/* * Copyright 2005-2007 Sun Microsystems, Inc. All Rights Reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, * CA 95054 USA or visit www.sun.com if you need additional information or * have any questions. * */ #include "incls/_precompiled.incl" #include "incls/_macro.cpp.incl" // // Replace any references to "oldref" in inputs to "use" with "newref". // Returns the number of replacements made. // int PhaseMacroExpand::replace_input(Node *use, Node *oldref, Node *newref) { int nreplacements = 0; uint req = use->req(); for (uint j = 0; j < use->len(); j++) { Node *uin = use->in(j); if (uin == oldref) { if (j < req) use->set_req(j, newref); else use->set_prec(j, newref); nreplacements++; } else if (j >= req && uin == NULL) { break; } } return nreplacements; } void PhaseMacroExpand::copy_call_debug_info(CallNode *oldcall, CallNode * newcall) { // Copy debug information and adjust JVMState information uint old_dbg_start = oldcall->tf()->domain()->cnt(); uint new_dbg_start = newcall->tf()->domain()->cnt(); int jvms_adj = new_dbg_start - old_dbg_start; assert (new_dbg_start == newcall->req(), "argument count mismatch"); for (uint i = old_dbg_start; i < oldcall->req(); i++) { newcall->add_req(oldcall->in(i)); } newcall->set_jvms(oldcall->jvms()); for (JVMState *jvms = newcall->jvms(); jvms != NULL; jvms = jvms->caller()) { jvms->set_map(newcall); jvms->set_locoff(jvms->locoff()+jvms_adj); jvms->set_stkoff(jvms->stkoff()+jvms_adj); jvms->set_monoff(jvms->monoff()+jvms_adj); jvms->set_endoff(jvms->endoff()+jvms_adj); } } Node* PhaseMacroExpand::opt_iff(Node* region, Node* iff) { IfNode *opt_iff = transform_later(iff)->as_If(); // Fast path taken; set region slot 2 Node *fast_taken = transform_later( new (C, 1) IfFalseNode(opt_iff) ); region->init_req(2,fast_taken); // Capture fast-control // Fast path not-taken, i.e. slow path Node *slow_taken = transform_later( new (C, 1) IfTrueNode(opt_iff) ); return slow_taken; } //--------------------copy_predefined_input_for_runtime_call-------------------- void PhaseMacroExpand::copy_predefined_input_for_runtime_call(Node * ctrl, CallNode* oldcall, CallNode* call) { // Set fixed predefined input arguments call->init_req( TypeFunc::Control, ctrl ); call->init_req( TypeFunc::I_O , oldcall->in( TypeFunc::I_O) ); call->init_req( TypeFunc::Memory , oldcall->in( TypeFunc::Memory ) ); // ????? call->init_req( TypeFunc::ReturnAdr, oldcall->in( TypeFunc::ReturnAdr ) ); call->init_req( TypeFunc::FramePtr, oldcall->in( TypeFunc::FramePtr ) ); } //------------------------------make_slow_call--------------------------------- CallNode* PhaseMacroExpand::make_slow_call(CallNode *oldcall, const TypeFunc* slow_call_type, address slow_call, const char* leaf_name, Node* slow_path, Node* parm0, Node* parm1) { // Slow-path call int size = slow_call_type->domain()->cnt(); CallNode *call = leaf_name ? (CallNode*)new (C, size) CallLeafNode ( slow_call_type, slow_call, leaf_name, TypeRawPtr::BOTTOM ) : (CallNode*)new (C, size) CallStaticJavaNode( slow_call_type, slow_call, OptoRuntime::stub_name(slow_call), oldcall->jvms()->bci(), TypeRawPtr::BOTTOM ); // Slow path call has no side-effects, uses few values copy_predefined_input_for_runtime_call(slow_path, oldcall, call ); if (parm0 != NULL) call->init_req(TypeFunc::Parms+0, parm0); if (parm1 != NULL) call->init_req(TypeFunc::Parms+1, parm1); copy_call_debug_info(oldcall, call); call->set_cnt(PROB_UNLIKELY_MAG(4)); // Same effect as RC_UNCOMMON. _igvn.hash_delete(oldcall); _igvn.subsume_node(oldcall, call); transform_later(call); return call; } void PhaseMacroExpand::extract_call_projections(CallNode *call) { _fallthroughproj = NULL; _fallthroughcatchproj = NULL; _ioproj_fallthrough = NULL; _ioproj_catchall = NULL; _catchallcatchproj = NULL; _memproj_fallthrough = NULL; _memproj_catchall = NULL; _resproj = NULL; for (DUIterator_Fast imax, i = call->fast_outs(imax); i < imax; i++) { ProjNode *pn = call->fast_out(i)->as_Proj(); switch (pn->_con) { case TypeFunc::Control: { // For Control (fallthrough) and I_O (catch_all_index) we have CatchProj -> Catch -> Proj _fallthroughproj = pn; DUIterator_Fast jmax, j = pn->fast_outs(jmax); const Node *cn = pn->fast_out(j); if (cn->is_Catch()) { ProjNode *cpn = NULL; for (DUIterator_Fast kmax, k = cn->fast_outs(kmax); k < kmax; k++) { cpn = cn->fast_out(k)->as_Proj(); assert(cpn->is_CatchProj(), "must be a CatchProjNode"); if (cpn->_con == CatchProjNode::fall_through_index) _fallthroughcatchproj = cpn; else { assert(cpn->_con == CatchProjNode::catch_all_index, "must be correct index."); _catchallcatchproj = cpn; } } } break; } case TypeFunc::I_O: if (pn->_is_io_use) _ioproj_catchall = pn; else _ioproj_fallthrough = pn; break; case TypeFunc::Memory: if (pn->_is_io_use) _memproj_catchall = pn; else _memproj_fallthrough = pn; break; case TypeFunc::Parms: _resproj = pn; break; default: assert(false, "unexpected projection from allocation node."); } } } //---------------------------set_eden_pointers------------------------- void PhaseMacroExpand::set_eden_pointers(Node* &eden_top_adr, Node* &eden_end_adr) { if (UseTLAB) { // Private allocation: load from TLS Node* thread = transform_later(new (C, 1) ThreadLocalNode()); int tlab_top_offset = in_bytes(JavaThread::tlab_top_offset()); int tlab_end_offset = in_bytes(JavaThread::tlab_end_offset()); eden_top_adr = basic_plus_adr(top()/*not oop*/, thread, tlab_top_offset); eden_end_adr = basic_plus_adr(top()/*not oop*/, thread, tlab_end_offset); } else { // Shared allocation: load from globals CollectedHeap* ch = Universe::heap(); address top_adr = (address)ch->top_addr(); address end_adr = (address)ch->end_addr(); eden_top_adr = makecon(TypeRawPtr::make(top_adr)); eden_end_adr = basic_plus_adr(eden_top_adr, end_adr - top_adr); } } Node* PhaseMacroExpand::make_load(Node* ctl, Node* mem, Node* base, int offset, const Type* value_type, BasicType bt) { Node* adr = basic_plus_adr(base, offset); const TypePtr* adr_type = TypeRawPtr::BOTTOM; Node* value = LoadNode::make(C, ctl, mem, adr, adr_type, value_type, bt); transform_later(value); return value; } Node* PhaseMacroExpand::make_store(Node* ctl, Node* mem, Node* base, int offset, Node* value, BasicType bt) { Node* adr = basic_plus_adr(base, offset); mem = StoreNode::make(C, ctl, mem, adr, NULL, value, bt); transform_later(mem); return mem; } //============================================================================= // // A L L O C A T I O N // // Allocation attempts to be fast in the case of frequent small objects. // It breaks down like this: // // 1) Size in doublewords is computed. This is a constant for objects and // variable for most arrays. Doubleword units are used to avoid size // overflow of huge doubleword arrays. We need doublewords in the end for // rounding. // // 2) Size is checked for being 'too large'. Too-large allocations will go // the slow path into the VM. The slow path can throw any required // exceptions, and does all the special checks for very large arrays. The // size test can constant-fold away for objects. For objects with // finalizers it constant-folds the otherway: you always go slow with // finalizers. // // 3) If NOT using TLABs, this is the contended loop-back point. // Load-Locked the heap top. If using TLABs normal-load the heap top. // // 4) Check that heap top + size*8 < max. If we fail go the slow ` route. // NOTE: "top+size*8" cannot wrap the 4Gig line! Here's why: for largish // "size*8" we always enter the VM, where "largish" is a constant picked small // enough that there's always space between the eden max and 4Gig (old space is // there so it's quite large) and large enough that the cost of entering the VM // is dwarfed by the cost to initialize the space. // // 5) If NOT using TLABs, Store-Conditional the adjusted heap top back // down. If contended, repeat at step 3. If using TLABs normal-store // adjusted heap top back down; there is no contention. // // 6) If !ZeroTLAB then Bulk-clear the object/array. Fill in klass & mark // fields. // // 7) Merge with the slow-path; cast the raw memory pointer to the correct // oop flavor. // //============================================================================= // FastAllocateSizeLimit value is in DOUBLEWORDS. // Allocations bigger than this always go the slow route. // This value must be small enough that allocation attempts that need to // trigger exceptions go the slow route. Also, it must be small enough so // that heap_top + size_in_bytes does not wrap around the 4Gig limit. //=============================================================================j// // %%% Here is an old comment from parseHelper.cpp; is it outdated? // The allocator will coalesce int->oop copies away. See comment in // coalesce.cpp about how this works. It depends critically on the exact // code shape produced here, so if you are changing this code shape // make sure the GC info for the heap-top is correct in and around the // slow-path call. // void PhaseMacroExpand::expand_allocate_common( AllocateNode* alloc, // allocation