/* * Copyright (c) 2003, 2024, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ import jdk.test.lib.RandomFactory; import java.util.function.DoubleUnaryOperator; /* * @test * @bug 4851625 8301444 * @key randomness * @library /test/lib * @build jdk.test.lib.RandomFactory * @build Tests * @build FdlibmTranslit * @build HyperbolicTests * @run main HyperbolicTests * @summary Tests for StrictMath.{sinh, cosh, tanh} */ /** * The tests in ../Math/HyperbolicTests.java test properties that * should hold for any implementation of the hyperbolic functions * sinh, cosh, and tanh, including the FDLIBM-based ones required by * the StrictMath class. Therefore, the test cases in * ../Math/HyperbolicTests.java are run against both the Math and * StrictMath versions of the hyperbolic methods. The role of this * test is to verify that the FDLIBM algorithms are being used by * running golden file tests on values that may vary from one * conforming implementation of the hyperbolics to another. */ public class HyperbolicTests { private HyperbolicTests(){} public static void main(String... args) { int failures = 0; failures += testAgainstTranslitCommon(); failures += testAgainstTranslitSinh(); failures += testAgainstTranslitCosh(); failures += testAgainstTranslitTanh(); failures += testSinh(); failures += testCosh(); failures += testTanh(); if (failures > 0) { System.err.println("Testing the hyperbolics incurred " + failures + " failures."); throw new RuntimeException(); } } /** * Bundle together groups of testing methods. */ private static enum HyperbolicTest { SINH(HyperbolicTests::testSinhCase, FdlibmTranslit::sinh), COSH(HyperbolicTests::testCoshCase, FdlibmTranslit::cosh), TANH(HyperbolicTests::testTanhCase, FdlibmTranslit::tanh); private DoubleDoubleToInt testCase; private DoubleUnaryOperator transliteration; HyperbolicTest(DoubleDoubleToInt testCase, DoubleUnaryOperator transliteration) { this.testCase = testCase; this.transliteration = transliteration; } public DoubleDoubleToInt testCase() {return testCase;} public DoubleUnaryOperator transliteration() {return transliteration;} } // Initialize shared random number generator private static java.util.Random random = RandomFactory.getRandom(); /** * Test against shared points of interest. */ private static int testAgainstTranslitCommon() { int failures = 0; double[] pointsOfInterest = { Double.MIN_NORMAL, 1.0, Tests.createRandomDouble(random), }; for (var testMethods : HyperbolicTest.values()) { for (double testPoint : pointsOfInterest) { failures += testRangeMidpoint(testPoint, Math.ulp(testPoint), 1000, testMethods); } } return failures; } /** * Test StrictMath.sinh against transliteration port of sinh. */ private static int testAgainstTranslitSinh() { int failures = 0; double x; // Probe near decision points in the FDLIBM algorithm. double[] decisionPoints = { 0.0, 22.0, -22.0, 