITS(c) + ib);
m_i = MP_DIGIT(c, ib) * mmm->n0prime;
s_mp_mul_d_add_offset(&mmm->N, m_i, c, ib);
}
if (usedb < MP_USED(&mmm->N)) {
for (usedb = MP_USED(&mmm->N); ib < usedb; ++ib ) {
m_i = MP_DIGIT(c, ib) * mmm->n0prime;
s_mp_mul_d_add_offset(&mmm->N, m_i, c, ib);
}
}
s_mp_clamp(c);
s_mp_div_2d(c, mmm->b);
if (s_mp_cmp(c, &mmm->N) >= 0) {
MP_CHECKOK( s_mp_sub(c, &mmm->N) );
}
res = MP_OKAY;
CLEANUP:
return res;
}
#endif

View File

@ -0,0 +1,89 @@
/* *********************************************************************
*
* Sun elects to have this file available under and governed by the
* Mozilla Public License Version 1.1 ("MPL") (see
* http://www.mozilla.org/MPL/ for full license text). For the avoidance
* of doubt and subject to the following, Sun also elects to allow
* licensees to use this file under the MPL, the GNU General Public
* License version 2 only or the Lesser General Public License version
* 2.1 only. Any references to the "GNU General Public License version 2
* or later" or "GPL" in the following shall be construed to mean the
* GNU General Public License version 2 only. Any references to the "GNU
* Lesser General Public License version 2.1 or later" or "LGPL" in the
* following shall be construed to mean the GNU Lesser General Public
* License version 2.1 only. However, the following notice accompanied
* the original version of this file:
*
*
* Utilities for finding and working with prime and pseudo-prime
* integers
*
* Version: MPL 1.1/GPL 2.0/LGPL 2.1
*
* The contents of this file are subject to the Mozilla Public License Version
* 1.1 (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* Software distributed under the License is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
* for the specific language governing rights and limitations under the
* License.
*
* The Original Code is the MPI Arbitrary Precision Integer Arithmetic library.
*
* The Initial Developer of the Original Code is
* Michael J. Fromberger.
* Portions created by the Initial Developer are Copyright (C) 1997
* the Initial Developer. All Rights Reserved.
*
* Contributor(s):
*
* Alternatively, the contents of this file may be used under the terms of
* either the GNU General Public License Version 2 or later (the "GPL"), or
* the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
* in which case the provisions of the GPL or the LGPL are applicable instead
* of those above. If you wish to allow use of your version of this file only
* under the terms of either the GPL or the LGPL, and not to allow others to
* use your version of this file under the terms of the MPL, indicate your
* decision by deleting the provisions above and replace them with the notice
* and other provisions required by the GPL or the LGPL. If you do not delete
* the provisions above, a recipient may use your version of this file under
* the terms of any one of the MPL, the GPL or the LGPL.
*
*********************************************************************** */
/*
* Copyright 2007 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#ifndef _MP_PRIME_H
#define _MP_PRIME_H
#pragma ident "%Z%%M% %I% %E% SMI"
#include "mpi.h"
extern const int prime_tab_size; /* number of primes available */
extern const mp_digit prime_tab[];
/* Tests for divisibility */
mp_err mpp_divis(mp_int *a, mp_int *b);
mp_err mpp_divis_d(mp_int *a, mp_digit d);
/* Random selection */
mp_err mpp_random(mp_int *a);
mp_err mpp_random_size(mp_int *a, mp_size prec);
/* Pseudo-primality testing */
mp_err mpp_divis_vector(mp_int *a, const mp_digit *vec, int size, int *which);
mp_err mpp_divis_primes(mp_int *a, mp_digit *np);
mp_err mpp_fermat(mp_int *a, mp_digit w);
mp_err mpp_fermat_list(mp_int *a, const mp_digit *primes, mp_size nPrimes);
mp_err mpp_pprime(mp_int *a, int nt);
mp_err mpp_sieve(mp_int *trial, const mp_digit *primes, mp_size nPrimes,
unsigned char *sieve, mp_size nSieve);
mp_err mpp_make_prime(mp_int *start, mp_size nBits, mp_size strong,
unsigned long * nTries);
#endif /* _MP_PRIME_H */

