/* * Copyright (c) 2016, 2021, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ #include "precompiled.hpp" #include "memory/allocation.hpp" #include "memory/resourceArea.hpp" #include "runtime/os.hpp" #include "runtime/thread.hpp" #include "services/memTracker.hpp" #include "utilities/globalDefinitions.hpp" #include "utilities/macros.hpp" #include "utilities/ostream.hpp" #include "utilities/align.hpp" #include "unittest.hpp" #include "runtime/frame.inline.hpp" static size_t small_page_size() { return os::vm_page_size(); } static size_t large_page_size() { const size_t large_page_size_example = 4 * M; return os::page_size_for_region_aligned(large_page_size_example, 1); } TEST_VM(os, page_size_for_region) { size_t large_page_example = 4 * M; size_t large_page = os::page_size_for_region_aligned(large_page_example, 1); size_t small_page = os::vm_page_size(); if (large_page > small_page) { size_t num_small_in_large = large_page / small_page; size_t page = os::page_size_for_region_aligned(large_page, num_small_in_large); ASSERT_EQ(page, small_page) << "Did not get a small page"; } } TEST_VM(os, page_size_for_region_aligned) { if (UseLargePages) { const size_t small_page = small_page_size(); const size_t large_page = large_page_size(); if (large_page > small_page) { size_t num_small_pages_in_large = large_page / small_page; size_t page = os::page_size_for_region_aligned(large_page, num_small_pages_in_large); ASSERT_EQ(page, small_page); } } } TEST_VM(os, page_size_for_region_alignment) { if (UseLargePages) { const size_t small_page = small_page_size(); const size_t large_page = large_page_size(); if (large_page > small_page) { const size_t unaligned_region = large_page + 17; size_t page = os::page_size_for_region_aligned(unaligned_region, 1); ASSERT_EQ(page, small_page); const size_t num_pages = 5; const size_t aligned_region = large_page * num_pages; page = os::page_size_for_region_aligned(aligned_region, num_pages); ASSERT_EQ(page, large_page); } } } TEST_VM(os, page_size_for_region_unaligned) { if (UseLargePages) { // Given exact page size, should return that page size. for (size_t s = os::page_sizes().largest(); s != 0; s = os::page_sizes().next_smaller(s)) { size_t actual = os::page_size_for_region_unaligned(s, 1); ASSERT_EQ(s, actual); } // Given slightly larger size than a page size, return the page size. for (size_t s = os::page_sizes().largest(); s != 0; s = os::page_sizes().next_smaller(s)) { size_t actual = os::page_size_for_region_unaligned(s + 17, 1); ASSERT_EQ(s, actual); } // Given a slightly smaller size than a page size, // return the next smaller page size. for (size_t s = os::page_sizes().largest(); s != 0; s = os::page_sizes().next_smaller(s)) { const size_t expected = os::page_sizes().next_smaller(s); if (expected != 0) { size_t actual = os::page_size_for_region_unaligned(s - 17, 1); ASSERT_EQ(actual, expected); } } // Return small page size for values less than a small page. size_t small_page = os::page_sizes().smallest(); size_t actual = os::page_size_for_region_unaligned(small_page - 17, 1); ASSERT_EQ(small_page, actual); } } TEST(os, test_random) { const double m = 2147483647; double mean = 0.0, variance = 0.0, t; const int reps = 10000; unsigned int seed = 1; // tty->print_cr("seed %ld for %ld repeats...", seed, reps); int num; for (int k = 0; k < reps; k++) { // Use next_random so the calculation is stateless. num = seed = os::next_random(seed); double u = (double)num / m; ASSERT_TRUE(u >= 0.0 && u <= 1.0) << "bad random number!"; // calculate mean and variance of the random sequence mean += u; variance += (u*u); } mean /= reps; variance /= (reps - 1); ASSERT_EQ(num, 1043618065) << "bad seed"; // tty->print_cr("mean of the 1st 10000 numbers: %f", mean); int intmean = mean*100; ASSERT_EQ(intmean, 50); // tty->print_cr("variance of the 1st 10000 numbers: %f", variance); int intvariance = variance*100; ASSERT_EQ(intvariance, 33); const double eps = 0.0001; t = fabsd(mean - 0.5018); ASSERT_LT(t, eps) << "bad mean"; t = (variance - 0.3355) < 0.0 ? -(variance - 0.3355) : variance - 0.3355; ASSERT_LT(t, eps) << "bad variance"; } #ifdef ASSERT TEST_VM_ASSERT_MSG(os, page_size_for_region_with_zero_min_pages, "assert.min_pages > 0. failed: sanity") { size_t region_size = 16 * os::vm_page_size(); os::page_size_for_region_aligned(region_size, 0); // should assert } #endif static void do_test_print_hex_dump(address addr, size_t len, int unitsize, const char* expected) { char buf[256]; buf[0] = '\0'; stringStream ss(buf, sizeof(buf)); os::print_hex_dump(&ss, addr, addr + len, unitsize); // tty->print_cr("expected: %s", expected); // tty->print_cr("result: %s", buf); ASSERT_NE(strstr(buf, expected), (char*)NULL); } TEST_VM(os, test_print_hex_dump) { const char* pattern [4] = { #ifdef VM_LITTLE_ENDIAN "00 01 02 03 04 05 06 07", "0100 0302 0504 0706", "03020100 07060504", "0706050403020100" #else "00 01 02 03 04 05 06 07", "0001 0203 0405 0607", "00010203 04050607", "0001020304050607" #endif }; const char* pattern_not_readable [4] = { "?? ?? ?? ?? ?? ?? ?? ??", "???? ???? ???? ????", "???????? ????????", "????????????????" }; // On AIX, zero page is readable. address unreadable = #ifdef AIX (address) 0xFFFFFFFFFFFF0000ULL; #else (address) 0 #endif ; ResourceMark rm; char buf[64]; stringStream ss(buf, sizeof(buf)); outputStream* out = &ss; // outputStream* out = tty; // enable for printout // Test dumping unreadable memory // Exclude test for Windows for now, since it needs SEH handling to work which cannot be // guaranteed when we call directly into VM code. (see JDK-8220220) #ifndef _WIN32 do_test_print_hex_dump(unreadable, 100, 1, pattern_not_readable[0]); do_test_print_hex_dump(unreadable, 100, 2, pattern_not_readable[1]); do_test_print_hex_dump(unreadable, 100, 4, pattern_not_readable[2]); do_test_print_hex_dump(unreadable, 100, 8, pattern_not_readable[3]); #endif // Test dumping readable memory address arr = (address)os::malloc(100, mtInternal); for (int c = 0; c < 100; c++) { arr[c] = c; } // properly aligned do_test_print_hex_dump(arr, 100, 1, pattern[0]); do_test_print_hex_dump(arr, 100, 2, pattern[1]); do_test_print_hex_dump(arr, 100, 4, pattern[2]); do_test_print_hex_dump(arr, 100, 8, pattern[3]); // Not properly aligned. Should automatically down-align by unitsize do_test_print_hex_dump(arr + 1, 100, 2, pattern[1]); do_test_print_hex_dump(arr + 1, 100, 4, pattern[2]); do_test_print_hex_dump(arr + 1, 100, 8, pattern[3]); os::free(arr); } ////////////////////////////////////////////////////////////////////////////// // Test os::vsnprintf and friends. static void check_snprintf_result(int expected, size_t limit, int actual, bool expect_count) { if (expect_count || ((size_t)expected < limit)) { ASSERT_EQ(expected, actual); } else { ASSERT_GT(0, actual); } } // PrintFn is expected to be int (*)(char*, size_t, const char*, ...). // But jio_snprintf is a C-linkage function with that signature, which // has a different type on some platforms (like Solaris). template static void test_snprintf(PrintFn pf, bool expect_count) { const char expected[] = "abcdefghijklmnopqrstuvwxyz"; const int expected_len = sizeof(expected) - 