8031755: Type speculation should be used to optimize explicit null checks

Feed profiling data about reference nullness to type speculation.

Reviewed-by: kvn, iveresov
This commit is contained in:
Roland Westrelin 2014-03-31 09:08:53 +02:00
parent f5d6f0ceb8
commit fa3b0a8f47
16 changed files with 683 additions and 418 deletions

View File

@ -581,14 +581,14 @@ void ciMethod::assert_call_type_ok(int bci) {
* Check whether profiling provides a type for the argument i to the
* call at bci bci
*
* @param bci bci of the call
* @param i argument number
* @return profiled type
* @param [in]bci bci of the call
* @param [in]i argument number
* @param [out]type profiled type of argument, NULL if none
* @param [out]maybe_null true if null was seen for argument
* @return true if profiling exists
*
* If the profile reports that the argument may be null, return false
* at least for now.
*/
ciKlass* ciMethod::argument_profiled_type(int bci, int i) {
bool ciMethod::argument_profiled_type(int bci, int i, ciKlass*& type, bool& maybe_null) {
if (MethodData::profile_parameters() && method_data() != NULL && method_data()->is_mature()) {
ciProfileData* data = method_data()->bci_to_data(bci);
if (data != NULL) {
@ -596,82 +596,77 @@ ciKlass* ciMethod::argument_profiled_type(int bci, int i) {
assert_virtual_call_type_ok(bci);
ciVirtualCallTypeData* call = (ciVirtualCallTypeData*)data->as_VirtualCallTypeData();
if (i >= call->number_of_arguments()) {
return NULL;
}
ciKlass* type = call->valid_argument_type(i);
if (type != NULL && !call->argument_maybe_null(i)) {
return type;
return false;
}
type = call->valid_argument_type(i);
maybe_null = call->argument_maybe_null(i);
return true;
} else if (data->is_CallTypeData()) {
assert_call_type_ok(bci);
ciCallTypeData* call = (ciCallTypeData*)data->as_CallTypeData();
if (i >= call->number_of_arguments()) {
return NULL;
}
ciKlass* type = call->valid_argument_type(i);
if (type != NULL && !call->argument_maybe_null(i)) {
return type;
return false;
}
type = call->valid_argument_type(i);
maybe_null = call->argument_maybe_null(i);
return true;
}
}
}
return NULL;
return false;
}
/**
* Check whether profiling provides a type for the return value from
* the call at bci bci
*
* @param bci bci of the call
* @return profiled type
* @param [in]bci bci of the call
* @param [out]type profiled type of argument, NULL if none
* @param [out]maybe_null true if null was seen for argument
* @return true if profiling exists
*
* If the profile reports that the argument may be null, return false
* at least for now.
*/
ciKlass* ciMethod::return_profiled_type(int bci) {
bool ciMethod::return_profiled_type(int bci, ciKlass*& type, bool& maybe_null) {
if (MethodData::profile_return() && method_data() != NULL && method_data()->is_mature()) {
ciProfileData* data = method_data()->bci_to_data(bci);
if (data != NULL) {
if (data->is_VirtualCallTypeData()) {
assert_virtual_call_type_ok(bci);
ciVirtualCallTypeData* call = (ciVirtualCallTypeData*)data->as_VirtualCallTypeData();
ciKlass* type = call->valid_return_type();
if (type != NULL && !call->return_maybe_null()) {
return type;
}
type = call->valid_return_type();
maybe_null = call->return_maybe_null();
return true;
} else if (data->is_CallTypeData()) {
assert_call_type_ok(bci);
ciCallTypeData* call = (ciCallTypeData*)data->as_CallTypeData();
ciKlass* type = call->valid_return_type();
if (type != NULL && !call->return_maybe_null()) {
return type;
}
type = call->valid_return_type();
maybe_null = call->return_maybe_null();
return true;
}
}
}
return NULL;
return false;
}
/**
* Check whether profiling provides a type for the parameter i
*
* @param i parameter number
* @return profiled type
* @param [in]i parameter number
* @param [out]type profiled type of parameter, NULL if none
* @param [out]maybe_null true if null was seen for parameter
* @return true if profiling exists
*
* If the profile reports that the argument may be null, return false
* at least for now.
*/
ciKlass* ciMethod::parameter_profiled_type(int i) {
bool ciMethod::parameter_profiled_type(int i, ciKlass*& type, bool& maybe_null) {
if (MethodData::profile_parameters() && method_data() != NULL && method_data()->is_mature()) {
ciParametersTypeData* parameters = method_data()->parameters_type_data();
if (parameters != NULL && i < parameters->number_of_parameters()) {
ciKlass* type = parameters->valid_parameter_type(i);
if (type != NULL && !parameters->parameter_maybe_null(i)) {
return type;
}
type = parameters->valid_parameter_type(i);
maybe_null = parameters->parameter_maybe_null(i);
return true;
}
}
return NULL;
return false;
}

View File

@ -234,10 +234,10 @@ class ciMethod : public ciMetadata {
ciCallProfile call_profile_at_bci(int bci);
int interpreter_call_site_count(int bci);
// Does type profiling provide a useful type at this point?
ciKlass* argument_profiled_type(int bci, int i);
ciKlass* parameter_profiled_type(int i);
ciKlass* return_profiled_type(int bci);
// Does type profiling provide any useful information at this point?
bool argument_profiled_type(int bci, int i, ciKlass*& type, bool& maybe_null);
bool parameter_profiled_type(int i, ciKlass*& type, bool& maybe_null);
bool return_profiled_type(int bci, ciKlass*& type, bool& maybe_null);
ciField* get_field_at_bci( int bci, bool &will_link);
ciMethod* get_method_at_bci(int bci, bool &will_link, ciSignature* *declared_signature);

View File

@ -801,6 +801,8 @@ bool MethodData::is_speculative_trap_bytecode(Bytecodes::Code code) {
case Bytecodes::_invokeinterface:
case Bytecodes::_if_acmpeq:
case Bytecodes::_if_acmpne:
case Bytecodes::_ifnull:
case Bytecodes::_ifnonnull:
case Bytecodes::_invokestatic:
#ifdef COMPILER2
return UseTypeSpeculation;

View File

@ -2052,7 +2052,7 @@ public:
// Whole-method sticky bits and flags
enum {
_trap_hist_limit = 19, // decoupled from Deoptimization::Reason_LIMIT
_trap_hist_limit = 20, // decoupled from Deoptimization::Reason_LIMIT
_trap_hist_mask = max_jubyte,
_extra_data_count = 4 // extra DataLayout headers, for trap history
}; // Public flag values

View File

@ -399,7 +399,7 @@ Node *ConstraintCastNode::Identity( PhaseTransform *phase ) {
// Take 'join' of input and cast-up type
const Type *ConstraintCastNode::Value( PhaseTransform *phase ) const {
if( in(0) && phase->type(in(0)) == Type::TOP ) return Type::TOP;
const Type* ft = phase->type(in(1))->filter_speculative(_type);
const Type* ft = phase->type(in(1))->filter_speculative(_type);
#ifdef ASSERT
// Previous versions of this function had some special case logic,
@ -493,7 +493,17 @@ const Type *CheckCastPPNode::Value( PhaseTransform *phase ) const {
result = my_type->cast_to_ptr_type( my_type->join_ptr(in_ptr) );
}
}
return result;
// This is the code from TypePtr::xmeet() that prevents us from
// having 2 ways to represent the same type. We have to replicate it
// here because we don't go through meet/join.
if (result->remove_speculative() == result->speculative()) {
result = result->remove_speculative();
}
// Same as above: because we don't go through meet/join, remove the
// speculative type if we know we won't use it.
return result->cleanup_speculative();
// JOIN NOT DONE HERE BECAUSE OF INTERFACE ISSUES.
// FIX THIS (DO THE JOIN) WHEN UNION TYPES APPEAR!

View File

@ -249,8 +249,7 @@ CallGenerator* Compile::call_generator(ciMethod* callee, int vtable_index, bool
}
CallGenerator* miss_cg;
Deoptimization::DeoptReason reason = morphism == 2 ?
Deoptimization::Reason_bimorphic :
(speculative_receiver_type == NULL ? Deoptimization::Reason_class_check : Deoptimization::Reason_speculate_class_check);
Deoptimization::Reason_bimorphic : Deoptimization::reason_class_check(speculative_receiver_type != NULL);
if ((morphism == 1 || (morphism == 2 && next_hit_cg != NULL)) &&
!too_many_traps(jvms->method(), jvms->bci(), reason)
) {
@ -631,13 +630,7 @@ void Parse::do_call() {
}
BasicType ct = ctype->basic_type();
if (ct == T_OBJECT || ct == T_ARRAY) {
ciKlass* better_type = method()->return_profiled_type(bci());
if (UseTypeSpeculation && better_type != NULL) {
// If profiling reports a single type for the return value,
// feed it to the type system so it can propagate it as a
// speculative type
record_profile_for_speculation(stack(sp()-1), better_type);
}
record_profiled_return_for_speculation();
}
}

