/* * Copyright (c) 2001, 2016, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #ifndef SHARE_VM_GC_G1_G1CONCURRENTMARK_HPP #define SHARE_VM_GC_G1_G1CONCURRENTMARK_HPP #include "classfile/javaClasses.hpp" #include "gc/g1/g1ConcurrentMarkObjArrayProcessor.hpp" #include "gc/g1/g1RegionToSpaceMapper.hpp" #include "gc/g1/heapRegionSet.hpp" #include "gc/shared/taskqueue.hpp" class G1CollectedHeap; class G1CMBitMap; class G1CMTask; class G1ConcurrentMark; class ConcurrentGCTimer; class G1OldTracer; class G1SurvivorRegions; typedef GenericTaskQueue G1CMTaskQueue; typedef GenericTaskQueueSet G1CMTaskQueueSet; // Closure used by CM during concurrent reference discovery // and reference processing (during remarking) to determine // if a particular object is alive. It is primarily used // to determine if referents of discovered reference objects // are alive. An instance is also embedded into the // reference processor as the _is_alive_non_header field class G1CMIsAliveClosure: public BoolObjectClosure { G1CollectedHeap* _g1; public: G1CMIsAliveClosure(G1CollectedHeap* g1) : _g1(g1) { } bool do_object_b(oop obj); }; // A generic CM bit map. This is essentially a wrapper around the BitMap // class, with one bit per (1<<_shifter) HeapWords. class G1CMBitMapRO VALUE_OBJ_CLASS_SPEC { protected: HeapWord* _bmStartWord; // base address of range covered by map size_t _bmWordSize; // map size (in #HeapWords covered) const int _shifter; // map to char or bit BitMapView _bm; // the bit map itself public: // constructor G1CMBitMapRO(int shifter); // inquiries HeapWord* startWord() const { return _bmStartWord; } // the following is one past the last word in space HeapWord* endWord() const { return _bmStartWord + _bmWordSize; } // read marks bool isMarked(HeapWord* addr) const { assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize), "outside underlying space?"); return _bm.at(heapWordToOffset(addr)); } // iteration inline bool iterate(BitMapClosure* cl, MemRegion mr); // Return the address corresponding to the next marked bit at or after // "addr", and before "limit", if "limit" is non-NULL. If there is no // such bit, returns "limit" if that is non-NULL, or else "endWord()". HeapWord* getNextMarkedWordAddress(const HeapWord* addr, const HeapWord* limit = NULL) const; // conversion utilities HeapWord* offsetToHeapWord(size_t offset) const { return _bmStartWord + (offset << _shifter); } size_t heapWordToOffset(const HeapWord* addr) const { return pointer_delta(addr, _bmStartWord) >> _shifter; } // The argument addr should be the start address of a valid object inline HeapWord* nextObject(HeapWord* addr); void print_on_error(outputStream* st, const char* prefix) const; // debugging NOT_PRODUCT(bool covers(MemRegion rs) const;) }; class G1CMBitMapMappingChangedListener : public G1MappingChangedListener { private: G1CMBitMap* _bm; public: G1CMBitMapMappingChangedListener() : _bm(NULL) {} void set_bitmap(G1CMBitMap* bm) { _bm = bm; } virtual void on_commit(uint start_idx, size_t num_regions, bool zero_filled); }; class G1CMBitMap : public G1CMBitMapRO { private: G1CMBitMapMappingChangedListener _listener; public: static size_t compute_size(size_t heap_size); // Returns the amount of bytes on the heap between two marks in the bitmap. static size_t mark_distance(); // Returns how many bytes (or bits) of the heap a single byte (or bit) of the // mark bitmap corresponds to. This is the same as the mark distance above. static size_t heap_map_factor() { return mark_distance(); } G1CMBitMap() : G1CMBitMapRO(LogMinObjAlignment), _listener() { _listener.set_bitmap(this); } // Initializes the underlying BitMap to cover the given area. void initialize(MemRegion heap, G1RegionToSpaceMapper* storage); // Write marks. inline void mark(HeapWord* addr); inline void clear(HeapWord* addr); inline bool parMark(HeapWord* addr); void clear_range(MemRegion mr); }; // Represents the overflow mark stack used by concurrent marking. // // Stores oops in a huge buffer in virtual memory that is always fully committed. // Resizing may only happen during a STW pause when the stack is empty. // // Memory is allocated on a "chunk" basis, i.e. a set of oops. For this, the mark // stack memory is split into evenly sized chunks of oops. Users can only // add or remove entries on that basis. // Chunks are filled in increasing address order. Not completely filled chunks // have a NULL element as a terminating element. // // Every chunk has a header containing a single pointer element used for memory // management. This wastes some space, but is negligible (< .1% with current sizing). // // Memory management is done using a mix of tracking a high water-mark indicating // that all chunks at a lower address are valid chunks, and a singly linked free // list connecting all empty chunks. class G1CMMarkStack VALUE_OBJ_CLASS_SPEC { public: // Number of oops that can fit in a single chunk. static const size_t OopsPerChunk = 1024 - 1 /* One reference for the next pointer */; private: struct OopChunk { OopChunk* next; oop data[OopsPerChunk]; }; size_t _max_chunk_capacity; // Maximum number of OopChunk elements on the stack. OopChunk* _base; // Bottom address of allocated memory area. size_t _chunk_capacity; // Current maximum number of OopChunk elements. char _pad0[DEFAULT_CACHE_LINE_SIZE]; OopChunk* volatile _free_list; // Linked list of free chunks that can be allocated by users. char _pad1[DEFAULT_CACHE_LINE_SIZE - sizeof(OopChunk*)]; OopChunk* volatile _chunk_list; // List of chunks currently containing data. volatile size_t _chunks_in_chunk_list; char _pad2[DEFAULT_CACHE_LINE_SIZE - sizeof(OopChunk*) - sizeof(size_t)]; volatile size_t _hwm; // High water mark within the reserved space. char _pad4[DEFAULT_CACHE_LINE_SIZE - sizeof(size_t)]; // Allocate a new chunk from the reserved memory, using the high water mark. Returns // NULL if out of memory. OopChunk* allocate_new_chunk(); volatile bool _out_of_memory; // Atomically add the given chunk to the list. void add_chunk_to_list(OopChunk* volatile* list, OopChunk* elem); // Atomically remove and return a chunk from the given list. Returns NULL if the // list is empty. OopChunk* remove_chunk_from_list(OopChunk* volatile* list); void add_chunk_to_chunk_list(OopChunk* elem); void add_chunk_to_free_list(OopChunk* elem); OopChunk* remove_chunk_from_chunk_list(); OopChunk* remove_chunk_from_free_list(); bool _should_expand; // Resizes the mark stack to the given new capacity. Releases any previous // memory if successful. bool resize(size_t new_capacity); public: G1CMMarkStack(); ~G1CMMarkStack(); // Alignment and minimum capacity of this mark stack in number of oops. static size_t capacity_alignment(); // Allocate and initialize the mark stack with the given number of oops. bool initialize(size_t initial_capacity, size_t max_capacity); // Pushes the given buffer containing at most OopsPerChunk elements on the mark // stack. If less than OopsPerChunk elements are to be pushed, the array must // be terminated with a NULL. // Returns whether the buffer contents were successfully pushed to the global mark // stack. bool par_push_chunk(oop* buffer); // Pops a chunk from this mark stack, copying them into the given buffer. This // chunk may contain up to OopsPerChunk elements. If there are less, the last // element in the array is a NULL pointer. bool par_pop_chunk(oop* buffer); // Return whether the chunk list is empty. Racy due to unsynchronized access to // _chunk_list. bool is_empty() const { return _chunk_list == NULL; } size_t capacity() const { return _chunk_capacity; } bool is_out_of_memory() const { return _out_of_memory; } void clear_out_of_memory() { _out_of_memory = false; } bool should_expand() const { return _should_expand; } void set_should_expand(bool value) { _should_expand = value; } // Expand the stack, typically in response to an overflow condition void expand(); // Return the approximate number of oops on this mark stack. Racy due to // unsynchronized access to _chunks_in_chunk_list. size_t size() const { return _chunks_in_chunk_list * OopsPerChunk; } void set_empty(); // Apply Fn to every oop on the mark stack. The mark stack must not // be modified while iterating. template void iterate(Fn fn) const PRODUCT_RETURN; }; // Root Regions are regions that are not empty at the beginning of a // marking cycle and which we might collect during an evacuation pause // while the cycle is active. Given that, during evacuation pauses, we // do not copy objects that are explicitly marked, what we have to do // for the root regions is to scan them and mark all objects reachable // from them. According to the SATB assumptions, we only need to visit // each object once during marking. So, as long as we finish this scan // before the next evacuation pause, we can copy the objects from the // root regions without having to mark them or do anything else to them. // // Currently, we only support root region scanning once (at the start // of the marking cycle) and the root regions are all the survivor // regions populated during the initial-mark pause. class G1CMRootRegions VALUE_OBJ_CLASS_SPEC { private: const G1SurvivorRegions* _survivors; G1ConcurrentMark* _cm; volatile bool _scan_in_progress; volatile bool _should_abort; volatile int _claimed_survivor_index; void notify_scan_done(); public: G1CMRootRegions(); // We actually do most of