/* * Copyright (c) 2023, Red Hat, Inc. All rights reserved. * Copyright (c) 2024, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ package compiler.c2.irTests; import compiler.lib.ir_framework.*; import jdk.test.lib.Utils; import jdk.test.whitebox.WhiteBox; import jdk.internal.misc.Unsafe; import java.util.Random; import java.util.Arrays; import java.nio.ByteOrder; /* * @test * @bug 8300258 * @key randomness * @summary C2: vectorization fails on simple ByteBuffer loop * @modules java.base/jdk.internal.misc * @library /test/lib / * @build jdk.test.whitebox.WhiteBox * @run driver jdk.test.lib.helpers.ClassFileInstaller jdk.test.whitebox.WhiteBox * @run main/othervm -Xbootclasspath/a:. -XX:+UnlockDiagnosticVMOptions -XX:+WhiteBoxAPI compiler.c2.irTests.TestVectorizationMismatchedAccess */ public class TestVectorizationMismatchedAccess { private static final Unsafe UNSAFE = Unsafe.getUnsafe(); private static final Random RANDOM = Utils.getRandomInstance(); private final static WhiteBox wb = WhiteBox.getWhiteBox(); public static void main(String[] args) { // Cross-product: +-AlignVector and +-UseCompactObjectHeaders TestFramework.runWithFlags("--add-modules", "java.base", "--add-exports", "java.base/jdk.internal.misc=ALL-UNNAMED", "-XX:+UnlockExperimentalVMOptions", "-XX:-UseCompactObjectHeaders", "-XX:-AlignVector"); TestFramework.runWithFlags("--add-modules", "java.base", "--add-exports", "java.base/jdk.internal.misc=ALL-UNNAMED", "-XX:+UnlockExperimentalVMOptions", "-XX:-UseCompactObjectHeaders", "-XX:+AlignVector"); TestFramework.runWithFlags("--add-modules", "java.base", "--add-exports", "java.base/jdk.internal.misc=ALL-UNNAMED", "-XX:+UnlockExperimentalVMOptions", "-XX:+UseCompactObjectHeaders", "-XX:-AlignVector"); TestFramework.runWithFlags("--add-modules", "java.base", "--add-exports", "java.base/jdk.internal.misc=ALL-UNNAMED", "-XX:+UnlockExperimentalVMOptions", "-XX:+UseCompactObjectHeaders", "-XX:+AlignVector"); } static int size = 1024; static byte[] byteArray = new byte[size * 8]; static long[] longArray = new long[size]; static byte[] verifyByteArray = new byte[size * 8]; static long[] verifyLongArray = new long[size]; static long baseOffset = 0; static long baseOffHeap = UNSAFE.allocateMemory(size * 8); static { for (int i = 0; i < verifyByteArray.length; i++) { verifyByteArray[i] = (byte)RANDOM.nextInt(Byte.MAX_VALUE); } for (int i = 0; i < verifyLongArray.length; i++) { verifyLongArray[i] = 0; for (int j = 0; j < 8; j++) { verifyLongArray[i] = verifyLongArray[i] | (((long)verifyByteArray[8 * i + j]) << 8 * j); } } } // Method to adjust the value for the native byte order static private long handleByteOrder(long value) { if (ByteOrder.nativeOrder() != ByteOrder.LITTLE_ENDIAN) { value = Long.reverseBytes(value); } return value; } static private void runAndVerify(Runnable test, int offset) { System.arraycopy(verifyLongArray, 0, longArray, 0, longArray.length); Arrays.fill(byteArray, (byte)0); test.run(); int i; for (i = 0; i < Math.max(offset, 0); i++) { if (byteArray[i] != 0) { throw new RuntimeException("Incorrect result at " + i + " " + byteArray[i] + " != 0"); } } for (; i < Math.min(byteArray.length + offset, byteArray.length); i++) { if (byteArray[i] != verifyByteArray[i - offset]) { throw new RuntimeException("Incorrect result at " + i + " " + byteArray[i] + " != " + verifyByteArray[i-offset]); } } for (; i < byteArray.length; i++) { if (byteArray[i] != 0) { throw new