View File

@ -0,0 +1,473 @@
/* *********************************************************************
*
* Sun elects to have this file available under and governed by the
* Mozilla Public License Version 1.1 ("MPL") (see
* http://www.mozilla.org/MPL/ for full license text). For the avoidance
* of doubt and subject to the following, Sun also elects to allow
* licensees to use this file under the MPL, the GNU General Public
* License version 2 only or the Lesser General Public License version
* 2.1 only. Any references to the "GNU General Public License version 2
* or later" or "GPL" in the following shall be construed to mean the
* GNU General Public License version 2 only. Any references to the "GNU
* Lesser General Public License version 2.1 or later" or "LGPL" in the
* following shall be construed to mean the GNU Lesser General Public
* License version 2.1 only. However, the following notice accompanied
* the original version of this file:
*
* Version: MPL 1.1/GPL 2.0/LGPL 2.1
*
* The contents of this file are subject to the Mozilla Public License Version
* 1.1 (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* Software distributed under the License is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
* for the specific language governing rights and limitations under the
* License.
*
* The Original Code is the Netscape security libraries.
*
* The Initial Developer of the Original Code is
* Netscape Communications Corporation.
* Portions created by the Initial Developer are Copyright (C) 1994-2000
* the Initial Developer. All Rights Reserved.
*
* Contributor(s):
* Dr Vipul Gupta <vipul.gupta@sun.com>, Sun Microsystems Laboratories
*
* Alternatively, the contents of this file may be used under the terms of
* either the GNU General Public License Version 2 or later (the "GPL"), or
* the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
* in which case the provisions of the GPL or the LGPL are applicable instead
* of those above. If you wish to allow use of your version of this file only
* under the terms of either the GPL or the LGPL, and not to allow others to
* use your version of this file under the terms of the MPL, indicate your
* decision by deleting the provisions above and replace them with the notice
* and other provisions required by the GPL or the LGPL. If you do not delete
* the provisions above, a recipient may use your version of this file under
* the terms of any one of the MPL, the GPL or the LGPL.
*
*********************************************************************** */
/*
* Copyright 2007 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#pragma ident "%Z%%M% %I% %E% SMI"
#include <sys/types.h>
#ifndef _WIN32
#ifndef __linux__
#include <sys/systm.h>
#endif /* __linux__ */
#include <sys/param.h>
#endif /* _WIN32 */
#ifdef _KERNEL
#include <sys/kmem.h>
#else
#include <string.h>
#endif
#include "ec.h"
#include "ecl-curve.h"
#include "ecc_impl.h"
#include "secoidt.h"
#define CERTICOM_OID 0x2b, 0x81, 0x04
#define SECG_OID CERTICOM_OID, 0x00
#define ANSI_X962_OID 0x2a, 0x86, 0x48, 0xce, 0x3d
#define ANSI_X962_CURVE_OID ANSI_X962_OID, 0x03
#define ANSI_X962_GF2m_OID ANSI_X962_CURVE_OID, 0x00
#define ANSI_X962_GFp_OID ANSI_X962_CURVE_OID, 0x01
#define CONST_OID static const unsigned char
/* ANSI X9.62 prime curve OIDs */
/* NOTE: prime192v1 is the same as secp192r1, prime256v1 is the
* same as secp256r1
*/