0x1.0p-28, -0x1.0p-28, // StrictMath.log(Double.MAX_VALUE) ~= 709.782712893384 0x1.62e42fefa39efp9, -0x1.62e42fefa39efp9, // Largest argument with finite sinh, 710.4758600739439 0x1.633ce8fb9f87dp9, -0x1.633ce8fb9f87dp9, }; for (double testPoint : decisionPoints) { failures += testRangeMidpoint(testPoint, Math.ulp(testPoint), 1000, HyperbolicTest.SINH); } return failures; } /** * Test StrictMath.cosh against transliteration port of cosh. */ private static int testAgainstTranslitCosh() { int failures = 0; double x; // Probe near decision points in the FDLIBM algorithm. double[] decisionPoints = { 0.0, 22.0, -22.0, // StrictMath.log(2)/2 ~= 0.34657359027997264 0x1.62e42fefa39efp-2, -0x1.62e42fefa39efp-2, 0x1.0p-28, -0x1.0p-28, // StrictMath.log(Double.MAX_VALUE) ~= 709.782712893384 0x1.62e42fefa39efp9, -0x1.62e42fefa39efp9, // Largest argument with finite cosh, 710.4758600739439 0x1.633ce8fb9f87dp9, -0x1.633ce8fb9f87dp9, }; for (double testPoint : decisionPoints) { failures += testRangeMidpoint(testPoint, Math.ulp(testPoint), 1000, HyperbolicTest.COSH); } return failures; } /** * Test StrictMath.tanh against transliteration port of tanh */ private static int testAgainstTranslitTanh() { int failures = 0; double x; // Probe near decision points in the FDLIBM algorithm. double[] decisionPoints = { 0.0, 0x1.0p-55, -0x1.0p-55, 1.0, -1.0, 22.0, }; for (double testPoint : decisionPoints) { failures += testRangeMidpoint(testPoint, Math.ulp(testPoint), 1000, HyperbolicTest.COSH); } return failures; } private interface DoubleDoubleToInt { int apply(double x, double y); } private static int testRange(double start, double increment, int count, HyperbolicTest testMethods) { int failures = 0; double x = start; for (int i = 0; i < count; i++, x += increment) { failures += testMethods.testCase().apply(x, testMethods.transliteration().applyAsDouble(x)); } return failures; } private static int testRangeMidpoint(double midpoint, double increment, int count, HyperbolicTest testMethods) { int failures = 0; double x = midpoint - increment*(count / 2) ; for (int i = 0; i < count; i++, x += increment) { failures += testMethods.testCase().apply(x, testMethods.transliteration().applyAsDouble(x)); } return failures; } private static int testSinhCase(double input, double expected) { return Tests.test("StrictMath.sinh(double)", input, StrictMath::sinh, expected); } private static int testCoshCase(double input, double expected) { return Tests.test("StrictMath.cosh(double)", input, StrictMath::cosh, expected); } private static int testTanhCase(double input, double expected) { return Tests.test("StrictMath.tanh(double)", input, StrictMath::tanh, expected); } private static int testSinh() { int failures = 0; double [][] testCases = { {0x1.5798ee2308c3ap-27, 0x1.5798ee2308c3bp-27}, {0x1.ffffffffffff8p-26, 0x1.ffffffffffffap-26}, {0x1.ffffffffffffep-26, 0x1.0p-25}, {0x1.ffffffffffff8p-25, 