View File

@ -612,10 +612,10 @@ void GraphKit::builtin_throw(Deoptimization::DeoptReason reason, Node* arg) {
// Usual case: Bail to interpreter.
// Reserve the right to recompile if we haven't seen anything yet.
assert(!Deoptimization::reason_is_speculate(reason), "unsupported");
ciMethod* m = Deoptimization::reason_is_speculate(reason) ? C->method() : NULL;
Deoptimization::DeoptAction action = Deoptimization::Action_maybe_recompile;
if (treat_throw_as_hot
&& (method()->method_data()->trap_recompiled_at(bci(), NULL)
&& (method()->method_data()->trap_recompiled_at(bci(), m)
|| C->too_many_traps(reason))) {
// We cannot afford to take more traps here. Suffer in the interpreter.
if (C->log() != NULL)
@ -1181,7 +1181,8 @@ extern int explicit_null_checks_inserted,
Node* GraphKit::null_check_common(Node* value, BasicType type,
// optional arguments for variations:
bool assert_null,
Node* *null_control) {
Node* *null_control,
bool speculative) {
assert(!assert_null || null_control == NULL, "not both at once");
if (stopped()) return top();
if (!GenerateCompilerNullChecks && !assert_null && null_control == NULL) {
@ -1291,13 +1292,13 @@ Node* GraphKit::null_check_common(Node* value, BasicType type,
// Branch to failure if null
float ok_prob = PROB_MAX; // a priori estimate: nulls never happen
Deoptimization::DeoptReason reason;
if (assert_null)
if (assert_null) {
reason = Deoptimization::Reason_null_assert;
else if (type == T_OBJECT)
reason = Deoptimization::Reason_null_check;
else
} else if (type == T_OBJECT) {
reason = Deoptimization::reason_null_check(speculative);
} else {
reason = Deoptimization::Reason_div0_check;
}
// %%% Since Reason_unhandled is not recorded on a per-bytecode basis,
// ciMethodData::has_trap_at will return a conservative -1 if any
// must-be-null assertion has failed. This could cause performance
@ -2120,21 +2121,36 @@ void GraphKit::round_double_arguments(ciMethod* dest_method) {
*
* @param n node that the type applies to
* @param exact_kls type from profiling
* @param maybe_null did profiling see null?
*
* @return node with improved type
*/
Node* GraphKit::record_profile_for_speculation(Node* n, ciKlass* exact_kls) {
Node* GraphKit::record_profile_for_speculation(Node* n, ciKlass* exact_kls, bool maybe_null) {
const Type* current_type = _gvn.type(n);
assert(UseTypeSpeculation, "type speculation must be on");
const TypeOopPtr* speculative = current_type->speculative();
const TypePtr* speculative = current_type->speculative();
// Should the klass from the profile be recorded in the speculative type?
if (current_type->would_improve_type(exact_kls, jvms()->depth())) {
const TypeKlassPtr* tklass = TypeKlassPtr::make(exact_kls);
const TypeOopPtr* xtype = tklass->as_instance_type();
assert(xtype->klass_is_exact(), "Should be exact");
// Any reason to believe n is not null (from this profiling or a previous one)?
const TypePtr* ptr = (maybe_null && current_type->speculative_maybe_null()) ? TypePtr::BOTTOM : TypePtr::NOTNULL;
// record the new speculative type's depth
speculative = xtype->with_inline_depth(jvms()->depth());
speculative = xtype->cast_to_ptr_type(ptr->ptr())->is_ptr();
speculative = speculative->with_inline_depth(jvms()->depth());
} else if (current_type->would_improve_ptr(maybe_null)) {
// Profiling report that null was never seen so we can change the
// speculative type to non null ptr.
assert(!maybe_null, "nothing to improve");
if (speculative == NULL) {
speculative = TypePtr::NOTNULL;
} else {
const TypePtr* ptr = TypePtr::NOTNULL;
speculative = speculative->cast_to_ptr_type(ptr->ptr())->is_ptr();
}
}
if (speculative != current_type->speculative()) {
@ -2167,7 +2183,15 @@ Node* GraphKit::record_profiled_receiver_for_speculation(Node* n) {
return n;
}
ciKlass* exact_kls = profile_has_unique_klass();
return record_profile_for_speculation(n, exact_kls);
bool maybe_null = true;
if (java_bc() == Bytecodes::_checkcast ||
java_bc() == Bytecodes::_instanceof ||
java_bc() == Bytecodes::_aastore) {
ciProfileData* data = method()->method_data()->bci_to_data(bci());
bool maybe_null = data == NULL ? true : data->as_BitData()->null_seen();
}
return record_profile_for_speculation(n, exact_kls, maybe_null);
return n;
}
/**
@ -2187,9 +2211,10 @@ void GraphKit::record_profiled_arguments_for_speculation(ciMethod* dest_method,
for (int j = skip, i = 0; j < nargs && i < TypeProfileArgsLimit; j++) {
const Type *targ = tf->_domain->field_at(j + TypeFunc::Parms);
if (targ->basic_type() == T_OBJECT || targ->basic_type() == T_ARRAY) {
ciKlass* better_type = method()->argument_profiled_type(bci(), i);
if (better_type != NULL) {
record_profile_for_speculation(argument(j), better_type);
bool maybe_null = true;
ciKlass* better_type = NULL;
if (method()->argument_profiled_type(bci(), i, better_type, maybe_null)) {
record_profile_for_speculation(argument(j), better_type, maybe_null);
}
i++;
}
@ -2206,15 +2231,34 @@ void GraphKit::record_profiled_parameters_for_speculation() {
}
for (int i = 0, j = 0; i < method()->arg_size() ; i++) {
if (_gvn.type(local(i))->isa_oopptr()) {
ciKlass* better_type = method()->parameter_profiled_type(j);
if (better_type != NULL) {
record_profile_for_speculation(local(i), better_type);
bool maybe_null = true;
ciKlass* better_type = NULL;
if (method()->parameter_profiled_type(j, better_type, maybe_null)) {
record_profile_for_speculation(local(i), better_type, maybe_null);
}
j++;
}
}
}
/**
* Record profiling data from return value profiling at an invoke with
* the type system so that it can propagate it (speculation)
*/
void GraphKit::record_profiled_return_for_speculation() {
if (!UseTypeSpeculation) {
return;
}
bool maybe_null = true;
ciKlass* better_type = NULL;
if (method()->return_profiled_type(bci(), better_type, maybe_null)) {
// If profiling reports a single type for the return value,
// feed it to the type system so it can propagate it as a
// speculative type
record_profile_for_speculation(stack(sp()-1), better_type, maybe_null);
}
}
void GraphKit::round_double_result(ciMethod* dest_method) {
// A non-strict method may return a double value which has an extended
// exponent, but this must not be visible in a caller which is 'strict'
@ -2294,10 +2338,12 @@ Node* GraphKit::dstore_rounding(Node* n) {
// Null check oop. Set null-path control into Region in slot 3.
// Make a cast-not-nullness use the other not-null control. Return cast.
Node* GraphKit::null_check_oop(Node* value, Node* *null_control,
bool never_see_null, bool safe_for_replace) {
bool never_see_null,
bool safe_for_replace,
bool speculative) {
// Initial NULL check taken path
(*null_control) = top();
Node* cast = null_check_common(value, T_OBJECT, false, null_control);
Node* cast = null_check_common(value, T_OBJECT, false, null_control, speculative);
// Generate uncommon_trap:
if (never_see_null && (*null_control) != top()) {
@ -2308,7 +2354,8 @@ Node* GraphKit::null_check_oop(Node* value, Node* *null_control,
PreserveJVMState pjvms(this);
set_control(*null_control);
replace_in_map(value, null());
uncommon_trap(Deoptimization::Reason_null_check,
Deoptimization::DeoptReason reason = Deoptimization::reason_null_check(speculative);
uncommon_trap(reason,
Deoptimization::Action_make_not_entrant);
(*null_control) = top(); // NULL path is dead
}
@ -2732,11 +2779,16 @@ Node* GraphKit::type_check_receiver(Node* receiver, ciKlass* klass,
// recompile; the offending check will be recompiled to handle NULLs.
// If we see several offending BCIs, then all checks in the
// method will be recompiled.
bool GraphKit::seems_never_null(Node* obj, ciProfileData* data) {
bool GraphKit::seems_never_null(Node* obj, ciProfileData* data, bool& speculating) {
speculating = !_gvn.type(obj)->speculative_maybe_null();
Deoptimization::DeoptReason reason = Deoptimization::reason_null_check(speculating);
if (UncommonNullCast // Cutout for this technique
&& obj != null() // And not the -Xcomp stupid case?
&& !too_many_traps(Deoptimization::Reason_null_check)
&& !too_many_traps(reason)
) {
if (speculating) {
return true;
}
if (data == NULL)
// Edge case: no mature data. Be optimistic here.
return true;
@ -2746,6 +2798,7 @@ bool GraphKit::seems_never_null(Node* obj, ciProfileData* data) {
java_bc() == Bytecodes::_aastore, "MDO must collect null_seen bit here");
return !data->as_BitData()->null_seen();
}
speculating = false;
return false;
}
@ -2758,7 +2811,7 @@ Node* GraphKit::maybe_cast_profiled_receiver(Node* not_null_obj,
bool safe_for_replace) {
if (!UseTypeProfile || !TypeProfileCasts) return NULL;
Deoptimization::DeoptReason reason = spec_klass == NULL ? Deoptimization::Reason_class_check : Deoptimization::Reason_speculate_class_check;
Deoptimization::DeoptReason reason = Deoptimization::reason_class_check(spec_klass != NULL);
// Make sure we haven't already deoptimized from this tactic.
if (too_many_traps(reason))
@ -2811,7 +2864,7 @@ Node* GraphKit::maybe_cast_profiled_obj(Node* obj,
// type == NULL if profiling tells us this object is always null
if (type != NULL) {
Deoptimization::DeoptReason class_reason = Deoptimization::Reason_speculate_class_check;
Deoptimization::DeoptReason null_reason = Deoptimization::Reason_null_check;
Deoptimization::DeoptReason null_reason = Deoptimization::Reason_speculate_null_check;
if (!too_many_traps(null_reason) &&
!too_many_traps(class_reason)) {
Node* not_null_obj = NULL;
@ -2819,7 +2872,7 @@ Node* GraphKit::maybe_cast_profiled_obj(Node* obj,
// there's no need for a null check
if (!not_null) {
Node* null_ctl = top();
not_null_obj = null_check_oop(obj, &null_ctl, true, true);
not_null_obj = null_check_oop(obj, &null_ctl, true, true, true);
assert(null_ctl->is_top(), "no null control here");
} else {
not_null_obj = obj;
@ -2867,12 +2920,13 @@ Node* GraphKit::gen_instanceof(Node* obj, Node* superklass, bool safe_for_replac
if (java_bc() == Bytecodes::_instanceof) { // Only for the bytecode
data = method()->method_data()->bci_to_data(bci());
}
bool speculative_not_null = false;
bool never_see_null = (ProfileDynamicTypes // aggressive use of profile
&& seems_never_null(obj, data));
&& seems_never_null(obj, data, speculative_not_null));
// Null check; get casted pointer; set region slot 3
Node* null_ctl = top();
Node* not_null_obj = null_check_oop(obj, &null_ctl, never_see_null, safe_for_replace);
Node* not_null_obj = null_check_oop(obj, &null_ctl, never_see_null, safe_for_replace, speculative_not_null);
// If not_null_obj is dead, only null-path is taken
if (stopped()) { // Doing instance-of on a NULL?
@ -2995,12 +3049,13 @@ Node* GraphKit::gen_checkcast(Node *obj, Node* superklass,
C->set_has_split_ifs(true); // Has chance for split-if optimization
// Use null-cast information if it is available
bool speculative_not_null = false;
bool never_see_null = ((failure_control == NULL) // regular case only
&& seems_never_null(obj, data));
&& seems_never_null(obj, data, speculative_not_null));
// Null check; get casted pointer; set region slot 3
Node* null_ctl = top();
Node* not_null_obj = null_check_oop(obj, &null_ctl, never_see_null, safe_for_replace);
Node* not_null_obj = null_check_oop(obj, &null_ctl, never_see_null, safe_for_replace, speculative_not_null);
// If not_null_obj is dead, only null-path is taken
if (stopped()) { // Doing instance-of on a NULL?

