// // Copyright (c) 1999, 2020, Oracle and/or its affiliates. All rights reserved. // DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. // // This code is free software; you can redistribute it and/or modify it // under the terms of the GNU General Public License version 2 only, as // published by the Free Software Foundation. // // This code is distributed in the hope that it will be useful, but WITHOUT // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or // FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License // version 2 for more details (a copy is included in the LICENSE file that // accompanied this code). // // You should have received a copy of the GNU General Public License version // 2 along with this work; if not, write to the Free Software Foundation, // Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. // // Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA // or visit www.oracle.com if you need additional information or have any // questions. // // // This file contains test cases for regular expressions. // A test case consists of three lines: // The first line is a pattern used in the test // The second line is the input to search for the pattern in // The third line is a concatenation of the match, the number of groups, // and the contents of the first four subexpressions. // Empty lines and lines beginning with comment slashes are ignored. // // Test unsetting of backed off groups ^(a)?a a true a 1 ^(a){0,1}a a true a 1 ^(aa(bb)?)+$ aabbaa true aabbaa 2 aa bb ^(aa(bb){0,1})+$ aabbaa true aabbaa 2 aa bb ((a|b)?b)+ b true b 2 b ((a|b){0,1}b)+ b true b 2 b (aaa)?aaa aaa true aaa 1 (aaa){0,1}aaa aaa true aaa 1 ^(a(b)?)+$ aba true aba 2 a b ^(a(b){0,1})+$ aba true aba 2 a b ^(a(b(c)?)?)?abc abc true abc 3 ^(a(b(c){0,1}){0,1}){0,1}abc abc true abc 3 ^(a(b(c))).* abc true abc 3 abc bc c // use of x modifier abc(?x)blah abcblah true abcblah 0 abc(?x) blah abcblah true abcblah 0 abc(?x) blah blech abcblahblech true abcblahblech 0 abc(?x) blah # ignore comment abcblah true abcblah 0 // Simple alternation a|b a true a 0 a|b z false 0 a|b b true b 0 a|b|cd cd true cd 0 a|ad ad true a 0 z(a|ac)b zacb true zacb 1 ac // Simple char class [abc]+ ababab true ababab 0 [abc]+ defg false 0 [abc]+[def]+[ghi]+ zzzaaddggzzz true aaddgg 0 // Range char class [a-g]+ zzzggg true ggg 0 [a-g]+ mmm false 0 [a-]+ za-9z true a- 0 [a-\\u4444]+ za-9z true za 0 // Negated char class [^abc]+ ababab false 0 [^abc]+ aaabbbcccdefg true defg 0 // Negation with nested char class and intersection [^[c]] c false 0 [^[a-z]] e false 0 [^[a-z][A-Z]] E false 0 [^a-d[0-9][m-p]] e true e 0 [^a-d[0-9][m-p]] 8 false 0 [^[a-c]&&[d-f]] z true z 0 [^a-c&&d-f] a true a 0 [^a-m&&m-z] m false 0 [^a-m&&m-z&&a-c] m true m 0 [^a-cd-f&&[d-f]] c true c 0 [^[a-c][d-f]&&abc] a false 0 [^[a-c][d-f]&&abc] d true d 0 [^[a-c][d-f]&&abc[def]] a false 0 [^[a-c][d-f]&&abc[def]] e false 0 [^[a-c]&&[b-d]&&[c-e]] a true a 0 [^[a-c]&&[b-d]&&[c-e]] c false 0 // Making sure a ^ not in first position matches literal ^ [abc^b] b true b 0 [abc^b] ^ true ^ 0 // Class union and intersection [abc[def]] b true b 0 [abc[def]] e true e 0 [a-d[0-9][m-p]] a true a 0 [a-d[0-9][m-p]] o true o 0 [a-d[0-9][m-p]] 4 true 4 0 [a-d[0-9][m-p]] e false 0 [a-d[0-9][m-p]] u false 0 [[a-d][0-9][m-p]] b true b 0 [[a-d][0-9][m-p]] z