CONST_OID ansiX962prime192v1[] = { ANSI_X962_GFp_OID, 0x01 };
CONST_OID ansiX962prime192v2[] = { ANSI_X962_GFp_OID, 0x02 };
CONST_OID ansiX962prime192v3[] = { ANSI_X962_GFp_OID, 0x03 };
CONST_OID ansiX962prime239v1[] = { ANSI_X962_GFp_OID, 0x04 };
CONST_OID ansiX962prime239v2[] = { ANSI_X962_GFp_OID, 0x05 };
CONST_OID ansiX962prime239v3[] = { ANSI_X962_GFp_OID, 0x06 };
CONST_OID ansiX962prime256v1[] = { ANSI_X962_GFp_OID, 0x07 };
/* SECG prime curve OIDs */
CONST_OID secgECsecp112r1[] = { SECG_OID, 0x06 };
CONST_OID secgECsecp112r2[] = { SECG_OID, 0x07 };
CONST_OID secgECsecp128r1[] = { SECG_OID, 0x1c };
CONST_OID secgECsecp128r2[] = { SECG_OID, 0x1d };
CONST_OID secgECsecp160k1[] = { SECG_OID, 0x09 };
CONST_OID secgECsecp160r1[] = { SECG_OID, 0x08 };
CONST_OID secgECsecp160r2[] = { SECG_OID, 0x1e };
CONST_OID secgECsecp192k1[] = { SECG_OID, 0x1f };
CONST_OID secgECsecp224k1[] = { SECG_OID, 0x20 };
CONST_OID secgECsecp224r1[] = { SECG_OID, 0x21 };
CONST_OID secgECsecp256k1[] = { SECG_OID, 0x0a };
CONST_OID secgECsecp384r1[] = { SECG_OID, 0x22 };
CONST_OID secgECsecp521r1[] = { SECG_OID, 0x23 };
/* SECG characterisitic two curve OIDs */
CONST_OID secgECsect113r1[] = {SECG_OID, 0x04 };
CONST_OID secgECsect113r2[] = {SECG_OID, 0x05 };
CONST_OID secgECsect131r1[] = {SECG_OID, 0x16 };
CONST_OID secgECsect131r2[] = {SECG_OID, 0x17 };
CONST_OID secgECsect163k1[] = {SECG_OID, 0x01 };
CONST_OID secgECsect163r1[] = {SECG_OID, 0x02 };
CONST_OID secgECsect163r2[] = {SECG_OID, 0x0f };
CONST_OID secgECsect193r1[] = {SECG_OID, 0x18 };
CONST_OID secgECsect193r2[] = {SECG_OID, 0x19 };
CONST_OID secgECsect233k1[] = {SECG_OID, 0x1a };
CONST_OID secgECsect233r1[] = {SECG_OID, 0x1b };
CONST_OID secgECsect239k1[] = {SECG_OID, 0x03 };
CONST_OID secgECsect283k1[] = {SECG_OID, 0x10 };
CONST_OID secgECsect283r1[] = {SECG_OID, 0x11 };
CONST_OID secgECsect409k1[] = {SECG_OID, 0x24 };
CONST_OID secgECsect409r1[] = {SECG_OID, 0x25 };
CONST_OID secgECsect571k1[] = {SECG_OID, 0x26 };
CONST_OID secgECsect571r1[] = {SECG_OID, 0x27 };
/* ANSI X9.62 characteristic two curve OIDs */
CONST_OID ansiX962c2pnb163v1[] = { ANSI_X962_GF2m_OID, 0x01 };
CONST_OID ansiX962c2pnb163v2[] = { ANSI_X962_GF2m_OID, 0x02 };
CONST_OID ansiX962c2pnb163v3[] = { ANSI_X962_GF2m_OID, 0x03 };
CONST_OID ansiX962c2pnb176v1[] = { ANSI_X962_GF2m_OID, 0x04 };
CONST_OID ansiX962c2tnb191v1[] = { ANSI_X962_GF2m_OID, 0x05 };
CONST_OID ansiX962c2tnb191v2[] = { ANSI_X962_GF2m_OID, 0x06 };
CONST_OID ansiX962c2tnb191v3[] = { ANSI_X962_GF2m_OID, 0x07 };
CONST_OID ansiX962c2onb191v4[] = { ANSI_X962_GF2m_OID, 0x08 };
CONST_OID ansiX962c2onb191v5[] = { ANSI_X962_GF2m_OID, 0x09 };
CONST_OID ansiX962c2pnb208w1[] = { ANSI_X962_GF2m_OID, 0x0a };
CONST_OID ansiX962c2tnb239v1[] = { ANSI_X962_GF2m_OID, 0x0b };
CONST_OID ansiX962c2tnb239v2[] = { ANSI_X962_GF2m_OID, 0x0c };
CONST_OID ansiX962c2tnb239v3[] = { ANSI_X962_GF2m_OID, 0x0d };
CONST_OID ansiX962c2onb239v4[] = { ANSI_X962_GF2m_OID, 0x0e };
CONST_OID ansiX962c2onb239v5[] = { ANSI_X962_GF2m_OID, 0x0f };
CONST_OID ansiX962c2pnb272w1[] = { ANSI_X962_GF2m_OID, 0x10 };
CONST_OID ansiX962c2pnb304w1[] = { ANSI_X962_GF2m_OID, 0x11 };
CONST_OID ansiX962c2tnb359v1[] = { ANSI_X962_GF2m_OID, 0x12 };
CONST_OID ansiX962c2pnb368w1[] = { ANSI_X962_GF2m_OID, 0x13 };
CONST_OID ansiX962c2tnb431r1[] = { ANSI_X962_GF2m_OID, 0x14 };
#define OI(x) { siDEROID, (unsigned char *)x, sizeof x }
#ifndef SECOID_NO_STRINGS
