/* * Copyright 1997-2009 Sun Microsystems, Inc. All Rights Reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, * CA 95054 USA or visit www.sun.com if you need additional information or * have any questions. * */ // ADLPARSE.CPP - Architecture Description Language Parser // Authors: Chris Vick and Mike Paleczny #include "adlc.hpp" //----------------------------ADLParser---------------------------------------- // Create a new ADL parser ADLParser::ADLParser(FileBuff& buffer, ArchDesc& archDesc) : _buf(buffer), _AD(archDesc), _globalNames(archDesc.globalNames()) { _AD._syntax_errs = _AD._semantic_errs = 0; // No errors so far this file _AD._warnings = 0; // No warnings either _curline = _ptr = NULL; // No pointers into buffer yet _preproc_depth = 0; _preproc_not_taken = 0; // Delimit command-line definitions from in-file definitions: _AD._preproc_list.add_signal(); } //------------------------------~ADLParser------------------------------------- // Delete an ADL parser. ADLParser::~ADLParser() { if (!_AD._quiet_mode) fprintf(stderr,"---------------------------- Errors and Warnings ----------------------------\n"); #ifndef ASSERT fprintf(stderr, "**************************************************************\n"); fprintf(stderr, "***** WARNING: ASSERT is undefined, assertions disabled. *****\n"); fprintf(stderr, "**************************************************************\n"); #endif if( _AD._syntax_errs + _AD._semantic_errs + _AD._warnings == 0 ) { if (!_AD._quiet_mode) fprintf(stderr,"No errors or warnings to report from phase-1 parse.\n" ); } else { if( _AD._syntax_errs ) { // Any syntax errors? fprintf(stderr,"%s: Found %d syntax error", _buf._fp->_name, _AD._syntax_errs); if( _AD._syntax_errs > 1 ) fprintf(stderr,"s.\n\n"); else fprintf(stderr,".\n\n"); } if( _AD._semantic_errs ) { // Any semantic errors? fprintf(stderr,"%s: Found %d semantic error", _buf._fp->_name, _AD._semantic_errs); if( _AD._semantic_errs > 1 ) fprintf(stderr,"s.\n\n"); else fprintf(stderr,".\n\n"); } if( _AD._warnings ) { // Any warnings? fprintf(stderr,"%s: Found %d warning", _buf._fp->_name, _AD._warnings); if( _AD._warnings > 1 ) fprintf(stderr,"s.\n\n"); else fprintf(stderr,".\n\n"); } } if (!_AD._quiet_mode) fprintf(stderr,"-----------------------------------------------------------------------------\n"); _AD._TotalLines += linenum()-1; // -1 for overshoot in "nextline" routine // Write out information we have stored // // UNIXism == fsync(stderr); } //------------------------------parse------------------------------------------ // Each top-level keyword should appear as the first non-whitespace on a line. // void ADLParser::parse() { char *ident; // Iterate over the lines in the file buffer parsing Level 1 objects for( next_line(); _curline != NULL; next_line()) { _ptr = _curline; // Reset ptr to start of new line skipws(); // Skip any leading whitespace ident = get_ident(); // Get first token if (ident == NULL) { // Empty line continue; // Get the next line } if (!strcmp(ident, "instruct")) instr_parse(); else if (!strcmp(ident, "operand")) oper_parse(); else if (!strcmp(ident, "opclass")) opclass_parse(); else if (!strcmp(ident, "ins_attrib")) ins_attr_parse(); else if (!strcmp(ident, "op_attrib")) op_attr_parse(); else if (!strcmp(ident, "source")) source_parse(); else if (!strcmp(ident, "source_hpp")) source_hpp_parse(); else if (!strcmp(ident, "register")) reg_parse(); else if (!strcmp(ident, "frame")) frame_parse(); else if (!strcmp(ident, "encode")) encode_parse(); else if (!strcmp(ident, "pipeline")) pipe_parse(); else if (!strcmp(ident, "definitions")) definitions_parse(); else if (!strcmp(ident, "peephole")) peep_parse(); else if (!strcmp(ident, "#line")) preproc_line(); else if (!strcmp(ident, "#define")) preproc_define(); else if (!strcmp(ident, "#undef")) preproc_undef(); else { parse_err(SYNERR, "expected one of - instruct, operand, ins_attrib, op_attrib, source, register, pipeline, encode\n Found %s",ident); } } // Done with parsing, check consistency. if (_preproc_depth != 0) { parse_err(SYNERR, "End of file inside #ifdef"); } // AttributeForms ins_cost and op_cost must be defined for default behaviour if (_globalNames[AttributeForm::_ins_cost] == NULL) { parse_err(SEMERR, "Did not declare 'ins_cost' attribute"); } if (_globalNames[AttributeForm::_ins_pc_relative] == NULL) { parse_err(SEMERR, "Did not declare 'ins_pc_relative' attribute"); } if (_globalNames[AttributeForm::_op_cost] == NULL) { parse_err(SEMERR, "Did not declare 'op_cost' attribute"); } } // ******************** Private Level 1 Parse Functions ******************** //------------------------------instr_parse------------------------------------ // Parse the contents of an instruction definition, build the InstructForm to // represent that instruction, and add it to the InstructForm list. void ADLParser::instr_parse(void) { char *ident; InstructForm *instr; MatchRule *rule; int match_rules_cnt = 0; // First get the name of the instruction if( (ident = get_unique_ident(_globalNames,"instruction")) == NULL ) return; instr = new InstructForm(ident); // Create new instruction form instr->_linenum = linenum(); _globalNames.Insert(ident, instr); // Add name to the name table // Debugging Stuff if (_AD._adl_debug > 1) fprintf(stderr,"Parsing Instruction Form %s\n", ident); // Then get the operands skipws(); if (_curchar != '(') { parse_err(SYNERR, "missing '(' in instruct definition\n"); } // Parse the operand list else get_oplist(instr->_parameters, instr->_localNames); skipws(); // Skip leading whitespace // Check for block delimiter if ( (_curchar != '%') || ( next_char(), (_curchar != '{')) ) { parse_err(SYNERR, "missing '%{' in instruction definition\n"); return; } next_char(); // Maintain the invariant do { ident = get_ident(); // Grab next identifier if (ident == NULL) { parse_err(SYNERR, "keyword identifier expected at %c\n", _curchar); continue; } if (!strcmp(ident, "predicate")) instr->_predicate = pred_parse(); else if (!strcmp(ident, "match")) { // Allow one instruction have several match rules. rule = instr->_matrule; if (rule == NULL) { // This is first match rule encountered rule = match_parse(instr->_localNames); if (rule) { instr->_matrule = rule; // Special case the treatment of Control instructions. if( instr->is_ideal_control() ) { // Control instructions return a special result, 'Universe' rule->_result = "Universe"; } // Check for commutative operations with tree operands. matchrule_clone_and_swap(rule, instr->_ident, match_rules_cnt); } } else { // Find the end of the match rule list while (rule->_next != NULL) rule = rule->_next; // Add the new match rule to the list rule->_next = match_parse(instr->_localNames); if (rule->_next) { rule = rule->_next; if( instr->is_ideal_control() ) { parse_err(SYNERR, "unique match rule expected for %s\n", rule->_name); return; } assert(match_rules_cnt < 100," too many match rule clones"); char* buf = (char*) malloc(strlen(instr->_ident) + 4); sprintf(buf, "%s_%d", instr->_ident, match_rules_cnt++); rule->_result = buf; // Check for commutative operations with tree operands. matchrule_clone_and_swap(rule, instr->_ident, match_rules_cnt); } } } else if (!strcmp(ident, "encode")) { parse_err(SYNERR, "Instructions specify ins_encode, not encode\n"); } else if (!strcmp(ident, "ins_encode")) instr->_insencode = ins_encode_parse(*instr); else if (!strcmp(ident, "opcode")) instr->_opcode = opcode_parse(instr); else if (!strcmp(ident, "size")) instr->_size = size_parse(instr); else if (!strcmp(ident, "effect")) effect_parse(instr); else if (!strcmp(ident, "expand")) instr->_exprule = expand_parse(instr); else if (!strcmp(ident, "rewrite")) instr->_rewrule = rewrite_parse(); else if (!strcmp(ident, "constraint")) { parse_err(SYNERR, "Instructions do not specify a constraint\n"); } else if (!strcmp(ident, "construct")) { parse_err(SYNERR, "Instructions do not specify a construct\n"); } else if (!strcmp(ident, "format")) instr->_format = format_parse(); else if (!strcmp(ident, "interface")) { parse_err(SYNERR, "Instructions do not specify an interface\n"); } else if (!strcmp(ident, "ins_pipe")) ins_pipe_parse(*instr); else { // Done with staticly defined parts of instruction definition // Check identifier to see if it is the name of an attribute const Form *form = _globalNames[ident]; AttributeForm *attr = form ? form->is_attribute() : NULL; if( attr && (attr->_atype == INS_ATTR) ) { // Insert the new attribute into the linked list. Attribute *temp = attr_parse(ident); temp->_next = instr->_attribs; instr->_attribs = temp; } else { parse_err(SYNERR, "expected one of:\n predicate, match, encode, or the name of an instruction attribute at %s\n", ident); } } skipws(); } while(_curchar != '%'); next_char(); if (_curchar != '}') { parse_err(SYNERR, "missing '%}' in instruction definition\n"); return; } // Check for "Set" form of chain rule adjust_set_rule(instr); if (_AD._pipeline ) { if( instr->expands() ) { if( instr->_ins_pipe ) parse_err(WARN, "ins_pipe and expand rule both specified for instruction \"%s\"; ins_pipe will be unused\n", instr->_ident); } else { if( !instr->_ins_pipe ) parse_err(WARN, "No ins_pipe specified for instruction \"%s\"\n", instr->_ident); } } // Add instruction to tail of instruction list _AD.addForm(instr); // Create instruction form for each additional match rule rule = instr->_matrule; if (rule != NULL) { rule = rule->_next; while (rule != NULL) { ident = (char*)rule->_result; InstructForm *clone = new InstructForm(ident, instr, rule); // Create new instruction form _globalNames.Insert(ident, clone); // Add name to the name table // Debugging Stuff if (_AD._adl_debug > 1) fprintf(stderr,"Parsing Instruction Form %s\n", ident); // Check for "Set" form of chain rule adjust_set_rule(clone); // Add instruction to tail of instruction list _AD.addForm(clone); rule = rule->_next; clone->_matrule->_next = NULL; // One match rule per clone } } } //------------------------------matchrule_clone_and_swap----------------------- // Check for commutative operations with subtree operands, // create clones and swap operands. void ADLParser::matchrule_clone_and_swap(MatchRule* rule, const char* instr_ident, int& match_rules_cnt) { // Check for commutative operations with tree operands. int count = 0; rule->count_commutative_op(count); if (count > 0) { // Clone match rule and swap commutative operation's operands. rule->matchrule_swap_commutative_op(instr_ident, count, match_rules_cnt); } } //------------------------------adjust_set_rule-------------------------------- // Check for "Set" form of chain rule void ADLParser::adjust_set_rule(InstructForm *instr) { if (instr->_matrule == NULL || instr->_matrule->_rChild == NULL) return; const char *rch = instr->_matrule->_rChild->_opType; const Form *frm = _globalNames[rch]; if( (! strcmp(instr->_matrule->_opType,"Set")) && frm && frm->is_operand() && (! frm->ideal_only()) ) { // Previous implementation, which missed leaP*, but worked for loadCon* unsigned position = 0; const char *result = NULL; const char *name = NULL; const char *optype = NULL; MatchNode *right = instr->_matrule->_rChild; if (right->base_operand(position, _globalNames, result, name, optype)) { position = 1; const char *result2 = NULL; const char *name2 = NULL; const char *optype2 = NULL; // Can not have additional base operands in right side of match! if ( ! right->base_operand( position, _globalNames, result2, name2, optype2) ) { assert( instr->_predicate == NULL, "ADLC does not support instruction chain rules with predicates"); // Chain from input _ideal_operand_type_, // Needed for shared roots of match-trees ChainList *lst = (ChainList *)_AD._chainRules[optype]; if (lst == NULL) { lst = new ChainList(); _AD._chainRules.Insert(optype, lst); } if (!lst->search(instr->_matrule->_lChild->_opType)) { const char *cost = instr->cost(); if (cost == NULL) { cost = ((AttributeForm*)_globalNames[AttributeForm::_ins_cost])->_attrdef; } // The ADLC does not support chaining from the ideal operand type // of a predicated user-defined operand if( frm->is_operand() == NULL || frm->is_operand()->_predicate == NULL ) { lst->insert(instr->_matrule->_lChild->_opType,cost,instr->_ident); } } // Chain from input _user_defined_operand_type_, lst = (ChainList *)_AD._chainRules[result]; if (lst == NULL) { lst = new ChainList(); _AD._chainRules.Insert(result, lst); } if (!lst->search(instr->_matrule->_lChild->_opType)) { const char *cost = instr->cost(); if (cost == NULL) { cost = ((AttributeForm*)_globalNames[AttributeForm::_ins_cost])->_attrdef; } // It is safe to chain from the top-level user-defined operand even // if it has a predicate, since the predicate is checked before // the user-defined type is available. lst->insert(instr->_matrule->_lChild->_opType,cost,instr->_ident); } } else { // May have instruction chain rule if root of right-tree is an ideal OperandForm *rightOp = _globalNames[right->_opType]->is_operand(); if( rightOp ) { const Form *rightRoot = _globalNames[rightOp->_matrule->_opType]; if( rightRoot && rightRoot->ideal_only() ) { const char *chain_op = NULL; if( rightRoot->is_instruction() ) chain_op = rightOp->_ident; if( chain_op ) { // Look-up the operation in chain rule table ChainList *lst = (ChainList *)_AD._chainRules[chain_op]; if (lst == NULL) { lst = new ChainList(); _AD._chainRules.Insert(chain_op, lst); } // if (!lst->search(instr->_matrule->_lChild->_opType)) { const char *cost = instr->cost(); if (cost == NULL) { cost = ((AttributeForm*)_globalNames[AttributeForm::_ins_cost])->_attrdef; } // This chains from a top-level operand whose predicate, if any, // has been checked. lst->insert(instr->_matrule->_lChild->_opType,cost,instr->_ident); // } } } } } // end chain rule from right-tree's ideal root } } } //------------------------------oper_parse------------------------------------- void ADLParser::oper_parse(void) { char *ident; OperandForm *oper; AttributeForm *attr; MatchRule *rule; // First get the name of the operand skipws(); if( (ident = get_unique_ident(_globalNames,"operand")) == NULL ) return; oper = new OperandForm(ident); // Create new operand form oper->_linenum = linenum(); _globalNames.Insert(ident, oper); // Add name to the name table // Debugging Stuff if (_AD._adl_debug > 1) fprintf(stderr,"Parsing Operand Form %s\n", ident); // Get the component operands skipws(); if (_curchar != '(') { parse_err(SYNERR, "missing '(' in operand definition\n"); return; } else get_oplist(oper->_parameters, oper->_localNames); // Parse the component operand list skipws(); // Check for block delimiter if ((_curchar != '%') || (*(_ptr+1) != '{')) { // If not open block parse_err(SYNERR, "missing '%c{' in operand definition\n","%"); return; } next_char(); next_char(); // Skip over "%{" symbol do { ident = get_ident(); // Grab next identifier if (ident == NULL) { parse_err(SYNERR, "keyword identifier expected at %c\n", _curchar); continue; } if (!strcmp(ident, "predicate")) oper->_predicate = pred_parse(); else if (!strcmp(ident, "match")) { // Find the end of the match rule list rule = oper->_matrule; if (rule) { while (rule->_next) rule = rule->_next; // Add the new match rule to the list rule->_next = match_parse(oper->_localNames); if (rule->_next) { rule->_next->_result = oper->_ident; } } else { // This is first match rule encountered oper->_matrule = match_parse(oper->_localNames); if (oper->_matrule) { oper->_matrule->_result = oper->_ident; } } } else if (!strcmp(ident, "encode")) oper->_interface = interface_parse(); else if (!strcmp(ident, "ins_encode")) { parse_err(SYNERR, "Operands specify 'encode', not 'ins_encode'\n"); } else if (!strcmp(ident, "opcode")) { parse_err(SYNERR, "Operands do not specify an opcode\n"); } else if (!strcmp(ident, "effect")) { parse_err(SYNERR, "Operands do not specify an effect\n"); } else if (!strcmp(ident, "expand")) { parse_err(SYNERR, "Operands do not specify an expand\n"); } else if (!strcmp(ident, "rewrite")) { parse_err(SYNERR, "Operands do not specify a rewrite\n"); } else if (!strcmp(ident, "constraint"))oper->_constraint= constraint_parse(); else if (!strcmp(ident, "construct")) oper->_construct = construct_parse(); else if (!strcmp(ident, "format")) oper->_format = format_parse(); else if (!strcmp(ident, "interface")) oper->_interface = interface_parse(); // Check identifier to see if it is the name of an attribute else if (((attr = _globalNames[ident]->is_attribute()) != NULL) && (attr->_atype == OP_ATTR)) oper->_attribs = attr_parse(ident); else { parse_err(SYNERR, "expected one of - constraint, predicate, match, encode, format, construct, or the name of a defined operand attribute at %s\n", ident); } skipws(); } while(_curchar != '%'); next_char(); if (_curchar != '}') { parse_err(SYNERR, "missing '%}' in operand definition\n"); return; } // Add operand to tail of operand list _AD.addForm(oper); } //------------------------------opclass_parse---------------------------------- // Operand Classes are a block with a comma delimited list of operand names void ADLParser::opclass_parse(void) { char *ident; OpClassForm *opc; OperandForm *opForm; // First get the name of the operand class skipws(); if( (ident = get_unique_ident(_globalNames,"opclass")) == NULL ) return; opc = new OpClassForm(ident); // Create new operand class form _globalNames.Insert(ident, opc); // Add name to the name table // Debugging Stuff if (_AD._adl_debug > 1) fprintf(stderr,"Parsing Operand Class Form %s\n", ident); // Get the list of operands skipws(); if (_curchar != '(') { parse_err(SYNERR, "missing '(' in operand definition\n"); return; } do { next_char(); // Skip past open paren or comma ident = get_ident(); // Grab next identifier if (ident == NULL) { parse_err(SYNERR, "keyword identifier expected at %c\n", _curchar); continue; } // Check identifier to see if it is the name of an operand const Form *form = _globalNames[ident]; opForm = form ? form->is_operand() : NULL; if ( opForm ) { opc->_oplst.addName(ident); // Add operand to opclass list opForm->_classes.addName(opc->_ident);// Add opclass to operand list } else { parse_err(SYNERR, "expected name of a defined operand at %s\n", ident); } skipws(); // skip trailing whitespace } while (_curchar == ','); // Check for the comma // Check for closing ')' if (_curchar != ')') { parse_err(SYNERR, "missing ')' or ',' in opclass definition\n"); return; } next_char(); // Consume the ')' skipws(); // Check for closing ';' if (_curchar != ';') { parse_err(SYNERR, "missing ';' in opclass definition\n"); return; } next_char(); // Consume the ';' // Add operand to tail of operand list _AD.addForm(opc); } //------------------------------ins_attr_parse--------------------------------- void ADLParser::ins_attr_parse(void) { char *ident; char *aexpr; AttributeForm *attrib; // get name for the instruction attribute skipws(); // Skip leading whitespace if( (ident = get_unique_ident(_globalNames,"inst_attrib")) == NULL ) return; // Debugging Stuff if (_AD._adl_debug > 1) fprintf(stderr,"Parsing Ins_Attribute Form %s\n", ident); // Get default value of the instruction attribute skipws(); // Skip whitespace if ((aexpr = get_paren_expr("attribute default expression string")) == NULL) { parse_err(SYNERR, "missing '(' in ins_attrib definition\n"); return; } // Debug Stuff if (_AD._adl_debug > 1) fprintf(stderr,"Attribute Expression: %s\n", aexpr); // Check for terminator if (_curchar != ';') { parse_err(SYNERR, "missing ';' in ins_attrib definition\n"); return; } next_char(); // Advance past the ';' // Construct the attribute, record global name, and store in ArchDesc attrib = new AttributeForm(ident, INS_ATTR, aexpr); _globalNames.Insert(ident, attrib); // Add name to the name table _AD.addForm(attrib); } //------------------------------op_attr_parse---------------------------------- void ADLParser::op_attr_parse(void) { char *ident; char *aexpr; AttributeForm *attrib; // get name for the operand attribute skipws(); // Skip leading whitespace if( (ident = get_unique_ident(_globalNames,"op_attrib")) == NULL ) return; // Debugging Stuff if (_AD._adl_debug > 1) fprintf(stderr,"Parsing Op_Attribute Form %s\n", ident); // Get default value of the instruction attribute skipws(); // Skip whitespace if ((aexpr = get_paren_expr("attribute default expression string")) == NULL) { parse_err(SYNERR, "missing '(' in op_attrib definition\n"); return; } // Debug Stuff if (_AD._adl_debug > 1) fprintf(stderr,"Attribute Expression: %s\n", aexpr); // Check for terminator if (_curchar != ';') { parse_err(SYNERR, "missing ';' in op_attrib definition\n"); return; } next_char(); // Advance past the ';' // Construct the attribute, record global name, and store in ArchDesc attrib = new AttributeForm(ident, OP_ATTR, aexpr); _globalNames.Insert(ident, attrib); _AD.addForm(attrib); } //------------------------------definitions_parse----------------------------------- void ADLParser::definitions_parse(void) { skipws(); // Skip leading whitespace if (_curchar == '%' && *(_ptr+1) == '{') { next_char(); next_char(); // Skip "%{" skipws(); while (_curchar != '%' && *(_ptr+1) != '}') { // Process each definition until finding closing string "%}" char *token = get_ident(); if (token == NULL) { parse_err(SYNERR, "missing identifier inside definitions block.\n"); return; } if (strcmp(token,"int_def")==0) { int_def_parse(); } // if (strcmp(token,"str_def")==0) { str_def_parse(); } skipws(); } } else { parse_err(SYNERR, "Missing %%{ ... %%} block after definitions keyword.\n"); return; } } //------------------------------int_def_parse---------------------------------- // Parse Example: // int_def MEMORY_REF_COST ( 200, DEFAULT_COST * 2); // ( , ); // void ADLParser::int_def_parse(void) { char *name = NULL; // Name of definition char *value = NULL; // its value, int int_value = -1; // positive values only char *description = NULL; // textual description // Get definition name skipws(); // Skip whitespace name = get_ident(); if (name == NULL) { parse_err(SYNERR, "missing definition name after int_def\n"); return; } // Check for value of int_def dname( integer_value [, string_expression ] ) skipws(); if (_curchar == '(') { // Parse the integer value. next_char(); value = get_ident(); if (value == NULL) { parse_err(SYNERR, "missing value in int_def\n"); return; } if( !is_int_token(value, int_value) ) { parse_err(SYNERR, "value in int_def is not recognized as integer\n"); return; } skipws(); // Check for description if (_curchar == ',') { next_char(); // skip ',' description = get_expr("int_def description", ")"); if (description == NULL) { parse_err(SYNERR, "invalid or missing description in int_def\n"); return; } trim(description); } if (_curchar != ')') { parse_err(SYNERR, "missing ')' in register definition statement\n"); return; } next_char(); } // Check for closing ';' skipws(); if (_curchar != ';') { parse_err(SYNERR, "missing ';' after int_def\n"); return; } next_char(); // move past ';' // Debug Stuff if (_AD._adl_debug > 1) { fprintf(stderr,"int_def: %s ( %s, %s )\n", name, (value), (description ? description : "")); } // Record new definition. Expr *expr = new Expr(name, description, int_value, int_value); const Expr *old_expr = _AD.globalDefs().define(name, expr); if (old_expr != NULL) { parse_err(SYNERR, "Duplicate definition\n"); return; } return; } //------------------------------source_parse----------------------------------- void ADLParser::source_parse(void) { SourceForm *source; // Encode class for instruction/operand char *rule = NULL; // String representation of encode rule skipws(); // Skip leading whitespace if ( (rule = find_cpp_block("source block")) == NULL ) { parse_err(SYNERR, "incorrect or missing block for 'source'.\n"); return; } // Debug Stuff if (_AD._adl_debug > 1) fprintf(stderr,"Source Form: %s\n", rule); source = new SourceForm(rule); // Build new Source object _AD.addForm(source); // skipws(); } //------------------------------source_hpp_parse------------------------------- // Parse a source_hpp %{ ... %} block. // The code gets stuck into the ad_.hpp file. // If the source_hpp block appears before the register block in the AD // file, it goes up at the very top of the ad_.hpp file, so that // it can be used by register encodings, etc. Otherwise, it goes towards // the bottom, where it's useful as a global definition to *.cpp files. void ADLParser::source_hpp_parse(void) { char *rule = NULL; // String representation of encode rule skipws(); // Skip leading whitespace if ( (rule = find_cpp_block("source_hpp block")) == NULL ) { parse_err(SYNERR, "incorrect or missing block for 'source_hpp'.\n"); return; } // Debug Stuff if (_AD._adl_debug > 1) fprintf(stderr,"Header Form: %s\n", rule); if (_AD.get_registers() == NULL) { // Very early in the file, before reg_defs, we collect pre-headers. PreHeaderForm* pre_header = new PreHeaderForm(rule); _AD.addForm(pre_header); } else { // Normally, we collect header info, placed at the bottom of the hpp file. HeaderForm* header = new HeaderForm(rule); _AD.addForm(header); } } //------------------------------reg_parse-------------------------------------- void ADLParser::reg_parse(void) { // Create the RegisterForm for the architecture description. RegisterForm *regBlock = new RegisterForm(); // Build new Source object regBlock->_linenum = linenum(); _AD.addForm(regBlock); skipws(); // Skip leading whitespace if (_curchar == '%' && *(_ptr+1) == '{') { next_char(); next_char(); // Skip "%{" skipws(); while (_curchar != '%' && *(_ptr+1) != '}') { char *token = get_ident(); if (token == NULL) { parse_err(SYNERR, "missing identifier inside register block.\n"); return; } if (strcmp(token,"reg_def")==0) { reg_def_parse(); } else if (strcmp(token,"reg_class")==0) { reg_class_parse(); } else if (strcmp(token,"alloc_class")==0) { alloc_class_parse(); } else if (strcmp(token,"#define")==0) { preproc_define(); } else { parse_err(SYNERR, "bad token %s inside register block.\n", token); break; } skipws(); } } else { parse_err(SYNERR, "Missing %c{ ... %c} block after register keyword.\n",'%','%'); return; } // Add reg_class spill_regs regBlock->addSpillRegClass(); } //------------------------------encode_parse----------------------------------- void ADLParser::encode_parse(void) { EncodeForm *encBlock; // Information about instruction/operand encoding char *desc = NULL; // String representation of encode rule _AD.getForm(&encBlock); if ( encBlock == NULL) { // Create the EncodeForm for the architecture description. encBlock = new EncodeForm(); // Build new Source object _AD.addForm(encBlock); } skipws(); // Skip leading whitespace if (_curchar == '%' && *(_ptr+1) == '{') { next_char(); next_char(); // Skip "%{" skipws(); while (_curchar != '%' && *(_ptr+1) != '}') { char *token = get_ident(); if (token == NULL) { parse_err(SYNERR, "missing identifier inside encoding block.\n"); return; } if (strcmp(token,"enc_class")==0) { enc_class_parse(); } skipws(); } } else { parse_err(SYNERR, "Missing %c{ ... %c} block after encode keyword.\n",'%','%'); return; } } //------------------------------enc_class_parse-------------------------------- void ADLParser::enc_class_parse(void) { char *ec_name; // Name of encoding class being defined // Get encoding class name skipws(); // Skip whitespace ec_name = get_ident(); if (ec_name == NULL) { parse_err(SYNERR, "missing encoding class name after encode.\n"); return; } EncClass *encoding = _AD._encode->add_EncClass(ec_name); encoding->_linenum = linenum(); skipws(); // Skip leading whitespace // Check for optional parameter list if (_curchar == '(') { do { char *pType = NULL; // parameter type char *pName = NULL; // parameter name next_char(); // skip open paren & comma characters skipws(); if (_curchar == ')') break; // Get parameter type pType = get_ident(); if (pType == NULL) { parse_err(SYNERR, "parameter type expected at %c\n", _curchar); return; } skipws(); // Get parameter name pName = get_ident(); if (pName == NULL) { parse_err(SYNERR, "parameter name expected at %c\n", _curchar); return; } // Record parameter type and name encoding->add_parameter( pType, pName ); skipws(); } while(_curchar == ','); if (_curchar != ')') parse_err(SYNERR, "missing ')'\n"); else { next_char(); // Skip ')' } } // Done with parameter list skipws(); // Check for block starting delimiters if ((_curchar != '%') || (*(_ptr+1) != '{')) { // If not open block parse_err(SYNERR, "missing '%c{' in enc_class definition\n", '%'); return; } next_char(); // Skip '%' next_char(); // Skip '{' enc_class_parse_block(encoding, ec_name); } void ADLParser::enc_class_parse_block(EncClass* encoding, char* ec_name) { skipws_no_preproc(); // Skip leading whitespace // Prepend location descriptor, for debugging; cf. ADLParser::find_cpp_block if (_AD._adlocation_debug) { encoding->add_code(get_line_string()); } // Collect the parts of the encode description // (1) strings that are passed through to output // (2) replacement/substitution variable, preceeded by a '$' while ( (_curchar != '%') && (*(_ptr+1) != '}') ) { // (1) // Check if there is a string to pass through to output char *start = _ptr; // Record start of the next string while ((_curchar != '$') && ((_curchar != '%') || (*(_ptr+1) != '}')) ) { // If at the start of a comment, skip past it if( (_curchar == '/') && ((*(_ptr+1) == '/') || (*(_ptr+1) == '*')) ) { skipws_no_preproc(); } else { // ELSE advance to the next character, or start of the next line next_char_or_line(); } } // If a string was found, terminate it and record in EncClass if ( start != _ptr ) { *_ptr = '\0'; // Terminate the string encoding->add_code(start); } // (2) // If we are at a replacement variable, // copy it and record in EncClass if ( _curchar == '$' ) { // Found replacement Variable char *rep_var = get_rep_var_ident_dup(); // Add flag to _strings list indicating we should check _rep_vars encoding->add_rep_var(rep_var); } } // end while part of format description next_char(); // Skip '%' next_char(); // Skip '}' skipws(); if (_AD._adlocation_debug) { encoding->add_code(end_line_marker()); } // Debug Stuff if (_AD._adl_debug > 1) fprintf(stderr,"EncodingClass Form: %s\n", ec_name); } //------------------------------frame_parse----------------------------------- void ADLParser::frame_parse(void) { FrameForm *frame; // Information about stack-frame layout char *desc = NULL; // String representation of frame skipws(); // Skip leading whitespace frame = new FrameForm(); // Build new Frame object // Check for open block sequence skipws(); // Skip leading whitespace if (_curchar == '%' && *(_ptr+1) == '{') { next_char(); next_char(); // Skip "%{" skipws(); while (_curchar != '%' && *(_ptr+1) != '}') { char *token = get_ident(); if (token == NULL) { parse_err(SYNERR, "missing identifier inside frame block.\n"); return; } if (strcmp(token,"stack_direction")==0) { stack_dir_parse(frame); } if (strcmp(token,"sync_stack_slots")==0) { sync_stack_slots_parse(frame); } if (strcmp(token,"frame_pointer")==0) { frame_pointer_parse(frame, false); } if (strcmp(token,"interpreter_frame_pointer")==0) { interpreter_frame_pointer_parse(frame, false); // Add reg_class interpreter_frame_pointer_reg if( _AD._register != NULL ) { RegClass *reg_class = _AD._register->addRegClass("interpreter_frame_pointer_reg"); char *interpreter_frame_pointer_reg = frame->_interpreter_frame_pointer_reg; if( interpreter_frame_pointer_reg != NULL ) { RegDef *regDef = _AD._register->getRegDef(interpreter_frame_pointer_reg); reg_class->addReg(regDef); // add regDef to regClass } } } if (strcmp(token,"inline_cache_reg")==0) { inline_cache_parse(frame, false); // Add reg_class inline_cache_reg if( _AD._register != NULL ) { RegClass *reg_class = _AD._register->addRegClass("inline_cache_reg"); char *inline_cache_reg = frame->_inline_cache_reg; if( inline_cache_reg != NULL ) { RegDef *regDef = _AD._register->getRegDef(inline_cache_reg); reg_class->addReg(regDef); // add regDef to regClass } } } if (strcmp(token,"compiler_method_oop_reg")==0) { parse_err(WARN, "Using obsolete Token, compiler_method_oop_reg"); skipws(); } if (strcmp(token,"interpreter_method_oop_reg")==0) { interpreter_method_oop_parse(frame, false); // Add reg_class interpreter_method_oop_reg if( _AD._register != NULL ) { RegClass *reg_class = _AD._register->addRegClass("interpreter_method_oop_reg"); char *method_oop_reg = frame->_interpreter_method_oop_reg; if( method_oop_reg != NULL ) { RegDef *regDef = _AD._register->getRegDef(method_oop_reg); reg_class->addReg(regDef); // add regDef to regClass } } } if (strcmp(token,"cisc_spilling_operand_name")==0) { cisc_spilling_operand_name_parse(frame, false); } if (strcmp(token,"stack_alignment")==0) { stack_alignment_parse(frame); } if (strcmp(token,"return_addr")==0) { return_addr_parse(frame, false); } if (strcmp(token,"in_preserve_stack_slots")==0) { preserve_stack_parse(frame); } if (strcmp(token,"out_preserve_stack_slots")==0) { parse_err(WARN, "Using obsolete token, out_preserve_stack_slots"); skipws(); } if (strcmp(token,"varargs_C_out_slots_killed")==0) { frame->_varargs_C_out_slots_killed = parse_one_arg("varargs C out slots killed"); } if (strcmp(token,"calling_convention")==0) { frame->_calling_convention = calling_convention_parse(); } if (strcmp(token,"return_value")==0) { frame->_return_value = return_value_parse(); } if (strcmp(token,"c_frame_pointer")==0) { frame_pointer_parse(frame, true); } if (strcmp(token,"c_return_addr")==0) { return_addr_parse(frame, true); } if (strcmp(token,"c_calling_convention")==0) { frame->_c_calling_convention = calling_convention_parse(); } if (strcmp(token,"c_return_value")==0) { frame->_c_return_value = return_value_parse(); } skipws(); } } else { parse_err(SYNERR, "Missing %c{ ... %c} block after encode keyword.\n",'%','%'); return; } // All Java versions are required, native versions are optional if(frame->_frame_pointer == NULL) { parse_err(SYNERR, "missing frame pointer definition in frame section.\n"); return; } // !!!!! !!!!! // if(frame->_interpreter_frame_ptr_reg == NULL) { // parse_err(SYNERR, "missing interpreter frame pointer definition in frame section.\n"); // return; // } if(frame->_alignment == NULL) { parse_err(SYNERR, "missing alignment definition in frame section.