1; const size_t padding_size = 10; char buffer[2 * (sizeof(expected) + padding_size)]; char check_buffer[sizeof(buffer)]; const char check_char = '1'; // Something not in expected. memset(check_buffer, check_char, sizeof(check_buffer)); const size_t sizes_to_test[] = { sizeof(buffer) - padding_size, // Fits, with plenty of space to spare. sizeof(buffer)/2, // Fits, with space to spare. sizeof(buffer)/4, // Doesn't fit. sizeof(expected) + padding_size + 1, // Fits, with a little room to spare sizeof(expected) + padding_size, // Fits exactly. sizeof(expected) + padding_size - 1, // Doesn't quite fit. 2, // One char + terminating NUL. 1, // Only space for terminating NUL. 0 }; // No space at all. for (unsigned i = 0; i < ARRAY_SIZE(sizes_to_test); ++i) { memset(buffer, check_char, sizeof(buffer)); // To catch stray writes. size_t test_size = sizes_to_test[i]; ResourceMark rm; stringStream s; s.print("test_size: " SIZE_FORMAT, test_size); SCOPED_TRACE(s.as_string()); size_t prefix_size = padding_size; guarantee(test_size <= (sizeof(buffer) - prefix_size), "invariant"); size_t write_size = MIN2(sizeof(expected), test_size); size_t suffix_size = sizeof(buffer) - prefix_size - write_size; char* write_start = buffer + prefix_size; char* write_end = write_start + write_size; int result = pf(write_start, test_size, "%s", expected); check_snprintf_result(expected_len, test_size, result, expect_count); // Verify expected output. if (test_size > 0) { ASSERT_EQ(0, strncmp(write_start, expected, write_size - 1)); // Verify terminating NUL of output. ASSERT_EQ('\0', write_start[write_size - 1]); } else { guarantee(test_size == 0, "invariant"); guarantee(write_size == 0, "invariant"); guarantee(prefix_size + suffix_size == sizeof(buffer), "invariant"); guarantee(write_start == write_end, "invariant"); } // Verify no scribbling on prefix or suffix. ASSERT_EQ(0, strncmp(buffer, check_buffer, prefix_size)); ASSERT_EQ(0, strncmp(write_end, check_buffer, suffix_size)); } // Special case of 0-length buffer with empty (except for terminator) output. check_snprintf_result(0, 0, pf(NULL, 0, "%s", ""), expect_count); check_snprintf_result(0, 0, pf(NULL, 0, ""), expect_count); } // This is probably equivalent to os::snprintf, but we're being // explicit about what we're testing here. static int vsnprintf_wrapper(char* buf, size_t len, const char* fmt, ...) { va_list args; va_start(args, fmt); int result = os::vsnprintf(buf, len, fmt, args); va_end(args); return result; } TEST_VM(os, vsnprintf) { test_snprintf(vsnprintf_wrapper, true); } TEST_VM(os, snprintf) { test_snprintf(os::snprintf, true); } // These are declared in jvm.h; test here, with related functions. extern "C" { int jio_vsnprintf(char*, size_t, const char*, va_list); int jio_snprintf(char*, size_t, const char*, ...); } // This is probably equivalent to jio_snprintf, but we're being // explicit about what we're testing here. static int jio_vsnprintf_wrapper(char* buf, size_t len, const char* fmt, ...) { va_list args; va_start(args, fmt); int result = jio_vsnprintf(buf, len, fmt, args); va_end(args); return result; } TEST_VM(os, jio_vsnprintf) { test_snprintf(jio_vsnprintf_wrapper, false); } TEST_VM(os, jio_snprintf) { test_snprintf(jio_snprintf, false); } #ifdef __APPLE__ // Not all macOS versions can use os::reserve_memory (i.e. anon_mmap) API // to reserve executable memory, so before attempting to use it, // we need to verify that we can do so by asking for a tiny executable // memory chunk. static inline bool can_reserve_executable_memory(void) { bool executable = true; size_t