#define OD(oid,tag,desc,mech,ext) { OI(oid), tag, desc, mech, ext }
#else
#define OD(oid,tag,desc,mech,ext) { OI(oid), tag, 0, mech, ext }
#endif
#define CKM_INVALID_MECHANISM 0xffffffffUL
/* XXX this is incorrect */
#define INVALID_CERT_EXTENSION 1
#define CKM_ECDSA 0x00001041
#define CKM_ECDSA_SHA1 0x00001042
#define CKM_ECDH1_DERIVE 0x00001050
static SECOidData ANSI_prime_oids[] = {
{ { siDEROID, NULL, 0 }, ECCurve_noName,
"Unknown OID", CKM_INVALID_MECHANISM, INVALID_CERT_EXTENSION },
OD( ansiX962prime192v1, ECCurve_NIST_P192,
"ANSI X9.62 elliptic curve prime192v1 (aka secp192r1, NIST P-192)",
CKM_INVALID_MECHANISM,
INVALID_CERT_EXTENSION ),
OD( ansiX962prime192v2, ECCurve_X9_62_PRIME_192V2,
"ANSI X9.62 elliptic curve prime192v2",
CKM_INVALID_MECHANISM,
INVALID_CERT_EXTENSION ),
OD( ansiX962prime192v3, ECCurve_X9_62_PRIME_192V3,
"ANSI X9.62 elliptic curve prime192v3",
CKM_INVALID_MECHANISM,
INVALID_CERT_EXTENSION ),
OD( ansiX962prime239v1, ECCurve_X9_62_PRIME_239V1,
"ANSI X9.62 elliptic curve prime239v1",
CKM_INVALID_MECHANISM,
INVALID_CERT_EXTENSION ),
OD( ansiX962prime239v2, ECCurve_X9_62_PRIME_239V2,
"ANSI X9.62 elliptic curve prime239v2",
CKM_INVALID_MECHANISM,
INVALID_CERT_EXTENSION ),
OD( ansiX962prime239v3, ECCurve_X9_62_PRIME_239V3,
"ANSI X9.62 elliptic curve prime239v3",
CKM_INVALID_MECHANISM,
INVALID_CERT_EXTENSION ),
OD( ansiX962prime256v1, ECCurve_NIST_P256,
"ANSI X9.62 elliptic curve prime256v1 (aka secp256r1, NIST P-256)",
CKM_INVALID_MECHANISM,
INVALID_CERT_EXTENSION )
};
static SECOidData SECG_oids[] = {
{ { siDEROID, NULL, 0 }, ECCurve_noName,
"Unknown OID", CKM_INVALID_MECHANISM, INVALID_CERT_EXTENSION },
OD( secgECsect163k1, ECCurve_NIST_K163,
"SECG elliptic curve sect163k1 (aka NIST K-163)",
CKM_INVALID_MECHANISM,
INVALID_CERT_EXTENSION ),
OD( secgECsect163r1, ECCurve_SECG_CHAR2_163R1,
"SECG elliptic curve sect163r1",
CKM_INVALID_MECHANISM,
INVALID_CERT_EXTENSION ),
OD( secgECsect239k1, ECCurve_SECG_CHAR2_239K1,
"SECG elliptic curve sect239k1",
CKM_INVALID_MECHANISM,
INVALID_CERT_EXTENSION ),
OD( secgECsect113r1, ECCurve_SECG_CHAR2_113R1,
"SECG elliptic curve sect113r1",
CKM_INVALID_MECHANISM,
INVALID_CERT_EXTENSION ),
OD( secgECsect113r2, ECCurve_SECG_CHAR2_113R2,
"SECG elliptic curve sect113r2",
CKM_INVALID_MECHANISM,
INVALID_CERT_EXTENSION ),
OD( secgECsecp112r1, ECCurve_SECG_PRIME_112R1,
"SECG elliptic curve secp112r1",
CKM_INVALID_MECHANISM,
INVALID_CERT_EXTENSION ),
OD( secgECsecp112r2, ECCurve_SECG_PRIME_112R2,
"SECG elliptic curve secp112r2",
CKM_INVALID_MECHANISM,
INVALID_CERT_EXTENSION ),
OD( secgECsecp160r1, ECCurve_SECG_PRIME_160R1,
"SECG elliptic curve secp160r1",
CKM_INVALID_MECHANISM,
INVALID_CERT_EXTENSION ),
OD( secgECsecp160k1, ECCurve_SECG_PRIME_160K1,
"SECG elliptic curve secp160k1",
CKM_INVALID_MECHANISM,
INVALID_CERT_EXTENSION ),
OD( secgECsecp256k1, ECCurve_SECG_PRIME_256K1,
"SECG elliptic curve secp256k1",
CKM_INVALID_MECHANISM,
INVALID_CERT_EXTENSION ),
{ { siDEROID, NULL, 0 }, ECCurve_noName,
"Unknown OID", CKM_INVALID_MECHANISM, INVALID_CERT_EXTENSION },
{ { siDEROID, NULL, 0 }, ECCurve_noName,
"Unknown OID", CKM_INVALID_MECHANISM, INVALID_CERT_EXTENSION },
{ { siDEROID, NULL, 0 }, ECCurve_noName,
"Unknown OID", CKM_INVALID_MECHANISM, INVALID_CERT_EXTENSION },
{ { siDEROID, NULL, 0 }, ECCurve_noName,
"Unknown OID", CKM_INVALID_MECHANISM, INVALID_CERT_EXTENSION },
OD( secgECsect163r2, ECCurve_NIST_B163,
"SECG elliptic curve sect163r2 (aka NIST B-163)",
