/* * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #ifndef SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP #define SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP #include "utilities/compilerWarnings.hpp" #include "utilities/debug.hpp" #include "utilities/macros.hpp" #include COMPILER_HEADER(utilities/globalDefinitions) // Defaults for macros that might be defined per compiler. #ifndef NOINLINE #define NOINLINE #endif #ifndef ALWAYSINLINE #define ALWAYSINLINE inline #endif #ifndef ATTRIBUTE_ALIGNED #define ATTRIBUTE_ALIGNED(x) #endif // This file holds all globally used constants & types, class (forward) // declarations and a few frequently used utility functions. //---------------------------------------------------------------------------------------------------- // Printf-style formatters for fixed- and variable-width types as pointers and // integers. These are derived from the definitions in inttypes.h. If the platform // doesn't provide appropriate definitions, they should be provided in // the compiler-specific definitions file (e.g., globalDefinitions_gcc.hpp) #define BOOL_TO_STR(_b_) ((_b_) ? "true" : "false") // Format 32-bit quantities. #define INT32_FORMAT "%" PRId32 #define UINT32_FORMAT "%" PRIu32 #define INT32_FORMAT_W(width) "%" #width PRId32 #define UINT32_FORMAT_W(width) "%" #width PRIu32 #define PTR32_FORMAT "0x%08" PRIx32 #define PTR32_FORMAT_W(width) "0x%" #width PRIx32 // Format 64-bit quantities. #define INT64_FORMAT "%" PRId64 #define UINT64_FORMAT "%" PRIu64 #define UINT64_FORMAT_X "%" PRIx64 #define INT64_FORMAT_W(width) "%" #width PRId64 #define UINT64_FORMAT_W(width) "%" #width PRIu64 #define PTR64_FORMAT "0x%016" PRIx64 // Format jlong, if necessary #ifndef JLONG_FORMAT #define JLONG_FORMAT INT64_FORMAT #endif #ifndef JULONG_FORMAT #define JULONG_FORMAT UINT64_FORMAT #endif #ifndef JULONG_FORMAT_X #define JULONG_FORMAT_X UINT64_FORMAT_X #endif // Format pointers which change size between 32- and 64-bit. #ifdef _LP64 #define INTPTR_FORMAT "0x%016" PRIxPTR #define PTR_FORMAT "0x%016" PRIxPTR #else // !_LP64 #define INTPTR_FORMAT "0x%08" PRIxPTR #define PTR_FORMAT "0x%08" PRIxPTR #endif // _LP64 // Format pointers without leading zeros #define INTPTRNZ_FORMAT "0x%" PRIxPTR #define INTPTR_FORMAT_W(width) "%" #width PRIxPTR #define SSIZE_FORMAT "%" PRIdPTR #define SIZE_FORMAT "%" PRIuPTR #define SIZE_FORMAT_HEX "0x%" PRIxPTR #define SSIZE_FORMAT_W(width) "%" #width PRIdPTR #define SIZE_FORMAT_W(width) "%" #width PRIuPTR #define SIZE_FORMAT_HEX_W(width) "0x%" #width PRIxPTR #define INTX_FORMAT "%" PRIdPTR #define UINTX_FORMAT "%" PRIuPTR #define INTX_FORMAT_W(width) "%" #width PRIdPTR #define UINTX_FORMAT_W(width) "%" #width PRIuPTR //---------------------------------------------------------------------------------------------------- // Constants const int LogBytesPerShort = 1; const int LogBytesPerInt = 2; #ifdef _LP64 const int LogBytesPerWord = 3; #else const int LogBytesPerWord = 2; #endif const int LogBytesPerLong = 3; const int BytesPerShort = 1 << LogBytesPerShort; const int BytesPerInt = 1 << LogBytesPerInt; const int BytesPerWord = 1 << LogBytesPerWord; const int BytesPerLong = 1 << LogBytesPerLong; const int LogBitsPerByte = 3; const int LogBitsPerShort = LogBitsPerByte + LogBytesPerShort; const int LogBitsPerInt = LogBitsPerByte + LogBytesPerInt; const int LogBitsPerWord = LogBitsPerByte + LogBytesPerWord; const int LogBitsPerLong = LogBitsPerByte + LogBytesPerLong; const int BitsPerByte = 1 << LogBitsPerByte; const int BitsPerShort = 1 << LogBitsPerShort; const int BitsPerInt = 1 << LogBitsPerInt; const int BitsPerWord = 1 << LogBitsPerWord; const int BitsPerLong = 1 << LogBitsPerLong; const int WordAlignmentMask = (1 << LogBytesPerWord) - 1; const int LongAlignmentMask = (1 << LogBytesPerLong) - 1; const int WordsPerLong = 2; // Number of stack entries for longs const int oopSize = sizeof(char*); // Full-width oop extern int heapOopSize; // Oop within a java object const int wordSize = sizeof(char*); const int longSize = sizeof(jlong); const int jintSize = sizeof(jint); const int size_tSize = sizeof(size_t); const int BytesPerOop = BytesPerWord; // Full-width oop extern int LogBytesPerHeapOop; // Oop within a java object extern int LogBitsPerHeapOop; extern int BytesPerHeapOop; extern int BitsPerHeapOop; const int BitsPerJavaInteger = 32; const int BitsPerJavaLong = 64; const int BitsPerSize_t = size_tSize * BitsPerByte; // Size of a char[] needed to represent a jint as a string in decimal. const int jintAsStringSize = 12; // An opaque struct of heap-word width, so that HeapWord* can be a generic // pointer into the heap. We require that object sizes be measured in // units of heap words, so that that // HeapWord* hw; // hw += oop(hw)->foo(); // works, where foo is a method (like size or scavenge) that returns the // object size. class HeapWord { friend class VMStructs; private: char* i; #ifndef PRODUCT public: char* value() { return i; } #endif }; // Analogous opaque struct for metadata allocated from // metaspaces. class MetaWord { private: char* i; }; // HeapWordSize must be 2^LogHeapWordSize. const int HeapWordSize = sizeof(HeapWord); #ifdef _LP64 const int LogHeapWordSize = 3; #else const int LogHeapWordSize = 2; #endif const int HeapWordsPerLong = BytesPerLong / HeapWordSize; const int LogHeapWordsPerLong = LogBytesPerLong - LogHeapWordSize; // The minimum number of native machine words necessary to contain "byte_size" // bytes. inline size_t heap_word_size(size_t byte_size) { return (byte_size + (HeapWordSize-1)) >> LogHeapWordSize; } //------------------------------------------- // Constant for jlong (standardized by C++11) // Build a 64bit integer constant #define CONST64(x) (x ## LL) #define UCONST64(x) (x ## ULL) const jlong min_jlong = CONST64(0x8000000000000000); const jlong max_jlong = CONST64(0x7fffffffffffffff); const size_t K = 1024; const size_t M = K*K; const size_t G = M*K; const size_t HWperKB = K / sizeof(HeapWord); // Constants for converting from a base unit to milli-base units. For // example from seconds to milliseconds and microseconds const int MILLIUNITS = 1000; // milli units per base unit const int MICROUNITS = 1000000; // micro units per base unit const int NANOUNITS = 1000000000; // nano units per base unit const jlong NANOSECS_PER_SEC = CONST64(1000000000); const jint NANOSECS_PER_MILLISEC = 1000000; inline const char* proper_unit_for_byte_size(size_t s) { #ifdef _LP64 if (s >= 10*G) { return "G"; } #endif if (s >= 10*M) { return "M"; } else if (s >= 10*K) { return "K"; } else { return "B"; } } template inline T byte_size_in_proper_unit(T s) { #ifdef _LP64 if (s >= 10*G) { return (T)(s/G); } #endif if (s >= 10*M) { return (T)(s/M); } else if (s >= 10*K) { return (T)(s/K); } else { return s; } } inline const char* exact_unit_for_byte_size(size_t s) { #ifdef _LP64 if (s >= G && (s % G) == 0) { return "G"; } #endif if (s >= M && (s % M) == 0) { return "M"; } if (s >= K && (s % K) == 0) { return "K"; } return "B"; } inline size_t byte_size_in_exact_unit(size_t s) { #ifdef _LP64 if (s >= G && (s % G) == 0) { return s / G; } #endif if (s >= M && (s % M) == 0) { return s / M; } if (s >= K && (s % K) == 0) { return s / K; } return s; } //---------------------------------------------------------------------------------------------------- // VM type definitions // intx and uintx are the 'extended' int and 'extended' unsigned int types; // they are 32bit wide on a 32-bit platform, and 64bit wide on a 64bit platform. typedef intptr_t intx; typedef uintptr_t uintx; const intx min_intx = (intx)1 << (sizeof(intx)*BitsPerByte-1); const intx max_intx = (uintx)min_intx - 1; const uintx max_uintx = (uintx)-1; // Table of values: // sizeof intx 4 8 // min_intx 0x80000000 0x8000000000000000 // max_intx 0x7FFFFFFF 0x7FFFFFFFFFFFFFFF // max_uintx 0xFFFFFFFF 0xFFFFFFFFFFFFFFFF typedef unsigned int uint; NEEDS_CLEANUP //---------------------------------------------------------------------------------------------------- // Java type definitions // All kinds of 'plain' byte addresses typedef signed char s_char; typedef unsigned char u_char; typedef u_char* address; typedef uintptr_t address_word; // unsigned integer which will hold a pointer // except for some implementations of a C++ // linkage pointer to function. Should never // need one of those to be placed in this // type anyway. // Utility functions to "portably" (?) bit twiddle pointers // Where portable means keep ANSI C++ compilers quiet inline address set_address_bits(address x, int m) { return address(intptr_t(x) | m); } inline address clear_address_bits(address x, int m) { return address(intptr_t(x) & ~m); } // Utility functions to "portably" make cast to/from function pointers. inline address_word mask_address_bits(address x, int m) { return address_word(x) & m; } inline address_word castable_address(address x) { return address_word(x) ; } inline address_word castable_address(void* x) { return address_word(x) ; } // Pointer subtraction. // The idea here is to avoid ptrdiff_t, which is signed and so doesn't have // the range we might need to find differences from one end of the heap // to the other. // A typical use might be: // if (pointer_delta(end(), top()) >= size) { // // enough room for an object of size // ... // and then additions like // ... top() + size ... // are safe because we know that top() is at least size below end(). inline size_t pointer_delta(const volatile void* left, const volatile void* right, size_t element_size) { return (((uintptr_t) left) - ((uintptr_t) right)) / element_size; } // A version specialized for HeapWord*'s. inline size_t pointer_delta(const HeapWord* left, const HeapWord* right) { return pointer_delta(left, right, sizeof(HeapWord)); } // A version specialized for MetaWord*'s. inline size_t pointer_delta(const MetaWord* left, const MetaWord* right) { return pointer_delta(left, right, sizeof(MetaWord)); } // // ANSI C++ does not