\n"); return; } if(frame->_return_addr == NULL) { parse_err(SYNERR, "missing return address location in frame section.\n"); return; } if(frame->_in_preserve_slots == NULL) { parse_err(SYNERR, "missing stack slot preservation definition in frame section.\n"); return; } if(frame->_varargs_C_out_slots_killed == NULL) { parse_err(SYNERR, "missing varargs C out slots killed definition in frame section.\n"); return; } if(frame->_calling_convention == NULL) { parse_err(SYNERR, "missing calling convention definition in frame section.\n"); return; } if(frame->_return_value == NULL) { parse_err(SYNERR, "missing return value definition in frame section.\n"); return; } // Fill natives in identically with the Java versions if not present. if(frame->_c_frame_pointer == NULL) { frame->_c_frame_pointer = frame->_frame_pointer; } if(frame->_c_return_addr == NULL) { frame->_c_return_addr = frame->_return_addr; frame->_c_return_addr_loc = frame->_return_addr_loc; } if(frame->_c_calling_convention == NULL) { frame->_c_calling_convention = frame->_calling_convention; } if(frame->_c_return_value == NULL) { frame->_c_return_value = frame->_return_value; } // Debug Stuff if (_AD._adl_debug > 1) fprintf(stderr,"Frame Form: %s\n", desc); // Create the EncodeForm for the architecture description. _AD.addForm(frame); // skipws(); } //------------------------------stack_dir_parse-------------------------------- void ADLParser::stack_dir_parse(FrameForm *frame) { char *direction = parse_one_arg("stack direction entry"); if (strcmp(direction, "TOWARDS_LOW") == 0) { frame->_direction = false; } else if (strcmp(direction, "TOWARDS_HIGH") == 0) { frame->_direction = true; } else { parse_err(SYNERR, "invalid value inside stack direction entry.\n"); return; } } //------------------------------sync_stack_slots_parse------------------------- void ADLParser::sync_stack_slots_parse(FrameForm *frame) { // Assign value into frame form frame->_sync_stack_slots = parse_one_arg("sync stack slots entry"); } //------------------------------frame_pointer_parse---------------------------- void ADLParser::frame_pointer_parse(FrameForm *frame, bool native) { char *frame_pointer = parse_one_arg("frame pointer entry"); // Assign value into frame form if (native) { frame->_c_frame_pointer = frame_pointer; } else { frame->_frame_pointer = frame_pointer; } } //------------------------------interpreter_frame_pointer_parse---------------------------- void ADLParser::interpreter_frame_pointer_parse(FrameForm *frame, bool native) { frame->_interpreter_frame_pointer_reg = parse_one_arg("interpreter frame pointer entry"); } //------------------------------inline_cache_parse----------------------------- void ADLParser::inline_cache_parse(FrameForm *frame, bool native) { frame->_inline_cache_reg = parse_one_arg("inline cache reg entry"); } //------------------------------interpreter_method_oop_parse------------------ void ADLParser::interpreter_method_oop_parse(FrameForm *frame, bool native) { frame->_interpreter_method_oop_reg = parse_one_arg("method oop reg entry"); } //------------------------------cisc_spilling_operand_parse--------------------- void ADLParser::cisc_spilling_operand_name_parse(FrameForm *frame, bool native) { frame->_cisc_spilling_operand_name = parse_one_arg("cisc spilling operand name"); } //------------------------------stack_alignment_parse-------------------------- void ADLParser::stack_alignment_parse(FrameForm *frame) { char *alignment = parse_one_arg("stack alignment entry"); // Assign value into frame frame->_alignment = alignment; } //------------------------------parse_one_arg------------------------------- char *ADLParser::parse_one_arg(const char *description) { char *token = NULL; if(_curchar == '(') { next_char(); skipws(); token = get_expr(description, ")"); if (token == NULL) { parse_err(SYNERR, "missing value inside %s.\n", description); return NULL; } next_char(); // skip the close paren if(_curchar != ';') { // check for semi-colon parse_err(SYNERR, "missing %c in.\n", ';', description); return NULL; } next_char(); // skip the semi-colon } else { parse_err(SYNERR, "Missing %c in.\n", '(', description); return NULL; } trim(token); return token; } //------------------------------return_addr_parse------------------------------ void ADLParser::return_addr_parse(FrameForm *frame, bool native) { bool in_register = true; if(_curchar == '(') { next_char(); skipws(); char *token = get_ident(); if (token == NULL) { parse_err(SYNERR, "missing value inside return address entry.\n"); return; } // check for valid values for stack/register if (strcmp(token, "REG") == 0) { in_register = true; } else if (strcmp(token, "STACK") == 0) { in_register = false; } else { parse_err(SYNERR, "invalid value inside return_address entry.\n"); return; } if (native) { frame->_c_return_addr_loc = in_register; } else { frame->_return_addr_loc = in_register; } // Parse expression that specifies register or stack position skipws(); char *token2 = get_expr("return address entry", ")"); if (token2 == NULL) { parse_err(SYNERR, "missing value inside return address entry.\n"); return; } next_char(); // skip the close paren if (native) { frame->_c_return_addr = token2; } else { frame->_return_addr = token2; } if(_curchar != ';') { // check for semi-colon parse_err(SYNERR, "missing %c in return address entry.\n", ';'); return; } next_char(); // skip the semi-colon } else { parse_err(SYNERR, "Missing %c in return_address entry.\n", '('); } } //------------------------------preserve_stack_parse--------------------------- void ADLParser::preserve_stack_parse(FrameForm *frame) { if(_curchar == '(') { char *token = get_paren_expr("preserve_stack_slots"); frame->_in_preserve_slots = token; if(_curchar != ';') { // check for semi-colon parse_err(SYNERR, "missing %c in preserve stack slot entry.\n", ';'); return; } next_char(); // skip the semi-colon } else { parse_err(SYNERR, "Missing %c in preserve stack slot entry.\n", '('); } } //------------------------------calling_convention_parse----------------------- char *ADLParser::calling_convention_parse() { char *desc = NULL; // String representation of calling_convention skipws(); // Skip leading whitespace if ( (desc = find_cpp_block("calling convention block")) == NULL ) { parse_err(SYNERR, "incorrect or missing block for 'calling_convention'.\n"); } return desc; } //------------------------------return_value_parse----------------------------- char *ADLParser::return_value_parse() { char *desc = NULL; // String representation of calling_convention skipws(); // Skip leading whitespace if ( (desc = find_cpp_block("return value block")) == NULL ) { parse_err(SYNERR, "incorrect or missing block for 'return_value'.\n"); } return desc; } //------------------------------ins_pipe_parse--------------------------------- void ADLParser::ins_pipe_parse(InstructForm &instr) { char * ident; skipws(); if ( _curchar != '(' ) { // Check for delimiter parse_err(SYNERR, "missing \"(\" in ins_pipe definition\n"); return; } next_char(); ident = get_ident(); // Grab next identifier if (ident == NULL) { parse_err(SYNERR, "keyword identifier expected at %c\n", _curchar); return; } skipws(); if ( _curchar != ')' ) { // Check for delimiter parse_err(SYNERR, "missing \")\" in ins_pipe definition\n"); return; } next_char(); // skip the close paren if(_curchar != ';') { // check for semi-colon parse_err(SYNERR, "missing %c in return value entry.\n", ';'); return; } next_char(); // skip the semi-colon // Check ident for validity if (_AD._pipeline && !_AD._pipeline->_classlist.search(ident)) { parse_err(SYNERR, "\"%s\" is not a valid pipeline class\n", ident); return; } // Add this instruction to the list in the pipeline class _AD._pipeline->_classdict[ident]->is_pipeclass()->_instructs.addName(instr._ident); // Set the name of the pipeline class in the instruction instr._ins_pipe = ident; return; } //------------------------------pipe_parse------------------------------------- void ADLParser::pipe_parse(void) { PipelineForm *pipeline; // Encode class for instruction/operand char * ident; pipeline = new PipelineForm(); // Build new Source object _AD.addForm(pipeline); skipws(); // Skip leading whitespace // Check for block delimiter if ( (_curchar != '%') || ( next_char(), (_curchar != '{')) ) { parse_err(SYNERR, "missing '%{' in pipeline definition\n"); return; } next_char(); // Maintain the invariant do { ident = get_ident(); // Grab next identifier if (ident == NULL) { parse_err(SYNERR, "keyword identifier expected at %c\n", _curchar); continue; } if (!strcmp(ident, "resources" )) resource_parse(*pipeline); else if (!strcmp(ident, "pipe_desc" )) pipe_desc_parse(*pipeline); else if (!strcmp(ident, "pipe_class")) pipe_class_parse(*pipeline); else if (!strcmp(ident, "define")) { skipws(); if ( (_curchar != '%') || ( next_char(), (_curchar != '{')) ) { parse_err(SYNERR, "expected '%{'\n"); return; } next_char(); skipws(); char *node_class = get_ident(); if (node_class == NULL) { parse_err(SYNERR, "expected identifier, found \"%c\"\n", _curchar); return; } skipws(); if (_curchar != ',' && _curchar != '=') { parse_err(SYNERR, "expected `=`, found '%c'\n", _curchar); break; } next_char(); skipws(); char *pipe_class = get_ident(); if (pipe_class == NULL) { parse_err(SYNERR, "expected identifier, found \"%c\"\n", _curchar); return; } if (_curchar != ';' ) { parse_err(SYNERR, "expected `;`, found '%c'\n", _curchar); break; } next_char(); // Skip over semi-colon skipws(); if ( (_curchar != '%') || ( next_char(), (_curchar != '}')) ) { parse_err(SYNERR, "expected '%%}', found \"%c\"\n", _curchar); } next_char(); // Check ident for validity if (_AD._pipeline && !_AD._pipeline->_classlist.search(pipe_class)) { parse_err(SYNERR, "\"%s\" is not a valid pipeline class\n", pipe_class); return; } // Add this machine node to the list in the pipeline class _AD._pipeline->_classdict[pipe_class]->is_pipeclass()->_instructs.addName(node_class); MachNodeForm *machnode = new MachNodeForm(node_class); // Create new machnode form machnode->_machnode_pipe = pipe_class; _AD.addForm(machnode); } else if (!strcmp(ident, "attributes")) { bool vsi_seen = false, bhds_seen = false; skipws(); if ( (_curchar != '%') || ( next_char(), (_curchar != '{')) ) { parse_err(SYNERR, "expected '%{'\n"); return; } next_char(); skipws(); while (_curchar != '%') { ident = get_ident(); if (ident == NULL) break; if (!strcmp(ident, "variable_size_instructions")) { skipws(); if (_curchar == ';') { next_char(); skipws(); } pipeline->_variableSizeInstrs = true; vsi_seen = true; continue; } if (!strcmp(ident, "fixed_size_instructions")) { skipws(); if (_curchar == ';') { next_char(); skipws(); } pipeline->_variableSizeInstrs = false; vsi_seen = true; continue; } if (!strcmp(ident, "branch_has_delay_slot")) { skipws(); if (_curchar == ';') { next_char(); skipws(); } pipeline->_branchHasDelaySlot = true; bhds_seen = true; continue; } if (!strcmp(ident, "max_instructions_per_bundle")) { skipws(); if (_curchar != '=') { parse_err(SYNERR, "expected `=`\n"); break; } next_char(); skipws(); pipeline->_maxInstrsPerBundle = get_int(); skipws(); if (_curchar == ';') { next_char(); skipws(); } continue; } if (!strcmp(ident, "max_bundles_per_cycle")) { skipws(); if (_curchar != '=') { parse_err(SYNERR, "expected `=`\n"); break; } next_char(); skipws(); pipeline->_maxBundlesPerCycle = get_int(); skipws(); if (_curchar == ';') { next_char(); skipws(); } continue; } if (!strcmp(ident, "instruction_unit_size")) { skipws(); if (_curchar != '=') { parse_err(SYNERR, "expected `=`, found '%c'\n", _curchar); break; } next_char(); skipws(); pipeline->_instrUnitSize = get_int(); skipws(); if (_curchar == ';') { next_char(); skipws(); } continue; } if (!strcmp(ident, "bundle_unit_size")) { skipws(); if (_curchar != '=') { parse_err(SYNERR, "expected `=`, found '%c'\n", _curchar); break; } next_char(); skipws(); pipeline->_bundleUnitSize = get_int(); skipws(); if (_curchar == ';') { next_char(); skipws(); } continue; } if (!strcmp(ident, "instruction_fetch_unit_size")) { skipws(); if (_curchar != '=') { parse_err(SYNERR, "expected `=`, found '%c'\n", _curchar); break; } next_char(); skipws(); pipeline->_instrFetchUnitSize = get_int(); skipws(); if (_curchar == ';') { next_char(); skipws(); } continue; } if (!strcmp(ident, "instruction_fetch_units")) { skipws(); if (_curchar != '=') { parse_err(SYNERR, "expected `=`, found '%c'\n", _curchar); break; } next_char(); skipws(); pipeline->_instrFetchUnits = get_int(); skipws(); if (_curchar == ';') { next_char(); skipws(); } continue; } if (!strcmp(ident, "nops")) { skipws(); if (_curchar != '(') { parse_err(SYNERR, "expected `(`, found '%c'\n", _curchar); break; } next_char(); skipws(); while (_curchar != ')') { ident = get_ident(); if (ident == NULL) { parse_err(SYNERR, "expected identifier for nop instruction, found '%c'\n", _curchar); break; } pipeline->_noplist.addName(ident); pipeline->_nopcnt++; skipws(); if (_curchar == ',') { next_char(); skipws(); } } next_char(); skipws(); if (_curchar == ';') { next_char(); skipws(); } continue; } parse_err(SYNERR, "unknown specifier \"%s\"\n", ident); } if ( (_curchar != '%') || ( next_char(), (_curchar != '}')) ) { parse_err(SYNERR, "expected '%}', found \"%c\"\n", _curchar); } next_char(); skipws(); if (pipeline->_maxInstrsPerBundle == 0) parse_err(SYNERR, "\"max_instructions_per_bundle\" unspecified\n"); if (pipeline->_instrUnitSize == 0 && pipeline->_bundleUnitSize == 0) parse_err(SYNERR, "\"instruction_unit_size\" and \"bundle_unit_size\" unspecified\n"); if (pipeline->_instrFetchUnitSize == 0) parse_err(SYNERR, "\"instruction_fetch_unit_size\" unspecified\n"); if (pipeline->_instrFetchUnits == 0) parse_err(SYNERR, "\"instruction_fetch_units\" unspecified\n"); if (!vsi_seen) parse_err(SYNERR, "\"variable_size_instruction\" or \"fixed_size_instruction\" unspecified\n"); } else { // Done with staticly defined parts of instruction definition parse_err(SYNERR, "expected one of \"resources\", \"pipe_desc\", \"pipe_class\", found \"%s\"\n", ident); return; } skipws(); if (_curchar == ';') skipws(); } while(_curchar != '%'); next_char(); if (_curchar != '}') { parse_err(SYNERR, "missing \"%}\" in pipeline definition\n"); return; } next_char(); } //------------------------------resource_parse---------------------------- void ADLParser::resource_parse(PipelineForm &pipeline) { ResourceForm *resource; char * ident; char * expr; unsigned mask; pipeline._rescount = 0; skipws(); // Skip leading whitespace if (_curchar != '(') { parse_err(SYNERR, "missing \"(\" in resource definition\n"); return; } do { next_char(); // Skip "(" or "," ident = get_ident(); // Grab next identifier if (ident == NULL) { parse_err(SYNERR, "keyword identifier expected at \"%c\"\n", _curchar); return; } skipws(); if (_curchar != '=') { mask = (1 << pipeline._rescount++); } else { next_char(); skipws(); expr = get_ident(); // Grab next identifier if (expr == NULL) { parse_err(SYNERR, "keyword identifier expected at \"%c\"\n", _curchar); return; } resource = (ResourceForm *) pipeline._resdict[expr]; if (resource == NULL) { parse_err(SYNERR, "resource \"%s\" is not defined\n", expr); return; } mask = resource->mask(); skipws(); while (_curchar == '|') { next_char(); skipws(); expr = get_ident(); // Grab next identifier if (expr == NULL) { parse_err(SYNERR, "keyword identifier expected at \"%c\"\n", _curchar); return; } resource = (ResourceForm *) pipeline._resdict[expr]; // Look up the value if (resource == NULL) { parse_err(SYNERR, "resource \"%s\" is not defined\n", expr); return; } mask |= resource->mask(); skipws(); } } resource = new ResourceForm(mask); pipeline._resdict.Insert(ident, resource); pipeline._reslist.addName(ident); } while (_curchar == ','); if (_curchar != ')') { parse_err(SYNERR, "\")\" expected at \"%c\"\n", _curchar); return; } next_char(); // Skip ")" if (_curchar == ';') next_char(); // Skip ";" } //------------------------------resource_parse---------------------------- void ADLParser::pipe_desc_parse(PipelineForm &pipeline) { char * ident; skipws(); // Skip leading whitespace if (_curchar != '(') { parse_err(SYNERR, "missing \"(\" in pipe_desc definition\n"); return; } do { next_char(); // Skip "(" or "," ident = get_ident(); // Grab next identifier if (ident == NULL) { parse_err(SYNERR, "keyword identifier expected at \"%c\"\n", _curchar); return; } // Add the name to the list pipeline._stages.addName(ident); pipeline._stagecnt++; skipws(); } while (_curchar == ','); if (_curchar != ')') { parse_err(SYNERR, "\")\" expected at \"%c\"\n", _curchar); return; } next_char(); // Skip ")" if (_curchar == ';') next_char(); // Skip ";" } //------------------------------pipe_class_parse-------------------------- void ADLParser::pipe_class_parse(PipelineForm &pipeline) { PipeClassForm *pipe_class; char * ident; char * stage; char * read_or_write; int is_write; int is_read; OperandForm *oper; skipws(); // Skip leading whitespace ident = get_ident(); // Grab next identifier if (ident == NULL) { parse_err(SYNERR, "keyword identifier expected at \"%c\"\n", _curchar); return; } // Create