/* * Copyright 1997-2010 Sun Microsystems, Inc. All Rights Reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, * CA 95054 USA or visit www.sun.com if you need additional information or * have any questions. * */ #include "incls/_precompiled.incl" #include "incls/_interpreterRuntime.cpp.incl" class UnlockFlagSaver { private: JavaThread* _thread; bool _do_not_unlock; public: UnlockFlagSaver(JavaThread* t) { _thread = t; _do_not_unlock = t->do_not_unlock_if_synchronized(); t->set_do_not_unlock_if_synchronized(false); } ~UnlockFlagSaver() { _thread->set_do_not_unlock_if_synchronized(_do_not_unlock); } }; //------------------------------------------------------------------------------------------------------------------------ // State accessors void InterpreterRuntime::set_bcp_and_mdp(address bcp, JavaThread *thread) { last_frame(thread).interpreter_frame_set_bcp(bcp); if (ProfileInterpreter) { // ProfileTraps uses MDOs independently of ProfileInterpreter. // That is why we must check both ProfileInterpreter and mdo != NULL. methodDataOop mdo = last_frame(thread).interpreter_frame_method()->method_data(); if (mdo != NULL) { NEEDS_CLEANUP; last_frame(thread).interpreter_frame_set_mdp(mdo->bci_to_dp(last_frame(thread).interpreter_frame_bci())); } } } //------------------------------------------------------------------------------------------------------------------------ // Constants IRT_ENTRY(void, InterpreterRuntime::ldc(JavaThread* thread, bool wide)) // access constant pool constantPoolOop pool = method(thread)->constants(); int index = wide ? two_byte_index(thread) : one_byte_index(thread); constantTag tag = pool->tag_at(index); if (tag.is_unresolved_klass() || tag.is_klass()) { klassOop klass = pool->klass_at(index, CHECK); oop java_class = klass->klass_part()->java_mirror(); thread->set_vm_result(java_class); } else { #ifdef ASSERT // If we entered this runtime routine, we believed the tag contained // an unresolved string, an unresolved class or a resolved class. // However, another thread could have resolved the unresolved string // or class by the time we go there. assert(tag.is_unresolved_string()|| tag.is_string(), "expected string"); #endif oop s_oop = pool->string_at(index, CHECK); thread->set_vm_result(s_oop); } IRT_END //------------------------------------------------------------------------------------------------------------------------ // Allocation IRT_ENTRY(void, InterpreterRuntime::_new(JavaThread* thread, constantPoolOopDesc* pool, int index)) klassOop k_oop = pool->klass_at(index, CHECK); instanceKlassHandle klass (THREAD, k_oop); // Make sure we are not instantiating an abstract klass klass->check_valid_for_instantiation(true, CHECK); // Make sure klass is initialized klass->initialize(CHECK); // At this point the class may not be fully initialized // because of recursive initialization. If it is fully // initialized & has_finalized is not set, we rewrite // it into its fast version (Note: no locking is needed // here since this is an atomic byte write and can be // done more than once). // // Note: In case of classes with has_finalized we don't // rewrite since that saves us an extra check in // the fast version which then would call the // slow version anyway (and do a call back into // Java). // If we have a breakpoint, then we don't rewrite // because the _breakpoint bytecode would be lost. oop obj = klass->allocate_instance(CHECK); thread->set_vm_result(obj); IRT_END IRT_ENTRY(void, InterpreterRuntime::newarray(JavaThread* thread, BasicType type, jint size)) oop obj = oopFactory::new_typeArray(type, size, CHECK); thread->set_vm_result(obj); IRT_END IRT_ENTRY(void, InterpreterRuntime::anewarray(JavaThread* thread, constantPoolOopDesc* pool, int index, jint size)) // Note: no oopHandle for pool & klass needed since they are not used // anymore after new_objArray() and no GC can happen before. // (This may have to change if this code changes!) klassOop klass = pool->klass_at(index, CHECK); objArrayOop obj = oopFactory::new_objArray(klass, size, CHECK); thread->set_vm_result(obj); IRT_END IRT_ENTRY(void, InterpreterRuntime::multianewarray(JavaThread* thread, jint* first_size_address)) // We may want to pass in more arguments - could make this slightly faster constantPoolOop constants = method(thread)->constants(); int i = two_byte_index(thread); klassOop klass = constants->klass_at(i, CHECK); int nof_dims = number_of_dimensions(thread); assert(oop(klass)->is_klass(), "not a class"); assert(nof_dims >= 1, "multianewarray rank must be nonzero"); // We must create an array of jints to pass to multi_allocate. ResourceMark rm(thread); const int small_dims = 10; jint dim_array[small_dims]; jint *dims = &dim_array[0]; if (nof_dims > small_dims) { dims = (jint*) NEW_RESOURCE_ARRAY(jint, nof_dims); } for (int index = 0; index < nof_dims; index++) { // offset from first_size_address is addressed as local[index] int n = Interpreter::local_offset_in_bytes(index)/jintSize; dims[index] = first_size_address[n]; } oop obj = arrayKlass::cast(klass)->multi_allocate(nof_dims, dims, CHECK); thread->set_vm_result(obj); IRT_END IRT_ENTRY(void, InterpreterRuntime::register_finalizer(JavaThread* thread, oopDesc* obj)) assert(obj->is_oop(), "must be a valid oop"); assert(obj->klass()->klass_part()->has_finalizer(), "shouldn't be here otherwise"); instanceKlass::register_finalizer(instanceOop(obj), CHECK); IRT_END // Quicken instance-of and check-cast bytecodes IRT_ENTRY(void, InterpreterRuntime::quicken_io_cc(JavaThread* thread)) // Force resolving; quicken the bytecode int which = two_byte_index(thread); constantPoolOop cpool = method(thread)->constants(); // We'd expect to assert that we're only here to quicken bytecodes, but in a multithreaded // program we