allow casting from one pointer type to a function pointer // directly without at best a warning. This macro accomplishes it silently // In every case that is present at this point the value be cast is a pointer // to a C linkage function. In some case the type used for the cast reflects // that linkage and a picky compiler would not complain. In other cases because // there is no convenient place to place a typedef with extern C linkage (i.e // a platform dependent header file) it doesn't. At this point no compiler seems // picky enough to catch these instances (which are few). It is possible that // using templates could fix these for all cases. This use of templates is likely // so far from the middle of the road that it is likely to be problematic in // many C++ compilers. // #define CAST_TO_FN_PTR(func_type, value) (reinterpret_cast(value)) #define CAST_FROM_FN_PTR(new_type, func_ptr) ((new_type)((address_word)(func_ptr))) // Unsigned byte types for os and stream.hpp // Unsigned one, two, four and eigth byte quantities used for describing // the .class file format. See JVM book chapter 4. typedef jubyte u1; typedef jushort u2; typedef juint u4; typedef julong u8; const jubyte max_jubyte = (jubyte)-1; // 0xFF largest jubyte const jushort max_jushort = (jushort)-1; // 0xFFFF largest jushort const juint max_juint = (juint)-1; // 0xFFFFFFFF largest juint const julong max_julong = (julong)-1; // 0xFF....FF largest julong typedef jbyte s1; typedef jshort s2; typedef jint s4; typedef jlong s8; const jbyte min_jbyte = -(1 << 7); // smallest jbyte const jbyte max_jbyte = (1 << 7) - 1; // largest jbyte const jshort min_jshort = -(1 << 15); // smallest jshort const jshort max_jshort = (1 << 15) - 1; // largest jshort const jint min_jint = (jint)1 << (sizeof(jint)*BitsPerByte-1); // 0x80000000 == smallest jint const jint max_jint = (juint)min_jint - 1; // 0x7FFFFFFF == largest jint //---------------------------------------------------------------------------------------------------- // JVM spec restrictions const int max_method_code_size = 64*K - 1; // JVM spec, 2nd ed. section 4.8.1 (p.134) //---------------------------------------------------------------------------------------------------- // Default and minimum StringTable and SymbolTable size values // Must be a power of 2 const size_t defaultStringTableSize = NOT_LP64(1024) LP64_ONLY(65536); const size_t minimumStringTableSize = 128; const size_t defaultSymbolTableSize = 32768; // 2^15 const size_t minimumSymbolTableSize = 1024; //---------------------------------------------------------------------------------------------------- // Object alignment, in units of HeapWords. // // Minimum is max(BytesPerLong, BytesPerDouble, BytesPerOop) / HeapWordSize, so jlong, jdouble and // reference fields can be naturally aligned. extern int MinObjAlignment; extern int MinObjAlignmentInBytes; extern int MinObjAlignmentInBytesMask; extern int LogMinObjAlignment; extern int LogMinObjAlignmentInBytes; const int LogKlassAlignmentInBytes = 3; const int LogKlassAlignment = LogKlassAlignmentInBytes - LogHeapWordSize; const int KlassAlignmentInBytes = 1 << LogKlassAlignmentInBytes; const int KlassAlignment = KlassAlignmentInBytes / HeapWordSize; // Maximal size of heap where unscaled compression can be used. Also upper bound // for heap placement: 4GB. const uint64_t UnscaledOopHeapMax = (uint64_t(max_juint) + 1); // Maximal size of heap where compressed oops can be used. Also upper bound for heap // placement for zero based compression algorithm: UnscaledOopHeapMax << LogMinObjAlignmentInBytes. extern uint64_t OopEncodingHeapMax; // Maximal size of compressed class space. Above this limit compression is not possible. // Also upper bound for placement of zero based class space. (Class space is further limited // to be < 3G, see arguments.cpp.) const uint64_t KlassEncodingMetaspaceMax = (uint64_t(max_juint) + 1) << LogKlassAlignmentInBytes; // Machine dependent stuff // The maximum size of the code cache. Can be overridden by targets. #define CODE_CACHE_SIZE_LIMIT (2*G) // Allow targets to reduce the default size of the code cache. #define CODE_CACHE_DEFAULT_LIMIT CODE_CACHE_SIZE_LIMIT #include CPU_HEADER(globalDefinitions) // To assure the IRIW property on processors that are not multiple copy // atomic, sync instructions must be issued between volatile reads to // assure their ordering, instead of after volatile stores. // (See "A Tutorial Introduction to the ARM and POWER Relaxed Memory Models" // by Luc Maranget, Susmit Sarkar and Peter Sewell, INRIA/Cambridge) #ifdef CPU_NOT_MULTIPLE_COPY_ATOMIC const bool support_IRIW_for_not_multiple_copy_atomic_cpu = true; #else const bool support_IRIW_for_not_multiple_copy_atomic_cpu = false; #endif // The expected size in bytes of a cache line, used to pad data structures. #ifndef DEFAULT_CACHE_LINE_SIZE #define DEFAULT_CACHE_LINE_SIZE 64 #endif //---------------------------------------------------------------------------------------------------- // Utility