/* * Copyright 2001-2010 Sun Microsystems, Inc. All Rights Reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, * CA 95054 USA or visit www.sun.com if you need additional information or * have any questions. * */ // This class (or more correctly, subtypes of this class) // are used to define global garbage collector attributes. // This includes initialization of generations and any other // shared resources they may need. // // In general, all flag adjustment and validation should be // done in initialize_flags(), which is called prior to // initialize_size_info(). // // This class is not fully developed yet. As more collector(s) // are added, it is expected that we will come across further // behavior that requires global attention. The correct place // to deal with those issues is this class. // Forward declarations. class GenCollectorPolicy; class TwoGenerationCollectorPolicy; class AdaptiveSizePolicy; #ifndef SERIALGC class ConcurrentMarkSweepPolicy; class G1CollectorPolicy; #endif // SERIALGC class GCPolicyCounters; class PermanentGenerationSpec; class MarkSweepPolicy; class CollectorPolicy : public CHeapObj { protected: PermanentGenerationSpec *_permanent_generation; GCPolicyCounters* _gc_policy_counters; // Requires that the concrete subclass sets the alignment constraints // before calling. virtual void initialize_flags(); virtual void initialize_size_info(); // Initialize "_permanent_generation" to a spec for the given kind of // Perm Gen. void initialize_perm_generation(PermGen::Name pgnm); size_t _initial_heap_byte_size; size_t _max_heap_byte_size; size_t _min_heap_byte_size; size_t _min_alignment; size_t _max_alignment; // The sizing of the heap are controlled by a sizing policy. AdaptiveSizePolicy* _size_policy; // Set to true when policy wants soft refs cleared. // Reset to false by gc after it clears all soft refs. bool _should_clear_all_soft_refs; // Set to true by the GC if the just-completed gc cleared all // softrefs. This is set to true whenever a gc clears all softrefs, and // set to false each time gc returns to the mutator. For example, in the // ParallelScavengeHeap case the latter would be done toward the end of // mem_allocate() where it returns op.result() bool _all_soft_refs_clear; CollectorPolicy() : _min_alignment(1), _max_alignment(1), _initial_heap_byte_size(0), _max_heap_byte_size(0), _min_heap_byte_size(0), _size_policy(NULL), _should_clear_all_soft_refs(false), _all_soft_refs_clear(false) {} public: void set_min_alignment(size_t align) { _min_alignment = align; } size_t min_alignment() { return _min_alignment; } void set_max_alignment(size_t align) { _max_alignment = align; } size_t max_alignment() { return _max_alignment; } size_t initial_heap_byte_size() { return _initial_heap_byte_size; } void set_initial_heap_byte_size(size_t v) { _initial_heap_byte_size = v; } size_t max_heap_byte_size() { return _max_heap_byte_size; } void set_max_heap_byte_size(size_t v) { _max_heap_byte_size = v; } size_t min_heap_byte_size() { return _min_heap_byte_size; } void set_min_heap_byte_size(size_t v) { _min_heap_byte_size = v; } enum Name { CollectorPolicyKind, TwoGenerationCollectorPolicyKind, ConcurrentMarkSweepPolicyKind, ASConcurrentMarkSweepPolicyKind, G1CollectorPolicyKind }; AdaptiveSizePolicy* size_policy() { return _size_policy; } bool should_clear_all_soft_refs() { return _should_clear_all_soft_refs; } void set_should_clear_all_soft_refs(bool v) { _should_clear_all_soft_refs = v; } // Returns the current value of _should_clear_all_soft_refs. // _should_clear_all_soft_refs is set to false as a side effect. bool use_should_clear_all_soft_refs(bool v); bool all_soft_refs_clear() { return _all_soft_refs_clear; } void set_all_soft_refs_clear(bool v) { _all_soft_refs_clear = v; } // Called by the GC after Soft Refs have been cleared to indicate // that the request in _should_clear_all_soft_refs has been fulfilled. void cleared_all_soft_refs(); // Identification methods. virtual GenCollectorPolicy* as_generation_policy() { return NULL; } virtual TwoGenerationCollectorPolicy* as_two_generation_policy() { return NULL; } virtual MarkSweepPolicy* as_mark_sweep_policy() { return NULL; } #ifndef SERIALGC virtual ConcurrentMarkSweepPolicy* as_concurrent_mark_sweep_policy() { return NULL; } virtual G1CollectorPolicy* as_g1_policy() { return NULL; } #endif // SERIALGC // Note that these are not virtual. bool is_generation_policy() { return as_generation_policy() != NULL; } bool is_two_generation_policy() { return as_two_generation_policy() != NULL; } bool is_mark_sweep_policy() { return as_mark_sweep_policy() != NULL; } #ifndef SERIALGC bool is_concurrent_mark_sweep_policy() { return as_concurrent_mark_sweep_policy() != NULL; } bool is_g1_policy() { return as_g1_policy() != NULL; } #else // SERIALGC bool is_concurrent_mark_sweep_policy() { return false; } bool is_g1_policy() { return false; } #endif // SERIALGC virtual PermanentGenerationSpec *permanent_generation() { assert(_permanent_generation != NULL, "Sanity check"); return _permanent_generation; } virtual BarrierSet::Name barrier_set_name() = 0; virtual GenRemSet::Name rem_set_name() = 0; // Create the remembered set (to cover the given reserved region, // allowing breaking up into at most "max_covered_regions"). virtual