View File

@ -351,9 +351,11 @@ class GraphKit : public Phase {
// Return the value cast to not-null.
// Be clever about equivalent dominating null checks.
Node* null_check_common(Node* value, BasicType type,
bool assert_null = false, Node* *null_control = NULL);
bool assert_null = false,
Node* *null_control = NULL,
bool speculative = false);
Node* null_check(Node* value, BasicType type = T_OBJECT) {
return null_check_common(value, type);
return null_check_common(value, type, false, NULL, !_gvn.type(value)->speculative_maybe_null());
}
Node* null_check_receiver() {
assert(argument(0)->bottom_type()->isa_ptr(), "must be");
@ -382,10 +384,12 @@ class GraphKit : public Phase {
// If safe_for_replace, then we can replace the value with the cast
// in the parsing map (the cast is guaranteed to dominate the map)
Node* null_check_oop(Node* value, Node* *null_control,
bool never_see_null = false, bool safe_for_replace = false);
bool never_see_null = false,
bool safe_for_replace = false,
bool speculative = false);
// Check the null_seen bit.
bool seems_never_null(Node* obj, ciProfileData* data);
bool seems_never_null(Node* obj, ciProfileData* data, bool& speculating);
// Check for unique class for receiver at call
ciKlass* profile_has_unique_klass() {
@ -399,10 +403,11 @@ class GraphKit : public Phase {
}
// record type from profiling with the type system
Node* record_profile_for_speculation(Node* n, ciKlass* exact_kls);
Node* record_profiled_receiver_for_speculation(Node* n);
Node* record_profile_for_speculation(Node* n, ciKlass* exact_kls, bool maybe_null);
void record_profiled_arguments_for_speculation(ciMethod* dest_method, Bytecodes::Code bc);
void record_profiled_parameters_for_speculation();
void record_profiled_return_for_speculation();
Node* record_profiled_receiver_for_speculation(Node* n);
// Use the type profile to narrow an object type.
Node* maybe_cast_profiled_receiver(Node* not_null_obj,

View File

@ -4658,7 +4658,7 @@ bool LibraryCallKit::inline_arraycopy() {
ciKlass* src_k = NULL;
if (!has_src) {
src_k = src_type->speculative_type();
src_k = src_type->speculative_type_not_null();
if (src_k != NULL && src_k->is_array_klass()) {
could_have_src = true;
}
@ -4666,7 +4666,7 @@ bool LibraryCallKit::inline_arraycopy() {
ciKlass* dest_k = NULL;
if (!has_dest) {
dest_k = dest_type->speculative_type();
dest_k = dest_type->speculative_type_not_null();
if (dest_k != NULL && dest_k->is_array_klass()) {
could_have_dest = true;
}
@ -4738,13 +4738,13 @@ bool LibraryCallKit::inline_arraycopy() {
ciKlass* src_k = top_src->klass();
ciKlass* dest_k = top_dest->klass();
if (!src_spec) {
src_k = src_type->speculative_type();
src_k = src_type->speculative_type_not_null();
if (src_k != NULL && src_k->is_array_klass()) {
could_have_src = true;
}
}
if (!dest_spec) {
dest_k = dest_type->speculative_type();
dest_k = dest_type->speculative_type_not_null();
if (dest_k != NULL && dest_k->is_array_klass()) {
could_have_dest = true;
}

View File

@ -1288,7 +1288,7 @@ void Parse::sharpen_type_after_if(BoolTest::mask btest,
(jvms->is_loc(obj_in_map) || jvms->is_stk(obj_in_map))) {
TypeNode* ccast = new (C) CheckCastPPNode(control(), obj, tboth);
const Type* tcc = ccast->as_Type()->type();
assert(tcc != obj_type && tcc->higher_equal_speculative(obj_type), "must improve");
assert(tcc != obj_type && tcc->higher_equal(obj_type), "must improve");
// Delay transform() call to allow recovery of pre-cast value
// at the control merge.
_gvn.set_type_bottom(ccast);
@ -1352,7 +1352,7 @@ void Parse::sharpen_type_after_if(BoolTest::mask btest,
if (ccast != NULL) {
const Type* tcc = ccast->as_Type()->type();
assert(tcc != tval && tcc->higher_equal_speculative(tval), "must improve");
assert(tcc != tval && tcc->higher_equal(tval), "must improve");
// Delay transform() call to allow recovery of pre-cast value
// at the control merge.
ccast->set_req(0, control());
@ -1393,7 +1393,7 @@ Node* Parse::optimize_cmp_with_klass(Node* c) {
Node* addp = load_klass->in(2);
Node* obj = addp->in(AddPNode::Address);
const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
if (obj_type->speculative_type() != NULL) {
if (obj_type->speculative_type_not_null() != NULL) {
ciKlass* k = obj_type->speculative_type();
inc_sp(2);
obj = maybe_cast_profiled_obj(obj, k);
@ -2277,6 +2277,14 @@ void Parse::do_one_bytecode() {
maybe_add_safepoint(iter().get_dest());
a = null();
b = pop();
if (!_gvn.type(b)->speculative_maybe_null() &&
!too_many_traps(Deoptimization::Reason_speculate_null_check)) {
inc_sp(1);
Node* null_ctl = top();
b = null_check_oop(b, &null_ctl, true, true, true);
assert(null_ctl->is_top(), "no null control here");
dec_sp(1);
}
c = _gvn.transform( new (C) CmpPNode(b, a) );
do_ifnull(btest, c);
break;

View File

@ -330,7 +330,7 @@ void NodeHash::check_no_speculative_types() {
Node *sentinel_node = sentinel();
for (uint i = 0; i < max; ++i) {
Node *n = at(i);
if(n != NULL && n != sentinel_node && n->is_Type()) {
if(n != NULL && n != sentinel_node && n->is_Type() && n->outcnt() > 0) {
TypeNode* tn = n->as_Type();
const Type* t = tn->type();
const Type* t_no_spec = t->remove_speculative();