CKM_INVALID_MECHANISM,
INVALID_CERT_EXTENSION ),
OD( secgECsect283k1, ECCurve_NIST_K283,
"SECG elliptic curve sect283k1 (aka NIST K-283)",
CKM_INVALID_MECHANISM,
INVALID_CERT_EXTENSION ),
OD( secgECsect283r1, ECCurve_NIST_B283,
"SECG elliptic curve sect283r1 (aka NIST B-283)",
CKM_INVALID_MECHANISM,
INVALID_CERT_EXTENSION ),
{ { siDEROID, NULL, 0 }, ECCurve_noName,
"Unknown OID", CKM_INVALID_MECHANISM, INVALID_CERT_EXTENSION },
{ { siDEROID, NULL, 0 }, ECCurve_noName,
"Unknown OID", CKM_INVALID_MECHANISM, INVALID_CERT_EXTENSION },
{ { siDEROID, NULL, 0 }, ECCurve_noName,
"Unknown OID", CKM_INVALID_MECHANISM, INVALID_CERT_EXTENSION },
{ { siDEROID, NULL, 0 }, ECCurve_noName,
"Unknown OID", CKM_INVALID_MECHANISM, INVALID_CERT_EXTENSION },
OD( secgECsect131r1, ECCurve_SECG_CHAR2_131R1,
"SECG elliptic curve sect131r1",
CKM_INVALID_MECHANISM,
INVALID_CERT_EXTENSION ),
OD( secgECsect131r2, ECCurve_SECG_CHAR2_131R2,
"SECG elliptic curve sect131r2",
CKM_INVALID_MECHANISM,
INVALID_CERT_EXTENSION ),
OD( secgECsect193r1, ECCurve_SECG_CHAR2_193R1,
"SECG elliptic curve sect193r1",
CKM_INVALID_MECHANISM,
INVALID_CERT_EXTENSION ),
OD( secgECsect193r2, ECCurve_SECG_CHAR2_193R2,
"SECG elliptic curve sect193r2",
CKM_INVALID_MECHANISM,
INVALID_CERT_EXTENSION ),
OD( secgECsect233k1, ECCurve_NIST_K233,
"SECG elliptic curve sect233k1 (aka NIST K-233)",
CKM_INVALID_MECHANISM,
INVALID_CERT_EXTENSION ),
OD( secgECsect233r1, ECCurve_NIST_B233,
"SECG elliptic curve sect233r1 (aka NIST B-233)",
CKM_INVALID_MECHANISM,
INVALID_CERT_EXTENSION ),
OD( secgECsecp128r1, ECCurve_SECG_PRIME_128R1,
"SECG elliptic curve secp128r1",
CKM_INVALID_MECHANISM,
INVALID_CERT_EXTENSION ),
OD( secgECsecp128r2, ECCurve_SECG_PRIME_128R2,
"SECG elliptic curve secp128r2",
CKM_INVALID_MECHANISM,
INVALID_CERT_EXTENSION ),
OD( secgECsecp160r2, ECCurve_SECG_PRIME_160R2,
"SECG elliptic curve secp160r2",
CKM_INVALID_MECHANISM,
INVALID_CERT_EXTENSION ),
OD( secgECsecp192k1, ECCurve_SECG_PRIME_192K1,
"SECG elliptic curve secp192k1",
CKM_INVALID_MECHANISM,
INVALID_CERT_EXTENSION ),
OD( secgECsecp224k1, ECCurve_SECG_PRIME_224K1,
"SECG elliptic curve secp224k1",
CKM_INVALID_MECHANISM,
INVALID_CERT_EXTENSION ),
OD( secgECsecp224r1, ECCurve_NIST_P224,
"SECG elliptic curve secp224r1 (aka NIST P-224)",
CKM_INVALID_MECHANISM,
INVALID_CERT_EXTENSION ),
OD( secgECsecp384r1, ECCurve_NIST_P384,
"SECG elliptic curve secp384r1 (aka NIST P-384)",
CKM_INVALID_MECHANISM,
INVALID_CERT_EXTENSION ),
OD( secgECsecp521r1, ECCurve_NIST_P521,
"SECG elliptic curve secp521r1 (aka NIST P-521)",
CKM_INVALID_MECHANISM,
INVALID_CERT_EXTENSION ),
OD( secgECsect409k1, ECCurve_NIST_K409,
"SECG elliptic curve sect409k1 (aka NIST K-409)",
CKM_INVALID_MECHANISM,
INVALID_CERT_EXTENSION ),
OD( secgECsect409r1, ECCurve_NIST_B409,
"SECG elliptic curve sect409r1 (aka NIST B-409)",
CKM_INVALID_MECHANISM,
INVALID_CERT_EXTENSION ),
OD( secgECsect571k1, ECCurve_NIST_K571,
"SECG elliptic curve sect571k1 (aka NIST K-571)",
CKM_INVALID_MECHANISM,
INVALID_CERT_EXTENSION ),
OD( secgECsect571r1, ECCurve_NIST_B571,
"SECG elliptic curve sect571r1 (aka NIST B-571)",
CKM_INVALID_MECHANISM,
INVALID_CERT_EXTENSION )
};
static SECOidData ANSI_oids[] = {
{ { siDEROID, NULL, 0 }, ECCurve_noName,
"Unknown OID", CKM_INVALID_MECHANISM, INVALID_CERT_EXTENSION },
/* ANSI X9.62 named elliptic curves (characteristic two field) */
OD( ansiX962c2pnb163v1, ECCurve_X9_62_CHAR2_PNB163V1,