len = 128; char* p = os::reserve_memory(len, executable); bool exec_supported = (p != NULL); if (exec_supported) { os::release_memory(p, len); } return exec_supported; } #endif // Test that os::release_memory() can deal with areas containing multiple mappings. #define PRINT_MAPPINGS(s) { tty->print_cr("%s", s); os::print_memory_mappings((char*)p, total_range_len, tty); } //#define PRINT_MAPPINGS // Release a range allocated with reserve_multiple carefully, to not trip mapping // asserts on Windows in os::release_memory() static void carefully_release_multiple(address start, int num_stripes, size_t stripe_len) { for (int stripe = 0; stripe < num_stripes; stripe++) { address q = start + (stripe * stripe_len); EXPECT_TRUE(os::release_memory((char*)q, stripe_len)); } } #ifndef _AIX // JDK-8257041 // Reserve an area consisting of multiple mappings // (from multiple calls to os::reserve_memory) static address reserve_multiple(int num_stripes, size_t stripe_len) { assert(is_aligned(stripe_len, os::vm_allocation_granularity()), "Sanity"); #ifdef __APPLE__ // Workaround: try reserving executable memory to figure out // if such operation is supported on this macOS version const bool exec_supported = can_reserve_executable_memory(); #endif address p = NULL; for (int tries = 0; tries < 256 && p == NULL; tries ++) { size_t total_range_len = num_stripes * stripe_len; // Reserve a large contiguous area to get the address space... p = (address)os::reserve_memory(total_range_len); EXPECT_NE(p, (address)NULL); // .. release it... EXPECT_TRUE(os::release_memory((char*)p, total_range_len)); // ... re-reserve in the same spot multiple areas... for (int stripe = 0; stripe < num_stripes; stripe++) { address q = p + (stripe * stripe_len); // Commit, alternatingly with or without exec permission, // to prevent kernel from folding these mappings. #ifdef __APPLE__ const bool executable = exec_supported ? (stripe % 2 == 0) : false; #else const bool executable = stripe % 2 == 0; #endif q = (address)os::attempt_reserve_memory_at((char*)q, stripe_len, executable); if (q == NULL) { // Someone grabbed that area concurrently. Cleanup, then retry. tty->print_cr("reserve_multiple: retry (%d)...", stripe); carefully_release_multiple(p, stripe, stripe_len); p = NULL; } else { EXPECT_TRUE(os::commit_memory((char*)q, stripe_len, executable)); } } } return p; } #endif // !AIX // Reserve an area with a single call to os::reserve_memory, // with multiple committed and uncommitted regions static address reserve_one_commit_multiple(int num_stripes, size_t stripe_len) { assert(is_aligned(stripe_len, os::vm_allocation_granularity()), "Sanity"); size_t total_range_len = num_stripes * stripe_len; address p = (address)os::reserve_memory(total_range_len); EXPECT_NE(p, (address)NULL); for (int stripe = 0; stripe < num_stripes; stripe++) { address q = p + (stripe * stripe_len); if (stripe % 2 == 0) { EXPECT_TRUE(os::commit_memory((char*)q, stripe_len, false)); } } return p; } #ifdef _WIN32 struct NUMASwitcher { const bool _b; NUMASwitcher(bool v): _b(UseNUMAInterleaving) { UseNUMAInterleaving = v; } ~NUMASwitcher() { UseNUMAInterleaving = _b; } }; #endif #ifndef _AIX // JDK-8257041 TEST_VM(os, release_multi_mappings) { // With NMT enabled, this will trigger JDK-8263464. For now disable the test if NMT=on. if (MemTracker::tracking_level() > NMT_off) { return; } // Test that we can release an area created with multiple reservation calls // What we do: // A) we reserve 6 small segments (stripes) adjacent to each other. We commit // them with alternating permissions