a record for the pipe_class pipe_class = new PipeClassForm(ident, ++pipeline._classcnt); pipeline._classdict.Insert(ident, pipe_class); pipeline._classlist.addName(ident); // Then get the operands skipws(); if (_curchar != '(') { parse_err(SYNERR, "missing \"(\" in pipe_class definition\n"); } // Parse the operand list else get_oplist(pipe_class->_parameters, pipe_class->_localNames); skipws(); // Skip leading whitespace // Check for block delimiter if ( (_curchar != '%') || ( next_char(), (_curchar != '{')) ) { parse_err(SYNERR, "missing \"%{\" in pipe_class definition\n"); return; } next_char(); do { ident = get_ident(); // Grab next identifier if (ident == NULL) { parse_err(SYNERR, "keyword identifier expected at \"%c\"\n", _curchar); continue; } skipws(); if (!strcmp(ident, "fixed_latency")) { skipws(); if (_curchar != '(') { parse_err(SYNERR, "missing \"(\" in latency definition\n"); return; } next_char(); skipws(); if( !isdigit(_curchar) ) { parse_err(SYNERR, "number expected for \"%c\" in latency definition\n", _curchar); return; } int fixed_latency = get_int(); skipws(); if (_curchar != ')') { parse_err(SYNERR, "missing \")\" in latency definition\n"); return; } next_char(); skipws(); if (_curchar != ';') { parse_err(SYNERR, "missing \";\" in latency definition\n"); return; } pipe_class->setFixedLatency(fixed_latency); next_char(); skipws(); continue; } if (!strcmp(ident, "zero_instructions") || !strcmp(ident, "no_instructions")) { skipws(); if (_curchar != ';') { parse_err(SYNERR, "missing \";\" in latency definition\n"); return; } pipe_class->setInstructionCount(0); next_char(); skipws(); continue; } if (!strcmp(ident, "one_instruction_with_delay_slot") || !strcmp(ident, "single_instruction_with_delay_slot")) { skipws(); if (_curchar != ';') { parse_err(SYNERR, "missing \";\" in latency definition\n"); return; } pipe_class->setInstructionCount(1); pipe_class->setBranchDelay(true); next_char(); skipws(); continue; } if (!strcmp(ident, "one_instruction") || !strcmp(ident, "single_instruction")) { skipws(); if (_curchar != ';') { parse_err(SYNERR, "missing \";\" in latency definition\n"); return; } pipe_class->setInstructionCount(1); next_char(); skipws(); continue; } if (!strcmp(ident, "instructions_in_first_bundle") || !strcmp(ident, "instruction_count")) { skipws(); int number_of_instructions = 1; if (_curchar != '(') { parse_err(SYNERR, "\"(\" expected at \"%c\"\n", _curchar); continue; } next_char(); skipws(); number_of_instructions = get_int(); skipws(); if (_curchar != ')') { parse_err(SYNERR, "\")\" expected at \"%c\"\n", _curchar); continue; } next_char(); skipws(); if (_curchar != ';') { parse_err(SYNERR, "missing \";\" in latency definition\n"); return; } pipe_class->setInstructionCount(number_of_instructions); next_char(); skipws(); continue; } if (!strcmp(ident, "multiple_bundles")) { skipws(); if (_curchar != ';') { parse_err(SYNERR, "missing \";\" after multiple bundles\n"); return; } pipe_class->setMultipleBundles(true); next_char(); skipws(); continue; } if (!strcmp(ident, "has_delay_slot")) { skipws(); if (_curchar != ';') { parse_err(SYNERR, "missing \";\" after \"has_delay_slot\"\n"); return; } pipe_class->setBranchDelay(true); next_char(); skipws(); continue; } if (!strcmp(ident, "force_serialization")) { skipws(); if (_curchar != ';') { parse_err(SYNERR, "missing \";\" after \"force_serialization\"\n"); return; } pipe_class->setForceSerialization(true); next_char(); skipws(); continue; } if (!strcmp(ident, "may_have_no_code")) { skipws(); if (_curchar != ';') { parse_err(SYNERR, "missing \";\" after \"may_have_no_code\"\n"); return; } pipe_class->setMayHaveNoCode(true); next_char(); skipws(); continue; } const Form *parm = pipe_class->_localNames[ident]; if (parm != NULL) { oper = parm->is_operand(); if (oper == NULL && !parm->is_opclass()) { parse_err(SYNERR, "operand name expected at %s\n", ident); continue; } if (_curchar != ':') { parse_err(SYNERR, "\":\" expected at \"%c\"\n", _curchar); continue; } next_char(); skipws(); stage = get_ident(); if (stage == NULL) { parse_err(SYNERR, "pipeline stage identifier expected at \"%c\"\n", _curchar); continue; } skipws(); if (_curchar != '(') { parse_err(SYNERR, "\"(\" expected at \"%c\"\n", _curchar); continue; } next_char(); read_or_write = get_ident(); if (read_or_write == NULL) { parse_err(SYNERR, "\"read\" or \"write\" expected at \"%c\"\n", _curchar); continue; } is_read = strcmp(read_or_write, "read") == 0; is_write = strcmp(read_or_write, "write") == 0; if (!is_read && !is_write) { parse_err(SYNERR, "\"read\" or \"write\" expected at \"%c\"\n", _curchar); continue; } skipws(); if (_curchar != ')') { parse_err(SYNERR, "\")\" expected at \"%c\"\n", _curchar); continue; } next_char(); skipws(); int more_instrs = 0; if (_curchar == '+') { next_char(); skipws(); if (_curchar < '0' || _curchar > '9') { parse_err(SYNERR, " expected at \"%c\"\n", _curchar); continue; } while (_curchar >= '0' && _curchar <= '9') { more_instrs *= 10; more_instrs += _curchar - '0'; next_char(); } skipws(); } PipeClassOperandForm *pipe_operand = new PipeClassOperandForm(stage, is_write, more_instrs); pipe_class->_localUsage.Insert(ident, pipe_operand); if (_curchar == '%') continue; if (_curchar != ';') { parse_err(SYNERR, "\";\" expected at \"%c\"\n", _curchar); continue; } next_char(); skipws(); continue; } // Scan for Resource Specifier const Form *res = pipeline._resdict[ident]; if (res != NULL) { int cyclecnt = 1; if (_curchar != ':') { parse_err(SYNERR, "\":\" expected at \"%c\"\n", _curchar); continue; } next_char(); skipws(); stage = get_ident(); if (stage == NULL) { parse_err(SYNERR, "pipeline stage identifier expected at \"%c\"\n", _curchar); continue; } skipws(); if (_curchar == '(') { next_char(); cyclecnt = get_int(); skipws(); if (_curchar != ')') { parse_err(SYNERR, "\")\" expected at \"%c\"\n", _curchar); continue; } next_char(); skipws(); } PipeClassResourceForm *resource = new PipeClassResourceForm(ident, stage, cyclecnt); int stagenum = pipeline._stages.index(stage); if (pipeline._maxcycleused < (stagenum+cyclecnt)) pipeline._maxcycleused = (stagenum+cyclecnt); pipe_class->_resUsage.addForm(resource); if (_curchar == '%') continue; if (_curchar != ';') { parse_err(SYNERR, "\";\" expected at \"%c\"\n", _curchar); continue; } next_char(); skipws(); continue; } parse_err(SYNERR, "resource expected at \"%s\"\n", ident); return; } while(_curchar != '%'); next_char(); if (_curchar != '}') { parse_err(SYNERR, "missing \"%}\" in pipe_class definition\n"); return; } next_char(); } //------------------------------peep_parse------------------------------------- void ADLParser::peep_parse(void) { Peephole *peep; // Pointer to current peephole rule form char *desc = NULL; // String representation of rule skipws(); // Skip leading whitespace peep = new Peephole(); // Build new Peephole object // Check for open block sequence skipws(); // Skip leading whitespace if (_curchar == '%' && *(_ptr+1) == '{') { next_char(); next_char(); // Skip "%{" skipws(); while (_curchar != '%' && *(_ptr+1) != '}') { char *token = get_ident(); if (token == NULL) { parse_err(SYNERR, "missing identifier inside peephole rule.\n"); return; } // check for legal subsections of peephole rule if (strcmp(token,"peepmatch")==0) { peep_match_parse(*peep); } else if (strcmp(token,"peepconstraint")==0) { peep_constraint_parse(*peep); } else if (strcmp(token,"peepreplace")==0) { peep_replace_parse(*peep); } else { parse_err(SYNERR, "expected peepmatch, peepconstraint, or peepreplace for identifier %s.\n", token); } skipws(); } } else { parse_err(SYNERR, "Missing %%{ ... %%} block after peephole keyword.\n"); return; } next_char(); // Skip past '%' next_char(); // Skip past '}' } // ******************** Private Level 2 Parse Functions ******************** //------------------------------constraint_parse------------------------------ Constraint *ADLParser::constraint_parse(void) { char *func; char *arg; // Check for constraint expression skipws(); if (_curchar != '(') { parse_err(SYNERR, "missing constraint expression, (...)\n"); return NULL; } next_char(); // Skip past '(' // Get constraint function skipws(); func = get_ident(); if (func == NULL) { parse_err(SYNERR, "missing function in constraint expression.\n"); return NULL; } if (strcmp(func,"ALLOC_IN_RC")==0 || strcmp(func,"IS_R_CLASS")==0) { // Check for '(' before argument skipws(); if (_curchar != '(') { parse_err(SYNERR, "missing '(' for constraint function's argument.\n"); return NULL; } next_char(); // Get it's argument skipws(); arg = get_ident(); if (arg == NULL) { parse_err(SYNERR, "missing argument for constraint function %s\n",func); return NULL; } // Check for ')' after argument skipws(); if (_curchar != ')') { parse_err(SYNERR, "missing ')' after constraint function argument %s\n",arg); return NULL; } next_char(); } else { parse_err(SYNERR, "Invalid constraint function %s\n",func); return NULL; } // Check for closing paren and ';' skipws(); if (_curchar != ')') { parse_err(SYNERR, "Missing ')' for constraint function %s\n",func); return NULL; } next_char(); skipws(); if (_curchar != ';') { parse_err(SYNERR, "Missing ';' after constraint.\n"); return NULL; } next_char(); // Create new "Constraint" Constraint *constraint = new Constraint(func,arg); return constraint; } //------------------------------constr_parse----------------------------------- ConstructRule *ADLParser::construct_parse(void) { return NULL; } //------------------------------reg_def_parse---------------------------------- void ADLParser::reg_def_parse(void) { char *rname; // Name of register being defined // Get register name skipws(); // Skip whitespace rname = get_ident(); if (rname == NULL) { parse_err(SYNERR, "missing register name after reg_def\n"); return; } // Check for definition of register calling convention (save on call, ...), // register save type, and register encoding value. skipws(); char *callconv = NULL; char *c_conv = NULL; char *idealtype = NULL; char *encoding = NULL; char *concrete = NULL; if (_curchar == '(') { next_char(); callconv = get_ident(); // Parse the internal calling convention, must be NS, SOC, SOE, or AS. if (callconv == NULL) { parse_err(SYNERR, "missing register calling convention value\n"); return; } if(strcmp(callconv, "SOC") && strcmp(callconv,"SOE") && strcmp(callconv, "NS") && strcmp(callconv, "AS")) { parse_err(SYNERR, "invalid value for register calling convention\n"); } skipws(); if (_curchar != ',') { parse_err(SYNERR, "missing comma in register definition statement\n"); return; } next_char(); // Parse the native calling convention, must be NS, SOC, SOE, AS c_conv = get_ident(); if (c_conv == NULL) { parse_err(SYNERR, "missing register native calling convention value\n"); return; } if(strcmp(c_conv, "SOC") && strcmp(c_conv,"SOE") && strcmp(c_conv, "NS") && strcmp(c_conv, "AS")) { parse_err(SYNERR, "invalid value for register calling convention\n"); } skipws(); if (_curchar != ',') { parse_err(SYNERR, "missing comma in register definition statement\n"); return; } next_char(); skipws(); // Parse the ideal save type idealtype = get_ident(); if (idealtype == NULL) { parse_err(SYNERR, "missing register save type value\n"); return; } skipws(); if (_curchar != ',') { parse_err(SYNERR, "missing comma in register definition statement\n"); return; } next_char(); skipws(); // Parse the encoding value encoding = get_expr("encoding", ","); if (encoding == NULL) { parse_err(SYNERR, "missing register encoding value\n"); return; } trim(encoding); if (_curchar != ',') { parse_err(SYNERR, "missing comma in register definition statement\n"); return; } next_char(); skipws(); // Parse the concrete name type // concrete = get_ident(); concrete = get_expr("concrete", ")"); if (concrete == NULL) { parse_err(SYNERR, "missing vm register name value\n"); return; } if (_curchar != ')') { parse_err(SYNERR, "missing ')' in register definition statement\n"); return; } next_char(); } // Check for closing ';' skipws(); if (_curchar != ';') { parse_err(SYNERR, "missing ';' after reg_def\n"); return; } next_char(); // move past ';' // Debug Stuff if (_AD._adl_debug > 1) { fprintf(stderr,"Register Definition: %s ( %s, %s %s )\n", rname, (callconv ? callconv : ""), (c_conv ? c_conv : ""), concrete); } // Record new register definition. _AD._register->addRegDef(rname, callconv, c_conv, idealtype, encoding, concrete); return; } //------------------------------reg_class_parse-------------------------------- void ADLParser::reg_class_parse(void) { char *cname; // Name of register class being defined // Get register class name skipws(); // Skip leading whitespace cname = get_ident(); if (cname == NULL) { parse_err(SYNERR, "missing register class name after 'reg_class'\n"); return; } // Debug Stuff if (_AD._adl_debug >1) fprintf(stderr,"Register Class: %s\n", cname); RegClass *reg_class = _AD._register->addRegClass(cname); // Collect registers in class skipws(); if (_curchar == '(') { next_char(); // Skip '(' skipws(); while (_curchar != ')') { char *rname = get_ident(); if (rname==NULL) { parse_err(SYNERR, "missing identifier inside reg_class list.\n"); return; } RegDef *regDef = _AD._register->getRegDef(rname); if (!regDef) { parse_err(SEMERR, "unknown identifier %s inside reg_class list.\n", rname); } else { reg_class->addReg(regDef); // add regDef to regClass } // Check for ',' and position to next token. skipws(); if (_curchar == ',') { next_char(); // Skip trailing ',' skipws(); } } next_char(); // Skip closing ')' } // Check for terminating ';' skipws(); if (_curchar != ';') { parse_err(SYNERR, "missing ';' at end of reg_class definition.\n"); return; } next_char(); // Skip trailing ';' // Check RegClass size, must be <= 32 registers in class. return; } //------------------------------alloc_class_parse------------------------------ void ADLParser::alloc_class_parse(void) { char *name; // Name of allocation class being defined // Get allocation class name skipws(); // Skip leading whitespace name = get_ident(); if (name == NULL) { parse_err(SYNERR, "missing allocation class name after 'reg_class'\n"); return; } // Debug Stuff if (_AD._adl_debug >1) fprintf(stderr,"Allocation Class: %s\n", name); AllocClass *alloc_class = _AD._register->addAllocClass(name); // Collect registers in class skipws(); if (_curchar == '(') { next_char(); // Skip '(' skipws(); while (_curchar != ')') { char *rname = get_ident(); if (rname==NULL) { parse_err(SYNERR, "missing identifier inside reg_class list.\n"); return; } // Check if name is a RegDef RegDef *regDef = _AD._register->getRegDef(rname); if (regDef) { alloc_class->addReg(regDef); // add regDef to allocClass } else { // name must be a RegDef or a RegClass parse_err(SYNERR, "name %s should be a previously defined reg_def.\n", rname); return; } // Check for ',' and position to next token. skipws(); if (_curchar == ',') { next_char(); // Skip trailing ',' skipws(); } } next_char(); // Skip closing ')' } // Check for terminating ';' skipws(); if (_curchar != ';') { parse_err(SYNERR, "missing ';' at end of reg_class definition.\n"); return; } next_char(); // Skip trailing ';' return; } //------------------------------peep_match_child_parse------------------------- InstructForm *ADLParser::peep_match_child_parse(PeepMatch &match, int parent, int &position, int input){ char *token = NULL; int lparen = 0; // keep track of parenthesis nesting depth int rparen = 0; // position of instruction at this depth InstructForm *inst_seen = NULL; InstructForm *child_seen = NULL; // Walk the match tree, // Record while ( lparen >= rparen ) { skipws(); // Left paren signals start of an input, collect with recursive call if (_curchar == '(') { ++lparen; next_char(); child_seen = peep_match_child_parse(match, parent, position, rparen); } // Right paren signals end of an input, may be more else if (_curchar == ')') { ++rparen; if( rparen == lparen ) { // IF rparen matches an lparen I've seen next_char(); // move past ')' } else { // ELSE leave ')' for parent assert( rparen == lparen + 1, "Should only see one extra ')'"); // if an instruction was not specified for this paren-pair if( ! inst_seen ) { // record signal entry match.add_instruction( parent, position, NameList::_signal, input ); ++position; } // ++input; // TEMPORARY return inst_seen; } } // if no parens, then check for instruction name // This instruction is the parent of a sub-tree else if ((token = get_ident_dup()) != NULL) { const Form *form = _AD._globalNames[token]; if (form) { InstructForm *inst = form->is_instruction(); // Record the first instruction at this level if( inst_seen == NULL ) { inst_seen = inst; } if (inst) { match.add_instruction( parent, position, token, input ); parent = position; ++position; } else { parse_err(SYNERR, "instruction name expected at identifier %s.\n", token); return inst_seen; } } else { parse_err(SYNERR, "missing identifier in peepmatch rule.\n"); return NULL; } } else { parse_err(SYNERR, "missing identifier in peepmatch rule.