node to be expanded Node* length, // array length for an array allocation const TypeFunc* slow_call_type, // Type of slow call address slow_call_address // Address of slow call ) { Node* ctrl = alloc->in(TypeFunc::Control); Node* mem = alloc->in(TypeFunc::Memory); Node* i_o = alloc->in(TypeFunc::I_O); Node* size_in_bytes = alloc->in(AllocateNode::AllocSize); Node* klass_node = alloc->in(AllocateNode::KlassNode); Node* initial_slow_test = alloc->in(AllocateNode::InitialTest); Node* eden_top_adr; Node* eden_end_adr; set_eden_pointers(eden_top_adr, eden_end_adr); uint raw_idx = C->get_alias_index(TypeRawPtr::BOTTOM); assert(ctrl != NULL, "must have control"); // Load Eden::end. Loop invariant and hoisted. // // Note: We set the control input on "eden_end" and "old_eden_top" when using // a TLAB to work around a bug where these values were being moved across // a safepoint. These are not oops, so they cannot be include in the oop // map, but the can be changed by a GC. The proper way to fix this would // be to set the raw memory state when generating a SafepointNode. However // this will require extensive changes to the loop optimization in order to // prevent a degradation of the optimization. // See comment in memnode.hpp, around line 227 in class LoadPNode. Node* eden_end = make_load(ctrl, mem, eden_end_adr, 0, TypeRawPtr::BOTTOM, T_ADDRESS); // We need a Region and corresponding Phi's to merge the slow-path and fast-path results. // they will not be used if "always_slow" is set enum { slow_result_path = 1, fast_result_path = 2 }; Node *result_region; Node *result_phi_rawmem; Node *result_phi_rawoop; Node *result_phi_i_o; // The initial slow comparison is a size check, the comparison // we want to do is a BoolTest::gt bool always_slow = false; int tv = _igvn.find_int_con(initial_slow_test, -1); if (tv >= 0) { always_slow = (tv == 1); initial_slow_test = NULL; } else { initial_slow_test = BoolNode::make_predicate(initial_slow_test, &_igvn); } if (DTraceAllocProbes) { // Force slow-path allocation always_slow = true; initial_slow_test = NULL; } enum { too_big_or_final_path = 1, need_gc_path = 2 }; Node *slow_region = NULL; Node *toobig_false = ctrl; assert (initial_slow_test == NULL || !always_slow, "arguments must be consistent"); // generate the initial test if necessary if (initial_slow_test != NULL ) { slow_region = new (C, 3) RegionNode(3); // Now make the initial failure test. Usually a too-big test but // might be a TRUE for finalizers or a fancy class check for // newInstance0. IfNode *toobig_iff = new (C, 2) IfNode(ctrl, initial_slow_test, PROB_MIN, COUNT_UNKNOWN); transform_later(toobig_iff); // Plug the failing-too-big test into the slow-path region Node *toobig_true = new (C, 1) IfTrueNode( toobig_iff ); transform_later(toobig_true); slow_region ->init_req( too_big_or_final_path, toobig_true ); toobig_false = new (C, 1) IfFalseNode( toobig_iff ); transform_later(toobig_false); } else { // No initial test, just fall into next case toobig_false = ctrl; debug_only(slow_region = NodeSentinel); } Node *slow_mem = mem; // save the current memory state for slow path // generate the fast allocation code unless we know that the initial test will always go slow if (!always_slow) { // allocate the Region and Phi nodes for the result result_region = new (C, 3) RegionNode(3); result_phi_rawmem = new (C, 3) PhiNode( result_region, Type::MEMORY, TypeRawPtr::BOTTOM ); result_phi_rawoop = new (C, 3) PhiNode( result_region, TypeRawPtr::BOTTOM ); result_phi_i_o = new (C, 3) PhiNode( result_region, Type::ABIO ); // I/O is used for Prefetch // We need a Region for the loop-back contended case. enum { fall_in_path = 1, contended_loopback_path = 2 }; Node *contended_region; Node *contended_phi_rawmem; if( UseTLAB ) { contended_region = toobig_false; contended_phi_rawmem = mem; } else { contended_region = new (C, 3) RegionNode(3); contended_phi_rawmem = new (C, 3) PhiNode( contended_region, Type::MEMORY, TypeRawPtr::BOTTOM); // Now handle the passing-too-big test. We fall into the contended // loop-back merge point. contended_region ->init_req( fall_in_path, toobig_false ); contended_phi_rawmem->init_req( fall_in_path, mem ); transform_later(contended_region); transform_later(contended_phi_rawmem); } // Load(-locked) the heap top. // See note above concerning the control input when using a TLAB Node *old_eden_top = UseTLAB ? new (C, 3) LoadPNode ( ctrl, contended_phi_rawmem, eden_top_adr, TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM ) : new (C, 3) LoadPLockedNode( contended_region, contended_phi_rawmem, eden_top_adr ); transform_later(old_eden_top); // Add to heap top to get a new heap top Node *new_eden_top = new (C, 4) AddPNode( top(), old_eden_top, size_in_bytes ); transform_later(new_eden_top); // Check for needing a GC; compare against heap end Node *needgc_cmp = new (C, 3) CmpPNode( new_eden_top, eden_end ); transform_later(needgc_cmp); Node *needgc_bol = new (C, 2) BoolNode( needgc_cmp, BoolTest::ge ); transform_later(needgc_bol); IfNode *needgc_iff = new (C, 2) IfNode(contended_region, needgc_bol, PROB_UNLIKELY_MAG(4), COUNT_UNKNOWN ); transform_later(needgc_iff); // Plug the failing-heap-space-need-gc test into the slow-path region Node *needgc_true = new (C, 1) IfTrueNode( needgc_iff ); transform_later(needgc_true); if( initial_slow_test ) { slow_region ->init_req( need_gc_path, needgc_true ); // This completes all paths into the slow merge point transform_later(slow_region); } else { // No initial slow path needed! // Just fall from the need-GC path straight into the VM call. slow_region = needgc_true; } // No need for a GC. Setup for the Store-Conditional Node *needgc_false = new (C, 1) IfFalseNode( needgc_iff ); transform_later(needgc_false); // Grab regular I/O before optional prefetch may change it. // Slow-path does no I/O so just set it to the original I/O. result_phi_i_o->init_req( slow_result_path, i_o ); i_o = prefetch_allocation(i_o, needgc_false, contended_phi_rawmem, old_eden_top, new_eden_top, length); // Store (-conditional) the modified eden top back down. // StorePConditional produces flags for a test PLUS a modified raw // memory state. Node *store_eden_top; Node *fast_oop_ctrl; if( UseTLAB ) { store_eden_top = new (C, 4) StorePNode( needgc_false, contended_phi_rawmem, eden_top_adr, TypeRawPtr::BOTTOM, new_eden_top ); transform_later(store_eden_top); fast_oop_ctrl = needgc_false; // No contention, so this is the fast path } else { store_eden_top = new (C, 5) StorePConditionalNode( needgc_false, contended_phi_rawmem, eden_top_adr, new_eden_top, old_eden_top ); transform_later(store_eden_top); Node *contention_check = new (C, 2) BoolNode( store_eden_top, BoolTest::ne ); transform_later(contention_check); store_eden_top = new (C, 1) SCMemProjNode(store_eden_top); transform_later(store_eden_top); // If not using TLABs, check to see if there was contention. IfNode *contention_iff = new (C, 2) IfNode ( needgc_false, contention_check, PROB_MIN, COUNT_UNKNOWN ); transform_later(contention_iff); Node *contention_true = new (C, 1) IfTrueNode( contention_iff ); transform_later(contention_true); // If contention, loopback and try again. contended_region->init_req( contended_loopback_path, contention_true ); contended_phi_rawmem->init_req( contended_loopback_path, store_eden_top ); // Fast-path succeeded with no contention! Node *contention_false = new (C, 1) IfFalseNode( contention_iff ); transform_later(contention_false); fast_oop_ctrl = contention_false; } // Rename successful fast-path variables to make meaning more obvious Node* fast_oop = old_eden_top; Node* fast_oop_rawmem = store_eden_top; fast_oop_rawmem = initialize_object(alloc, fast_oop_ctrl, fast_oop_rawmem, fast_oop, klass_node, length, size_in_bytes); if (ExtendedDTraceProbes) { // Slow-path call int size = TypeFunc::Parms + 2; CallLeafNode *call = new (C, size) CallLeafNode(OptoRuntime::dtrace_object_alloc_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc_base), "dtrace_object_alloc", TypeRawPtr::BOTTOM); // Get base of thread-local storage area Node* thread = new (C, 1) ThreadLocalNode(); transform_later(thread); call->init_req(TypeFunc::Parms+0, thread); call->init_req(TypeFunc::Parms+1, fast_oop); call->init_req( TypeFunc::Control, fast_oop_ctrl ); call->init_req( TypeFunc::I_O , top() ) ; // does no i/o call->init_req( TypeFunc::Memory , fast_oop_rawmem ); call->init_req( TypeFunc::ReturnAdr, alloc->in(TypeFunc::ReturnAdr) ); call->init_req( TypeFunc::FramePtr, alloc->in(TypeFunc::FramePtr) ); transform_later(call); fast_oop_ctrl = new (C, 1) ProjNode(call,TypeFunc::Control); transform_later(fast_oop_ctrl); fast_oop_rawmem = new (C, 1) ProjNode(call,TypeFunc::Memory); transform_later(fast_oop_rawmem); } // Plug in the successful fast-path into the result merge point result_region ->init_req( fast_result_path, fast_oop_ctrl ); result_phi_rawoop->init_req( fast_result_path, fast_oop ); result_phi_i_o ->init_req( fast_result_path, i_o ); result_phi_rawmem->init_req( fast_result_path, fast_oop_rawmem ); } else { slow_region = ctrl; } // Generate slow-path call CallNode *call = new (C, slow_call_type->domain()->cnt()) CallStaticJavaNode(slow_call_type, slow_call_address, OptoRuntime::stub_name(slow_call_address), alloc->jvms()->bci(), TypePtr::BOTTOM); call->init_req( TypeFunc::Control, slow_region ); call->init_req( TypeFunc::I_O , top() ) ; // does no i/o call->init_req( TypeFunc::Memory , slow_mem ); // may gc ptrs call->init_req( TypeFunc::ReturnAdr, alloc->in(TypeFunc::ReturnAdr) ); call->init_req( TypeFunc::FramePtr, alloc->in(TypeFunc::FramePtr) ); call->init_req(TypeFunc::Parms+0, klass_node); if (length != NULL) { call->init_req(TypeFunc::Parms+1, length); } // Copy debug information and adjust JVMState information, then replace // allocate node with the call copy_call_debug_info((CallNode *) alloc, call); if (!always_slow) { call->set_cnt(PROB_UNLIKELY_MAG(4)); // Same effect as RC_UNCOMMON. } _igvn.hash_delete(alloc); _igvn.subsume_node(alloc, call); transform_later(call); // Identify the output projections from the allocate node and // adjust any references to them. // The control and io projections look like: // // v---Proj(ctrl) <-----+ v---CatchProj(ctrl) // Allocate Catch // ^---Proj(io) <-------+ ^---CatchProj(io) // // We are interested in the CatchProj nodes. // extract_call_projections(call); // An allocate node has separate memory projections for the uses on the control and i_o paths // Replace uses of the control memory projection with result_phi_rawmem (unless we are only generating a slow call) if (!always_slow && _memproj_fallthrough != NULL) { for (DUIterator_Fast imax, i = _memproj_fallthrough->fast_outs(imax); i < imax; i++) { Node *use = _memproj_fallthrough->fast_out(i); _igvn.hash_delete(use); imax -= replace_input(use, _memproj_fallthrough, result_phi_rawmem); _igvn._worklist.push(use); // back up iterator --i; } } // Now change uses of _memproj_catchall to use _memproj_fallthrough and delete _memproj_catchall so // we end up with a call that has only 1 memory projection if (_memproj_catchall != NULL ) { if (_memproj_fallthrough == NULL) { _memproj_fallthrough = new (C, 1) ProjNode(call, TypeFunc::Memory); transform_later(_memproj_fallthrough); } for (DUIterator_Fast imax, i = _memproj_catchall->fast_outs(imax); i < imax; i++) { Node *use = _memproj_catchall->fast_out(i); _igvn.hash_delete(use); imax -= replace_input(use, _memproj_catchall, _memproj_fallthrough); _igvn._worklist.push(use); // back up iterator --i; } } mem = result_phi_rawmem; // An allocate node has separate i_o projections for the uses on the control and i_o paths // Replace uses of the control i_o projection with result_phi_i_o (unless we are only generating a slow call) if (_ioproj_fallthrough == NULL) { _ioproj_fallthrough = new (C, 1) ProjNode(call, TypeFunc::I_O); transform_later(_ioproj_fallthrough); } else if (!always_slow) { for (DUIterator_Fast imax, i = _ioproj_fallthrough->fast_outs(imax); i < imax; i++) { Node *use = _ioproj_fallthrough->fast_out(i); _igvn.hash_delete(use); imax -= replace_input(use, _ioproj_fallthrough, result_phi_i_o); _igvn._worklist.push(use); // back up iterator --i; } } // Now change uses of _ioproj_catchall to use _ioproj_fallthrough and delete _ioproj_catchall so // we end up with a call that has only 1 control projection if (_ioproj_catchall != NULL ) { for (DUIterator_Fast imax, i = _ioproj_catchall->fast_outs(imax); i < imax; i++) { Node *use = _ioproj_catchall->fast_out(i); _igvn.hash_delete(use); imax -= replace_input(use, _ioproj_catchall, _ioproj_fallthrough); _igvn._worklist.push(use); // back up iterator --i; } } // if we generated only a slow call, we are done if (always_slow) return; if (_fallthroughcatchproj != NULL) { ctrl = _fallthroughcatchproj->clone(); transform_later(ctrl); _igvn.hash_delete(_fallthroughcatchproj); _igvn.subsume_node(_fallthroughcatchproj, result_region); } else { ctrl = top(); } Node *slow_result; if (_resproj == NULL) { // no uses of the allocation result slow_result = top(); } else { slow_result = _resproj->clone(); transform_later(slow_result); _igvn.hash_delete(_resproj); _igvn.subsume_node(_resproj, result_phi_rawoop); } // Plug slow-path into result merge point result_region ->init_req( slow_result_path, ctrl ); result_phi_rawoop->init_req( slow_result_path, slow_result); result_phi_rawmem->init_req( slow_result_path, _memproj_fallthrough ); transform_later(result_region); transform_later(result_phi_rawoop); transform_later(result_phi_rawmem); transform_later(result_phi_i_o); // This