the initialization in this method. void init(const G1SurvivorRegions* survivors, G1ConcurrentMark* cm); // Reset the claiming / scanning of the root regions. void prepare_for_scan(); // Forces get_next() to return NULL so that the iteration aborts early. void abort() { _should_abort = true; } // Return true if the CM thread are actively scanning root regions, // false otherwise. bool scan_in_progress() { return _scan_in_progress; } // Claim the next root region to scan atomically, or return NULL if // all have been claimed. HeapRegion* claim_next(); // The number of root regions to scan. uint num_root_regions() const; void cancel_scan(); // Flag that we're done with root region scanning and notify anyone // who's waiting on it. If aborted is false, assume that all regions // have been claimed. void scan_finished(); // If CM threads are still scanning root regions, wait until they // are done. Return true if we had to wait, false otherwise. bool wait_until_scan_finished(); }; class ConcurrentMarkThread; class G1ConcurrentMark: public CHeapObj { friend class ConcurrentMarkThread; friend class G1ParNoteEndTask; friend class G1VerifyLiveDataClosure; friend class G1CMRefProcTaskProxy; friend class G1CMRefProcTaskExecutor; friend class G1CMKeepAliveAndDrainClosure; friend class G1CMDrainMarkingStackClosure; friend class G1CMBitMapClosure; friend class G1CMConcurrentMarkingTask; friend class G1CMRemarkTask; friend class G1CMTask; protected: ConcurrentMarkThread* _cmThread; // The thread doing the work G1CollectedHeap* _g1h; // The heap uint _parallel_marking_threads; // The number of marking // threads we're using uint _max_parallel_marking_threads; // Max number of marking // threads we'll ever use double _sleep_factor; // How much we have to sleep, with // respect to the work we just did, to // meet the marking overhead goal double _marking_task_overhead; // Marking target overhead for // a single task FreeRegionList _cleanup_list; // Concurrent marking support structures G1CMBitMap _markBitMap1; G1CMBitMap _markBitMap2; G1CMBitMapRO* _prevMarkBitMap; // Completed mark bitmap G1CMBitMap* _nextMarkBitMap; // Under-construction mark bitmap // Heap bounds HeapWord* _heap_start; HeapWord* _heap_end; // Root region tracking and claiming G1CMRootRegions _root_regions; // For gray objects G1CMMarkStack _global_mark_stack; // Grey objects behind global finger HeapWord* volatile _finger; // The global finger, region aligned, // always points to the end of the // last claimed region // Marking tasks uint _max_worker_id;// Maximum worker id uint _active_tasks; // Task num currently active G1CMTask** _tasks; // Task queue array (max_worker_id len) G1CMTaskQueueSet* _task_queues; // Task queue set ParallelTaskTerminator _terminator; // For termination // Two sync barriers that are used to synchronize tasks when an // overflow occurs. The algorithm is the following. All tasks enter // the first one to ensure that they have all stopped manipulating // the global data structures. After they exit it, they re-initialize // their data structures and task 0 re-initializes the global data // structures. Then, they enter the second sync barrier. This // ensure, that no task starts doing work before all data // structures (local and global) have been re-initialized. When they // exit it, they are free to start working again. WorkGangBarrierSync _first_overflow_barrier_sync; WorkGangBarrierSync _second_overflow_barrier_sync; // This is set by any task, when an overflow on the global data // structures is detected volatile bool _has_overflown; // True: marking is concurrent, false: we're in remark volatile bool _concurrent; // Set at the end of a Full GC so that marking aborts volatile bool _has_aborted; // Used when remark aborts due to an overflow to indicate that // another concurrent marking phase should start volatile bool _restart_for_overflow; // This is true from the very start of concurrent marking until the // point when all the tasks complete their work. It is really used // to determine the points between the end of concurrent marking and // time of remark. volatile bool _concurrent_marking_in_progress; ConcurrentGCTimer* _gc_timer_cm; G1OldTracer* _gc_tracer_cm; // All of these times are in ms NumberSeq _init_times; NumberSeq _remark_times; NumberSeq _remark_mark_times; NumberSeq _remark_weak_ref_times; NumberSeq _cleanup_times; double _total_counting_time; double _total_rs_scrub_time; double* _accum_task_vtime; // Accumulated task vtime WorkGang* _parallel_workers; void weakRefsWorkParallelPart(BoolObjectClosure* is_alive, bool purged_classes); void weakRefsWork(bool clear_all_soft_refs); void swapMarkBitMaps(); // It resets the