/* * Copyright (c) 2016, 2019, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ #include "precompiled.hpp" #include "utilities/align.hpp" #include "utilities/bitMap.inline.hpp" #include "utilities/copy.hpp" #include "utilities/debug.hpp" #include "utilities/globalDefinitions.hpp" #include #include "unittest.hpp" typedef BitMap::idx_t idx_t; typedef BitMap::bm_word_t bm_word_t; inline idx_t word_align_down(idx_t bit) { return align_down(bit, BitsPerWord); } class BitMapMemory { private: idx_t _words; bm_word_t* _memory; public: BitMapMemory(idx_t bits) : _words(BitMap::calc_size_in_words(bits)), _memory(static_cast(malloc(_words * sizeof(bm_word_t)))) { } ~BitMapMemory() { free(_memory); } BitMapView make_view(idx_t bits, bm_word_t value) { vmassert(BitMap::calc_size_in_words(bits) <= _words, "invalid request"); STATIC_ASSERT(sizeof(bm_word_t) == sizeof(HeapWord)); Copy::fill_to_aligned_words((HeapWord*)_memory, _words, value); return BitMapView(_memory, bits); } bm_word_t* memory() { return _memory; } }; const idx_t aligned_size = 4 * BitsPerWord; const idx_t unaligned_size = aligned_size - (BitsPerWord / 2); static bm_word_t make_even_bits() { bm_word_t result = 1; while (true) { bm_word_t next = (result << 2) | 1; if (next == result) { return result; } result = next; } } const bm_word_t even_bits = make_even_bits(); const bm_word_t odd_bits = ~even_bits; const bm_word_t one_bits = ~bm_word_t(0); const bm_word_t zero_bits = 0; // Scoped set a clear bit and restore to clear. class WithBitSet { private: BitMap& _bm; idx_t _index; public: WithBitSet(BitMap& bm, idx_t index) : _bm(bm), _index(index) { // Failure may indicate test bug; can't use ASSERT_xxx in constructor. EXPECT_FALSE(_bm.at(_index)); bm.set_bit(_index); } ~WithBitSet() { _bm.clear_bit(_index); } }; // Scoped clear a set bit and restore to set. class WithBitClear { private: BitMap& _bm; idx_t _index; public: WithBitClear(BitMap& bm, idx_t index) : _bm(bm), _index(index) { // Failure may indicate test bug; can't use ASSERT_xxx in constructor. EXPECT_TRUE(_bm.at(_index)); bm.clear_bit(_index); } ~WithBitClear() { _bm.set_bit(_index); } }; ////////////////////////////////////////////////////////////////////////////// // bool is_same(const BitMap& bits); TEST(BitMap, is_same__aligned) { BitMapMemory mx(aligned_size); BitMapMemory my(aligned_size); BitMapView x = mx.make_view(aligned_size, even_bits); BitMapView y = my.make_view(aligned_size, even_bits); EXPECT_TRUE(x.is_same(y)); WithBitClear wbc(x, aligned_size / 2); EXPECT_FALSE(x.is_same(y)); } TEST(BitMap, is_same__unaligned) { BitMapMemory mx(aligned_size); BitMapMemory my(aligned_size); BitMapView x = mx.make_view(unaligned_size, even_bits); BitMapView y = my.make_view(unaligned_size, even_bits); // Check that a difference beyond the end of x/y doesn't count. { BitMapView aligned = BitMapView(mx.memory(), aligned_size); const idx_t index = aligned_size - 2; STATIC_ASSERT(unaligned_size <= index); WithBitClear wbc(aligned, index); EXPECT_TRUE(x.is_same(y)); } // Check that a difference in the final partial word does count. { idx_t index = unaligned_size - 2; ASSERT_LE(word_align_down(unaligned_size), index); WithBitClear wbc(y, index); EXPECT_FALSE(x.is_same(y)); } } ////////////////////////////////////////////////////////////////////////////// // bool is_full(); // bool is_empty(); TEST(BitMap, is_full_or_empty__aligned) { BitMapMemory