macros for compilers // used to silence compiler warnings #define Unused_Variable(var) var //---------------------------------------------------------------------------------------------------- // Miscellaneous // 6302670 Eliminate Hotspot __fabsf dependency // All fabs() callers should call this function instead, which will implicitly // convert the operand to double, avoiding a dependency on __fabsf which // doesn't exist in early versions of Solaris 8. inline double fabsd(double value) { return fabs(value); } // Returns numerator/denominator as percentage value from 0 to 100. If denominator // is zero, return 0.0. template inline double percent_of(T numerator, T denominator) { return denominator != 0 ? (double)numerator / denominator * 100.0 : 0.0; } //---------------------------------------------------------------------------------------------------- // Special casts // Cast floats into same-size integers and vice-versa w/o changing bit-pattern typedef union { jfloat f; jint i; } FloatIntConv; typedef union { jdouble d; jlong l; julong ul; } DoubleLongConv; inline jint jint_cast (jfloat x) { return ((FloatIntConv*)&x)->i; } inline jfloat jfloat_cast (jint x) { return ((FloatIntConv*)&x)->f; } inline jlong jlong_cast (jdouble x) { return ((DoubleLongConv*)&x)->l; } inline julong julong_cast (jdouble x) { return ((DoubleLongConv*)&x)->ul; } inline jdouble jdouble_cast (jlong x) { return ((DoubleLongConv*)&x)->d; } inline jint low (jlong value) { return jint(value); } inline jint high(jlong value) { return jint(value >> 32); } // the fancy casts are a hopefully portable way // to do unsigned 32 to 64 bit type conversion inline void set_low (jlong* value, jint low ) { *value &= (jlong)0xffffffff << 32; *value |= (jlong)(julong)(juint)low; } inline void set_high(jlong* value, jint high) { *value &= (jlong)(julong)(juint)0xffffffff; *value |= (jlong)high << 32; } inline jlong jlong_from(jint h, jint l) { jlong result = 0; // initialization to avoid warning set_high(&result, h); set_low(&result, l); return result; } union jlong_accessor { jint words[2]; jlong long_value; }; void basic_types_init(); // cannot define here; uses assert // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java enum BasicType { T_BOOLEAN = 4, T_CHAR = 5, T_FLOAT = 6, T_DOUBLE = 7, T_BYTE = 8, T_SHORT = 9, T_INT = 10, T_LONG = 11, T_OBJECT = 12, T_ARRAY = 13, T_VOID = 14, T_ADDRESS = 15, T_NARROWOOP = 16, T_METADATA = 17, T_NARROWKLASS = 18, T_CONFLICT = 19, // for stack value type with conflicting contents T_ILLEGAL = 99 }; inline bool is_java_primitive(BasicType t) { return T_BOOLEAN <= t && t <= T_LONG; } inline bool is_subword_type(BasicType t) { // these guys are processed exactly like T_INT in calling sequences: return (t == T_BOOLEAN || t == T_CHAR || t == T_BYTE || t == T_SHORT); } inline bool is_signed_subword_type(BasicType t) { return (t == T_BYTE || t == T_SHORT); } inline bool is_reference_type(BasicType t) { return (t == T_OBJECT || t == T_ARRAY); } // Convert a char from a classfile signature to a BasicType inline BasicType char2type(char c) { switch( c ) { case 'B': return T_BYTE; case 'C': return T_CHAR; case 'D': return T_DOUBLE; case 'F': return T_FLOAT; case 'I': return T_INT; case 'J': return T_LONG; case 'S': return T_SHORT; case 'Z': return T_BOOLEAN; case 'V': return T_VOID; case 'L': return T_OBJECT; case '[': return T_ARRAY; } return T_ILLEGAL; } extern char type2char_tab[T_CONFLICT+1]; // Map a BasicType to a jchar inline char type2char(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2char_tab[t] : 0; } extern int type2size[T_CONFLICT+1]; // Map BasicType to result stack elements extern const char* type2name_tab[T_CONFLICT+1]; // Map a BasicType to a jchar inline const char* type2name(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2name_tab[t] : NULL; } extern BasicType name2type(const char* name); // Auxiliary math routines // least common multiple extern size_t lcm(size_t a, size_t b); // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java enum BasicTypeSize { T_BOOLEAN_size = 1, T_CHAR_size = 1, T_FLOAT_size = 1, T_DOUBLE_size = 2, T_BYTE_size = 1, T_SHORT_size = 1, T_INT_size = 1, T_LONG_size = 2, T_OBJECT_size = 1, T_ARRAY_size = 1, T_NARROWOOP_size = 1, T_NARROWKLASS_size = 1, T_VOID_size = 0 }; // maps a BasicType to its instance field storage type: // all sub-word integral types are widened to T_INT extern BasicType type2field[T_CONFLICT+1]; extern BasicType type2wfield[T_CONFLICT+1]; // size in bytes enum ArrayElementSize { T_BOOLEAN_aelem_bytes = 1, T_CHAR_aelem_bytes = 2, T_FLOAT_aelem_bytes = 4, T_DOUBLE_aelem_bytes = 8, T_BYTE_aelem_bytes = 1, T_SHORT_aelem_bytes = 2, T_INT_aelem_bytes = 4, T_LONG_aelem_bytes = 8, #ifdef _LP64 T_OBJECT_aelem_bytes = 8, T_ARRAY_aelem_bytes = 8, #else T_OBJECT_aelem_bytes = 4, T_ARRAY_aelem_bytes = 4, #endif T_NARROWOOP_aelem_bytes = 4, T_NARROWKLASS_aelem_bytes = 4, T_VOID_aelem_bytes = 0 }; extern int _type2aelembytes[T_CONFLICT+1]; // maps a BasicType to nof bytes used by its array element #ifdef ASSERT extern int type2aelembytes(BasicType t, bool allow_address = false); // asserts #else inline int type2aelembytes(BasicType t, bool allow_address = false) { return _type2aelembytes[t]; } #endif // JavaValue serves as a container for arbitrary Java values. class JavaValue { public: typedef union JavaCallValue { jfloat f; jdouble d; jint i; jlong l; jobject h; } JavaCallValue; private: BasicType _type; JavaCallValue _value; public: JavaValue(BasicType t = T_ILLEGAL) { _type = t; } JavaValue(jfloat value) { _type = T_FLOAT; _value.f = value; } JavaValue(jdouble value) { _type = T_DOUBLE; _value.d = value; } jfloat get_jfloat() const { return _value.f; } jdouble get_jdouble() const { return _value.d; } jint get_jint() const { return _value.i; } jlong get_jlong() const { return _value.l; } jobject get_jobject() const { return _value.h; } JavaCallValue* get_value_addr() { return &_value; } BasicType get_type() const { return _type; } void set_jfloat(jfloat f) { _value.f = f;} void set_jdouble(jdouble d) { _value.d = d;} void set_jint(jint i) { _value.i = i;} void set_jlong(jlong l) { _value.l = l;} void set_jobject(jobject h) { _value.h = h;} void set_type(BasicType t) { _type = t; } jboolean get_jboolean() const { return (jboolean) (_value.i);} jbyte get_jbyte() const { return (jbyte) (_value.i);} jchar get_jchar() const { return (jchar) (_value.i);} jshort get_jshort() const { return (jshort) (_value.i);} }; #define STACK_BIAS 0 // V9 Sparc CPU's running in 64 Bit mode use a stack bias of 7ff // in order to extend the reach of the stack pointer. #if defined(SPARC) && defined(_LP64) #undef STACK_BIAS #define STACK_BIAS 0x7ff #endif // TosState describes the top-of-stack state before and after the execution of // a bytecode or method. The top-of-stack value may be cached in one or more CPU // registers. The TosState corresponds to the 'machine representation' of this cached // value. There's 4 states corresponding to the JAVA types int, long, float & double // as well as a 5th state in case the top-of-stack value is actually on the top // of stack (in memory) and thus not cached. The atos state corresponds to the itos // state when it comes to machine representation but is used separately for (oop) // type specific operations (e.g. verification code). enum TosState { // describes the tos cache contents btos = 0, // byte, bool tos cached ztos = 1, // byte, bool tos cached ctos = 2, // char tos cached stos = 3, // short tos cached itos = 4, // int tos cached ltos = 5, // long tos cached ftos = 6, // float tos cached dtos = 7, // double tos cached atos = 8, // object cached vtos = 9, // tos not cached number_of_states, ilgl // illegal state: should not occur }; inline TosState as_TosState(BasicType type) { switch (type) { case T_BYTE : return btos; case T_BOOLEAN: return ztos; case T_CHAR : return ctos; case T_SHORT : return stos; case T_INT : return itos; case T_LONG : return ltos; case T_FLOAT : return ftos; case T_DOUBLE : return dtos; case T_VOID : return vtos; case T_ARRAY : // fall through case T_OBJECT : return atos; default : return ilgl; } } inline BasicType as_BasicType(TosState state) { switch (state) { case btos : return T_BYTE; case ztos : return T_BOOLEAN; case ctos : return T_CHAR; case stos : return T_SHORT; case itos : return T_INT; case ltos : return T_LONG; case ftos : return T_FLOAT; case dtos : return T_DOUBLE; case atos : return T_OBJECT; case vtos : return T_VOID; default : return T_ILLEGAL; } } // Helper function to convert BasicType info into TosState // Note: Cannot define here as it uses global constant at the time being. TosState as_TosState(BasicType type); // JavaThreadState keeps track of which part of the code a thread is executing in. This // information is needed by the safepoint code. // // There are 4 essential states: // // _thread_new : Just started, but not executed init. code yet (most likely still in OS init code) // _thread_in_native : In native code. This is a safepoint region, since all oops will be in jobject handles // _thread_in_vm : Executing in the vm // _thread_in_Java : Executing either interpreted or compiled Java code (or could be in a stub) // // Each state has an associated xxxx_trans state, which is an intermediate state used when a thread is in // a transition from one state to another. These extra states makes it possible for the safepoint code to // handle certain thread_states without having to suspend the thread - making the safepoint code faster. // // Given a state, the xxxx_trans state can always be found by adding 1. // enum JavaThreadState { _thread_uninitialized = 0, // should never happen (missing initialization) _thread_new = 2, // just starting up, i.e., in process of being initialized _thread_new_trans = 3, // corresponding transition state (not used, included for completness) _thread_in_native = 4, // running in native code _thread_in_native_trans = 5, // corresponding transition state _thread_in_vm = 6, // running in VM _thread_in_vm_trans = 7, // corresponding transition state _thread_in_Java = 8, // running in Java or in stub code _thread_in_Java_trans = 9, // corresponding transition state (not used, included for completness) _thread_blocked = 10, // blocked in vm _thread_blocked_trans = 11, // corresponding transition state _thread_max_state = 12 // maximum thread state+1 - used for statistics allocation }; //---------------------------------------------------------------------------------------------------- // 'Forward' declarations of frequently used classes // (in order to reduce interface dependencies & reduce // number of unnecessary compilations after changes) class ClassFileStream; class Event; class Thread; class VMThread; class JavaThread; class Threads; class VM_Operation; class VMOperationQueue; class CodeBlob; class CompiledMethod; class nmethod; class RuntimeBlob; class OSRAdapter; class I2CAdapter; class C2IAdapter; class CompiledIC; class relocInfo; class ScopeDesc; class PcDesc; class Recompiler; class Recompilee; class RecompilationPolicy; class RFrame; class CompiledRFrame; class InterpretedRFrame; class vframe; class javaVFrame; class interpretedVFrame; class compiledVFrame; class deoptimizedVFrame; class externalVFrame; class entryVFrame; class RegisterMap; class Mutex; class Monitor; class BasicLock; class BasicObjectLock; class PeriodicTask; class JavaCallWrapper; class oopDesc; class metaDataOopDesc; class NativeCall; class zone; class StubQueue; class outputStream; class ResourceArea; class DebugInformationRecorder; class ScopeValue; class CompressedStream; class DebugInfoReadStream; class DebugInfoWriteStream; class LocationValue; class ConstantValue; class IllegalValue; class MonitorArray; class MonitorInfo; class OffsetClosure; class OopMapCache; class InterpreterOopMap; class OopMapCacheEntry; class OSThread; typedef int (*OSThreadStartFunc)(void*); class Space; class JavaValue; class methodHandle; class JavaCallArguments; //---------------------------------------------------------------------------------------------------- // Special constants for debugging const jint badInt = -3; // generic "bad int" value const intptr_t badAddressVal = -2; // generic "bad address" value const intptr_t badOopVal = -1; // generic "bad oop" value const intptr_t badHeapOopVal = (intptr_t) CONST64(0x2BAD4B0BBAADBABE); // value used to zap heap after GC const int badStackSegVal = 0xCA; // value used to zap stack segments const int badHandleValue = 0xBC; // value used to zap vm handle area const int badResourceValue = 0xAB; // value used to zap resource area const int freeBlockPad = 0xBA; // value used to pad freed blocks. const int uninitBlockPad = 0xF1; // value used to zap newly malloc'd blocks. const juint uninitMetaWordVal= 0xf7f7f7f7; // value used to zap newly allocated metachunk const juint badHeapWordVal = 0xBAADBABE; // value used to zap heap after GC const juint badMetaWordVal = 0xBAADFADE; // value used to zap metadata heap after GC const int badCodeHeapNewVal= 0xCC; // value used to zap Code heap at allocation const int badCodeHeapFreeVal = 0xDD; // value used to zap Code heap at deallocation // (These must be implemented as #defines because C++ compilers are // not obligated to inline non-integral constants!) #define badAddress ((address)::badAddressVal) #define badOop (cast_to_oop(::badOopVal)) #define badHeapWord (::badHeapWordVal) // Default TaskQueue size is 16K (32-bit) or 128K (64-bit) #define TASKQUEUE_SIZE (NOT_LP64(1<<14) LP64_ONLY(1<<17)) //---------------------------------------------------------------------------------------------------- // Utility functions for bitfield manipulations const intptr_t AllBits = ~0; // all bits set in a word const intptr_t NoBits = 0; // no bits set in a word const jlong NoLongBits = 0; // no bits set in a long const intptr_t OneBit = 1; // only right_most bit set in a word // get a word with the n.th or the right-most or left-most n bits set // (note: #define used only so that they can be used in enum constant definitions) #define nth_bit(n) (((n) >= BitsPerWord) ? 0 : (OneBit << (n))) #define right_n_bits(n) (nth_bit(n) - 1) #define left_n_bits(n) (right_n_bits(n) << (((n) >= BitsPerWord) ? 