false 0 [a-c[d-f[g-i]]] a true a 0 [a-c[d-f[g-i]]] e true e 0 [a-c[d-f[g-i]]] h true h 0 [a-c[d-f[g-i]]] m false 0 [a-c[d-f[g-i]]m] m true m 0 [abc[def]ghi] a true a 0 [abc[def]ghi] d true d 0 [abc[def]ghi] h true h 0 [abc[def]ghi] w false 0 [a-c&&[d-f]] a false 0 [a-c&&[d-f]] e false 0 [a-c&&[d-f]] z false 0 [[a-c]&&[d-f]] a false 0 [[a-c]&&[d-f]] e false 0 [[a-c]&&[d-f]] z false 0 [a-c&&d-f] a false 0 [a-m&&m-z] m true m 0 [a-m&&m-z&&a-c] m false 0 [a-m&&m-z&&a-z] m true m 0 [[a-m]&&[m-z]] a false 0 [[a-m]&&[m-z]] m true m 0 [[a-m]&&[m-z]] z false 0 [[a-m]&&[^a-c]] a false 0 [[a-m]&&[^a-c]] d true d 0 [a-m&&[^a-c]] a false 0 [a-m&&[^a-c]] d true d 0 [a-cd-f&&[d-f]] a false 0 [a-cd-f&&[d-f]] e true e 0 [[a-c]&&d-fa-c] a true a 0 [[a-c]&&[d-f][a-c]] a true a 0 [[a-c][d-f]&&abc] a true a 0 [[a-c][d-f]&&abc[def]] e true e 0 [[a-c]&&[b-d]&&[c-e]] a false 0 [[a-c]&&[b-d]&&[c-e]] c true c 0 [[a-c]&&[b-d][c-e]&&[u-z]] c false 0 [abc[^bcd]] a true a 0 [abc[^bcd]] d false 0 [a-c&&a-d&&a-eghi] b true b 0 [a-c&&a-d&&a-eghi] g false 0 [[a[b]]&&[b[a]]] a true a 0 [[a]&&[b][c][a]&&[^d]] a true a 0 [[a]&&[b][c][a]&&[^d]] d false 0 [[[a-d]&&[c-f]]] a false 0 [[[a-d]&&[c-f]]] c true c 0 [[[a-d]&&[c-f]]&&[c]] c true c 0 [[[a-d]&&[c-f]]&&[c]&&c] c true c 0 [[[a-d]&&[c-f]]&&[c]&&c&&c] c true c 0 [[[a-d]&&[c-f]]&&[c]&&c&&[cde]] c true c 0 [z[abc&&bcd]] c true c 0 [z[abc&&bcd]&&[u-z]] z true z 0 [x[abc&&bcd[z]]&&[u-z]] z false 0 [x[[wz]abc&&bcd[z]]&&[u-z]] z true z 0 [[abc]&&[def]abc] a true a 0 [[abc]&&[def]xyz[abc]] a true a 0 \pL a true a 0 \pL 7 false 0 \p{L} a true a 0 \p{LC} a true a 0 \p{LC} A true A 0 \p{IsL} a true a 0 \p{IsLC} a true a 0 \p{IsLC} A true A 0 \p{IsLC} 9 false 0 \P{IsLC} 9 true 9 0 // Guillemet left is initial quote punctuation \p{Pi} \u00ab true \u00ab 0 \P{Pi} \u00ac true \u00ac 0 // Guillemet right is final quote punctuation \p{IsPf} \u00bb true \u00bb 0 \p{P} \u00bb true \u00bb 0 \p{P}+ \u00bb true \u00bb 0 \P{IsPf} \u00bc true \u00bc 0 \P{IsP} \u00bc true \u00bc 0 \p{L1} \u00bc true \u00bc 0 \p{L1}+ \u00bc true \u00bc 0 \p{L1} \u02bc false 0 \p{ASCII} a true a 0 \p{IsASCII} a true a 0 \p{IsASCII} \u0370 false 0 \pLbc abc true abc 0 a[r\p{InGreek}]c a\u0370c true a\u0370c 0 a\p{InGreek} a\u0370 true a\u0370 0 a\P{InGreek} a\u0370 false 0 a\P{InGreek} ab true ab 0 a{^InGreek} - error a\p{^InGreek} - error a\P{^InGreek} - error a\p{InGreek} a\u0370 true a\u0370 0 a[\p{InGreek}]c a\u0370c true a\u0370c 0 a[\P{InGreek}]c a\u0370c false 0 a[\P{InGreek}]c abc true abc 0 a[{^InGreek}]c anc true anc 0 a[{^InGreek}]c azc false 0 a[\p{^InGreek}]c - error a[\P{^InGreek}]c - error a[\p{InGreek}] a\u0370 true a\u0370 0 a[r\p{InGreek}]c arc true arc 0 a[\p{InGreek}r]c arc true arc 0 a[r\p{InGreek}]c arc true arc 0 a[^\p{InGreek}]c a\u0370c false 0 a[^\P{InGreek}]c a\u0370c true a\u0370c 0 a[\p{InGreek}&&[^\u0370]]c a\u0370c false 0 // Test the dot metacharacter a.c.