\n"); return NULL; } } // end while assert( false, "ShouldNotReachHere();"); return NULL; } //------------------------------peep_match_parse------------------------------- // Syntax for a peepmatch rule // // peepmatch ( root_instr_name [(instruction subtree)] [,(instruction subtree)]* ); // void ADLParser::peep_match_parse(Peephole &peep) { skipws(); // Check the structure of the rule // Check for open paren if (_curchar != '(') { parse_err(SYNERR, "missing '(' at start of peepmatch rule.\n"); return; } next_char(); // skip '(' // Construct PeepMatch and parse the peepmatch rule. PeepMatch *match = new PeepMatch(_ptr); int parent = -1; // parent of root int position = 0; // zero-based positions int input = 0; // input position in parent's operands InstructForm *root= peep_match_child_parse( *match, parent, position, input); if( root == NULL ) { parse_err(SYNERR, "missing instruction-name at start of peepmatch.\n"); return; } if( _curchar != ')' ) { parse_err(SYNERR, "missing ')' at end of peepmatch.\n"); return; } next_char(); // skip ')' // Check for closing semicolon skipws(); if( _curchar != ';' ) { parse_err(SYNERR, "missing ';' at end of peepmatch.\n"); return; } next_char(); // skip ';' // Store match into peep, and store peep into instruction peep.add_match(match); root->append_peephole(&peep); } //------------------------------peep_constraint_parse-------------------------- // Syntax for a peepconstraint rule // A parenthesized list of relations between operands in peepmatch subtree // // peepconstraint %{ // (instruction_number.operand_name // relational_op // instruction_number.operand_name OR register_name // [, ...] ); // // // instruction numbers are zero-based using topological order in peepmatch // void ADLParser::peep_constraint_parse(Peephole &peep) { skipws(); // Check the structure of the rule // Check for open paren if (_curchar != '(') { parse_err(SYNERR, "missing '(' at start of peepconstraint rule.\n"); return; } else { next_char(); // Skip '(' } // Check for a constraint skipws(); while( _curchar != ')' ) { // Get information on the left instruction and its operand // left-instructions's number int left_inst = get_int(); // Left-instruction's operand skipws(); if( _curchar != '.' ) { parse_err(SYNERR, "missing '.' in peepconstraint after instruction number.\n"); return; } next_char(); // Skip '.' char *left_op = get_ident_dup(); skipws(); // Collect relational operator char *relation = get_relation_dup(); skipws(); // Get information on the right instruction and its operand int right_inst; // Right-instructions's number if( isdigit(_curchar) ) { right_inst = get_int(); // Right-instruction's operand skipws(); if( _curchar != '.' ) { parse_err(SYNERR, "missing '.' in peepconstraint after instruction number.\n"); return; } next_char(); // Skip '.' } else { right_inst = -1; // Flag as being a register constraint } char *right_op = get_ident_dup(); // Construct the next PeepConstraint PeepConstraint *constraint = new PeepConstraint( left_inst, left_op, relation, right_inst, right_op ); // And append it to the list for this peephole rule peep.append_constraint( constraint ); // Check for another constraint, or end of rule skipws(); if( _curchar == ',' ) { next_char(); // Skip ',' skipws(); } else if( _curchar != ')' ) { parse_err(SYNERR, "expected ',' or ')' after peephole constraint.\n"); return; } } // end while( processing constraints ) next_char(); // Skip ')' // Check for terminating ';' skipws(); if (_curchar != ';') { parse_err(SYNERR, "missing ';' at end of peepconstraint.\n"); return; } next_char(); // Skip trailing ';' } //------------------------------peep_replace_parse----------------------------- // Syntax for a peepreplace rule // root instruction name followed by a // parenthesized list of whitespace separated instruction.operand specifiers // // peepreplace ( instr_name ( [instruction_number.operand_name]* ) ); // // void ADLParser::peep_replace_parse(Peephole &peep) { int lparen = 0; // keep track of parenthesis nesting depth int rparen = 0; // keep track of parenthesis nesting depth int icount = 0; // count of instructions in rule for naming char *str = NULL; char *token = NULL; skipws(); // Check for open paren if (_curchar != '(') { parse_err(SYNERR, "missing '(' at start of peepreplace rule.\n"); return; } else { lparen++; next_char(); } // Check for root instruction char *inst = get_ident_dup(); const Form *form = _AD._globalNames[inst]; if( form == NULL || form->is_instruction() == NULL ) { parse_err(SYNERR, "Instruction name expected at start of peepreplace.\n"); return; } // Store string representation of rule into replace PeepReplace *replace = new PeepReplace(str); replace->add_instruction( inst ); skipws(); // Start of root's operand-list if (_curchar != '(') { parse_err(SYNERR, "missing '(' at peepreplace root's operand-list.\n"); return; } else { lparen++; next_char(); } skipws(); // Get the list of operands while( _curchar != ')' ) { // Get information on an instruction and its operand // instructions's number int inst_num = get_int(); // Left-instruction's operand skipws(); if( _curchar != '.' ) { parse_err(SYNERR, "missing '.' in peepreplace after instruction number.\n"); return; } next_char(); // Skip '.' char *inst_op = get_ident_dup(); if( inst_op == NULL ) { parse_err(SYNERR, "missing operand identifier in peepreplace.\n"); return; } // Record this operand's position in peepmatch replace->add_operand( inst_num, inst_op ); skipws(); } // Check for the end of operands list skipws(); assert( _curchar == ')', "While loop should have advanced to ')'."); next_char(); // Skip ')' skipws(); // Check for end of peepreplace if( _curchar != ')' ) { parse_err(SYNERR, "missing ')' at end of peepmatch.\n"); parse_err(SYNERR, "Support one replacement instruction.\n"); return; } next_char(); // Skip ')' // Check for closing semicolon skipws(); if( _curchar != ';' ) { parse_err(SYNERR, "missing ';' at end of peepreplace.\n"); return; } next_char(); // skip ';' // Store replace into peep peep.add_replace( replace ); } //------------------------------pred_parse------------------------------------- Predicate *ADLParser::pred_parse(void) { Predicate *predicate; // Predicate class for operand char *rule = NULL; // String representation of predicate skipws(); // Skip leading whitespace int line = linenum(); if ( (rule = get_paren_expr("pred expression", true)) == NULL ) { parse_err(SYNERR, "incorrect or missing expression for 'predicate'\n"); return NULL; } // Debug Stuff if (_AD._adl_debug > 1) fprintf(stderr,"Predicate: %s\n", rule); if (_curchar != ';') { parse_err(SYNERR, "missing ';' in predicate definition\n"); return NULL; } next_char(); // Point after the terminator predicate = new Predicate(rule); // Build new predicate object skipws(); return predicate; } //------------------------------ins_encode_parse_block------------------------- // Parse the block form of ins_encode. See ins_encode_parse for more details InsEncode *ADLParser::ins_encode_parse_block(InstructForm &inst) { // Create a new encoding name based on the name of the instruction // definition, which should be unique. const char * prefix = "__enc_"; char* ec_name = (char*)malloc(strlen(inst._ident) + strlen(prefix) + 1); sprintf(ec_name, "%s%s", prefix, inst._ident); assert(_AD._encode->encClass(ec_name) == NULL, "shouldn't already exist"); EncClass *encoding = _AD._encode->add_EncClass(ec_name); encoding->_linenum = linenum(); // synthesize the arguments list for the enc_class from the // arguments to the instruct definition. const char * param = NULL; inst._parameters.reset(); while ((param = inst._parameters.iter()) != NULL) { OperandForm *opForm = (OperandForm*)inst._localNames[param]; encoding->add_parameter(opForm->_ident, param); } // Add the prologue to create the MacroAssembler encoding->add_code("\n" " // Define a MacroAssembler instance for use by the encoding. The\n" " // name is chosen to match the __ idiom used for assembly in other\n" " // parts of hotspot and assumes the existence of the standard\n" " // #define __ _masm.\n" " MacroAssembler _masm(&cbuf);\n"); // Parse the following %{ }% block enc_class_parse_block(encoding, ec_name); // Build an encoding rule which invokes the encoding rule we just // created, passing all arguments that we received. InsEncode *encrule = new InsEncode(); // Encode class for instruction NameAndList *params = encrule->add_encode(ec_name); inst._parameters.reset(); while ((param = inst._parameters.iter()) != NULL) { params->add_entry(param); } return encrule; } //------------------------------ins_encode_parse------------------------------- // Encode rules have the form // ins_encode( encode_class_name(parameter_list), ... ); // // The "encode_class_name" must be defined in the encode section // The parameter list contains $names that are locals. // // Alternatively it can be written like this: // // ins_encode %{ // ... // body // %} // // which synthesizes a new encoding class taking the same arguments as // the InstructForm, and automatically prefixes the definition with: // // MacroAssembler masm(&cbuf);\n"); // // making it more compact to take advantage of the MacroAssembler and // placing the assembly closer to it's use by instructions. InsEncode *ADLParser::ins_encode_parse(InstructForm &inst) { // Parse encode class name skipws(); // Skip whitespace if (_curchar != '(') { // Check for ins_encode %{ form if ((_curchar == '%') && (*(_ptr+1) == '{')) { next_char(); // Skip '%' next_char(); // Skip '{' // Parse the block form of ins_encode return ins_encode_parse_block(inst); } parse_err(SYNERR, "missing '%%{' or '(' in ins_encode definition\n"); return NULL; } next_char(); // move past '(' skipws(); InsEncode *encrule = new InsEncode(); // Encode class for instruction encrule->_linenum = linenum(); char *ec_name = NULL; // String representation of encode rule // identifier is optional. while (_curchar != ')') { ec_name = get_ident(); if (ec_name == NULL) { parse_err(SYNERR, "Invalid encode class name after 'ins_encode('.\n"); return NULL; } // Check that encoding is defined in the encode section EncClass *encode_class = _AD._encode->encClass(ec_name); if (encode_class == NULL) { // Like to defer checking these till later... // parse_err(WARN, "Using an undefined encode class '%s' in 'ins_encode'.\n", ec_name); } // Get list for encode method's parameters NameAndList *params = encrule->add_encode(ec_name); // Parse the parameters to this encode method. skipws(); if ( _curchar == '(' ) { next_char(); // move past '(' for parameters // Parse the encode method's parameters while (_curchar != ')') { char *param = get_ident_or_literal_constant("encoding operand"); if ( param != NULL ) { // Found a parameter: // Check it is a local name, add it to the list, then check for more // New: allow hex constants as parameters to an encode method. // New: allow parenthesized expressions as parameters. // New: allow "primary", "secondary", "tertiary" as parameters. // New: allow user-defined register name as parameter if ( (inst._localNames[param] == NULL) && !ADLParser::is_literal_constant(param) && (Opcode::as_opcode_type(param) == Opcode::NOT_AN_OPCODE) && ((_AD._register == NULL ) || (_AD._register->getRegDef(param) == NULL)) ) { parse_err(SYNERR, "Using non-locally defined parameter %s for encoding %s.\n", param, ec_name); return NULL; } params->add_entry(param); skipws(); if (_curchar == ',' ) { // More parameters to come next_char(); // move past ',' between parameters skipws(); // Skip to next parameter } else if (_curchar == ')') { // Done with parameter list } else { // Only ',' or ')' are valid after a parameter name parse_err(SYNERR, "expected ',' or ')' after parameter %s.\n", ec_name); return NULL; } } else { skipws(); // Did not find a parameter if (_curchar == ',') { parse_err(SYNERR, "Expected encode parameter before ',' in encoding %s.\n", ec_name); return NULL; } if (_curchar != ')') { parse_err(SYNERR, "Expected ')' after encode parameters.\n"); return NULL; } } } // WHILE loop collecting parameters next_char(); // move past ')' at end of parameters } // done with parameter list for encoding // Check for ',' or ')' after encoding skipws(); // move to character after parameters if ( _curchar == ',' ) { // Found a ',' next_char(); // move past ',' between encode methods skipws(); } else if ( _curchar != ')' ) { // If not a ',' then only a ')' is allowed parse_err(SYNERR, "Expected ')' after encoding %s.\n", ec_name); return NULL; } // Check for ',' separating parameters // if ( _curchar != ',' && _curchar != ')' ) { // parse_err(SYNERR, "expected ',' or ')' after encode method inside ins_encode.\n"); // return NULL; // } } // done parsing ins_encode methods and their parameters if (_curchar != ')') { parse_err(SYNERR, "Missing ')' at end of ins_encode description.\n"); return NULL; } next_char(); // move past ')' skipws(); // Skip leading whitespace if ( _curchar != ';' ) { parse_err(SYNERR, "Missing ';' at end of ins_encode.\n"); return NULL; } next_char(); // move past ';' skipws(); // be friendly to oper_parse() // Debug Stuff if (_AD._adl_debug > 1) fprintf(stderr,"Instruction Encode: %s\n", ec_name); return encrule; } //------------------------------size_parse----------------------------------- char* ADLParser::size_parse(InstructForm *instr) { char* sizeOfInstr = NULL; // Get value of the instruction's size skipws(); // Parse size sizeOfInstr = get_paren_expr("size expression"); if (sizeOfInstr == NULL) { parse_err(SYNERR, "size of opcode expected at %c\n", _curchar); return NULL; } skipws(); // Check for terminator if (_curchar != ';') { parse_err(SYNERR, "missing ';' in ins_attrib definition\n"); return NULL; } next_char(); // Advance past the ';' skipws(); // necessary for instr_parse() // Debug Stuff if (_AD._adl_debug > 1) { if (sizeOfInstr != NULL) { fprintf(stderr,"size of opcode: %s\n", sizeOfInstr); } } return sizeOfInstr; } //------------------------------opcode_parse----------------------------------- Opcode * ADLParser::opcode_parse(InstructForm *instr) { char *primary = NULL; char *secondary = NULL; char *tertiary = NULL; char *val = NULL; Opcode *opcode = NULL; // Get value of the instruction's opcode skipws(); if (_curchar != '(') { // Check for parenthesized operand list parse_err(SYNERR, "missing '(' in expand instruction declaration\n"); return NULL; } next_char(); // skip open paren skipws(); if (_curchar != ')') { // Parse primary, secondary, and tertiary opcodes, if provided. if ( ((primary = get_ident_or_literal_constant("primary opcode")) == NULL) ) { parse_err(SYNERR, "primary hex opcode expected at %c\n", _curchar); return NULL; } skipws(); if (_curchar == ',') { next_char(); skipws(); // Parse secondary opcode if ( ((secondary = get_ident_or_literal_constant("secondary opcode")) == NULL) ) { parse_err(SYNERR, "secondary hex opcode expected at %c\n", _curchar); return NULL; } skipws(); if (_curchar == ',') { next_char(); skipws(); // Parse tertiary opcode if ( ((tertiary = get_ident_or_literal_constant("tertiary opcode")) == NULL) ) { parse_err(SYNERR,"tertiary hex opcode expected at %c\n", _curchar); return NULL; } skipws(); } } skipws(); if (_curchar != ')') { parse_err(SYNERR, "Missing ')' in opcode description\n"); return NULL; } } next_char(); // Skip ')' skipws(); // Check for terminator if (_curchar != ';') { parse_err(SYNERR, "missing ';' in ins_attrib definition\n"); return NULL; } next_char(); // Advance past the ';' skipws(); // necessary for instr_parse() // Debug Stuff if (_AD._adl_debug > 1) { if (primary != NULL) fprintf(stderr,"primary opcode: %s\n", primary); if (secondary != NULL) fprintf(stderr,"secondary opcode: %s\n", secondary); if (tertiary != NULL) fprintf(stderr,"tertiary opcode: %s\n", tertiary); } // Generate new object and return opcode = new Opcode(primary, secondary, tertiary); return opcode; } //------------------------------interface_parse-------------------------------- Interface *ADLParser::interface_parse(void) { char *iface_name = NULL; // Name of interface class being used char *iface_code = NULL; // Describe components of this class // Get interface class name skipws(); // Skip whitespace if (_curchar != '(') { parse_err(SYNERR, "Missing '(' at start of interface description.\n"); return NULL; } next_char(); // move past '(' skipws(); iface_name = get_ident(); if (iface_name == NULL) { parse_err(SYNERR, "missing interface name after 'interface'.\n"); return NULL; } skipws(); if (_curchar != ')') { parse_err(SYNERR, "Missing ')' after name of interface.\n"); return NULL; } next_char(); // move past ')' // Get details of the interface, // for the type of interface indicated by iface_name. Interface *inter = NULL; skipws(); if ( _curchar != ';' ) { if ( strcmp(iface_name,"MEMORY_INTER") == 0 ) { inter = mem_interface_parse(); } else if ( strcmp(iface_name,"COND_INTER") == 0 ) { inter = cond_interface_parse(); } // The parse routines consume the "%}" // Check for probable extra ';' after defining block. if ( _curchar == ';' ) { parse_err(SYNERR, "Extra ';' after defining interface block.