"ANSI X9.62 elliptic curve c2pnb163v1",
CKM_INVALID_MECHANISM,
INVALID_CERT_EXTENSION ),
OD( ansiX962c2pnb163v2, ECCurve_X9_62_CHAR2_PNB163V2,
"ANSI X9.62 elliptic curve c2pnb163v2",
CKM_INVALID_MECHANISM,
INVALID_CERT_EXTENSION ),
OD( ansiX962c2pnb163v3, ECCurve_X9_62_CHAR2_PNB163V3,
"ANSI X9.62 elliptic curve c2pnb163v3",
CKM_INVALID_MECHANISM,
INVALID_CERT_EXTENSION ),
OD( ansiX962c2pnb176v1, ECCurve_X9_62_CHAR2_PNB176V1,
"ANSI X9.62 elliptic curve c2pnb176v1",
CKM_INVALID_MECHANISM,
INVALID_CERT_EXTENSION ),
OD( ansiX962c2tnb191v1, ECCurve_X9_62_CHAR2_TNB191V1,
"ANSI X9.62 elliptic curve c2tnb191v1",
CKM_INVALID_MECHANISM,
INVALID_CERT_EXTENSION ),
OD( ansiX962c2tnb191v2, ECCurve_X9_62_CHAR2_TNB191V2,
"ANSI X9.62 elliptic curve c2tnb191v2",
CKM_INVALID_MECHANISM,
INVALID_CERT_EXTENSION ),
OD( ansiX962c2tnb191v3, ECCurve_X9_62_CHAR2_TNB191V3,
"ANSI X9.62 elliptic curve c2tnb191v3",
CKM_INVALID_MECHANISM,
INVALID_CERT_EXTENSION ),
{ { siDEROID, NULL, 0 }, ECCurve_noName,
"Unknown OID", CKM_INVALID_MECHANISM, INVALID_CERT_EXTENSION },
{ { siDEROID, NULL, 0 }, ECCurve_noName,
"Unknown OID", CKM_INVALID_MECHANISM, INVALID_CERT_EXTENSION },
OD( ansiX962c2pnb208w1, ECCurve_X9_62_CHAR2_PNB208W1,
"ANSI X9.62 elliptic curve c2pnb208w1",
CKM_INVALID_MECHANISM,
INVALID_CERT_EXTENSION ),
OD( ansiX962c2tnb239v1, ECCurve_X9_62_CHAR2_TNB239V1,
"ANSI X9.62 elliptic curve c2tnb239v1",
CKM_INVALID_MECHANISM,
INVALID_CERT_EXTENSION ),
OD( ansiX962c2tnb239v2, ECCurve_X9_62_CHAR2_TNB239V2,
"ANSI X9.62 elliptic curve c2tnb239v2",
CKM_INVALID_MECHANISM,
INVALID_CERT_EXTENSION ),
OD( ansiX962c2tnb239v3, ECCurve_X9_62_CHAR2_TNB239V3,
"ANSI X9.62 elliptic curve c2tnb239v3",
CKM_INVALID_MECHANISM,
INVALID_CERT_EXTENSION ),
{ { siDEROID, NULL, 0 }, ECCurve_noName,
"Unknown OID", CKM_INVALID_MECHANISM, INVALID_CERT_EXTENSION },
{ { siDEROID, NULL, 0 }, ECCurve_noName,
"Unknown OID", CKM_INVALID_MECHANISM, INVALID_CERT_EXTENSION },
OD( ansiX962c2pnb272w1, ECCurve_X9_62_CHAR2_PNB272W1,
"ANSI X9.62 elliptic curve c2pnb272w1",
CKM_INVALID_MECHANISM,
INVALID_CERT_EXTENSION ),
OD( ansiX962c2pnb304w1, ECCurve_X9_62_CHAR2_PNB304W1,
"ANSI X9.62 elliptic curve c2pnb304w1",
CKM_INVALID_MECHANISM,
INVALID_CERT_EXTENSION ),
OD( ansiX962c2tnb359v1, ECCurve_X9_62_CHAR2_TNB359V1,
"ANSI X9.62 elliptic curve c2tnb359v1",
CKM_INVALID_MECHANISM,
INVALID_CERT_EXTENSION ),
OD( ansiX962c2pnb368w1, ECCurve_X9_62_CHAR2_PNB368W1,
"ANSI X9.62 elliptic curve c2pnb368w1",
CKM_INVALID_MECHANISM,
INVALID_CERT_EXTENSION ),
OD( ansiX962c2tnb431r1, ECCurve_X9_62_CHAR2_TNB431R1,
"ANSI X9.62 elliptic curve c2tnb431r1",
CKM_INVALID_MECHANISM,
INVALID_CERT_EXTENSION )
};
SECOidData *
SECOID_FindOID(const SECItem *oid)
{
SECOidData *po;
SECOidData *ret;
int i;
if (oid->len == 8) {
if (oid->data[6] == 0x00) {
/* XXX bounds check */
po = &ANSI_oids[oid->data[7]];
if (memcmp(oid->data, po->oid.data, 8) == 0)
ret = po;
}
if (oid->data[6] == 0x01) {
/* XXX bounds check */
po = &ANSI_prime_oids[oid->data[7]];
if (memcmp(oid->data, po->oid.data, 8) == 0)
ret = po;
}
} else if (oid->len == 5) {
/* XXX bounds check */
po = &SECG_oids[oid->data[4]];
if (memcmp(oid->data, po->oid.data, 5) == 0)
ret = po;
} else {
ret = NULL;
}
return(ret);
}
ECCurveName
SECOID_FindOIDTag(const SECItem *oid)
{
SECOidData *oiddata;
oiddata = SECOID_FindOID (oid);
if (oiddata == NULL)
return ECCurve_noName;
return oiddata->offset;
}