completes all paths into the result merge point } // Helper for PhaseMacroExpand::expand_allocate_common. // Initializes the newly-allocated storage. Node* PhaseMacroExpand::initialize_object(AllocateNode* alloc, Node* control, Node* rawmem, Node* object, Node* klass_node, Node* length, Node* size_in_bytes) { InitializeNode* init = alloc->initialization(); // Store the klass & mark bits Node* mark_node = NULL; // For now only enable fast locking for non-array types if (UseBiasedLocking && (length == NULL)) { mark_node = make_load(NULL, rawmem, klass_node, Klass::prototype_header_offset_in_bytes() + sizeof(oopDesc), TypeRawPtr::BOTTOM, T_ADDRESS); } else { mark_node = makecon(TypeRawPtr::make((address)markOopDesc::prototype())); } rawmem = make_store(control, rawmem, object, oopDesc::mark_offset_in_bytes(), mark_node, T_ADDRESS); rawmem = make_store(control, rawmem, object, oopDesc::klass_offset_in_bytes(), klass_node, T_OBJECT); int header_size = alloc->minimum_header_size(); // conservatively small // Array length if (length != NULL) { // Arrays need length field rawmem = make_store(control, rawmem, object, arrayOopDesc::length_offset_in_bytes(), length, T_INT); // conservatively small header size: header_size = sizeof(arrayOopDesc); ciKlass* k = _igvn.type(klass_node)->is_klassptr()->klass(); if (k->is_array_klass()) // we know the exact header size in most cases: header_size = Klass::layout_helper_header_size(k->layout_helper()); } // Clear the object body, if necessary. if (init == NULL) { // The init has somehow disappeared; be cautious and clear everything. // // This can happen if a node is allocated but an uncommon trap occurs // immediately. In this case, the Initialize gets associated with the // trap, and may be placed in a different (outer) loop, if the Allocate // is in a loop. If (this is rare) the inner loop gets unrolled, then // there can be two Allocates to one Initialize. The answer in all these // edge cases is safety first. It is always safe to clear immediately // within an Allocate, and then (maybe or maybe not) clear some more later. if (!ZeroTLAB) rawmem = ClearArrayNode::clear_memory(control, rawmem, object, header_size, size_in_bytes, &_igvn); } else { if (!init->is_complete()) { // Try to win by zeroing only what the init does not store. // We can also try to do some peephole optimizations, // such as combining some adjacent subword stores. rawmem = init->complete_stores(control, rawmem, object, header_size, size_in_bytes, &_igvn); } // We have no more use for this link, since the AllocateNode goes away: init->set_req(InitializeNode::RawAddress, top()); // (If we keep the link, it just confuses the register allocator, // who thinks he sees a real use of the address by the membar.) } return rawmem; } // Generate prefetch instructions for next allocations. Node* PhaseMacroExpand::prefetch_allocation(Node* i_o, Node*& needgc_false, Node*& contended_phi_rawmem, Node* old_eden_top, Node* new_eden_top, Node* length) { if( UseTLAB && AllocatePrefetchStyle == 2 ) { // Generate prefetch allocation with watermark check. // As an allocation hits the watermark, we will prefetch starting // at a "distance" away from watermark. enum { fall_in_path = 1, pf_path = 2 }; Node *pf_region = new (C, 3) RegionNode(3); Node *pf_phi_rawmem = new (C, 3) PhiNode( pf_region, Type::MEMORY, TypeRawPtr::BOTTOM ); // I/O is used for Prefetch Node *pf_phi_abio = new (C, 3) PhiNode( pf_region, Type::ABIO ); Node *thread = new (C, 1) ThreadLocalNode(); transform_later(thread); Node *eden_pf_adr = new (C, 4) AddPNode( top()/*not oop*/, thread, _igvn.MakeConX(in_bytes(JavaThread::tlab_pf_top_offset())) ); transform_later(eden_pf_adr); Node *old_pf_wm = new (C, 3) LoadPNode( needgc_false, contended_phi_rawmem, eden_pf_adr, TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM ); transform_later(old_pf_wm); // check against new_eden_top Node *need_pf_cmp = new (C, 3) CmpPNode( new_eden_top, old_pf_wm ); transform_later(need_pf_cmp); Node *need_pf_bol = new (C, 2) BoolNode( need_pf_cmp, BoolTest::ge ); transform_later(need_pf_bol); IfNode *need_pf_iff = new (C, 2) IfNode( needgc_false, need_pf_bol, PROB_UNLIKELY_MAG(4), COUNT_UNKNOWN ); transform_later(need_pf_iff); // true node, add prefetchdistance Node *need_pf_true = new (C, 1) IfTrueNode( need_pf_iff ); transform_later(need_pf_true); Node *need_pf_false = new (C, 1) IfFalseNode( need_pf_iff ); transform_later(need_pf_false); Node *new_pf_wmt = new (C, 4) AddPNode( top(), old_pf_wm, _igvn.MakeConX(AllocatePrefetchDistance) ); transform_later(new_pf_wmt ); new_pf_wmt->set_req(0, need_pf_true); Node *store_new_wmt = new (C, 4) StorePNode( need_pf_true, contended_phi_rawmem, eden_pf_adr, TypeRawPtr::BOTTOM, new_pf_wmt ); transform_later(store_new_wmt); // adding prefetches pf_phi_abio->init_req( fall_in_path, i_o ); Node *prefetch_adr; Node *prefetch; uint lines = AllocatePrefetchDistance / AllocatePrefetchStepSize; uint step_size = AllocatePrefetchStepSize; uint distance = 0; for ( uint i = 0; i < lines; i++ ) { prefetch_adr = new (C, 4) AddPNode( old_pf_wm, new_pf_wmt, _igvn.MakeConX(distance) ); transform_later(prefetch_adr); prefetch = new (C, 3) PrefetchWriteNode( i_o, prefetch_adr ); transform_later(prefetch); distance += step_size; i_o = prefetch; } pf_phi_abio->set_req( pf_path, i_o ); pf_region->init_req( fall_in_path, need_pf_false ); pf_region->init_req( pf_path, need_pf_true ); pf_phi_rawmem->init_req( fall_in_path, contended_phi_rawmem ); pf_phi_rawmem->init_req( pf_path, store_new_wmt ); transform_later(pf_region); transform_later(pf_phi_rawmem); transform_later(pf_phi_abio); needgc_false = pf_region; contended_phi_rawmem = pf_phi_rawmem; i_o = pf_phi_abio; } else if( AllocatePrefetchStyle > 0 ) { // Insert a prefetch for each allocation only on the fast-path Node *prefetch_adr; Node *prefetch; // Generate several prefetch instructions only for arrays. uint lines = (length != NULL) ? AllocatePrefetchLines : 1; uint step_size = AllocatePrefetchStepSize; uint distance = AllocatePrefetchDistance; for ( uint i = 0; i < lines; i++ ) { prefetch_adr = new (C, 4) AddPNode( old_eden_top, new_eden_top, _igvn.MakeConX(distance) ); transform_later(prefetch_adr); prefetch = new (C, 3) PrefetchWriteNode( i_o, prefetch_adr ); // Do not let it float too high, since if eden_top == eden_end, // both might be null. if( i == 0 ) { // Set control for first prefetch, next follows it prefetch->init_req(0, needgc_false); } transform_later(prefetch); distance += step_size; i_o = prefetch; } } return i_o; } void PhaseMacroExpand::expand_allocate(AllocateNode *alloc) { expand_allocate_common(alloc, NULL, OptoRuntime::new_instance_Type(), OptoRuntime::new_instance_Java()); } void PhaseMacroExpand::expand_allocate_array(AllocateArrayNode *alloc) { Node* length = alloc->in(AllocateNode::ALength); expand_allocate_common(alloc, length, OptoRuntime::new_array_Type(), OptoRuntime::new_array_Java()); } // we have determined that this lock/unlock can be eliminated, we simply // eliminate the node without expanding it. // // Note: The membar's associated with the lock/unlock are currently not // eliminated. This should be investigated as a future enhancement. // void PhaseMacroExpand::eliminate_locking_node(AbstractLockNode *alock) { Node* mem = alock->in(TypeFunc::Memory); // The memory projection from a lock/unlock is RawMem // The input to a Lock is merged memory, so extract its RawMem input // (unless the MergeMem has been optimized away.) if (alock->is_Lock()) { if (mem->is_MergeMem()) mem = mem->as_MergeMem()->in(Compile::AliasIdxRaw); } extract_call_projections(alock); // There are 2 projections from the lock. The lock node will // be deleted when its last use is subsumed below. assert(alock->outcnt() == 2 && _fallthroughproj != NULL && _memproj_fallthrough != NULL, "Unexpected projections from Lock/Unlock"); _igvn.hash_delete(_fallthroughproj); _igvn.subsume_node(_fallthroughproj, alock->in(TypeFunc::Control)); _igvn.hash_delete(_memproj_fallthrough); _igvn.subsume_node(_memproj_fallthrough, mem); return; } //------------------------------expand_lock_node---------------------- void PhaseMacroExpand::expand_lock_node(LockNode *lock) { Node* ctrl = lock->in(TypeFunc::Control); Node* mem = lock->in(TypeFunc::Memory); Node* obj = lock->obj_node(); Node* box = lock->box_node(); Node *flock = lock->fastlock_node(); if (lock->is_eliminated()) { eliminate_locking_node(lock); return; } // Make the merge point Node *region = new (C, 3) RegionNode(3); Node *bol = transform_later(new (C, 2) BoolNode(flock,BoolTest::ne)); Node *iff = new (C, 2) IfNode( ctrl, bol, PROB_MIN, COUNT_UNKNOWN ); // Optimize test; set region slot 2 Node *slow_path = opt_iff(region,iff); // Make slow path call CallNode *call = make_slow_call( (CallNode *) lock, OptoRuntime::complete_monitor_enter_Type(), OptoRuntime::complete_monitor_locking_Java(), NULL, slow_path, obj, box ); extract_call_projections(call); // Slow path can only