/* * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_INLINE_HPP #define SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_INLINE_HPP #include "gc_implementation/g1/concurrentMark.hpp" #include "gc_implementation/g1/g1CollectedHeap.hpp" #include "gc_implementation/g1/g1AllocRegion.inline.hpp" #include "gc_implementation/g1/g1CollectorPolicy.hpp" #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp" #include "gc_implementation/g1/heapRegionSeq.inline.hpp" #include "utilities/taskqueue.hpp" // Inline functions for G1CollectedHeap template inline HeapRegion* G1CollectedHeap::heap_region_containing(const T addr) const { HeapRegion* hr = _hrs.addr_to_region((HeapWord*) addr); // hr can be null if addr in perm_gen if (hr != NULL && hr->continuesHumongous()) { hr = hr->humongous_start_region(); } return hr; } template inline HeapRegion* G1CollectedHeap::heap_region_containing_raw(const T addr) const { assert(_g1_reserved.contains((const void*) addr), "invariant"); HeapRegion* res = _hrs.addr_to_region_unsafe((HeapWord*) addr); return res; } inline bool G1CollectedHeap::obj_in_cs(oop obj) { HeapRegion* r = _hrs.addr_to_region((HeapWord*) obj); return r != NULL && r->in_collection_set(); } inline HeapWord* G1CollectedHeap::attempt_allocation(size_t word_size, unsigned int* gc_count_before_ret, int* gclocker_retry_count_ret) { assert_heap_not_locked_and_not_at_safepoint(); assert(!isHumongous(word_size), "attempt_allocation() should not " "be called for humongous allocation requests"); HeapWord* result = _mutator_alloc_region.attempt_allocation(word_size, false /* bot_updates */); if (result == NULL) { result = attempt_allocation_slow(word_size, gc_count_before_ret, gclocker_retry_count_ret); } assert_heap_not_locked(); if (result != NULL) { dirty_young_block(result, word_size); } return result; } inline HeapWord* G1CollectedHeap::survivor_attempt_allocation(size_t word_size) { assert(!isHumongous(word_size), "we should not be seeing humongous-size allocations in this path"); HeapWord* result = _survivor_gc_alloc_region.attempt_allocation(word_size, false /* bot_updates */); if (result == NULL) { MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag); result = _survivor_gc_alloc_region.attempt_allocation_locked(word_size, false /* bot_updates */); } if (result != NULL) { dirty_young_block(result, word_size); } return result; } inline HeapWord* G1CollectedHeap::old_attempt_allocation(size_t word_size) { assert(!isHumongous(word_size), "we should not be seeing humongous-size allocations in this path"); HeapWord* result = _old_gc_alloc_region.attempt_allocation(word_size, true /* bot_updates */); if (result == NULL) { MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag); result = _old_gc_alloc_region.attempt_allocation_locked(word_size, true /* bot_updates */); } return result; } // It dirties the cards that cover the block so that so that the post // write barrier never queues anything when updating objects on this // block. It is assumed (and in fact we assert) that the block // belongs to a young region. inline void G1CollectedHeap::dirty_young_block(HeapWord* start, size_t word_size) { assert_heap_not_locked(); // Assign the containing region to containing_hr so that we don't // have to keep calling heap_region_containing_raw() in the // asserts below. DEBUG_ONLY(HeapRegion* containing_hr = heap_region_containing_raw(start);) assert(containing_hr != NULL && start != NULL && word_size > 0, "pre-condition"); assert(containing_hr->is_in(start), "it should contain start"); assert(containing_hr->is_young(), "it should be young"); assert(!containing_hr->isHumongous(), "it should not be humongous"); HeapWord* end = start + word_size; assert(containing_hr->is_in(end - 1), "it should also contain end - 1"); MemRegion mr(start, end); g1_barrier_set()->g1_mark_as_young(mr); } inline RefToScanQueue* G1CollectedHeap::task_queue(int i) const { return _task_queues->queue(i); } inline bool G1CollectedHeap::isMarkedPrev(oop obj) const { return _cm->prevMarkBitMap()->isMarked((HeapWord *)obj); } inline bool G1CollectedHeap::isMarkedNext(oop obj) const { return _cm->nextMarkBitMap()->isMarked((HeapWord *)obj); } #ifndef PRODUCT // Support for G1EvacuationFailureALot inline bool G1CollectedHeap::evacuation_failure_alot_for_gc_type(bool gcs_are_young, bool during_initial_mark, bool during_marking) { bool res = false; if (during_marking) { res |= G1EvacuationFailureALotDuringConcMark; } if (during_initial_mark) { res |= G1EvacuationFailureALotDuringInitialMark; } if (gcs_are_young) { res |= G1EvacuationFailureALotDuringYoungGC; } else { // GCs are mixed res |= G1EvacuationFailureALotDuringMixedGC; } return res; } inline void G1CollectedHeap::set_evacuation_failure_alot_for_current_gc() { if (G1EvacuationFailureALot) { // Note we can't assert that _evacuation_failure_alot_for_current_gc // is clear here. It may have been set during a previous GC but that GC // did not copy enough objects (i.e. G1EvacuationFailureALotCount) to // trigger an evacuation failure and clear the flags and and counts. // Check if we have gone over the interval. const size_t gc_num = total_collections(); const size_t elapsed_gcs = gc_num - _evacuation_failure_alot_gc_number; _evacuation_failure_alot_for_current_gc = (elapsed_gcs >= G1EvacuationFailureALotInterval); // Now check if G1EvacuationFailureALot is enabled for the current GC type. const bool gcs_are_young = g1_policy()->gcs_are_young(); const bool during_im = g1_policy()->during_initial_mark_pause(); const bool during_marking = mark_in_progress(); _evacuation_failure_alot_for_current_gc &= evacuation_failure_alot_for_gc_type(gcs_are_young, during_im, during_marking); } } inline bool G1CollectedHeap::evacuation_should_fail() { if (!G1EvacuationFailureALot || !_evacuation_failure_alot_for_current_gc) { return false; } // G1EvacuationFailureALot is in effect for current GC // Access to _evacuation_failure_alot_count is not atomic; // the value does not have to be exact. if (++_evacuation_failure_alot_count < G1EvacuationFailureALotCount) { return false; } _evacuation_failure_alot_count = 0; return true; } inline void G1CollectedHeap::reset_evacuation_should_fail() { if (G1EvacuationFailureALot) { _evacuation_failure_alot_gc_number = total_collections(); _evacuation_failure_alot_count = 0; _evacuation_failure_alot_for_current_gc = false; } } #endif // #ifndef PRODUCT #endif // SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_INLINE_HPP