might have seen an unquick'd bytecode in the interpreter but have another // thread quicken the bytecode before we get here. // assert( cpool->tag_at(which).is_unresolved_klass(), "should only come here to quicken bytecodes" ); klassOop klass = cpool->klass_at(which, CHECK); thread->set_vm_result(klass); IRT_END //------------------------------------------------------------------------------------------------------------------------ // Exceptions // Assume the compiler is (or will be) interested in this event. // If necessary, create an MDO to hold the information, and record it. void InterpreterRuntime::note_trap(JavaThread* thread, int reason, TRAPS) { assert(ProfileTraps, "call me only if profiling"); methodHandle trap_method(thread, method(thread)); if (trap_method.not_null()) { methodDataHandle trap_mdo(thread, trap_method->method_data()); if (trap_mdo.is_null()) { methodOopDesc::build_interpreter_method_data(trap_method, THREAD); if (HAS_PENDING_EXCEPTION) { assert((PENDING_EXCEPTION->is_a(SystemDictionary::OutOfMemoryError_klass())), "we expect only an OOM error here"); CLEAR_PENDING_EXCEPTION; } trap_mdo = methodDataHandle(thread, trap_method->method_data()); // and fall through... } if (trap_mdo.not_null()) { // Update per-method count of trap events. The interpreter // is updating the MDO to simulate the effect of compiler traps. int trap_bci = trap_method->bci_from(bcp(thread)); Deoptimization::update_method_data_from_interpreter(trap_mdo, trap_bci, reason); } } } static Handle get_preinitialized_exception(klassOop k, TRAPS) { // get klass instanceKlass* klass = instanceKlass::cast(k); assert(klass->is_initialized(), "this klass should have been initialized during VM initialization"); // create instance - do not call constructor since we may have no // (java) stack space left (should assert constructor is empty) Handle exception; oop exception_oop = klass->allocate_instance(CHECK_(exception)); exception = Handle(THREAD, exception_oop); if (StackTraceInThrowable) { java_lang_Throwable::fill_in_stack_trace(exception); } return exception; } // Special handling for stack overflow: since we don't have any (java) stack // space left we use the pre-allocated & pre-initialized StackOverflowError // klass to create an stack overflow error instance. We do not call its // constructor for the same reason (it is empty, anyway). IRT_ENTRY(void, InterpreterRuntime::throw_StackOverflowError(JavaThread* thread)) Handle exception = get_preinitialized_exception( SystemDictionary::StackOverflowError_klass(), CHECK); THROW_HANDLE(exception); IRT_END IRT_ENTRY(void, InterpreterRuntime::create_exception(JavaThread* thread, char* name, char* message)) // lookup exception klass symbolHandle s = oopFactory::new_symbol_handle(name, CHECK); if (ProfileTraps) { if (s == vmSymbols::java_lang_ArithmeticException()) { note_trap(thread, Deoptimization::Reason_div0_check, CHECK); } else if (s == vmSymbols::java_lang_NullPointerException()) { note_trap(thread, Deoptimization::Reason_null_check, CHECK); } } // create exception Handle exception = Exceptions::new_exception(thread, s(), message); thread->set_vm_result(exception()); IRT_END IRT_ENTRY(void, InterpreterRuntime::create_klass_exception(JavaThread* thread, char* name, oopDesc* obj)) ResourceMark rm(thread); const char* klass_name = Klass::cast(obj->klass())->external_name(); // lookup exception klass symbolHandle s = oopFactory::new_symbol_handle(name, CHECK); if (ProfileTraps) { note_trap(thread, Deoptimization::Reason_class_check, CHECK); } // create exception, with klass name as detail message Handle exception = Exceptions::new_exception(thread, s(), klass_name); thread->set_vm_result(exception()); IRT_END IRT_ENTRY(void, InterpreterRuntime::throw_ArrayIndexOutOfBoundsException(JavaThread* thread, char* name, jint index)) char message[jintAsStringSize]; // lookup exception klass symbolHandle s = oopFactory::new_symbol_handle(name, CHECK); if (ProfileTraps) { note_trap(thread, Deoptimization::Reason_range_check, CHECK); } // create exception sprintf(message, "%d", index); THROW_MSG(s(), message); IRT_END IRT_ENTRY(void, InterpreterRuntime::throw_ClassCastException( JavaThread* thread, oopDesc* obj)) ResourceMark rm(thread); char* message = SharedRuntime::generate_class_cast_message( thread, Klass::cast(obj->klass())->external_name()); if (ProfileTraps) { note_trap(thread, Deoptimization::Reason_class_check, CHECK); } // create exception THROW_MSG(vmSymbols::java_lang_ClassCastException(), message); IRT_END // required can be either a MethodType, or a Class (for a single argument) // actual (if not null) can be either a MethodHandle, or an arbitrary value (for a single argument) IRT_ENTRY(void, InterpreterRuntime::throw_WrongMethodTypeException(JavaThread* thread, oopDesc* required, oopDesc* actual)) { ResourceMark rm(thread); char* message = SharedRuntime::generate_wrong_method_type_message(thread, required, actual); if (ProfileTraps) { note_trap(thread, Deoptimization::Reason_constraint, CHECK); } // create exception THROW_MSG(vmSymbols::java_dyn_WrongMethodTypeException(), message); } IRT_END // exception_handler_for_exception(...) returns the continuation address, // the exception oop (via TLS) and sets the bci/bcp for the continuation. // The exception oop is returned to make sure it is preserved over GC (it // is only on the stack if the exception was thrown explicitly via athrow). // During this operation, the expression stack contains the values for the // bci where the exception happened. If the exception was propagated back // from a call, the expression stack contains the values for the bci at the // invoke w/o arguments (i.e., as if one were inside the call). IRT_ENTRY(address, InterpreterRuntime::exception_handler_for_exception(JavaThread* thread, oopDesc* exception)) Handle