+ a#c%& true a#c%& 0 ab. ab\n false 0 (?s)ab. ab\n true ab\n 0 a[\p{L}&&[\P{InGreek}]]c a\u6000c true a\u6000c 0 a[\p{L}&&[\P{InGreek}]]c arc true arc 0 a[\p{L}&&[\P{InGreek}]]c a\u0370c false 0 a\p{InGreek}c a\u0370c true a\u0370c 0 a\p{Sc} a$ true a$ 0 // Test the word char escape sequence ab\wc abcc true abcc 0 \W\w\W #r# true #r# 0 \W\w\W rrrr#ggg false 0 abc[\w] abcd true abcd 0 abc[\sdef]* abc def true abc def 0 abc[\sy-z]* abc y z true abc y z 0 abc[a-d\sm-p]* abcaa mn p true abcaa mn p 0 // Test the whitespace escape sequence ab\sc ab c true ab c 0 \s\s\s blah err false 0 \S\S\s blah err true ah 0 // Test the digit escape sequence ab\dc ab9c true ab9c 0 \d\d\d blah45 false 0 // Test the caret metacharacter ^abc abcdef true abc 0 ^abc bcdabc false 0 // Greedy ? metacharacter a?b aaaab true ab 0 a{0,1}b aaaab true ab 0 a?b b true b 0 a{0,1}b b true b 0 a?b aaaccc false 0 a{0,1}b aaaccc false 0 .?b aaaab true ab 0 .{0,1}b aaaab true ab 0 // Reluctant ? metacharacter a??b aaaab true ab 0 a{0,1}?b aaaab true ab 0 a??b b true b 0 a{0,1}?b b true b 0 a??b aaaccc false 0 a{0,1}?b aaaccc false 0 .??b aaaab true ab 0 .{0,1}?b aaaab true ab 0 // Possessive ? metacharacter a?+b aaaab true ab 0 a{0,1}+b aaaab true ab 0 a?+b b true b 0 a{0,1}+b b true b 0 a?+b aaaccc false 0 a{0,1}+b aaaccc false 0 .?+b aaaab true ab 0 .{0,1}+b aaaab true ab 0 // Greedy + metacharacter a+b aaaab true aaaab 0 a+b b false 0 a+b aaaccc false 0 .+b aaaab true aaaab 0 // Reluctant + metacharacter a+?b aaaab true aaaab 0 a+?b b false 0 a+?b aaaccc false 0 .+?b aaaab true aaaab 0 // Possessive + metacharacter a++b aaaab true aaaab 0 a++b b false 0 a++b aaaccc false 0 .++b aaaab false 0 // Greedy Repetition a{2,3} a false 0 a{2,3} aa true aa 0 a{2,3} aaa true aaa 0 a{2,3} aaaa true aaa 0 a{3,} zzzaaaazzz true aaaa 0 a{3,} zzzaazzz false 0 // Reluctant Repetition a{2,3}? a false 0 a{2,3}? aa true aa 0 a{2,3}? aaa true aa 0 a{2,3}? aaaa true aa 0 // Zero width Positive lookahead abc(?=d) zzzabcd true abc 0 abc(?=d) zzzabced false 0 // Zero width Negative lookahead abc(?!d) zzabcd false 0 abc(?!d) zzabced true abc 0 // Zero width Positive lookbehind \w(?<=a) ###abc### true a 0 \w(?<=a) ###ert### false 0 // Zero width Negative lookbehind (?3 // So that the BM optimization is part of test \Q***\Eabc ***abc true ***abc 0 bl\Q***\Eabc bl***abc true bl***abc 0 \Q***abc ***abc true ***abc 0 blah\Q***\Eabc blah***abc true blah***abc 0 \Q***abc ***abc true ***abc 0 \Q*ab *ab true *ab 0 blah\Q***abc blah***abc true blah***abc 0 bla\Q***abc bla***abc true bla***abc 0 // Escapes in char classes [ab\Qdef\E] d true d 0 [ab\Q[\E] [ true [ 0 [\Q]\E] ] true ] 0 [\Q\\E] \ true \ 0 [\Q(\E] ( true ( 0 [\n-#] ! true ! 0 [\n-#] - false 0 [\w-#] ! false 0 [\w-#] a true a 0 [\w-#] - true - 0 [\w-#] # true # 0 [\043]+ blahblah#blech true # 0 [\042-\044]+ blahblah#blech true # 0 [\u1234-\u1236] blahblah\u1235blech true \u1235 0 [^\043]* blahblah#blech true blahblah 0 (|f)?+ foo true 1 (|f){0,1}+ foo true 1 //---------------------------------------------------------------- // Unary numeral primality testing //---------------------------------------------------------------- // Input is 7 (a prime), in unary; reluctant quantifier ^(11+?)\1+$ 1111111 false 1 ^(1{2,}?)\1+$ 1111111 false 1 // Input is 8 (a power of two), in unary; reluctant quantifier // group is shortest possible (2) ^(11+?)\1+$ 11111111 true 11111111 1 11 ^(1{2,}?)\1+$ 11111111 true 11111111 1 11 // Input is 7 (a prime), in unary; greedy quantifier ^(11+)\1+$ 1111111 false 1 ^(1{2,})\1+$ 1111111 false 1 // Input is 8 (a power of two), in unary; greedy quantifier // group is longest possible (4) ^(11+)\1+$ 11111111 true 11111111 1 1111 ^(1{2,})\1+$ 11111111 true 11111111 1 1111