View File

@ -350,9 +350,9 @@ void Type::Initialize_shared(Compile* current) {
floop[1] = TypeInt::INT;
TypeTuple::LOOPBODY = TypeTuple::make( 2, floop );
TypePtr::NULL_PTR= TypePtr::make( AnyPtr, TypePtr::Null, 0 );
TypePtr::NOTNULL = TypePtr::make( AnyPtr, TypePtr::NotNull, OffsetBot );
TypePtr::BOTTOM = TypePtr::make( AnyPtr, TypePtr::BotPTR, OffsetBot );
TypePtr::NULL_PTR= TypePtr::make(AnyPtr, TypePtr::Null, 0);
TypePtr::NOTNULL = TypePtr::make(AnyPtr, TypePtr::NotNull, OffsetBot);
TypePtr::BOTTOM = TypePtr::make(AnyPtr, TypePtr::BotPTR, OffsetBot);
TypeRawPtr::BOTTOM = TypeRawPtr::make( TypePtr::BotPTR );
TypeRawPtr::NOTNULL= TypeRawPtr::make( TypePtr::NotNull );
@ -372,7 +372,7 @@ void Type::Initialize_shared(Compile* current) {
false, 0, oopDesc::mark_offset_in_bytes());
TypeInstPtr::KLASS = TypeInstPtr::make(TypePtr::BotPTR, current->env()->Object_klass(),
false, 0, oopDesc::klass_offset_in_bytes());
TypeOopPtr::BOTTOM = TypeOopPtr::make(TypePtr::BotPTR, OffsetBot, TypeOopPtr::InstanceBot, NULL);
TypeOopPtr::BOTTOM = TypeOopPtr::make(TypePtr::BotPTR, OffsetBot, TypeOopPtr::InstanceBot);
TypeMetadataPtr::BOTTOM = TypeMetadataPtr::make(TypePtr::BotPTR, NULL, OffsetBot);
@ -620,8 +620,8 @@ bool Type::interface_vs_oop(const Type *t) const {
return true;
}
// Now check the speculative parts as well
const TypeOopPtr* this_spec = isa_oopptr() != NULL ? isa_oopptr()->speculative() : NULL;
const TypeOopPtr* t_spec = t->isa_oopptr() != NULL ? t->isa_oopptr()->speculative() : NULL;
const TypePtr* this_spec = isa_ptr() != NULL ? is_ptr()->speculative() : NULL;
const TypePtr* t_spec = t->isa_ptr() != NULL ? t->is_ptr()->speculative() : NULL;
if (this_spec != NULL && t_spec != NULL) {
if (this_spec->interface_vs_oop_helper(t_spec)) {
return true;
@ -1975,6 +1975,25 @@ const Type* TypeAry::remove_speculative() const {
return make(_elem->remove_speculative(), _size, _stable);
}
/**
* Return same type with cleaned up speculative part of element
*/
const Type* TypeAry::cleanup_speculative() const {
return make(_elem->cleanup_speculative(), _size, _stable);
}
/**
* Return same type but with a different inline depth (used for speculation)
*
* @param depth depth to meet with
*/
const TypePtr* TypePtr::with_inline_depth(int depth) const {
if (!UseInlineDepthForSpeculativeTypes) {
return this;
}
return make(AnyPtr, _ptr, _offset, _speculative, depth);
}
//----------------------interface_vs_oop---------------------------------------
#ifdef ASSERT
bool TypeAry::interface_vs_oop(const Type *t) const {
@ -2179,15 +2198,15 @@ const TypePtr::PTR TypePtr::ptr_meet[TypePtr::lastPTR][TypePtr::lastPTR] = {
};
//------------------------------make-------------------------------------------
const TypePtr *TypePtr::make( TYPES t, enum PTR ptr, int offset ) {
return (TypePtr*)(new TypePtr(t,ptr,offset))->hashcons();
const TypePtr *TypePtr::make(TYPES t, enum PTR ptr, int offset, const TypePtr* speculative, int inline_depth) {
return (TypePtr*)(new TypePtr(t,ptr,offset, speculative, inline_depth))->hashcons();
}
//------------------------------cast_to_ptr_type-------------------------------
const Type *TypePtr::cast_to_ptr_type(PTR ptr) const {
assert(_base == AnyPtr, "subclass must override cast_to_ptr_type");
if( ptr == _ptr ) return this;
return make(_base, ptr, _offset);
return make(_base, ptr, _offset, _speculative, _inline_depth);
}
//------------------------------get_con----------------------------------------
@ -2198,7 +2217,29 @@ intptr_t TypePtr::get_con() const {
//------------------------------meet-------------------------------------------
// Compute the MEET of two types. It returns a new Type object.
const Type *TypePtr::xmeet( const Type *t ) const {
const Type *TypePtr::xmeet(const Type *t) const {
const Type* res = xmeet_helper(t);
if (res->isa_ptr() == NULL) {
return res;
}
const TypePtr* res_ptr = res->is_ptr();
if (res_ptr->speculative() != NULL) {
// type->speculative() == NULL means that speculation is no better
// than type, i.e. type->speculative() == type. So there are 2
// ways to represent the fact that we have no useful speculative
// data and we should use a single one to be able to test for
// equality between types. Check whether type->speculative() ==
// type and set speculative to NULL if it is the case.
if (res_ptr->remove_speculative() == res_ptr->speculative()) {
return res_ptr->remove_speculative();
}
}
return res;
}
const Type *TypePtr::xmeet_helper(const Type *t) const {
// Perform a fast test for common case; meeting the same types together.
if( this == t ) return this; // Meeting same type-rep?
@ -2221,7 +2262,9 @@ const Type *TypePtr::xmeet( const Type *t ) const {
case AnyPtr: { // Meeting to AnyPtrs
const TypePtr *tp = t->is_ptr();
return make( AnyPtr, meet_ptr(tp->ptr()), meet_offset(tp->offset()) );
const TypePtr* speculative = xmeet_speculative(tp);
int depth = meet_inline_depth(tp->inline_depth());
return make(AnyPtr, meet_ptr(tp->ptr()), meet_offset(tp->offset()), speculative, depth);
}
case RawPtr: // For these, flip the call around to cut down
case OopPtr:
@ -2260,7 +2303,7 @@ const TypePtr::PTR TypePtr::ptr_dual[TypePtr::lastPTR] = {
BotPTR, NotNull, Constant, Null, AnyNull, TopPTR
};
const Type *TypePtr::xdual() const {
return new TypePtr( AnyPtr, dual_ptr(), dual_offset() );
return new TypePtr(AnyPtr, dual_ptr(), dual_offset(), dual_speculative(), dual_inline_depth());
}
//------------------------------xadd_offset------------------------------------
@ -2281,20 +2324,245 @@ int TypePtr::xadd_offset( intptr_t offset ) const {
//------------------------------add_offset-------------------------------------
const TypePtr *TypePtr::add_offset( intptr_t offset ) const {
return make( AnyPtr, _ptr, xadd_offset(offset) );
return make(AnyPtr, _ptr, xadd_offset(offset), _speculative, _inline_depth);
}
//------------------------------eq---------------------------------------------
// Structural equality check for Type representations
bool TypePtr::eq( const Type *t ) const {
const TypePtr *a = (const TypePtr*)t;
return _ptr == a->ptr() && _offset == a->offset();
return _ptr == a->ptr() && _offset == a->offset() && eq_speculative(a) && _inline_depth == a->_inline_depth;
}
//------------------------------hash-------------------------------------------
// Type-specific hashing function.
int TypePtr::hash(void) const {
return _ptr + _offset;
return _ptr + _offset + hash_speculative() + _inline_depth;
;
}
/**
* Return same type without a speculative part
*/
const Type* TypePtr::remove_speculative() const {
if (_speculative == NULL) {
return this;
}
assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
return make(AnyPtr, _ptr, _offset, NULL, _inline_depth);
}
/**
* Return same type but drop speculative part if we know we won't use
* it
*/
const Type* TypePtr::cleanup_speculative() const {
if (speculative() == NULL) {
return this;
}
const Type* no_spec = remove_speculative();
// If this is NULL_PTR then we don't need the speculative type
// (with_inline_depth in case the current type inline depth is
// InlineDepthTop)
if (no_spec == NULL_PTR->with_inline_depth(inline_depth())) {
return no_spec;
}
if (above_centerline(speculative()->ptr())) {
return no_spec;
}
const TypeOopPtr* spec_oopptr = speculative()->isa_oopptr();
// If the speculative may be null and is an inexact klass then it
// doesn't help
if (speculative()->maybe_null() && (spec_oopptr == NULL || !spec_oopptr->klass_is_exact())) {
return no_spec;
}
return this;
}
/**
* dual of the speculative part of the type
*/
const TypePtr* TypePtr::dual_speculative() const {
if (_speculative == NULL) {
return NULL;
}
return _speculative->dual()->is_ptr();
}
/**
* meet of the speculative parts of 2 types
*
* @param other type to meet with
*/
const TypePtr* TypePtr::xmeet_speculative(const TypePtr* other) const {
bool this_has_spec = (_speculative != NULL);
bool other_has_spec = (other->speculative() != NULL);
if (!this_has_spec && !other_has_spec) {
return NULL;
}
// If we are at a point where control flow meets and one branch has
// a speculative type and the other has not, we meet the speculative
// type of one branch with the actual type of the other. If the
// actual type is exact and the speculative is as well, then the
// result is a speculative type which is exact and we can continue
// speculation further.
const TypePtr* this_spec = _speculative;
const TypePtr* other_spec = other->speculative();
if (!this_has_spec) {
this_spec = this;
}
if (!other_has_spec) {
other_spec = other;
}
return this_spec->meet(other_spec)->is_ptr();
}
/**
* dual of the inline depth for this type (used for speculation)
*/
int TypePtr::dual_inline_depth() const {
return -inline_depth();
}
/**
* meet of 2 inline depths (used for speculation)
*
* @param depth depth to meet with
*/
int TypePtr::meet_inline_depth(int depth) const {
return MAX2(inline_depth(), depth);
}
/**
* Are the speculative parts of 2 types equal?