global marking data structures, as well as the // task local ones; should be called during initial mark. void reset(); // Resets all the marking data structures. Called when we have to restart // marking or when marking completes (via set_non_marking_state below). void reset_marking_state(bool clear_overflow = true); // We do this after we're done with marking so that the marking data // structures are initialized to a sensible and predictable state. void set_non_marking_state(); // Called to indicate how many threads are currently active. void set_concurrency(uint active_tasks); // It should be called to indicate which phase we're in (concurrent // mark or remark) and how many threads are currently active. void set_concurrency_and_phase(uint active_tasks, bool concurrent); // Prints all gathered CM-related statistics void print_stats(); bool cleanup_list_is_empty() { return _cleanup_list.is_empty(); } // Accessor methods uint parallel_marking_threads() const { return _parallel_marking_threads; } uint max_parallel_marking_threads() const { return _max_parallel_marking_threads;} double sleep_factor() { return _sleep_factor; } double marking_task_overhead() { return _marking_task_overhead;} HeapWord* finger() { return _finger; } bool concurrent() { return _concurrent; } uint active_tasks() { return _active_tasks; } ParallelTaskTerminator* terminator() { return &_terminator; } // It claims the next available region to be scanned by a marking // task/thread. It might return NULL if the next region is empty or // we have run out of regions. In the latter case, out_of_regions() // determines whether we've really run out of regions or the task // should call claim_region() again. This might seem a bit // awkward. Originally, the code was written so that claim_region() // either successfully returned with a non-empty region or there // were no more regions to be claimed. The problem with this was // that, in certain circumstances, it iterated over large chunks of // the heap finding only empty regions and, while it was working, it // was preventing the calling task to call its regular clock // method. So, this way, each task will spend very little time in // claim_region() and is allowed to call the regular clock method // frequently. HeapRegion* claim_region(uint worker_id); // It determines whether we've run out of regions to scan. Note that // the finger can point past the heap end in case the heap was expanded // to satisfy an allocation without doing a GC. This is fine, because all // objects in those regions will be considered live anyway because of // SATB guarantees (i.e. their TAMS will be equal to bottom). bool out_of_regions() { return _finger >= _heap_end; } // Returns the task with the given id G1CMTask* task(int id) { assert(0 <= id && id < (int) _active_tasks, "task id not within active bounds"); return _tasks[id]; } // Returns the task queue with the given id G1CMTaskQueue* task_queue(int id) { assert(0 <= id && id < (int) _active_tasks, "task queue id not within active bounds"); return (G1CMTaskQueue*) _task_queues->queue(id); } // Returns the task queue set G1CMTaskQueueSet* task_queues() { return _task_queues; } // Access / manipulation of the overflow flag which is set to // indicate that the global stack has overflown bool has_overflown() { return _has_overflown; } void set_has_overflown() { _has_overflown = true; } void clear_has_overflown() { _has_overflown = false; } bool restart_for_overflow() { return _restart_for_overflow; } // Methods to enter the two overflow sync barriers void enter_first_sync_barrier(uint worker_id); void enter_second_sync_barrier(uint worker_id); // Card index of the bottom of the G1 heap. Used for biasing indices into // the card bitmaps. intptr_t _heap_bottom_card_num; // Set to true when initialization is complete bool _completed_initialization; // end_timer, true to end gc timer after ending concurrent phase. void register_concurrent_phase_end_common(bool end_timer); // Clear the given bitmap in parallel using the given WorkGang. If may_yield is // true, periodically insert checks to see if this method should exit prematurely. void clear_bitmap(G1CMBitMap* bitmap, WorkGang* workers, bool may_yield); public: // Manipulation of the global mark stack. // The push and pop operations are used by tasks for transfers // between task-local queues and the global mark stack. bool mark_stack_push(oop* arr) { if (!