h_exception(thread, exception); methodHandle h_method (thread, method(thread)); constantPoolHandle h_constants(thread, h_method->constants()); typeArrayHandle h_extable (thread, h_method->exception_table()); bool should_repeat; int handler_bci; int current_bci = bcp(thread) - h_method->code_base(); // Need to do this check first since when _do_not_unlock_if_synchronized // is set, we don't want to trigger any classloading which may make calls // into java, or surprisingly find a matching exception handler for bci 0 // since at this moment the method hasn't been "officially" entered yet. if (thread->do_not_unlock_if_synchronized()) { ResourceMark rm; assert(current_bci == 0, "bci isn't zero for do_not_unlock_if_synchronized"); thread->set_vm_result(exception); #ifdef CC_INTERP return (address) -1; #else return Interpreter::remove_activation_entry(); #endif } do { should_repeat = false; // assertions #ifdef ASSERT assert(h_exception.not_null(), "NULL exceptions should be handled by athrow"); assert(h_exception->is_oop(), "just checking"); // Check that exception is a subclass of Throwable, otherwise we have a VerifyError if (!(h_exception->is_a(SystemDictionary::Throwable_klass()))) { if (ExitVMOnVerifyError) vm_exit(-1); ShouldNotReachHere(); } #endif // tracing if (TraceExceptions) { ttyLocker ttyl; ResourceMark rm(thread); tty->print_cr("Exception <%s> (" INTPTR_FORMAT ")", h_exception->print_value_string(), (address)h_exception()); tty->print_cr(" thrown in interpreter method <%s>", h_method->print_value_string()); tty->print_cr(" at bci %d for thread " INTPTR_FORMAT, current_bci, thread); } // Don't go paging in something which won't be used. // else if (h_extable->length() == 0) { // // disabled for now - interpreter is not using shortcut yet // // (shortcut is not to call runtime if we have no exception handlers) // // warning("performance bug: should not call runtime if method has no exception handlers"); // } // for AbortVMOnException flag NOT_PRODUCT(Exceptions::debug_check_abort(h_exception)); // exception handler lookup KlassHandle h_klass(THREAD, h_exception->klass()); handler_bci = h_method->fast_exception_handler_bci_for(h_klass, current_bci, THREAD); if (HAS_PENDING_EXCEPTION) { // We threw an exception while trying to find the exception handler. // Transfer the new exception to the exception handle which will // be set into thread local storage, and do another lookup for an // exception handler for this exception, this time starting at the // BCI of the exception handler which caused the exception to be // thrown (bug 4307310). h_exception = Handle(THREAD, PENDING_EXCEPTION); CLEAR_PENDING_EXCEPTION; if (handler_bci >= 0) { current_bci = handler_bci; should_repeat = true; } } } while (should_repeat == true); // notify JVMTI of an exception throw; JVMTI will detect if this is a first // time throw or a stack unwinding throw and accordingly notify the debugger if (JvmtiExport::can_post_on_exceptions()) { JvmtiExport::post_exception_throw(thread, h_method(), bcp(thread), h_exception()); } #ifdef CC_INTERP address continuation = (address)(intptr_t) handler_bci; #else address continuation = NULL; #endif address handler_pc = NULL; if (handler_bci < 0 || !thread->reguard_stack((address) &continuation)) { // Forward exception to callee (leaving bci/bcp untouched) because (a) no // handler in this method, or (b) after a stack overflow there is not yet // enough stack space available to reprotect the stack. #ifndef CC_INTERP continuation = Interpreter::remove_activation_entry(); #endif // Count this for compilation purposes h_method->interpreter_throwout_increment(); } else { // handler in this method => change bci/bcp to handler bci/bcp and continue there handler_pc = h_method->code_base() + handler_bci; #ifndef CC_INTERP set_bcp_and_mdp(handler_pc, thread); continuation = Interpreter::dispatch_table(vtos)[*handler_pc]; #endif } // notify debugger of an exception catch // (this is good for exceptions caught in native methods as well) if (JvmtiExport::can_post_on_exceptions()) { JvmtiExport::notice_unwind_due_to_exception(thread, h_method(), handler_pc, h_exception(), (handler_pc != NULL)); } thread->set_vm_result(h_exception()); return continuation; IRT_END IRT_ENTRY(void, InterpreterRuntime::throw_pending_exception(JavaThread* thread)) assert(thread->has_pending_exception(), "must only ne called if there's an exception pending"); // nothing to do - eventually we should remove this code entirely (see comments @ call sites) IRT_END IRT_ENTRY(void, InterpreterRuntime::throw_AbstractMethodError(JavaThread* thread)) THROW(vmSymbols::java_lang_AbstractMethodError()); IRT_END IRT_ENTRY(void, InterpreterRuntime::throw_IncompatibleClassChangeError(JavaThread* thread)) THROW(vmSymbols::java_lang_IncompatibleClassChangeError()); IRT_END //------------------------------------------------------------------------------------------------------------------------ // Fields // IRT_ENTRY(void, InterpreterRuntime::resolve_get_put(JavaThread* thread, Bytecodes::Code bytecode)) // resolve field FieldAccessInfo info; constantPoolHandle pool(thread, method(thread)->constants()); bool is_static = (bytecode == Bytecodes::_getstatic || bytecode == Bytecodes::_putstatic); { JvmtiHideSingleStepping jhss(thread); LinkResolver::resolve_field(info, pool, two_byte_index(thread), bytecode, false, CHECK); } // end JvmtiHideSingleStepping // check if link resolution caused cpCache to be updated if (already_resolved(thread)) return; // compute auxiliary field attributes TosState state = as_TosState(info.field_type()); // We need to delay resolving put instructions on final fields // until we actually invoke one. This is required so we