*
* @param other type to compare this one to
*/
bool TypePtr::eq_speculative(const TypePtr* other) const {
if (_speculative == NULL || other->speculative() == NULL) {
return _speculative == other->speculative();
}
if (_speculative->base() != other->speculative()->base()) {
return false;
}
return _speculative->eq(other->speculative());
}
/**
* Hash of the speculative part of the type
*/
int TypePtr::hash_speculative() const {
if (_speculative == NULL) {
return 0;
}
return _speculative->hash();
}
/**
* add offset to the speculative part of the type
*
* @param offset offset to add
*/
const TypePtr* TypePtr::add_offset_speculative(intptr_t offset) const {
if (_speculative == NULL) {
return NULL;
}
return _speculative->add_offset(offset)->is_ptr();
}
/**
* return exact klass from the speculative type if there's one
*/
ciKlass* TypePtr::speculative_type() const {
if (_speculative != NULL && _speculative->isa_oopptr()) {
const TypeOopPtr* speculative = _speculative->join(this)->is_oopptr();
if (speculative->klass_is_exact()) {
return speculative->klass();
}
}
return NULL;
}
/**
* return true if speculative type may be null
*/
bool TypePtr::speculative_maybe_null() const {
if (_speculative != NULL) {
const TypePtr* speculative = _speculative->join(this)->is_ptr();
return speculative->maybe_null();
}
return true;
}
/**
* Same as TypePtr::speculative_type() but return the klass only if
* the speculative tells us is not null
*/
ciKlass* TypePtr::speculative_type_not_null() const {
if (speculative_maybe_null()) {
return NULL;
}
return speculative_type();
}
/**
* Check whether new profiling would improve speculative type
*
* @param exact_kls class from profiling
* @param inline_depth inlining depth of profile point
*
* @return true if type profile is valuable
*/
bool TypePtr::would_improve_type(ciKlass* exact_kls, int inline_depth) const {
// no profiling?
if (exact_kls == NULL) {
return false;
}
// no speculative type or non exact speculative type?
if (speculative_type() == NULL) {
return true;
}
// If the node already has an exact speculative type keep it,
// unless it was provided by profiling that is at a deeper
// inlining level. Profiling at a higher inlining depth is
// expected to be less accurate.
if (_speculative->inline_depth() == InlineDepthBottom) {
return false;
}
assert(_speculative->inline_depth() != InlineDepthTop, "can't do the comparison");
return inline_depth < _speculative->inline_depth();
}
/**
* Check whether new profiling would improve ptr (= tells us it is non
* null)
*
* @param maybe_null true if profiling tells the ptr may be null
*
* @return true if ptr profile is valuable
*/
bool TypePtr::would_improve_ptr(bool maybe_null) const {
// profiling doesn't tell us anything useful
if (maybe_null) {
return false;
}
// We already know this is not be null
if (!this->maybe_null()) {
return false;
}
// We already know the speculative type cannot be null
if (!speculative_maybe_null()) {
return false;
}
return true;
}
//------------------------------dump2------------------------------------------
@ -2309,6 +2577,32 @@ void TypePtr::dump2( Dict &d, uint depth, outputStream *st ) const {
if( _offset == OffsetTop ) st->print("+top");
else if( _offset == OffsetBot ) st->print("+bot");
else if( _offset ) st->print("+%d", _offset);
dump_inline_depth(st);
dump_speculative(st);
}
/**
*dump the speculative part of the type
*/
void TypePtr::dump_speculative(outputStream *st) const {
if (_speculative != NULL) {
st->print(" (speculative=");
_speculative->dump_on(st);
st->print(")");
}
}
/**
*dump the inline depth of the type
*/
void TypePtr::dump_inline_depth(outputStream *st) const {
if (_inline_depth != InlineDepthBottom) {
if (_inline_depth == InlineDepthTop) {
st->print(" (inline_depth=InlineDepthTop)");
} else {
st->print(" (inline_depth=%d)", _inline_depth);
}
}
}
#endif
@ -2399,7 +2693,7 @@ const Type *TypeRawPtr::xmeet( const Type *t ) const {
case TypePtr::Null:
if( _ptr == TypePtr::TopPTR ) return t;
return TypeRawPtr::BOTTOM;
case TypePtr::NotNull: return TypePtr::make( AnyPtr, meet_ptr(TypePtr::NotNull), tp->meet_offset(0) );
case TypePtr::NotNull: return TypePtr::make(AnyPtr, meet_ptr(TypePtr::NotNull), tp->meet_offset(0), tp->speculative(), tp->inline_depth());
case TypePtr::AnyNull:
if( _ptr == TypePtr::Constant) return this;
return make( meet_ptr(TypePtr::AnyNull) );
@ -2463,16 +2757,15 @@ void TypeRawPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
const TypeOopPtr *TypeOopPtr::BOTTOM;
//------------------------------TypeOopPtr-------------------------------------
TypeOopPtr::TypeOopPtr(TYPES t, PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id, const TypeOopPtr* speculative, int inline_depth)
: TypePtr(t, ptr, offset),
TypeOopPtr::TypeOopPtr(TYPES t, PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset,
int instance_id, const TypePtr* speculative, int inline_depth)
: TypePtr(t, ptr, offset, speculative, inline_depth),
_const_oop(o), _klass(k),
_klass_is_exact(xk),
_is_ptr_to_narrowoop(false),
_is_ptr_to_narrowklass(false),
_is_ptr_to_boxed_value(false),
_instance_id(instance_id),
_speculative(speculative),
_inline_depth(inline_depth){
_instance_id(instance_id) {
if (Compile::current()->eliminate_boxing() && (t == InstPtr) &&
(offset > 0) && xk && (k != 0) && k->is_instance_klass()) {
_is_ptr_to_boxed_value = k->as_instance_klass()->is_boxed_value_offset(offset);
@ -2538,8 +2831,8 @@ TypeOopPtr::TypeOopPtr(TYPES t, PTR ptr, ciKlass* k, bool xk, ciObject* o, int o
}
//------------------------------make-------------------------------------------
const TypeOopPtr *TypeOopPtr::make(PTR ptr,
int offset, int instance_id, const TypeOopPtr* speculative, int inline_depth) {
const TypeOopPtr *TypeOopPtr::make(PTR ptr, int offset, int instance_id,
const TypePtr* speculative, int inline_depth) {
assert(ptr != Constant, "no constant generic pointers");
ciKlass* k = Compile::current()->env()->Object_klass();
bool xk = false;
@ -2582,28 +2875,6 @@ const TypeKlassPtr* TypeOopPtr::as_klass_type() const {
return TypeKlassPtr::make(xk? Constant: NotNull, k, 0);
}
const Type *TypeOopPtr::xmeet(const Type *t) const {
const Type* res = xmeet_helper(t);
if (res->isa_oopptr() == NULL) {
return res;
}
const TypeOopPtr* res_oopptr = res->is_oopptr();
if (res_oopptr->speculative() != NULL) {
// type->speculative() == NULL means that speculation is no better
// than type, i.e. type->speculative() == type. So there are 2
// ways to represent the fact that we have no useful speculative
// data and we should use a single one to be able to test for
// equality between types. Check whether type->speculative() ==
// type and set speculative to NULL if it is the case.
if (res_oopptr->remove_speculative() == res_oopptr->speculative()) {
return res_oopptr->remove_speculative();
}
}
return res;
}
//------------------------------meet-------------------------------------------
// Compute the MEET of two types. It returns a new Type object.
const Type *TypeOopPtr::xmeet_helper(const Type *t) const {
@ -2641,19 +2912,20 @@ const Type *TypeOopPtr::xmeet_helper(const Type *t) const {
const TypePtr *tp = t->is_ptr();
int offset = meet_offset(tp->offset());
PTR ptr = meet_ptr(tp->ptr());
const TypePtr* speculative = xmeet_speculative(tp);
int depth = meet_inline_depth(tp->inline_depth());
switch (tp->ptr()) {
case Null:
if (ptr == Null) return TypePtr::make(AnyPtr, ptr, offset);
if (ptr == Null) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
// else fall through:
case TopPTR:
case AnyNull: {
int instance_id = meet_instance_id(InstanceTop);
const TypeOopPtr* speculative = _speculative;
return make(ptr, offset, instance_id, speculative, _inline_depth);
return make(ptr, offset, instance_id, speculative, depth);
}
case BotPTR:
case NotNull:
return TypePtr::make(AnyPtr, ptr, offset);
return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
default: typerr(t);
}
}
@ -2661,7 +2933,7 @@ const Type *TypeOopPtr::xmeet_helper(const Type *t) const {
case OopPtr: { // Meeting to other OopPtrs
const TypeOopPtr *tp = t->is_oopptr();
int instance_id = meet_instance_id(tp->instance_id());
const TypeOopPtr* speculative = xmeet_speculative(tp);
const TypePtr* speculative = xmeet_speculative(tp);
int depth = meet_inline_depth(tp->inline_depth());
return make(meet_ptr(tp->ptr()), meet_offset(tp->offset()), instance_id, speculative, depth);
}
@ -2859,9 +3131,7 @@ const Type *TypeOopPtr::filter_helper(const Type *kills, bool include_speculativ
bool TypeOopPtr::eq( const Type *t ) const {
const TypeOopPtr *a = (const TypeOopPtr*)t;
if (_klass_is_exact != a->_klass_is_exact ||
_instance_id != a->_instance_id ||
!eq_speculative(a) ||
_inline_depth != a->_inline_depth) return false;
_instance_id != a->_instance_id) return false;
ciObject* one = const_oop();
ciObject* two = a->const_oop();
if (one == NULL || two == NULL) {
@ -2878,8 +3148,6 @@ int TypeOopPtr::hash(void) const {