RuntimeException("Incorrect result at " + i + " " + byteArray[i] + " != 0"); } } } static private void runAndVerify2(Runnable test, int offset) { System.arraycopy(verifyByteArray, 0, byteArray, 0, byteArray.length); test.run(); int i; for (i = 0; i < Math.max(offset, 0); i++) { if (byteArray[i] != verifyByteArray[i]) { throw new RuntimeException("Incorrect result at " + i + " " + byteArray[i] + " != " + verifyByteArray[i]); } } for (; i < Math.min(byteArray.length + offset, byteArray.length); i++) { int val = offset > 0 ? verifyByteArray[(i-offset) % 8] : verifyByteArray[i-offset]; if (byteArray[i] != val) { throw new RuntimeException("Incorrect result at " + i + " " + byteArray[i] + " != " + verifyByteArray[i-offset]); } } for (; i < byteArray.length; i++) { if (byteArray[i] != verifyByteArray[i]) { throw new RuntimeException("Incorrect result at " + i + " " + byteArray[i] + " != " + verifyByteArray[i]); } } } static private void runAndVerify3(Runnable test, int offset) { System.arraycopy(verifyLongArray, 0, longArray, 0, longArray.length); for (int i = 0; i < size * 8; i++) { UNSAFE.putByte(null, baseOffHeap + i, (byte)0); } test.run(); int i; for (i = 0; i < Math.max(offset, 0); i++) { if (UNSAFE.getByte(null, baseOffHeap + i) != 0) { throw new RuntimeException("Incorrect result at " + i + " " + byteArray[i] + " != 0"); } } for (; i < Math.min(size * 8 + offset, size * 8); i++) { if (UNSAFE.getByte(null, baseOffHeap + i) != verifyByteArray[i - offset]) { throw new RuntimeException("Incorrect result at " + i + " " + byteArray[i] + " != " + verifyByteArray[i-offset]); } } for (; i < byteArray.length; i++) { if (UNSAFE.getByte(null, baseOffHeap + i) != 0) { throw new RuntimeException("Incorrect result at " + i + " " + byteArray[i] + " != 0"); } } } @Test @IR(counts = { IRNode.LOAD_VECTOR_L, ">=1", IRNode.STORE_VECTOR, ">=1" }, applyIfOr = {"UseCompactObjectHeaders", "false", "AlignVector", "false"}, applyIfCPUFeatureOr = {"sse2", "true", "asimd", "true"}, applyIfPlatform = {"64-bit", "true"}) // 32-bit: offsets are badly aligned (UNSAFE.ARRAY_BYTE_BASE_OFFSET is 4 byte aligned, but not 8 byte aligned). // might get fixed with JDK-8325155. public static void testByteLong1a(byte[] dest, long[] src) { for (int i = 0; i < src.length; i++) { UNSAFE.putLongUnaligned(dest, UNSAFE.ARRAY_BYTE_BASE_OFFSET + 8 * i, handleByteOrder(src[i])); // With AlignVector, we need 8-byte alignment of vector loads/stores. // UseCompactObjectHeaders=false UseCompactObjectHeaders=true // B_adr = base + 16 + 8*i -> always B_adr = base + 12 + 8*i -> never // L_adr = base + 16 + 8*i -> always L_adr = base + 16 + 8*i -> always // -> vectorize -> no vectorization } } @Test @IR(counts = { IRNode.LOAD_VECTOR_L, ">=1", IRNode.STORE_VECTOR, ">=1" }, applyIfOr = {"UseCompactObjectHeaders", "false", "AlignVector", "false"}, applyIfCPUFeatureOr = {"sse2", "true", "asimd", "true"}, applyIfPlatform = {"64-bit", "true"}) // 32-bit: address has ConvL2I for cast of long to address, not supported. public static void testByteLong1b(byte[] dest, long[] src) { for (int i = 0; i < src.length; i++) { UNSAFE.putLongUnaligned(dest, UNSAFE.ARRAY_BYTE_BASE_OFFSET + 8L * i, handleByteOrder(src[i])); // With AlignVector, we need 8-byte alignment of vector loads/stores. // UseCompactObjectHeaders=false UseCompactObjectHeaders=true // B_adr = base + 16 + 8*i -> always B_adr = base + 12 + 8*i -> never // L_adr = base + 16 + 8*i -> always L_adr = base + 