\n"); next_char(); // Skip ';' return NULL; } } else { next_char(); // move past ';' // Create appropriate interface object if ( strcmp(iface_name,"REG_INTER") == 0 ) { inter = new RegInterface(); } else if ( strcmp(iface_name,"CONST_INTER") == 0 ) { inter = new ConstInterface(); } } skipws(); // be friendly to oper_parse() // Debug Stuff if (_AD._adl_debug > 1) fprintf(stderr,"Interface Form: %s\n", iface_name); // Create appropriate interface object and return. return inter; } //------------------------------mem_interface_parse---------------------------- Interface *ADLParser::mem_interface_parse(void) { // Fields for MemInterface char *base = NULL; char *index = NULL; char *scale = NULL; char *disp = NULL; if (_curchar != '%') { parse_err(SYNERR, "Missing '%{' for 'interface' block.\n"); return NULL; } next_char(); // Skip '%' if (_curchar != '{') { parse_err(SYNERR, "Missing '%{' for 'interface' block.\n"); return NULL; } next_char(); // Skip '{' skipws(); do { char *field = get_ident(); if (field == NULL) { parse_err(SYNERR, "Expected keyword, base|index|scale|disp, or '%}' ending interface.\n"); return NULL; } if ( strcmp(field,"base") == 0 ) { base = interface_field_parse(); } else if ( strcmp(field,"index") == 0 ) { index = interface_field_parse(); } else if ( strcmp(field,"scale") == 0 ) { scale = interface_field_parse(); } else if ( strcmp(field,"disp") == 0 ) { disp = interface_field_parse(); } else { parse_err(SYNERR, "Expected keyword, base|index|scale|disp, or '%}' ending interface.\n"); return NULL; } } while( _curchar != '%' ); next_char(); // Skip '%' if ( _curchar != '}' ) { parse_err(SYNERR, "Missing '%}' for 'interface' block.\n"); return NULL; } next_char(); // Skip '}' // Construct desired object and return Interface *inter = new MemInterface(base, index, scale, disp); return inter; } //------------------------------cond_interface_parse--------------------------- Interface *ADLParser::cond_interface_parse(void) { char *equal; char *not_equal; char *less; char *greater_equal; char *less_equal; char *greater; const char *equal_format = "eq"; const char *not_equal_format = "ne"; const char *less_format = "lt"; const char *greater_equal_format = "ge"; const char *less_equal_format = "le"; const char *greater_format = "gt"; if (_curchar != '%') { parse_err(SYNERR, "Missing '%{' for 'cond_interface' block.\n"); return NULL; } next_char(); // Skip '%' if (_curchar != '{') { parse_err(SYNERR, "Missing '%{' for 'cond_interface' block.\n"); return NULL; } next_char(); // Skip '{' skipws(); do { char *field = get_ident(); if (field == NULL) { parse_err(SYNERR, "Expected keyword, base|index|scale|disp, or '%}' ending interface.\n"); return NULL; } if ( strcmp(field,"equal") == 0 ) { equal = interface_field_parse(&equal_format); } else if ( strcmp(field,"not_equal") == 0 ) { not_equal = interface_field_parse(¬_equal_format); } else if ( strcmp(field,"less") == 0 ) { less = interface_field_parse(&less_format); } else if ( strcmp(field,"greater_equal") == 0 ) { greater_equal = interface_field_parse(&greater_equal_format); } else if ( strcmp(field,"less_equal") == 0 ) { less_equal = interface_field_parse(&less_equal_format); } else if ( strcmp(field,"greater") == 0 ) { greater = interface_field_parse(&greater_format); } else { parse_err(SYNERR, "Expected keyword, base|index|scale|disp, or '%}' ending interface.\n"); return NULL; } } while( _curchar != '%' ); next_char(); // Skip '%' if ( _curchar != '}' ) { parse_err(SYNERR, "Missing '%}' for 'interface' block.\n"); return NULL; } next_char(); // Skip '}' // Construct desired object and return Interface *inter = new CondInterface(equal, equal_format, not_equal, not_equal_format, less, less_format, greater_equal, greater_equal_format, less_equal, less_equal_format, greater, greater_format); return inter; } //------------------------------interface_field_parse-------------------------- char *ADLParser::interface_field_parse(const char ** format) { char *iface_field = NULL; // Get interface field skipws(); // Skip whitespace if (_curchar != '(') { parse_err(SYNERR, "Missing '(' at start of interface field.\n"); return NULL; } next_char(); // move past '(' skipws(); if ( _curchar != '0' && _curchar != '$' ) { parse_err(SYNERR, "missing or invalid interface field contents.\n"); return NULL; } iface_field = get_rep_var_ident(); if (iface_field == NULL) { parse_err(SYNERR, "missing or invalid interface field contents.\n"); return NULL; } skipws(); if (format != NULL && _curchar == ',') { next_char(); skipws(); if (_curchar != '"') { parse_err(SYNERR, "Missing '\"' in field format .\n"); return NULL; } next_char(); char *start = _ptr; // Record start of the next string while ((_curchar != '"') && (_curchar != '%') && (_curchar != '\n')) { if (_curchar == '\\') next_char(); // superquote if (_curchar == '\n') parse_err(SYNERR, "newline in string"); // unimplemented! next_char(); } if (_curchar != '"') { parse_err(SYNERR, "Missing '\"' at end of field format .\n"); return NULL; } // If a string was found, terminate it and record in FormatRule if ( start != _ptr ) { *_ptr = '\0'; // Terminate the string *format = start; } next_char(); skipws(); } if (_curchar != ')') { parse_err(SYNERR, "Missing ')' after interface field.\n"); return NULL; } next_char(); // move past ')' skipws(); if ( _curchar != ';' ) { parse_err(SYNERR, "Missing ';' at end of interface field.\n"); return NULL; } next_char(); // move past ';' skipws(); // be friendly to interface_parse() return iface_field; } //------------------------------match_parse------------------------------------ MatchRule *ADLParser::match_parse(FormDict &operands) { MatchRule *match; // Match Rule class for instruction/operand char *cnstr = NULL; // Code for constructor int depth = 0; // Counter for matching parentheses int numleaves = 0; // Counter for number of leaves in rule // Parse the match rule tree MatchNode *mnode = matchNode_parse(operands, depth, numleaves, true); // Either there is a block with a constructor, or a ';' here skipws(); // Skip whitespace if ( _curchar == ';' ) { // Semicolon is valid terminator cnstr = NULL; // no constructor for this form next_char(); // Move past the ';', replaced with '\0' } else if ((cnstr = find_cpp_block("match constructor")) == NULL ) { parse_err(SYNERR, "invalid construction of match rule\n" "Missing ';' or invalid '%{' and '%}' constructor\n"); return NULL; // No MatchRule to return } if (_AD._adl_debug > 1) if (cnstr) fprintf(stderr,"Match Constructor: %s\n", cnstr); // Build new MatchRule object match = new MatchRule(_AD, mnode, depth, cnstr, numleaves); skipws(); // Skip any trailing whitespace return match; // Return MatchRule object } //------------------------------format_parse----------------------------------- FormatRule* ADLParser::format_parse(void) { char *desc = NULL; FormatRule *format = (new FormatRule(desc)); // Without expression form, MUST have a code block; skipws(); // Skip whitespace if ( _curchar == ';' ) { // Semicolon is valid terminator desc = NULL; // no constructor for this form next_char(); // Move past the ';', replaced with '\0' } else if ( _curchar == '%' && *(_ptr+1) == '{') { next_char(); // Move past the '%' next_char(); // Move past the '{' skipws(); if (_curchar == '$') { char* ident = get_rep_var_ident(); if (strcmp(ident, "$$template") == 0) return template_parse(); parse_err(SYNERR, "Unknown \"%s\" directive in format", ident); return NULL; } // Check for the opening '"' inside the format description if ( _curchar == '"' ) { next_char(); // Move past the initial '"' if( _curchar == '"' ) { // Handle empty format string case *_ptr = '\0'; // Terminate empty string format->_strings.addName(_ptr); } // Collect the parts of the format description // (1) strings that are passed through to tty->print // (2) replacement/substitution variable, preceeded by a '$' // (3) multi-token ANSIY C style strings while ( true ) { if ( _curchar == '%' || _curchar == '\n' ) { if ( _curchar != '"' ) { parse_err(SYNERR, "missing '\"' at end of format block"); return NULL; } } // (1) // Check if there is a string to pass through to output char *start = _ptr; // Record start of the next string while ((_curchar != '$') && (_curchar != '"') && (_curchar != '%') && (_curchar != '\n')) { if (_curchar == '\\') { next_char(); // superquote if ((_curchar == '$') || (_curchar == '%')) // hack to avoid % escapes and warnings about undefined \ escapes *(_ptr-1) = _curchar; } if (_curchar == '\n') parse_err(SYNERR, "newline in string"); // unimplemented! next_char(); } // If a string was found, terminate it and record in FormatRule if ( start != _ptr ) { *_ptr = '\0'; // Terminate the string format->_strings.addName(start); } // (2) // If we are at a replacement variable, // copy it and record in FormatRule if ( _curchar == '$' ) { next_char(); // Move past the '$' char* rep_var = get_ident(); // Nil terminate the variable name rep_var = strdup(rep_var);// Copy the string *_ptr = _curchar; // and replace Nil with original character format->_rep_vars.addName(rep_var); // Add flag to _strings list indicating we should check _rep_vars format->_strings.addName(NameList::_signal); } // (3) // Allow very long strings to be broken up, // using the ANSI C syntax "foo\n" "bar" if ( _curchar == '"') { next_char(); // Move past the '"' skipws(); // Skip white space before next string token if ( _curchar != '"') { break; } else { // Found one. Skip both " and the whitespace in between. next_char(); } } } // end while part of format description // Check for closing '"' and '%}' in format description skipws(); // Move to closing '%}' if ( _curchar != '%' ) { parse_err(SYNERR, "non-blank characters between closing '\"' and '%' in format"); return NULL; } } // Done with format description inside skipws(); // Past format description, at '%' if ( _curchar != '%' || *(_ptr+1) != '}' ) { parse_err(SYNERR, "missing '%}' at end of format block"); return NULL; } next_char(); // Move past the '%' next_char(); // Move past the '}' } else { // parameter list alone must terminate with a ';' parse_err(SYNERR, "missing ';' after Format expression"); return NULL; } // Debug Stuff if (_AD._adl_debug > 1) fprintf(stderr,"Format Rule: %s\n", desc); skipws(); return format; } //------------------------------template_parse----------------------------------- FormatRule* ADLParser::template_parse(void) { char *desc = NULL; FormatRule *format = (new FormatRule(desc)); skipws(); while ( (_curchar != '%') && (*(_ptr+1) != '}') ) { // (1) // Check if there is a string to pass through to output { char *start = _ptr; // Record start of the next string while ((_curchar != '$') && ((_curchar != '%') || (*(_ptr+1) != '}')) ) { // If at the start of a comment, skip past it if( (_curchar == '/') && ((*(_ptr+1) == '/') || (*(_ptr+1) == '*')) ) { skipws_no_preproc(); } else { // ELSE advance to the next character, or start of the next line next_char_or_line(); } } // If a string was found, terminate it and record in EncClass if ( start != _ptr ) { *_ptr = '\0'; // Terminate the string // Add flag to _strings list indicating we should check _rep_vars format->_strings.addName(NameList::_signal2); format->_strings.addName(start); } } // (2) // If we are at a replacement variable, // copy it and record in EncClass if ( _curchar == '$' ) { // Found replacement Variable char *rep_var = get_rep_var_ident_dup(); if (strcmp(rep_var, "$emit") == 0) { // switch to normal format parsing next_char(); next_char(); skipws(); // Check for the opening '"' inside the format description if ( _curchar == '"' ) { next_char(); // Move past the initial '"' if( _curchar == '"' ) { // Handle empty format string case *_ptr = '\0'; // Terminate empty string format->_strings.addName(_ptr); } // Collect the parts of the format description // (1) strings that are passed through to tty->print // (2) replacement/substitution variable, preceeded by a '$' // (3) multi-token ANSIY C style strings while ( true ) { if ( _curchar == '%' || _curchar == '\n' ) { parse_err(SYNERR, "missing '\"' at end of format block"); return NULL; } // (1) // Check if there is a string to pass through to output char *start = _ptr; // Record start of the next string while ((_curchar != '$') && (_curchar != '"') && (_curchar != '%') && (_curchar != '\n')) { if (_curchar == '\\') next_char(); // superquote if (_curchar == '\n') parse_err(SYNERR, "newline in string"); // unimplemented! next_char(); } // If a string was found, terminate it and record in FormatRule if ( start != _ptr ) { *_ptr = '\0'; // Terminate the string format->_strings.addName(start); } // (2) // If we are at a replacement variable, // copy it and record in FormatRule if ( _curchar == '$' ) { next_char(); // Move past the '$' char* next_rep_var = get_ident(); // Nil terminate the variable name next_rep_var = strdup(next_rep_var);// Copy the string *_ptr = _curchar; // and replace Nil with original character format->_rep_vars.addName(next_rep_var); // Add flag to _strings list indicating we should check _rep_vars format->_strings.addName(NameList::_signal); } // (3) // Allow very long strings to be broken up, // using the ANSI C syntax "foo\n" "bar" if ( _curchar == '"') { next_char(); // Move past the '"' skipws(); // Skip white space before next string token if ( _curchar != '"') { break; } else { // Found one. Skip both " and the whitespace in between. next_char(); } } } // end while part of format description } } else { // Add flag to _strings list indicating we should check _rep_vars format->_rep_vars.addName(rep_var); // Add flag to _strings list indicating we should check _rep_vars format->_strings.addName(NameList::_signal3); } } // end while part of format description } skipws(); // Past format description, at '%' if ( _curchar != '%' || *(_ptr+1) != '}' ) { parse_err(SYNERR, "missing '%}' at end of format block"); return NULL; } next_char(); // Move past the '%' next_char(); // Move past the '}' // Debug Stuff if (_AD._adl_debug > 1) fprintf(stderr,"Format Rule: %s\n", desc); skipws(); return format; } //------------------------------effect_parse----------------------------------- void ADLParser::effect_parse(InstructForm *instr) { char* desc = NULL; skipws(); // Skip whitespace if (_curchar != '(') { parse_err(SYNERR, "missing '(' in effect definition\n"); return; } // Get list of effect-operand pairs and insert into dictionary else get_effectlist(instr->_effects, instr->_localNames); // Debug Stuff if (_AD._adl_debug > 1) fprintf(stderr,"Effect description: %s\n", desc); if (_curchar != ';') { parse_err(SYNERR, "missing ';' in Effect definition\n"); } next_char(); // Skip ';' } //------------------------------expand_parse----------------------------------- ExpandRule* ADLParser::expand_parse(InstructForm *instr) { char *ident, *ident2; OperandForm *oper; InstructForm *ins; NameAndList *instr_and_operands = NULL; ExpandRule *exp = new ExpandRule(); // Expand is a block containing an ordered list of instructions, each of // which has an ordered list of operands. // Check for block delimiter skipws(); // Skip leading whitespace if ((_curchar != '%') || (next_char(), (_curchar != '{')) ) { // If not open block parse_err(SYNERR, "missing '%{' in expand definition\n"); return(NULL); } next_char(); // Maintain the invariant do { ident = get_ident(); // Grab next identifier if (ident == NULL) { parse_err(SYNERR, "identifier expected at %c\n", _curchar); continue; } // Check that you have a valid instruction const Form *form = _globalNames[ident]; ins = form ? form->is_instruction() : NULL; if (ins == NULL) { // This is a new operand oper = form ? form->is_operand() : NULL; if (oper == NULL) { parse_err(SYNERR, "instruction/operand name expected at %s\n", ident); continue; } // Throw the operand on the _newopers list skipws(); ident = get_unique_ident(instr->_localNames,"Operand"); if (ident == NULL) { parse_err(SYNERR, "identifier expected at %c\n", _curchar); continue; } exp->_newopers.addName(ident); // Add new operand to LocalNames instr->_localNames.Insert(ident, oper); // Grab any constructor code and save as a string char *c = NULL; skipws(); if (_curchar == '%') { // Need a constructor for the operand c = find_cpp_block("Operand Constructor"); if (c == NULL) { parse_err(SYNERR, "Invalid code block for operand constructor\n", _curchar); continue; } // Add constructor to _newopconst Dict exp->_newopconst.Insert(ident, c); } else if (_curchar != ';') { // If no constructor, need a ; parse_err(SYNERR, "Missing ; in expand rule operand declaration\n"); continue; } else next_char(); // Skip the ; skipws(); } else { // Add instruction to list instr_and_operands = new NameAndList(ident); // Grab operands, build nameList of them, and then put into dictionary skipws(); if (_curchar != '(') { // Check for parenthesized operand list parse_err(SYNERR, "missing '(' in expand instruction declaration\n"); continue; } do { next_char(); // skip open paren & comma characters skipws(); if (_curchar == ')') break; ident2 = get_ident(); skipws(); if (ident2 == NULL) { parse_err(SYNERR, "identifier expected at %c\n", _curchar); continue; } // Check that you have a valid operand const Form *form2 = instr->_localNames[ident2]; if (!form2) { parse_err(SYNERR, "operand name expected at %s\n", ident2); continue; } oper = form2->is_operand(); if (oper == NULL && !form2->is_opclass()) { parse_err(SYNERR, "operand name expected at %s\n", ident2); continue; } // Add operand to list instr_and_operands->add_entry(ident2); } while(_curchar == ','); if (_curchar != ')') { parse_err(SYNERR, "missing ')'in expand instruction declaration\n"); continue; } next_char(); if (_curchar != ';') { parse_err(SYNERR, "missing ';'in expand instruction declaration\n"); continue; } next_char(); // Record both instruction name and its operand list exp->add_instruction(instr_and_operands); skipws(); } } while(_curchar != '%'); next_char(); if (_curchar != '}') { parse_err(SYNERR, "missing '%}' in expand rule definition\n"); return(NULL); } next_char(); // Debug Stuff if (_AD._adl_debug > 1) fprintf(stderr,"Expand Rule:\n"); skipws(); return (exp); } //------------------------------rewrite_parse---------------------------------- RewriteRule* ADLParser::rewrite_parse(void) { char* params = NULL; char* desc = NULL; // This feature targeted for second generation description language. skipws(); // Skip whitespace // Get parameters for rewrite if ((params = get_paren_expr("rewrite parameters")) == NULL) { parse_err(SYNERR, "missing '(' in rewrite rule\n"); return NULL; } // Debug Stuff if (_AD._adl_debug > 1) fprintf(stderr,"Rewrite parameters: %s\n", params); // For now, grab entire block; skipws(); if ( (desc = find_cpp_block("rewrite block")) == NULL ) { parse_err(SYNERR, "incorrect or missing block for 'rewrite'.