View File

@ -0,0 +1,199 @@
/* *********************************************************************
*
* Sun elects to have this file available under and governed by the
* Mozilla Public License Version 1.1 ("MPL") (see
* http://www.mozilla.org/MPL/ for full license text). For the avoidance
* of doubt and subject to the following, Sun also elects to allow
* licensees to use this file under the MPL, the GNU General Public
* License version 2 only or the Lesser General Public License version
* 2.1 only. Any references to the "GNU General Public License version 2
* or later" or "GPL" in the following shall be construed to mean the
* GNU General Public License version 2 only. Any references to the "GNU
* Lesser General Public License version 2.1 or later" or "LGPL" in the
* following shall be construed to mean the GNU Lesser General Public
* License version 2.1 only. However, the following notice accompanied
* the original version of this file:
*
* Version: MPL 1.1/GPL 2.0/LGPL 2.1
*
* The contents of this file are subject to the Mozilla Public License Version
* 1.1 (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* Software distributed under the License is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
* for the specific language governing rights and limitations under the
* License.
*
* The Original Code is the Netscape security libraries.
*
* The Initial Developer of the Original Code is
* Netscape Communications Corporation.
* Portions created by the Initial Developer are Copyright (C) 1994-2000
* the Initial Developer. All Rights Reserved.
*
* Contributor(s):
*
* Alternatively, the contents of this file may be used under the terms of
* either the GNU General Public License Version 2 or later (the "GPL"), or
* the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
* in which case the provisions of the GPL or the LGPL are applicable instead
* of those above. If you wish to allow use of your version of this file only
* under the terms of either the GPL or the LGPL, and not to allow others to
* use your version of this file under the terms of the MPL, indicate your
* decision by deleting the provisions above and replace them with the notice
* and other provisions required by the GPL or the LGPL. If you do not delete
* the provisions above, a recipient may use your version of this file under
* the terms of any one of the MPL, the GPL or the LGPL.
*
*********************************************************************** */
/*
* Copyright 2007 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#pragma ident "%Z%%M% %I% %E% SMI"
/*
* Support routines for SECItem data structure.
*
* $Id: secitem.c,v 1.14 2006/05/22 22:24:34 wtchang%redhat.com Exp $
*/
#include <sys/types.h>
#ifndef _WIN32
#ifndef __linux__
#include <sys/systm.h>
#endif /* __linux__ */
#include <sys/param.h>
#endif /* _WIN32 */
#ifdef _KERNEL
#include <sys/kmem.h>
#else
#include <string.h>
#ifndef _WIN32
#include <strings.h>
#endif /* _WIN32 */
#include <assert.h>
#endif
#include "ec.h"
#include "ecl-curve.h"
#include "ecc_impl.h"
void SECITEM_FreeItem(SECItem *, PRBool);
SECItem *
SECITEM_AllocItem(PRArenaPool *arena, SECItem *item, unsigned int len,
int kmflag)
{
SECItem *result = NULL;
void *mark = NULL;
if (arena != NULL) {
mark = PORT_ArenaMark(arena);
}
if (item == NULL) {
if (arena != NULL) {
result = PORT_ArenaZAlloc(arena, sizeof(SECItem), kmflag);
} else {
result = PORT_ZAlloc(sizeof(SECItem), kmflag);
}
if (result == NULL) {
goto loser;
}
} else {
PORT_Assert(item->data == NULL);
result = item;
}
result->len = len;
if (len) {
if (arena != NULL) {
result->data = PORT_ArenaAlloc(arena, len, kmflag);
} else {
result->data = PORT_Alloc(len, kmflag);
}
if (result->data == NULL) {
goto loser;
}
} else {
result->data = NULL;
}
if (mark) {
PORT_ArenaUnmark(arena, mark);
}
return(result);
loser:
if ( arena != NULL ) {
if (mark) {
PORT_ArenaRelease(arena, mark);
}
if (item != NULL) {
item->data = NULL;
item->len = 0;
}
} else {
if (result != NULL) {
SECITEM_FreeItem(result, (item == NULL) ? PR_TRUE : PR_FALSE);
}
/*
* If item is not NULL, the above has set item->data and
* item->len to 0.
*/
}
return(NULL);
}
SECStatus
SECITEM_CopyItem(PRArenaPool *arena, SECItem *to, const SECItem *from,
int kmflag)
{
to->type = from->type;
if (from->data && from->len) {
if ( arena ) {
to->data = (unsigned char*) PORT_ArenaAlloc(arena, from->len,
kmflag);
} else {
to->data = (unsigned char*) PORT_Alloc(from->len, kmflag);
}
if (!to->data) {
return SECFailure;
}
PORT_Memcpy(to->data, from->data, from->len);
to->len = from->len;
} else {
to->data = 0;
to->len = 0;
}
return SECSuccess;
}
void
SECITEM_FreeItem(SECItem *zap, PRBool freeit)
{
if (zap) {
#ifdef _KERNEL
kmem_free(zap->data, zap->len);
#else
free(zap->data);
#endif
zap->data = 0;
zap->len = 0;
if (freeit) {
#ifdef _KERNEL
kmem_free(zap, sizeof (SECItem));
#else
free(zap);
#endif
}
}
}