(const_oop() ? const_oop()->hash() : 0) +
_klass_is_exact +
_instance_id +
hash_speculative() +
_inline_depth +
TypePtr::hash();
}
@ -2903,27 +3171,6 @@ void TypeOopPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
dump_inline_depth(st);
dump_speculative(st);
}
/**
*dump the speculative part of the type
*/
void TypeOopPtr::dump_speculative(outputStream *st) const {
if (_speculative != NULL) {
st->print(" (speculative=");
_speculative->dump_on(st);
st->print(")");
}
}
void TypeOopPtr::dump_inline_depth(outputStream *st) const {
if (_inline_depth != InlineDepthBottom) {
if (_inline_depth == InlineDepthTop) {
st->print(" (inline_depth=InlineDepthTop)");
} else {
st->print(" (inline_depth=%d)", _inline_depth);
}
}
}
#endif
//------------------------------singleton--------------------------------------
@ -2951,50 +3198,31 @@ const Type* TypeOopPtr::remove_speculative() const {
return make(_ptr, _offset, _instance_id, NULL, _inline_depth);
}
/**
* Return same type but drop speculative part if we know we won't use
* it
*/
const Type* TypeOopPtr::cleanup_speculative() const {
// If the klass is exact and the ptr is not null then there's
// nothing that the speculative type can help us with
if (klass_is_exact() && !maybe_null()) {
return remove_speculative();
}
return TypePtr::cleanup_speculative();
}
/**
* Return same type but with a different inline depth (used for speculation)
*
* @param depth depth to meet with
*/
const TypeOopPtr* TypeOopPtr::with_inline_depth(int depth) const {
const TypePtr* TypeOopPtr::with_inline_depth(int depth) const {
if (!UseInlineDepthForSpeculativeTypes) {
return this;
}
return make(_ptr, _offset, _instance_id, _speculative, depth);
}
/**
* Check whether new profiling would improve speculative type
*
* @param exact_kls class from profiling
* @param inline_depth inlining depth of profile point
*
* @return true if type profile is valuable
*/
bool TypeOopPtr::would_improve_type(ciKlass* exact_kls, int inline_depth) const {
// no way to improve an already exact type
if (klass_is_exact()) {
return false;
}
// no profiling?
if (exact_kls == NULL) {
return false;
}
// no speculative type or non exact speculative type?
if (speculative_type() == NULL) {
return true;
}
// If the node already has an exact speculative type keep it,
// unless it was provided by profiling that is at a deeper
// inlining level. Profiling at a higher inlining depth is
// expected to be less accurate.
if (_speculative->inline_depth() == InlineDepthBottom) {
return false;
}
assert(_speculative->inline_depth() != InlineDepthTop, "can't do the comparison");
return inline_depth < _speculative->inline_depth();
}
//------------------------------meet_instance_id--------------------------------
int TypeOopPtr::meet_instance_id( int instance_id ) const {
// Either is 'TOP' instance? Return the other instance!
@ -3013,102 +3241,19 @@ int TypeOopPtr::dual_instance_id( ) const {
}
/**
* meet of the speculative parts of 2 types
* Check whether new profiling would improve speculative type
*
* @param other type to meet with
*/
const TypeOopPtr* TypeOopPtr::xmeet_speculative(const TypeOopPtr* other) const {
bool this_has_spec = (_speculative != NULL);
bool other_has_spec = (other->speculative() != NULL);
if (!this_has_spec && !other_has_spec) {
return NULL;
}
// If we are at a point where control flow meets and one branch has
// a speculative type and the other has not, we meet the speculative
// type of one branch with the actual type of the other. If the
// actual type is exact and the speculative is as well, then the
// result is a speculative type which is exact and we can continue
// speculation further.
const TypeOopPtr* this_spec = _speculative;
const TypeOopPtr* other_spec = other->speculative();
if (!this_has_spec) {
this_spec = this;
}
if (!other_has_spec) {
other_spec = other;
}
return this_spec->meet_speculative(other_spec)->is_oopptr();
}
/**
* dual of the speculative part of the type
*/
const TypeOopPtr* TypeOopPtr::dual_speculative() const {
if (_speculative == NULL) {
return NULL;
}
return _speculative->dual()->is_oopptr();
}
/**
* add offset to the speculative part of the type
* @param exact_kls class from profiling
* @param inline_depth inlining depth of profile point
*
* @param offset offset to add
* @return true if type profile is valuable
*/
const TypeOopPtr* TypeOopPtr::add_offset_speculative(intptr_t offset) const {
if (_speculative == NULL) {
return NULL;
}
return _speculative->add_offset(offset)->is_oopptr();
}
/**
* Are the speculative parts of 2 types equal?
*
* @param other type to compare this one to
*/
bool TypeOopPtr::eq_speculative(const TypeOopPtr* other) const {
if (_speculative == NULL || other->speculative() == NULL) {
return _speculative == other->speculative();
}
if (_speculative->base() != other->speculative()->base()) {
bool TypeOopPtr::would_improve_type(ciKlass* exact_kls, int inline_depth) const {
// no way to improve an already exact type
if (klass_is_exact()) {
return false;
}
return _speculative->eq(other->speculative());
}
/**
* Hash of the speculative part of the type
*/
int TypeOopPtr::hash_speculative() const {
if (_speculative == NULL) {
return 0;
}
return _speculative->hash();
}
/**
* dual of the inline depth for this type (used for speculation)
*/
int TypeOopPtr::dual_inline_depth() const {
return -inline_depth();
}
/**
* meet of 2 inline depth (used for speculation)
*
* @param depth depth to meet with
*/
int TypeOopPtr::meet_inline_depth(int depth) const {
return MAX2(inline_depth(), depth);
return TypePtr::would_improve_type(exact_kls, inline_depth);
}
//=============================================================================
@ -3120,8 +3265,10 @@ const TypeInstPtr *TypeInstPtr::MARK;
const TypeInstPtr *TypeInstPtr::KLASS;
//------------------------------TypeInstPtr-------------------------------------
TypeInstPtr::TypeInstPtr(PTR ptr, ciKlass* k, bool xk, ciObject* o, int off, int instance_id, const TypeOopPtr* speculative, int inline_depth)
: TypeOopPtr(InstPtr, ptr, k, xk, o, off, instance_id, speculative, inline_depth), _name(k->name()) {
TypeInstPtr::TypeInstPtr(PTR ptr, ciKlass* k, bool xk, ciObject* o, int off,
int instance_id, const TypePtr* speculative, int inline_depth)
: TypeOopPtr(InstPtr, ptr, k, xk, o, off, instance_id, speculative, inline_depth),
_name(k->name()) {
assert(k != NULL &&
(k->is_loaded() || o == NULL),
"cannot have constants with non-loaded klass");
@ -3134,7 +3281,7 @@ const TypeInstPtr *TypeInstPtr::make(PTR ptr,
ciObject* o,
int offset,
int instance_id,
const TypeOopPtr* speculative,
const TypePtr* speculative,
int inline_depth) {
assert( !k->is_loaded() || k->is_instance_klass(), "Must be for instance");
// Either const_oop() is NULL or else ptr is Constant
@ -3217,7 +3364,7 @@ const TypeInstPtr *TypeInstPtr::xmeet_unloaded(const TypeInstPtr *tinst) const {
int off = meet_offset(tinst->offset());
PTR ptr = meet_ptr(tinst->ptr());
int instance_id = meet_instance_id(tinst->instance_id());
const TypeOopPtr* speculative = xmeet_speculative(tinst);
const TypePtr* speculative = xmeet_speculative(tinst);
int depth = meet_inline_depth(tinst->inline_depth());
const TypeInstPtr *loaded = is_loaded() ? this : tinst;
@ -3295,7 +3442,7 @@ const Type *TypeInstPtr::xmeet_helper(const Type *t) const {
int offset = meet_offset(tp->offset());
PTR ptr = meet_ptr(tp->ptr());
int instance_id = meet_instance_id(tp->instance_id());
const TypeOopPtr* speculative = xmeet_speculative(tp);
const TypePtr* speculative = xmeet_speculative(tp);
int depth = meet_inline_depth(tp->inline_depth());
switch (ptr) {
case TopPTR:
@ -3346,7 +3493,7 @@ const Type *TypeInstPtr::xmeet_helper(const Type *t) const {
case TopPTR:
case AnyNull: {
int instance_id = meet_instance_id(InstanceTop);
const TypeOopPtr* speculative = xmeet_speculative(tp);
const TypePtr* speculative = xmeet_speculative(tp);
int depth = meet_inline_depth(tp->inline_depth());
return make(ptr, klass(), klass_is_exact(),
(ptr == Constant ? const_oop() : NULL), offset, instance_id, speculative, depth);
@ -3354,7 +3501,7 @@ const Type *TypeInstPtr::xmeet_helper(const Type *t) const {
case NotNull:
case BotPTR: {
int instance_id = meet_instance_id(tp->instance_id());
const TypeOopPtr* speculative = xmeet_speculative(tp);
const TypePtr* speculative = xmeet_speculative(tp);
int depth = meet_inline_depth(tp->inline_depth());
return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
}
@ -3367,20 +3514,21 @@ const Type *TypeInstPtr::xmeet_helper(const Type *t) const {
const TypePtr *tp = t->is_ptr();
int offset = meet_offset(tp->offset());
PTR ptr = meet_ptr(tp->ptr());
int instance_id = meet_instance_id(InstanceTop);
const TypePtr* speculative = xmeet_speculative(tp);
int depth = meet_inline_depth(tp->inline_depth());
switch (tp->ptr()) {
case Null:
if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset);
if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