0 : (BitsPerWord - (n)))) // bit-operations using a mask m inline void set_bits (intptr_t& x, intptr_t m) { x |= m; } inline void clear_bits (intptr_t& x, intptr_t m) { x &= ~m; } inline intptr_t mask_bits (intptr_t x, intptr_t m) { return x & m; } inline jlong mask_long_bits (jlong x, jlong m) { return x & m; } inline bool mask_bits_are_true (intptr_t flags, intptr_t mask) { return (flags & mask) == mask; } // bit-operations using the n.th bit inline void set_nth_bit(intptr_t& x, int n) { set_bits (x, nth_bit(n)); } inline void clear_nth_bit(intptr_t& x, int n) { clear_bits(x, nth_bit(n)); } inline bool is_set_nth_bit(intptr_t x, int n) { return mask_bits (x, nth_bit(n)) != NoBits; } // returns the bitfield of x starting at start_bit_no with length field_length (no sign-extension!) inline intptr_t bitfield(intptr_t x, int start_bit_no, int field_length) { return mask_bits(x >> start_bit_no, right_n_bits(field_length)); } //---------------------------------------------------------------------------------------------------- // Utility functions for integers // Avoid use of global min/max macros which may cause unwanted double // evaluation of arguments. #ifdef max #undef max #endif #ifdef min #undef min #endif // It is necessary to use templates here. Having normal overloaded // functions does not work because it is necessary to provide both 32- // and 64-bit overloaded functions, which does not work, and having // explicitly-typed versions of these routines (i.e., MAX2I, MAX2L) // will be even more error-prone than macros. template inline T MAX2(T a, T b) { return (a > b) ? a : b; } template inline T MIN2(T a, T b) { return (a < b) ? a : b; } template inline T MAX3(T a, T b, T c) { return MAX2(MAX2(a, b), c); } template inline T MIN3(T a, T b, T c) { return MIN2(MIN2(a, b), c); } template inline T MAX4(T a, T b, T c, T d) { return MAX2(MAX3(a, b, c), d); } template inline T MIN4(T a, T b, T c, T d) { return MIN2(MIN3(a, b, c), d); } template inline T ABS(T x) { return (x > 0) ? x : -x; } // true if x is a power of 2, false otherwise inline bool is_power_of_2(intptr_t x) { return ((x != NoBits) && (mask_bits(x, x - 1) == NoBits)); } // long version of is_power_of_2 inline bool is_power_of_2_long(jlong x) { return ((x != NoLongBits) && (mask_long_bits(x, x - 1) == NoLongBits)); } // Returns largest i such that 2^i <= x. // If x == 0, the function returns -1. inline int log2_intptr(uintptr_t x) { int i = -1; uintptr_t p = 1; while (p != 0 && p <= x) { // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x) i++; p *= 2; } // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1)) // If p = 0, overflow has occurred and i = 31 or i = 63 (depending on the machine word size). return i; } //* largest i such that 2^i <= x inline int log2_long(julong x) { int i = -1; julong p = 1; while (p != 0 && p <= x) { // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x) i++; p *= 2; } // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1)) // (if p = 0 then overflow occurred and i = 63) return i; } // If x < 0, the function returns 31 on a 32-bit machine and 63 on a 64-bit machine. inline int log2_intptr(intptr_t x) { return log2_intptr((uintptr_t)x); } inline int log2_int(int x) { STATIC_ASSERT(sizeof(int) <= sizeof(uintptr_t)); return log2_intptr((uintptr_t)x); } inline int log2_jint(jint x) { STATIC_ASSERT(sizeof(jint) <= sizeof(uintptr_t)); return log2_intptr((uintptr_t)x); } inline int log2_uint(uint x) { STATIC_ASSERT(sizeof(uint) <= sizeof(uintptr_t)); return log2_intptr((uintptr_t)x); } // A negative value of 'x' will return '63' inline int log2_jlong(jlong x) { STATIC_ASSERT(sizeof(jlong) <= sizeof(julong)); return log2_long((julong)x); } //* the argument must be exactly a power of 2 inline int exact_log2(intptr_t x) { assert(is_power_of_2(x), "x must be a power of 2: " INTPTR_FORMAT, x); return log2_intptr(x); } //* the argument must be exactly a power of 2 inline int exact_log2_long(jlong x) { assert(is_power_of_2_long(x), "x must be a power of 2: " JLONG_FORMAT, x); return log2_long(x); } inline bool is_odd (intx x) { return x & 1; } inline bool is_even(intx x) { return !is_odd(x); } // abs methods which cannot overflow and so are well-defined across // the entire domain of integer types. static inline unsigned int uabs(unsigned int n) { union { unsigned int result; int value; }; result = n; if (value < 0) result = 0-result; return result; } static inline julong uabs(julong n) { union { julong result; jlong value; }; result = n; if (value < 0) result = 0-result; return result; } static inline julong uabs(jlong n) { return uabs((julong)n); } static inline unsigned int uabs(int n) { return uabs((unsigned int)n); } // "to" should be greater than "from." inline intx byte_size(void* from, void* to) { return (address)to - (address)from; } //---------------------------------------------------------------------------------------------------- // Avoid non-portable casts with these routines (DEPRECATED) // NOTE: USE Bytes class INSTEAD WHERE POSSIBLE // Bytes is optimized machine-specifically and may be much faster then the portable routines below. // Given sequence of four bytes, build into a 32-bit word // following the conventions used in class files. // On the 386, this could be realized with a simple address cast. // // This routine takes eight bytes: inline u8 build_u8_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) { return (( u8(c1) << 56 ) & ( u8(0xff) << 56 )) | (( u8(c2) << 48 ) & ( u8(0xff) << 48 )) | (( u8(c3) << 40 ) & ( u8(0xff) << 40 )) | (( u8(c4) << 32 ) & ( u8(0xff) << 32 )) | (( u8(c5) << 24 ) & ( u8(0xff) << 24 )) | (( u8(c6) << 16 ) & ( u8(0xff) << 16 )) | (( u8(c7) << 