/* * Copyright (c) 2021, 2023, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ /* * @test * @bug 8260284 * @summary Fix "assert(_base == Int) failed: Not an Int" due to a top divisor not handled correctly in no_dependent_zero_check(). * @requires vm.compiler2.enabled * @run main/othervm -Xcomp -XX:-TieredCompilation -XX:CompileOnly=compiler.loopopts.TestDivWithTopDivisor::* compiler.loopopts.TestDivWithTopDivisor */ package compiler.loopopts; public class TestDivWithTopDivisor { static boolean bFld; static int test(int d, long e, long f) { float g = 1; int a, b = 4, c = 4; int iArr[] = new int[400]; init(iArr, 8); if (bFld) { } else if (bFld) { if (bFld) { if (bFld) { for (a = 7; a > 1; --a) { if (bFld) { try { c = b / a; b = 9 / a; } catch (ArithmeticException k) { } } } } g = 0; } } else { iArr[d] <<= b; } long l = f + c + checkSum(iArr); return (int) l; } public static void init(int[] a, int seed) { for (int j = 0; j < a.length; j++) { a[j] = (j % 2 == 0) ? seed + j : seed - j; } } public static long checkSum(int[] a) { long sum = 0; for (int j = 0; j < a.length; j++) { sum += (a[j] / (j + 1) + a[j] % (j + 1)); } return sum; } public static void main(String[] s) { for (int i = 0; i < 10; i++) { test(3, 0, 0); } } }