// else fall through to AnyNull
case TopPTR:
case AnyNull: {
int instance_id = meet_instance_id(InstanceTop);
const TypeOopPtr* speculative = _speculative;
return make(ptr, klass(), klass_is_exact(),
(ptr == Constant ? const_oop() : NULL), offset, instance_id, speculative, _inline_depth);
(ptr == Constant ? const_oop() : NULL), offset, instance_id, speculative, depth);
}
case NotNull:
case BotPTR:
return TypePtr::make(AnyPtr, ptr, offset);
return TypePtr::make(AnyPtr, ptr, offset, speculative,depth);
default: typerr(t);
}
}
@ -3407,7 +3555,7 @@ const Type *TypeInstPtr::xmeet_helper(const Type *t) const {
int off = meet_offset( tinst->offset() );
PTR ptr = meet_ptr( tinst->ptr() );
int instance_id = meet_instance_id(tinst->instance_id());
const TypeOopPtr* speculative = xmeet_speculative(tinst);
const TypePtr* speculative = xmeet_speculative(tinst);
int depth = meet_inline_depth(tinst->inline_depth());
// Check for easy case; klasses are equal (and perhaps not loaded!)
@ -3563,6 +3711,7 @@ const Type *TypeInstPtr::xmeet_helper(const Type *t) const {
// class hierarchy - which means we have to fall to at least NotNull.
if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
ptr = NotNull;
instance_id = InstanceBot;
// Now we find the LCA of Java classes
@ -3655,7 +3804,8 @@ void TypeInstPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
//------------------------------add_offset-------------------------------------
const TypePtr *TypeInstPtr::add_offset(intptr_t offset) const {
return make(_ptr, klass(), klass_is_exact(), const_oop(), xadd_offset(offset), _instance_id, add_offset_speculative(offset));
return make(_ptr, klass(), klass_is_exact(), const_oop(), xadd_offset(offset),
_instance_id, add_offset_speculative(offset), _inline_depth);
}
const Type *TypeInstPtr::remove_speculative() const {
@ -3663,10 +3813,11 @@ const Type *TypeInstPtr::remove_speculative() const {
return this;
}
assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
return make(_ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id, NULL, _inline_depth);
return make(_ptr, klass(), klass_is_exact(), const_oop(), _offset,
_instance_id, NULL, _inline_depth);
}
const TypeOopPtr *TypeInstPtr::with_inline_depth(int depth) const {
const TypePtr *TypeInstPtr::with_inline_depth(int depth) const {
if (!UseInlineDepthForSpeculativeTypes) {
return this;
}
@ -3687,7 +3838,8 @@ const TypeAryPtr *TypeAryPtr::FLOATS;
const TypeAryPtr *TypeAryPtr::DOUBLES;
//------------------------------make-------------------------------------------
const TypeAryPtr *TypeAryPtr::make(PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id, const TypeOopPtr* speculative, int inline_depth) {
const TypeAryPtr *TypeAryPtr::make(PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, int offset,
int instance_id, const TypePtr* speculative, int inline_depth) {
assert(!(k == NULL && ary->_elem->isa_int()),
"integral arrays must be pre-equipped with a class");
if (!xk) xk = ary->ary_must_be_exact();
@ -3697,7 +3849,9 @@ const TypeAryPtr *TypeAryPtr::make(PTR ptr, const TypeAry *ary, ciKlass* k, bool
}
//------------------------------make-------------------------------------------
const TypeAryPtr *TypeAryPtr::make(PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id, const TypeOopPtr* speculative, int inline_depth, bool is_autobox_cache) {
const TypeAryPtr *TypeAryPtr::make(PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset,
int instance_id, const TypePtr* speculative, int inline_depth,
bool is_autobox_cache) {
assert(!(k == NULL && ary->_elem->isa_int()),
"integral arrays must be pre-equipped with a class");
assert( (ptr==Constant && o) || (ptr!=Constant && !o), "" );
@ -3807,7 +3961,7 @@ const TypeAryPtr* TypeAryPtr::cast_to_stable(bool stable, int stable_dimension)
const TypeAry* new_ary = TypeAry::make(elem, size(), stable);
return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id);
return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth);
}
//-----------------------------stable_dimension--------------------------------
@ -3868,18 +4022,17 @@ const Type *TypeAryPtr::xmeet_helper(const Type *t) const {
int offset = meet_offset(tp->offset());
PTR ptr = meet_ptr(tp->ptr());
int depth = meet_inline_depth(tp->inline_depth());
const TypePtr* speculative = xmeet_speculative(tp);
switch (tp->ptr()) {
case TopPTR:
case AnyNull: {
int instance_id = meet_instance_id(InstanceTop);
const TypeOopPtr* speculative = xmeet_speculative(tp);
return make(ptr, (ptr == Constant ? const_oop() : NULL),
_ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
}
case BotPTR:
case NotNull: {
int instance_id = meet_instance_id(tp->instance_id());
const TypeOopPtr* speculative = xmeet_speculative(tp);
return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
}
default: ShouldNotReachHere();
@ -3891,20 +4044,21 @@ const Type *TypeAryPtr::xmeet_helper(const Type *t) const {
const TypePtr *tp = t->is_ptr();
int offset = meet_offset(tp->offset());
PTR ptr = meet_ptr(tp->ptr());
const TypePtr* speculative = xmeet_speculative(tp);
int depth = meet_inline_depth(tp->inline_depth());
switch (tp->ptr()) {
case TopPTR:
return this;
case BotPTR:
case NotNull:
return TypePtr::make(AnyPtr, ptr, offset);
return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
case Null:
if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset);
if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
// else fall through to AnyNull
case AnyNull: {
int instance_id = meet_instance_id(InstanceTop);
const TypeOopPtr* speculative = _speculative;
return make(ptr, (ptr == Constant ? const_oop() : NULL),
_ary, _klass, _klass_is_exact, offset, instance_id, speculative, _inline_depth);
_ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
}
default: ShouldNotReachHere();
}
@ -3920,7 +4074,7 @@ const Type *TypeAryPtr::xmeet_helper(const Type *t) const {
const TypeAry *tary = _ary->meet_speculative(tap->_ary)->is_ary();
PTR ptr = meet_ptr(tap->ptr());
int instance_id = meet_instance_id(tap->instance_id());
const TypeOopPtr* speculative = xmeet_speculative(tap);
const TypePtr* speculative = xmeet_speculative(tap);
int depth = meet_inline_depth(tap->inline_depth());
ciKlass* lazy_klass = NULL;
if (tary->_elem->isa_int()) {
@ -3949,7 +4103,7 @@ const Type *TypeAryPtr::xmeet_helper(const Type *t) const {
// 'this' is exact and super or unrelated:
(this->_klass_is_exact && !klass()->is_subtype_of(tap->klass())))) {
tary = TypeAry::make(Type::BOTTOM, tary->_size, tary->_stable);
return make(NotNull, NULL, tary, lazy_klass, false, off, InstanceBot);
return make(NotNull, NULL, tary, lazy_klass, false, off, InstanceBot, speculative, depth);
}
bool xk = false;
@ -4001,7 +4155,7 @@ const Type *TypeAryPtr::xmeet_helper(const Type *t) const {
int offset = meet_offset(tp->offset());
PTR ptr = meet_ptr(tp->ptr());
int instance_id = meet_instance_id(tp->instance_id());
const TypeOopPtr* speculative = xmeet_speculative(tp);
const TypePtr* speculative = xmeet_speculative(tp);
int depth = meet_inline_depth(tp->inline_depth());
switch (ptr) {
case TopPTR:
@ -4125,7 +4279,7 @@ const Type *TypeAryPtr::remove_speculative() const {
return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _instance_id, NULL, _inline_depth);
}
const TypeOopPtr *TypeAryPtr::with_inline_depth(int depth) const {
const TypePtr *TypeAryPtr::with_inline_depth(int depth) const {
if (!UseInlineDepthForSpeculativeTypes) {
return this;
}
@ -4250,6 +4404,13 @@ const TypeNarrowOop* TypeNarrowOop::make(const TypePtr* type) {
return (const TypeNarrowOop*)(new TypeNarrowOop(type))->hashcons();
}
const Type* TypeNarrowOop::remove_speculative() const {
return make(_ptrtype->remove_speculative()->is_ptr());
}
const Type* TypeNarrowOop::cleanup_speculative() const {
return make(_ptrtype->cleanup_speculative()->is_ptr());
}
#ifndef PRODUCT
void TypeNarrowOop::dump2( Dict & d, uint depth, outputStream *st ) const {
@ -4376,7 +4537,7 @@ const Type *TypeMetadataPtr::xmeet( const Type *t ) const {
PTR ptr = meet_ptr(tp->ptr());
switch (tp->ptr()) {
case Null:
if (ptr == Null) return TypePtr::make(AnyPtr, ptr, offset);
if (ptr == Null) return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
// else fall through:
case TopPTR:
case AnyNull: {
@ -4384,7 +4545,7 @@ const Type *TypeMetadataPtr::xmeet( const Type *t ) const {
}
case BotPTR:
case NotNull:
return TypePtr::make(AnyPtr, ptr, offset);
return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
default: typerr(t);
}
}
@ -4698,12 +4859,12 @@ const Type *TypeKlassPtr::xmeet( const Type *t ) const {
case TopPTR:
return this;
case Null:
if( ptr == Null ) return TypePtr::make( AnyPtr, ptr, offset );
if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
case AnyNull:
return make( ptr, klass(), offset );
case BotPTR:
case NotNull:
return TypePtr::make(AnyPtr, ptr, offset);
return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
default: typerr(t);
}
}