8 ) & ( u8(0xff) << 8 )) | (( u8(c8) << 0 ) & ( u8(0xff) << 0 )); } // This routine takes four bytes: inline u4 build_u4_from( u1 c1, u1 c2, u1 c3, u1 c4 ) { return (( u4(c1) << 24 ) & 0xff000000) | (( u4(c2) << 16 ) & 0x00ff0000) | (( u4(c3) << 8 ) & 0x0000ff00) | (( u4(c4) << 0 ) & 0x000000ff); } // And this one works if the four bytes are contiguous in memory: inline u4 build_u4_from( u1* p ) { return build_u4_from( p[0], p[1], p[2], p[3] ); } // Ditto for two-byte ints: inline u2 build_u2_from( u1 c1, u1 c2 ) { return u2((( u2(c1) << 8 ) & 0xff00) | (( u2(c2) << 0 ) & 0x00ff)); } // And this one works if the two bytes are contiguous in memory: inline u2 build_u2_from( u1* p ) { return build_u2_from( p[0], p[1] ); } // Ditto for floats: inline jfloat build_float_from( u1 c1, u1 c2, u1 c3, u1 c4 ) { u4 u = build_u4_from( c1, c2, c3, c4 ); return *(jfloat*)&u; } inline jfloat build_float_from( u1* p ) { u4 u = build_u4_from( p ); return *(jfloat*)&u; } // now (64-bit) longs inline jlong build_long_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) { return (( jlong(c1) << 56 ) & ( jlong(0xff) << 56 )) | (( jlong(c2) << 48 ) & ( jlong(0xff) << 48 )) | (( jlong(c3) << 40 ) & ( jlong(0xff) << 40 )) | (( jlong(c4) << 32 ) & ( jlong(0xff) << 32 )) | (( jlong(c5) << 24 ) & ( jlong(0xff) << 24 )) | (( jlong(c6) << 16 ) & ( jlong(0xff) << 16 )) | (( jlong(c7) << 8 ) & ( jlong(0xff) << 8 )) | (( jlong(c8) << 0 ) & ( jlong(0xff) << 0 )); } inline jlong build_long_from( u1* p ) { return build_long_from( p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7] ); } // Doubles, too! inline jdouble build_double_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) { jlong u = build_long_from( c1, c2, c3, c4, c5, c6, c7, c8 ); return *(jdouble*)&u; } inline jdouble build_double_from( u1* p ) { jlong u = build_long_from( p ); return *(jdouble*)&u; } // Portable routines to go the other way: inline void explode_short_to( u2 x, u1& c1, u1& c2 ) { c1 = u1(x >> 8); c2 = u1(x); } inline void explode_short_to( u2 x, u1* p ) { explode_short_to( x, p[0], p[1]); } inline void explode_int_to( u4 x, u1& c1, u1& c2, u1& c3, u1& c4 ) { c1 = u1(x >> 24); c2 = u1(x >> 16); c3 = u1(x >> 8); c4 = u1(x); } inline void explode_int_to( u4 x, u1* p ) { explode_int_to( x, p[0], p[1], p[2], p[3]); } // Pack and extract shorts to/from ints: inline int extract_low_short_from_int(jint x) { return x & 0xffff; } inline int extract_high_short_from_int(jint x) { return (x >> 16) & 0xffff; } inline int build_int_from_shorts( jushort low, jushort high ) { return ((int)((unsigned int)high << 16) | (unsigned int)low); } // Convert pointer to intptr_t, for use in printing pointers. inline intptr_t p2i(const void * p) { return (intptr_t) p; } // swap a & b template static void swap(T& a, T& b) { T tmp = a; a = b; b = tmp; } #define ARRAY_SIZE(array) (sizeof(array)/sizeof((array)[0])) //---------------------------------------------------------------------------------------------------- // Sum and product which can never overflow: they wrap, just like the // Java operations. Note that we don't intend these to be used for // general-purpose arithmetic: their purpose is to emulate Java // operations. // The goal of this code to avoid undefined or implementation-defined // behavior. The use of an lvalue to reference cast is explicitly // permitted by Lvalues and rvalues [basic.lval]. [Section 3.10 Para // 15 in C++03] #define JAVA_INTEGER_OP(OP, NAME, TYPE, UNSIGNED_TYPE) \ inline TYPE NAME (TYPE in1, TYPE in2) { \ UNSIGNED_TYPE ures = static_cast(in1); \ ures OP ## = static_cast(in2); \ return reinterpret_cast(ures); \ } JAVA_INTEGER_OP(+, java_add, jint, juint) JAVA_INTEGER_OP(-, java_subtract, jint, juint) JAVA_INTEGER_OP(*, java_multiply, jint, juint) JAVA_INTEGER_OP(+, java_add, jlong, julong) JAVA_INTEGER_OP(-, java_subtract, jlong, julong) JAVA_INTEGER_OP(*, java_multiply, jlong, julong) #undef JAVA_INTEGER_OP // Dereference vptr // All C++ compilers that we know of have the vtbl pointer in the first // word. If there are exceptions, this function needs to be made compiler // specific. static inline void* dereference_vptr(const void* addr) { return *(void**)addr; } //---------------------------------------------------------------------------------------------------- // String type aliases used by command line flag declarations and // processing utilities. typedef const char* ccstr; typedef const char* ccstrlist; // represents string arguments which accumulate //---------------------------------------------------------------------------------------------------- // Default hash/equals functions used by ResourceHashtable and KVHashtable template unsigned primitive_hash(const K& k) { unsigned hash = (unsigned)((uintptr_t)k); return hash ^ (hash >> 3); // just in case we're dealing with aligned ptrs } template bool primitive_equals(const K& k0, const K& k1) { return k0 == k1; } #endif // SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP