/* * Copyright (c) 2013, 2019, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "gc/g1/g1CollectedHeap.inline.hpp" #include "gc/g1/g1GCPhaseTimes.hpp" #include "gc/g1/g1HotCardCache.hpp" #include "gc/g1/g1ParScanThreadState.inline.hpp" #include "gc/g1/g1StringDedup.hpp" #include "gc/shared/gcTimer.hpp" #include "gc/shared/workerDataArray.inline.hpp" #include "memory/resourceArea.hpp" #include "logging/log.hpp" #include "logging/logStream.hpp" #include "runtime/timer.hpp" #include "runtime/os.hpp" #include "utilities/macros.hpp" static const char* Indents[5] = {"", " ", " ", " ", " "}; G1GCPhaseTimes::G1GCPhaseTimes(STWGCTimer* gc_timer, uint max_gc_threads) : _max_gc_threads(max_gc_threads), _gc_start_counter(0), _gc_pause_time_ms(0.0), _ref_phase_times(gc_timer, max_gc_threads), _weak_phase_times(max_gc_threads) { assert(max_gc_threads > 0, "Must have some GC threads"); _gc_par_phases[GCWorkerStart] = new WorkerDataArray(max_gc_threads, "GC Worker Start (ms):"); _gc_par_phases[ExtRootScan] = new WorkerDataArray(max_gc_threads, "Ext Root Scanning (ms):"); // Root scanning phases _gc_par_phases[ThreadRoots] = new WorkerDataArray(max_gc_threads, "Thread Roots (ms):"); _gc_par_phases[UniverseRoots] = new WorkerDataArray(max_gc_threads, "Universe Roots (ms):"); _gc_par_phases[JNIRoots] = new WorkerDataArray(max_gc_threads, "JNI Handles Roots (ms):"); _gc_par_phases[ObjectSynchronizerRoots] = new WorkerDataArray(max_gc_threads, "ObjectSynchronizer Roots (ms):"); _gc_par_phases[ManagementRoots] = new WorkerDataArray(max_gc_threads, "Management Roots (ms):"); _gc_par_phases[SystemDictionaryRoots] = new WorkerDataArray(max_gc_threads, "SystemDictionary Roots (ms):"); _gc_par_phases[CLDGRoots] = new WorkerDataArray(max_gc_threads, "CLDG Roots (ms):"); _gc_par_phases[JVMTIRoots] = new WorkerDataArray(max_gc_threads, "JVMTI Roots (ms):"); AOT_ONLY(_gc_par_phases[AOTCodeRoots] = new WorkerDataArray(max_gc_threads, "AOT Root Scan (ms):");) _gc_par_phases[CMRefRoots] = new WorkerDataArray(max_gc_threads, "CM RefProcessor Roots (ms):"); _gc_par_phases[MergeER] = new WorkerDataArray(max_gc_threads, "Eager Reclaim (ms):"); _gc_par_phases[MergeRS] = new WorkerDataArray(max_gc_threads, "Remembered Sets (ms):"); _merge_rs_merged_sparse = new WorkerDataArray(max_gc_threads, "Merged Sparse:"); _gc_par_phases[MergeRS]->link_thread_work_items(_merge_rs_merged_sparse, MergeRSMergedSparse); _merge_rs_merged_fine = new WorkerDataArray(max_gc_threads, "Merged Fine:"); _gc_par_phases[MergeRS]->link_thread_work_items(_merge_rs_merged_fine, MergeRSMergedFine); _merge_rs_merged_coarse = new WorkerDataArray(max_gc_threads, "Merged Coarse:"); _gc_par_phases[MergeRS]->link_thread_work_items(_merge_rs_merged_coarse, MergeRSMergedCoarse); _gc_par_phases[OptMergeRS] = new WorkerDataArray(max_gc_threads, "Optional Remembered Sets (ms):"); _opt_merge_rs_merged_sparse = new WorkerDataArray(max_gc_threads, "Merged Sparse:"); _gc_par_phases[OptMergeRS]->link_thread_work_items(_opt_merge_rs_merged_sparse, MergeRSMergedSparse); _opt_merge_rs_merged_fine = new WorkerDataArray(max_gc_threads, "Merged Fine:"); _gc_par_phases[OptMergeRS]->link_thread_work_items(_opt_merge_rs_merged_fine, MergeRSMergedFine); _opt_merge_rs_merged_coarse = new WorkerDataArray(max_gc_threads, "Merged Coarse:"); _gc_par_phases[OptMergeRS]->link_thread_work_items(_opt_merge_rs_merged_coarse, MergeRSMergedCoarse); _gc_par_phases[MergeLB] = new WorkerDataArray(max_gc_threads, "Log Buffers (ms):"); if (G1HotCardCache::default_use_cache()) { _gc_par_phases[MergeHCC] = new WorkerDataArray(max_gc_threads, "Hot Card Cache (ms):"); _merge_hcc_dirty_cards = new WorkerDataArray(max_gc_threads, "Dirty Cards:"); _gc_par_phases[MergeHCC]->link_thread_work_items(_merge_hcc_dirty_cards, MergeHCCDirtyCards); _merge_hcc_skipped_cards = new WorkerDataArray(max_gc_threads, "Skipped Cards:"); _gc_par_phases[MergeHCC]->link_thread_work_items(_merge_hcc_skipped_cards, MergeHCCSkippedCards); } else { _gc_par_phases[MergeHCC] = NULL; _merge_hcc_dirty_cards = NULL; _merge_hcc_skipped_cards = NULL; } _gc_par_phases[ScanHR] = new WorkerDataArray(max_gc_threads, "Scan Heap Roots (ms):"); _gc_par_phases[OptScanHR] = new WorkerDataArray(max_gc_threads, "Optional Scan Heap Roots (ms):"); _gc_par_phases[CodeRoots] = new WorkerDataArray(max_gc_threads, "Code Root Scan (ms):"); _gc_par_phases[OptCodeRoots] = new WorkerDataArray(max_gc_threads, "Optional Code Root Scan (ms):"); _gc_par_phases[ObjCopy] = new WorkerDataArray(max_gc_threads, "Object Copy (ms):"); _gc_par_phases[OptObjCopy] = new WorkerDataArray(max_gc_threads, "Optional Object Copy (ms):"); _gc_par_phases[Termination] = new WorkerDataArray(max_gc_threads, "Termination (ms):"); _gc_par_phases[OptTermination] = new WorkerDataArray(max_gc_threads, "Optional Termination (ms):"); _gc_par_phases[GCWorkerTotal] = new WorkerDataArray(max_gc_threads, "GC Worker Total (ms):"); _gc_par_phases[GCWorkerEnd] = new WorkerDataArray(max_gc_threads, "GC Worker End (ms):"); _gc_par_phases[Other] = new WorkerDataArray(max_gc_threads, "GC Worker Other (ms):"); _scan_hr_scanned_cards = new WorkerDataArray(max_gc_threads, "Scanned Cards:"); _gc_par_phases[ScanHR]->link_thread_work_items(_scan_hr_scanned_cards, ScanHRScannedCards); _scan_hr_scanned_blocks = new WorkerDataArray(max_gc_threads, "Scanned Blocks:"); _gc_par_phases[ScanHR]->link_thread_work_items(_scan_hr_scanned_blocks, ScanHRScannedBlocks); _scan_hr_claimed_chunks = new WorkerDataArray(max_gc_threads, "Claimed Chunks:"); _gc_par_phases[ScanHR]->link_thread_work_items(_scan_hr_claimed_chunks, ScanHRClaimedChunks); _opt_scan_hr_scanned_cards = new WorkerDataArray(max_gc_threads, "Scanned Cards:"); _gc_par_phases[OptScanHR]->link_thread_work_items(_opt_scan_hr_scanned_cards, ScanHRScannedCards); _opt_scan_hr_scanned_blocks = new WorkerDataArray(max_gc_threads, "Scanned Blocks:"); _gc_par_phases[OptScanHR]->link_thread_work_items(_opt_scan_hr_scanned_blocks, ScanHRScannedBlocks); _opt_scan_hr_claimed_chunks = new WorkerDataArray(max_gc_threads, "Claimed Chunks:"); _gc_par_phases[OptScanHR]->link_thread_work_items(_opt_scan_hr_claimed_chunks, ScanHRClaimedChunks); _opt_scan_hr_scanned_opt_refs = new WorkerDataArray(max_gc_threads, "Scanned Refs:"); _gc_par_phases[OptScanHR]->link_thread_work_items(_opt_scan_hr_scanned_opt_refs, ScanHRScannedOptRefs); _opt_scan_hr_used_memory = new WorkerDataArray(max_gc_threads, "Used Memory:"); _gc_par_phases[OptScanHR]->link_thread_work_items(_opt_scan_hr_used_memory, ScanHRUsedMemory); _merge_lb_dirty_cards = new WorkerDataArray(max_gc_threads, "Dirty Cards:"); _gc_par_phases[MergeLB]->link_thread_work_items(_merge_lb_dirty_cards, MergeLBDirtyCards); _merge_lb_skipped_cards = new WorkerDataArray(max_gc_threads, "Skipped Cards:"); _gc_par_phases[MergeLB]->link_thread_work_items(_merge_lb_skipped_cards, MergeLBSkippedCards); _obj_copy_lab_waste = new WorkerDataArray(max_gc_threads, "LAB Waste"); _gc_par_phases[ObjCopy]->link_thread_work_items(_obj_copy_lab_waste, ObjCopyLABWaste); _obj_copy_lab_undo_waste = new WorkerDataArray(max_gc_threads, "LAB Undo Waste"); _gc_par_phases[ObjCopy]->link_thread_work_items(_obj_copy_lab_undo_waste, ObjCopyLABUndoWaste); _opt_obj_copy_lab_waste = new WorkerDataArray(max_gc_threads, "LAB Waste"); _gc_par_phases[OptObjCopy]->link_thread_work_items(_obj_copy_lab_waste, ObjCopyLABWaste); _opt_obj_copy_lab_undo_waste = new WorkerDataArray(max_gc_threads, "LAB Undo Waste"); _gc_par_phases[OptObjCopy]->link_thread_work_items(_obj_copy_lab_undo_waste, ObjCopyLABUndoWaste); _termination_attempts = new WorkerDataArray(max_gc_threads, "Termination Attempts:"); _gc_par_phases[Termination]->link_thread_work_items(_termination_attempts); _opt_termination_attempts = new WorkerDataArray(max_gc_threads, "Optional Termination Attempts:"); _gc_par_phases[OptTermination]->link_thread_work_items(_opt_termination_attempts); if (UseStringDeduplication) { _gc_par_phases[StringDedupQueueFixup] = new WorkerDataArray(max_gc_threads, "Queue Fixup (ms):"); _gc_par_phases[StringDedupTableFixup] = new WorkerDataArray(max_gc_threads, "Table Fixup (ms):"); } else { _gc_par_phases[StringDedupQueueFixup] = NULL; _gc_par_phases[StringDedupTableFixup] = NULL; } _gc_par_phases[RedirtyCards] = new WorkerDataArray(max_gc_threads, "Parallel Redirty (ms):"); _redirtied_cards = new WorkerDataArray(max_gc_threads, "Redirtied Cards:"); _gc_par_phases[RedirtyCards]->link_thread_work_items(_redirtied_cards); _gc_par_phases[YoungFreeCSet] = new WorkerDataArray(max_gc_threads, "Young Free Collection Set (ms):"); _gc_par_phases[NonYoungFreeCSet] = new WorkerDataArray(max_gc_threads, "Non-Young Free Collection Set (ms):"); reset(); } void G1GCPhaseTimes::reset() { _cur_collection_initial_evac_time_ms = 0.0; _cur_optional_evac_time_ms = 0.0; _cur_collection_code_root_fixup_time_ms = 0.0; _cur_strong_code_root_purge_time_ms = 0.0; _cur_merge_heap_roots_time_ms = 0.0; _cur_optional_merge_heap_roots_time_ms = 0.0; _cur_prepare_merge_heap_roots_time_ms = 0.0; _cur_optional_prepare_merge_heap_roots_time_ms = 0.0; _cur_evac_fail_recalc_used = 0.0; _cur_evac_fail_remove_self_forwards = 0.0; _cur_string_deduplication_time_ms = 0.0; _cur_prepare_tlab_time_ms = 0.0; _cur_resize_tlab_time_ms = 0.0; _cur_derived_pointer_table_update_time_ms = 0.0; _cur_clear_ct_time_ms = 0.0; _cur_expand_heap_time_ms = 0.0; _cur_ref_proc_time_ms = 0.0; _cur_collection_start_sec = 0.0; _root_region_scan_wait_time_ms = 0.0; _external_accounted_time_ms = 0.0; _recorded_prepare_heap_roots_time_ms = 0.0; _recorded_clear_claimed_marks_time_ms = 0.0; _recorded_young_cset_choice_time_ms = 0.0; _recorded_non_young_cset_choice_time_ms = 0.0; _recorded_redirty_logged_cards_time_ms = 0.0; _recorded_preserve_cm_referents_time_ms = 0.0; _recorded_merge_pss_time_ms = 0.0; _recorded_start_new_cset_time_ms = 0.0; _recorded_total_free_cset_time_ms = 0.0; _recorded_serial_free_cset_time_ms = 0.0; _cur_fast_reclaim_humongous_time_ms = 0.0; _cur_region_register_time = 0.0; _cur_fast_reclaim_humongous_total = 0; _cur_fast_reclaim_humongous_candidates = 0; _cur_fast_reclaim_humongous_reclaimed = 0; _cur_verify_before_time_ms = 0.0; _cur_verify_after_time_ms = 0.0; for (int i = 0; i < GCParPhasesSentinel; i++) { if (_gc_par_phases[i] != NULL) { _gc_par_phases[i]->reset(); } } _ref_phase_times.reset(); _weak_phase_times.reset(); } void G1GCPhaseTimes::note_gc_start() { _gc_start_counter = os::elapsed_counter(); reset(); } #define ASSERT_PHASE_UNINITIALIZED(phase) \ assert(_gc_par_phases[phase] == NULL || _gc_par_phases[phase]->get(i) == uninitialized, "Phase " #phase " reported for thread that was not started"); double G1GCPhaseTimes::worker_time(GCParPhases phase, uint worker) { if (_gc_par_phases[phase] == NULL) { return 0.0; } double value = _gc_par_phases[phase]->get(worker); if (value != WorkerDataArray::uninitialized()) { return value; } return 0.0; } void G1GCPhaseTimes::note_gc_end() { _gc_pause_time_ms = TimeHelper::counter_to_millis(os::elapsed_counter() - _gc_start_counter); double uninitialized = WorkerDataArray::uninitialized(); for (uint i = 0; i < _max_gc_threads; i++) { double worker_start = _gc_par_phases[GCWorkerStart]->get(i); if (worker_start != uninitialized) { assert(_gc_par_phases[GCWorkerEnd]->get(i) != uninitialized, "Worker started but not ended."); double total_worker_time = _gc_par_phases[GCWorkerEnd]->get(i) - _gc_par_phases[GCWorkerStart]->get(i); record_time_secs(GCWorkerTotal, i , total_worker_time); double worker_known_time = worker_time(ExtRootScan, i) + worker_time(ScanHR, i) + worker_time(CodeRoots, i) + worker_time(ObjCopy, i) + worker_time(Termination, i); record_time_secs(Other, i, total_worker_time - worker_known_time); } else { // Make sure all slots are uninitialized since this thread did not seem to have been started ASSERT_PHASE_UNINITIALIZED(GCWorkerEnd); ASSERT_PHASE_UNINITIALIZED(ExtRootScan); ASSERT_PHASE_UNINITIALIZED(MergeER); ASSERT_PHASE_UNINITIALIZED(MergeRS); ASSERT_PHASE_UNINITIALIZED(OptMergeRS); ASSERT_PHASE_UNINITIALIZED(MergeHCC); ASSERT_PHASE_UNINITIALIZED(MergeLB); ASSERT_PHASE_UNINITIALIZED(ScanHR); ASSERT_PHASE_UNINITIALIZED(CodeRoots); ASSERT_PHASE_UNINITIALIZED(OptCodeRoots); ASSERT_PHASE_UNINITIALIZED(ObjCopy); ASSERT_PHASE_UNINITIALIZED(OptObjCopy); ASSERT_PHASE_UNINITIALIZED(Termination); } } } #undef ASSERT_PHASE_UNINITIALIZED // record the time a phase took in seconds void G1GCPhaseTimes::record_time_secs(GCParPhases phase, uint