0x1.ffffffffffffep-25}, {0x1.ffffffffffffap-25, 0x1.0p-24}, {0x1.ad7f29abcaf47p-24, 0x1.ad7f29abcaf53p-24}, {0x1.ad7f29abcaf48p-24, 0x1.ad7f29abcaf54p-24}, {0x1.fffffffffffeap-24, 0x1.0p-23}, {0x1.ffffffffffff8p-24, 0x1.0000000000007p-23}, {0x1.fffffffffffaap-23, 0x1.0p-22}, {0x1.ffffffffffff8p-23, 0x1.0000000000027p-22}, {0x1.ffffffffffeaap-22, 0x1.0p-21}, {0x1.ffffffffffff8p-22, 0x1.00000000000a7p-21}, {0x1.ffffffffffaaap-21, 0x1.0p-20}, {0x1.ffffffffffff8p-21, 0x1.00000000002a7p-20}, {0x1.0c6f7a0b5ed8cp-20, 0x1.0c6f7a0b5f09fp-20}, {0x1.0c6f7a0b5ed8dp-20, 0x1.0c6f7a0b5f0ap-20}, {0x1.fffffffffeaaap-20, 0x1.0p-19}, {0x1.ffffffffffff8p-20, 0x1.0000000000aa7p-19}, {0x1.ffffffffffff8p-19, 0x1.0000000002aa7p-18}, {0x1.ffffffffffff7p-18, 0x1.000000000aaa6p-17}, {0x1.4f8b588e368d9p-17, 0x1.4f8b588e4e928p-17}, {0x1.ffffffffffffep-17, 0x1.000000002aaa9p-16}, {0x1.0p-16, 0x1.000000002aaaap-16}, {0x1.fffffffffffffp-16, 0x1.00000000aaaabp-15}, {0x1.fffffffffeaaap-15, 0x1.00000002aap-14}, {0x1.ffffffffffffep-15, 0x1.00000002aaaa9p-14}, {0x1.0p-14, 0x1.00000002aaaaap-14}, {0x1.a36e2eb1c3dd4p-14, 0x1.a36e2ebd7e43ap-14}, {0x1.a36e2eb1c3f8cp-14, 0x1.a36e2ebd7e5f1p-14}, {0x1.a36e2eb1c432cp-14, 0x1.a36e2ebd7e991p-14}, {0x1.fffffffffffffp-14, 0x1.0000000aaaaabp-13}, {0x1.ffffffffffffep-13, 0x1.0000002aaaaa9p-12}, {0x1.0p-12, 0x1.0000002aaaaaap-12}, {0x1.ffffffffff7f9p-12, 0x1.000000aaaa6a9p-11}, {0x1.fffffffffffffp-12, 0x1.000000aaaaaadp-11}, {0x1.ffffffffffffep-11, 0x1.000002aaaaacbp-10}, {0x1.0p-10, 0x1.000002aaaaaccp-10}, {0x1.0624dd2f1a79p-10, 0x1.0624e00c1c776p-10}, {0x1.0624dd2f1a8c9p-10, 0x1.0624e00c1c8bp-10}, {0x1.0624dd2f1a9fcp-10, 0x1.0624e00c1c9e3p-10}, {0x1.ffffffffffffep-10, 0x1.00000aaaaaccbp-9}, {0x1.0p-9, 0x1.00000aaaaacccp-9}, {0x1.ffffffffffe4ap-9, 0x1.00002aaaacbf2p-8}, {0x1.fffffffffffffp-9, 0x1.00002aaaacccdp-8}, {0x1.fffffffffff9dp-8, 0x1.0000aaaaccc9bp-7}, {0x1.ffffffffffffep-8, 0x1.0000aaaacccccp-7}, {0x1.0p-7, 0x1.0000aaaaccccdp-7}, {0x1.47ae147ae146fp-7, 0x1.47af7a654e9e2p-7}, {0x1.47ae147ae147ap-7, 0x1.47af7a654e9eep-7}, {0x1.47ae147ae147bp-7, 0x1.47af7a654e9efp-7}, {0x1.fffffffffffb6p-7, 0x1.0002aaaccccb4p-6}, {0x1.fffffffffffcap-7, 0x1.0002aaaccccbep-6}, {0x1.ffffffffffff7p-7, 0x1.0002aaaccccd5p-6}, {0x1.fffffffffffe9p-6, 0x1.000aaacccd001p-5}, {0x1.ffffffffffff7p-6, 0x1.000aaacccd008p-5}, {0x1.fffffffffffffp-6, 0x1.000aaacccd00dp-5}, {0x1.ffffffffffff6p-5, 0x1.002aacccd9cd7p-4}, {0x1.ffffffffffff8p-5, 0x1.002aacccd9cd9p-4}, {0x1.0p-4, 0x1.002aacccd9cddp-4}, {0x1.9999999999995p-4, 0x1.9a487337b59afp-4}, {0x1.9999999999996p-4, 0x1.9a487337b59afp-4}, {0x1.9999999999998p-4, 0x1.9a487337b59b1p-4}, {0x1.ffffffffffffap-4, 0x1.00aaccd00d2edp-3}, {0x1.ffffffffffffcp-4, 0x1.00aaccd00d2efp-3}, {0x1.ffffffffffff3p-3, 0x1.02accd9d080fbp-2}, {0x1.ffffffffffffdp-3, 0x1.02accd9d08101p-2}, {0x1.fffffffffffffp-3, 0x1.02accd9d08101p-2}, {0x1.fffffffffffecp-2, 