16 + 8*i -> always // -> vectorize -> no vectorization } } @Test @IR(counts = { IRNode.LOAD_VECTOR_L, ">=1", IRNode.STORE_VECTOR, ">=1" }, applyIfCPUFeatureOr = {"sse2", "true", "asimd", "true"}) public static void testByteLong1c(byte[] dest, long[] src) { long base = 64; // make sure it is big enough and 8 byte aligned (required for 32-bit) for (int i = 0; i < src.length - 8; i++) { UNSAFE.putLongUnaligned(dest, base + 8 * i, handleByteOrder(src[i])); // With AlignVector, we need 8-byte alignment of vector loads/stores. // UseCompactObjectHeaders=false UseCompactObjectHeaders=true // B_adr = base + 64 + 8*i -> always B_adr = base + 64 + 8*i -> always // L_adr = base + 16 + 8*i -> always L_adr = base + 16 + 8*i -> always // -> vectorize -> vectorize } } @Test @IR(counts = { IRNode.LOAD_VECTOR_L, ">=1", IRNode.STORE_VECTOR, ">=1" }, applyIfCPUFeatureOr = {"sse2", "true", "asimd", "true"}, applyIfPlatform = {"64-bit", "true"}) // 32-bit: address has ConvL2I for cast of long to address, not supported. public static void testByteLong1d(byte[] dest, long[] src) { long base = 64; // make sure it is big enough and 8 byte aligned (required for 32-bit) for (int i = 0; i < src.length - 8; i++) { UNSAFE.putLongUnaligned(dest, base + 8L * i, handleByteOrder(src[i])); // With AlignVector, we need 8-byte alignment of vector loads/stores. // UseCompactObjectHeaders=false UseCompactObjectHeaders=true // B_adr = base + 64 + 8*i -> always B_adr = base + 64 + 8*i -> always // L_adr = base + 16 + 8*i -> always L_adr = base + 16 + 8*i -> always // -> vectorize -> vectorize } } @Run(test = {"testByteLong1a", "testByteLong1b", "testByteLong1c", "testByteLong1d"}) public static void testByteLong1_runner() { runAndVerify(() -> testByteLong1a(byteArray, longArray), 0); runAndVerify(() -> testByteLong1b(byteArray, longArray), 0); testByteLong1c(byteArray, longArray); testByteLong1d(byteArray, longArray); } @Test @IR(counts = { IRNode.LOAD_VECTOR_L, ">=1", IRNode.STORE_VECTOR, ">=1" }, applyIfOr = {"UseCompactObjectHeaders", "false", "AlignVector", "false"}, applyIfCPUFeatureOr = {"sse2", "true", "asimd", "true"}, applyIfPlatform = {"64-bit", "true"}) // 32-bit: offsets are badly aligned (UNSAFE.ARRAY_BYTE_BASE_OFFSET is 4 byte aligned, but not 8 byte aligned). // might get fixed with JDK-8325155. public static void testByteLong2a(byte[] dest, long[] src) { for (int i = 1; i < src.length; i++) { UNSAFE.putLongUnaligned(dest, UNSAFE.ARRAY_BYTE_BASE_OFFSET + 8 * (i - 1), handleByteOrder(src[i])); // With AlignVector, we need 8-byte alignment of vector loads/stores. // UseCompactObjectHeaders=false UseCompactObjectHeaders=true // B_adr = base + 16 + 8*(i-1) -> always B_adr = base + 12 + 8*(i-1) -> never // L_adr = base + 16 + 8*i -> always L_adr = base + 16 + 8*i -> always // -> vectorize -> no vectorization } } @Test @IR(counts = { IRNode.LOAD_VECTOR_L, ">=1", IRNode.STORE_VECTOR, ">=1" }, applyIfOr = {"UseCompactObjectHeaders", "false", "AlignVector", "false"}, applyIfCPUFeatureOr = {"sse2", "true", "asimd", "true"}, applyIfPlatform = {"64-bit", "true"}) // 32-bit: address has ConvL2I for cast of long to address, not supported. public static void testByteLong2b(byte[] dest, long[] src) { for (int i = 1; i < src.length; i++) { UNSAFE.putLongUnaligned(dest, UNSAFE.ARRAY_BYTE_BASE_OFFSET + 8L * (i - 1), handleByteOrder(src[i])); // With AlignVector, we need 8-byte alignment of vector loads/stores. // UseCompactObjectHeaders=false