\n"); return NULL; } // Debug Stuff if (_AD._adl_debug > 1) fprintf(stderr,"Rewrite Rule: %s\n", desc); skipws(); return (new RewriteRule(params,desc)); } //------------------------------attr_parse------------------------------------- Attribute *ADLParser::attr_parse(char* ident) { Attribute *attrib; // Attribute class char *cost = NULL; // String representation of cost attribute skipws(); // Skip leading whitespace if ( (cost = get_paren_expr("attribute")) == NULL ) { parse_err(SYNERR, "incorrect or missing expression for 'attribute'\n"); return NULL; } // Debug Stuff if (_AD._adl_debug > 1) fprintf(stderr,"Attribute: %s\n", cost); if (_curchar != ';') { parse_err(SYNERR, "missing ';' in attribute definition\n"); return NULL; } next_char(); // Point after the terminator skipws(); attrib = new Attribute(ident,cost,INS_ATTR); // Build new predicate object return attrib; } //------------------------------matchNode_parse-------------------------------- MatchNode *ADLParser::matchNode_parse(FormDict &operands, int &depth, int &numleaves, bool atroot) { // Count depth of parenthesis nesting for both left and right children int lParens = depth; int rParens = depth; // MatchNode objects for left, right, and root of subtree. MatchNode *lChild = NULL; MatchNode *rChild = NULL; char *token; // Identifier which may be opcode or operand // Match expression starts with a '(' if (cur_char() != '(') return NULL; next_char(); // advance past '(' // Parse the opcode token = get_ident(); // Get identifier, opcode if (token == NULL) { parse_err(SYNERR, "missing opcode in match expression\n"); return NULL; } // Take note if we see one of a few special operations - those that are // treated differently on different architectures in the sense that on // one architecture there is a match rule and on another there isn't (so // a call will eventually be generated). for (int i = _last_machine_leaf + 1; i < _last_opcode; i++) { if (strcmp(token, NodeClassNames[i]) == 0) { _AD.has_match_rule(i, true); } } // Lookup the root value in the operands dict to perform substitution const char *result = NULL; // Result type will be filled in later const char *name = token; // local name associated with this node const char *operation = token; // remember valid operation for later const Form *form = operands[token]; OpClassForm *opcForm = form ? form->is_opclass() : NULL; if (opcForm != NULL) { // If this token is an entry in the local names table, record its type if (!opcForm->ideal_only()) { operation = opcForm->_ident; result = operation; // Operands result in their own type } // Otherwise it is an ideal type, and so, has no local name else name = NULL; } // Parse the operands skipws(); if (cur_char() != ')') { // Parse the left child if (strcmp(operation,"Set")) lChild = matchChild_parse(operands, lParens, numleaves, false); else lChild = matchChild_parse(operands, lParens, numleaves, true); skipws(); if (cur_char() != ')' ) { if(strcmp(operation, "Set")) rChild = matchChild_parse(operands,rParens,numleaves,false); else rChild = matchChild_parse(operands,rParens,numleaves,true); } } // Check for required ')' skipws(); if (cur_char() != ')') { parse_err(SYNERR, "missing ')' in match expression\n"); return NULL; } next_char(); // skip the ')' MatchNode* mroot = new MatchNode(_AD,result,name,operation,lChild,rChild); // If not the root, reduce this subtree to an internal operand if (!atroot) { mroot->build_internalop(); } // depth is greater of left and right paths. depth = (lParens > rParens) ? lParens : rParens; return mroot; } //------------------------------matchChild_parse------------------------------- MatchNode *ADLParser::matchChild_parse(FormDict &operands, int &parens, int &numleaves, bool atroot) { MatchNode *child = NULL; const char *result = NULL; const char *token = NULL; const char *opType = NULL; if (cur_char() == '(') { // child is an operation ++parens; child = matchNode_parse(operands, parens, numleaves, atroot); } else { // child is an operand token = get_ident(); const Form *form = operands[token]; OpClassForm *opcForm = form ? form->is_opclass() : NULL; if (opcForm != NULL) { opType = opcForm->_ident; result = opcForm->_ident; // an operand's result matches its type } else { parse_err(SYNERR, "undefined operand %s in match rule\n", token); return NULL; } if (opType == NULL) { parse_err(SYNERR, "missing type for argument '%s'\n", token); } child = new MatchNode(_AD, result, token, opType); ++numleaves; } return child; } // ******************** Private Utility Functions ************************* char* ADLParser::find_cpp_block(const char* description) { char *next; // Pointer for finding block delimiters char* cppBlock = NULL; // Beginning of C++ code block if (_curchar == '%') { // Encoding is a C++ expression next_char(); if (_curchar != '{') { parse_err(SYNERR, "missing '{' in %s \n", description); return NULL; } next_char(); // Skip block delimiter skipws_no_preproc(); // Skip leading whitespace cppBlock = _ptr; // Point to start of expression int line = linenum(); next = _ptr + 1; while(((_curchar != '%') || (*next != '}')) && (_curchar != '\0')) { next_char_or_line(); next = _ptr+1; // Maintain the next pointer } // Grab string if (_curchar == '\0') { parse_err(SYNERR, "invalid termination of %s \n", description); return NULL; } *_ptr = '\0'; // Terminate string _ptr += 2; // Skip block delimiter _curchar = *_ptr; // Maintain invariant // Prepend location descriptor, for debugging. if (_AD._adlocation_debug) { char* location = get_line_string(line); char* end_loc = end_line_marker(); char* result = (char *)malloc(strlen(location) + strlen(cppBlock) + strlen(end_loc) + 1); strcpy(result, location); strcat(result, cppBlock); strcat(result, end_loc); cppBlock = result; free(location); } } return cppBlock; } // Move to the closing token of the expression we are currently at, // as defined by stop_chars. Match parens and quotes. char* ADLParser::get_expr(const char *desc, const char *stop_chars) { char* expr = NULL; int paren = 0; expr = _ptr; while (paren > 0 || !strchr(stop_chars, _curchar)) { if (_curchar == '(') { // Down level of nesting paren++; // Bump the parenthesis counter next_char(); // maintain the invariant } else if (_curchar == ')') { // Up one level of nesting if (paren == 0) { // Paren underflow: We didn't encounter the required stop-char. parse_err(SYNERR, "too many )'s, did not find %s after %s\n", stop_chars, desc); return NULL; } paren--; // Drop the parenthesis counter next_char(); // Maintain the invariant } else if (_curchar == '"' || _curchar == '\'') { int qchar = _curchar; while (true) { next_char(); if (_curchar == qchar) { next_char(); break; } if (_curchar == '\\') next_char(); // superquote if (_curchar == '\n' || _curchar == '\0') { parse_err(SYNERR, "newline in string in %s\n", desc); return NULL; } } } else if (_curchar == '%' && (_ptr[1] == '{' || _ptr[1] == '}')) { // Make sure we do not stray into the next ADLC-level form. parse_err(SYNERR, "unexpected %%%c in %s\n", _ptr[1], desc); return NULL; } else if (_curchar == '\0') { parse_err(SYNERR, "unexpected EOF in %s\n", desc); return NULL; } else { // Always walk over whitespace, comments, preprocessor directives, etc. char* pre_skip_ptr = _ptr; skipws(); // If the parser declined to make progress on whitespace, // skip the next character, which is therefore NOT whitespace. if (pre_skip_ptr == _ptr) { next_char(); } else if (pre_skip_ptr+strlen(pre_skip_ptr) != _ptr+strlen(_ptr)) { parse_err(SYNERR, "unimplemented: preprocessor must not elide subexpression in %s", desc); } } } assert(strchr(stop_chars, _curchar), "non-null return must be at stop-char"); *_ptr = '\0'; // Replace ')' or other stop-char with '\0' return expr; } // Helper function around get_expr // Sets _curchar to '(' so that get_paren_expr will search for a matching ')' char *ADLParser::get_paren_expr(const char *description, bool include_location) { int line = linenum(); if (_curchar != '(') // Escape if not valid starting position return NULL; next_char(); // Skip the required initial paren. char *token2 = get_expr(description, ")"); if (_curchar == ')') next_char(); // Skip required final paren. int junk = 0; if (include_location && _AD._adlocation_debug && !is_int_token(token2, junk)) { // Prepend location descriptor, for debugging. char* location = get_line_string(line); char* end_loc = end_line_marker(); char* result = (char *)malloc(strlen(location) + strlen(token2) + strlen(end_loc) + 1); strcpy(result, location); strcat(result, token2); strcat(result, end_loc); token2 = result; free(location); } return token2; } //------------------------------get_ident_common------------------------------- // Looks for an identifier in the buffer, and turns it into a null terminated // string(still inside the file buffer). Returns a pointer to the string or // NULL if some other token is found instead. char *ADLParser::get_ident_common(bool do_preproc) { register char c; char *start; // Pointer to start of token char *end; // Pointer to end of token if( _curline == NULL ) // Return NULL at EOF. return NULL; skipws_common(do_preproc); // Skip whitespace before identifier start = end = _ptr; // Start points at first character end--; // unwind end by one to prepare for loop do { end++; // Increment end pointer c = *end; // Grab character to test } while ( ((c >= 'a') && (c <= 'z')) || ((c >= 'A') && (c <= 'Z')) || ((c >= '0') && (c <= '9')) || ((c == '_')) || ((c == ':')) || ((c == '#')) ); if (start == end) { // We popped out on the first try parse_err(SYNERR, "identifier expected at %c\n", c); start = NULL; } else { _curchar = c; // Save the first character of next token *end = '\0'; // NULL terminate the string in place } _ptr = end; // Reset _ptr to point to next char after token // Make sure we do not try to use #defined identifiers. If start is // NULL an error was already reported. if (do_preproc && start != NULL) { const char* def = _AD.get_preproc_def(start); if (def != NULL && strcmp(def, start)) { const char* def1 = def; const char* def2 = _AD.get_preproc_def(def1); // implement up to 2 levels of #define if (def2 != NULL && strcmp(def2, def1)) { def = def2; const char* def3 = _AD.get_preproc_def(def2); if (def3 != NULL && strcmp(def3, def2) && strcmp(def3, def1)) { parse_err(SYNERR, "unimplemented: using %s defined as %s => %s => %s", start, def1, def2, def3); } } start = strdup(def); } } return start; // Pointer to token in filebuf } //------------------------------get_ident_dup---------------------------------- // Looks for an identifier in the buffer, and returns a duplicate // or NULL if some other token is found instead. char *ADLParser::get_ident_dup(void) { char *ident = get_ident(); // Duplicate an identifier before returning and restore string. if( ident != NULL ) { ident = strdup(ident); // Copy the string *_ptr = _curchar; // and replace Nil with original character } return ident; } //----------------------get_ident_or_literal_constant-------------------------- // Looks for an identifier in the buffer, or a parenthesized expression. char *ADLParser::get_ident_or_literal_constant(const char* description) { char* param = NULL; skipws(); if (_curchar == '(') { // Grab a constant expression. param = get_paren_expr(description); if (param[0] != '(') { char* buf = (char*) malloc(strlen(param) + 3); sprintf(buf, "(%s)", param); param = buf; } assert(is_literal_constant(param), "expr must be recognizable as a constant"); } else { param = get_ident(); } return param; } //------------------------------get_rep_var_ident----------------------------- // Do NOT duplicate, // Leave nil terminator in buffer // Preserve initial '$'(s) in string char *ADLParser::get_rep_var_ident(void) { // Remember starting point char *rep_var = _ptr; // Check for replacement variable indicator '$' and pass if present if ( _curchar == '$' ) { next_char(); } // Check for a subfield indicator, a second '$', and pass if present if ( _curchar == '$' ) { next_char(); } // Check for a control indicator, a third '$': if ( _curchar == '$' ) { next_char(); } // Check for more than three '$'s in sequence, SYNERR if( _curchar == '$' ) { parse_err(SYNERR, "Replacement variables and field specifiers can not start with '$$$$'"); next_char(); return NULL; } // Nil terminate the variable name following the '$' char *rep_var_name = get_ident(); assert( rep_var_name != NULL, "Missing identifier after replacement variable indicator '$'"); return rep_var; } //------------------------------get_rep_var_ident_dup------------------------- // Return the next replacement variable identifier, skipping first '$' // given a pointer into a line of the buffer. // Null terminates string, still inside the file buffer, // Returns a pointer to a copy of the string, or NULL on failure char *ADLParser::get_rep_var_ident_dup(void) { if( _curchar != '$' ) return NULL; next_char(); // Move past the '$' char *rep_var = _ptr; // Remember starting point // Check for a subfield indicator, a second '$': if ( _curchar == '$' ) { next_char(); } // Check for a control indicator, a third '$': if ( _curchar == '$' ) { next_char(); } // Check for more than three '$'s in sequence, SYNERR if( _curchar == '$' ) { parse_err(SYNERR, "Replacement variables and field specifiers can not start with '$$$$'"); next_char(); return NULL; } // Nil terminate the variable name following the '$' char *rep_var_name = get_ident(); assert( rep_var_name != NULL, "Missing identifier after replacement variable indicator '$'"); rep_var = strdup(rep_var); // Copy the string *_ptr = _curchar; // and replace Nil with original character return rep_var; } //------------------------------get_unique_ident------------------------------ // Looks for an identifier in the buffer, terminates it with a NULL, // and checks that it is unique char *ADLParser::get_unique_ident(FormDict& dict, const char* nameDescription){ char* ident = get_ident(); if (ident == NULL) { parse_err(SYNERR, "missing %s identifier at %c\n", nameDescription, _curchar); } else { if (dict[ident] != NULL) { parse_err(SYNERR, "duplicate name %s for %s\n", ident, nameDescription); ident = NULL; } } return ident; } //------------------------------get_int---------------------------------------- // Looks for a character string integer in the buffer, and turns it into an int // invokes a parse_err if the next token is not an integer. // This routine does not leave the integer null-terminated. int ADLParser::get_int(void) { register char c; char *start; // Pointer to start of token char *end; // Pointer to end of token int result; // Storage for integer result if( _curline == NULL ) // Return NULL at EOF. return 0; skipws(); // Skip whitespace before identifier start = end = _ptr; // Start points at first character c = *end; // Grab character to test while ((c >= '0') && (c <= '9') || ((c == '-') && (end == start))) { end++; // Increment end pointer c = *end; // Grab character to test } if (start == end) { // We popped out on the first try parse_err(SYNERR, "integer expected at %c\n", c); result = 0; } else { _curchar = c; // Save the first character of next token *end = '\0'; // NULL terminate the string in place result = atoi(start); // Convert the string to an integer *end = _curchar; // Restore buffer to original condition } // Reset _ptr to next char after token _ptr = end; return result; // integer } //------------------------------get_relation_dup------------------------------ // Looks for a relational operator in the buffer // invokes a parse_err if the next token is not a relation // This routine creates a duplicate of the string in the buffer. char *ADLParser::get_relation_dup(void) { char *result = NULL; // relational operator being returned if( _curline == NULL ) // Return NULL at EOF. return NULL; skipws(); // Skip whitespace before relation char *start = _ptr; // Store start of relational operator char first = *_ptr; // the first character if( (first == '=') || (first == '!') || (first == '<') || (first == '>') ) { next_char(); char second = *_ptr; // the second character if( (second == '=') ) { next_char(); char tmp = *_ptr; *_ptr = '\0'; // NULL terminate result = strdup(start); // Duplicate the string *_ptr = tmp; // restore buffer } else { parse_err(SYNERR, "relational operator expected at %s\n", _ptr); } } else { parse_err(SYNERR, "relational operator expected at %s\n", _ptr); } return result; } //------------------------------get_oplist------------------------------------- // Looks for identifier pairs where first must be the name of an operand, and // second must be a name unique in the scope of this instruction. Stores the // names with a pointer to the OpClassForm of their type in a local name table. void ADLParser::get_oplist(NameList ¶meters, FormDict &operands) { OpClassForm *opclass = NULL; char *ident = NULL; do { next_char(); // skip open paren & comma characters skipws(); if (_curchar == ')') break; // Get operand type, and check it against global name table ident = get_ident(); if (ident == NULL) { parse_err(SYNERR, "optype identifier expected at %c\n", _curchar); return; } else { const Form *form = _globalNames[ident]; if( form == NULL ) { parse_err(SYNERR, "undefined operand type %s\n", ident); return; } // Check for valid operand type OpClassForm *opc = form->is_opclass(); OperandForm *oper = form->is_operand(); if((oper == NULL) && (opc == NULL)) { parse_err(SYNERR, "identifier %s not operand type\n", ident); return; } opclass = opc; } // Debugging Stuff if (_AD._adl_debug > 1) fprintf(stderr, "\tOperand Type: %s\t", ident); // Get name of operand and add it to local name table if( (ident = get_unique_ident(operands, "operand")) == NULL) { return; } // Parameter names must not be global names. if( _globalNames[ident] != NULL ) { parse_err(SYNERR, "Reuse of global name %s as operand.