_global_mark_stack.par_push_chunk(arr)) { set_has_overflown(); return false; } return true; } bool mark_stack_pop(oop* arr) { return _global_mark_stack.par_pop_chunk(arr); } size_t mark_stack_size() { return _global_mark_stack.size(); } size_t partial_mark_stack_size_target() { return _global_mark_stack.capacity()/3; } bool mark_stack_overflow() { return _global_mark_stack.is_out_of_memory(); } bool mark_stack_empty() { return _global_mark_stack.is_empty(); } G1CMRootRegions* root_regions() { return &_root_regions; } bool concurrent_marking_in_progress() { return _concurrent_marking_in_progress; } void set_concurrent_marking_in_progress() { _concurrent_marking_in_progress = true; } void clear_concurrent_marking_in_progress() { _concurrent_marking_in_progress = false; } void concurrent_cycle_start(); void concurrent_cycle_end(); void update_accum_task_vtime(int i, double vtime) { _accum_task_vtime[i] += vtime; } double all_task_accum_vtime() { double ret = 0.0; for (uint i = 0; i < _max_worker_id; ++i) ret += _accum_task_vtime[i]; return ret; } // Attempts to steal an object from the task queues of other tasks bool try_stealing(uint worker_id, int* hash_seed, oop& obj); G1ConcurrentMark(G1CollectedHeap* g1h, G1RegionToSpaceMapper* prev_bitmap_storage, G1RegionToSpaceMapper* next_bitmap_storage); ~G1ConcurrentMark(); ConcurrentMarkThread* cmThread() { return _cmThread; } G1CMBitMapRO* prevMarkBitMap() const { return _prevMarkBitMap; } G1CMBitMap* nextMarkBitMap() const { return _nextMarkBitMap; } // Returns the number of GC threads to be used in a concurrent // phase based on the number of GC threads being used in a STW // phase. uint scale_parallel_threads(uint n_par_threads); // Calculates the number of GC threads to be used in a concurrent phase. uint calc_parallel_marking_threads(); // The following three are interaction between CM and // G1CollectedHeap // This notifies CM that a root during initial-mark needs to be // grayed. It is MT-safe. hr is the region that // contains the object and it's passed optionally from callers who // might already have it (no point in recalculating it). inline void grayRoot(oop obj, HeapRegion* hr = NULL); // Prepare internal data structures for the next mark cycle. This includes clearing // the next mark bitmap and some internal data structures. This method is intended // to be called concurrently to the mutator. It will yield to safepoint requests. void cleanup_for_next_mark(); // Clear the previous marking bitmap during safepoint. void clear_prev_bitmap(WorkGang* workers); // Return whether the next mark bitmap has no marks set. To be used for assertions // only. Will not yield to pause requests. bool nextMarkBitmapIsClear(); // These two do the work that needs to be done before and after the // initial root checkpoint. Since this checkpoint can be done at two // different points (i.e. an explicit pause or piggy-backed on a // young collection), then it's nice to be able to easily share the // pre/post code. It might be the case that we can put everything in // the post method. TP void checkpointRootsInitialPre(); void checkpointRootsInitialPost(); // Scan all the root regions and mark everything reachable from // them. void scan_root_regions(); // Scan a single root region and mark everything reachable from it. void scanRootRegion(HeapRegion* hr); // Do concurrent phase of marking, to a tentative transitive closure. void mark_from_roots(); void checkpointRootsFinal(bool clear_all_soft_refs); void checkpointRootsFinalWork(); void cleanup(); void complete_cleanup(); // Mark in the previous bitmap. NB: this is usually read-only, so use // this carefully! inline void markPrev(oop p); // Clears marks for all objects in the given range, for the prev or // next bitmaps. NB: the previous bitmap is usually // read-only, so use this carefully! void clearRangePrevBitmap(MemRegion mr); // Verify that there are no CSet oops on the stacks (taskqueues / // global mark stack) and fingers (global / per-task). // If marking is not in progress, it's a no-op. void verify_no_cset_oops() PRODUCT_RETURN; inline bool isPrevMarked(oop p) const; inline bool do_yield_check(); // Abandon current marking iteration due to a Full GC. void abort(); bool has_aborted() { return _has_aborted; } void print_summary_info(); void print_worker_threads_on(outputStream* st) const; void threads_do(ThreadClosure* tc) const; void print_on_error(outputStream* st) const; // Attempts to mark the given object on the next mark bitmap. inline bool par_mark(oop obj); // Returns true if initialization was successfully completed. bool completed_initialization() const { return _completed_initialization; } ConcurrentGCTimer* gc_timer_cm() const { return _gc_timer_cm; } G1OldTracer* gc_tracer_cm() const { return _gc_tracer_cm; } private: // Clear (Reset) all liveness count data. void clear_live_data(WorkGang* workers); #ifdef ASSERT // Verify all of the above data structures that they are in