/* * Copyright (c) 2020, 2021, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2020, 2021 SAP SE. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "memory/metaspace/chunkManager.hpp" #include "memory/metaspace/freeChunkList.hpp" #include "memory/metaspace/metachunk.hpp" #include "memory/metaspace/metaspaceSettings.hpp" #include "memory/metaspace/virtualSpaceNode.hpp" #include "metaspaceGtestCommon.hpp" #include "metaspaceGtestContexts.hpp" #include "runtime/mutexLocker.hpp" using metaspace::ChunkManager; using metaspace::FreeChunkListVector; using metaspace::Metachunk; using metaspace::Settings; using metaspace::VirtualSpaceNode; using namespace metaspace::chunklevel; // Test ChunkManager::get_chunk TEST_VM(metaspace, get_chunk) { ChunkGtestContext context(8 * M); Metachunk* c = NULL; for (chunklevel_t pref_lvl = LOWEST_CHUNK_LEVEL; pref_lvl <= HIGHEST_CHUNK_LEVEL; pref_lvl++) { for (chunklevel_t max_lvl = pref_lvl; max_lvl <= HIGHEST_CHUNK_LEVEL; max_lvl++) { for (size_t min_committed_words = Settings::commit_granule_words(); min_committed_words <= word_size_for_level(max_lvl); min_committed_words *= 2) { context.alloc_chunk_expect_success(&c, pref_lvl, max_lvl, min_committed_words); context.return_chunk(c); } } } } // Test ChunkManager::get_chunk, but with a commit limit. TEST_VM(metaspace, get_chunk_with_commit_limit) { const size_t commit_limit_words = 1 * M; ChunkGtestContext context(commit_limit_words); Metachunk* c = NULL; for (chunklevel_t pref_lvl = LOWEST_CHUNK_LEVEL; pref_lvl <= HIGHEST_CHUNK_LEVEL; pref_lvl++) { for (chunklevel_t max_lvl = pref_lvl; max_lvl <= HIGHEST_CHUNK_LEVEL; max_lvl++) { for (size_t min_committed_words = Settings::commit_granule_words(); min_committed_words <= word_size_for_level(max_lvl); min_committed_words *= 2) { if (min_committed_words <= commit_limit_words) { context.alloc_chunk_expect_success(&c, pref_lvl, max_lvl, min_committed_words); context.return_chunk(c); } else { context.alloc_chunk_expect_failure(pref_lvl, max_lvl, min_committed_words); } } } } } // Test that recommitting the used portion of a chunk will preserve the original content. TEST_VM(metaspace, get_chunk_recommit) { ChunkGtestContext context; Metachunk* c = NULL; context.alloc_chunk_expect_success(&c, ROOT_CHUNK_LEVEL, ROOT_CHUNK_LEVEL, 0); context.uncommit_chunk_with_test(c); context.commit_chunk_with_test(c, Settings::commit_granule_words()); context.allocate_from_chunk(c, Settings::commit_granule_words()); c->ensure_committed(Settings::commit_granule_words()); check_range_for_pattern(c->base(), c->used_words(), (uintx)c); c->ensure_committed(Settings::commit_granule_words() * 2); check_range_for_pattern(c->base(), c->used_words(), (uintx)c); context.return_chunk(c); } // Test ChunkManager::get_chunk, but with a reserve limit. // (meaning, the underlying VirtualSpaceList cannot expand, like compressed class space). TEST_VM(metaspace, get_chunk_with_reserve_limit) { const size_t reserve_limit_words = word_size_for_level(ROOT_CHUNK_LEVEL); const size_t commit_limit_words = 1024 * M; // just very high ChunkGtestContext context(commit_limit_words, reserve_limit_words); // Reserve limit works at root chunk size granularity: if the chunk manager cannot satisfy // a request for a chunk from its freelists, it will acquire a new root chunk from the // underlying virtual space list. If that list is full and cannot be expanded (think ccs) // we should get an error. // Testing this is simply testing a chunk allocation which should cause allocation of a new // root chunk. // Cause allocation of the firstone root chunk, should still work: Metachunk* c = NULL; context.alloc_chunk_expect_success(&c, HIGHEST_CHUNK_LEVEL); // and this should need a new root chunk and hence fail: context.alloc_chunk_expect_failure(ROOT_CHUNK_LEVEL); context.return_chunk(c); } // Test MetaChunk::allocate TEST_VM(metaspace, chunk_allocate_full) { ChunkGtestContext context; for (chunklevel_t lvl = LOWEST_CHUNK_LEVEL; lvl <= HIGHEST_CHUNK_LEVEL; lvl++) { Metachunk* c = NULL; context.alloc_chunk_expect_success(&c, lvl); context.allocate_from_chunk(c, c->word_size()); context.return_chunk(c); } } // Test MetaChunk::allocate TEST_VM(metaspace, chunk_allocate_random) { ChunkGtestContext