/* * Copyright (c) 1999, 2015, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "asm/macroAssembler.hpp" #include "classfile/systemDictionary.hpp" #include "classfile/vmSymbols.hpp" #include "compiler/compileBroker.hpp" #include "compiler/compileLog.hpp" #include "oops/objArrayKlass.hpp" #include "opto/addnode.hpp" #include "opto/arraycopynode.hpp" #include "opto/c2compiler.hpp" #include "opto/callGenerator.hpp" #include "opto/castnode.hpp" #include "opto/cfgnode.hpp" #include "opto/convertnode.hpp" #include "opto/countbitsnode.hpp" #include "opto/intrinsicnode.hpp" #include "opto/idealKit.hpp" #include "opto/mathexactnode.hpp" #include "opto/movenode.hpp" #include "opto/mulnode.hpp" #include "opto/narrowptrnode.hpp" #include "opto/opaquenode.hpp" #include "opto/parse.hpp" #include "opto/runtime.hpp" #include "opto/subnode.hpp" #include "prims/nativeLookup.hpp" #include "runtime/sharedRuntime.hpp" #include "trace/traceMacros.hpp" class LibraryIntrinsic : public InlineCallGenerator { // Extend the set of intrinsics known to the runtime: public: private: bool _is_virtual; bool _does_virtual_dispatch; int8_t _predicates_count; // Intrinsic is predicated by several conditions int8_t _last_predicate; // Last generated predicate vmIntrinsics::ID _intrinsic_id; public: LibraryIntrinsic(ciMethod* m, bool is_virtual, int predicates_count, bool does_virtual_dispatch, vmIntrinsics::ID id) : InlineCallGenerator(m), _is_virtual(is_virtual), _does_virtual_dispatch(does_virtual_dispatch), _predicates_count((int8_t)predicates_count), _last_predicate((int8_t)-1), _intrinsic_id(id) { } virtual bool is_intrinsic() const { return true; } virtual bool is_virtual() const { return _is_virtual; } virtual bool is_predicated() const { return _predicates_count > 0; } virtual int predicates_count() const { return _predicates_count; } virtual bool does_virtual_dispatch() const { return _does_virtual_dispatch; } virtual JVMState* generate(JVMState* jvms); virtual Node* generate_predicate(JVMState* jvms, int predicate); vmIntrinsics::ID intrinsic_id() const { return _intrinsic_id; } }; // Local helper class for LibraryIntrinsic: class LibraryCallKit : public GraphKit { private: LibraryIntrinsic* _intrinsic; // the library intrinsic being called Node* _result; // the result node, if any int _reexecute_sp; // the stack pointer when bytecode needs to be reexecuted const TypeOopPtr* sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type, bool is_native_ptr = false); public: LibraryCallKit(JVMState* jvms, LibraryIntrinsic* intrinsic) : GraphKit(jvms), _intrinsic(intrinsic), _result(NULL) { // Check if this is a root compile. In that case we don't have a caller. if (!jvms->has_method()) { _reexecute_sp = sp(); } else { // Find out how many arguments the interpreter needs when deoptimizing // and save the stack pointer value so it can used by uncommon_trap. // We find the argument count by looking at the declared signature. bool ignored_will_link; ciSignature* declared_signature = NULL; ciMethod* ignored_callee = caller()->get_method_at_bci(bci(), ignored_will_link, &declared_signature); const int nargs = declared_signature->arg_size_for_bc(caller()->java_code_at_bci(bci())); _reexecute_sp = sp() + nargs; // "push" arguments back on stack } } virtual LibraryCallKit* is_LibraryCallKit() const { return (LibraryCallKit*)this; } ciMethod* caller() const { return jvms()->method(); } int bci() const { return jvms()->bci(); } LibraryIntrinsic* intrinsic() const { return _intrinsic; } vmIntrinsics::ID intrinsic_id() const { return _intrinsic->intrinsic_id(); } ciMethod* callee() const { return _intrinsic->method(); } bool try_to_inline(int predicate); Node* try_to_predicate(int predicate); void push_result() { // Push the result onto the stack. if (!stopped() && result() != NULL) { BasicType bt = result()->bottom_type()->basic_type(); push_node(bt, result()); } } private: void fatal_unexpected_iid(vmIntrinsics::ID iid) { fatal(err_msg_res("unexpected intrinsic %d: %s", iid, vmIntrinsics::name_at(iid))); } void set_result(Node* n) { assert(_result == NULL, "only set once"); _result = n; } void set_result(RegionNode* region, PhiNode* value); Node* result() { return _result; } virtual int reexecute_sp() { return _reexecute_sp; } // Helper functions to inline natives Node* generate_guard(Node* test, RegionNode* region, float true_prob); Node* generate_slow_guard(Node* test, RegionNode* region); Node* generate_fair_guard(Node* test, RegionNode* region); Node* generate_negative_guard(Node* index, RegionNode* region, // resulting CastII of index: Node* *pos_index = NULL); Node* generate_limit_guard(Node* offset, Node* subseq_length, Node* array_length, RegionNode* region); Node* generate_current_thread(Node* &tls_output); Node* load_mirror_from_klass(Node* klass); Node* load_klass_from_mirror_common(Node* mirror, bool never_see_null, RegionNode* region, int null_path, int offset); Node* load_klass_from_mirror(Node* mirror, bool never_see_null, RegionNode* region, int null_path) { int offset = java_lang_Class::klass_offset_in_bytes(); return load_klass_from_mirror_common(mirror, never_see_null, region, null_path, offset); } Node* load_array_klass_from_mirror(Node* mirror, bool never_see_null, RegionNode* region, int null_path) { int offset = java_lang_Class::array_klass_offset_in_bytes(); return load_klass_from_mirror_common(mirror, never_see_null, region, null_path, offset); } Node* generate_access_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region); Node* generate_interface_guard(Node* kls, RegionNode* region); Node* generate_array_guard(Node* kls, RegionNode* region) { return generate_array_guard_common(kls, region, false, false); } Node* generate_non_array_guard(Node* kls, RegionNode* region) { return generate_array_guard_common(kls, region, false, true); } Node* generate_objArray_guard(Node* kls, RegionNode* region) { return generate_array_guard_common(kls, region, true, false); } Node* generate_non_objArray_guard(Node* kls, RegionNode* region) { return generate_array_guard_common(kls, region, true, true); } Node* generate_array_guard_common(Node* kls, RegionNode* region, bool obj_array, bool not_array); Node* generate_virtual_guard(Node* obj_klass, RegionNode* slow_region); CallJavaNode* generate_method_call(vmIntrinsics::ID method_id, bool is_virtual = false, bool is_static = false); CallJavaNode* generate_method_call_static(vmIntrinsics::ID method_id) { return generate_method_call(method_id, false, true); } CallJavaNode* generate_method_call_virtual(vmIntrinsics::ID method_id) { return generate_method_call(method_id, true, false); } Node * load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString, bool is_exact, bool is_static, ciInstanceKlass * fromKls); Node* make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2); Node* make_string_method_node(int opcode, Node* str1, Node* str2); bool inline_string_compareTo(); bool inline_string_indexOf(); Node* string_indexOf(Node* string_object, ciTypeArray* target_array, jint offset, jint cache_i, jint md2_i); bool inline_string_equals(); Node* round_double_node(Node* n); bool runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName); bool inline_math_native(vmIntrinsics::ID id); bool inline_trig(vmIntrinsics::ID id); bool inline_math(vmIntrinsics::ID id); template bool inline_math_overflow(Node* arg1, Node* arg2); void inline_math_mathExact(Node* math, Node* test); bool inline_math_addExactI(bool is_increment); bool inline_math_addExactL(bool is_increment); bool inline_math_multiplyExactI(); bool inline_math_multiplyExactL(); bool inline_math_negateExactI(); bool inline_math_negateExactL(); bool inline_math_subtractExactI(bool is_decrement); bool inline_math_subtractExactL(bool is_decrement); bool inline_exp(); bool inline_pow(); Node* finish_pow_exp(Node* result, Node* x, Node* y, const TypeFunc* call_type, address funcAddr, const char* funcName); bool inline_min_max(vmIntrinsics::ID id); bool inline_notify(vmIntrinsics::ID id); Node* generate_min_max(vmIntrinsics::ID id, Node* x, Node* y); // This returns Type::AnyPtr, RawPtr, or OopPtr. int classify_unsafe_addr(Node* &base, Node* &offset); Node* make_unsafe_address(Node* base, Node* offset); // Helper for inline_unsafe_access. // Generates the guards that check whether the result of // Unsafe.getObject should be recorded in an SATB log buffer. void insert_pre_barrier(Node* base_oop, Node* offset, Node* pre_val, bool need_mem_bar); bool inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile); static bool klass_needs_init_guard(Node* kls); bool inline_unsafe_allocate(); bool inline_unsafe_copyMemory(); bool inline_native_currentThread(); #ifdef TRACE_HAVE_INTRINSICS bool inline_native_classID(); bool inline_native_threadID(); #endif bool inline_native_time_funcs(address method, const char* funcName); bool inline_native_isInterrupted(); bool inline_native_Class_query(vmIntrinsics::ID id); bool inline_native_subtype_check(); bool inline_native_newArray(); bool inline_native_getLength(); bool inline_array_copyOf(bool is_copyOfRange); bool inline_array_equals(); void copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark); bool inline_native_clone(bool is_virtual); bool inline_native_Reflection_getCallerClass(); // Helper function for inlining native object hash method bool inline_native_hashcode(bool is_virtual, bool is_static); bool inline_native_getClass(); // Helper functions for inlining arraycopy bool inline_arraycopy(); AllocateArrayNode* tightly_coupled_allocation(Node* ptr, RegionNode* slow_region); JVMState* arraycopy_restore_alloc_state(AllocateArrayNode* alloc, int& saved_reexecute_sp); void arraycopy_move_allocation_here(AllocateArrayNode* alloc, Node* dest, JVMState* saved_jvms, int saved_reexecute_sp); typedef enum { LS_xadd, LS_xchg, LS_cmpxchg } LoadStoreKind; bool inline_unsafe_load_store(BasicType type, LoadStoreKind kind); bool inline_unsafe_ordered_store(BasicType type); bool inline_unsafe_fence(vmIntrinsics::ID id); bool inline_fp_conversions(vmIntrinsics::ID id); bool inline_number_methods(vmIntrinsics::ID id); bool inline_reference_get(); bool inline_Class_cast(); bool inline_aescrypt_Block(vmIntrinsics::ID id); bool inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id); Node* inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting); Node* get_key_start_from_aescrypt_object(Node* aescrypt_object); Node* get_original_key_start_from_aescrypt_object(Node* aescrypt_object); bool inline_ghash_processBlocks(); bool inline_sha_implCompress(vmIntrinsics::ID id); bool inline_digestBase_implCompressMB(int predicate); bool inline_sha_implCompressMB(Node* digestBaseObj, ciInstanceKlass* instklass_SHA, bool long_state, address stubAddr, const char *stubName, Node* src_start, Node* ofs, Node* limit); Node* get_state_from_sha_object(Node *sha_object); Node* get_state_from_sha5_object(Node *sha_object); Node* inline_digestBase_implCompressMB_predicate(int predicate); bool inline_encodeISOArray(); bool inline_updateCRC32(); bool inline_updateBytesCRC32(); bool inline_updateByteBufferCRC32(); Node* get_table_from_crc32c_class(ciInstanceKlass *crc32c_class); bool inline_updateBytesCRC32C(); bool inline_updateDirectByteBufferCRC32C(); bool inline_multiplyToLen(); bool inline_squareToLen(); bool inline_mulAdd(); bool inline_montgomeryMultiply(); bool inline_montgomerySquare(); bool inline_profileBoolean(); bool inline_isCompileConstant(); }; //---------------------------make_vm_intrinsic---------------------------- CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) { vmIntrinsics::ID id = m->intrinsic_id(); assert(id != vmIntrinsics::_none, "must be a VM intrinsic"); if (!m->is_loaded()) { // Do not attempt to inline unloaded methods. return NULL; } C2Compiler* compiler = (C2Compiler*)CompileBroker::compiler(CompLevel_full_optimization); bool is_available = false; { // For calling is_intrinsic_supported and is_intrinsic_disabled_by_flag // the compiler must transition to '_thread_in_vm' state because both // methods access VM-internal data. VM_ENTRY_MARK; methodHandle mh(THREAD, m->get_Method()); methodHandle ct(THREAD, method()->get_Method()); is_available = compiler->is_intrinsic_supported(mh, is_virtual) && !vmIntrinsics::is_disabled_by_flags(mh, ct); } if (is_available) { assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility"); assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?"); return new LibraryIntrinsic(m, is_virtual, vmIntrinsics::predicates_needed(id), vmIntrinsics::does_virtual_dispatch(id), (vmIntrinsics::ID) id); } else { return NULL; } } //----------------------register_library_intrinsics----------------------- // Initialize this file's data structures, for each Compile instance. void Compile::register_library_intrinsics() { // Nothing to do here. } JVMState* LibraryIntrinsic::generate(JVMState* jvms) { LibraryCallKit kit(jvms, this); Compile* C = kit.C; int nodes = C->unique(); #ifndef PRODUCT if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { char buf[1000]; const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf)); tty->print_cr("Intrinsic %s", str); } #endif ciMethod* callee = kit.callee(); const int bci = kit.bci(); // Try to inline the intrinsic. if ((CheckIntrinsics ? callee->intrinsic_candidate() : true) && kit.try_to_inline(_last_predicate)) { if (C->print_intrinsics() || C->print_inlining()) { C->print_inlining(callee, jvms->depth() - 1, bci, is_virtual() ? "(intrinsic, virtual)" : "(intrinsic)"); } C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked); if (C->log()) { C->log()->elem("intrinsic id='%s'%s nodes='%d'", vmIntrinsics::name_at(intrinsic_id()), (is_virtual() ? " virtual='1'" : ""), C->unique() - nodes); } // Push the result from the inlined method onto the stack. kit.push_result(); C->print_inlining_update(this); return kit.transfer_exceptions_into_jvms(); } // The intrinsic bailed out if (C->print_intrinsics() || C->print_inlining()) { if (jvms->has_method()) { // Not a root compile. const char* msg; if (callee->intrinsic_candidate()) { msg = is_virtual() ? "failed to inline (intrinsic, virtual)" : "failed to inline (intrinsic)"; } else { msg = is_virtual() ? "failed to inline (intrinsic, virtual), method not annotated" : "failed to inline (intrinsic), method not annotated"; } C->print_inlining(callee, jvms->depth() - 1, bci, msg); } else { // Root compile tty->print("Did not generate intrinsic %s%s at bci:%d in", vmIntrinsics::name_at(intrinsic_id()), (is_virtual() ? " (virtual)" : ""), bci); } } C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed); C->print_inlining_update(this); return NULL; } Node* LibraryIntrinsic::generate_predicate(JVMState* jvms, int predicate) { LibraryCallKit kit(jvms, this); Compile* C = kit.C; int nodes = C->unique(); _last_predicate = predicate; #ifndef PRODUCT assert(is_predicated() && predicate < predicates_count(), "sanity"); if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { char buf[1000]; const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf)); tty->print_cr("Predicate for intrinsic %s", str); } #endif ciMethod* callee = kit.callee(); const int bci = kit.bci(); Node* slow_ctl = kit.try_to_predicate(predicate); if (!kit.failing()) { if (C->print_intrinsics() || C->print_inlining()) { C->print_inlining(callee, jvms->depth() - 1, bci, is_virtual() ? "(intrinsic, virtual, predicate)" : "(intrinsic, predicate)"); } C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked); if (C->log()) { C->log()->elem("predicate_intrinsic id='%s'%s nodes='%d'", vmIntrinsics::name_at(intrinsic_id()), (is_virtual() ? " virtual='1'" : ""), C->unique() - nodes); } return slow_ctl; // Could be NULL if the check folds. } // The intrinsic bailed out if (C->print_intrinsics() || C->print_inlining()) { if (jvms->has_method()) { // Not a root compile. const char* msg = "failed to generate predicate for intrinsic"; C->print_inlining(kit.callee(), jvms->depth() - 1, bci, msg); } else { // Root compile C->print_inlining_stream()->print("Did not generate predicate for intrinsic %s%s at bci:%d in", vmIntrinsics::name_at(intrinsic_id()), (is_virtual() ? " (virtual)" : ""), bci); } } C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed); return NULL; } bool LibraryCallKit::try_to_inline(int predicate) { // Handle symbolic names for otherwise undistinguished boolean switches: const bool is_store = true; const bool is_native_ptr = true; const bool is_static = true; const bool is_volatile = true; if (!jvms()->has_method()) { // Root JVMState has a null method. assert(map()->memory()->Opcode() == Op_Parm, ""); // Insert the memory aliasing node set_all_memory(reset_memory()); } assert(merged_memory(), ""); switch (intrinsic_id()) { case vmIntrinsics::_hashCode: return inline_native_hashcode(intrinsic()->is_virtual(), !is_static); case vmIntrinsics::_identityHashCode: return inline_native_hashcode(/*!virtual*/ false, is_static); case vmIntrinsics::_getClass: return inline_native_getClass(); case vmIntrinsics::_dsin: case vmIntrinsics::_dcos: case vmIntrinsics::_dtan: case vmIntrinsics::_dabs: case vmIntrinsics::_datan2: case vmIntrinsics::_dsqrt: case vmIntrinsics::_dexp: case vmIntrinsics::_dlog: case vmIntrinsics::_dlog10: case vmIntrinsics::_dpow: return inline_math_native(intrinsic_id()); case vmIntrinsics::_min: case vmIntrinsics::_max: return inline_min_max(intrinsic_id()); case vmIntrinsics::_notify: case vmIntrinsics::_notifyAll: if (InlineNotify) { return inline_notify(intrinsic_id()); } return false; case vmIntrinsics::_addExactI: return inline_math_addExactI(false /* add */); case vmIntrinsics::_addExactL: return inline_math_addExactL(false /* add */); case vmIntrinsics::_decrementExactI: return inline_math_subtractExactI(true /* decrement */); case vmIntrinsics::_decrementExactL: return inline_math_subtractExactL(true /* decrement */); case vmIntrinsics::_incrementExactI: return inline_math_addExactI(true /* increment */); case vmIntrinsics::_incrementExactL: return inline_math_addExactL(true /* increment */); case vmIntrinsics::_multiplyExactI: return inline_math_multiplyExactI(); case vmIntrinsics::_multiplyExactL: return inline_math_multiplyExactL(); case vmIntrinsics::_negateExactI: return inline_math_negateExactI(); case vmIntrinsics::_negateExactL: return inline_math_negateExactL(); case vmIntrinsics::_subtractExactI: return inline_math_subtractExactI(false /* subtract */); case vmIntrinsics::_subtractExactL: return inline_math_subtractExactL(false /* subtract */); case vmIntrinsics::_arraycopy: return inline_arraycopy(); case vmIntrinsics::_compareTo: return inline_string_compareTo(); case vmIntrinsics::_indexOf: return inline_string_indexOf(); case vmIntrinsics::_equals: return inline_string_equals(); case vmIntrinsics::_getObject: return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT, !is_volatile); case vmIntrinsics::_getBoolean: return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, !is_volatile); case vmIntrinsics::_getByte: return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE, !is_volatile); case vmIntrinsics::_getShort: return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT, !is_volatile); case vmIntrinsics::_getChar: return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR, !is_volatile); case vmIntrinsics::_getInt: return inline_unsafe_access(!is_native_ptr, !is_store, T_INT, !is_volatile); case vmIntrinsics::_getLong: return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG, !is_volatile); case vmIntrinsics::_getFloat: return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT, !is_volatile); case vmIntrinsics::_getDouble: return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE, !is_volatile); case vmIntrinsics::_putObject: return inline_unsafe_access(!is_native_ptr, is_store, T_OBJECT, !is_volatile); case vmIntrinsics::_putBoolean: return inline_unsafe_access(!is_native_ptr, is_store, T_BOOLEAN, !is_volatile); case vmIntrinsics::_putByte: return inline_unsafe_access(!is_native_ptr, is_store, T_BYTE, !is_volatile); case vmIntrinsics::_putShort: return inline_unsafe_access(!is_native_ptr, is_store, T_SHORT, !is_volatile); case vmIntrinsics::_putChar: return inline_unsafe_access(!is_native_ptr, is_store, T_CHAR, !is_volatile); case vmIntrinsics::_putInt: return inline_unsafe_access(!is_native_ptr, is_store, T_INT, !is_volatile); case vmIntrinsics::_putLong: return inline_unsafe_access(!is_native_ptr, is_store, T_LONG, !is_volatile); case vmIntrinsics::_putFloat: return inline_unsafe_access(!is_native_ptr, is_store, T_FLOAT, !is_volatile); case vmIntrinsics::_putDouble: return inline_unsafe_access(!is_native_ptr, is_store, T_DOUBLE, !is_volatile); case vmIntrinsics::_getByte_raw: return inline_unsafe_access( is_native_ptr, !is_store, T_BYTE, !is_volatile); case vmIntrinsics::_getShort_raw: return inline_unsafe_access( is_native_ptr, !is_store, T_SHORT, !is_volatile); case vmIntrinsics::_getChar_raw: return inline_unsafe_access( is_native_ptr, !is_store, T_CHAR, !is_volatile); case vmIntrinsics::_getInt_raw: return inline_unsafe_access( is_native_ptr, !is_store, T_INT, !is_volatile); case vmIntrinsics::_getLong_raw: return inline_unsafe_access( is_native_ptr, !is_store, T_LONG, !is_volatile); case vmIntrinsics::_getFloat_raw: return inline_unsafe_access( is_native_ptr, !is_store, T_FLOAT, !is_volatile); case vmIntrinsics::_getDouble_raw: return inline_unsafe_access( is_native_ptr, !is_store, T_DOUBLE, !is_volatile); case vmIntrinsics::_getAddress_raw: return inline_unsafe_access( is_native_ptr, !is_store, T_ADDRESS, !is_volatile); case vmIntrinsics::_putByte_raw: return inline_unsafe_access( is_native_ptr, is_store, T_BYTE, !is_volatile); case vmIntrinsics::_putShort_raw: return inline_unsafe_access( is_native_ptr, is_store, T_SHORT, !is_volatile); case vmIntrinsics::_putChar_raw: return inline_unsafe_access( is_native_ptr, is_store, T_CHAR, !is_volatile); case vmIntrinsics::_putInt_raw: return inline_unsafe_access( is_native_ptr, is_store, T_INT, !is_volatile); case vmIntrinsics::_putLong_raw: return inline_unsafe_access( is_native_ptr, is_store, T_LONG, !is_volatile); case vmIntrinsics::_putFloat_raw: return inline_unsafe_access( is_native_ptr, is_store, T_FLOAT, !is_volatile); case vmIntrinsics::_putDouble_raw: return inline_unsafe_access( is_native_ptr, is_store, T_DOUBLE, !is_volatile); case vmIntrinsics::_putAddress_raw: return inline_unsafe_access( is_native_ptr, is_store, T_ADDRESS, !is_volatile); case vmIntrinsics::_getObjectVolatile: return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT, is_volatile); case vmIntrinsics::_getBooleanVolatile: return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, is_volatile); case vmIntrinsics::_getByteVolatile: return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE, is_volatile); case vmIntrinsics::_getShortVolatile: return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT, is_volatile); case vmIntrinsics::_getCharVolatile: return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR, is_volatile); case vmIntrinsics::_getIntVolatile: return inline_unsafe_access(!is_native_ptr, !is_store, T_INT, is_volatile); case vmIntrinsics::_getLongVolatile: return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG, is_volatile); case vmIntrinsics::_getFloatVolatile: return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT, is_volatile); case vmIntrinsics::_getDoubleVolatile: return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE, is_volatile); case vmIntrinsics::_putObjectVolatile: return inline_unsafe_access(!is_native_ptr, is_store, T_OBJECT, is_volatile); case vmIntrinsics::_putBooleanVolatile: return inline_unsafe_access(!is_native_ptr, is_store, T_BOOLEAN, is_volatile); case vmIntrinsics::_putByteVolatile: return inline_unsafe_access(!is_native_ptr, is_store, T_BYTE, is_volatile); case vmIntrinsics::_putShortVolatile: return inline_unsafe_access(!is_native_ptr, is_store, T_SHORT, is_volatile); case vmIntrinsics::_putCharVolatile: return inline_unsafe_access(!is_native_ptr, is_store, T_CHAR, is_volatile); case vmIntrinsics::_putIntVolatile: return inline_unsafe_access(!is_native_ptr, is_store, T_INT, is_volatile); case vmIntrinsics::_putLongVolatile: return inline_unsafe_access(!is_native_ptr, is_store, T_LONG, is_volatile); case vmIntrinsics::_putFloatVolatile: return inline_unsafe_access(!is_native_ptr, is_store, T_FLOAT, is_volatile); case vmIntrinsics::_putDoubleVolatile: return inline_unsafe_access(!is_native_ptr, is_store, T_DOUBLE, is_volatile); case vmIntrinsics::_getShortUnaligned: return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT, !is_volatile); case vmIntrinsics::_getCharUnaligned: return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR, !is_volatile); case vmIntrinsics::_getIntUnaligned: return inline_unsafe_access(!is_native_ptr, !is_store, T_INT, !is_volatile); case vmIntrinsics::_getLongUnaligned: return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG, !is_volatile); case vmIntrinsics::_putShortUnaligned: return inline_unsafe_access(!is_native_ptr, is_store, T_SHORT, !is_volatile); case vmIntrinsics::_putCharUnaligned: return inline_unsafe_access(!is_native_ptr, is_store, T_CHAR, !is_volatile); case vmIntrinsics::_putIntUnaligned: return inline_unsafe_access(!is_native_ptr, is_store, T_INT, !is_volatile); case vmIntrinsics::_putLongUnaligned: return inline_unsafe_access(!is_native_ptr, is_store, T_LONG, !is_volatile); case vmIntrinsics::_compareAndSwapObject: return inline_unsafe_load_store(T_OBJECT, LS_cmpxchg); case vmIntrinsics::_compareAndSwapInt: return inline_unsafe_load_store(T_INT, LS_cmpxchg); case vmIntrinsics::_compareAndSwapLong: return inline_unsafe_load_store(T_LONG, LS_cmpxchg); case vmIntrinsics::_putOrderedObject: return inline_unsafe_ordered_store(T_OBJECT); case vmIntrinsics::_putOrderedInt: return inline_unsafe_ordered_store(T_INT); case vmIntrinsics::_putOrderedLong: return inline_unsafe_ordered_store(T_LONG); case vmIntrinsics::_getAndAddInt: return inline_unsafe_load_store(T_INT, LS_xadd); case vmIntrinsics::_getAndAddLong: return inline_unsafe_load_store(T_LONG, LS_xadd); case vmIntrinsics::_getAndSetInt: return inline_unsafe_load_store(T_INT, LS_xchg); case vmIntrinsics::_getAndSetLong: return inline_unsafe_load_store(T_LONG, LS_xchg); case vmIntrinsics::_getAndSetObject: return inline_unsafe_load_store(T_OBJECT, LS_xchg); case vmIntrinsics::_loadFence: case vmIntrinsics::_storeFence: case vmIntrinsics::_fullFence: return inline_unsafe_fence(intrinsic_id()); case vmIntrinsics::_currentThread: return inline_native_currentThread(); case vmIntrinsics::_isInterrupted: return inline_native_isInterrupted(); #ifdef TRACE_HAVE_INTRINSICS case vmIntrinsics::_classID: return inline_native_classID(); case vmIntrinsics::_threadID: return inline_native_threadID(); case vmIntrinsics::_counterTime: return inline_native_time_funcs(CAST_FROM_FN_PTR(address, TRACE_TIME_METHOD), "counterTime"); #endif case vmIntrinsics::_currentTimeMillis: return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeMillis), "currentTimeMillis"); case vmIntrinsics::_nanoTime: return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeNanos), "nanoTime"); case vmIntrinsics::_allocateInstance: return inline_unsafe_allocate(); case vmIntrinsics::_copyMemory: return inline_unsafe_copyMemory(); case vmIntrinsics::_newArray: return inline_native_newArray(); case vmIntrinsics::_getLength: return inline_native_getLength(); case vmIntrinsics::_copyOf: return inline_array_copyOf(false); case vmIntrinsics::_copyOfRange: return inline_array_copyOf(true); case vmIntrinsics::_equalsC: return inline_array_equals(); case vmIntrinsics::_clone: return inline_native_clone(intrinsic()->is_virtual()); case vmIntrinsics::_isAssignableFrom: return inline_native_subtype_check(); case vmIntrinsics::_isInstance: case vmIntrinsics::_getModifiers: case vmIntrinsics::_isInterface: case vmIntrinsics::_isArray: case vmIntrinsics::_isPrimitive: case vmIntrinsics::_getSuperclass: case vmIntrinsics::_getClassAccessFlags: return inline_native_Class_query(intrinsic_id()); case vmIntrinsics::_floatToRawIntBits: case vmIntrinsics::_floatToIntBits: case vmIntrinsics::_intBitsToFloat: case vmIntrinsics::_doubleToRawLongBits: case vmIntrinsics::_doubleToLongBits: case vmIntrinsics::_longBitsToDouble: return inline_fp_conversions(intrinsic_id()); case vmIntrinsics::_numberOfLeadingZeros_i: case vmIntrinsics::_numberOfLeadingZeros_l: case vmIntrinsics::_numberOfTrailingZeros_i: case vmIntrinsics::_numberOfTrailingZeros_l: case vmIntrinsics::_bitCount_i: case vmIntrinsics::_bitCount_l: case vmIntrinsics::_reverseBytes_i: case vmIntrinsics::_reverseBytes_l: case vmIntrinsics::_reverseBytes_s: case vmIntrinsics::_reverseBytes_c: return inline_number_methods(intrinsic_id()); case vmIntrinsics::_getCallerClass: return inline_native_Reflection_getCallerClass(); case vmIntrinsics::_Reference_get: return inline_reference_get(); case vmIntrinsics::_Class_cast: return inline_Class_cast(); case vmIntrinsics::_aescrypt_encryptBlock: case vmIntrinsics::_aescrypt_decryptBlock: return inline_aescrypt_Block(intrinsic_id()); case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt: case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt: return inline_cipherBlockChaining_AESCrypt(intrinsic_id()); case vmIntrinsics::_sha_implCompress: case vmIntrinsics::_sha2_implCompress: case vmIntrinsics::_sha5_implCompress: return inline_sha_implCompress(intrinsic_id()); case vmIntrinsics::_digestBase_implCompressMB: return inline_digestBase_implCompressMB(predicate); case vmIntrinsics::_multiplyToLen: return inline_multiplyToLen(); case vmIntrinsics::_squareToLen: return inline_squareToLen(); case vmIntrinsics::_mulAdd: return inline_mulAdd(); case vmIntrinsics::_montgomeryMultiply: return inline_montgomeryMultiply(); case vmIntrinsics::_montgomerySquare: return inline_montgomerySquare(); case vmIntrinsics::_ghash_processBlocks: return inline_ghash_processBlocks(); case vmIntrinsics::_encodeISOArray: return inline_encodeISOArray(); case vmIntrinsics::_updateCRC32: return inline_updateCRC32(); case vmIntrinsics::_updateBytesCRC32: return inline_updateBytesCRC32(); case vmIntrinsics::_updateByteBufferCRC32: return inline_updateByteBufferCRC32(); case vmIntrinsics::_updateBytesCRC32C: return inline_updateBytesCRC32C(); case vmIntrinsics::_updateDirectByteBufferCRC32C: return inline_updateDirectByteBufferCRC32C(); case vmIntrinsics::_profileBoolean: return inline_profileBoolean(); case vmIntrinsics::_isCompileConstant: return inline_isCompileConstant(); default: // If you get here, it may be that someone has added a new intrinsic // to the list in vmSymbols.hpp without implementing it here. #ifndef PRODUCT if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) { tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)", vmIntrinsics::name_at(intrinsic_id()), intrinsic_id()); } #endif return false; } } Node* LibraryCallKit::try_to_predicate(int predicate) { if (!jvms()->has_method()) { // Root JVMState has a null method. assert(map()->memory()->Opcode() == Op_Parm, ""); // Insert the memory aliasing node set_all_memory(reset_memory()); } assert(merged_memory(), ""); switch (intrinsic_id()) { case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt: return inline_cipherBlockChaining_AESCrypt_predicate(false); case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt: return inline_cipherBlockChaining_AESCrypt_predicate(true); case vmIntrinsics::_digestBase_implCompressMB: return inline_digestBase_implCompressMB_predicate(predicate); default: // If you get here, it may be that someone has added a new intrinsic // to the list in vmSymbols.hpp without implementing it here. #ifndef PRODUCT if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) { tty->print_cr("*** Warning: Unimplemented predicate for intrinsic %s(%d)", vmIntrinsics::name_at(intrinsic_id()), intrinsic_id()); } #endif Node* slow_ctl = control(); set_control(top()); // No fast path instrinsic return slow_ctl; } } //------------------------------set_result------------------------------- // Helper function for finishing intrinsics. void LibraryCallKit::set_result(RegionNode* region, PhiNode* value) { record_for_igvn(region); set_control(_gvn.transform(region)); set_result( _gvn.transform(value)); assert(value->type()->basic_type() == result()->bottom_type()->basic_type(), "sanity"); } //------------------------------generate_guard--------------------------- // Helper function for generating guarded fast-slow graph structures. // The given 'test', if true, guards a slow path. If the test fails // then a fast path can be taken. (We generally hope it fails.) // In all cases, GraphKit::control() is updated to the fast path. // The returned value represents the control for the slow path. // The return value is never 'top'; it is either a valid control // or NULL if it is obvious that the slow path can never be taken. // Also, if region and the slow control are not NULL, the slow edge // is appended to the region. Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) { if (stopped()) { // Already short circuited. return NULL; } // Build an if node and its projections. // If test is true we take the slow path, which we assume is uncommon. if (_gvn.type(test) == TypeInt::ZERO) { // The slow branch is never taken. No need to build this guard. return NULL; } IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN); Node* if_slow = _gvn.transform(new IfTrueNode(iff)); if (if_slow == top()) { // The slow branch is never taken. No need to build this guard. return NULL; } if (region != NULL) region->add_req(if_slow); Node* if_fast = _gvn.transform(new IfFalseNode(iff)); set_control(if_fast); return if_slow; } inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) { return generate_guard(test, region, PROB_UNLIKELY_MAG(3)); } inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) { return generate_guard(test, region, PROB_FAIR); } inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region, Node* *pos_index) { if (stopped()) return NULL; // already stopped if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint] return NULL; // index is already adequately typed Node* cmp_lt = _gvn.transform(new CmpINode(index, intcon(0))); Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt)); Node* is_neg = generate_guard(bol_lt, region, PROB_MIN); if (is_neg != NULL && pos_index != NULL) { // Emulate effect of Parse::adjust_map_after_if. Node* ccast = new CastIINode(index, TypeInt::POS); ccast->set_req(0, control()); (*pos_index) = _gvn.transform(ccast); } return is_neg; } // Make sure that 'position' is a valid limit index, in [0..length]. // There are two equivalent plans for checking this: // A. (offset + copyLength) unsigned<= arrayLength // B. offset <= (arrayLength - copyLength) // We require that all of the values above, except for the sum and // difference, are already known to be non-negative. // Plan A is robust in the face of overflow, if offset and copyLength // are both hugely positive. // // Plan B is less direct and intuitive, but it does not overflow at // all, since the difference of two non-negatives is always // representable. Whenever Java methods must perform the equivalent // check they generally use Plan B instead of Plan A. // For the moment we use Plan A. inline Node* LibraryCallKit::generate_limit_guard(Node* offset, Node* subseq_length, Node* array_length, RegionNode* region) { if (stopped()) return NULL; // already stopped bool zero_offset = _gvn.type(offset) == TypeInt::ZERO; if (zero_offset && subseq_length->eqv_uncast(array_length)) return NULL; // common case of whole-array copy Node* last = subseq_length; if (!zero_offset) // last += offset last = _gvn.transform(new AddINode(last, offset)); Node* cmp_lt = _gvn.transform(new CmpUNode(array_length, last)); Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt)); Node* is_over = generate_guard(bol_lt, region, PROB_MIN); return is_over; } //--------------------------generate_current_thread-------------------- Node* LibraryCallKit::generate_current_thread(Node* &tls_output) { ciKlass* thread_klass = env()->Thread_klass(); const Type* thread_type = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull); Node* thread = _gvn.transform(new ThreadLocalNode()); Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::threadObj_offset())); Node* threadObj = make_load(NULL, p, thread_type, T_OBJECT, MemNode::unordered); tls_output = thread; return threadObj; } //------------------------------make_string_method_node------------------------ // Helper method for String intrinsic functions. This version is called // with str1 and str2 pointing to String object nodes. // Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1, Node* str2) { Node* no_ctrl = NULL; // Get start addr of string Node* str1_value = load_String_value(no_ctrl, str1); Node* str1_offset = load_String_offset(no_ctrl, str1); Node* str1_start = array_element_address(str1_value, str1_offset, T_CHAR); // Get length of string 1 Node* str1_len = load_String_length(no_ctrl, str1); Node* str2_value = load_String_value(no_ctrl, str2); Node* str2_offset = load_String_offset(no_ctrl, str2); Node* str2_start = array_element_address(str2_value, str2_offset, T_CHAR); Node* str2_len = NULL; Node* result = NULL; switch (opcode) { case Op_StrIndexOf: // Get length of string 2 str2_len = load_String_length(no_ctrl, str2); result = new StrIndexOfNode(control(), memory(TypeAryPtr::CHARS), str1_start, str1_len, str2_start, str2_len); break; case Op_StrComp: // Get length of string 2 str2_len = load_String_length(no_ctrl, str2); result = new StrCompNode(control(), memory(TypeAryPtr::CHARS), str1_start, str1_len, str2_start, str2_len); break; case Op_StrEquals: result = new StrEqualsNode(control(), memory(TypeAryPtr::CHARS), str1_start, str2_start, str1_len); break; default: ShouldNotReachHere(); return NULL; } // All these intrinsics have checks. C->set_has_split_ifs(true); // Has chance for split-if optimization return _gvn.transform(result); } // Helper method for String intrinsic functions. This version is called // with str1 and str2 pointing to char[] nodes, with cnt1 and cnt2 pointing // to Int nodes containing the lenghts of str1 and str2. // Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2) { Node* result = NULL; switch (opcode) { case Op_StrIndexOf: result = new StrIndexOfNode(control(), memory(TypeAryPtr::CHARS), str1_start, cnt1, str2_start, cnt2); break; case Op_StrComp: result = new StrCompNode(control(), memory(TypeAryPtr::CHARS), str1_start, cnt1, str2_start, cnt2); break; case Op_StrEquals: result = new StrEqualsNode(control(), memory(TypeAryPtr::CHARS), str1_start, str2_start, cnt1); break; default: ShouldNotReachHere(); return NULL; } // All these intrinsics have checks. C->set_has_split_ifs(true); // Has chance for split-if optimization return _gvn.transform(result); } //------------------------------inline_string_compareTo------------------------ // public int java.lang.String.compareTo(String anotherString); bool LibraryCallKit::inline_string_compareTo() { Node* receiver = null_check(argument(0)); Node* arg = null_check(argument(1)); if (stopped()) { return true; } set_result(make_string_method_node(Op_StrComp, receiver, arg)); return true; } //------------------------------inline_string_equals------------------------ bool LibraryCallKit::inline_string_equals() { Node* receiver = null_check_receiver(); // NOTE: Do not null check argument for String.equals() because spec // allows to specify NULL as argument. Node* argument = this->argument(1); if (stopped()) { return true; } // paths (plus control) merge RegionNode* region = new RegionNode(5); Node* phi = new PhiNode(region, TypeInt::BOOL); // does source == target string? Node* cmp = _gvn.transform(new CmpPNode(receiver, argument)); Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq)); Node* if_eq = generate_slow_guard(bol, NULL); if (if_eq != NULL) { // receiver == argument phi->init_req(2, intcon(1)); region->init_req(2, if_eq); } // get String klass for instanceOf ciInstanceKlass* klass = env()->String_klass(); if (!stopped()) { Node* inst = gen_instanceof(argument, makecon(TypeKlassPtr::make(klass))); Node* cmp = _gvn.transform(new CmpINode(inst, intcon(1))); Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::ne)); Node* inst_false = generate_guard(bol, NULL, PROB_MIN); //instanceOf == true, fallthrough if (inst_false != NULL) { phi->init_req(3, intcon(0)); region->init_req(3, inst_false); } } if (!stopped()) { const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(klass); // Properly cast the argument to String argument = _gvn.transform(new CheckCastPPNode(control(), argument, string_type)); // This path is taken only when argument's type is String:NotNull. argument = cast_not_null(argument, false); Node* no_ctrl = NULL; // Get start addr of receiver Node* receiver_val = load_String_value(no_ctrl, receiver); Node* receiver_offset = load_String_offset(no_ctrl, receiver); Node* receiver_start = array_element_address(receiver_val, receiver_offset, T_CHAR); // Get length of receiver Node* receiver_cnt = load_String_length(no_ctrl, receiver); // Get start addr of argument Node* argument_val = load_String_value(no_ctrl, argument); Node* argument_offset = load_String_offset(no_ctrl, argument); Node* argument_start = array_element_address(argument_val, argument_offset, T_CHAR); // Get length of argument Node* argument_cnt = load_String_length(no_ctrl, argument); // Check for receiver count != argument count Node* cmp = _gvn.transform(new CmpINode(receiver_cnt, argument_cnt)); Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::ne)); Node* if_ne = generate_slow_guard(bol, NULL); if (if_ne != NULL) { phi->init_req(4, intcon(0)); region->init_req(4, if_ne); } // Check for count == 0 is done by assembler code for StrEquals. if (!stopped()) { Node* equals = make_string_method_node(Op_StrEquals, receiver_start, receiver_cnt, argument_start, argument_cnt); phi->init_req(1, equals); region->init_req(1, control()); } } // post merge set_control(_gvn.transform(region)); record_for_igvn(region); set_result(_gvn.transform(phi)); return true; } //------------------------------inline_array_equals---------------------------- bool LibraryCallKit::inline_array_equals() { Node* arg1 = argument(0); Node* arg2 = argument(1); set_result(_gvn.transform(new AryEqNode(control(), memory(TypeAryPtr::CHARS), arg1, arg2))); return true; } // Java version of String.indexOf(constant string) // class StringDecl { // StringDecl(char[] ca) { // offset = 0; // count = ca.length; // value = ca; // } // int offset; // int count; // char[] value; // } // // static int string_indexOf_J(StringDecl string_object, char[] target_object, // int targetOffset, int cache_i, int md2) { // int cache = cache_i; // int sourceOffset = string_object.offset; // int sourceCount = string_object.count; // int targetCount = target_object.length; // // int targetCountLess1 = targetCount - 1; // int sourceEnd = sourceOffset + sourceCount - targetCountLess1; // // char[] source = string_object.value; // char[] target = target_object; // int lastChar = target[targetCountLess1]; // // outer_loop: // for (int i = sourceOffset; i < sourceEnd; ) { // int src = source[i + targetCountLess1]; // if (src == lastChar) { // // With random strings and a 4-character alphabet, // // reverse matching at this point sets up 0.8% fewer // // frames, but (paradoxically) makes 0.3% more probes. // // Since those probes are nearer the lastChar probe, // // there is may be a net D$ win with reverse matching. // // But, reversing loop inhibits unroll of inner loop // // for unknown reason. So, does running outer loop from // // (sourceOffset - targetCountLess1) to (sourceOffset + sourceCount) // for (int j = 0; j < targetCountLess1; j++) { // if (target[targetOffset + j] != source[i+j]) { // if ((cache & (1 << source[i+j])) == 0) { // if (md2 < j+1) { // i += j+1; // continue outer_loop; // } // } // i += md2; // continue outer_loop; // } // } // return i - sourceOffset; // } // if ((cache & (1 << src)) == 0) { // i += targetCountLess1; // } // using "i += targetCount;" and an "else i++;" causes a jump to jump. // i++; // } // return -1; // } //------------------------------string_indexOf------------------------ Node* LibraryCallKit::string_indexOf(Node* string_object, ciTypeArray* target_array, jint targetOffset_i, jint cache_i, jint md2_i) { Node* no_ctrl = NULL; float likely = PROB_LIKELY(0.9); float unlikely = PROB_UNLIKELY(0.9); const int nargs = 0; // no arguments to push back for uncommon trap in predicate Node* source = load_String_value(no_ctrl, string_object); Node* sourceOffset = load_String_offset(no_ctrl, string_object); Node* sourceCount = load_String_length(no_ctrl, string_object); Node* target = _gvn.transform( makecon(TypeOopPtr::make_from_constant(target_array, true))); jint target_length = target_array->length(); const TypeAry* target_array_type = TypeAry::make(TypeInt::CHAR, TypeInt::make(0, target_length, Type::WidenMin)); const TypeAryPtr* target_type = TypeAryPtr::make(TypePtr::BotPTR, target_array_type, target_array->klass(), true, Type::OffsetBot); // String.value field is known to be @Stable. if (UseImplicitStableValues) { target = cast_array_to_stable(target, target_type); } IdealKit kit(this, false, true); #define __ kit. Node* zero = __ ConI(0); Node* one = __ ConI(1); Node* cache = __ ConI(cache_i); Node* md2 = __ ConI(md2_i); Node* lastChar = __ ConI(target_array->char_at(target_length - 1)); Node* targetCountLess1 = __ ConI(target_length - 1); Node* targetOffset = __ ConI(targetOffset_i); Node* sourceEnd = __ SubI(__ AddI(sourceOffset, sourceCount), targetCountLess1); IdealVariable rtn(kit), i(kit), j(kit); __ declarations_done(); Node* outer_loop = __ make_label(2 /* goto */); Node* return_ = __ make_label(1); __ set(rtn,__ ConI(-1)); __ loop(this, nargs, i, sourceOffset, BoolTest::lt, sourceEnd); { Node* i2 = __ AddI(__ value(i), targetCountLess1); // pin to prohibit loading of "next iteration" value which may SEGV (rare) Node* src = load_array_element(__ ctrl(), source, i2, TypeAryPtr::CHARS); __ if_then(src, BoolTest::eq, lastChar, unlikely); { __ loop(this, nargs, j, zero, BoolTest::lt, targetCountLess1); { Node* tpj = __ AddI(targetOffset, __ value(j)); Node* targ = load_array_element(no_ctrl, target, tpj, target_type); Node* ipj = __ AddI(__ value(i), __ value(j)); Node* src2 = load_array_element(no_ctrl, source, ipj, TypeAryPtr::CHARS); __ if_then(targ, BoolTest::ne, src2); { __ if_then(__ AndI(cache, __ LShiftI(one, src2)), BoolTest::eq, zero); { __ if_then(md2, BoolTest::lt, __ AddI(__ value(j), one)); { __ increment(i, __ AddI(__ value(j), one)); __ goto_(outer_loop); } __ end_if(); __ dead(j); }__ end_if(); __ dead(j); __ increment(i, md2); __ goto_(outer_loop); }__ end_if(); __ increment(j, one); }__ end_loop(); __ dead(j); __ set(rtn, __ SubI(__ value(i), sourceOffset)); __ dead(i); __ goto_(return_); }__ end_if(); __ if_then(__ AndI(cache, __ LShiftI(one, src)), BoolTest::eq, zero, likely); { __ increment(i, targetCountLess1); }__ end_if(); __ increment(i, one); __ bind(outer_loop); }__ end_loop(); __ dead(i); __ bind(return_); // Final sync IdealKit and GraphKit. final_sync(kit); Node* result = __ value(rtn); #undef __ C->set_has_loops(true); return result; } //------------------------------inline_string_indexOf------------------------ bool LibraryCallKit::inline_string_indexOf() { Node* receiver = argument(0); Node* arg = argument(1); Node* result; if (Matcher::has_match_rule(Op_StrIndexOf) && UseSSE42Intrinsics) { // Generate SSE4.2 version of indexOf // We currently only have match rules that use SSE4.2 receiver = null_check(receiver); arg = null_check(arg); if (stopped()) { return true; } // Make the merge point RegionNode* result_rgn = new RegionNode(4); Node* result_phi = new PhiNode(result_rgn, TypeInt::INT); Node* no_ctrl = NULL; // Get start addr of source string Node* source = load_String_value(no_ctrl, receiver); Node* source_offset = load_String_offset(no_ctrl, receiver); Node* source_start = array_element_address(source, source_offset, T_CHAR); // Get length of source string Node* source_cnt = load_String_length(no_ctrl, receiver); // Get start addr of substring Node* substr = load_String_value(no_ctrl, arg); Node* substr_offset = load_String_offset(no_ctrl, arg); Node* substr_start = array_element_address(substr, substr_offset, T_CHAR); // Get length of source string Node* substr_cnt = load_String_length(no_ctrl, arg); // Check for substr count > string count Node* cmp = _gvn.transform(new CmpINode(substr_cnt, source_cnt)); Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::gt)); Node* if_gt = generate_slow_guard(bol, NULL); if (if_gt != NULL) { result_phi->init_req(2, intcon(-1)); result_rgn->init_req(2, if_gt); } if (!stopped()) { // Check for substr count == 0 cmp = _gvn.transform(new CmpINode(substr_cnt, intcon(0))); bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq)); Node* if_zero = generate_slow_guard(bol, NULL); if (if_zero != NULL) { result_phi->init_req(3, intcon(0)); result_rgn->init_req(3, if_zero); } } if (!stopped()) { result = make_string_method_node(Op_StrIndexOf, source_start, source_cnt, substr_start, substr_cnt); result_phi->init_req(1, result); result_rgn->init_req(1, control()); } set_control(_gvn.transform(result_rgn)); record_for_igvn(result_rgn); result = _gvn.transform(result_phi); } else { // Use LibraryCallKit::string_indexOf // don't intrinsify if argument isn't a constant string. if (!arg->is_Con()) { return false; } const TypeOopPtr* str_type = _gvn.type(arg)->isa_oopptr(); if (str_type == NULL) { return false; } ciInstanceKlass* klass = env()->String_klass(); ciObject* str_const = str_type->const_oop(); if (str_const == NULL || str_const->klass() != klass) { return false; } ciInstance* str = str_const->as_instance(); assert(str != NULL, "must be instance"); ciObject* v = str->field_value_by_offset(java_lang_String::value_offset_in_bytes()).as_object(); ciTypeArray* pat = v->as_type_array(); // pattern (argument) character array int o; int c; if (java_lang_String::has_offset_field()) { o = str->field_value_by_offset(java_lang_String::offset_offset_in_bytes()).as_int(); c = str->field_value_by_offset(java_lang_String::count_offset_in_bytes()).as_int(); } else { o = 0; c = pat->length(); } // constant strings have no offset and count == length which // simplifies the resulting code somewhat so lets optimize for that. if (o != 0 || c != pat->length()) { return false; } receiver = null_check(receiver, T_OBJECT); // NOTE: No null check on the argument is needed since it's a constant String oop. if (stopped()) { return true; } // The null string as a pattern always returns 0 (match at beginning of string) if (c == 0) { set_result(intcon(0)); return true; } // Generate default indexOf jchar lastChar = pat->char_at(o + (c - 1)); int cache = 0; int i; for (i = 0; i < c - 1; i++) { assert(i < pat->length(), "out of range"); cache |= (1 << (pat->char_at(o + i) & (sizeof(cache) * BitsPerByte - 1))); } int md2 = c; for (i = 0; i < c - 1; i++) { assert(i < pat->length(), "out of range"); if (pat->char_at(o + i) == lastChar) { md2 = (c - 1) - i; } } result = string_indexOf(receiver, pat, o, cache, md2); } set_result(result); return true; } //--------------------------round_double_node-------------------------------- // Round a double node if necessary. Node* LibraryCallKit::round_double_node(Node* n) { if (Matcher::strict_fp_requires_explicit_rounding && UseSSE <= 1) n = _gvn.transform(new RoundDoubleNode(0, n)); return n; } //------------------------------inline_math----------------------------------- // public static double Math.abs(double) // public static double Math.sqrt(double) // public static double Math.log(double) // public static double Math.log10(double) bool LibraryCallKit::inline_math(vmIntrinsics::ID id) { Node* arg = round_double_node(argument(0)); Node* n; switch (id) { case vmIntrinsics::_dabs: n = new AbsDNode( arg); break; case vmIntrinsics::_dsqrt: n = new SqrtDNode(C, control(), arg); break; case vmIntrinsics::_dlog: n = new LogDNode(C, control(), arg); break; case vmIntrinsics::_dlog10: n = new Log10DNode(C, control(), arg); break; default: fatal_unexpected_iid(id); break; } set_result(_gvn.transform(n)); return true; } //------------------------------inline_trig---------------------------------- // Inline sin/cos/tan instructions, if possible. If rounding is required, do // argument reduction which will turn into a fast/slow diamond. bool LibraryCallKit::inline_trig(vmIntrinsics::ID id) { Node* arg = round_double_node(argument(0)); Node* n = NULL; switch (id) { case vmIntrinsics::_dsin: n = new SinDNode(C, control(), arg); break; case vmIntrinsics::_dcos: n = new CosDNode(C, control(), arg); break; case vmIntrinsics::_dtan: n = new TanDNode(C, control(), arg); break; default: fatal_unexpected_iid(id); break; } n = _gvn.transform(n); // Rounding required? Check for argument reduction! if (Matcher::strict_fp_requires_explicit_rounding) { static const double pi_4 = 0.7853981633974483; static const double neg_pi_4 = -0.7853981633974483; // pi/2 in 80-bit extended precision // static const unsigned char pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0x3f,0x00,0x00,0x00,0x00,0x00,0x00}; // -pi/2 in 80-bit extended precision // static const unsigned char neg_pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0xbf,0x00,0x00,0x00,0x00,0x00,0x00}; // Cutoff value for using this argument reduction technique //static const double pi_2_minus_epsilon = 1.564660403643354; //static const double neg_pi_2_plus_epsilon = -1.564660403643354; // Pseudocode for sin: // if (x <= Math.PI / 4.0) { // if (x >= -Math.PI / 4.0) return fsin(x); // if (x >= -Math.PI / 2.0) return -fcos(x + Math.PI / 2.0); // } else { // if (x <= Math.PI / 2.0) return fcos(x - Math.PI / 2.0); // } // return StrictMath.sin(x); // Pseudocode for cos: // if (x <= Math.PI / 4.0) { // if (x >= -Math.PI / 4.0) return fcos(x); // if (x >= -Math.PI / 2.0) return fsin(x + Math.PI / 2.0); // } else { // if (x <= Math.PI / 2.0) return -fsin(x - Math.PI / 2.0); // } // return StrictMath.cos(x); // Actually, sticking in an 80-bit Intel value into C2 will be tough; it // requires a special machine instruction to load it. Instead we'll try // the 'easy' case. If we really need the extra range +/- PI/2 we'll // probably do the math inside the SIN encoding. // Make the merge point RegionNode* r = new RegionNode(3); Node* phi = new PhiNode(r, Type::DOUBLE); // Flatten arg so we need only 1 test Node *abs = _gvn.transform(new AbsDNode(arg)); // Node for PI/4 constant Node *pi4 = makecon(TypeD::make(pi_4)); // Check PI/4 : abs(arg) Node *cmp = _gvn.transform(new CmpDNode(pi4,abs)); // Check: If PI/4 < abs(arg) then go slow Node *bol = _gvn.transform(new BoolNode( cmp, BoolTest::lt )); // Branch either way IfNode *iff = create_and_xform_if(control(),bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN); set_control(opt_iff(r,iff)); // Set fast path result phi->init_req(2, n); // Slow path - non-blocking leaf call Node* call = NULL; switch (id) { case vmIntrinsics::_dsin: call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dsin), "Sin", NULL, arg, top()); break; case vmIntrinsics::_dcos: call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dcos), "Cos", NULL, arg, top()); break; case vmIntrinsics::_dtan: call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dtan), "Tan", NULL, arg, top()); break; } assert(control()->in(0) == call, ""); Node* slow_result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); r->init_req(1, control()); phi->init_req(1, slow_result); // Post-merge set_control(_gvn.transform(r)); record_for_igvn(r); n = _gvn.transform(phi); C->set_has_split_ifs(true); // Has chance for split-if optimization } set_result(n); return true; } Node* LibraryCallKit::finish_pow_exp(Node* result, Node* x, Node* y, const TypeFunc* call_type, address funcAddr, const char* funcName) { //------------------- //result=(result.isNaN())? funcAddr():result; // Check: If isNaN() by checking result!=result? then either trap // or go to runtime Node* cmpisnan = _gvn.transform(new CmpDNode(result, result)); // Build the boolean node Node* bolisnum = _gvn.transform(new BoolNode(cmpisnan, BoolTest::eq)); if (!too_many_traps(Deoptimization::Reason_intrinsic)) { { BuildCutout unless(this, bolisnum, PROB_STATIC_FREQUENT); // The pow or exp intrinsic returned a NaN, which requires a call // to the runtime. Recompile with the runtime call. uncommon_trap(Deoptimization::Reason_intrinsic, Deoptimization::Action_make_not_entrant); } return result; } else { // If this inlining ever returned NaN in the past, we compile a call // to the runtime to properly handle corner cases IfNode* iff = create_and_xform_if(control(), bolisnum, PROB_STATIC_FREQUENT, COUNT_UNKNOWN); Node* if_slow = _gvn.transform(new IfFalseNode(iff)); Node* if_fast = _gvn.transform(new IfTrueNode(iff)); if (!if_slow->is_top()) { RegionNode* result_region = new RegionNode(3); PhiNode* result_val = new PhiNode(result_region, Type::DOUBLE); result_region->init_req(1, if_fast); result_val->init_req(1, result); set_control(if_slow); const TypePtr* no_memory_effects = NULL; Node* rt = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName, no_memory_effects, x, top(), y, y ? top() : NULL); Node* value = _gvn.transform(new ProjNode(rt, TypeFunc::Parms+0)); #ifdef ASSERT Node* value_top = _gvn.transform(new ProjNode(rt, TypeFunc::Parms+1)); assert(value_top == top(), "second value must be top"); #endif result_region->init_req(2, control()); result_val->init_req(2, value); set_control(_gvn.transform(result_region)); return _gvn.transform(result_val); } else { return result; } } } //------------------------------inline_exp------------------------------------- // Inline exp instructions, if possible. The Intel hardware only misses // really odd corner cases (+/- Infinity). Just uncommon-trap them. bool LibraryCallKit::inline_exp() { Node* arg = round_double_node(argument(0)); Node* n = _gvn.transform(new ExpDNode(C, control(), arg)); n = finish_pow_exp(n, arg, NULL, OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dexp), "EXP"); set_result(n); C->set_has_split_ifs(true); // Has chance for split-if optimization return true; } //------------------------------inline_pow------------------------------------- // Inline power instructions, if possible. bool LibraryCallKit::inline_pow() { // Pseudocode for pow // if (y == 2) { // return x * x; // } else { // if (x <= 0.0) { // long longy = (long)y; // if ((double)longy == y) { // if y is long // if (y + 1 == y) longy = 0; // huge number: even // result = ((1&longy) == 0)?