throw // exceptions at the correct place. If we do not resolve completely // in the current pass, leaving the put_code set to zero will // cause the next put instruction to reresolve. bool is_put = (bytecode == Bytecodes::_putfield || bytecode == Bytecodes::_putstatic); Bytecodes::Code put_code = (Bytecodes::Code)0; // We also need to delay resolving getstatic instructions until the // class is intitialized. This is required so that access to the static // field will call the initialization function every time until the class // is completely initialized ala. in 2.17.5 in JVM Specification. instanceKlass *klass = instanceKlass::cast(info.klass()->as_klassOop()); bool uninitialized_static = ((bytecode == Bytecodes::_getstatic || bytecode == Bytecodes::_putstatic) && !klass->is_initialized()); Bytecodes::Code get_code = (Bytecodes::Code)0; if (!uninitialized_static) { get_code = ((is_static) ? Bytecodes::_getstatic : Bytecodes::_getfield); if (is_put || !info.access_flags().is_final()) { put_code = ((is_static) ? Bytecodes::_putstatic : Bytecodes::_putfield); } } cache_entry(thread)->set_field( get_code, put_code, info.klass(), info.field_index(), info.field_offset(), state, info.access_flags().is_final(), info.access_flags().is_volatile() ); IRT_END //------------------------------------------------------------------------------------------------------------------------ // Synchronization // // The interpreter's synchronization code is factored out so that it can // be shared by method invocation and synchronized blocks. //%note synchronization_3 static void trace_locking(Handle& h_locking_obj, bool is_locking) { ObjectSynchronizer::trace_locking(h_locking_obj, false, true, is_locking); } //%note monitor_1 IRT_ENTRY_NO_ASYNC(void, InterpreterRuntime::monitorenter(JavaThread* thread, BasicObjectLock* elem)) #ifdef ASSERT thread->last_frame().interpreter_frame_verify_monitor(elem); #endif if (PrintBiasedLockingStatistics) { Atomic::inc(BiasedLocking::slow_path_entry_count_addr()); } Handle h_obj(thread, elem->obj()); assert(Universe::heap()->is_in_reserved_or_null(h_obj()), "must be NULL or an object"); if (UseBiasedLocking) { // Retry fast entry if bias is revoked to avoid unnecessary inflation ObjectSynchronizer::fast_enter(h_obj, elem->lock(), true, CHECK); } else { ObjectSynchronizer::slow_enter(h_obj, elem->lock(), CHECK); } assert(Universe::heap()->is_in_reserved_or_null(elem->obj()), "must be NULL or an object"); #ifdef ASSERT thread->last_frame().interpreter_frame_verify_monitor(elem); #endif IRT_END //%note monitor_1 IRT_ENTRY_NO_ASYNC(void, InterpreterRuntime::monitorexit(JavaThread* thread, BasicObjectLock* elem)) #ifdef ASSERT thread->last_frame().interpreter_frame_verify_monitor(elem); #endif Handle h_obj(thread, elem->obj()); assert(Universe::heap()->is_in_reserved_or_null(h_obj()), "must be NULL or an object"); if (elem == NULL || h_obj()->is_unlocked()) { THROW(vmSymbols::java_lang_IllegalMonitorStateException()); } ObjectSynchronizer::slow_exit(h_obj(), elem->lock(), thread); // Free entry. This must be done here, since a pending exception might be installed on // exit. If it is not cleared, the exception handling code will try to unlock the monitor again. elem->set_obj(NULL); #ifdef ASSERT thread->last_frame().interpreter_frame_verify_monitor(elem); #endif IRT_END IRT_ENTRY(void, InterpreterRuntime::throw_illegal_monitor_state_exception(JavaThread* thread)) THROW(vmSymbols::java_lang_IllegalMonitorStateException()); IRT_END IRT_ENTRY(void, InterpreterRuntime::new_illegal_monitor_state_exception(JavaThread* thread)) // Returns an illegal exception to install into the current thread. The // pending_exception flag is cleared so normal exception handling does not // trigger. Any current installed exception will be overwritten. This // method will be called during an exception unwind. assert(!HAS_PENDING_EXCEPTION, "no pending exception"); Handle exception(thread, thread->vm_result()); assert(exception() != NULL, "vm result should be set"); thread->set_vm_result(NULL); // clear vm result before continuing (may cause memory leaks and assert failures) if (!exception->is_a(SystemDictionary::ThreadDeath_klass())) { exception = get_preinitialized_exception( SystemDictionary::IllegalMonitorStateException_klass(), CATCH); } thread->set_vm_result(exception()); IRT_END //------------------------------------------------------------------------------------------------------------------------ // Invokes IRT_ENTRY(Bytecodes::Code, InterpreterRuntime::get_original_bytecode_at(JavaThread* thread, methodOopDesc* method, address bcp)) return method->orig_bytecode_at(method->bci_from(bcp)); IRT_END IRT_ENTRY(void, InterpreterRuntime::set_original_bytecode_at(JavaThread* thread, methodOopDesc* method, address bcp, Bytecodes::Code new_code)) method->set_orig_bytecode_at(method->bci_from(bcp), new_code); IRT_END IRT_ENTRY(void, InterpreterRuntime::_breakpoint(JavaThread* thread, methodOopDesc* method, address bcp)) JvmtiExport::post_raw_breakpoint(thread, method, bcp); IRT_END IRT_ENTRY(void, InterpreterRuntime::resolve_invoke(JavaThread* thread, Bytecodes::Code bytecode)) // extract receiver from the outgoing argument list if necessary Handle receiver(thread, NULL); if (bytecode == Bytecodes::_invokevirtual || bytecode == Bytecodes::_invokeinterface) { ResourceMark rm(thread); methodHandle m (thread, method(thread)); int bci = m->bci_from(bcp(thread)); Bytecode_invoke* call = Bytecode_invoke_at(m, bci); symbolHandle signature (thread, call->signature()); receiver = Handle(thread, thread->last_frame().interpreter_callee_receiver(signature)); assert(Universe::heap()->is_in_reserved_or_null(receiver()), "sanity check"); assert(receiver.is_null() || Universe::heap()->is_in_reserved(receiver->klass()), "sanity