\n",ident); return; } operands.Insert(ident, opclass); parameters.addName(ident); // Debugging Stuff if (_AD._adl_debug > 1) fprintf(stderr, "\tOperand Name: %s\n", ident); skipws(); } while(_curchar == ','); if (_curchar != ')') parse_err(SYNERR, "missing ')'\n"); else { next_char(); // set current character position past the close paren } } //------------------------------get_effectlist--------------------------------- // Looks for identifier pairs where first must be the name of a pre-defined, // effect, and the second must be the name of an operand defined in the // operand list of this instruction. Stores the names with a pointer to the // effect form in a local effects table. void ADLParser::get_effectlist(FormDict &effects, FormDict &operands) { OperandForm *opForm; Effect *eForm; char *ident; do { next_char(); // skip open paren & comma characters skipws(); if (_curchar == ')') break; // Get effect type, and check it against global name table ident = get_ident(); if (ident == NULL) { parse_err(SYNERR, "effect type identifier expected at %c\n", _curchar); return; } else { // Check for valid effect type const Form *form = _globalNames[ident]; if( form == NULL ) { parse_err(SYNERR, "undefined effect type %s\n", ident); return; } else { if( (eForm = form->is_effect()) == NULL) { parse_err(SYNERR, "identifier %s not effect type\n", ident); return; } } } // Debugging Stuff if (_AD._adl_debug > 1) fprintf(stderr, "\tEffect Type: %s\t", ident); skipws(); // Get name of operand and check that it is in the local name table if( (ident = get_unique_ident(effects, "effect")) == NULL) { parse_err(SYNERR, "missing operand identifier in effect list\n"); return; } const Form *form = operands[ident]; opForm = form ? form->is_operand() : NULL; if( opForm == NULL ) { if( form && form->is_opclass() ) { const char* cname = form->is_opclass()->_ident; parse_err(SYNERR, "operand classes are illegal in effect lists (found %s %s)\n", cname, ident); } else { parse_err(SYNERR, "undefined operand %s in effect list\n", ident); } return; } // Add the pair to the effects table effects.Insert(ident, eForm); // Debugging Stuff if (_AD._adl_debug > 1) fprintf(stderr, "\tOperand Name: %s\n", ident); skipws(); } while(_curchar == ','); if (_curchar != ')') parse_err(SYNERR, "missing ')'\n"); else { next_char(); // set current character position past the close paren } } //-------------------------------preproc_line---------------------------------- // A "#line" keyword has been seen, so parse the rest of the line. void ADLParser::preproc_line(void) { int line = get_int(); skipws_no_preproc(); const char* file = NULL; if (_curchar == '"') { next_char(); // Move past the initial '"' file = _ptr; while (true) { if (_curchar == '\n') { parse_err(SYNERR, "missing '\"' at end of #line directive"); return; } if (_curchar == '"') { *_ptr = '\0'; // Terminate the string next_char(); skipws_no_preproc(); break; } next_char(); } } ensure_end_of_line(); if (file != NULL) _AD._ADL_file._name = file; _buf.set_linenum(line); } //------------------------------preproc_define--------------------------------- // A "#define" keyword has been seen, so parse the rest of the line. void ADLParser::preproc_define(void) { char* flag = get_ident_no_preproc(); skipws_no_preproc(); // only #define x y is supported for now char* def = get_ident_no_preproc(); _AD.set_preproc_def(flag, def); skipws_no_preproc(); if (_curchar != '\n') { parse_err(SYNERR, "non-identifier in preprocessor definition\n"); } } //------------------------------preproc_undef---------------------------------- // An "#undef" keyword has been seen, so parse the rest of the line. void ADLParser::preproc_undef(void) { char* flag = get_ident_no_preproc(); skipws_no_preproc(); ensure_end_of_line(); _AD.set_preproc_def(flag, NULL); } //------------------------------parse_err-------------------------------------- // Issue a parser error message, and skip to the end of the current line void ADLParser::parse_err(int flag, const char *fmt, ...) { va_list args; va_start(args, fmt); if (flag == 1) _AD._syntax_errs += _AD.emit_msg(0, flag, linenum(), fmt, args); else if (flag == 2) _AD._semantic_errs += _AD.emit_msg(0, flag, linenum(), fmt, args); else _AD._warnings += _AD.emit_msg(0, flag, linenum(), fmt, args); int error_char = _curchar; char* error_ptr = _ptr+1; for(;*_ptr != '\n'; _ptr++) ; // Skip to the end of the current line _curchar = '\n'; va_end(args); _AD._no_output = 1; if (flag == 1) { char* error_tail = strchr(error_ptr, '\n'); char tem = *error_ptr; error_ptr[-1] = '\0'; char* error_head = error_ptr-1; while (error_head > _curline && *error_head) --error_head; if (error_tail) *error_tail = '\0'; fprintf(stderr, "Error Context: %s>>>%c<<<%s\n", error_head, error_char, error_ptr); if (error_tail) *error_tail = '\n'; error_ptr[-1] = tem; } } //---------------------------ensure_start_of_line------------------------------ // A preprocessor directive has been encountered. Be sure it has fallen at // the beginning of a line, or else report an error. void ADLParser::ensure_start_of_line(void) { if (_curchar == '\n') { next_line(); return; } assert( _ptr >= _curline && _ptr < _curline+strlen(_curline), "Must be able to find which line we are in" ); for (char *s = _curline; s < _ptr; s++) { if (*s > ' ') { parse_err(SYNERR, "'%c' must be at beginning of line\n", _curchar); break; } } } //---------------------------ensure_end_of_line-------------------------------- // A preprocessor directive has been parsed. Be sure there is no trailing // garbage at the end of this line. Set the scan point to the beginning of // the next line. void ADLParser::ensure_end_of_line(void) { skipws_no_preproc(); if (_curchar != '\n' && _curchar != '\0') { parse_err(SYNERR, "garbage char '%c' at end of line\n", _curchar); } else { next_char_or_line(); } } //---------------------------handle_preproc------------------------------------ // The '#' character introducing a preprocessor directive has been found. // Parse the whole directive name (e.g., #define, #endif) and take appropriate // action. If we are in an "untaken" span of text, simply keep track of // #ifdef nesting structure, so we can find out when to start taking text // again. (In this state, we "sort of support" C's #if directives, enough // to disregard their associated #else and #endif lines.) If we are in a // "taken" span of text, there are two cases: "#define" and "#undef" // directives are preserved and passed up to the caller, which eventually // passes control to the top-level parser loop, which handles #define and // #undef directly. (This prevents these directives from occurring in // arbitrary positions in the AD file--we require better structure than C.) // In the other case, and #ifdef, #ifndef, #else, or #endif is silently // processed as whitespace, with the "taken" state of the text correctly // updated. This routine returns "false" exactly in the case of a "taken" // #define or #undef, which tells the caller that a preprocessor token // has appeared which must be handled explicitly by the parse loop. bool ADLParser::handle_preproc_token() { assert(*_ptr == '#', "must be at start of preproc"); ensure_start_of_line(); next_char(); skipws_no_preproc(); char* start_ident = _ptr; char* ident = (_curchar == '\n') ? NULL : get_ident_no_preproc(); if (ident == NULL) { parse_err(SYNERR, "expected preprocessor command, got end of line\n"); } else if (!strcmp(ident, "ifdef") || !strcmp(ident, "ifndef")) { char* flag = get_ident_no_preproc(); ensure_end_of_line(); // Test the identifier only if we are already in taken code: bool flag_def = preproc_taken() && (_AD.get_preproc_def(flag) != NULL); bool now_taken = !strcmp(ident, "ifdef") ? flag_def : !flag_def; begin_if_def(now_taken); } else if (!strcmp(ident, "if")) { if (preproc_taken()) parse_err(SYNERR, "unimplemented: #%s %s", ident, _ptr+1); next_line(); // Intelligently skip this nested C preprocessor directive: begin_if_def(true); } else if (!strcmp(ident, "else")) { ensure_end_of_line(); invert_if_def(); } else if (!strcmp(ident, "endif")) { ensure_end_of_line(); end_if_def(); } else if (preproc_taken()) { // pass this token up to the main parser as "#define" or "#undef" _ptr = start_ident; _curchar = *--_ptr; if( _curchar != '#' ) { parse_err(SYNERR, "no space allowed after # in #define or #undef"); assert(_curchar == '#', "no space allowed after # in #define or #undef"); } return false; } return true; } //---------------------------skipws_common------------------------------------- // Skip whitespace, including comments and newlines, while keeping an accurate // line count. // Maybe handle certain preprocessor constructs: #ifdef, #ifndef, #else, #endif void ADLParser::skipws_common(bool do_preproc) { char *start = _ptr; char *next = _ptr + 1; if (*_ptr == '\0') { // Check for string terminator if (_curchar > ' ') return; if (_curchar == '\n') { if (!do_preproc) return; // let caller handle the newline next_line(); _ptr = _curline; next = _ptr + 1; } else if (_curchar == '#' || (_curchar == '/' && (*next == '/' || *next == '*'))) { parse_err(SYNERR, "unimplemented: comment token in a funny place"); } } while(_curline != NULL) { // Check for end of file if (*_ptr == '\n') { // keep proper track of new lines if (!do_preproc) break; // let caller handle the newline next_line(); _ptr = _curline; next = _ptr + 1; } else if ((*_ptr == '/') && (*next == '/')) // C++ comment do { _ptr++; next++; } while(*_ptr != '\n'); // So go to end of line else if ((*_ptr == '/') && (*next == '*')) { // C comment _ptr++; next++; do { _ptr++; next++; if (*_ptr == '\n') { // keep proper track of new lines next_line(); // skip newlines within comments if (_curline == NULL) { // check for end of file parse_err(SYNERR, "end-of-file detected inside comment\n"); break; } _ptr = _curline; next = _ptr + 1; } } while(!((*_ptr == '*') && (*next == '/'))); // Go to end of comment _ptr = ++next; next++; // increment _ptr past comment end } else if (do_preproc && *_ptr == '#') { // Note that this calls skipws_common(false) recursively! bool preproc_handled = handle_preproc_token(); if (!preproc_handled) { if (preproc_taken()) { return; // short circuit } ++_ptr; // skip the preprocessor character } next = _ptr+1; } else if(*_ptr > ' ' && !(do_preproc && !preproc_taken())) { break; } else if (*_ptr == '"' || *_ptr == '\'') { assert(do_preproc, "only skip strings if doing preproc"); // skip untaken quoted string int qchar = *_ptr; while (true) { ++_ptr; if (*_ptr == qchar) { ++_ptr; break; } if (*_ptr == '\\') ++_ptr; if (*_ptr == '\n' || *_ptr == '\0') { parse_err(SYNERR, "newline in string"); break; } } next = _ptr + 1; } else { ++_ptr; ++next; } } if( _curline != NULL ) // at end of file _curchar isn't valid _curchar = *_ptr; // reset _curchar to maintain invariant } //---------------------------cur_char----------------------------------------- char ADLParser::cur_char() { return (_curchar); } //---------------------------next_char----------------------------------------- void ADLParser::next_char() { if (_curchar == '\n') parse_err(WARN, "must call next_line!"); _curchar = *++_ptr; // if ( _curchar == '\n' ) { // next_line(); // } } //---------------------------next_char_or_line--------------------------------- void ADLParser::next_char_or_line() { if ( _curchar != '\n' ) { _curchar = *++_ptr; } else { next_line(); _ptr = _curline; _curchar = *_ptr; // maintain invariant } } //---------------------------next_line----------------------------------------- void ADLParser::next_line() { _curline = _buf.get_line(); _curchar = ' '; } //------------------------get_line_string-------------------------------------- // Prepended location descriptor, for debugging. // Must return a malloced string (that can be freed if desired). char* ADLParser::get_line_string(int linenum) { const char* file = _AD._ADL_file._name; int line = linenum ? linenum : this->linenum(); char* location = (char *)malloc(strlen(file) + 100); sprintf(location, "\n#line %d \"%s\"\n", line, file); return location; } //-------------------------is_literal_constant--------------------------------- bool ADLParser::is_literal_constant(const char *param) { if (param[0] == 0) return false; // null string if (param[0] == '(') return true; // parenthesized expression if (param[0] == '0' && (param[1] == 'x' || param[1] == 'X')) { // Make sure it's a hex constant. int i = 2; do { if( !ADLParser::is_hex_digit(*(param+i)) ) return false; ++i; } while( *(param+i) != 0 ); return true; } return false; } //---------------------------is_hex_digit-------------------------------------- bool ADLParser::is_hex_digit(char digit) { return ((digit >= '0') && (digit <= '9')) ||((digit >= 'a') && (digit <= 'f')) ||((digit >= 'A') && (digit <= 'F')); } //---------------------------is_int_token-------------------------------------- bool ADLParser::is_int_token(const char* token, int& intval) { const char* cp = token; while (*cp != '\0' && *cp <= ' ') cp++; if (*cp == '-') cp++; int ndigit = 0; while (*cp >= '0' && *cp <= '9') { cp++; ndigit++; } while (*cp != '\0' && *cp <= ' ') cp++; if (ndigit == 0 || *cp != '\0') { return false; } intval = atoi(token); return true; } static const char* skip_expr_ws(const char* str) { const char * cp = str; while (cp[0]) { if (cp[0] <= ' ') { ++cp; } else if (cp[0] == '#') { ++cp; while (cp[0] == ' ') ++cp; assert(0 == strncmp(cp, "line", 4), "must be a #line directive"); const char* eol = strchr(cp, '\n'); assert(eol != NULL, "must find end of line"); if (eol == NULL) eol = cp + strlen(cp); cp = eol; } else { break; } } return cp; } //-----------------------equivalent_expressions-------------------------------- bool ADLParser::equivalent_expressions(const char* str1, const char* str2) { if (str1 == str2) return true; else if (str1 == NULL || str2 == NULL) return false; const char* cp1 = str1; const char* cp2 = str2; char in_quote = '\0'; while (cp1[0] && cp2[0]) { if (!in_quote) { // skip spaces and/or cpp directives const char* cp1a = skip_expr_ws(cp1); const char* cp2a = skip_expr_ws(cp2); if (cp1a > cp1 && cp2a > cp2) { cp1 = cp1a; cp2 = cp2a; continue; } if (cp1a > cp1 || cp2a > cp2) break; // fail } // match one non-space char if (cp1[0] != cp2[0]) break; // fail char ch = cp1[0]; cp1++; cp2++; // watch for quotes if (in_quote && ch == '\\') { if (cp1[0] != cp2[0]) break; // fail if (!cp1[0]) break; cp1++; cp2++; } if (in_quote && ch == in_quote) { in_quote = '\0'; } else if (!in_quote && (ch == '"' || ch == '\'')) { in_quote = ch; } } return (!cp1[0] && !cp2[0]); } //-------------------------------trim------------------------------------------ void ADLParser::trim(char* &token) { while (*token <= ' ') token++; char* end = token + strlen(token); while (end > token && *(end-1) <= ' ') --end; *end = '\0'; }