UseCompactObjectHeaders=true // B_adr = base + 16 + 8*(i-1) -> always B_adr = base + 12 + 8*(i-1) -> never // L_adr = base + 16 + 8*i -> always L_adr = base + 16 + 8*i -> always // -> vectorize -> no vectorization } } @Run(test = {"testByteLong2a", "testByteLong2b"}) public static void testByteLong2_runner() { runAndVerify(() -> testByteLong2a(byteArray, longArray), -8); runAndVerify(() -> testByteLong2b(byteArray, longArray), -8); } @Test @IR(counts = { IRNode.LOAD_VECTOR_L, ">=1", IRNode.STORE_VECTOR, ">=1" }, applyIfOr = {"UseCompactObjectHeaders", "false", "AlignVector", "false"}, applyIfCPUFeatureOr = {"sse2", "true", "asimd", "true"}, applyIfPlatform = {"64-bit", "true"}) // 32-bit: offsets are badly aligned (UNSAFE.ARRAY_BYTE_BASE_OFFSET is 4 byte aligned, but not 8 byte aligned). // might get fixed with JDK-8325155. public static void testByteLong3a(byte[] dest, long[] src) { for (int i = 0; i < src.length - 1; i++) { UNSAFE.putLongUnaligned(dest, UNSAFE.ARRAY_BYTE_BASE_OFFSET + 8 * (i + 1), handleByteOrder(src[i])); // With AlignVector, we need 8-byte alignment of vector loads/stores. // UseCompactObjectHeaders=false UseCompactObjectHeaders=true // B_adr = base + 16 + 8*(i+1) -> always B_adr = base + 12 + 8*(i+1) -> never // L_adr = base + 16 + 8*i -> always L_adr = base + 16 + 8*i -> always // -> vectorize -> no vectorization } } @Test @IR(counts = { IRNode.LOAD_VECTOR_L, ">=1", IRNode.STORE_VECTOR, ">=1" }, applyIfOr = {"UseCompactObjectHeaders", "false", "AlignVector", "false"}, applyIfCPUFeatureOr = {"sse2", "true", "asimd", "true"}, applyIfPlatform = {"64-bit", "true"}) // 32-bit: address has ConvL2I for cast of long to address, not supported. public static void testByteLong3b(byte[] dest, long[] src) { for (int i = 0; i < src.length - 1; i++) { UNSAFE.putLongUnaligned(dest, UNSAFE.ARRAY_BYTE_BASE_OFFSET + 8L * (i + 1), handleByteOrder(src[i])); // With AlignVector, we need 8-byte alignment of vector loads/stores. // UseCompactObjectHeaders=false UseCompactObjectHeaders=true // B_adr = base + 16 + 8*(i+1) -> always B_adr = base + 12 + 8*(i+1) -> never // L_adr = base + 16 + 8*i -> always L_adr = base + 16 + 8*i -> always // -> vectorize -> no vectorization } } @Run(test = {"testByteLong3a", "testByteLong3b"}) public static void testByteLong3_runner() { runAndVerify(() -> testByteLong3a(byteArray, longArray), 8); runAndVerify(() -> testByteLong3b(byteArray, longArray), 8); } @Test @IR(counts = { IRNode.LOAD_VECTOR_L, ">=1", IRNode.STORE_VECTOR, ">=1" }, applyIfCPUFeatureOr = {"sse2", "true", "asimd", "true"}, applyIfPlatform = {"64-bit", "true"}, applyIf = {"AlignVector", "false"}) // 32-bit: offsets are badly aligned (UNSAFE.ARRAY_BYTE_BASE_OFFSET is 4 byte aligned, but not 8 byte aligned). // might get fixed with JDK-8325155. // AlignVector cannot guarantee that invar is aligned. public static void testByteLong4a(byte[] dest, long[] src, int start, int stop) { for (int i = start; i < stop; i++) { UNSAFE.putLongUnaligned(dest, 8 * i + baseOffset, handleByteOrder(src[i])); } } @Test @IR(counts = { IRNode.LOAD_VECTOR_L, ">=1", IRNode.STORE_VECTOR, ">=1" }, applyIfCPUFeatureOr = {"sse2", "true", "asimd", "true"}, applyIfPlatform = {"64-bit", "true"}, applyIf = {"AlignVector", "false"}) // 32-bit: address has ConvL2I for cast of long to address, not supported. // AlignVector cannot guarantee that invar is aligned. public static void testByteLong4b(byte[] dest, long[] src, int