check"); } // resolve method CallInfo info; constantPoolHandle pool(thread, method(thread)->constants()); { JvmtiHideSingleStepping jhss(thread); LinkResolver::resolve_invoke(info, receiver, pool, two_byte_index(thread), bytecode, CHECK); if (JvmtiExport::can_hotswap_or_post_breakpoint()) { int retry_count = 0; while (info.resolved_method()->is_old()) { // It is very unlikely that method is redefined more than 100 times // in the middle of resolve. If it is looping here more than 100 times // means then there could be a bug here. guarantee((retry_count++ < 100), "Could not resolve to latest version of redefined method"); // method is redefined in the middle of resolve so re-try. LinkResolver::resolve_invoke(info, receiver, pool, two_byte_index(thread), bytecode, CHECK); } } } // end JvmtiHideSingleStepping // check if link resolution caused cpCache to be updated if (already_resolved(thread)) return; if (bytecode == Bytecodes::_invokeinterface) { if (TraceItables && Verbose) { ResourceMark rm(thread); tty->print_cr("Resolving: klass: %s to method: %s", info.resolved_klass()->name()->as_C_string(), info.resolved_method()->name()->as_C_string()); } if (info.resolved_method()->method_holder() == SystemDictionary::Object_klass()) { // NOTE: THIS IS A FIX FOR A CORNER CASE in the JVM spec // (see also cpCacheOop.cpp for details) methodHandle rm = info.resolved_method(); assert(rm->is_final() || info.has_vtable_index(), "should have been set already"); cache_entry(thread)->set_method(bytecode, rm, info.vtable_index()); } else { // Setup itable entry int index = klassItable::compute_itable_index(info.resolved_method()()); cache_entry(thread)->set_interface_call(info.resolved_method(), index); } } else { cache_entry(thread)->set_method( bytecode, info.resolved_method(), info.vtable_index()); } IRT_END // First time execution: Resolve symbols, create a permanent CallSite object. IRT_ENTRY(void, InterpreterRuntime::resolve_invokedynamic(JavaThread* thread)) { ResourceMark rm(thread); assert(EnableInvokeDynamic, ""); const Bytecodes::Code bytecode = Bytecodes::_invokedynamic; methodHandle caller_method(thread, method(thread)); // first find the bootstrap method KlassHandle caller_klass(thread, caller_method->method_holder()); Handle bootm = SystemDictionary::find_bootstrap_method(caller_klass, CHECK); constantPoolHandle pool(thread, caller_method->constants()); pool->set_invokedynamic(); // mark header to flag active call sites int caller_bci = 0; int site_index = 0; { address caller_bcp = bcp(thread); caller_bci = caller_method->bci_from(caller_bcp); site_index = Bytes::get_native_u4(caller_bcp+1); } assert(site_index == four_byte_index(thread), ""); assert(constantPoolCacheOopDesc::is_secondary_index(site_index), "proper format"); // there is a second CPC entries that is of interest; it caches signature info: int main_index = pool->cache()->secondary_entry_at(site_index)->main_entry_index(); // first resolve the signature to a MH.invoke methodOop if (!pool->cache()->entry_at(main_index)->is_resolved(bytecode)) { JvmtiHideSingleStepping jhss(thread); CallInfo info; LinkResolver::resolve_invoke(info, Handle(), pool, site_index, bytecode, CHECK); // The main entry corresponds to a JVM_CONSTANT_NameAndType, and serves // as a common reference point for all invokedynamic call sites with // that exact call descriptor. We will link it in the CP cache exactly // as if it were an invokevirtual of MethodHandle.invoke. pool->cache()->entry_at(main_index)->set_method( bytecode, info.resolved_method(), info.vtable_index()); assert(pool->cache()->entry_at(main_index)->is_vfinal(), "f2 must be a methodOop"); } // The method (f2 entry) of the main entry is the MH.invoke for the // invokedynamic target call signature. intptr_t f2_value = pool->cache()->entry_at(main_index)->f2(); methodHandle signature_invoker(THREAD, (methodOop) f2_value); assert(signature_invoker.not_null() && signature_invoker->is_method() && signature_invoker->is_method_handle_invoke(), "correct result from LinkResolver::resolve_invokedynamic"); symbolHandle call_site_name(THREAD, pool->name_ref_at(site_index)); Handle info; // NYI: Other metadata from a new kind of CP entry. (Annotations?) // this is the index which gets stored on the CallSite object (as "callerPosition"): int call_site_position = constantPoolCacheOopDesc::decode_secondary_index(site_index); Handle call_site = SystemDictionary::make_dynamic_call_site(bootm, // Callee information: call_site_name, signature_invoker, info, // Caller information: caller_method, caller_bci, CHECK); // In the secondary entry, the f1 field is the call site, and the f2 (index) // field is some data about the invoke site. Currently, it is just the BCI. // Later, it might be changed to help manage inlining dependencies. pool->cache()->secondary_entry_at(site_index)->set_dynamic_call(call_site, signature_invoker); } IRT_END //------------------------------------------------------------------------------------------------------------------------ // Miscellaneous #ifndef PRODUCT static void trace_frequency_counter_overflow(methodHandle m, int branch_bci, int bci, address branch_bcp) { if (TraceInvocationCounterOverflow) { InvocationCounter* ic = m->invocation_counter(); InvocationCounter* bc = m->backedge_counter(); ResourceMark rm; const char* msg = branch_bcp == NULL ? "comp-policy cntr ovfl @ %d in entry of " : "comp-policy cntr ovfl @ %d in loop of "; tty->print(msg, bci); m->print_value(); tty->cr(); ic->print(); bc->print(); if (ProfileInterpreter) { if (branch_bcp != NULL) { methodDataOop mdo = m->method_data(); if (mdo != NULL) { int count = mdo->bci_to_data(branch_bci)->as_JumpData()->taken(); tty->print_cr("back branch count = %d", count); } } } } } static void trace_osr_request(methodHandle method, nmethod* osr, int bci) { if (TraceOnStackReplacement) { ResourceMark rm; tty->print(osr != NULL ? "Reused OSR entry for " : "Requesting OSR entry for "); method->print_short_name(tty); tty->print_cr(" at bci %d", bci); } } #endif // !PRODUCT nmethod* InterpreterRuntime::frequency_counter_overflow(JavaThread* thread, address branch_bcp) { nmethod* nm = frequency_counter_overflow_inner(thread, branch_bcp); assert(branch_bcp != NULL || nm == NULL, "always returns null for non OSR requests"); if (branch_bcp != NULL && nm != NULL) { // This was a successful request for an OSR nmethod. Because // frequency_counter_overflow_inner ends with a safepoint check, // nm could have been unloaded so look it up again. It's unsafe // to examine nm directly since it might have been freed and used // for something else. frame fr = thread->last_frame(); methodOop method = fr.interpreter_frame_method(); int bci = method->bci_from(fr.interpreter_frame_bcp()); nm = method->lookup_osr_nmethod_for(bci); } return nm; } IRT_ENTRY(nmethod*, InterpreterRuntime::frequency_counter_overflow_inner(JavaThread* thread, address branch_bcp)) // use UnlockFlagSaver to clear and restore the _do_not_unlock_if_synchronized // flag, in case this method triggers classloading which will call into Java. UnlockFlagSaver fs(thread); frame fr = thread->last_frame(); assert(fr.is_interpreted_frame(), "must come from interpreter"); methodHandle method(thread, fr.interpreter_frame_method()); const int branch_bci = branch_bcp != NULL ? method->bci_from(branch_bcp) : 0; const int bci = method->bci_from(fr.interpreter_frame_bcp()); NOT_PRODUCT(trace_frequency_counter_overflow(method, branch_bci, bci, branch_bcp);) if (JvmtiExport::can_post_interpreter_events()) { if (thread->is_interp_only_mode()) { // If certain JVMTI events (e.g. frame pop event) are requested then the // thread is forced to remain in interpreted code. This is // implemented partly by a check in the run_compiled_code // section of the interpreter whether we should skip running // compiled code, and partly by skipping OSR compiles for // interpreted-only threads. if (branch_bcp != NULL) { CompilationPolicy::policy()->reset_counter_for_back_branch_event(method); return NULL; } } } if (branch_bcp == NULL) { // when code cache is full, compilation gets switched off, UseCompiler // is set to false if (!method->has_compiled_code() && UseCompiler) { CompilationPolicy::policy()->method_invocation_event(method, CHECK_NULL); } else { // Force counter overflow on method entry, even if no compilation // happened. (The method_invocation_event call does this also.) CompilationPolicy::policy()->reset_counter_for_invocation_event(method); } // compilation at an invocation overflow no longer goes and retries test for // compiled method. We always run the loser of the race as interpreted. // so return NULL return NULL; } else { // counter overflow in a loop => try to do on-stack-replacement nmethod* osr_nm = method->lookup_osr_nmethod_for(bci); NOT_PRODUCT(trace_osr_request(method, osr_nm, bci);) // when code cache is full, we should not compile any more... if (osr_nm == NULL && UseCompiler) { const int branch_bci = method->bci_from(branch_bcp); CompilationPolicy::policy()->method_back_branch_event(method, branch_bci, bci, CHECK_NULL); osr_nm = method->lookup_osr_nmethod_for(bci); } if (osr_nm == NULL) { CompilationPolicy::policy()->reset_counter_for_back_branch_event(method); return NULL; } else { // We may need to do on-stack replacement which requires that no // monitors in the activation are biased because their // BasicObjectLocks will need to migrate during OSR. Force // unbiasing of all monitors in the activation now (even though // the OSR nmethod might be invalidated) because we don't have a // safepoint opportunity later once the migration begins. if (UseBiasedLocking) { ResourceMark rm; GrowableArray* objects_to_revoke = new GrowableArray(); for( BasicObjectLock *kptr = fr.interpreter_frame_monitor_end(); kptr < fr.interpreter_frame_monitor_begin(); kptr = fr.next_monitor_in_interpreter_frame(kptr) ) { if( kptr->obj() != NULL ) { objects_to_revoke->append(Handle(THREAD, kptr->obj())); } } BiasedLocking::revoke(objects_to_revoke); } return osr_nm; } } IRT_END IRT_LEAF(jint, InterpreterRuntime::bcp_to_di(methodOopDesc* method, address cur_bcp)) assert(ProfileInterpreter, "must be profiling interpreter"); int bci = method->bci_from(cur_bcp); methodDataOop mdo = method->method_data(); if (mdo == NULL) return 0; return mdo->bci_to_di(bci); IRT_END IRT_ENTRY(jint, InterpreterRuntime::profile_method(JavaThread* thread, address cur_bcp)) // use UnlockFlagSaver to clear and restore the _do_not_unlock_if_synchronized // flag, in case this method triggers classloading which will call into Java. UnlockFlagSaver fs(thread); assert(ProfileInterpreter, "must be profiling interpreter"); frame fr = thread->last_frame(); assert(fr.is_interpreted_frame(), "must come from interpreter"); methodHandle method(thread, fr.interpreter_frame_method()); int bci = method->bci_from(cur_bcp); methodOopDesc::build_interpreter_method_data(method, THREAD); if (HAS_PENDING_EXCEPTION) { assert((PENDING_EXCEPTION->is_a(SystemDictionary::OutOfMemoryError_klass())), "we expect only an OOM error here"); CLEAR_PENDING_EXCEPTION; // and fall through... } methodDataOop mdo = method->method_data(); if (mdo == NULL) return 0; return mdo->bci_to_di(bci); IRT_END #ifdef ASSERT IRT_LEAF(void, InterpreterRuntime::verify_mdp(methodOopDesc* method, address bcp, address mdp)) assert(ProfileInterpreter, "must be profiling interpreter"); methodDataOop mdo = method->method_data(); assert(mdo != NULL, "must not be null"); int bci = method->bci_from(bcp); address