-DPow(abs(x), y):DPow(abs(x), y); // } else { // result = NaN; // } // } else { // result = DPow(x,y); // } // if (result != result)? { // result = uncommon_trap() or runtime_call(); // } // return result; // } Node* x = round_double_node(argument(0)); Node* y = round_double_node(argument(2)); Node* result = NULL; Node* const_two_node = makecon(TypeD::make(2.0)); Node* cmp_node = _gvn.transform(new CmpDNode(y, const_two_node)); Node* bool_node = _gvn.transform(new BoolNode(cmp_node, BoolTest::eq)); IfNode* if_node = create_and_xform_if(control(), bool_node, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN); Node* if_true = _gvn.transform(new IfTrueNode(if_node)); Node* if_false = _gvn.transform(new IfFalseNode(if_node)); RegionNode* region_node = new RegionNode(3); region_node->init_req(1, if_true); Node* phi_node = new PhiNode(region_node, Type::DOUBLE); // special case for x^y where y == 2, we can convert it to x * x phi_node->init_req(1, _gvn.transform(new MulDNode(x, x))); // set control to if_false since we will now process the false branch set_control(if_false); if (!too_many_traps(Deoptimization::Reason_intrinsic)) { // Short form: skip the fancy tests and just check for NaN result. result = _gvn.transform(new PowDNode(C, control(), x, y)); } else { // If this inlining ever returned NaN in the past, include all // checks + call to the runtime. // Set the merge point for If node with condition of (x <= 0.0) // There are four possible paths to region node and phi node RegionNode *r = new RegionNode(4); Node *phi = new PhiNode(r, Type::DOUBLE); // Build the first if node: if (x <= 0.0) // Node for 0 constant Node *zeronode = makecon(TypeD::ZERO); // Check x:0 Node *cmp = _gvn.transform(new CmpDNode(x, zeronode)); // Check: If (x<=0) then go complex path Node *bol1 = _gvn.transform(new BoolNode( cmp, BoolTest::le )); // Branch either way IfNode *if1 = create_and_xform_if(control(),bol1, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN); // Fast path taken; set region slot 3 Node *fast_taken = _gvn.transform(new IfFalseNode(if1)); r->init_req(3,fast_taken); // Capture fast-control // Fast path not-taken, i.e. slow path Node *complex_path = _gvn.transform(new IfTrueNode(if1)); // Set fast path result Node *fast_result = _gvn.transform(new PowDNode(C, control(), x, y)); phi->init_req(3, fast_result); // Complex path // Build the second if node (if y is long) // Node for (long)y Node *longy = _gvn.transform(new ConvD2LNode(y)); // Node for (double)((long) y) Node *doublelongy= _gvn.transform(new ConvL2DNode(longy)); // Check (double)((long) y) : y Node *cmplongy= _gvn.transform(new CmpDNode(doublelongy, y)); // Check if (y isn't long) then go to slow path Node *bol2 = _gvn.transform(new BoolNode( cmplongy, BoolTest::ne )); // Branch either way IfNode *if2 = create_and_xform_if(complex_path,bol2, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN); Node* ylong_path = _gvn.transform(new IfFalseNode(if2)); Node *slow_path = _gvn.transform(new IfTrueNode(if2)); // Calculate DPow(abs(x), y)*(1 & (long)y) // Node for constant 1 Node *conone = longcon(1); // 1& (long)y Node *signnode= _gvn.transform(new AndLNode(conone, longy)); // A huge number is always even. Detect a huge number by checking // if y + 1 == y and set integer to be tested for parity to 0. // Required for corner case: // (long)9.223372036854776E18 = max_jlong // (double)(long)9.223372036854776E18 = 9.223372036854776E18 // max_jlong is odd but 9.223372036854776E18 is even Node* yplus1 = _gvn.transform(new AddDNode(y, makecon(TypeD::make(1)))); Node *cmpyplus1= _gvn.transform(new CmpDNode(yplus1, y)); Node *bolyplus1 = _gvn.transform(new BoolNode( cmpyplus1, BoolTest::eq )); Node* correctedsign = NULL; if (ConditionalMoveLimit != 0) { correctedsign = _gvn.transform(CMoveNode::make(NULL, bolyplus1, signnode, longcon(0), TypeLong::LONG)); } else { IfNode *ifyplus1 = create_and_xform_if(ylong_path,bolyplus1, PROB_FAIR, COUNT_UNKNOWN); RegionNode *r = new RegionNode(3); Node *phi = new PhiNode(r, TypeLong::LONG); r->init_req(1, _gvn.transform(new IfFalseNode(ifyplus1))); r->init_req(2, _gvn.transform(new IfTrueNode(ifyplus1))); phi->init_req(1, signnode); phi->init_req(2, longcon(0)); correctedsign = _gvn.transform(phi); ylong_path = _gvn.transform(r); record_for_igvn(r); } // zero node Node *conzero = longcon(0); // Check (1&(long)y)==0? Node *cmpeq1 = _gvn.transform(new CmpLNode(correctedsign, conzero)); // Check if (1&(long)y)!=0?, if so the result is negative Node *bol3 = _gvn.transform(new BoolNode( cmpeq1, BoolTest::ne )); // abs(x) Node *absx=_gvn.transform(new AbsDNode(x)); // abs(x)^y Node *absxpowy = _gvn.transform(new PowDNode(C, control(), absx, y)); // -abs(x)^y Node *negabsxpowy = _gvn.transform(new NegDNode (absxpowy)); // (1&(long)y)==1?-DPow(abs(x), y):DPow(abs(x), y) Node *signresult = NULL; if (ConditionalMoveLimit != 0) { signresult = _gvn.transform(CMoveNode::make(NULL, bol3, absxpowy, negabsxpowy, Type::DOUBLE)); } else { IfNode *ifyeven = create_and_xform_if(ylong_path,bol3, PROB_FAIR, COUNT_UNKNOWN); RegionNode *r = new RegionNode(3); Node *phi = new PhiNode(r, Type::DOUBLE); r->init_req(1, _gvn.transform(new IfFalseNode(ifyeven))); r->init_req(2, _gvn.transform(new IfTrueNode(ifyeven))); phi->init_req(1, absxpowy); phi->init_req(2, negabsxpowy); signresult = _gvn.transform(phi); ylong_path = _gvn.transform(r); record_for_igvn(r); } // Set complex path fast result r->init_req(2, ylong_path); phi->init_req(2, signresult); static const jlong nan_bits = CONST64(0x7ff8000000000000); Node *slow_result = makecon(TypeD::make(*(double*)&nan_bits)); // return NaN r->init_req(1,slow_path); phi->init_req(1,slow_result); // Post merge set_control(_gvn.transform(r)); record_for_igvn(r); result = _gvn.transform(phi); } result = finish_pow_exp(result, x, y, OptoRuntime::Math_DD_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dpow), "POW"); // control from finish_pow_exp is now input to the region node region_node->set_req(2, control()); // the result from finish_pow_exp is now input to the phi node phi_node->init_req(2, result); set_control(_gvn.transform(region_node)); record_for_igvn(region_node); set_result(_gvn.transform(phi_node)); C->set_has_split_ifs(true); // Has chance for split-if optimization return true; } //------------------------------runtime_math----------------------------- bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) { assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(), "must be (DD)D or (D)D type"); // Inputs Node* a = round_double_node(argument(0)); Node* b = (call_type == OptoRuntime::Math_DD_D_Type()) ? round_double_node(argument(2)) : NULL; const TypePtr* no_memory_effects = NULL; Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName, no_memory_effects, a, top(), b, b ? top() : NULL); Node* value = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+0)); #ifdef ASSERT Node* value_top = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+1)); assert(value_top == top(), "second value must be top"); #endif set_result(value); return true; } //------------------------------inline_math_native----------------------------- bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) { #define FN_PTR(f) CAST_FROM_FN_PTR(address, f) switch (id) { // These intrinsics are not properly supported on all hardware case vmIntrinsics::_dcos: return Matcher::has_match_rule(Op_CosD) ? inline_trig(id) : runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dcos), "COS"); case vmIntrinsics::_dsin: return Matcher::has_match_rule(Op_SinD) ? inline_trig(id) : runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dsin), "SIN"); case vmIntrinsics::_dtan: return Matcher::has_match_rule(Op_TanD) ? inline_trig(id) : runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dtan), "TAN"); case vmIntrinsics::_dlog: return Matcher::has_match_rule(Op_LogD) ? inline_math(id) : runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog), "LOG"); case vmIntrinsics::_dlog10: return Matcher::has_match_rule(Op_Log10D) ? inline_math(id) : runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog10), "LOG10"); // These intrinsics are supported on all hardware case vmIntrinsics::_dsqrt: return Matcher::match_rule_supported(Op_SqrtD) ? inline_math(id) : false; case vmIntrinsics::_dabs: return Matcher::has_match_rule(Op_AbsD) ? inline_math(id) : false; case vmIntrinsics::_dexp: return Matcher::has_match_rule(Op_ExpD) ? inline_exp() : runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dexp), "EXP"); case vmIntrinsics::_dpow: return Matcher::has_match_rule(Op_PowD) ? inline_pow() : runtime_math(OptoRuntime::Math_DD_D_Type(), FN_PTR(SharedRuntime::dpow), "POW"); #undef FN_PTR // These intrinsics are not yet correctly implemented case vmIntrinsics::_datan2: return false; default: fatal_unexpected_iid(id); return false; } } static bool is_simple_name(Node* n) { return (n->req() == 1 // constant || (n->is_Type() && n->as_Type()->type()->singleton()) || n->is_Proj() // parameter or return value || n->is_Phi() // local of some sort ); } //----------------------------inline_notify-----------------------------------* bool LibraryCallKit::inline_notify(vmIntrinsics::ID id) { const TypeFunc* ftype = OptoRuntime::monitor_notify_Type(); address func; if (id == vmIntrinsics::_notify) { func = OptoRuntime::monitor_notify_Java(); } else { func = OptoRuntime::monitor_notifyAll_Java(); } Node* call = make_runtime_call(RC_NO_LEAF, ftype, func, NULL, TypeRawPtr::BOTTOM, argument(0)); make_slow_call_ex(call, env()->Throwable_klass(), false); return true; } //----------------------------inline_min_max----------------------------------- bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) { set_result(generate_min_max(id, argument(0), argument(1))); return true; } void LibraryCallKit::inline_math_mathExact(Node* math, Node *test) { Node* bol = _gvn.transform( new BoolNode(test, BoolTest::overflow) ); IfNode* check = create_and_map_if(control(), bol, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN); Node* fast_path = _gvn.transform( new IfFalseNode(check)); Node* slow_path = _gvn.transform( new IfTrueNode(check) ); { PreserveJVMState pjvms(this); PreserveReexecuteState preexecs(this); jvms()->set_should_reexecute(true); set_control(slow_path); set_i_o(i_o()); uncommon_trap(Deoptimization::Reason_intrinsic, Deoptimization::Action_none); } set_control(fast_path); set_result(math); } template bool LibraryCallKit::inline_math_overflow(Node* arg1, Node* arg2) { typedef typename OverflowOp::MathOp MathOp; MathOp* mathOp = new MathOp(arg1, arg2); Node* operation = _gvn.transform( mathOp ); Node* ofcheck = _gvn.transform( new OverflowOp(arg1, arg2) ); inline_math_mathExact(operation, ofcheck); return true; } bool LibraryCallKit::inline_math_addExactI(bool is_increment) { return inline_math_overflow(argument(0), is_increment ? intcon(1) : argument(1)); } bool LibraryCallKit::inline_math_addExactL(bool is_increment) { return inline_math_overflow(argument(0), is_increment ? longcon(1) : argument(2)); } bool LibraryCallKit::inline_math_subtractExactI(bool is_decrement) { return inline_math_overflow(argument(0), is_decrement ? intcon(1) : argument(1)); } bool LibraryCallKit::inline_math_subtractExactL(bool is_decrement) { return inline_math_overflow(argument(0), is_decrement ? longcon(1) : argument(2)); } bool LibraryCallKit::inline_math_negateExactI() { return inline_math_overflow(intcon(0), argument(0)); } bool LibraryCallKit::inline_math_negateExactL() { return inline_math_overflow(longcon(0), argument(0)); } bool LibraryCallKit::inline_math_multiplyExactI() { return inline_math_overflow(argument(0), argument(1)); } bool LibraryCallKit::inline_math_multiplyExactL() { return inline_math_overflow(argument(0), argument(2)); } Node* LibraryCallKit::generate_min_max(vmIntrinsics::ID id, Node* x0, Node* y0) { // These are the candidate return value: Node* xvalue = x0; Node* yvalue = y0; if (xvalue == yvalue) { return xvalue; } bool want_max = (id == vmIntrinsics::_max); const TypeInt* txvalue = _gvn.type(xvalue)->isa_int(); const TypeInt* tyvalue = _gvn.type(yvalue)->isa_int(); if (txvalue == NULL || tyvalue == NULL) return top(); // This is not really necessary, but it is consistent with a // hypothetical MaxINode::Value method: int widen = MAX2(txvalue->_widen, tyvalue->_widen); // %%% This folding logic should (ideally) be in a different place. // Some should be inside IfNode, and there to be a more reliable // transformation of ?: style patterns into cmoves. We also want // more powerful optimizations around cmove and min/max. // Try to find a dominating comparison of these guys. // It can simplify the index computation for Arrays.copyOf // and similar uses of System.arraycopy. // First, compute the normalized version of CmpI(x, y). int cmp_op = Op_CmpI; Node* xkey = xvalue; Node* ykey = yvalue; Node* ideal_cmpxy = _gvn.transform(new CmpINode(xkey, ykey)); if (ideal_cmpxy->is_Cmp()) { // E.g., if we have CmpI(length - offset, count), // it might idealize to CmpI(length, count + offset) cmp_op = ideal_cmpxy->Opcode(); xkey = ideal_cmpxy->in(1); ykey = ideal_cmpxy->in(2); } // Start by locating any relevant comparisons. Node* start_from = (xkey->outcnt() < ykey->outcnt()) ? xkey : ykey; Node* cmpxy = NULL; Node* cmpyx = NULL; for (DUIterator_Fast kmax, k = start_from->fast_outs(kmax); k < kmax; k++) { Node* cmp = start_from->fast_out(k); if (cmp->outcnt() > 0 && // must have prior uses cmp->in(0) == NULL && // must be context-independent cmp->Opcode() == cmp_op) { // right kind of compare if (cmp->in(1) == xkey && cmp->in(2) == ykey) cmpxy = cmp; if (cmp->in(1) == ykey && cmp->in(2) == xkey) cmpyx = cmp; } } const int NCMPS = 2; Node* cmps[NCMPS] = { cmpxy, cmpyx }; int cmpn; for (cmpn = 0; cmpn < NCMPS; cmpn++) { if (cmps[cmpn] != NULL) break; // find a result } if (cmpn < NCMPS) { // Look for a dominating test that tells us the min and max. int depth = 0; // Limit search depth for speed Node* dom = control(); for (; dom != NULL; dom = IfNode::up_one_dom(dom, true)) { if (++depth >= 100) break; Node* ifproj = dom; if (!ifproj->is_Proj()) continue; Node* iff = ifproj->in(0); if (!iff->is_If()) continue; Node* bol = iff->in(1); if (!bol->is_Bool()) continue; Node* cmp = bol->in(1); if (cmp == NULL) continue; for (cmpn = 0; cmpn < NCMPS; cmpn++) if (cmps[cmpn] == cmp) break; if (cmpn == NCMPS) continue; BoolTest::mask btest = bol->as_Bool()->_test._test; if (ifproj->is_IfFalse()) btest = BoolTest(btest).negate(); if (cmp->in(1) == ykey) btest = BoolTest(btest).commute(); // At this point, we know that 'x btest y' is true. switch (btest) { case BoolTest::eq: // They are proven equal, so we can collapse the min/max. // Either value is the answer. Choose the simpler. if (is_simple_name(yvalue) && !is_simple_name(xvalue)) return yvalue; return xvalue; case BoolTest::lt: // x < y case BoolTest::le: // x <= y return (want_max ? yvalue : xvalue); case BoolTest::gt: // x > y case BoolTest::ge: // x >= y return (want_max ? xvalue : yvalue); } } } // We failed to find a dominating test. // Let's pick a test that might GVN with prior tests. Node* best_bol = NULL; BoolTest::mask best_btest = BoolTest::illegal; for (cmpn = 0; cmpn < NCMPS; cmpn++) { Node* cmp = cmps[cmpn]; if (cmp == NULL) continue; for (DUIterator_Fast jmax, j = cmp->fast_outs(jmax); j < jmax; j++) { Node* bol = cmp->fast_out(j); if (!bol->is_Bool()) continue; BoolTest::mask btest = bol->as_Bool()->_test._test; if (btest == BoolTest::eq || btest == BoolTest::ne) continue; if (cmp->in(1) == ykey) btest = BoolTest(btest).commute(); if (bol->outcnt() > (best_bol == NULL ? 