start, int stop) { for (int i = start; i < stop; i++) { UNSAFE.putLongUnaligned(dest, 8L * i + baseOffset, handleByteOrder(src[i])); } } @Run(test = {"testByteLong4a", "testByteLong4b"}) public static void testByteLong4_runner() { baseOffset = UNSAFE.ARRAY_BYTE_BASE_OFFSET; runAndVerify(() -> testByteLong4a(byteArray, longArray, 0, size), 0); runAndVerify(() -> testByteLong4b(byteArray, longArray, 0, size), 0); } @Test @IR(counts = { IRNode.LOAD_VECTOR_L, ">=1", IRNode.STORE_VECTOR, ">=1" }, applyIfOr = {"UseCompactObjectHeaders", "false", "AlignVector", "false"}, applyIfCPUFeatureOr = {"sse2", "true", "asimd", "true"}, applyIfPlatform = {"64-bit", "true"}) // 32-bit: offsets are badly aligned (UNSAFE.ARRAY_BYTE_BASE_OFFSET is 4 byte aligned, but not 8 byte aligned). // might get fixed with JDK-8325155. public static void testByteLong5a(byte[] dest, long[] src, int start, int stop) { for (int i = start; i < stop; i++) { UNSAFE.putLongUnaligned(dest, UNSAFE.ARRAY_BYTE_BASE_OFFSET + 8 * (i + baseOffset), handleByteOrder(src[i])); // With AlignVector, we need 8-byte alignment of vector loads/stores. // UseCompactObjectHeaders=false UseCompactObjectHeaders=true // B_adr = base + 16 + 8*(i+x) -> always B_adr = base + 12 + 8*(i+x) -> never // L_adr = base + 16 + 8*i -> always L_adr = base + 16 + 8*i -> always // -> vectorize -> no vectorization } } @Test @IR(counts = { IRNode.LOAD_VECTOR_L, ">=1", IRNode.STORE_VECTOR, ">=1" }, applyIfOr = {"UseCompactObjectHeaders", "false", "AlignVector", "false"}, applyIfCPUFeatureOr = {"sse2", "true", "asimd", "true"}, applyIfPlatform = {"64-bit", "true"}) // 32-bit: address has ConvL2I for cast of long to address, not supported. public static void testByteLong5b(byte[] dest, long[] src, int start, int stop) { for (int i = start; i < stop; i++) { UNSAFE.putLongUnaligned(dest, UNSAFE.ARRAY_BYTE_BASE_OFFSET + 8L * (i + baseOffset), handleByteOrder(src[i])); // With AlignVector, we need 8-byte alignment of vector loads/stores. // UseCompactObjectHeaders=false UseCompactObjectHeaders=true // B_adr = base + 16 + 8*(i+x) -> always B_adr = base + 12 + 8*(i+x) -> never // L_adr = base + 16 + 8*i -> always L_adr = base + 16 + 8*i -> always // -> vectorize -> no vectorization } } @Run(test = {"testByteLong5a", "testByteLong5b"}) public static void testByteLong5_runner() { baseOffset = 1; runAndVerify(() -> testByteLong5a(byteArray, longArray, 0, size-1), 8); runAndVerify(() -> testByteLong5b(byteArray, longArray, 0, size-1), 8); } @Test @IR(counts = { IRNode.LOAD_VECTOR_L, ">=1", IRNode.STORE_VECTOR, ">=1" }, applyIfOr = {"UseCompactObjectHeaders", "false", "AlignVector", "false"}, applyIfCPUFeatureOr = {"sse2", "true", "asimd", "true"}, applyIfPlatform = {"64-bit", "true"}) // 32-bit: offsets are badly aligned (UNSAFE.ARRAY_BYTE_BASE_OFFSET is 4 byte aligned, but not 8 byte aligned). // might get fixed with JDK-8325155. public static void testByteByte1a(byte[] dest, byte[] src) { for (int i = 0; i < src.length / 8; i++) { UNSAFE.putLongUnaligned(dest, UNSAFE.ARRAY_BYTE_BASE_OFFSET + 8 * i, UNSAFE.getLongUnaligned(src, UNSAFE.ARRAY_BYTE_BASE_OFFSET + 8 * i)); // With AlignVector, we need 8-byte alignment of vector loads/stores. // UseCompactObjectHeaders=false UseCompactObjectHeaders=true // src_adr = base + 16 + 8*i -> always src_adr = base + 12 + 8*i -> never // dst_adr = base + 16 + 8*i -> always dst_adr = base + 12 + 8*i -> never // -> vectorize -> no vectorization } } @Test @IR(counts = { IRNode.LOAD_VECTOR_L, ">=1", IRNode.STORE_VECTOR, ">=1" }, applyIfOr = {"UseCompactObjectHeaders", "false", "AlignVector", "false"}, applyIfCPUFeatureOr = {"sse2", "true", "asimd", "true"}, applyIfPlatform = {"64-bit", "true"}) // 32-bit: address has ConvL2I for cast of long to address, not supported. public static void testByteByte1b(byte[] dest, byte[] src) { for (int i = 0; i < src.length / 8; i++) { UNSAFE.putLongUnaligned(dest, UNSAFE.ARRAY_BYTE_BASE_OFFSET + 8L * i, UNSAFE.getLongUnaligned(src, UNSAFE.ARRAY_BYTE_BASE_OFFSET + 8L * i)); // With AlignVector, we need 8-byte alignment of vector loads/stores. // UseCompactObjectHeaders=false UseCompactObjectHeaders=true // src_adr = base + 16 + 8*i -> always src_adr = base + 12 + 8*i -> never // dst_adr = base + 16 + 8*i -> always dst_adr = base + 12 + 8*i -> never // -> vectorize -> no vectorization } } @Run(test = {"testByteByte1a", "testByteByte1b"}) public static void testByteByte1_runner() { runAndVerify2(() -> testByteByte1a(byteArray, byteArray), 0); runAndVerify2(() -> testByteByte1b(byteArray, byteArray), 0); } @Test @IR(counts = { IRNode.LOAD_VECTOR_L, ">=1", IRNode.STORE_VECTOR, ">=1" }, applyIfOr = {"UseCompactObjectHeaders", "false", "AlignVector", "false"}, applyIfCPUFeatureOr = {"sse2", "true", "asimd", "true"}, applyIfPlatform = {"64-bit", "true"}) // 32-bit: offsets are badly aligned (UNSAFE.ARRAY_BYTE_BASE_OFFSET is 4 byte aligned, but not 8 byte aligned). // might get fixed with JDK-8325155. public static void testByteByte2a(byte[] dest, byte[] src) { for (int i = 1; i < src.length / 8; i++) { UNSAFE.putLongUnaligned(dest, UNSAFE.ARRAY_BYTE_BASE_OFFSET + 8 * (i - 1), UNSAFE.getLongUnaligned(src, UNSAFE.ARRAY_BYTE_BASE_OFFSET + 8 * i)); // With AlignVector, we need 8-byte alignment of vector loads/stores. // UseCompactObjectHeaders=false UseCompactObjectHeaders=true // src_adr = base + 16 + 8*i -> always src_adr = base + 12 + 8*i -> never // dst_adr = base + 16 + 8*(i-1) -> always dst_adr = base + 12 + 8*(i-1) -> never // -> vectorize -> no vectorization } } @Test @IR(counts = { IRNode.LOAD_VECTOR_L, ">=1", IRNode.STORE_VECTOR, ">=1" }, applyIfOr = {"UseCompactObjectHeaders", "false", "AlignVector", "false"}, applyIfCPUFeatureOr = {"sse2", "true", "asimd", "true"}, applyIfPlatform = {"64-bit", "true"}) // 32-bit: address has ConvL2I for cast of long to address, not supported. public static void testByteByte2b(byte[] dest, byte[] src) { for (int i = 1; i < src.length / 8; i++) { UNSAFE.putLongUnaligned(dest, UNSAFE.ARRAY_BYTE_BASE_OFFSET + 8L * (i - 1), UNSAFE.getLongUnaligned(src, UNSAFE.ARRAY_BYTE_BASE_OFFSET + 8L * i)); // With AlignVector, we need 8-byte alignment of vector loads/stores. // UseCompactObjectHeaders=false UseCompactObjectHeaders=true // src_adr = base + 16 + 8*i -> always src_adr = base + 12 + 8*i -> never // dst_adr = base + 16 + 8*(i-1) -> always dst_adr = base + 12 + 8*(i-1) -> never // -> vectorize -> no vectorization } } @Run(test = {"testByteByte2a", "testByteByte2b"}) public static void testByteByte2_runner() { runAndVerify2(() -> testByteByte2a(byteArray, byteArray), -8); runAndVerify2(() -> testByteByte2b(byteArray, byteArray), -8); } @Test @IR(failOn = { IRNode.LOAD_VECTOR_L, IRNode.STORE_VECTOR }) public static void testByteByte3a(byte[] dest, byte[] src) { for (int i = 0; i < src.length / 8 - 1; i++) { UNSAFE.putLongUnaligned(dest, UNSAFE.ARRAY_BYTE_BASE_OFFSET + 8 * (i + 1), UNSAFE.getLongUnaligned(src, UNSAFE.ARRAY_BYTE_BASE_OFFSET + 8 * i)); } } @Test @IR(failOn = { IRNode.LOAD_VECTOR_L, IRNode.STORE_VECTOR }) public static void testByteByte3b(byte[] dest, byte[] src) { for (int i = 0; i < src.length / 8 - 1; i++) { UNSAFE.putLongUnaligned(dest, UNSAFE.ARRAY_BYTE_BASE_OFFSET + 8L * (i + 1), UNSAFE.getLongUnaligned(src, UNSAFE.ARRAY_BYTE_BASE_OFFSET + 8L * i)); } } @Run(test = {"testByteByte3a", "testByteByte3b"}) public static void testByteByte3_runner() { runAndVerify2(() -> testByteByte3a(byteArray, byteArray), 8); runAndVerify2(() -> testByteByte3b(byteArray, byteArray), 8); } @Test @IR(failOn = { IRNode.LOAD_VECTOR_L, IRNode.STORE_VECTOR }) public static void testByteByte4a(byte[] dest, byte[] src, int start, int stop) { for (int i = start; i < stop; i++) { UNSAFE.putLongUnaligned(dest, 8 * i + baseOffset, UNSAFE.getLongUnaligned(src, UNSAFE.ARRAY_BYTE_BASE_OFFSET + 8 * i)); } } @Test @IR(failOn = { IRNode.LOAD_VECTOR_L, IRNode.STORE_VECTOR }) public static void testByteByte4b(byte[] dest, byte[] src, int start, int stop) { for (int i = start; i < stop; i++) { UNSAFE.putLongUnaligned(dest, 8L * i + baseOffset, UNSAFE.getLongUnaligned(src, UNSAFE.ARRAY_BYTE_BASE_OFFSET + 8L * i)); } } @Run(test = {"testByteByte4a", "testByteByte4b"}) public static void testByteByte4_runner() { baseOffset = UNSAFE.ARRAY_BYTE_BASE_OFFSET; runAndVerify2(() -> testByteByte4a(byteArray, byteArray, 0, size), 0); runAndVerify2(() -> testByteByte4b(byteArray, byteArray, 0, size), 0); } @Test @IR(failOn = { IRNode.LOAD_VECTOR_L, IRNode.STORE_VECTOR }) public static void testByteByte5a(byte[] dest, byte[] src, int start, int stop) { for (int i = start; i < stop; i++) { UNSAFE.putLongUnaligned(dest, UNSAFE.ARRAY_BYTE_BASE_OFFSET + 8 * (i + baseOffset), UNSAFE.getLongUnaligned(src, UNSAFE.ARRAY_BYTE_BASE_OFFSET + 8 * i)); } } @Test @IR(failOn = { IRNode.LOAD_VECTOR_L, IRNode.STORE_VECTOR }) public static void testByteByte5b(byte[] dest, byte[] src, int start, int stop) { for (int i = start; i < stop; i++) { UNSAFE.putLongUnaligned(dest, UNSAFE.ARRAY_BYTE_BASE_OFFSET + 8L * (i + baseOffset), UNSAFE.getLongUnaligned(src, UNSAFE.ARRAY_BYTE_BASE_OFFSET + 8L * i)); } } @Run(test = {"testByteByte5a", "testByteByte5b"}) public static void testByteByte5_runner() { baseOffset = 1; runAndVerify2(() -> testByteByte5a(byteArray, byteArray, 0, size-1), 8); runAndVerify2(() -> testByteByte5b(byteArray, byteArray, 0, size-1), 8); } @Test @IR(counts = { IRNode.LOAD_VECTOR_L, "=0", IRNode.STORE_VECTOR, "=0" }) // temporary // @IR(counts = { IRNode.LOAD_VECTOR_L, ">=1", IRNode.STORE_VECTOR, ">=1" }) // FAILS: adr is CastX2P(dest + 8 * (i + int_con)) // See: JDK-8331576 public static void testOffHeapLong1a(long dest, long[] src) { for (int i = 0; i < src.length; i++) { UNSAFE.putLongUnaligned(null, dest + 8 * i, handleByteOrder(src[i])); } } @Test @IR(counts = { IRNode.LOAD_VECTOR_L, "=0", IRNode.STORE_VECTOR, "=0" }) // temporary // @IR(counts = { IRNode.LOAD_VECTOR_L, ">=1", IRNode.STORE_VECTOR, ">=1" }) // FAILS: adr is CastX2P(dest + 8L * (i + int_con)) // See: JDK-8331576 public static void testOffHeapLong1b(long dest, long[] src) { for (int i = 0; i < src.length; i++) { UNSAFE.putLongUnaligned(null, dest + 8L * i, handleByteOrder(src[i])); } } @Run(test = {"testOffHeapLong1a", "testOffHeapLong1b"}) public static void testOffHeapLong1_runner() { runAndVerify3(() -> testOffHeapLong1a(baseOffHeap, longArray), 