0x1.0acd00fe63b8cp-1}, {0x1.ffffffffffffcp-2, 0x1.0acd00fe63b94p-1}, {0x1.0p-1, 0x1.0acd00fe63b97p-1}, {0x1.ffffffffffff6p-1, 0x1.2cd9fc44eb97ap0}, {0x1.ffffffffffffep-1, 0x1.2cd9fc44eb981p0}, {0x1.fffffffffffffp0, 0x1.d03cf63b6e19ep1}, {0x1.0p1, 0x1.d03cf63b6e1ap1}, {0x1.fffffffffffffp1, 0x1.b4a380370362dp4}, {0x1.0p2, 0x1.b4a380370363p4}, {0x1.ffffffffffffcp2, 0x1.749ea514eca4ep10}, {0x1.0p3, 0x1.749ea514eca66p10}, {0x1.fffffffffffffp3, 0x1.0f2ebd0a7ffdcp22}, {0x1.0p4, 0x1.0f2ebd0a7ffe4p22}, {0x1.fffffffffff68p4, 0x1.1f43fcc4b5b83p45}, {0x1.fffffffffffd4p4, 0x1.1f43fcc4b6316p45}, {0x1.0p5, 0x1.1f43fcc4b662cp45}, // Empirical worst-case points in other libraries with // larger worst-case errors than FDLIBM {-0x1.633c654fee2bap+9, -0x1.fdf25fc26e7cp1023}, {-0x1.633cae1335f26p+9, -0x1.ff149489e50a1p1023}, { 0x1.9fcba01feb507p-2, 0x1.ab50d8e4d8c56p-2}, }; for (double[] testCase: testCases) failures += testSinhCase(testCase[0], testCase[1]); return failures; } private static int testCosh() { int failures = 0; double [][] testCases = { {0x1.fffffffffb49fp-8, 0x1.00020000aaaabp0}, {0x1.47ae147ae0e45p-7, 0x1.000346de27853p0}, {0x1.fffffffffd9f3p-7, 0x1.0008000aaab05p0}, {0x1.ffffffffff9f1p-7, 0x1.0008000aaab05p0}, {0x1.fffffffffe27dp-6, 0x1.002000aaac169p0}, {0x1.ffffffffff27bp-6, 0x1.002000aaac16bp0}, {0x1.ffffffffffb9cp-5, 0x1.00800aab05b1ep0}, {0x1.ffffffffffd9dp-5, 0x1.00800aab05b1fp0}, {0x1.9999999999368p-4, 0x1.0147f40224b2ep0}, {0x1.9999999999727p-4, 0x1.0147f40224b35p0}, {0x1.ffffffffffed1p-4, 0x1.0200aac16db6cp0}, {0x1.fffffffffffd1p-4, 0x1.0200aac16db6ep0}, {0x1.ffffffffffeb4p-3, 0x1.080ab05ca613bp0}, {0x1.ffffffffffff2p-3, 0x1.080ab05ca6146p0}, {0x1.ffffffffffff3p-2, 0x1.20ac1862ae8cep0}, {0x1.ffffffffffff9p-2, 0x1.20ac1862ae8dp0}, {0x1.0p0, 0x1.8b07551d9f551p0}, {0x1.ffffffffffffbp0, 0x1.e18fa0df2d9b3p1}, {0x1.ffffffffffffep0, 0x1.e18fa0df2d9b8p1}, {0x1.fffffffffffffp0, 0x1.e18fa0df2d9bap1}, {0x1.ffffffffffff9p1, 0x1.b4ee858de3e68p4}, {0x1.ffffffffffffep1, 0x1.b4ee858de3e7ap4}, {0x1.fffffffffffffp1, 0x1.b4ee858de3e7dp4}, {0x1.ffffffffffffcp2, 0x1.749eaa93f4e5ep10}, {0x1.ffffffffffffdp2, 0x1.749eaa93f4e64p10}, {0x1.0p3, 0x1.749eaa93f4e76p10}, {0x1.fffffffffff6fp3, 0x1.0f2ebd0a7fb9p22}, {0x1.0p4, 0x1.0f2ebd0a8005cp22}, {0x1.fffffffffffd4p4, 0x1.1f43fcc4b6316p45}, {0x1.0p5, 0x1.1f43fcc4b662cp45}, // Empirical worst-case points in other libraries with // larger worst-case errors than FDLIBM {-0x1.633c654fee2bap+9, 0x1.fdf25fc26e7cp1023}, { 0x1.ff76fb3f476d5p+0, 0x1.e0976c8f0ebdfp1}, { 0x1.633cc2ae1c934p+9, 0x1.ff66e0de4dc6fp1023}, {-0x1.1ff088806d82ep+3, 0x1.f97ccb0aef314p11}, {-0x1.628af341989dap+9, 0x1.fdf28623ef923p1021}, }; for (double[] testCase: testCases) failures += testCoshCase(testCase[0], testCase[1]); return failures; } private static int testTanh() { int failures = 0; double [][] testCases = { {0x1.5798ee2308c36p-27, 