throw asynchronous exceptions, which are always // de-opted. So the compiler thinks the slow-call can never throw an // exception. If it DOES throw an exception we would need the debug // info removed first (since if it throws there is no monitor). assert ( _ioproj_fallthrough == NULL && _ioproj_catchall == NULL && _memproj_catchall == NULL && _catchallcatchproj == NULL, "Unexpected projection from Lock"); // Capture slow path // disconnect fall-through projection from call and create a new one // hook up users of fall-through projection to region Node *slow_ctrl = _fallthroughproj->clone(); transform_later(slow_ctrl); _igvn.hash_delete(_fallthroughproj); _fallthroughproj->disconnect_inputs(NULL); region->init_req(1, slow_ctrl); // region inputs are now complete transform_later(region); _igvn.subsume_node(_fallthroughproj, region); // create a Phi for the memory state Node *mem_phi = new (C, 3) PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM); Node *memproj = transform_later( new (C, 1) ProjNode(call, TypeFunc::Memory) ); mem_phi->init_req(1, memproj ); mem_phi->init_req(2, mem); transform_later(mem_phi); _igvn.hash_delete(_memproj_fallthrough); _igvn.subsume_node(_memproj_fallthrough, mem_phi); } //------------------------------expand_unlock_node---------------------- void PhaseMacroExpand::expand_unlock_node(UnlockNode *unlock) { Node *ctrl = unlock->in(TypeFunc::Control); Node* mem = unlock->in(TypeFunc::Memory); Node* obj = unlock->obj_node(); Node* box = unlock->box_node(); if (unlock->is_eliminated()) { eliminate_locking_node(unlock); return; } // No need for a null check on unlock // Make the merge point RegionNode *region = new (C, 3) RegionNode(3); FastUnlockNode *funlock = new (C, 3) FastUnlockNode( ctrl, obj, box ); funlock = transform_later( funlock )->as_FastUnlock(); Node *bol = transform_later(new (C, 2) BoolNode(funlock,BoolTest::ne)); Node *iff = new (C, 2) IfNode( ctrl, bol, PROB_MIN, COUNT_UNKNOWN ); // Optimize test; set region slot 2 Node *slow_path = opt_iff(region,iff); CallNode *call = make_slow_call( (CallNode *) unlock, OptoRuntime::complete_monitor_exit_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C), "complete_monitor_unlocking_C", slow_path, obj, box ); extract_call_projections(call); assert ( _ioproj_fallthrough == NULL && _ioproj_catchall == NULL && _memproj_catchall == NULL && _catchallcatchproj == NULL, "Unexpected projection from Lock"); // No exceptions for unlocking // Capture slow path // disconnect fall-through projection from call and create a new one // hook up users of fall-through projection to region Node *slow_ctrl = _fallthroughproj->clone(); transform_later(slow_ctrl); _igvn.hash_delete(_fallthroughproj); _fallthroughproj->disconnect_inputs(NULL); region->init_req(1, slow_ctrl); // region inputs are now complete transform_later(region); _igvn.subsume_node(_fallthroughproj, region); // create a Phi for the memory state Node *mem_phi = new (C, 3) PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM); Node *memproj = transform_later( new(C, 1) ProjNode(call, TypeFunc::Memory) ); mem_phi->init_req(1, memproj ); mem_phi->init_req(2, mem); transform_later(mem_phi); _igvn.hash_delete(_memproj_fallthrough); _igvn.subsume_node(_memproj_fallthrough, mem_phi); } //------------------------------expand_macro_nodes---------------------- // Returns true if a failure occurred. bool PhaseMacroExpand::expand_macro_nodes() { if (C->macro_count() == 0) return false; // Make sure expansion will not cause node limit to be exceeded. Worst case is a // macro node gets expanded into about 50 nodes. Allow 50% more for optimization if (C->check_node_count(C->macro_count() * 75, "out of nodes before macro expansion" ) ) return true; // expand "macro" nodes // nodes are removed from the macro list as they are processed while (C->macro_count() > 0) { Node * n = C->macro_node(0); assert(n->is_macro(), "only macro nodes expected here"); if (_igvn.type(n) == Type::TOP || n->in(0)->is_top() ) { // node is unreachable, so don't try to expand it C->remove_macro_node(n); continue; } switch (n->class_id()) { case Node::Class_Allocate: expand_allocate(n->as_Allocate()); break; case Node::Class_AllocateArray: expand_allocate_array(n->as_AllocateArray()); break; case Node::Class_Lock: expand_lock_node(n->as_Lock()); break; case Node::Class_Unlock: expand_unlock_node(n->as_Unlock()); break; default: assert(false, "unknown node type in macro list"); } if (C->failing()) return true; } _igvn.optimize(); return false; }