/* * Copyright (c) 2023, Red Hat, Inc. All rights reserved. * Copyright (c) 2024, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ #include "precompiled.hpp" #include "logging/log.hpp" #include "memory/resourceArea.hpp" #include "runtime/os.hpp" #include "utilities/align.hpp" #include "utilities/globalDefinitions.hpp" #include "utilities/macros.hpp" #include "utilities/resourceHash.hpp" #define LOG_PLEASE #include "testutils.hpp" #include "unittest.hpp" // Must be the same as in os::attempt_reserve_memory_between() struct ARMB_constants { static constexpr uintptr_t absolute_max = NOT_LP64(G * 3) LP64_ONLY(G * 128 * 1024); static constexpr unsigned max_attempts = 32; static constexpr unsigned min_random_value_range = 16; static constexpr unsigned total_shuffle_threshold = 1024; }; // Testing os::attempt_reserve_memory_between() static void release_if_needed(char* p, size_t s) { if (p != nullptr) { os::release_memory(p, s); } } // AIX is the only platform that uses System V shm for reserving virtual memory. // In this case, the required alignment of the allocated size (64K) and the alignment // of possible start points of the memory region (256M) differ. // This is not reflected by os_allocation_granularity(). // The logic here is dual to the one in pd_reserve_memory in os_aix.cpp static size_t allocation_granularity() { return AIX_ONLY(os::vm_page_size() == 4*K ? 4*K : 256*M) NOT_AIX(os::vm_allocation_granularity()); } #define ERRINFO "addr: " << ((void*)addr) << " min: " << ((void*)min) << " max: " << ((void*)max) \ << " bytes: " << bytes << " alignment: " << alignment << " randomized: " << randomized static char* call_attempt_reserve_memory_between(char* min, char* max, size_t bytes, size_t alignment, bool randomized) { char* const addr = os::attempt_reserve_memory_between(min, max, bytes, alignment, randomized); if (addr != nullptr) { EXPECT_TRUE(is_aligned(addr, alignment)) << ERRINFO; EXPECT_TRUE(is_aligned(addr, allocation_granularity())) << ERRINFO; EXPECT_LE(addr, max - bytes) << ERRINFO; EXPECT_LE(addr, (char*)ARMB_constants::absolute_max - bytes) << ERRINFO; EXPECT_GE(addr, min) << ERRINFO; EXPECT_GE(addr, (char*)os::vm_min_address()) << ERRINFO; } return addr; } class Expect { const bool _expect_success; const bool _expect_failure; const char* const _expected_result; // if _expect_success public: Expect(bool expect_success, bool expect_failure, char* expected_result) : _expect_success(expect_success), _expect_failure(expect_failure), _expected_result(expected_result) { assert(!expect_success || !expect_failure, "make up your mind"); } bool check_reality(char* result) const { if (_expect_failure) { return result == nullptr; } if (_expect_success) { return (_expected_result == nullptr) ? result != nullptr : result == _expected_result; } return true; } static Expect failure() { return Expect(false, true, nullptr); } static Expect success_any() { return Expect(true, false, nullptr); } static Expect success(char* addr) { return Expect(true, false, addr); } static Expect dontcare() { return Expect(false, false, nullptr); } }; static void test_attempt_reserve_memory_between(char* min, char* max, size_t bytes, size_t alignment, bool randomized, Expect expectation, int line = -1) { char* const addr = call_attempt_reserve_memory_between(min, max, bytes, alignment, randomized); EXPECT_TRUE(expectation.check_reality(addr)) << ERRINFO << " L" << line; release_if_needed(addr, bytes); } #undef ERRINFO // Helper for attempt_reserve_memory_between tests to // reserve an area with a hole in the middle struct SpaceWithHole { char* _base; const size_t _len; const size_t _hole_offset; const size_t _hole_size; static constexpr size_t _p1_offset = 0; const size_t _p1_size; const size_t _p2_offset; const size_t _p2_size; char* _p1; char* _p2; size_t p1size() const { return hole_offset(); } size_t p2size() const { return _len - hole_size() - hole_offset(); } public: char* base() const { return _base; } char* end() const { return _base + _len; } char* hole() const { return _base + hole_offset(); } char* hole_end() const { return hole() + hole_size(); } size_t hole_size() const { return _hole_size; } size_t hole_offset() const { return _hole_offset; } SpaceWithHole(size_t total_size, size_t hole_offset, size_t hole_size) : _base(nullptr), _len(total_size), _hole_offset(hole_offset), _hole_size(hole_size), _p1_size(hole_offset), _p2_offset(hole_offset + hole_size), _p2_size(total_size - hole_offset - hole_size), _p1(nullptr), _p2(nullptr) { assert(_p1_size > 0 && _p2_size > 0, "Cannot have holes at the border"); } bool reserve() { // We cannot create a hole by punching, since