to prevent the kernel from folding them into // a single segment. // -stripe-stripe-stripe-stripe-stripe-stripe- // B) we release the middle four stripes with a single os::release_memory call. This // tests that os::release_memory indeed works across multiple segments created with // multiple os::reserve calls. // -stripe-___________________________-stripe- // C) Into the now vacated address range between the first and the last stripe, we // re-reserve a new memory range. We expect this to work as a proof that the address // range was really released by the single release call (B). // // Note that this is inherently racy. Between (B) and (C), some other thread may have // reserved something into the hole in the meantime. Therefore we keep that range small and // entrenched between the first and last stripe, which reduces the chance of some concurrent // thread grabbing that memory. const size_t stripe_len = os::vm_allocation_granularity(); const int num_stripes = 6; const size_t total_range_len = stripe_len * num_stripes; // reserve address space... address p = reserve_multiple(num_stripes, stripe_len); ASSERT_NE(p, (address)NULL); PRINT_MAPPINGS("A"); // .. release the middle stripes... address p_middle_stripes = p + stripe_len; const size_t middle_stripe_len = (num_stripes - 2) * stripe_len; { // On Windows, temporarily switch on UseNUMAInterleaving to allow release_memory to release // multiple mappings in one go (otherwise we assert, which we test too, see death test below). WINDOWS_ONLY(NUMASwitcher b(true);) ASSERT_TRUE(os::release_memory((char*)p_middle_stripes, middle_stripe_len)); } PRINT_MAPPINGS("B"); // ...re-reserve the middle stripes. This should work unless release silently failed. address p2 = (address)os::attempt_reserve_memory_at((char*)p_middle_stripes, middle_stripe_len); ASSERT_EQ(p2, p_middle_stripes); PRINT_MAPPINGS("C"); // Clean up. Release all mappings. { WINDOWS_ONLY(NUMASwitcher b(true);) // allow release_memory to release multiple regions ASSERT_TRUE(os::release_memory((char*)p, total_range_len)); } } #endif // !AIX #ifdef _WIN32 // On Windows, test that we recognize bad ranges. // On debug this would assert. Test that too. // On other platforms, we are unable to recognize bad ranges. #ifdef ASSERT TEST_VM_ASSERT_MSG(os, release_bad_ranges, ".*bad release") { #else TEST_VM(os, release_bad_ranges) { #endif char* p = os::reserve_memory(4 * M); ASSERT_NE(p, (char*)NULL); // Release part of range ASSERT_FALSE(os::release_memory(p, M)); // Release part of range ASSERT_FALSE(os::release_memory(p + M, M)); // Release more than the range (explicitly switch off NUMA here // to make os::release_memory() test more strictly and to not // accidentally release neighbors) { NUMASwitcher b(false); ASSERT_FALSE(os::release_memory(p, M * 5)); ASSERT_FALSE(os::release_memory(p - M, M * 5)); ASSERT_FALSE(os::release_memory(p - M, M * 6)); } ASSERT_TRUE(os::release_memory(p, 4 * M)); // Release for real ASSERT_FALSE(os::release_memory(p, 4 * M)); // Again, should fail } #endif // _WIN32 TEST_VM(os, release_one_mapping_multi_commits) { // Test that we can release an area consisting of interleaved // committed and uncommitted regions: const size_t stripe_len = 4 * M; const int num_stripes = 4; const size_t total_range_len = stripe_len * num_stripes; // reserve address space... address p = reserve_one_commit_multiple(num_stripes, stripe_len); ASSERT_NE(p, (address)NULL); PRINT_MAPPINGS("A"); // .. release it... ASSERT_TRUE(os::release_memory((char*)p, total_range_len)); PRINT_MAPPINGS("B"); // re-reserve it. This