0 : best_bol->outcnt())) { best_bol = bol->as_Bool(); best_btest = btest; } } } Node* answer_if_true = NULL; Node* answer_if_false = NULL; switch (best_btest) { default: if (cmpxy == NULL) cmpxy = ideal_cmpxy; best_bol = _gvn.transform(new BoolNode(cmpxy, BoolTest::lt)); // and fall through: case BoolTest::lt: // x < y case BoolTest::le: // x <= y answer_if_true = (want_max ? yvalue : xvalue); answer_if_false = (want_max ? xvalue : yvalue); break; case BoolTest::gt: // x > y case BoolTest::ge: // x >= y answer_if_true = (want_max ? xvalue : yvalue); answer_if_false = (want_max ? yvalue : xvalue); break; } jint hi, lo; if (want_max) { // We can sharpen the minimum. hi = MAX2(txvalue->_hi, tyvalue->_hi); lo = MAX2(txvalue->_lo, tyvalue->_lo); } else { // We can sharpen the maximum. hi = MIN2(txvalue->_hi, tyvalue->_hi); lo = MIN2(txvalue->_lo, tyvalue->_lo); } // Use a flow-free graph structure, to avoid creating excess control edges // which could hinder other optimizations. // Since Math.min/max is often used with arraycopy, we want // tightly_coupled_allocation to be able to see beyond min/max expressions. Node* cmov = CMoveNode::make(NULL, best_bol, answer_if_false, answer_if_true, TypeInt::make(lo, hi, widen)); return _gvn.transform(cmov); /* // This is not as desirable as it may seem, since Min and Max // nodes do not have a full set of optimizations. // And they would interfere, anyway, with 'if' optimizations // and with CMoveI canonical forms. switch (id) { case vmIntrinsics::_min: result_val = _gvn.transform(new (C, 3) MinINode(x,y)); break; case vmIntrinsics::_max: result_val = _gvn.transform(new (C, 3) MaxINode(x,y)); break; default: ShouldNotReachHere(); } */ } inline int LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset) { const TypePtr* base_type = TypePtr::NULL_PTR; if (base != NULL) base_type = _gvn.type(base)->isa_ptr(); if (base_type == NULL) { // Unknown type. return Type::AnyPtr; } else if (base_type == TypePtr::NULL_PTR) { // Since this is a NULL+long form, we have to switch to a rawptr. base = _gvn.transform(new CastX2PNode(offset)); offset = MakeConX(0); return Type::RawPtr; } else if (base_type->base() == Type::RawPtr) { return Type::RawPtr; } else if (base_type->isa_oopptr()) { // Base is never null => always a heap address. if (base_type->ptr() == TypePtr::NotNull) { return Type::OopPtr; } // Offset is small => always a heap address. const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t(); if (offset_type != NULL && base_type->offset() == 0 && // (should always be?) offset_type->_lo >= 0 && !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) { return Type::OopPtr; } // Otherwise, it might either be oop+off or NULL+addr. return Type::AnyPtr; } else { // No information: return Type::AnyPtr; } } inline Node* LibraryCallKit::make_unsafe_address(Node* base, Node* offset) { int kind = classify_unsafe_addr(base, offset); if (kind == Type::RawPtr) { return basic_plus_adr(top(), base, offset); } else { return basic_plus_adr(base, offset); } } //--------------------------inline_number_methods----------------------------- // inline int Integer.numberOfLeadingZeros(int) // inline int Long.numberOfLeadingZeros(long) // // inline int Integer.numberOfTrailingZeros(int) // inline int Long.numberOfTrailingZeros(long) // // inline int Integer.bitCount(int) // inline int Long.bitCount(long) // // inline char Character.reverseBytes(char) // inline short Short.reverseBytes(short) // inline int Integer.reverseBytes(int) // inline long Long.reverseBytes(long) bool LibraryCallKit::inline_number_methods(vmIntrinsics::ID id) { Node* arg = argument(0); Node* n; switch (id) { case vmIntrinsics::_numberOfLeadingZeros_i: n = new CountLeadingZerosINode( arg); break; case vmIntrinsics::_numberOfLeadingZeros_l: n = new CountLeadingZerosLNode( arg); break; case vmIntrinsics::_numberOfTrailingZeros_i: n = new CountTrailingZerosINode(arg); break; case vmIntrinsics::_numberOfTrailingZeros_l: n = new CountTrailingZerosLNode(arg); break; case vmIntrinsics::_bitCount_i: n = new PopCountINode( arg); break; case vmIntrinsics::_bitCount_l: n = new PopCountLNode( arg); break; case vmIntrinsics::_reverseBytes_c: n = new ReverseBytesUSNode(0, arg); break; case vmIntrinsics::_reverseBytes_s: n = new ReverseBytesSNode( 0, arg); break; case vmIntrinsics::_reverseBytes_i: n = new ReverseBytesINode( 0, arg); break; case vmIntrinsics::_reverseBytes_l: n = new ReverseBytesLNode( 0, arg); break; default: fatal_unexpected_iid(id); break; } set_result(_gvn.transform(n)); return true; } //----------------------------inline_unsafe_access---------------------------- const static BasicType T_ADDRESS_HOLDER = T_LONG; // Helper that guards and inserts a pre-barrier. void LibraryCallKit::insert_pre_barrier(Node* base_oop, Node* offset, Node* pre_val, bool need_mem_bar) { // We could be accessing the referent field of a reference object. If so, when G1 // is enabled, we need to log the value in the referent field in an SATB buffer. // This routine performs some compile time filters and generates suitable // runtime filters that guard the pre-barrier code. // Also add memory barrier for non volatile load from the referent field // to prevent commoning of loads across safepoint. if (!UseG1GC && !need_mem_bar) return; // Some compile time checks. // If offset is a constant, is it java_lang_ref_Reference::_reference_offset? const TypeX* otype = offset->find_intptr_t_type(); if (otype != NULL && otype->is_con() && otype->get_con() != java_lang_ref_Reference::referent_offset) { // Constant offset but not the reference_offset so just return return; } // We only need to generate the runtime guards for instances. const TypeOopPtr* btype = base_oop->bottom_type()->isa_oopptr(); if (btype != NULL) { if (btype->isa_aryptr()) { // Array type so nothing to do return; } const TypeInstPtr* itype = btype->isa_instptr(); if (itype != NULL) { // Can the klass of base_oop be statically determined to be // _not_ a sub-class of Reference and _not_ Object? ciKlass* klass = itype->klass(); if ( klass->is_loaded() && !klass->is_subtype_of(env()->Reference_klass()) && !env()->Object_klass()->is_subtype_of(klass)) { return; } } } // The compile time filters did not reject base_oop/offset so // we need to generate the following runtime filters // // if (offset == java_lang_ref_Reference::_reference_offset) { // if (instance_of(base, java.lang.ref.Reference)) { // pre_barrier(_, pre_val, ...); // } // } float likely = PROB_LIKELY( 0.999); float unlikely = PROB_UNLIKELY(0.999); IdealKit ideal(this); #define __ ideal. Node* referent_off = __ ConX(java_lang_ref_Reference::referent_offset); __ if_then(offset, BoolTest::eq, referent_off, unlikely); { // Update graphKit memory and control from IdealKit. sync_kit(ideal); Node* ref_klass_con = makecon(TypeKlassPtr::make(env()->Reference_klass())); Node* is_instof = gen_instanceof(base_oop, ref_klass_con); // Update IdealKit memory and control from graphKit. __ sync_kit(this); Node* one = __ ConI(1); // is_instof == 0 if base_oop == NULL __ if_then(is_instof, BoolTest::eq, one, unlikely); { // Update graphKit from IdeakKit. sync_kit(ideal); // Use the pre-barrier to record the value in the referent field pre_barrier(false /* do_load */, __ ctrl(), NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */, pre_val /* pre_val */, T_OBJECT); if (need_mem_bar) { // Add memory barrier to prevent commoning reads from this field // across safepoint since GC can change its value. insert_mem_bar(Op_MemBarCPUOrder); } // Update IdealKit from graphKit. __ sync_kit(this); } __ end_if(); // _ref_type != ref_none } __ end_if(); // offset == referent_offset // Final sync IdealKit and GraphKit. final_sync(ideal); #undef __ } // Interpret Unsafe.fieldOffset cookies correctly: extern jlong Unsafe_field_offset_to_byte_offset(jlong field_offset); const TypeOopPtr* LibraryCallKit::sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type, bool is_native_ptr) { // Attempt to infer a sharper value type from the offset and base type. ciKlass* sharpened_klass = NULL; // See if it is an instance field, with an object type. if (alias_type->field() != NULL) { assert(!is_native_ptr, "native pointer op cannot use a java address"); if (alias_type->field()->type()->is_klass()) { sharpened_klass = alias_type->field()->type()->as_klass(); } } // See if it is a narrow oop array. if (adr_type->isa_aryptr()) { if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) { const TypeOopPtr *elem_type = adr_type->is_aryptr()->elem()->isa_oopptr(); if (elem_type != NULL) { sharpened_klass = elem_type->klass(); } } } // The sharpened class might be unloaded if there is no class loader // contraint in place. if (sharpened_klass != NULL && sharpened_klass->is_loaded()) { const TypeOopPtr* tjp = TypeOopPtr::make_from_klass(sharpened_klass); #ifndef PRODUCT if (C->print_intrinsics() || C->print_inlining()) { tty->print(" from base type: "); adr_type->dump(); tty->print(" sharpened value: "); tjp->dump(); } #endif // Sharpen the value type. return tjp; } return NULL; } bool LibraryCallKit::inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile) { if (callee()->is_static()) return false; // caller must have the capability! #ifndef PRODUCT { ResourceMark rm; // Check the signatures. ciSignature* sig = callee()->signature(); #ifdef ASSERT if (!is_store) { // Object getObject(Object base, int/long offset), etc. BasicType rtype = sig->return_type()->basic_type(); if (rtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::getAddress_name()) rtype = T_ADDRESS; // it is really a C void* assert(rtype == type, "getter must return the expected value"); if (!is_native_ptr) { assert(sig->count() == 2, "oop getter has 2 arguments"); assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object"); assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct"); } else { assert(sig->count() == 1, "native getter has 1 argument"); assert(sig->type_at(0)->basic_type() == T_LONG, "getter base is long"); } } else { // void putObject(Object base, int/long offset, Object x), etc. assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value"); if (!is_native_ptr) { assert(sig->count() == 3, "oop putter has 3 arguments"); assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object"); assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct"); } else { assert(sig->count() == 2, "native putter has 2 arguments"); assert(sig->type_at(0)->basic_type() == T_LONG, "putter base is long"); } BasicType vtype = sig->type_at(sig->count()-1)->basic_type(); if (vtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::putAddress_name()) vtype = T_ADDRESS; // it is really a C void* assert(vtype == type, "putter must accept the expected value"); } #endif // ASSERT } #endif //PRODUCT C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe". Node* receiver = argument(0); // type: oop // Build address expression. Node* adr; Node* heap_base_oop = top(); Node* offset = top(); Node* val; if (!is_native_ptr) { // The base is either a Java object or a value produced by Unsafe.staticFieldBase Node* base = argument(1); // type: oop // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset offset = argument(2); // type: long // We currently rely on the cookies produced by Unsafe.xxxFieldOffset // to be plain byte offsets, which are also the same as those accepted // by oopDesc::field_base. assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled"); // 32-bit machines ignore the high half! offset = ConvL2X(offset); adr = make_unsafe_address(base, offset); heap_base_oop = base; val = is_store ? argument(4) : NULL; } else { Node* ptr = argument(1); // type: long ptr = ConvL2X(ptr); // adjust Java long to machine word adr = make_unsafe_address(NULL, ptr); val = is_store ? argument(3) : NULL; } const TypePtr *adr_type = _gvn.type(adr)->isa_ptr(); // First guess at the value type. const Type *value_type = Type::get_const_basic_type(type); // Try to categorize the address. If it comes up as TypeJavaPtr::BOTTOM, // there was not enough information to nail it down. Compile::AliasType* alias_type = C->alias_type(adr_type); assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here"); // We will need memory barriers unless we can determine a unique // alias category for this reference. (Note: If for some reason // the barriers get omitted and the unsafe reference begins to "pollute" // the alias analysis of the rest of the graph, either Compile::can_alias // or Compile::must_alias will throw a diagnostic assert.) bool need_mem_bar = (alias_type->adr_type() == TypeOopPtr::BOTTOM); // If we are reading the value of the referent field of a Reference // object (either by using Unsafe directly or through reflection) // then, if G1 is enabled, we need to record the referent in an // SATB log buffer using the pre-barrier mechanism. // Also we need to add memory barrier to prevent commoning reads // from this field across safepoint since GC can change its value. bool need_read_barrier = !is_native_ptr && !is_store && offset != top() && heap_base_oop != top(); if (!is_store && type == T_OBJECT) { const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type, is_native_ptr); if (tjp != NULL) { value_type = tjp; } } receiver = null_check(receiver); if (stopped()) { return true; } // Heap pointers get a null-check from the interpreter, // as a courtesy. However, this is not guaranteed by Unsafe, // and it is not possible to fully distinguish unintended nulls // from intended ones in this API. if (is_volatile) { // We need to emit leading and trailing CPU membars (see below) in // addition to memory membars when is_volatile. This is a little // too strong, but avoids the need to insert per-alias-type // volatile membars (for stores; compare Parse::do_put_xxx), which // we cannot do effectively here because we probably only have a // rough approximation of type. need_mem_bar = true; // For Stores, place a memory ordering barrier now. if (is_store) { insert_mem_bar(Op_MemBarRelease); } else { if (support_IRIW_for_not_multiple_copy_atomic_cpu) { insert_mem_bar(Op_MemBarVolatile); } } } // Memory barrier to prevent normal and 'unsafe' accesses from // bypassing each other. Happens after null checks, so the // exception paths do not take memory state from the memory barrier, // so there's no problems making a strong assert about mixing users // of safe & unsafe memory. if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder); if (!is_store) { Node* p = NULL; // Try to constant fold a load from a constant field ciField* field = alias_type->field(); if (heap_base_oop != top() && field != NULL && field->is_constant() && field->layout_type() == type) { // final or stable field const Type* con_type = Type::make_constant(alias_type->field(), heap_base_oop); if (con_type != NULL) { p = makecon(con_type); } } if (p == NULL) { MemNode::MemOrd mo = is_volatile ? MemNode::acquire : MemNode::unordered; // To be valid, unsafe loads may depend on other conditions than // the one that guards them: pin the Load node p = make_load(control(), adr, value_type, type, adr_type, mo, LoadNode::Pinned, is_volatile); // load value switch (type) { case T_BOOLEAN: case T_CHAR: case T_BYTE: case T_SHORT: case T_INT: case T_LONG: case T_FLOAT: case T_DOUBLE: break; case T_OBJECT: if (need_read_barrier) { insert_pre_barrier(heap_base_oop, offset, p, !