NMT cannot cope with releases // crossing reservation boundaries. Therefore we first reserve the total, // release it again, reserve the parts. for (int i = 56; _base == nullptr && i > 32; i--) { // We reserve at weird outlier addresses, in order to minimize the chance of concurrent mmaps grabbing // the hole. const uintptr_t candidate = nth_bit(i); if ((candidate + _len) <= ARMB_constants::absolute_max) { _base = os::attempt_reserve_memory_at((char*)candidate, _len); } } if (_base == nullptr) { return false; } // Release total mapping, remap the individual non-holy parts os::release_memory(_base, _len); _p1 = os::attempt_reserve_memory_at(_base + _p1_offset, _p1_size); _p2 = os::attempt_reserve_memory_at(_base + _p2_offset, _p2_size); if (_p1 == nullptr || _p2 == nullptr) { return false; } LOG_HERE("SpaceWithHole: [" PTR_FORMAT " ... [" PTR_FORMAT " ... " PTR_FORMAT ") ... " PTR_FORMAT ")", p2i(base()), p2i(hole()), p2i(hole_end()), p2i(end())); return true; } ~SpaceWithHole() { release_if_needed(_p1, _p1_size); release_if_needed(_p2, _p2_size); } }; // Test that, when reserving in a range randomly, we get random results static void test_attempt_reserve_memory_between_random_distribution(unsigned num_possible_attach_points) { const size_t ag = allocation_granularity(); // Create a space that is mostly a hole bordered by two small stripes of reserved memory, with // as many attach points as we need. SpaceWithHole space((2 + num_possible_attach_points) * ag, ag, num_possible_attach_points * ag); if (!space.reserve()) { tty->print_cr("Failed to reserve holed space, skipping."); return; } const size_t bytes = ag; const size_t alignment = ag; // Below this threshold the API should never return memory since the randomness is too weak. const bool expect_failure = (num_possible_attach_points < ARMB_constants::min_random_value_range); // Below this threshold we expect values to be completely random, otherwise they randomized but still ordered. const bool total_shuffled = (num_possible_attach_points < ARMB_constants::total_shuffle_threshold); // Allocate n times within that hole (with subsequent deletions) and remember unique addresses returned. constexpr unsigned num_tries_per_attach_point = 100; ResourceMark rm; ResourceHashtable ht; const unsigned num_tries = expect_failure ? 3 : (num_possible_attach_points * num_tries_per_attach_point); unsigned num_uniq = 0; // Number of uniq addresses returned // In "total shuffle" mode, all possible attach points are randomized; outside that mode, the API // attempts to limit fragmentation by favouring the ends of the ranges. const unsigned expected_variance = total_shuffled ? num_possible_attach_points : (num_possible_attach_points / ARMB_constants::max_attempts); // Its not easy to find a good threshold for automated tests to test randomness // that rules out intermittent errors. We apply a generous fudge factor. constexpr double fudge_factor = 0.25f; const unsigned expected_variance_with_fudge = MAX2(2u, (unsigned)((double)expected_variance * fudge_factor)); #define ERRINFO " num_possible_attach_points: " << num_possible_attach_points << " total_shuffle? " << total_shuffled \ << " expected variance: " << expected_variance << " with fudge: " << expected_variance_with_fudge \ << " alignment: " << alignment << " bytes: " << bytes; for (unsigned i = 0; i < num_tries && num_uniq < expected_variance_with_fudge; // Stop early if we confirmed enough variance. i ++) { char* p = call_attempt_reserve_memory_between(space.base(), space.end(), bytes, alignment, true); if (p != nullptr) { ASSERT_GE(p, space.hole()) << ERRINFO; ASSERT_LE(p + bytes, space.hole_end()) << ERRINFO; release_if_needed(p, bytes); bool created = false; unsigned* num = ht.put_if_absent(p, 0, &created); (*num) ++; num_uniq = (unsigned)ht.number_of_entries(); } } ASSERT_LE(num_uniq, num_possible_attach_points) << num_uniq << ERRINFO; if (!expect_failure) { ASSERT_GE(num_uniq, expected_variance_with_fudge) << ERRINFO; } #undef ERRINFO } #define RANDOMIZED_RANGE_TEST(num) \ TEST_VM(os, attempt_reserve_memory_between_random_distribution_ ## num ## _attach_points) { \ test_attempt_reserve_memory_between_random_distribution(num); \ } RANDOMIZED_RANGE_TEST(2) RANDOMIZED_RANGE_TEST(15) RANDOMIZED_RANGE_TEST(16) RANDOMIZED_RANGE_TEST(712) RANDOMIZED_RANGE_TEST(12000) // Test that, given a smallish range - not many attach points - with a hole, we attach within that hole. TEST_VM(os, attempt_reserve_memory_randomization_threshold) { constexpr int threshold = ARMB_constants::min_random_value_range; const size_t ps = os::vm_page_size(); const size_t ag = allocation_granularity(); SpaceWithHole space(ag * (threshold + 2), ag, ag * threshold); if (!space.reserve()) { tty->print_cr("Failed to reserve holed space, skipping."); return; } // Test with a range that only allows for (threshold - 1) reservations test_attempt_reserve_memory_between(space.hole(), space.hole_end() - ag, ps, ag, true, Expect::failure()); // Test with a range just above the threshold. Should succeed. test_attempt_reserve_memory_between(space.hole(), space.hole_end(), ps, ag, true, Expect::success_any()); } // Test all possible combos TEST_VM(os, attempt_reserve_memory_between_combos) { const size_t large_end = NOT_LP64(G) LP64_ONLY(64 * G); for (size_t range_size = allocation_granularity(); range_size <= large_end; range_size *= 2) { for (size_t start_offset = 0; start_offset <= large_end; start_offset += (large_end / 2)) { char* const min = (char*)(uintptr_t)start_offset; char* const max = min + range_size; for (size_t bytes = os::vm_page_size(); bytes < large_end; bytes *= 2) { for (size_t alignment = allocation_granularity(); alignment < large_end; alignment *= 2) { test_attempt_reserve_memory_between(min, max, bytes, alignment, true, Expect::dontcare(), __LINE__); test_attempt_reserve_memory_between(min, max, bytes, alignment, false, Expect::dontcare(), __LINE__); } } } } } TEST_VM(os, attempt_reserve_memory_randomization_cornercases) { const size_t ps = os::vm_page_size(); const size_t ag = allocation_granularity(); constexpr size_t quarter_address_space = NOT_LP64(nth_bit(30)) LP64_ONLY(nth_bit(62)); // Zero-sized range test_attempt_reserve_memory_between(nullptr, nullptr, ps, ag, false, Expect::failure()); test_attempt_reserve_memory_between((char*)(3 * G), (char*)(3 * G), ps, ag, false, Expect::dontcare(), __LINE__); test_attempt_reserve_memory_between((char*)SIZE_MAX-ag, (char*)SIZE_MAX-ag, ps, ag, false, Expect::failure(), __LINE__); test_attempt_reserve_memory_between(nullptr, nullptr, ps, ag, true, Expect::failure()); test_attempt_reserve_memory_between((char*)(3 * G), (char*)(3 * G), ps, ag, true, Expect::dontcare(), __LINE__); test_attempt_reserve_memory_between((char*)(3 * G), (char*)(3 * G), ps, ag, true, Expect::dontcare(), __LINE__); test_attempt_reserve_memory_between((char*)SIZE_MAX-ag, (char*)SIZE_MAX-ag, ps, ag, true, Expect::failure(), __LINE__); // Full size // Note: paradoxically, success is not guaranteed here, since a significant portion of the attach points // could be located in un-allocatable territory. test_attempt_reserve_memory_between(nullptr, (char*)SIZE_MAX, ps, quarter_address_space / 8, false, Expect::dontcare(), __LINE__); test_attempt_reserve_memory_between(nullptr, (char*)SIZE_MAX, ps, quarter_address_space / 8, true, Expect::dontcare(), __LINE__); // Very small range at start test_attempt_reserve_memory_between(nullptr, (char*)ag, ps, ag, false, Expect::dontcare(), __LINE__); test_attempt_reserve_memory_between(nullptr, (char*)ag, ps, ag, true, Expect::dontcare(), __LINE__); // Very small range at end test_attempt_reserve_memory_between((char*)(SIZE_MAX - (ag * 2)), (char*)(SIZE_MAX), ps, ag, false, Expect::dontcare(), __LINE__); test_attempt_reserve_memory_between((char*)(SIZE_MAX - (ag * 2)), (char*)(SIZE_MAX), ps, ag, true, Expect::dontcare(), __LINE__); // At start, high alignment, check if we run into neg. overflow problems test_attempt_reserve_memory_between(nullptr, (char*)G, ps, G, false, Expect::dontcare(), __LINE__); test_attempt_reserve_memory_between(nullptr, (char*)G, ps, G, true, Expect::dontcare(), __LINE__); // At start, very high alignment, check if we run into neg. overflow problems test_attempt_reserve_memory_between((char*)quarter_address_space, (char*)SIZE_MAX, ps, quarter_address_space, false, Expect::dontcare(), __LINE__); test_attempt_reserve_memory_between((char*)quarter_address_space, (char*)SIZE_MAX, ps, quarter_address_space, true, Expect::dontcare(), __LINE__); } // Test that, regardless where the hole is in the [min, max) range, if we probe nonrandomly, we will fill that hole // as long as the range size is smaller than the number of probe attempts TEST_VM(os, attempt_reserve_memory_between_small_range_fill_hole) { const size_t ps = os::vm_page_size(); const size_t ag = allocation_granularity(); constexpr int num = ARMB_constants::max_attempts; for (int i = 0; i < num; i ++) { SpaceWithHole space(ag * (num + 2), ag * (i + 1), ag); if (!space.reserve()) { tty->print_cr("Failed to reserve holed space, skipping."); } else { test_attempt_reserve_memory_between(space.base() + ag, space.end() - ag, space.hole_size(), space.hole_size(), false, Expect::success(space.hole()), __LINE__); } } }