initial state. void verify_live_data_clear(); #endif // Aggregates the per-card liveness data based on the current marking. Also sets // the amount of marked bytes for each region. void create_live_data(); void finalize_live_data(); void verify_live_data(); }; // A class representing a marking task. class G1CMTask : public TerminatorTerminator { private: enum PrivateConstants { // The regular clock call is called once the scanned words reaches // this limit words_scanned_period = 12*1024, // The regular clock call is called once the number of visited // references reaches this limit refs_reached_period = 1024, // Initial value for the hash seed, used in the work stealing code init_hash_seed = 17 }; G1CMObjArrayProcessor _objArray_processor; uint _worker_id; G1CollectedHeap* _g1h; G1ConcurrentMark* _cm; G1CMBitMap* _nextMarkBitMap; // the task queue of this task G1CMTaskQueue* _task_queue; private: // the task queue set---needed for stealing G1CMTaskQueueSet* _task_queues; // indicates whether the task has been claimed---this is only for // debugging purposes bool _claimed; // number of calls to this task int _calls; // when the virtual timer reaches this time, the marking step should // exit double _time_target_ms; // the start time of the current marking step double _start_time_ms; // the oop closure used for iterations over oops G1CMOopClosure* _cm_oop_closure; // the region this task is scanning, NULL if we're not scanning any HeapRegion* _curr_region; // the local finger of this task, NULL if we're not scanning a region HeapWord* _finger; // limit of the region this task is scanning, NULL if we're not scanning one HeapWord* _region_limit; // the number of words this task has scanned size_t _words_scanned; // When _words_scanned reaches this limit, the regular clock is // called. Notice that this might be decreased under certain // circumstances (i.e. when we believe that we did an expensive // operation). size_t _words_scanned_limit; // the initial value of _words_scanned_limit (i.e. what it was // before it was decreased). size_t _real_words_scanned_limit; // the number of references this task has visited size_t _refs_reached; // When _refs_reached reaches this limit, the regular clock is // called. Notice this this might be decreased under certain // circumstances (i.e. when we believe that we did an expensive // operation). size_t _refs_reached_limit; // the initial value of _refs_reached_limit (i.e. what it was before // it was decreased). size_t _real_refs_reached_limit; // used by the work stealing stuff int _hash_seed; // if this is true, then the task has aborted for some reason bool _has_aborted; // set when the task aborts because it has met its time quota bool _has_timed_out; // true when we're draining SATB buffers; this avoids the task // aborting due to SATB buffers being available (as we're already // dealing with them) bool _draining_satb_buffers; // number sequence of past step times NumberSeq _step_times_ms; // elapsed time of this task double _elapsed_time_ms; // termination time of this task double _termination_time_ms; // when this task got into the termination protocol double _termination_start_time_ms; // true when the task is during a concurrent phase, false when it is // in the remark phase (so, in the latter case, we do not have to // check all the things that we have to check during the concurrent // phase, i.e. SATB buffer availability...) bool _concurrent; TruncatedSeq _marking_step_diffs_ms; // it updates the local fields after this task has claimed // a new region to scan void setup_for_region(HeapRegion* hr); // it brings up-to-date the limit of the region void update_region_limit(); // called when either the words scanned or the refs visited limit // has been reached void reached_limit(); // recalculates the words scanned and refs visited limits void recalculate_limits(); // decreases the words scanned and refs visited limits when we reach // an expensive operation void decrease_limits(); // it checks whether the words scanned or refs visited reached their // respective limit and calls reached_limit() if they have void check_limits() { if (_words_scanned >= _words_scanned_limit || _refs_reached >= _refs_reached_limit) { reached_limit(); } } // this is supposed to be called regularly during a marking step as // it checks a bunch of conditions that might cause the marking step // to abort void regular_clock_call(); bool concurrent() { return _concurrent; } // Test whether obj might have already been passed over by the // mark bitmap scan, and so needs to be pushed onto the mark stack. bool is_below_finger(oop obj, HeapWord* global_finger) const; template void process_grey_object(oop