View File

@ -224,7 +224,7 @@ public:
}
// Variant that keeps the speculative part of the types
const Type *meet_speculative(const Type *t) const {
return meet_helper(t, true);
return meet_helper(t, true)->cleanup_speculative();
}
// WIDEN: 'widens' for Ints and other range types
virtual const Type *widen( const Type *old, const Type* limit ) const { return this; }
@ -247,7 +247,7 @@ public:
}
// Variant that keeps the speculative part of the types
const Type *join_speculative(const Type *t) const {
return join_helper(t, true);
return join_helper(t, true)->cleanup_speculative();
}
// Modified version of JOIN adapted to the needs Node::Value.
@ -259,7 +259,7 @@ public:
}
// Variant that keeps the speculative part of the types
const Type *filter_speculative(const Type *kills) const {
return filter_helper(kills, true);
return filter_helper(kills, true)->cleanup_speculative();
}
#ifdef ASSERT
@ -414,15 +414,18 @@ public:
bool require_constant = false,
bool is_autobox_cache = false);
// Speculative type. See TypeInstPtr
virtual const TypeOopPtr* speculative() const { return NULL; }
virtual ciKlass* speculative_type() const { return NULL; }
// Speculative type helper methods. See TypePtr.
virtual const TypePtr* speculative() const { return NULL; }
virtual ciKlass* speculative_type() const { return NULL; }
virtual ciKlass* speculative_type_not_null() const { return NULL; }
virtual bool speculative_maybe_null() const { return true; }
virtual const Type* remove_speculative() const { return this; }
virtual const Type* cleanup_speculative() const { return this; }
virtual bool would_improve_type(ciKlass* exact_kls, int inline_depth) const { return exact_kls != NULL; }
virtual bool would_improve_ptr(bool maybe_null) const { return !maybe_null; }
const Type* maybe_remove_speculative(bool include_speculative) const;
virtual const Type* remove_speculative() const { return this; }
virtual bool would_improve_type(ciKlass* exact_kls, int inline_depth) const {
return exact_kls != NULL;
}
virtual bool maybe_null() const { return true; }
private:
// support arrays
@ -679,6 +682,7 @@ public:
virtual const Type *xdual() const; // Compute dual right now.
bool ary_must_be_exact() const; // true if arrays of such are never generic
virtual const Type* remove_speculative() const;
virtual const Type* cleanup_speculative() const;
#ifdef ASSERT
// One type is interface, the other is oop
virtual bool interface_vs_oop(const Type *t) const;
@ -761,13 +765,48 @@ class TypePtr : public Type {
public:
enum PTR { TopPTR, AnyNull, Constant, Null, NotNull, BotPTR, lastPTR };
protected:
TypePtr( TYPES t, PTR ptr, int offset ) : Type(t), _ptr(ptr), _offset(offset) {}
virtual bool eq( const Type *t ) const;
virtual int hash() const; // Type specific hashing
TypePtr(TYPES t, PTR ptr, int offset,
const TypePtr* speculative = NULL,
int inline_depth = InlineDepthBottom) :
Type(t), _ptr(ptr), _offset(offset), _speculative(speculative),
_inline_depth(inline_depth) {}
static const PTR ptr_meet[lastPTR][lastPTR];
static const PTR ptr_dual[lastPTR];
static const char * const ptr_msg[lastPTR];
enum {
InlineDepthBottom = INT_MAX,
InlineDepthTop = -InlineDepthBottom
};
// Extra type information profiling gave us. We propagate it the
// same way the rest of the type info is propagated. If we want to
// use it, then we have to emit a guard: this part of the type is
// not something we know but something we speculate about the type.
const TypePtr* _speculative;
// For speculative types, we record at what inlining depth the
// profiling point that provided the data is. We want to favor
// profile data coming from outer scopes which are likely better for
// the current compilation.
int _inline_depth;
// utility methods to work on the speculative part of the type
const TypePtr* dual_speculative() const;
const TypePtr* xmeet_speculative(const TypePtr* other) const;
bool eq_speculative(const TypePtr* other) const;
int hash_speculative() const;
const TypePtr* add_offset_speculative(intptr_t offset) const;
#ifndef PRODUCT
void dump_speculative(outputStream *st) const;
#endif
// utility methods to work on the inline depth of the type
int dual_inline_depth() const;
int meet_inline_depth(int depth) const;
#ifndef PRODUCT
void dump_inline_depth(outputStream *st) const;
#endif
public:
const int _offset; // Offset into oop, with TOP & BOT
const PTR _ptr; // Pointer equivalence class
@ -775,7 +814,9 @@ public:
const int offset() const { return _offset; }
const PTR ptr() const { return _ptr; }
static const TypePtr *make( TYPES t, PTR ptr, int offset );
static const TypePtr *make(TYPES t, PTR ptr, int offset,
const TypePtr* speculative = NULL,
int inline_depth = InlineDepthBottom);
// Return a 'ptr' version of this type
virtual const Type *cast_to_ptr_type(PTR ptr) const;
@ -784,10 +825,13 @@ public:
int xadd_offset( intptr_t offset ) const;
virtual const TypePtr *add_offset( intptr_t offset ) const;
virtual bool eq(const Type *t) const;
virtual int hash() const; // Type specific hashing
virtual bool singleton(void) const; // TRUE if type is a singleton
virtual bool empty(void) const; // TRUE if type is vacuous
virtual const Type *xmeet( const Type *t ) const;
virtual const Type *xmeet_helper( const Type *t ) const;
int meet_offset( int offset ) const;
int dual_offset( ) const;
virtual const Type *xdual() const; // Compute dual right now.
@ -802,6 +846,20 @@ public:
return ptr_dual[ ptr_meet[ ptr_dual[in_ptr] ] [ dual_ptr() ] ];
}
// Speculative type helper methods.
virtual const TypePtr* speculative() const { return _speculative; }
int inline_depth() const { return _inline_depth; }
virtual ciKlass* speculative_type() const;
virtual ciKlass* speculative_type_not_null() const;
virtual bool speculative_maybe_null() const;
virtual const Type* remove_speculative() const;
virtual const Type* cleanup_speculative() const;
virtual bool would_improve_type(ciKlass* exact_kls, int inline_depth) const;
virtual bool would_improve_ptr(bool maybe_null) const;
virtual const TypePtr* with_inline_depth(int depth) const;
virtual bool maybe_null() const { return meet_ptr(Null) == ptr(); }
// Tests for relation to centerline of type lattice:
static bool above_centerline(PTR ptr) { return (ptr <= AnyNull); }
static bool below_centerline(PTR ptr) { return (ptr >= NotNull); }
@ -850,7 +908,8 @@ public:
// Some kind of oop (Java pointer), either klass or instance or array.
class TypeOopPtr : public TypePtr {
protected:
TypeOopPtr(TYPES t, PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id, const TypeOopPtr* speculative, int inline_depth);
TypeOopPtr(TYPES t, PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id,
const TypePtr* speculative, int inline_depth);
public:
virtual bool eq( const Type *t ) const;
virtual int hash() const; // Type specific hashing
@ -861,10 +920,6 @@ public:
};
protected:
enum {
InlineDepthBottom = INT_MAX,
InlineDepthTop = -InlineDepthBottom
};
// Oop is NULL, unless this is a constant oop.
ciObject* _const_oop; // Constant oop
// If _klass is NULL, then so is _sig. This is an unloaded klass.
@ -880,38 +935,11 @@ protected:
// This is the the node index of the allocation node creating this instance.
int _instance_id;
// Extra type information profiling gave us. We propagate it the
// same way the rest of the type info is propagated. If we want to
// use it, then we have to emit a guard: this part of the type is
// not something we know but something we speculate about the type.
const TypeOopPtr* _speculative;
// For speculative types, we record at what inlining depth the
// profiling point that provided the data is. We want to favor
// profile data coming from outer scopes which are likely better for
// the current compilation.
int _inline_depth;
static const TypeOopPtr* make_from_klass_common(ciKlass* klass, bool klass_change, bool try_for_exact);
int dual_instance_id() const;
int meet_instance_id(int uid) const;
// utility methods to work on the speculative part of the type
const TypeOopPtr* dual_speculative() const;
const TypeOopPtr* xmeet_speculative(const TypeOopPtr* other) const;
bool eq_speculative(const TypeOopPtr* other) const;
int hash_speculative() const;
const TypeOopPtr* add_offset_speculative(intptr_t offset) const;
#ifndef PRODUCT
void dump_speculative(outputStream *st) const;
#endif
// utility methods to work on the inline depth of the type
int dual_inline_depth() const;
int meet_inline_depth(int depth) const;
#ifndef PRODUCT
void dump_inline_depth(outputStream *st) const;
#endif
// Do not allow interface-vs.-noninterface joins to collapse to top.
virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
@ -941,7 +969,9 @@ public:
bool not_null_elements = false);
// Make a generic (unclassed) pointer to an oop.
static const TypeOopPtr* make(PTR ptr, int offset, int instance_id, const TypeOopPtr* speculative = NULL, int inline_depth = InlineDepthBottom);
static const TypeOopPtr* make(PTR ptr, int offset, int instance_id,
const TypePtr* speculative = NULL,
int inline_depth = InlineDepthBottom);
ciObject* const_oop() const { return _const_oop; }
virtual ciKlass* klass() const { return _klass; }
@ -955,7 +985,6 @@ public:
bool is_known_instance() const { return _instance_id > 0; }
int instance_id() const { return _instance_id; }
bool is_known_instance_field() const { return is_known_instance() && _offset >= 0; }
virtual const TypeOopPtr* speculative() const { return _speculative; }
virtual intptr_t get_con() const;
@ -969,10 +998,13 @@ public:
const TypeKlassPtr* as_klass_type() const;
virtual const TypePtr *add_offset( intptr_t offset ) const;
// Return same type without a speculative part
virtual const Type* remove_speculative() const;
virtual const Type *xmeet(const Type *t) const;
// Speculative type helper methods.
virtual const Type* remove_speculative() const;
virtual const Type* cleanup_speculative() const;
virtual bool would_improve_type(ciKlass* exact_kls, int inline_depth) const;
virtual const TypePtr* with_inline_depth(int depth) const;
virtual const Type *xdual() const; // Compute dual right now.
// the core of the computation of the meet for TypeOopPtr and for its subclasses
virtual const Type *xmeet_helper(const Type *t) const;
@ -982,29 +1014,14 @@ public:
#ifndef PRODUCT
virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
#endif
// Return the speculative type if any
ciKlass* speculative_type() const {
if (_speculative != NULL) {
const TypeOopPtr* speculative = _speculative->join(this)->is_oopptr();
if (speculative->klass_is_exact()) {
return speculative->klass();
}
}
return NULL;
}
int inline_depth() const {
return _inline_depth;
}
virtual const TypeOopPtr* with_inline_depth(int depth) const;
virtual bool would_improve_type(ciKlass* exact_kls, int inline_depth) const;
};
//------------------------------TypeInstPtr------------------------------------
// Class of Java object pointers, pointing either to non-array Java instances
// or to a Klass* (including array klasses).
class TypeInstPtr : public TypeOopPtr {
TypeInstPtr(PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id, const TypeOopPtr* speculative, int inline_depth);
TypeInstPtr(PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id,
const TypePtr* speculative, int inline_depth);
virtual bool eq( const Type *t ) const;
virtual int hash() const; // Type specific hashing
@ -1040,7 +1057,10 @@ class TypeInstPtr : public TypeOopPtr {
}
// Make a pointer to an oop.
static const TypeInstPtr *make(PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id = InstanceBot, const TypeOopPtr* speculative = NULL, int inline_depth = InlineDepthBottom);
static const TypeInstPtr *make(PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset,
int instance_id = InstanceBot,
const TypePtr* speculative = NULL,
int inline_depth = InlineDepthBottom);
/** Create constant type for a constant boxed value */
const Type* get_const_boxed_value() const;
@ -1057,9 +1077,10 @@ class TypeInstPtr : public TypeOopPtr {
virtual const TypeOopPtr *cast_to_instance_id(int instance_id) const;
virtual const TypePtr *add_offset( intptr_t offset ) const;
// Return same type without a speculative part
// Speculative type helper methods.
virtual const Type* remove_speculative() const;
virtual const TypeOopPtr* with_inline_depth(int depth) const;
virtual const TypePtr* with_inline_depth(int depth) const;
// the core of the computation of the meet of 2 types
virtual const Type *xmeet_helper(const Type *t) const;
@ -1081,7 +1102,8 @@ class TypeInstPtr : public TypeOopPtr {
// Class of Java array pointers
class TypeAryPtr : public TypeOopPtr {
TypeAryPtr( PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk,
int offset, int instance_id, bool is_autobox_cache, const TypeOopPtr* speculative, int inline_depth)
int offset, int instance_id, bool is_autobox_cache,
const TypePtr* speculative, int inline_depth)
: TypeOopPtr(AryPtr,ptr,k,xk,o,offset, instance_id, speculative, inline_depth),
_ary(ary),
_is_autobox_cache(is_autobox_cache)
@ -1120,9 +1142,15 @@ public:
bool is_autobox_cache() const { return _is_autobox_cache; }
static const TypeAryPtr *make( PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id = InstanceBot, const TypeOopPtr* speculative = NULL, int inline_depth = InlineDepthBottom);
static const TypeAryPtr *make(PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, int offset,
int instance_id = InstanceBot,
const TypePtr* speculative = NULL,
int inline_depth = InlineDepthBottom);
// Constant pointer to array
static const TypeAryPtr *make( PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id = InstanceBot, const TypeOopPtr* speculative = NULL, int inline_depth = InlineDepthBottom, bool is_autobox_cache= false);
static const TypeAryPtr *make(PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset,
int instance_id = InstanceBot,
const TypePtr* speculative = NULL,
int inline_depth = InlineDepthBottom, bool is_autobox_cache = false);
// Return a 'ptr' version of this type
virtual const Type *cast_to_ptr_type(PTR ptr) const;
@ -1136,9 +1164,10 @@ public:
virtual bool empty(void) const; // TRUE if type is vacuous
virtual const TypePtr *add_offset( intptr_t offset ) const;
// Return same type without a speculative part
// Speculative type helper methods.
virtual const Type* remove_speculative() const;
virtual const TypeOopPtr* with_inline_depth(int depth) const;
virtual const TypePtr* with_inline_depth(int depth) const;
// the core of the computation of the meet of 2 types
virtual const Type *xmeet_helper(const Type *t) const;
@ -1367,9 +1396,8 @@ public:
static const TypeNarrowOop *BOTTOM;
static const TypeNarrowOop *NULL_PTR;
virtual const Type* remove_speculative() const {
return make(_ptrtype->remove_speculative()->is_ptr());
}
virtual const Type* remove_speculative() const;
virtual const Type* cleanup_speculative() const;
#ifndef PRODUCT
virtual void dump2( Dict &d, uint depth, outputStream *st ) const;

View File

@ -3801,10 +3801,6 @@ jint Arguments::apply_ergo() {
AlwaysIncrementalInline = false;
}
#endif
if (IncrementalInline && FLAG_IS_DEFAULT(MaxNodeLimit)) {
// incremental inlining: bump MaxNodeLimit
FLAG_SET_DEFAULT(MaxNodeLimit, (intx)75000);
}
if (!UseTypeSpeculation && FLAG_IS_DEFAULT(TypeProfileLevel)) {
// nothing to use the profiling, turn if off
FLAG_SET_DEFAULT(TypeProfileLevel, 0);

View File

@ -1839,6 +1839,7 @@ const char* Deoptimization::_trap_reason_name[Reason_LIMIT] = {
"predicate",
"loop_limit_check",
"speculate_class_check",
"speculate_null_check",
"rtm_state_change"
};
const char* Deoptimization::_trap_action_name[Action_LIMIT] = {

View File

@ -60,6 +60,7 @@ class Deoptimization : AllStatic {
Reason_predicate, // compiler generated predicate failed
Reason_loop_limit_check, // compiler generated loop limits check failed
Reason_speculate_class_check, // saw unexpected object class from type speculation
Reason_speculate_null_check, // saw unexpected null from type speculation
Reason_rtm_state_change, // rtm state change detected
Reason_LIMIT,
// Note: Keep this enum in sync. with _trap_reason_name.
@ -315,17 +316,27 @@ class Deoptimization : AllStatic {
return Reason_null_check; // recorded per BCI as a null check
else if (reason == Reason_speculate_class_check)
return Reason_class_check;
else if (reason == Reason_speculate_null_check)
return Reason_null_check;
else
return Reason_none;
}
static bool reason_is_speculate(int reason) {
if (reason == Reason_speculate_class_check) {
if (reason == Reason_speculate_class_check || reason == Reason_speculate_null_check) {
return true;
}
return false;
}
static DeoptReason reason_null_check(bool speculative) {
return speculative ? Deoptimization::Reason_speculate_null_check : Deoptimization::Reason_null_check;
}
static DeoptReason reason_class_check(bool speculative) {
return speculative ? Deoptimization::Reason_speculate_class_check : Deoptimization::Reason_class_check;
}
static uint per_method_trap_limit(int reason) {
return reason_is_speculate(reason) ? (uint)PerMethodSpecTrapLimit : (uint)PerMethodTrapLimit;
}