should work unless release failed. address p2 = (address)os::attempt_reserve_memory_at((char*)p, total_range_len); ASSERT_EQ(p2, p); PRINT_MAPPINGS("C"); ASSERT_TRUE(os::release_memory((char*)p, total_range_len)); PRINT_MAPPINGS("D"); } static void test_show_mappings(address start, size_t size) { // Note: should this overflow, thats okay. stream will silently truncate. Does not matter for the test. const size_t buflen = 4 * M; char* buf = NEW_C_HEAP_ARRAY(char, buflen, mtInternal); buf[0] = '\0'; stringStream ss(buf, buflen); if (start != nullptr) { os::print_memory_mappings((char*)start, size, &ss); } else { os::print_memory_mappings(&ss); // prints full address space } // Still an empty implementation on MacOS and AIX #if defined(LINUX) || defined(_WIN32) EXPECT_NE(buf[0], '\0'); #endif // buf[buflen - 1] = '\0'; // tty->print_raw(buf); FREE_C_HEAP_ARRAY(char, buf); } TEST_VM(os, show_mappings_small_range) { test_show_mappings((address)0x100000, 2 * G); } TEST_VM(os, show_mappings_full_range) { // Reserve a small range and fill it with a marker string, should show up // on implementations displaying range snippets char* p = os::reserve_memory(1 * M, false, mtInternal); if (p != nullptr) { if (os::commit_memory(p, 1 * M, false)) { strcpy(p, "ABCDEFGHIJKLMNOPQRSTUVWXYZ"); } } test_show_mappings(nullptr, 0); if (p != nullptr) { os::release_memory(p, 1 * M); } } #ifdef _WIN32 // Test os::win32::find_mapping TEST_VM(os, find_mapping_simple) { const size_t total_range_len = 4 * M; os::win32::mapping_info_t mapping_info; // Some obvious negatives ASSERT_FALSE(os::win32::find_mapping((address)NULL, &mapping_info)); ASSERT_FALSE(os::win32::find_mapping((address)4711, &mapping_info)); // A simple allocation { address p = (address)os::reserve_memory(total_range_len); ASSERT_NE(p, (address)NULL); PRINT_MAPPINGS("A"); for (size_t offset = 0; offset < total_range_len; offset += 4711) { ASSERT_TRUE(os::win32::find_mapping(p + offset, &mapping_info)); ASSERT_EQ(mapping_info.base, p); ASSERT_EQ(mapping_info.regions, 1); ASSERT_EQ(mapping_info.size, total_range_len); ASSERT_EQ(mapping_info.committed_size, 0); } // Test just outside the allocation if (os::win32::find_mapping(p - 1, &mapping_info)) { ASSERT_NE(mapping_info.base, p); } if (os::win32::find_mapping(p + total_range_len, &mapping_info)) { ASSERT_NE(mapping_info.base, p); } ASSERT_TRUE(os::release_memory((char*)p, total_range_len)); PRINT_MAPPINGS("B"); ASSERT_FALSE(os::win32::find_mapping(p, &mapping_info)); } } TEST_VM(os, find_mapping_2) { // A more complex allocation, consisting of multiple regions. const size_t total_range_len = 4 * M; os::win32::mapping_info_t mapping_info; const size_t stripe_len = total_range_len / 4; address p = reserve_one_commit_multiple(4, stripe_len); ASSERT_NE(p, (address)NULL); PRINT_MAPPINGS("A"); for (size_t offset = 0; offset < total_range_len; offset += 4711) { ASSERT_TRUE(os::win32::find_mapping(p + offset, &mapping_info)); ASSERT_EQ(mapping_info.base, p); ASSERT_EQ(mapping_info.regions, 4); ASSERT_EQ(mapping_info.size, total_range_len); ASSERT_EQ(mapping_info.committed_size, total_range_len / 2); } // Test just outside the allocation if (os::win32::find_mapping(p - 1, &mapping_info)) { ASSERT_NE(mapping_info.base, p); } if (os::win32::find_mapping(p + total_range_len, &mapping_info)) { ASSERT_NE(mapping_info.base, p); } ASSERT_TRUE(os::release_memory((char*)p, total_range_len)); PRINT_MAPPINGS("B"); ASSERT_FALSE(os::win32::find_mapping(p, &mapping_info)); } TEST_VM(os, find_mapping_3) { const size_t total_range_len = 4 * M; os::win32::mapping_info_t mapping_info; // A more complex case, consisting of multiple allocations. { const size_t stripe_len = total_range_len / 4; address p = reserve_multiple(4, stripe_len); ASSERT_NE(p, (address)NULL); PRINT_MAPPINGS("E"); for (int stripe = 0; stripe < 4; stripe++) { ASSERT_TRUE(os::win32::find_mapping(p + (stripe * stripe_len), &mapping_info)); ASSERT_EQ(mapping_info.base, p + (stripe * stripe_len)); ASSERT_EQ(mapping_info.regions, 1); ASSERT_EQ(mapping_info.size, stripe_len); ASSERT_EQ(mapping_info.committed_size, stripe_len); } carefully_release_multiple(p, 4, stripe_len); PRINT_MAPPINGS("F"); ASSERT_FALSE(os::win32::find_mapping(p, &mapping_info)); } } #endif // _WIN32 TEST_VM(os, os_pagesizes) { ASSERT_EQ(os::min_page_size(), 4 * K); ASSERT_LE(os::min_page_size(), (size_t)os::vm_page_size()); // The vm_page_size should be the smallest in the set of allowed page sizes // (contract says "default" page size but a lot of code actually assumes // this to be the smallest page size; notable, deliberate exception is // AIX which can have smaller page sizes but those are not part of the // page_sizes() set). ASSERT_EQ(os::page_sizes().smallest(), (size_t)os::vm_page_size()); // The large page size, if it exists, shall be part of the set if (UseLargePages) { ASSERT_GT(os::large_page_size(), (size_t)os::vm_page_size()); ASSERT_TRUE(os::page_sizes().contains(os::large_page_size())); } os::page_sizes().print_on(tty); tty->cr(); } static const int min_page_size_log2 = exact_log2(os::min_page_size()); static const int max_page_size_log2 = (int)BitsPerWord; TEST_VM(os, pagesizes_test_range) { for (int bit = min_page_size_log2; bit < max_page_size_log2; bit++) { for (int bit2 = min_page_size_log2; bit2 < max_page_size_log2; bit2++) { const size_t s = (size_t)1 << bit; const size_t s2 = (size_t)1 << bit2; os::PageSizes pss; ASSERT_EQ((size_t)0, pss.smallest()); ASSERT_EQ((size_t)0, pss.largest()); // one size set pss.add(s); ASSERT_TRUE(pss.contains(s)); ASSERT_EQ(s, pss.smallest()); ASSERT_EQ(s, pss.largest()); ASSERT_EQ(pss.next_larger(s), (size_t)0); ASSERT_EQ(pss.next_smaller(s), (size_t)0); // two set pss.add(s2); ASSERT_TRUE(pss.contains(s2)); if (s2 < s) { ASSERT_EQ(s2, pss.smallest()); ASSERT_EQ(s, pss.largest()); ASSERT_EQ(pss.next_larger(s2), (size_t)s); ASSERT_EQ(pss.next_smaller(s2), (size_t)0); ASSERT_EQ(pss.next_larger(s), (size_t)0); ASSERT_EQ(pss.next_smaller(s), (size_t)s2); } else if (s2 > s) { ASSERT_EQ(s, pss.smallest()); ASSERT_EQ(s2, pss.largest()); ASSERT_EQ(pss.next_larger(s), (size_t)s2); ASSERT_EQ(pss.next_smaller(s), (size_t)0); ASSERT_EQ(pss.next_larger(s2), (size_t)0); ASSERT_EQ(pss.next_smaller(s2), (size_t)s); } for (int bit3 = min_page_size_log2; bit3 < max_page_size_log2; bit3++) { const size_t s3 = (size_t)1 << bit3; ASSERT_EQ(s3 == s || s3 == s2, pss.contains(s3)); } } } } TEST_VM(os, pagesizes_test_print) { os::PageSizes pss; const size_t sizes[] = { 16 * K, 64 * K, 128 * K, 1 * M, 4 * M, 1 * G, 2 * G, 0 }; static const char* const expected = "16k, 64k, 128k, 1M, 4M, 1G, 2G"; for (int i = 0; sizes[i] != 0; i++) { pss.add(sizes[i]); } char buffer[256]; stringStream ss(buffer, sizeof(buffer)); pss.print_on(&ss); ASSERT_EQ(strcmp(expected, buffer), 0); } TEST_VM(os, dll_address_to_function_and_library_name) { char tmp[1024]; char output[1024]; stringStream st(output, sizeof(output)); #define EXPECT_CONTAINS(haystack, needle) \ EXPECT_NE(::strstr(haystack, needle), (char*)NULL) #define EXPECT_DOES_NOT_CONTAIN(haystack, needle) \ EXPECT_EQ(::strstr(haystack, needle), (char*)NULL) // #define