mdp2 = mdo->bci_to_dp(bci); if (mdp != mdp2) { ResourceMark rm; ResetNoHandleMark rnm; // In a LEAF entry. HandleMark hm; tty->print_cr("FAILED verify : actual mdp %p expected mdp %p @ bci %d", mdp, mdp2, bci); int current_di = mdo->dp_to_di(mdp); int expected_di = mdo->dp_to_di(mdp2); tty->print_cr(" actual di %d expected di %d", current_di, expected_di); int expected_approx_bci = mdo->data_at(expected_di)->bci(); int approx_bci = -1; if (current_di >= 0) { approx_bci = mdo->data_at(current_di)->bci(); } tty->print_cr(" actual bci is %d expected bci %d", approx_bci, expected_approx_bci); mdo->print_on(tty); method->print_codes(); } assert(mdp == mdp2, "wrong mdp"); IRT_END #endif // ASSERT IRT_ENTRY(void, InterpreterRuntime::update_mdp_for_ret(JavaThread* thread, int return_bci)) assert(ProfileInterpreter, "must be profiling interpreter"); ResourceMark rm(thread); HandleMark hm(thread); frame fr = thread->last_frame(); assert(fr.is_interpreted_frame(), "must come from interpreter"); methodDataHandle h_mdo(thread, fr.interpreter_frame_method()->method_data()); // Grab a lock to ensure atomic access to setting the return bci and // the displacement. This can block and GC, invalidating all naked oops. MutexLocker ml(RetData_lock); // ProfileData is essentially a wrapper around a derived oop, so we // need to take the lock before making any ProfileData structures. ProfileData* data = h_mdo->data_at(h_mdo->dp_to_di(fr.interpreter_frame_mdp())); RetData* rdata = data->as_RetData(); address new_mdp = rdata->fixup_ret(return_bci, h_mdo); fr.interpreter_frame_set_mdp(new_mdp); IRT_END IRT_ENTRY(void, InterpreterRuntime::at_safepoint(JavaThread* thread)) // We used to need an explict preserve_arguments here for invoke bytecodes. However, // stack traversal automatically takes care of preserving arguments for invoke, so // this is no longer needed. // IRT_END does an implicit safepoint check, hence we are guaranteed to block // if this is called during a safepoint if (JvmtiExport::should_post_single_step()) { // We are called during regular safepoints and when the VM is // single stepping. If any thread is marked for single stepping, // then we may have JVMTI work to do. JvmtiExport::at_single_stepping_point(thread, method(thread), bcp(thread)); } IRT_END IRT_ENTRY(void, InterpreterRuntime::post_field_access(JavaThread *thread, oopDesc* obj, ConstantPoolCacheEntry *cp_entry)) // check the access_flags for the field in the klass instanceKlass* ik = instanceKlass::cast((klassOop)cp_entry->f1()); typeArrayOop fields = ik->fields(); int index = cp_entry->field_index(); assert(index < fields->length(), "holders field index is out of range"); // bail out if field accesses are not watched if ((fields->ushort_at(index) & JVM_ACC_FIELD_ACCESS_WATCHED) == 0) return; switch(cp_entry->flag_state()) { case btos: // fall through case ctos: // fall through case stos: // fall through case itos: // fall through case ftos: // fall through case ltos: // fall through case dtos: // fall through case atos: break; default: ShouldNotReachHere(); return; } bool is_static = (obj == NULL); HandleMark hm(thread); Handle h_obj; if (!is_static) { // non-static field accessors have an object, but we need a handle h_obj = Handle(thread, obj); } instanceKlassHandle h_cp_entry_f1(thread, (klassOop)cp_entry->f1()); jfieldID fid = jfieldIDWorkaround::to_jfieldID(h_cp_entry_f1, cp_entry->f2(), is_static); JvmtiExport::post_field_access(thread, method(thread), bcp(thread), h_cp_entry_f1, h_obj, fid); IRT_END IRT_ENTRY(void, InterpreterRuntime::post_field_modification(JavaThread *thread, oopDesc* obj, ConstantPoolCacheEntry *cp_entry, jvalue *value)) klassOop k = (klassOop)cp_entry->f1(); // check the access_flags for the field in the klass instanceKlass* ik = instanceKlass::cast(k); typeArrayOop fields = ik->fields(); int index = cp_entry->field_index(); assert(index < fields->length(), "holders field index is out of range"); // bail out if field modifications are not watched if ((fields->ushort_at(index) & JVM_ACC_FIELD_MODIFICATION_WATCHED) == 0) return; char sig_type = '\0'; switch(cp_entry->flag_state()) { case btos: sig_type = 'Z'; break; case ctos: sig_type = 'C'; break; case stos: sig_type = 'S'; break; case itos: sig_type = 'I'; break; case ftos: sig_type = 'F'; break; case atos: sig_type = 'L'; break; case ltos: sig_type = 'J'; break; case dtos: sig_type = 'D'; break; default: ShouldNotReachHere(); return; } bool is_static = (obj == NULL); HandleMark hm(thread); instanceKlassHandle h_klass(thread, k); jfieldID fid = jfieldIDWorkaround::to_jfieldID(h_klass, cp_entry->f2(), is_static); jvalue fvalue; #ifdef _LP64 fvalue = *value; #else // Long/double values are stored unaligned and also noncontiguously with // tagged stacks. We can't just do a simple assignment even in the non- // J/D cases because a C++ compiler is allowed to assume that a jvalue is // 8-byte aligned, and interpreter stack slots are only 4-byte aligned. // We assume that the two halves of longs/doubles are stored in interpreter // stack slots in platform-endian order. jlong_accessor u; jint* newval = (jint*)value; u.words[0] = newval[0]; u.words[1] = newval[Interpreter::stackElementWords]; // skip if tag fvalue.j = u.long_value; #endif // _LP64 Handle h_obj; if (!is_static) { // non-static field accessors have an object, but we need a handle h_obj = Handle(thread, obj); } JvmtiExport::post_raw_field_modification(thread, method(thread), bcp(thread), h_klass, h_obj, fid, sig_type, &fvalue); IRT_END IRT_ENTRY(void, InterpreterRuntime::post_method_entry(JavaThread *thread)) JvmtiExport::post_method_entry(thread, InterpreterRuntime::method(thread), InterpreterRuntime::last_frame(thread)); IRT_END IRT_ENTRY(void, InterpreterRuntime::post_method_exit(JavaThread *thread)) JvmtiExport::post_method_exit(thread, InterpreterRuntime::method(thread), InterpreterRuntime::last_frame(thread)); IRT_END IRT_LEAF(int, InterpreterRuntime::interpreter_contains(address pc)) { return (Interpreter::contains(pc) ? 