obj); public: // Apply the closure on the given area of the objArray. Return the number of words // scanned. inline size_t scan_objArray(objArrayOop obj, MemRegion mr); // It resets the task; it should be called right at the beginning of // a marking phase. void reset(G1CMBitMap* _nextMarkBitMap); // it clears all the fields that correspond to a claimed region. void clear_region_fields(); void set_concurrent(bool concurrent) { _concurrent = concurrent; } // The main method of this class which performs a marking step // trying not to exceed the given duration. However, it might exit // prematurely, according to some conditions (i.e. SATB buffers are // available for processing). void do_marking_step(double target_ms, bool do_termination, bool is_serial); // These two calls start and stop the timer void record_start_time() { _elapsed_time_ms = os::elapsedTime() * 1000.0; } void record_end_time() { _elapsed_time_ms = os::elapsedTime() * 1000.0 - _elapsed_time_ms; } // returns the worker ID associated with this task. uint worker_id() { return _worker_id; } // From TerminatorTerminator. It determines whether this task should // exit the termination protocol after it's entered it. virtual bool should_exit_termination(); // Resets the local region fields after a task has finished scanning a // region; or when they have become stale as a result of the region // being evacuated. void giveup_current_region(); HeapWord* finger() { return _finger; } bool has_aborted() { return _has_aborted; } void set_has_aborted() { _has_aborted = true; } void clear_has_aborted() { _has_aborted = false; } bool has_timed_out() { return _has_timed_out; } bool claimed() { return _claimed; } void set_cm_oop_closure(G1CMOopClosure* cm_oop_closure); // Increment the number of references this task has visited. void increment_refs_reached() { ++_refs_reached; } // Grey the object by marking it. If not already marked, push it on // the local queue if below the finger. // obj is below its region's NTAMS. inline void make_reference_grey(oop obj); // Grey the object (by calling make_grey_reference) if required, // e.g. obj is below its containing region's NTAMS. // Precondition: obj is a valid heap object. inline void deal_with_reference(oop obj); // It scans an object and visits its children. inline void scan_object(oop obj); // It pushes an object on the local queue. inline void push(oop obj); // Move entries to the global stack. void move_entries_to_global_stack(); // Move entries from the global stack, return true if we were successful to do so. bool get_entries_from_global_stack(); // It pops and scans objects from the local queue. If partially is // true, then it stops when the queue size is of a given limit. If // partially is false, then it stops when the queue is empty. void drain_local_queue(bool partially); // It moves entries from the global stack to the local queue and // drains the local queue. If partially is true, then it stops when // both the global stack and the local queue reach a given size. If // partially if false, it tries to empty them totally. void drain_global_stack(bool partially); // It keeps picking SATB buffers and processing them until no SATB // buffers are available. void drain_satb_buffers(); // moves the local finger to a new location inline void move_finger_to(HeapWord* new_finger) { assert(new_finger >= _finger && new_finger < _region_limit, "invariant"); _finger = new_finger; } G1CMTask(uint worker_id, G1ConcurrentMark *cm, G1CMTaskQueue* task_queue, G1CMTaskQueueSet* task_queues); // it prints statistics associated with this task void print_stats(); }; // Class that's used to to print out per-region liveness // information. It's currently used at the end of marking and also // after we sort the old regions at the end of the cleanup operation. class G1PrintRegionLivenessInfoClosure: public HeapRegionClosure { private: // Accumulators for these values. size_t _total_used_bytes; size_t _total_capacity_bytes; size_t _total_prev_live_bytes; size_t _total_next_live_bytes; // Accumulator for the remembered set size size_t _total_remset_bytes; // Accumulator for strong code roots memory size size_t _total_strong_code_roots_bytes; static double perc(size_t val, size_t total) { if (total == 0) { return 0.0; } else { return 100.0 * ((double) val / (double) total); } } static double bytes_to_mb(size_t val) { return (double) val / (double) M; } public: // The header and footer are printed in the constructor and // destructor respectively. G1PrintRegionLivenessInfoClosure(const char* phase_name); virtual bool doHeapRegion(HeapRegion* r); ~G1PrintRegionLivenessInfoClosure(); }; #endif // SHARE_VM_GC_G1_G1CONCURRENTMARK_HPP