LOG(...) tty->print_cr(__VA_ARGS__); // enable if needed #define LOG(...) // Invalid addresses LOG("os::print_function_and_library_name(st, -1) expects FALSE."); address addr = (address)(intptr_t)-1; EXPECT_FALSE(os::print_function_and_library_name(&st, addr)); LOG("os::print_function_and_library_name(st, NULL) expects FALSE."); addr = NULL; EXPECT_FALSE(os::print_function_and_library_name(&st, addr)); // Valid addresses // Test with or without shorten-paths, demangle, and scratch buffer for (int i = 0; i < 16; i++) { const bool shorten_paths = (i & 1) != 0; const bool demangle = (i & 2) != 0; const bool strip_arguments = (i & 4) != 0; const bool provide_scratch_buffer = (i & 8) != 0; LOG("shorten_paths=%d, demangle=%d, strip_arguments=%d, provide_scratch_buffer=%d", shorten_paths, demangle, strip_arguments, provide_scratch_buffer); // Should show os::min_page_size in libjvm addr = CAST_FROM_FN_PTR(address, Threads::create_vm); st.reset(); EXPECT_TRUE(os::print_function_and_library_name(&st, addr, provide_scratch_buffer ? tmp : NULL, sizeof(tmp), shorten_paths, demangle, strip_arguments)); EXPECT_CONTAINS(output, "Threads"); EXPECT_CONTAINS(output, "create_vm"); EXPECT_CONTAINS(output, "jvm"); // "jvm.dll" or "libjvm.so" or similar LOG("%s", output); // Test truncation on scratch buffer if (provide_scratch_buffer) { st.reset(); tmp[10] = 'X'; EXPECT_TRUE(os::print_function_and_library_name(&st, addr, tmp, 10, shorten_paths, demangle)); EXPECT_EQ(tmp[10], 'X'); LOG("%s", output); } } } // Not a regex! Very primitive, just match: // "d" - digit // "a" - ascii // "." - everything // rest must match static bool very_simple_string_matcher(const char* pattern, const char* s) { const size_t lp = strlen(pattern); const size_t ls = strlen(s); if (ls < lp) { return false; } for (size_t i = 0; i < lp; i ++) { switch (pattern[i]) { case '.': continue; case 'd': if (!isdigit(s[i])) return false; break; case 'a': if (!isascii(s[i])) return false; break; default: if (s[i] != pattern[i]) return false; break; } } return true; } TEST_VM(os, iso8601_time) { char buffer[os::iso8601_timestamp_size + 1]; // + space for canary buffer[os::iso8601_timestamp_size] = 'X'; // canary const char* result = NULL; // YYYY-MM-DDThh:mm:ss.mmm+zzzz const char* const pattern_utc = "dddd-dd-dd.dd:dd:dd.ddd.0000"; const char* const pattern_local = "dddd-dd-dd.dd:dd:dd.ddd.dddd"; result = os::iso8601_time(buffer, sizeof(buffer), true); tty->print_cr("%s", result); EXPECT_EQ(result, buffer); EXPECT_TRUE(very_simple_string_matcher(pattern_utc, result)); result = os::iso8601_time(buffer, sizeof(buffer), false); tty->print_cr("%s", result); EXPECT_EQ(result, buffer); EXPECT_TRUE(very_simple_string_matcher(pattern_local, result)); // Test with explicit timestamps result = os::iso8601_time(0, buffer, sizeof(buffer), true); tty->print_cr("%s", result); EXPECT_EQ(result, buffer); EXPECT_TRUE(very_simple_string_matcher("1970-01-01.00:00:00.000+0000", result)); result = os::iso8601_time(17, buffer, sizeof(buffer), true); tty->print_cr("%s", result); EXPECT_EQ(result, buffer); EXPECT_TRUE(very_simple_string_matcher("1970-01-01.00:00:00.017+0000", result)); // Canary should still be intact EXPECT_EQ(buffer[os::iso8601_timestamp_size], 'X'); } TEST_VM(os, is_first_C_frame) { #if !defined(_WIN32) && !defined(ZERO) frame invalid_frame; EXPECT_TRUE(os::is_first_C_frame(&invalid_frame)); // the frame has zeroes for all values frame cur_frame = os::current_frame(); // this frame has to have a sender EXPECT_FALSE(os::is_first_C_frame(&cur_frame)); #endif // _WIN32 }