1 : 0); } IRT_END // Implementation of SignatureHandlerLibrary address SignatureHandlerLibrary::set_handler_blob() { BufferBlob* handler_blob = BufferBlob::create("native signature handlers", blob_size); if (handler_blob == NULL) { return NULL; } address handler = handler_blob->instructions_begin(); _handler_blob = handler_blob; _handler = handler; return handler; } void SignatureHandlerLibrary::initialize() { if (_fingerprints != NULL) { return; } if (set_handler_blob() == NULL) { vm_exit_out_of_memory(blob_size, "native signature handlers"); } BufferBlob* bb = BufferBlob::create("Signature Handler Temp Buffer", SignatureHandlerLibrary::buffer_size); _buffer = bb->instructions_begin(); _fingerprints = new(ResourceObj::C_HEAP)GrowableArray(32, true); _handlers = new(ResourceObj::C_HEAP)GrowableArray
(32, true); } address SignatureHandlerLibrary::set_handler(CodeBuffer* buffer) { address handler = _handler; int code_size = buffer->pure_code_size(); if (handler + code_size > _handler_blob->instructions_end()) { // get a new handler blob handler = set_handler_blob(); } if (handler != NULL) { memcpy(handler, buffer->code_begin(), code_size); pd_set_handler(handler); ICache::invalidate_range(handler, code_size); _handler = handler + code_size; } return handler; } void SignatureHandlerLibrary::add(methodHandle method) { if (method->signature_handler() == NULL) { // use slow signature handler if we can't do better int handler_index = -1; // check if we can use customized (fast) signature handler if (UseFastSignatureHandlers && method->size_of_parameters() <= Fingerprinter::max_size_of_parameters) { // use customized signature handler MutexLocker mu(SignatureHandlerLibrary_lock); // make sure data structure is initialized initialize(); // lookup method signature's fingerprint uint64_t fingerprint = Fingerprinter(method).fingerprint(); handler_index = _fingerprints->find(fingerprint); // create handler if necessary if (handler_index < 0) { ResourceMark rm; ptrdiff_t align_offset = (address) round_to((intptr_t)_buffer, CodeEntryAlignment) - (address)_buffer; CodeBuffer buffer((address)(_buffer + align_offset), SignatureHandlerLibrary::buffer_size - align_offset); InterpreterRuntime::SignatureHandlerGenerator(method, &buffer).generate(fingerprint); // copy into code heap address handler = set_handler(&buffer); if (handler == NULL) { // use slow signature handler } else { // debugging suppport if (PrintSignatureHandlers) { tty->cr(); tty->print_cr("argument handler #%d for: %s %s (fingerprint = " UINT64_FORMAT ", %d bytes generated)", _handlers->length(), (method->is_static() ? "static" : "receiver"), method->name_and_sig_as_C_string(), fingerprint, buffer.code_size()); Disassembler::decode(handler, handler + buffer.code_size()); #ifndef PRODUCT tty->print_cr(" --- associated result handler ---"); address rh_begin = Interpreter::result_handler(method()->result_type()); address rh_end = rh_begin; while (*(int*)rh_end != 0) { rh_end += sizeof(int); } Disassembler::decode(rh_begin, rh_end); #endif } // add handler to library _fingerprints->append(fingerprint); _handlers->append(handler); // set handler index assert(_fingerprints->length() == _handlers->length(), "sanity check"); handler_index = _fingerprints->length() - 1; } } } else { CHECK_UNHANDLED_OOPS_ONLY(Thread::current()->clear_unhandled_oops()); } if (handler_index < 0) { // use generic signature handler method->set_signature_handler(Interpreter::slow_signature_handler()); } else { // set handler method->set_signature_handler(_handlers->at(handler_index)); } } assert(method->signature_handler() == Interpreter::slow_signature_handler() || _handlers->find(method->signature_handler()) == _fingerprints->find(Fingerprinter(method).fingerprint()), "sanity check"); } BufferBlob* SignatureHandlerLibrary::_handler_blob = NULL; address SignatureHandlerLibrary::_handler = NULL; GrowableArray* SignatureHandlerLibrary::_fingerprints = NULL; GrowableArray
* SignatureHandlerLibrary::_handlers = NULL; address SignatureHandlerLibrary::_buffer = NULL; IRT_ENTRY(void, InterpreterRuntime::prepare_native_call(JavaThread* thread, methodOopDesc* method)) methodHandle m(thread, method); assert(m->is_native(), "sanity check"); // lookup native function entry point if it doesn't exist bool in_base_library; if (!m->has_native_function()) { NativeLookup::lookup(m, in_base_library, CHECK); } // make sure signature handler is installed SignatureHandlerLibrary::add(m); // The interpreter entry point checks the signature handler first, // before trying to fetch the native entry point and klass mirror. // We must set the signature handler last, so that multiple processors // preparing the same method will be sure to see non-null entry & mirror. IRT_END #if defined(IA32) || defined(AMD64) IRT_LEAF(void, InterpreterRuntime::popframe_move_outgoing_args(JavaThread* thread, void* src_address, void* dest_address)) if (src_address == dest_address) { return; } ResetNoHandleMark rnm; // In a LEAF entry. HandleMark hm; ResourceMark rm; frame fr = thread->last_frame(); assert(fr.is_interpreted_frame(), ""); jint bci = fr.interpreter_frame_bci(); methodHandle mh(thread, fr.interpreter_frame_method()); Bytecode_invoke* invoke = Bytecode_invoke_at(mh, bci); ArgumentSizeComputer asc(invoke->signature()); int size_of_arguments = (asc.size() + (invoke->has_receiver() ? 1 : 0)); // receiver Copy::conjoint_bytes(src_address, dest_address, size_of_arguments * Interpreter::stackElementSize); IRT_END #endif