mx(aligned_size); { BitMapView x = mx.make_view(aligned_size, even_bits); EXPECT_FALSE(x.is_full()); EXPECT_FALSE(x.is_empty()); } { BitMapView x = mx.make_view(aligned_size, zero_bits); EXPECT_FALSE(x.is_full()); EXPECT_TRUE(x.is_empty()); } { BitMapView x = mx.make_view(aligned_size, one_bits); EXPECT_TRUE(x.is_full()); EXPECT_FALSE(x.is_empty()); } } TEST(BitMap, is_full__unaligned) { BitMapMemory mx(aligned_size); BitMapView x = mx.make_view(unaligned_size, one_bits); EXPECT_TRUE(x.is_full()); // Check that a missing bit beyond the end doesn't count. { idx_t index = aligned_size - 1; BitMapView aligned = BitMapView(mx.memory(), aligned_size); WithBitClear wcb(aligned, index); EXPECT_FALSE(aligned.is_full()); EXPECT_TRUE(x.is_full()); } // Check that a missing bit in the final partial word does count. { WithBitClear wcb(x, unaligned_size - 1); EXPECT_FALSE(x.is_full()); } } TEST(BitMap, is_empty__unaligned) { BitMapMemory mx(aligned_size); BitMapView x = mx.make_view(unaligned_size, zero_bits); EXPECT_TRUE(x.is_empty()); // Check that a set bit beyond the end doesn't count. { idx_t index = aligned_size - 1; BitMapView aligned = BitMapView(mx.memory(), aligned_size); WithBitSet wbs(aligned, index); EXPECT_FALSE(aligned.is_empty()); EXPECT_TRUE(x.is_empty()); } // Check that a set bit in the final partial word does count. { WithBitSet wbs(x, unaligned_size - 1); EXPECT_FALSE(x.is_empty()); } } ////////////////////////////////////////////////////////////////////////////// // bool contains(const BitMap& bits); TEST(BitMap, contains__aligned) { BitMapMemory mx(aligned_size); BitMapMemory my(aligned_size); BitMapView x = mx.make_view(aligned_size, even_bits); BitMapView y = my.make_view(aligned_size, even_bits); EXPECT_TRUE(x.contains(y)); WithBitClear wbc(x, aligned_size / 2); EXPECT_FALSE(x.contains(y)); } TEST(BitMap, contains__unaligned) { BitMapMemory mx(aligned_size); BitMapMemory my(aligned_size); BitMapView x = mx.make_view(unaligned_size, even_bits); BitMapView y = my.make_view(unaligned_size, even_bits); // Check that a missing bit beyond the end of x doesn't count. { BitMapView aligned = BitMapView(mx.memory(), aligned_size); const idx_t index = aligned_size - 2; STATIC_ASSERT(unaligned_size <= index); WithBitClear wbc(aligned, index); EXPECT_TRUE(x.contains(y)); } // Check that a missing bit in the final partial word does count. { idx_t index = unaligned_size - 2; ASSERT_LE(word_align_down(unaligned_size), index); WithBitClear wbc(x, index); EXPECT_FALSE(x.contains(y)); } } ////////////////////////////////////////////////////////////////////////////// // bool intersects(const BitMap& bits); TEST(BitMap, intersects__aligned) { BitMapMemory mx(aligned_size); BitMapMemory my(aligned_size); BitMapView x = mx.make_view(aligned_size, even_bits); BitMapView y = my.make_view(aligned_size, zero_bits); EXPECT_FALSE(x.intersects(y)); ASSERT_TRUE(x.at(aligned_size / 2)); WithBitSet wbs(y, aligned_size / 2); EXPECT_TRUE(x.intersects(y)); } TEST(BitMap, intersects__unaligned) { BitMapMemory mx(aligned_size); BitMapMemory my(aligned_size); BitMapView x = mx.make_view(unaligned_size, even_bits); BitMapView y = my.make_view(unaligned_size, zero_bits); EXPECT_FALSE(x.intersects(y)); // Check that adding a bit beyond the end of y doesn't count. { BitMapView aligned_x = BitMapView(mx.memory(), aligned_size); BitMapView aligned_y = BitMapView(my.memory(), aligned_size); const idx_t index = aligned_size - 2; STATIC_ASSERT(unaligned_size <= index); ASSERT_TRUE(aligned_x.at(index)); WithBitSet wbs(aligned_y, index); EXPECT_FALSE(x.intersects(y)); } // Check that adding a bit in the final partial word does count. { idx_t index = unaligned_size - 2; ASSERT_LE(word_align_down(unaligned_size), index); ASSERT_TRUE(x.at(index)); WithBitSet wbs(y, index); EXPECT_TRUE(x.intersects(y)); } } ////////////////////////////////////////////////////////////////////////////// // void set_from(const BitMap& bits); // void set_union(const BitMap& bits); // void set_difference(const BitMap& bits); // void set_intersection(const BitMap& bits); // // bool set_union_with_result(const BitMap& bits); // bool set_difference_with_result(const BitMap& bits); // bool set_intersection_with_result(const BitMap& bits); static void check_tail_unmodified(BitMapMemory& mem, idx_t bits, bm_word_t fill_word) { if (!is_aligned(bits, BitsPerWord)) { idx_t last_word_bit_index = word_align_down(bits); idx_t last_word_index = BitMap::calc_size_in_words(last_word_bit_index); bm_word_t last_word = mem.memory()[last_word_index]; idx_t shift = bits - last_word_bit_index; EXPECT_EQ(fill_word >> shift, last_word >> shift); } } static void check_mod_setop(void (BitMap::*f)(const BitMap&), idx_t bits, bm_word_t wx, bm_word_t wy, bm_word_t wexp) { BitMapMemory mx(bits); BitMapMemory my(bits); BitMapMemory mexp(bits); BitMapView x = mx.make_view(bits, wx); BitMapView y = my.make_view(bits, wy); BitMapView exp = mexp.make_view(bits, wexp); (x.*f)(y); EXPECT_TRUE(exp.is_same(x)); check_tail_unmodified(mx, bits, wx); } static void check_mod_setop_with_result(bool (BitMap::*f)(const BitMap&), idx_t bits, bm_word_t wx, bm_word_t wy, bm_word_t wexp) { BitMapMemory mx(bits); BitMapMemory my(bits); BitMapMemory mexp(bits); BitMapView x = mx.make_view(bits, wx); BitMapView y = my.make_view(bits, wy); BitMapView exp = mexp.make_view(bits, wexp); bool value = (x.*f)(y); EXPECT_EQ(value, wx != wexp); EXPECT_TRUE(exp.is_same(x)); check_tail_unmodified(mx, bits, wx); } #define CHECK_MOD_SETOP_AUX(checker, name, x, y, exp) \ TEST(BitMap, name ## __ ## x ## _ ## y) { \ checker(&BitMap::name, aligned_size, \ x ## _bits, y ## _bits, exp ## _bits); \ checker(&BitMap::name, unaligned_size, \ x ## _bits, y ## _bits, exp ## _bits); \ } #define CHECK_MOD_SETOP(name, x, y, exp) \ CHECK_MOD_SETOP_AUX(check_mod_setop, name, x, y, exp) #define CHECK_MOD_SETOP_WITH_RESULT(name, x, y, exp) \ CHECK_MOD_SETOP_AUX(check_mod_setop_with_result, name, x, y, exp) #define CHECK_MOD_SETOPS(name, x, y, exp) \ CHECK_MOD_SETOP(name, x, y, exp) \ CHECK_MOD_SETOP_WITH_RESULT(name ## _with_result, x, y, exp) CHECK_MOD_SETOP(set_from, even, even, even) CHECK_MOD_SETOP(set_from, even, odd, odd) CHECK_MOD_SETOP(set_from, even, one, one) CHECK_MOD_SETOP(set_from, even, zero, zero) CHECK_MOD_SETOPS(set_union, even, even, even) CHECK_MOD_SETOPS(set_union, even, odd, one) CHECK_MOD_SETOPS(set_union, even, one, one) CHECK_MOD_SETOPS(set_union, even, zero, even) CHECK_MOD_SETOPS(set_difference, even, even, zero) CHECK_MOD_SETOPS(set_difference, even, odd, even) CHECK_MOD_SETOPS(set_difference, even, one, zero) CHECK_MOD_SETOPS(set_difference, even, zero, even) CHECK_MOD_SETOPS(set_intersection, even, even, even) CHECK_MOD_SETOPS(set_intersection, even, odd, zero) CHECK_MOD_SETOPS(set_intersection, even, one, even) CHECK_MOD_SETOPS(set_intersection, even, zero, zero)