worker_id, double secs) { _gc_par_phases[phase]->set(worker_id, secs); } // add a number of seconds to a phase void G1GCPhaseTimes::add_time_secs(GCParPhases phase, uint worker_id, double secs) { _gc_par_phases[phase]->add(worker_id, secs); } void G1GCPhaseTimes::record_or_add_time_secs(GCParPhases phase, uint worker_id, double secs) { if (_gc_par_phases[phase]->get(worker_id) == _gc_par_phases[phase]->uninitialized()) { record_time_secs(phase, worker_id, secs); } else { add_time_secs(phase, worker_id, secs); } } double G1GCPhaseTimes::get_time_secs(GCParPhases phase, uint worker_id) { return _gc_par_phases[phase]->get(worker_id); } void G1GCPhaseTimes::record_thread_work_item(GCParPhases phase, uint worker_id, size_t count, uint index) { _gc_par_phases[phase]->set_thread_work_item(worker_id, count, index); } void G1GCPhaseTimes::record_or_add_thread_work_item(GCParPhases phase, uint worker_id, size_t count, uint index) { _gc_par_phases[phase]->set_or_add_thread_work_item(worker_id, count, index); } size_t G1GCPhaseTimes::get_thread_work_item(GCParPhases phase, uint worker_id, uint index) { return _gc_par_phases[phase]->get_thread_work_item(worker_id, index); } // return the average time for a phase in milliseconds double G1GCPhaseTimes::average_time_ms(GCParPhases phase) { return _gc_par_phases[phase]->average() * 1000.0; } size_t G1GCPhaseTimes::sum_thread_work_items(GCParPhases phase, uint index) { assert(_gc_par_phases[phase]->thread_work_items(index) != NULL, "No sub count"); return _gc_par_phases[phase]->thread_work_items(index)->sum(); } template void G1GCPhaseTimes::details(T* phase, const char* indent) const { LogTarget(Trace, gc, phases, task) lt; if (lt.is_enabled()) { LogStream ls(lt); ls.print("%s", indent); phase->print_details_on(&ls); } } void G1GCPhaseTimes::log_phase(WorkerDataArray* phase, uint indent, outputStream* out, bool print_sum) const { out->print("%s", Indents[indent]); phase->print_summary_on(out, print_sum); details(phase, Indents[indent]); for (uint i = 0; i < phase->MaxThreadWorkItems; i++) { WorkerDataArray* work_items = phase->thread_work_items(i); if (work_items != NULL) { out->print("%s", Indents[indent + 1]); work_items->print_summary_on(out, true); details(work_items, Indents[indent + 1]); } } } void G1GCPhaseTimes::debug_phase(WorkerDataArray* phase, uint extra_indent) const { LogTarget(Debug, gc, phases) lt; if (lt.is_enabled()) { ResourceMark rm; LogStream ls(lt); log_phase(phase, 2 + extra_indent, &ls, true); } } void G1GCPhaseTimes::trace_phase(WorkerDataArray* phase, bool print_sum) const { LogTarget(Trace, gc, phases) lt; if (lt.is_enabled()) { LogStream ls(lt); log_phase(phase, 3, &ls, print_sum); } } #define TIME_FORMAT "%.1lfms" void G1GCPhaseTimes::info_time(const char* name, double value) const { log_info(gc, phases)("%s%s: " TIME_FORMAT, Indents[1], name, value); } void G1GCPhaseTimes::debug_time(const char* name, double value) const { log_debug(gc, phases)("%s%s: " TIME_FORMAT, Indents[2], name, value); } void G1GCPhaseTimes::debug_time_for_reference(const char* name, double value) const { LogTarget(Debug, gc, phases) lt; LogTarget(Debug, gc, phases, ref) lt2; if (lt.is_enabled()) { LogStream ls(lt); ls.print_cr("%s%s: " TIME_FORMAT, Indents[2], name, value); } else if (lt2.is_enabled()) { LogStream ls(lt2); ls.print_cr("%s%s: " TIME_FORMAT, Indents[2], name, value); } } void G1GCPhaseTimes::trace_time(const char* name, double value) const { log_trace(gc, phases)("%s%s: " TIME_FORMAT, Indents[3], name, value); } void G1GCPhaseTimes::trace_count(const char* name, size_t value) const { log_trace(gc, phases)("%s%s: " SIZE_FORMAT, Indents[3], name, value); } double G1GCPhaseTimes::print_pre_evacuate_collection_set() const { const double sum_ms = _root_region_scan_wait_time_ms + _recorded_young_cset_choice_time_ms + _recorded_non_young_cset_choice_time_ms + _cur_region_register_time + _recorded_prepare_heap_roots_time_ms + _recorded_clear_claimed_marks_time_ms; info_time("Pre Evacuate Collection Set", sum_ms); if (_root_region_scan_wait_time_ms > 0.0) { debug_time("Root Region Scan Waiting", _root_region_scan_wait_time_ms); } debug_time("Prepare TLABs", _cur_prepare_tlab_time_ms); debug_time("Choose Collection Set", (_recorded_young_cset_choice_time_ms + _recorded_non_young_cset_choice_time_ms)); debug_time("Region Register", _cur_region_register_time); if (G1EagerReclaimHumongousObjects) { trace_count("Humongous Total", _cur_fast_reclaim_humongous_total); trace_count("Humongous Candidate", _cur_fast_reclaim_humongous_candidates); } debug_time("Prepare Heap Roots", _recorded_prepare_heap_roots_time_ms); if (_recorded_clear_claimed_marks_time_ms > 0.0) { debug_time("Clear Claimed Marks", _recorded_clear_claimed_marks_time_ms); } return sum_ms; } double G1GCPhaseTimes::print_evacuate_optional_collection_set() const { const double sum_ms = _cur_optional_evac_time_ms + _cur_optional_merge_heap_roots_time_ms; if (sum_ms > 0) { info_time("Merge Optional Heap Roots", _cur_optional_merge_heap_roots_time_ms); debug_time("Prepare Optional Merge Heap Roots", _cur_optional_prepare_merge_heap_roots_time_ms); debug_phase(_gc_par_phases[OptMergeRS]); info_time("Evacuate Optional Collection Set", _cur_optional_evac_time_ms); debug_phase(_gc_par_phases[OptScanHR]); debug_phase(_gc_par_phases[OptObjCopy]); debug_phase(_gc_par_phases[OptCodeRoots]); debug_phase(_gc_par_phases[OptTermination]); } return sum_ms; } double G1GCPhaseTimes::print_evacuate_initial_collection_set() const { info_time("Merge Heap Roots", _cur_merge_heap_roots_time_ms); debug_time("Prepare Merge Heap Roots", _cur_prepare_merge_heap_roots_time_ms); debug_phase(_gc_par_phases[MergeER]); debug_phase(_gc_par_phases[MergeRS]); if (G1HotCardCache::default_use_cache()) { debug_phase(_gc_par_phases[MergeHCC]); } debug_phase(_gc_par_phases[MergeLB]); info_time("Evacuate Collection Set", _cur_collection_initial_evac_time_ms); trace_phase(_gc_par_phases[GCWorkerStart], false); debug_phase(_gc_par_phases[ExtRootScan]); for (int i = ExtRootScanSubPhasesFirst; i <= ExtRootScanSubPhasesLast; i++) { trace_phase(_gc_par_phases[i]); } debug_phase(_gc_par_phases[ScanHR]); debug_phase(_gc_par_phases[CodeRoots]); debug_phase(_gc_par_phases[ObjCopy]); debug_phase(_gc_par_phases[Termination]); debug_phase(_gc_par_phases[Other]); debug_phase(_gc_par_phases[GCWorkerTotal]); trace_phase(_gc_par_phases[GCWorkerEnd], false); return _cur_collection_initial_evac_time_ms + _cur_merge_heap_roots_time_ms; } double G1GCPhaseTimes::print_post_evacuate_collection_set() const { const double evac_fail_handling = _cur_evac_fail_recalc_used + _cur_evac_fail_remove_self_forwards; const double sum_ms = evac_fail_handling + _cur_collection_code_root_fixup_time_ms + _recorded_preserve_cm_referents_time_ms + _cur_ref_proc_time_ms + (_weak_phase_times.total_time_sec() * MILLIUNITS) + _cur_clear_ct_time_ms + _recorded_merge_pss_time_ms + _cur_strong_code_root_purge_time_ms + _recorded_redirty_logged_cards_time_ms + _recorded_total_free_cset_time_ms + _cur_fast_reclaim_humongous_time_ms + _cur_expand_heap_time_ms + _cur_string_deduplication_time_ms; info_time("Post Evacuate Collection Set", sum_ms); debug_time("Code Roots Fixup", _cur_collection_code_root_fixup_time_ms); debug_time("Clear Card Table", _cur_clear_ct_time_ms); debug_time_for_reference("Reference Processing", _cur_ref_proc_time_ms); _ref_phase_times.print_all_references(2, false); _weak_phase_times.log_print(2); if (G1StringDedup::is_enabled()) { debug_time("String Deduplication", _cur_string_deduplication_time_ms); debug_phase(_gc_par_phases[StringDedupQueueFixup], 1); debug_phase(_gc_par_phases[StringDedupTableFixup], 1); } if (G1CollectedHeap::heap()->evacuation_failed()) { debug_time("Evacuation Failure", evac_fail_handling); trace_time("Recalculate Used", _cur_evac_fail_recalc_used); trace_time("Remove Self Forwards",_cur_evac_fail_remove_self_forwards); } debug_time("Merge Per-Thread State", _recorded_merge_pss_time_ms); debug_time("Code Roots Purge", _cur_strong_code_root_purge_time_ms); debug_time("Redirty Cards", _recorded_redirty_logged_cards_time_ms); trace_phase(_gc_par_phases[RedirtyCards]); #if COMPILER2_OR_JVMCI debug_time("DerivedPointerTable Update", _cur_derived_pointer_table_update_time_ms); #endif debug_time("Free Collection Set", _recorded_total_free_cset_time_ms); trace_time("Free Collection Set Serial", _recorded_serial_free_cset_time_ms); trace_phase(_gc_par_phases[YoungFreeCSet]); trace_phase(_gc_par_phases[NonYoungFreeCSet]); if (G1EagerReclaimHumongousObjects) { debug_time("Humongous Reclaim", _cur_fast_reclaim_humongous_time_ms); trace_count("Humongous Reclaimed", _cur_fast_reclaim_humongous_reclaimed); } debug_time("Start New Collection Set", _recorded_start_new_cset_time_ms); if (UseTLAB && ResizeTLAB) { debug_time("Resize TLABs", _cur_resize_tlab_time_ms); } debug_time("Expand Heap After Collection", _cur_expand_heap_time_ms); return sum_ms; } void G1GCPhaseTimes::print_other(double accounted_ms) const { info_time("Other", _gc_pause_time_ms - accounted_ms); } void G1GCPhaseTimes::print() { note_gc_end(); if (_cur_verify_before_time_ms > 0.0) { debug_time("Verify Before", _cur_verify_before_time_ms); } double accounted_ms = 0.0; accounted_ms += print_pre_evacuate_collection_set(); accounted_ms += print_evacuate_initial_collection_set(); accounted_ms += print_evacuate_optional_collection_set(); accounted_ms += print_post_evacuate_collection_set(); print_other(accounted_ms); if (_cur_verify_after_time_ms > 0.0) { debug_time("Verify After", _cur_verify_after_time_ms); } } const char* G1GCPhaseTimes::phase_name(GCParPhases phase) { static const char* names[] = { "GCWorkerStart", "ExtRootScan", "ThreadRoots", "UniverseRoots", "JNIRoots", "ObjectSynchronizerRoots", "ManagementRoots", "SystemDictionaryRoots", "CLDGRoots", "JVMTIRoots", AOT_ONLY("AOTCodeRoots" COMMA) "CMRefRoots", "MergeER", "MergeRS", "OptMergeRS", "MergeLB", "MergeHCC", "ScanHR", "OptScanHR", "CodeRoots", "OptCodeRoots", "ObjCopy", "OptObjCopy", "Termination", "OptTermination", "Other", "GCWorkerTotal", "GCWorkerEnd", "StringDedupQueueFixup", "StringDedupTableFixup", "RedirtyCards", "YoungFreeCSet", "NonYoungFreeCSet" //GCParPhasesSentinel only used to tell end of enum }; STATIC_ASSERT(ARRAY_SIZE(names) == G1GCPhaseTimes::GCParPhasesSentinel); // GCParPhases enum and corresponding string array should have the same "length", this tries to assert it return names[phase]; } G1EvacPhaseWithTrimTimeTracker::G1EvacPhaseWithTrimTimeTracker(G1ParScanThreadState* pss, Tickspan& total_time, Tickspan& trim_time) : _pss(pss), _start(Ticks::now()), _total_time(total_time), _trim_time(trim_time), _stopped(false) { assert(_pss->trim_ticks().value() == 0, "Possibly remaining trim ticks left over from previous use"); } G1EvacPhaseWithTrimTimeTracker::~G1EvacPhaseWithTrimTimeTracker() { if (!_stopped) { stop(); } } void G1EvacPhaseWithTrimTimeTracker::stop() { assert(!_stopped, "Should only be called once"); _total_time += (Ticks::now() - _start) - _pss->trim_ticks(); _trim_time += _pss->trim_ticks(); _pss->reset_trim_ticks(); _stopped = true; } G1GCParPhaseTimesTracker::G1GCParPhaseTimesTracker(G1GCPhaseTimes* phase_times, G1GCPhaseTimes::GCParPhases phase, uint worker_id, bool must_record) : _start_time(), _phase(phase), _phase_times(phase_times), _worker_id(worker_id), _event(), _must_record(must_record) { if (_phase_times != NULL) { _start_time = Ticks::now(); } } G1GCParPhaseTimesTracker::~G1GCParPhaseTimesTracker() { if (_phase_times != NULL) { if (_must_record) { _phase_times->record_time_secs(_phase, _worker_id, (Ticks::now() - _start_time).seconds()); } else { _phase_times->record_or_add_time_secs(_phase, _worker_id, (Ticks::now() - _start_time).seconds()); } _event.commit(GCId::current(), _worker_id, G1GCPhaseTimes::phase_name(_phase)); } } G1EvacPhaseTimesTracker::G1EvacPhaseTimesTracker(G1GCPhaseTimes* phase_times, G1ParScanThreadState* pss, G1GCPhaseTimes::GCParPhases phase, uint worker_id) : G1GCParPhaseTimesTracker(phase_times, phase, worker_id), _total_time(), _trim_time(), _trim_tracker(pss, _total_time, _trim_time) { } G1EvacPhaseTimesTracker::~G1EvacPhaseTimesTracker() { if (_phase_times != NULL) { // Explicitly stop the trim tracker since it's not yet destructed. _trim_tracker.stop(); // Exclude trim time by increasing the start time. _start_time += _trim_time; _phase_times->record_or_add_time_secs(G1GCPhaseTimes::ObjCopy, _worker_id, _trim_time.seconds()); } }