0); runAndVerify3(() -> testOffHeapLong1b(baseOffHeap, longArray), 0); } @Test @IR(counts = { IRNode.LOAD_VECTOR_L, "=0", IRNode.STORE_VECTOR, "=0" }) // temporary // @IR(counts = { IRNode.LOAD_VECTOR_L, ">=1", IRNode.STORE_VECTOR, ">=1" }) // FAILS: adr is CastX2P // See: JDK-8331576 public static void testOffHeapLong2a(long dest, long[] src) { for (int i = 1; i < src.length; i++) { UNSAFE.putLongUnaligned(null, dest + 8 * (i - 1), handleByteOrder(src[i])); } } @Test @IR(counts = { IRNode.LOAD_VECTOR_L, "=0", IRNode.STORE_VECTOR, "=0" }) // temporary // @IR(counts = { IRNode.LOAD_VECTOR_L, ">=1", IRNode.STORE_VECTOR, ">=1" }) // FAILS: adr is CastX2P // See: JDK-8331576 public static void testOffHeapLong2b(long dest, long[] src) { for (int i = 1; i < src.length; i++) { UNSAFE.putLongUnaligned(null, dest + 8L * (i - 1), handleByteOrder(src[i])); } } @Run(test = {"testOffHeapLong2a", "testOffHeapLong2b"}) public static void testOffHeapLong2_runner() { runAndVerify3(() -> testOffHeapLong2a(baseOffHeap, longArray), -8); runAndVerify3(() -> testOffHeapLong2b(baseOffHeap, longArray), -8); } @Test @IR(counts = { IRNode.LOAD_VECTOR_L, "=0", IRNode.STORE_VECTOR, "=0" }) // temporary // @IR(counts = { IRNode.LOAD_VECTOR_L, ">=1", IRNode.STORE_VECTOR, ">=1" }) // FAILS: adr is CastX2P // See: JDK-8331576 public static void testOffHeapLong3a(long dest, long[] src) { for (int i = 0; i < src.length - 1; i++) { UNSAFE.putLongUnaligned(null, dest + 8 * (i + 1), handleByteOrder(src[i])); } } @Test @IR(counts = { IRNode.LOAD_VECTOR_L, "=0", IRNode.STORE_VECTOR, "=0" }) // temporary // @IR(counts = { IRNode.LOAD_VECTOR_L, ">=1", IRNode.STORE_VECTOR, ">=1" }) // FAILS: adr is CastX2P // See: JDK-8331576 public static void testOffHeapLong3b(long dest, long[] src) { for (int i = 0; i < src.length - 1; i++) { UNSAFE.putLongUnaligned(null, dest + 8L * (i + 1), handleByteOrder(src[i])); } } @Run(test = {"testOffHeapLong3a", "testOffHeapLong3b"}) public static void testOffHeapLong3_runner() { runAndVerify3(() -> testOffHeapLong3a(baseOffHeap, longArray), 8); runAndVerify3(() -> testOffHeapLong3b(baseOffHeap, longArray), 8); } @Test @IR(counts = { IRNode.LOAD_VECTOR_L, "=0", IRNode.STORE_VECTOR, "=0" }) // temporary // @IR(counts = { IRNode.LOAD_VECTOR_L, ">=1", IRNode.STORE_VECTOR, ">=1" }, // applyIf = {"AlignVector", "false"}) // FAILS: adr is CastX2P // See: JDK-8331576 // AlignVector cannot guarantee that invar is aligned. public static void testOffHeapLong4a(long dest, long[] src, int start, int stop) { for (int i = start; i < stop; i++) { UNSAFE.putLongUnaligned(null, dest + 8 * i + baseOffset, handleByteOrder(src[i])); } } @Test @IR(counts = { IRNode.LOAD_VECTOR_L, "=0", IRNode.STORE_VECTOR, "=0" }) // temporary // @IR(counts = { IRNode.LOAD_VECTOR_L, ">=1", IRNode.STORE_VECTOR, ">=1" }, // applyIf = {"AlignVector", "false"}) // FAILS: adr is CastX2P // See: JDK-8331576 // AlignVector cannot guarantee that invar is aligned. public static void testOffHeapLong4b(long dest, long[] src, int start, int stop) { for (int i = start; i < stop; i++) { UNSAFE.putLongUnaligned(null, dest + 8L * i + baseOffset, handleByteOrder(src[i])); } } @Run(test = {"testOffHeapLong4a", "testOffHeapLong4b"}) public static void testOffHeapLong4_runner() { baseOffset = 8; runAndVerify3(() -> testOffHeapLong4a(baseOffHeap, longArray, 0, size-1), 8); runAndVerify3(() -> testOffHeapLong4b(baseOffHeap, longArray, 0, size-1), 8); } }