/* * Copyright (c) 2016, 2019, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #ifndef SHARE_GC_G1_G1COLLECTIONSET_HPP #define SHARE_GC_G1_G1COLLECTIONSET_HPP #include "utilities/debug.hpp" #include "utilities/globalDefinitions.hpp" class G1CollectedHeap; class G1CollectionSetCandidates; class G1CollectorState; class G1GCPhaseTimes; class G1ParScanThreadStateSet; class G1Policy; class G1SurvivorRegions; class HeapRegion; class HeapRegionClaimer; class HeapRegionClosure; // The collection set. // // The set of regions that are evacuated during an evacuation pause. // // At the end of a collection, before freeing the collection set, this set // contains all regions that were evacuated during this collection: // // - survivor regions from the last collection (if any) // - eden regions allocated by the mutator // - old gen regions evacuated during mixed gc // // This set is built incrementally at mutator time as regions are retired, and // if this had been a mixed gc, some additional (during gc) incrementally added // old regions from the collection set candidates built during the concurrent // cycle. // // A more detailed overview of how the collection set changes over time follows: // // 0) at the end of GC the survivor regions are added to this collection set. // 1) the mutator incrementally adds eden regions as they retire // // ----- gc starts // // 2) prepare (finalize) young regions of the collection set for collection // - relabel the survivors as eden // - finish up the incremental building that happened at mutator time // // iff this is a young-only collection: // // a3) evacuate the current collection set in one "initial evacuation" phase // // iff this is a mixed collection: // // b3) calculate the set of old gen regions we may be able to collect in this // collection from the list of collection set candidates. // - one part is added to the current collection set // - the remainder regions are labeled as optional, and NOT yet added to the // collection set. // b4) evacuate the current collection set in the "initial evacuation" phase // b5) evacuate the optional regions in the "optional evacuation" phase. This is // done in increments (or rounds). // b5-1) add a few of the optional regions to the current collection set // b5-2) evacuate only these newly added optional regions. For this mechanism we // reuse the incremental collection set building infrastructure (used also at // mutator time). // b5-3) repeat from b5-1 until the policy determines we are done // // all collections // // 6) free the collection set (contains all regions now; empties collection set // afterwards) // 7) add survivors to this collection set // // ----- gc ends // // goto 1) // // Examples of how the collection set might look over time: // // Legend: // S = survivor, E = eden, O = old. // |xxxx| = increment (with increment markers), containing four regions // // |SSSS| ... after step 0), with four survivor regions // |SSSSEE| ... at step 1), after retiring two eden regions // |SSSSEEEE| ... after step 1), after retiring four eden regions // |EEEEEEEE| ... after step 2) // // iff this is a young-only collection // // EEEEEEEE|| ... after step a3), after initial evacuation phase // || ... after step 6) // |SS| ... after step 7), with two survivor regions // // iff this is a mixed collection // // |EEEEEEEEOOOO| ... after step b3), added four regions to be // evacuated in the "initial evacuation" phase // EEEEEEEEOOOO|| ... after step b4), incremental part is empty // after evacuation // EEEEEEEEOOOO|OO| ... after step b5.1), added two regions to be // evacuated in the first round of the // "optional evacuation" phase // EEEEEEEEOOOOOO|O| ... after step b5.1), added one region to be // evacuated in the second round of the // "optional evacuation" phase // EEEEEEEEOOOOOOO|| ... after step b5), the complete collection set. // || ... after step b6) // |SSS| ... after step 7), with three survivor regions // class G1CollectionSet { G1CollectedHeap* _g1h; G1Policy* _policy; // All old gen collection set candidate regions for the current mixed phase. G1CollectionSetCandidates* _candidates; uint _eden_region_length; uint _survivor_region_length; uint _old_region_length; // The actual collection set as a set of region indices. // All entries in _collection_set_regions below _collection_set_cur_length are // assumed to be part of the collection set. // We assume that at any time there is at most only one writer and (one or more) // concurrent readers. This means we are good with using storestore and loadload // barriers on the writer and reader respectively only. uint* _collection_set_regions; volatile size_t _collection_set_cur_length; size_t _collection_set_max_length; // When doing mixed collections we can add old regions to the collection set, which // will be collected only if there is enough time. We call these optional regions. // This member records the current number of regions that are of that type that // correspond to the first x entries in the collection set candidates. uint _num_optional_regions; // The number of bytes in the collection set before the pause. Set from // the incrementally built collection set at the start of an evacuation // pause, and updated as more regions are added to the collection set. size_t _bytes_used_before; // The number of cards in the remembered set in the collection set. Set from // the incrementally built collection set at the start of an evacuation // pause, and updated as more regions are added to the collection set. size_t _recorded_rs_length; enum CSetBuildType { Active, // We are actively building the collection set Inactive // We are not actively building the collection set }; CSetBuildType _inc_build_state; size_t _inc_part_start; // Information about eden regions in the incremental collection set. struct IncCollectionSetRegionStat { // The predicted non-copy time that was added to the total incremental value // for the collection set. double _non_copy_time_ms; // The remembered set length that was added to the total incremental value // for the collection set. size_t _rs_length; #ifdef ASSERT // Resets members to "uninitialized" values. void reset() { _rs_length = ~(size_t)0; _non_copy_time_ms = -1.0; } #endif }; IncCollectionSetRegionStat* _inc_collection_set_stats; // The associated information that is maintained while the incremental // collection set is being built with *young* regions. Used to populate // the