View File

@ -0,0 +1,103 @@
/* *********************************************************************
*
* Sun elects to have this file available under and governed by the
* Mozilla Public License Version 1.1 ("MPL") (see
* http://www.mozilla.org/MPL/ for full license text). For the avoidance
* of doubt and subject to the following, Sun also elects to allow
* licensees to use this file under the MPL, the GNU General Public
* License version 2 only or the Lesser General Public License version
* 2.1 only. Any references to the "GNU General Public License version 2
* or later" or "GPL" in the following shall be construed to mean the
* GNU General Public License version 2 only. Any references to the "GNU
* Lesser General Public License version 2.1 or later" or "LGPL" in the
* following shall be construed to mean the GNU Lesser General Public
* License version 2.1 only. However, the following notice accompanied
* the original version of this file:
*
* Version: MPL 1.1/GPL 2.0/LGPL 2.1
*
* The contents of this file are subject to the Mozilla Public License Version
* 1.1 (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* Software distributed under the License is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
* for the specific language governing rights and limitations under the
* License.
*
* The Original Code is the Netscape security libraries.
*
* The Initial Developer of the Original Code is
* Netscape Communications Corporation.
* Portions created by the Initial Developer are Copyright (C) 1994-2000
* the Initial Developer. All Rights Reserved.
*
* Contributor(s):
* Dr Vipul Gupta <vipul.gupta@sun.com>, Sun Microsystems Laboratories
*
* Alternatively, the contents of this file may be used under the terms of
* either the GNU General Public License Version 2 or later (the "GPL"), or
* the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
* in which case the provisions of the GPL or the LGPL are applicable instead
* of those above. If you wish to allow use of your version of this file only
* under the terms of either the GPL or the LGPL, and not to allow others to
* use your version of this file under the terms of the MPL, indicate your
* decision by deleting the provisions above and replace them with the notice
* and other provisions required by the GPL or the LGPL. If you do not delete
* the provisions above, a recipient may use your version of this file under
* the terms of any one of the MPL, the GPL or the LGPL.
*
*********************************************************************** */
/*
* Copyright 2007 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#ifndef _SECOIDT_H_
#define _SECOIDT_H_
#pragma ident "%Z%%M% %I% %E% SMI"
/*
* secoidt.h - public data structures for ASN.1 OID functions
*
* $Id: secoidt.h,v 1.23 2007/05/05 22:45:16 nelson%bolyard.com Exp $
*/
typedef struct SECOidDataStr SECOidData;
typedef struct SECAlgorithmIDStr SECAlgorithmID;
/*
** An X.500 algorithm identifier
*/
struct SECAlgorithmIDStr {
SECItem algorithm;
SECItem parameters;
};
#define SEC_OID_SECG_EC_SECP192R1 SEC_OID_ANSIX962_EC_PRIME192V1
#define SEC_OID_SECG_EC_SECP256R1 SEC_OID_ANSIX962_EC_PRIME256V1
#define SEC_OID_PKCS12_KEY_USAGE SEC_OID_X509_KEY_USAGE
/* fake OID for DSS sign/verify */
#define SEC_OID_SHA SEC_OID_MISS_DSS
typedef enum {
INVALID_CERT_EXTENSION = 0,
UNSUPPORTED_CERT_EXTENSION = 1,
SUPPORTED_CERT_EXTENSION = 2
} SECSupportExtenTag;
struct SECOidDataStr {
SECItem oid;
ECCurveName offset;
const char * desc;
unsigned long mechanism;
SECSupportExtenTag supportedExtension;
/* only used for x.509 v3 extensions, so
that we can print the names of those
extensions that we don't even support */
};
#endif /* _SECOIDT_H_ */

View File

@ -27,6 +27,8 @@
* @summary Provide out-of-the-box support for ECC algorithms
* @library ../pkcs11
* @library ../pkcs11/ec
* @library ../pkcs11/sslecc
* @compile -XDignore.symbol.file TestEC.java
* @run main TestEC
*/
@ -35,12 +37,15 @@ import java.security.Provider;
/*
* Leverage the collection of EC tests used by PKCS11
*
* NOTE: the following files were copied here from the PKCS11 EC Test area
* NOTE: the following 6 files were copied here from the PKCS11 EC Test area
* and must be kept in sync with the originals:
*
* ../pkcs11/ec/p12passwords.txt
* ../pkcs11/ec/certs/sunlabscerts.pem
* ../pkcs11/ec/pkcs12/secp256r1server-secp384r1ca.p12
* ../pkcs11/ec/pkcs12/sect193r1server-rsa1024ca.p12
* ../pkcs11/sslecc/keystore
* ../pkcs11/sslecc/truststore
*/
public class TestEC {
@ -49,18 +54,23 @@ public class TestEC {
Provider p = new sun.security.ec.SunEC();
System.out.println("Running tests with " + p.getName() +
" provider...\n");
long start = System.currentTimeMillis();
/*
* The entry point used for each test is its instance method
* called main (not its static method called main).
*/
new TestECDH().main(p);
new TestECDSA().main(p);
new TestCurves().main(p);
new TestKeyFactory().main(p);
new TestECGenSpec().main(p);
new ReadPKCS12().main(p);
//new ReadCertificates().main(p);
long stop = System.currentTimeMillis();
new ReadCertificates().main(p);
new ClientJSSEServerJSSE().main(p);
long stop = System.currentTimeMillis();
System.out.println("\nCompleted tests with " + p.getName() +
" provider (" + (stop - start) + " ms).");
" provider (" + ((stop - start) / 1000.0) + " seconds).");
}
}

File diff suppressed because it is too large Load Diff

Binary file not shown.

Binary file not shown.

View File

@ -100,7 +100,15 @@ public class ReadCertificates extends PKCS11Test {
X509Certificate issuer = certs.get(cert.getIssuerX500Principal());
System.out.println("Verifying " + cert.getSubjectX500Principal() + "...");
PublicKey key = issuer.getPublicKey();
cert.verify(key, p.getName());
// First try the provider under test (if it does not support the
// necessary algorithm then try any registered provider).
try {
cert.verify(key, p.getName());
} catch (NoSuchAlgorithmException e) {
System.out.println("Warning: " + e.getMessage() +
". Trying another provider...");
cert.verify(key);
}
}
// try some random invalid signatures to make sure we get the correct

View File

@ -298,7 +298,7 @@ public class CipherTest {
throws Exception {
long time = System.currentTimeMillis();
String relPath;
if ((args.length > 0) && args[0].equals("sh")) {
if ((args != null) && (args.length > 0) && args[0].equals("sh")) {
relPath = pathToStoresSH;
} else {
relPath = pathToStores;