context; for (chunklevel_t lvl = LOWEST_CHUNK_LEVEL; lvl <= HIGHEST_CHUNK_LEVEL; lvl++) { Metachunk* c = NULL; context.alloc_chunk_expect_success(&c, lvl); context.uncommit_chunk_with_test(c); // start out fully uncommitted RandSizeGenerator rgen(1, c->word_size() / 30); bool stop = false; while (!stop) { const size_t s = rgen.get(); if (s <= c->free_words()) { context.commit_chunk_with_test(c, s); context.allocate_from_chunk(c, s); } else { stop = true; } } context.return_chunk(c); } } TEST_VM(metaspace, chunk_buddy_stuff) { for (chunklevel_t l = ROOT_CHUNK_LEVEL + 1; l <= HIGHEST_CHUNK_LEVEL; l++) { ChunkGtestContext context; // Allocate two chunks; since we know the first chunk is the first in its area, // it has to be a leader, and the next one of the same size its buddy. // (Note: strictly speaking the ChunkManager does not promise any placement but // we know how the placement works so these tests make sense). Metachunk* c1 = NULL; context.alloc_chunk(&c1, CHUNK_LEVEL_1K); EXPECT_TRUE(c1->is_leader()); Metachunk* c2 = NULL; context.alloc_chunk(&c2, CHUNK_LEVEL_1K); EXPECT_FALSE(c2->is_leader()); // buddies are adjacent in memory // (next/prev_in_vs needs lock) { MutexLocker fcl(Metaspace_lock, Mutex::_no_safepoint_check_flag); EXPECT_EQ(c1->next_in_vs(), c2); EXPECT_EQ(c1->end(), c2->base()); EXPECT_NULL(c1->prev_in_vs()); // since we know this is the first in the area EXPECT_EQ(c2->prev_in_vs(), c1); } context.return_chunk(c1); context.return_chunk(c2); } } TEST_VM(metaspace, chunk_allocate_with_commit_limit) { // This test does not make sense if commit-on-demand is off if (Settings::new_chunks_are_fully_committed()) { return; } const size_t granule_sz = Settings::commit_granule_words(); const size_t commit_limit = granule_sz * 3; ChunkGtestContext context(commit_limit); // A big chunk, but uncommitted. Metachunk* c = NULL; context.alloc_chunk_expect_success(&c, ROOT_CHUNK_LEVEL, ROOT_CHUNK_LEVEL, 0); context.uncommit_chunk_with_test(c); // ... just to make sure. // first granule... context.commit_chunk_with_test(c, granule_sz); context.allocate_from_chunk(c, granule_sz); // second granule... context.commit_chunk_with_test(c, granule_sz); context.allocate_from_chunk(c, granule_sz); // third granule... context.commit_chunk_with_test(c, granule_sz); context.allocate_from_chunk(c, granule_sz); // This should fail now. context.commit_chunk_expect_failure(c, granule_sz); context.return_chunk(c); } // Test splitting a chunk TEST_VM(metaspace, chunk_split_and_merge) { // Split works like this: // // ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- // | A | // ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- // // ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- // | A' | b | c | d | e | // ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- // // A original chunk (A) is split to form a target chunk (A') and as a result splinter // chunks form (b..e). A' is the leader of the (A',b) pair, which is the leader of the // ((A',b), c) pair and so on. In other words, A' will be a leader chunk, all splinter // chunks are follower chunks. // // Merging reverses this operation: // // ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- // | A | b | c | d | e | // ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- // // ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- // | A' | // ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- // // (A) will be merged with its buddy b, (A+b) with its buddy c and so on. The result // chunk is A'. // Note that merging also works, of course, if we were to start the merge at (b) (so, // with a follower chunk, not a leader). Also, at any point in the merge // process we may arrive at a follower chunk. So, the fact that in this test // we only expect a leader merge is a feature of the test, and of the fact that we // start each split test with a fresh ChunkTestsContext. // Note: Splitting and merging chunks is usually done from within the ChunkManager and // subject to a lot of assumptions and hence asserts. Here, we have to explicitly use // VirtualSpaceNode::split/::merge and therefore have to observe rules: // - both split and merge expect free chunks, so state has to be "free" // - but that would trigger the "ideally merged" assertion in the RootChunkArea, so the // original chunk has to be a root chunk, we cannot just split any chunk manually. // - Also, after the split we have to completely re-merge to avoid triggering asserts // in ~RootChunkArea() // - finally we have to lock manually ChunkGtestContext context; const chunklevel_t orig_lvl = ROOT_CHUNK_LEVEL; for (chunklevel_t target_lvl = orig_lvl + 1; target_lvl <= HIGHEST_CHUNK_LEVEL; target_lvl++) { // Split a fully committed chunk. The resulting chunk should be fully // committed as well, and have its content preserved. Metachunk* c = NULL; context.alloc_chunk_expect_success(&c, orig_lvl); // We allocate from this chunk to be able to completely paint the payload. context.allocate_from_chunk(c, c->word_size()); const uintx canary = os::random(); fill_range_with_pattern(c->base(), c->word_size(), canary); FreeChunkListVector splinters; { // Splitting/Merging chunks is usually done by the chunkmanager, and no explicit // outside API exists. So we split/merge chunks via the underlying vs node, directly. // This means that we have to go through some extra hoops to not trigger any asserts. MutexLocker fcl(Metaspace_lock, Mutex::_no_safepoint_check_flag); c->reset_used_words(); c->set_free(); c->vsnode()->split(target_lvl, c, &splinters); } DEBUG_ONLY(context.verify();) EXPECT_EQ(c->level(), target_lvl); EXPECT_TRUE(c->is_fully_committed()); EXPECT_FALSE(c->is_root_chunk()); EXPECT_TRUE(c->is_leader()); check_range_for_pattern(c->base(), c->word_size(), canary); // I expect splinter chunks (one for each splinter level: // e.g. splitting a 1M chunk to get a 64K chunk should yield splinters: [512K, 256K, 128K, 64K] for (chunklevel_t l = LOWEST_CHUNK_LEVEL; l < HIGHEST_CHUNK_LEVEL; l++) { const Metachunk* c2 = splinters.first_at_level(l); if (l > orig_lvl && l <= target_lvl) { EXPECT_NOT_NULL(c2); EXPECT_EQ(c2->level(), l); EXPECT_TRUE(c2->is_free()); EXPECT_TRUE(!c2->is_leader()); DEBUG_ONLY(c2->verify()); check_range_for_pattern(c2->base(), c2->word_size(), canary); } else { EXPECT_NULL(c2); } } // Revert the split by using merge. This should result in all splinters coalescing // to one chunk. { MutexLocker fcl(Metaspace_lock, Mutex::_no_safepoint_check_flag); Metachunk* merged = c->vsnode()->merge(c, &splinters); // the merged chunk should occupy the same address as the splinter // since it should have been the leader in the split. EXPECT_EQ(merged, c); EXPECT_TRUE(merged->is_root_chunk() || merged->is_leader()); // Splitting should have arrived at the original chunk since none of the splinters are in use. EXPECT_EQ(c->level(), orig_lvl); // All splinters should have been removed from the list EXPECT_EQ(splinters.num_chunks(), 0); } context.return_chunk(c); } } TEST_VM(metaspace, chunk_enlarge_in_place) { ChunkGtestContext context; // Starting with the smallest chunk size, attempt to enlarge the chunk in place until we arrive // at root chunk size. Since the state is clean, this should work. Metachunk* c = NULL; context.alloc_chunk_expect_success(&c, HIGHEST_CHUNK_LEVEL); chunklevel_t l = c->level(); while (l != ROOT_CHUNK_LEVEL) { // commit and allocate from chunk to pattern it... const size_t original_chunk_size = c->word_size(); context.commit_chunk_with_test(c, c->free_words()); context.allocate_from_chunk(c, c->free_words()); size_t used_before = c->used_words(); size_t free_before = c->free_words(); size_t free_below_committed_before = c->free_below_committed_words(); const MetaWord* top_before = c->top(); EXPECT_TRUE(context.cm().attempt_enlarge_chunk(c)); EXPECT_EQ(l - 1, c->level()); EXPECT_EQ(c->word_size(), original_chunk_size * 2); // Used words should not have changed EXPECT_EQ(c->used_words(), used_before); EXPECT_EQ(c->top(), top_before); // free words should be expanded by the old size (since old chunk is doubled in size) EXPECT_EQ(c->free_words(), free_before + original_chunk_size); // free below committed can be larger but never smaller EXPECT_GE(c->free_below_committed_words(), free_below_committed_before); // Old content should be preserved check_range_for_pattern(c->base(), original_chunk_size, (uintx)c); l = c->level(); } context.return_chunk(c); }