recorded info for the evacuation pause. // The number of bytes in the incrementally built collection set. // Used to set _collection_set_bytes_used_before at the start of // an evacuation pause. size_t _inc_bytes_used_before; // The RSet lengths recorded for regions in the CSet. It is updated // by the thread that adds a new region to the CSet. We assume that // only one thread can be allocating a new CSet region (currently, // it does so after taking the Heap_lock) hence no need to // synchronize updates to this field. size_t _inc_recorded_rs_length; // A concurrent refinement thread periodically samples the young // region RSets and needs to update _inc_recorded_rs_length as // the RSets grow. Instead of having to synchronize updates to that // field we accumulate them in this field and add it to // _inc_recorded_rs_length_diff at the start of a GC. size_t _inc_recorded_rs_length_diff; // The predicted elapsed time it will take to collect the regions in // the CSet. This is updated by the thread that adds a new region to // the CSet. See the comment for _inc_recorded_rs_length about // MT-safety assumptions. double _inc_predicted_non_copy_time_ms; // See the comment for _inc_recorded_rs_length_diff. double _inc_predicted_non_copy_time_ms_diff; void set_recorded_rs_length(size_t rs_length); G1CollectorState* collector_state() const; G1GCPhaseTimes* phase_times(); void verify_young_cset_indices() const NOT_DEBUG_RETURN; double predict_region_non_copy_time_ms(HeapRegion* hr) const; // Update the incremental collection set information when adding a region. void add_young_region_common(HeapRegion* hr); // Add old region "hr" to the collection set. void add_old_region(HeapRegion* hr); void free_optional_regions(); // Add old region "hr" to optional collection set. void add_optional_region(HeapRegion* hr); void move_candidates_to_collection_set(uint num_regions); // Finalize the young part of the initial collection set. Relabel survivor regions // as Eden and calculate a prediction on how long the evacuation of all young regions // will take. double finalize_young_part(double target_pause_time_ms, G1SurvivorRegions* survivors); // Perform any final calculations on the incremental collection set fields before we // can use them. void finalize_incremental_building(); // Select the old regions of the initial collection set and determine how many optional // regions we might be able to evacuate in this pause. void finalize_old_part(double time_remaining_ms); // Iterate the part of the collection set given by the offset and length applying the given // HeapRegionClosure. The worker_id will determine where in the part to start the iteration // to allow for more efficient parallel iteration. void iterate_part_from(HeapRegionClosure* cl, HeapRegionClaimer* hr_claimer, size_t offset, size_t length, uint worker_id, uint total_workers) const; public: G1CollectionSet(G1CollectedHeap* g1h, G1Policy* policy); ~G1CollectionSet(); // Initializes the collection set giving the maximum possible length of the collection set. void initialize(uint max_region_length); void clear_candidates(); void set_candidates(G1CollectionSetCandidates* candidates) { assert(_candidates == NULL, "Trying to replace collection set candidates."); _candidates = candidates; } G1CollectionSetCandidates* candidates() { return _candidates; } void init_region_lengths(uint eden_cset_region_length, uint survivor_cset_region_length); uint region_length() const { return young_region_length() + old_region_length(); } uint young_region_length() const { return eden_region_length() + survivor_region_length(); } uint eden_region_length() const { return _eden_region_length; } uint survivor_region_length() const { return _survivor_region_length; } uint old_region_length() const { return _old_region_length; } uint optional_region_length() const { return _num_optional_regions; } // Reset the contents of the collection set. void clear(); // Incremental collection set support // Initialize incremental collection set info. void start_incremental_building(); // Start a new collection set increment. void update_incremental_marker() { _inc_build_state = Active; _inc_part_start = _collection_set_cur_length; } // Stop adding regions to the current collection set increment. void stop_incremental_building() { _inc_build_state = Inactive; } // Iterate over the current collection set increment applying the given HeapRegionClosure // from a starting position determined by the given worker id. void iterate_incremental_part_from(HeapRegionClosure* cl, HeapRegionClaimer* hr_claimer, uint worker_id, uint total_workers) const; // Returns the length of the current increment in number of regions. size_t increment_length() const { return _collection_set_cur_length - _inc_part_start; } // Returns the length of the whole current collection set in number of regions size_t cur_length() const { return _collection_set_cur_length; } // Iterate over the entire collection set (all increments calculated so far), applying // the given HeapRegionClosure on all of them. void iterate(HeapRegionClosure* cl) const; void par_iterate(HeapRegionClosure* cl, HeapRegionClaimer* hr_claimer, uint worker_id, uint total_workers) const; void iterate_optional(HeapRegionClosure* cl) const; size_t recorded_rs_length() { return _recorded_rs_length; } size_t bytes_used_before() const { return _bytes_used_before; } void reset_bytes_used_before() { _bytes_used_before = 0; } // Finalize the initial collection set consisting of all young regions potentially a // few old gen regions. void finalize_initial_collection_set(double target_pause_time_ms, G1SurvivorRegions* survivor); // Finalize the next collection set from the set of available optional old gen regions. bool finalize_optional_for_evacuation(double remaining_pause_time); // Abandon (clean up) optional collection set regions that were not evacuated in this // pause. void abandon_optional_collection_set(G1ParScanThreadStateSet* pss); // Update information about hr in the aggregated information for // the incrementally built collection set. void update_young_region_prediction(HeapRegion* hr, size_t new_rs_length); // Add eden region to the collection set. void add_eden_region(HeapRegion* hr); // Add survivor region to the collection set. void add_survivor_regions(HeapRegion* hr); #ifndef PRODUCT bool verify_young_ages(); void print(outputStream* st); #endif // !PRODUCT }; #endif // SHARE_GC_G1_G1COLLECTIONSET_HPP