GenRemSet* create_rem_set(MemRegion reserved, int max_covered_regions); // This method controls how a collector satisfies a request // for a block of memory. "gc_time_limit_was_exceeded" will // be set to true if the adaptive size policy determine that // an excessive amount of time is being spent doing collections // and caused a NULL to be returned. If a NULL is not returned, // "gc_time_limit_was_exceeded" has an undefined meaning. virtual HeapWord* mem_allocate_work(size_t size, bool is_tlab, bool* gc_overhead_limit_was_exceeded) = 0; // This method controls how a collector handles one or more // of its generations being fully allocated. virtual HeapWord *satisfy_failed_allocation(size_t size, bool is_tlab) = 0; // Performace Counter support GCPolicyCounters* counters() { return _gc_policy_counters; } // Create the jstat counters for the GC policy. By default, policy's // don't have associated counters, and we complain if this is invoked. virtual void initialize_gc_policy_counters() { ShouldNotReachHere(); } virtual CollectorPolicy::Name kind() { return CollectorPolicy::CollectorPolicyKind; } // Returns true if a collector has eden space with soft end. virtual bool has_soft_ended_eden() { return false; } }; class ClearedAllSoftRefs : public StackObj { bool _clear_all_soft_refs; CollectorPolicy* _collector_policy; public: ClearedAllSoftRefs(bool clear_all_soft_refs, CollectorPolicy* collector_policy) : _clear_all_soft_refs(clear_all_soft_refs), _collector_policy(collector_policy) {} ~ClearedAllSoftRefs() { if (_clear_all_soft_refs) { _collector_policy->cleared_all_soft_refs(); } } }; class GenCollectorPolicy : public CollectorPolicy { protected: size_t _min_gen0_size; size_t _initial_gen0_size; size_t _max_gen0_size; GenerationSpec **_generations; // Return true if an allocation should be attempted in the older // generation if it fails in the younger generation. Return // false, otherwise. virtual bool should_try_older_generation_allocation(size_t word_size) const; void initialize_flags(); void initialize_size_info(); // Try to allocate space by expanding the heap. virtual HeapWord* expand_heap_and_allocate(size_t size, bool is_tlab); // compute max heap alignment size_t compute_max_alignment(); // Scale the base_size by NewRation according to // result = base_size / (NewRatio + 1) // and align by min_alignment() size_t scale_by_NewRatio_aligned(size_t base_size); // Bound the value by the given maximum minus the // min_alignment. size_t bound_minus_alignment(size_t desired_size, size_t maximum_size); public: // Accessors size_t min_gen0_size() { return _min_gen0_size; } void set_min_gen0_size(size_t v) { _min_gen0_size = v; } size_t initial_gen0_size() { return _initial_gen0_size; } void set_initial_gen0_size(size_t v) { _initial_gen0_size = v; } size_t max_gen0_size() { return _max_gen0_size; } void set_max_gen0_size(size_t v) { _max_gen0_size = v; } virtual int number_of_generations() = 0; virtual GenerationSpec **generations() { assert(_generations != NULL, "Sanity check"); return _generations; } virtual GenCollectorPolicy* as_generation_policy() { return this; } virtual void initialize_generations() = 0; virtual void initialize_all() { initialize_flags(); initialize_size_info(); initialize_generations(); } HeapWord* mem_allocate_work(size_t size, bool is_tlab, bool* gc_overhead_limit_was_exceeded); HeapWord *satisfy_failed_allocation(size_t size, bool is_tlab); // The size that defines a "large array". virtual size_t large_typearray_limit(); // Adaptive size policy virtual void initialize_size_policy(size_t init_eden_size, size_t init_promo_size, size_t init_survivor_size); }; // All of hotspot's current collectors are subtypes of this // class. Currently, these collectors all use the same gen[0], // but have different gen[1] types. If we add another subtype // of CollectorPolicy, this class should be broken out into // its own file. class TwoGenerationCollectorPolicy : public GenCollectorPolicy { protected: size_t _min_gen1_size; size_t _initial_gen1_size; size_t _max_gen1_size; void initialize_flags(); void initialize_size_info(); void initialize_generations() { ShouldNotReachHere(); } public: // Accessors size_t min_gen1_size() { return _min_gen1_size; } void set_min_gen1_size(size_t v) { _min_gen1_size = v; } size_t initial_gen1_size() { return _initial_gen1_size; } void set_initial_gen1_size(size_t v) { _initial_gen1_size = v; } size_t max_gen1_size() { return _max_gen1_size; } void set_max_gen1_size(size_t v) { _max_gen1_size = v; } // Inherited methods TwoGenerationCollectorPolicy* as_two_generation_policy() { return this; } int number_of_generations() { return 2; } BarrierSet::Name barrier_set_name() { return BarrierSet::CardTableModRef; } GenRemSet::Name rem_set_name() { return GenRemSet::CardTable; } virtual CollectorPolicy::Name kind() { return CollectorPolicy::TwoGenerationCollectorPolicyKind; } // Returns true is gen0 sizes were adjusted bool adjust_gen0_sizes(size_t* gen0_size_ptr, size_t* gen1_size_ptr, size_t heap_size, size_t min_gen1_size); }; class MarkSweepPolicy : public TwoGenerationCollectorPolicy { protected: void initialize_generations(); public: MarkSweepPolicy(); MarkSweepPolicy* as_mark_sweep_policy() { return this; } void initialize_gc_policy_counters(); };