0x1.5798ee2308c36p-27}, {0x1.ffffffffffffep-26, 0x1.ffffffffffffbp-26}, {0x1.ffffffffffffep-25, 0x1.ffffffffffff3p-25}, {0x1.ad7f29abcaf47p-24, 0x1.ad7f29abcaf2dp-24}, {0x1.ad7f29abcaf48p-24, 0x1.ad7f29abcaf2ep-24}, {0x1.ffffffffffffep-24, 0x1.fffffffffffd3p-24}, {0x1.ffffffffffffep-23, 0x1.fffffffffff53p-23}, {0x1.ffffffffffffep-22, 0x1.ffffffffffd53p-22}, {0x1.ffffffffffffep-21, 0x1.ffffffffff553p-21}, {0x1.0c6f7a0b5ed8dp-20, 0x1.0c6f7a0b5e767p-20}, {0x1.ffffffffffffep-20, 0x1.fffffffffd553p-20}, {0x1.ffffffffffffep-19, 0x1.fffffffff5553p-19}, {0x1.fffffffffffffp-18, 0x1.ffffffffd5555p-18}, {0x1.0p-17, 0x1.ffffffffd5556p-18}, {0x1.4f8b588e368edp-17, 0x1.4f8b588e0685p-17}, {0x1.fffffffffffffp-17, 0x1.ffffffff55554p-17}, {0x1.fffffffffffffp-16, 0x1.fffffffd55555p-16}, {0x1.0p-15, 0x1.fffffffd55556p-16}, {0x1.fffffffffe5ddp-15, 0x1.fffffff553b33p-15}, {0x1.fffffffffffffp-15, 0x1.fffffff555554p-15}, {0x1.a36e2eb1c432dp-14, 0x1.a36e2e9a4f663p-14}, {0x1.ffffffffffffep-14, 0x1.ffffffd555553p-14}, {0x1.0p-13, 0x1.ffffffd555555p-14}, {0x1.ffffffffffd51p-13, 0x1.ffffff55552aap-13}, {0x1.fffffffffffffp-13, 0x1.ffffff5555559p-13}, {0x1.ffffffffffffep-12, 0x1.fffffd5555597p-12}, {0x1.0p-11, 0x1.fffffd5555599p-12}, {0x1.fffffffffff1p-11, 0x1.fffff555558a9p-11}, {0x1.0p-10, 0x1.fffff5555599ap-11}, {0x1.0624dd2f1a9c6p-10, 0x1.0624d77516cabp-10}, {0x1.0624dd2f1a9f8p-10, 0x1.0624d77516cdep-10}, {0x1.fffffffffffddp-10, 0x1.ffffd55559976p-10}, {0x1.fffffffffffffp-10, 0x1.ffffd55559999p-10}, {0x1.ffffffffffffcp-9, 0x1.ffff555599993p-9}, {0x1.ffffffffffffep-9, 0x1.ffff555599996p-9}, {0x1.ffffffffffff8p-8, 0x1.fffd555999924p-8}, {0x1.ffffffffffffep-8, 0x1.fffd555999929p-8}, {0x1.47ae147ae1458p-7, 0x1.47ab48ae4593cp-7}, {0x1.47ae147ae1464p-7, 0x1.47ab48ae45947p-7}, {0x1.ffffffffffffep-7, 0x1.fff5559997df6p-7}, {0x1.fffffffffffffp-7, 0x1.fff5559997df8p-7}, {0x1.ffffffffffff9p-6, 0x1.ffd559992b1d8p-6}, {0x1.ffffffffffffep-6, 0x1.ffd559992b1dcp-6}, {0x1.ffffffffffff9p-5, 0x1.ff55997e030d1p-5}, {0x1.fffffffffffffp-5, 0x1.ff55997e030d6p-5}, {0x1.9999999999996p-4, 0x1.983d7795f4137p-4}, {0x1.9999999999997p-4, 0x1.983d7795f4137p-4}, {0x1.fffffffffffffp-4, 0x1.fd5992bc4b834p-4}, {0x1.0p-3, 0x1.fd5992bc4b834p-4}, {0x1.fffffffffffffp-3, 0x1.f597ea69a1c86p-3}, {0x1.ffffffffffffcp-2, 0x1.d9353d7568aefp-2}, {0x1.ffffffffffffep-2, 0x1.d9353d7568af3p-2}, {0x1.ffffffffffffbp-1, 0x1.85efab514f393p-1}, {0x1.ffffffffffffep-1, 0x1.85efab514f393p-1}, {0x1.fffffffffffd3p0, 0x1.ed9505e1bc3cep-1}, {0x1.fffffffffffe1p0, 0x1.ed9505e1bc3cfp-1}, {0x1.ffffffffffed8p1, 0x1.ffa81708a0b4p-1}, {0x1.fffffffffff92p1, 0x1.ffa81708a0b41p-1}, // Empirical worst-case points in other libraries with // larger worst-case errors than FDLIBM {-0x1.c41e527b70f43p-3, -0x1.bcea047cc736cp-3}, }; for (double[] testCase: testCases) failures += testTanhCase(testCase[0], testCase[1]); return failures; } }