(is_volatile || need_mem_bar)); } break; case T_ADDRESS: // Cast to an int type. p = _gvn.transform(new CastP2XNode(NULL, p)); p = ConvX2UL(p); break; default: fatal(err_msg_res("unexpected type %d: %s", type, type2name(type))); break; } } // The load node has the control of the preceding MemBarCPUOrder. All // following nodes will have the control of the MemBarCPUOrder inserted at // the end of this method. So, pushing the load onto the stack at a later // point is fine. set_result(p); } else { // place effect of store into memory switch (type) { case T_DOUBLE: val = dstore_rounding(val); break; case T_ADDRESS: // Repackage the long as a pointer. val = ConvL2X(val); val = _gvn.transform(new CastX2PNode(val)); break; } MemNode::MemOrd mo = is_volatile ? MemNode::release : MemNode::unordered; if (type != T_OBJECT ) { (void) store_to_memory(control(), adr, val, type, adr_type, mo, is_volatile); } else { // Possibly an oop being stored to Java heap or native memory if (!TypePtr::NULL_PTR->higher_equal(_gvn.type(heap_base_oop))) { // oop to Java heap. (void) store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type, mo); } else { // We can't tell at compile time if we are storing in the Java heap or outside // of it. So we need to emit code to conditionally do the proper type of // store. IdealKit ideal(this); #define __ ideal. // QQQ who knows what probability is here?? __ if_then(heap_base_oop, BoolTest::ne, null(), PROB_UNLIKELY(0.999)); { // Sync IdealKit and graphKit. sync_kit(ideal); Node* st = store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type, mo); // Update IdealKit memory. __ sync_kit(this); } __ else_(); { __ store(__ ctrl(), adr, val, type, alias_type->index(), mo, is_volatile); } __ end_if(); // Final sync IdealKit and GraphKit. final_sync(ideal); #undef __ } } } if (is_volatile) { if (!is_store) { insert_mem_bar(Op_MemBarAcquire); } else { if (!support_IRIW_for_not_multiple_copy_atomic_cpu) { insert_mem_bar(Op_MemBarVolatile); } } } if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder); return true; } //----------------------------inline_unsafe_load_store---------------------------- // This method serves a couple of different customers (depending on LoadStoreKind): // // LS_cmpxchg: // public final native boolean compareAndSwapObject(Object o, long offset, Object expected, Object x); // public final native boolean compareAndSwapInt( Object o, long offset, int expected, int x); // public final native boolean compareAndSwapLong( Object o, long offset, long expected, long x); // // LS_xadd: // public int getAndAddInt( Object o, long offset, int delta) // public long getAndAddLong(Object o, long offset, long delta) // // LS_xchg: // int getAndSet(Object o, long offset, int newValue) // long getAndSet(Object o, long offset, long newValue) // Object getAndSet(Object o, long offset, Object newValue) // bool LibraryCallKit::inline_unsafe_load_store(BasicType type, LoadStoreKind kind) { // This basic scheme here is the same as inline_unsafe_access, but // differs in enough details that combining them would make the code // overly confusing. (This is a true fact! I originally combined // them, but even I was confused by it!) As much code/comments as // possible are retained from inline_unsafe_access though to make // the correspondences clearer. - dl if (callee()->is_static()) return false; // caller must have the capability! #ifndef PRODUCT BasicType rtype; { ResourceMark rm; // Check the signatures. ciSignature* sig = callee()->signature(); rtype = sig->return_type()->basic_type(); if (kind == LS_xadd || kind == LS_xchg) { // Check the signatures. #ifdef ASSERT assert(rtype == type, "get and set must return the expected type"); assert(sig->count() == 3, "get and set has 3 arguments"); assert(sig->type_at(0)->basic_type() == T_OBJECT, "get and set base is object"); assert(sig->type_at(1)->basic_type() == T_LONG, "get and set offset is long"); assert(sig->type_at(2)->basic_type() == type, "get and set must take expected type as new value/delta"); #endif // ASSERT } else if (kind == LS_cmpxchg) { // Check the signatures. #ifdef ASSERT assert(rtype == T_BOOLEAN, "CAS must return boolean"); assert(sig->count() == 4, "CAS has 4 arguments"); assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object"); assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long"); #endif // ASSERT } else { ShouldNotReachHere(); } } #endif //PRODUCT C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe". // Get arguments: Node* receiver = NULL; Node* base = NULL; Node* offset = NULL; Node* oldval = NULL; Node* newval = NULL; if (kind == LS_cmpxchg) { const bool two_slot_type = type2size[type] == 2; receiver = argument(0); // type: oop base = argument(1); // type: oop offset = argument(2); // type: long oldval = argument(4); // type: oop, int, or long newval = argument(two_slot_type ? 6 : 5); // type: oop, int, or long } else if (kind == LS_xadd || kind == LS_xchg){ receiver = argument(0); // type: oop base = argument(1); // type: oop offset = argument(2); // type: long oldval = NULL; newval = argument(4); // type: oop, int, or long } // Null check receiver. receiver = null_check(receiver); if (stopped()) { return true; } // Build field offset expression. // We currently rely on the cookies produced by Unsafe.xxxFieldOffset // to be plain byte offsets, which are also the same as those accepted // by oopDesc::field_base. assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled"); // 32-bit machines ignore the high half of long offsets offset = ConvL2X(offset); Node* adr = make_unsafe_address(base, offset); const TypePtr *adr_type = _gvn.type(adr)->isa_ptr(); // For CAS, unlike inline_unsafe_access, there seems no point in // trying to refine types. Just use the coarse types here. const Type *value_type = Type::get_const_basic_type(type); Compile::AliasType* alias_type = C->alias_type(adr_type); assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here"); if (kind == LS_xchg && type == T_OBJECT) { const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type); if (tjp != NULL) { value_type = tjp; } } int alias_idx = C->get_alias_index(adr_type); // Memory-model-wise, a LoadStore acts like a little synchronized // block, so needs barriers on each side. These don't translate // into actual barriers on most machines, but we still need rest of // compiler to respect ordering. insert_mem_bar(Op_MemBarRelease); insert_mem_bar(Op_MemBarCPUOrder); // 4984716: MemBars must be inserted before this // memory node in order to avoid a false // dependency which will confuse the scheduler. Node *mem = memory(alias_idx); // For now, we handle only those cases that actually exist: ints, // longs, and Object. Adding others should be straightforward. Node* load_store; switch(type) { case T_INT: if (kind == LS_xadd) { load_store = _gvn.transform(new GetAndAddINode(control(), mem, adr, newval, adr_type)); } else if (kind == LS_xchg) { load_store = _gvn.transform(new GetAndSetINode(control(), mem, adr, newval, adr_type)); } else if (kind == LS_cmpxchg) { load_store = _gvn.transform(new CompareAndSwapINode(control(), mem, adr, newval, oldval)); } else { ShouldNotReachHere(); } break; case T_LONG: if (kind == LS_xadd) { load_store = _gvn.transform(new GetAndAddLNode(control(), mem, adr, newval, adr_type)); } else if (kind == LS_xchg) { load_store = _gvn.transform(new GetAndSetLNode(control(), mem, adr, newval, adr_type)); } else if (kind == LS_cmpxchg) { load_store = _gvn.transform(new CompareAndSwapLNode(control(), mem, adr, newval, oldval)); } else { ShouldNotReachHere(); } break; case T_OBJECT: // Transformation of a value which could be NULL pointer (CastPP #NULL) // could be delayed during Parse (for example, in adjust_map_after_if()). // Execute transformation here to avoid barrier generation in such case. if (_gvn.type(newval) == TypePtr::NULL_PTR) newval = _gvn.makecon(TypePtr::NULL_PTR); // Reference stores need a store barrier. if (kind == LS_xchg) { // If pre-barrier must execute before the oop store, old value will require do_load here. if (!can_move_pre_barrier()) { pre_barrier(true /* do_load*/, control(), base, adr, alias_idx, newval, value_type->make_oopptr(), NULL /* pre_val*/, T_OBJECT); } // Else move pre_barrier to use load_store value, see below. } else if (kind == LS_cmpxchg) { // Same as for newval above: if (_gvn.type(oldval) == TypePtr::NULL_PTR) { oldval = _gvn.makecon(TypePtr::NULL_PTR); } // The only known value which might get overwritten is oldval. pre_barrier(false /* do_load */, control(), NULL, NULL, max_juint, NULL, NULL, oldval /* pre_val */, T_OBJECT); } else { ShouldNotReachHere(); } #ifdef _LP64 if (adr->bottom_type()->is_ptr_to_narrowoop()) { Node *newval_enc = _gvn.transform(new EncodePNode(newval, newval->bottom_type()->make_narrowoop())); if (kind == LS_xchg) { load_store = _gvn.transform(new GetAndSetNNode(control(), mem, adr, newval_enc, adr_type, value_type->make_narrowoop())); } else { assert(kind == LS_cmpxchg, "wrong LoadStore operation"); Node *oldval_enc = _gvn.transform(new EncodePNode(oldval, oldval->bottom_type()->make_narrowoop())); load_store = _gvn.transform(new CompareAndSwapNNode(control(), mem, adr, newval_enc, oldval_enc)); } } else #endif { if (kind == LS_xchg) { load_store = _gvn.transform(new GetAndSetPNode(control(), mem, adr, newval, adr_type, value_type->is_oopptr())); } else { assert(kind == LS_cmpxchg, "wrong LoadStore operation"); load_store = _gvn.transform(new CompareAndSwapPNode(control(), mem, adr, newval, oldval)); } } if (kind == LS_cmpxchg) { // Emit the post barrier only when the actual store happened. // This makes sense to check only for compareAndSet that can fail to set the value. // CAS success path is marked more likely since we anticipate this is a performance // critical path, while CAS failure path can use the penalty for going through unlikely // path as backoff. Which is still better than doing a store barrier there. IdealKit ideal(this); ideal.if_then(load_store, BoolTest::ne, ideal.ConI(0), PROB_STATIC_FREQUENT); { sync_kit(ideal); post_barrier(ideal.ctrl(), load_store, base, adr, alias_idx, newval, T_OBJECT, true); ideal.sync_kit(this); } ideal.end_if(); final_sync(ideal); } else { post_barrier(control(), load_store, base, adr, alias_idx, newval, T_OBJECT, true); } break; default: fatal(err_msg_res("unexpected type %d: %s", type, type2name(type))); break; } // SCMemProjNodes represent the memory state of a LoadStore. Their // main role is to prevent LoadStore nodes from being optimized away // when their results aren't used. Node* proj = _gvn.transform(new SCMemProjNode(load_store)); set_memory(proj, alias_idx); if (type == T_OBJECT && kind == LS_xchg) { #ifdef _LP64 if (adr->bottom_type()->is_ptr_to_narrowoop()) { load_store = _gvn.transform(new DecodeNNode(load_store, load_store->get_ptr_type())); } #endif if (can_move_pre_barrier()) { // Don't need to load pre_val. The old value is returned by load_store. // The pre_barrier can execute after the xchg as long as no safepoint // gets inserted between them. pre_barrier(false /* do_load */, control(), NULL, NULL, max_juint, NULL, NULL, load_store /* pre_val */, T_OBJECT); } } // Add the trailing membar surrounding the access insert_mem_bar(Op_MemBarCPUOrder); insert_mem_bar(Op_MemBarAcquire); assert(type2size[load_store->bottom_type()->basic_type()] == type2size[rtype], "result type should match"); set_result(load_store); return true; } //----------------------------inline_unsafe_ordered_store---------------------- // public native void sun.misc.Unsafe.putOrderedObject(Object o, long offset, Object x); // public native void sun.misc.Unsafe.putOrderedInt(Object o, long offset, int x); // public native void sun.misc.Unsafe.putOrderedLong(Object o, long offset, long x); bool LibraryCallKit::inline_unsafe_ordered_store(BasicType type) { // This is another variant of inline_unsafe_access, differing in // that it always issues store-store ("release") barrier and ensures // store-atomicity (which only matters for "long"). if (callee()->is_static()) return false; // caller must have the capability! #ifndef PRODUCT { ResourceMark rm; // Check the signatures. ciSignature* sig = callee()->signature(); #ifdef ASSERT BasicType rtype = sig->return_type()->basic_type(); assert(rtype == T_VOID, "must return void"); assert(sig->count() == 3, "has 3 arguments"); assert(sig->type_at(0)->basic_type() == T_OBJECT, "base is object"); assert(sig->type_at(1)->basic_type() == T_LONG, "offset is long"); #endif // ASSERT } #endif //PRODUCT C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe". // Get arguments: Node* receiver = argument(0); // type: oop Node* base = argument(1); // type: oop Node* offset = argument(2); // type: long Node* val = argument(4); // type: oop, int, or long // Null check receiver. receiver = null_check(receiver); if (stopped()) { return true; } // Build field offset expression. assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled"); // 32-bit machines ignore the high half of long offsets offset = ConvL2X(offset); Node* adr = make_unsafe_address(base, offset); const TypePtr *adr_type = _gvn.type(adr)->isa_ptr(); const Type *value_type = Type::get_const_basic_type(type); Compile::AliasType* alias_type = C->alias_type(adr_type); insert_mem_bar(Op_MemBarRelease); insert_mem_bar(Op_MemBarCPUOrder); // Ensure that the store is atomic for longs: const bool require_atomic_access = true; Node* store; if (type == T_OBJECT) // reference stores need a store barrier. store = store_oop_to_unknown(control(), base, adr, adr_type, val, type, MemNode::release); else { store = store_to_memory(control(), adr, val, type, adr_type, MemNode::release, require_atomic_access); } insert_mem_bar(Op_MemBarCPUOrder); return true; } bool LibraryCallKit::inline_unsafe_fence(vmIntrinsics::ID id) { // Regardless of form, don't allow previous ld/st to move down, // then issue acquire, release, or volatile mem_bar. insert_mem_bar(Op_MemBarCPUOrder); switch(id) { case vmIntrinsics::_loadFence: insert_mem_bar(Op_LoadFence); return true; case vmIntrinsics::_storeFence: insert_mem_bar(Op_StoreFence); return true; case vmIntrinsics::_fullFence: insert_mem_bar(Op_MemBarVolatile); return true; default: fatal_unexpected_iid(id); return false; } } bool LibraryCallKit::klass_needs_init_guard(Node* kls) { if (!kls->is_Con()) { return true; } const TypeKlassPtr* klsptr = kls->bottom_type()->isa_klassptr(); if (klsptr == NULL) { return true; } ciInstanceKlass* ik = klsptr->klass()->as_instance_klass(); // don't need a guard for a klass that is already initialized return !ik->is_initialized(); } //----------------------------inline_unsafe_allocate--------------------------- // public native Object sun.misc.Unsafe.allocateInstance(Class cls); bool LibraryCallKit::inline_unsafe_allocate() { if (callee()->is_static()) return false; // caller must have the capability! null_check_receiver(); // null-check, then ignore Node* cls = null_check(argument(1)); if (stopped()) return true; Node* kls = load_klass_from_mirror(cls, false, NULL, 0); kls = null_check(kls); if (stopped()) return true; // argument was like int.class Node* test = NULL; if (LibraryCallKit::klass_needs_init_guard(kls)) { // Note: The argument might still be an illegal value like // Serializable.class or Object[].class. The runtime will handle it. // But we must make an explicit check for initialization. Node* insp = basic_plus_adr(kls, in_bytes(InstanceKlass::init_state_offset())); // Use T_BOOLEAN for InstanceKlass::_init_state so the compiler // can generate code to load it as unsigned byte. Node* inst = make_load(NULL, insp, TypeInt::UBYTE, T_BOOLEAN, MemNode::unordered); Node* bits = intcon(InstanceKlass::fully_initialized); test = _gvn.transform(new SubINode(inst, bits)); // The 'test' is non-zero if we need to take a slow path. } Node* obj = new_instance(kls, test); set_result(obj); return true; } #ifdef TRACE_HAVE_INTRINSICS /* * oop -> myklass * myklass->trace_id |= USED * return myklass->trace_id & ~0x3 */ bool LibraryCallKit::inline_native_classID() { null_check_receiver(); // null-check, then ignore Node* cls = null_check(argument(1), T_OBJECT); Node* kls = load_klass_from_mirror(cls, false, NULL, 0); kls = null_check(kls, T_OBJECT); ByteSize offset = TRACE_ID_OFFSET; Node* insp = basic_plus_adr(kls, in_bytes(offset)); Node* tvalue = make_load(NULL, insp, TypeLong::LONG, T_LONG, MemNode::unordered); Node* bits = longcon(~0x03l); // ignore bit 0 & 1 Node* andl = _gvn.transform(new AndLNode(tvalue, bits)); Node* clsused = longcon(0x01l); // set the class bit Node* orl = _gvn.transform(new OrLNode(tvalue, clsused)); const TypePtr *adr_type = _gvn.type(insp)->isa_ptr(); store_to_memory(control(), insp, orl, T_LONG, adr_type, MemNode::unordered); set_result(andl); return true; } bool LibraryCallKit::inline_native_threadID() { Node* tls_ptr = NULL; Node* cur_thr = generate_current_thread(tls_ptr); Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset())); Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered); p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::thread_id_offset())); Node* threadid = NULL; size_t thread_id_size = OSThread::thread_id_size(); if (thread_id_size == (size_t) BytesPerLong) { threadid = ConvL2I(make_load(control(), p, TypeLong::LONG, T_LONG, MemNode::unordered)); } else if (thread_id_size == (size_t) BytesPerInt) { threadid = make_load(control(), p, TypeInt::INT, T_INT, MemNode::unordered); } else { ShouldNotReachHere(); } set_result(threadid); return true; } #endif //------------------------inline_native_time_funcs-------------- // inline code for System.currentTimeMillis() and System.nanoTime() // these have the same type and signature bool LibraryCallKit::inline_native_time_funcs(address funcAddr, const char* funcName) { const TypeFunc* tf = OptoRuntime::void_long_Type(); const TypePtr* no_memory_effects = NULL; Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects); Node* value = _gvn.transform(new ProjNode(time, TypeFunc::Parms+0)); #ifdef ASSERT Node* value_top = _gvn.transform(new ProjNode(time, TypeFunc::Parms+1)); assert(value_top == top(), "second value must be top"); #endif set_result(value); return true; } //------------------------inline_native_currentThread------------------ bool LibraryCallKit::inline_native_currentThread() { Node* junk = NULL; set_result(generate_current_thread(junk)); return true; } //------------------------inline_native_isInterrupted------------------ // private native boolean java.lang.Thread.isInterrupted(boolean ClearInterrupted); bool LibraryCallKit::inline_native_isInterrupted() { // Add a fast path to t.isInterrupted(clear_int): // (t == Thread.current() && // (!TLS._osthread._interrupted || WINDOWS_ONLY(false) NOT_WINDOWS(!clear_int))) // ? TLS._osthread._interrupted : /*slow path:*/ t.isInterrupted(clear_int) // So, in the common case that the interrupt bit is false, // we avoid making a call into the VM. Even if the interrupt bit // is true, if the clear_int argument is false, we avoid the VM call. // However, if the receiver is not currentThread, we must call the VM, // because there must be some locking done around the operation. // We only go to the fast case code if we pass two guards. // Paths which do not pass are accumulated in the slow_region. enum { no_int_result_path = 1, // t == Thread.current() && !TLS._osthread._interrupted no_clear_result_path = 2, // t == Thread.current() && TLS._osthread._interrupted && !clear_int slow_result_path = 3, // slow path: t.isInterrupted(clear_int) PATH_LIMIT }; // Ensure that it's not possible to move the load of TLS._osthread._interrupted flag // out of the function. insert_mem_bar(Op_MemBarCPUOrder); RegionNode* result_rgn = new RegionNode(PATH_LIMIT); PhiNode* result_val = new PhiNode(result_rgn, TypeInt::BOOL); RegionNode* slow_region = new RegionNode(1); record_for_igvn(slow_region); // (a) Receiving thread must be the current thread. Node* rec_thr = argument(0); Node* tls_ptr = NULL; Node* cur_thr = generate_current_thread(tls_ptr); Node* cmp_thr = _gvn.transform(new CmpPNode(cur_thr, rec_thr)); Node* bol_thr = _gvn.transform(new BoolNode(cmp_thr, BoolTest::ne)); generate_slow_guard(bol_thr, slow_region); // (b) Interrupt bit on TLS must be false. Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset())); Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered); p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::interrupted_offset())); // Set the control input on the field _interrupted read to prevent it floating up. Node* int_bit = make_load(control(), p, TypeInt::BOOL, T_INT, MemNode::unordered); Node* cmp_bit = _gvn.transform(new CmpINode(int_bit, intcon(0))); Node* bol_bit = _gvn.transform(new BoolNode(cmp_bit, BoolTest::ne)); IfNode* iff_bit = create_and_map_if(control(), bol_bit, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN); // First fast path: if (!TLS._interrupted) return false; Node* false_bit = _gvn.transform(new IfFalseNode(iff_bit)); result_rgn->init_req(no_int_result_path, false_bit); result_val->init_req(no_int_result_path, intcon(0)); // drop through to next case set_control( _gvn.transform(new IfTrueNode(iff_bit))); #ifndef TARGET_OS_FAMILY_windows // (c) Or, if interrupt bit is set and clear_int is false, use 2nd fast path. Node* clr_arg = argument(1); Node* cmp_arg = _gvn.transform(new CmpINode(clr_arg, intcon(0))); Node* bol_arg = _gvn.transform(new BoolNode(cmp_arg, BoolTest::ne)); IfNode* iff_arg = create_and_map_if(control(), bol_arg, PROB_FAIR, COUNT_UNKNOWN); // Second fast path: ... else if (!clear_int) return true; Node* false_arg = _gvn.transform(new IfFalseNode(iff_arg)); result_rgn->init_req(no_clear_result_path, false_arg); result_val->init_req(no_clear_result_path, intcon(1)); // drop through to next case set_control( _gvn.transform(new IfTrueNode(iff_arg))); #else // To return true on Windows you must read the _interrupted field // and check the the event state i.e. take the slow path. #endif // TARGET_OS_FAMILY_windows // (d) Otherwise, go to the slow path. slow_region->add_req(control()); set_control( _gvn.transform(slow_region)); if (stopped()) { // There is no slow path. result_rgn->init_req(slow_result_path, top()); result_val->init_req(slow_result_path, top()); } else { // non-virtual because it is a private non-static CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_isInterrupted); Node* slow_val = set_results_for_java_call(slow_call); // this->control() comes from set_results_for_java_call Node* fast_io = slow_call->in(TypeFunc::I_O); Node* fast_mem = slow_call->in(TypeFunc::Memory); // These two phis are pre-filled with copies of of the fast IO and Memory PhiNode* result_mem = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM); PhiNode* result_io = PhiNode::make(result_rgn, fast_io, Type::ABIO); result_rgn->init_req(slow_result_path, control()); result_io ->init_req(slow_result_path, i_o()); result_mem->init_req(slow_result_path, reset_memory()); result_val->init_req(slow_result_path, slow_val); set_all_memory(_gvn.transform(result_mem)); set_i_o( _gvn.transform(result_io)); } C->set_has_split_ifs(true); // Has chance for split-if optimization set_result(result_rgn, result_val); return true; } //---------------------------load_mirror_from_klass---------------------------- // Given a klass oop, load its java mirror (a java.lang.Class oop). Node* LibraryCallKit::load_mirror_from_klass(Node* klass) { Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset())); return make_load(NULL, p, TypeInstPtr::MIRROR, T_OBJECT, MemNode::unordered); } //-----------------------load_klass_from_mirror_common------------------------- // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop. // Test the klass oop for null (signifying a primitive Class like Integer.TYPE), // and branch to the given path on the region. // If never_see_null, take an uncommon trap on null, so we can optimistically // compile for the non-null case. // If the region is NULL, force never_see_null = true. Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror, bool never_see_null, RegionNode* region, int null_path, int offset) { if (region == NULL) never_see_null = true; Node* p = basic_plus_adr(mirror, offset); const TypeKlassPtr* kls_type = TypeKlassPtr::OBJECT_OR_NULL; Node* kls = _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type)); Node* null_ctl = top(); kls = null_check_oop(kls, &null_ctl, never_see_null); if (region != NULL) { // Set region->in(null_path) if the mirror is a primitive (e.g, int.class). region->init_req(null_path, null_ctl); } else { assert(null_ctl == top(), "no loose ends"); } return kls; } //--------------------(inline_native_Class_query helpers)--------------------- // Use this for JVM_ACC_INTERFACE, JVM_ACC_IS_CLONEABLE, JVM_ACC_HAS_FINALIZER. // Fall through if (mods & mask) == bits, take the guard otherwise. Node* LibraryCallKit::generate_access_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) { // Branch around if the given klass has the given modifier bit set. // Like generate_guard, adds a new path onto the region. Node* modp = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset())); Node* mods = make_load(NULL, modp, TypeInt::INT, T_INT, MemNode::unordered); Node* mask = intcon(modifier_mask); Node* bits = intcon(modifier_bits); Node* mbit = _gvn.transform(new AndINode(mods, mask)); Node* cmp = _gvn.transform(new CmpINode(mbit, bits)); Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::ne)); return generate_fair_guard(bol, region); } Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) { return generate_access_flags_guard(kls, JVM_ACC_INTERFACE, 0, region); } //-------------------------inline_native_Class_query------------------- bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) { const Type* return_type = TypeInt::BOOL; Node* prim_return_value = top(); // what happens if it's a primitive class? bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check); bool expect_prim = false; // most of these guys expect to work on refs enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT }; Node* mirror = argument(0); Node* obj = top(); switch (id) { case vmIntrinsics::_isInstance: // nothing is an instance of a primitive type prim_return_value = intcon(0); obj = argument(1); break; case vmIntrinsics::_getModifiers: prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC); assert(is_power_of_2((int)JVM_ACC_WRITTEN_FLAGS+1), "change next line"); return_type = TypeInt::make(0, JVM_ACC_WRITTEN_FLAGS, Type::WidenMin); break; case vmIntrinsics::_isInterface: prim_return_value = intcon(0); break; case vmIntrinsics::_isArray: prim_return_value = intcon(0); expect_prim = true; // cf. ObjectStreamClass.getClassSignature break; case vmIntrinsics::_isPrimitive: prim_return_value = intcon(1); expect_prim = true; // obviously break; case vmIntrinsics::_getSuperclass: prim_return_value = null(); return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR); break; case vmIntrinsics::_getClassAccessFlags: prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC); return_type = TypeInt::INT; // not bool! 6297094 break; default: fatal_unexpected_iid(id); break; } const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr(); if (mirror_con == NULL) return false; // cannot happen? #ifndef PRODUCT if (C->print_intrinsics() || C->print_inlining()) { ciType* k = mirror_con->java_mirror_type(); if (k) { tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id())); k->print_name(); tty->cr(); } } #endif // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive). RegionNode* region = new RegionNode(PATH_LIMIT); record_for_igvn(region); PhiNode* phi = new PhiNode(region, return_type); // The mirror will never be null of Reflection.getClassAccessFlags, however // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE // if it is. See bug 4774291. // For Reflection.getClassAccessFlags(), the null check occurs in // the wrong place; see inline_unsafe_access(), above, for a similar // situation. mirror = null_check(mirror); // If mirror or obj is dead, only null-path is taken. if (stopped()) return true; if (expect_prim) never_see_null = false; // expect nulls (meaning prims) // Now load the mirror's klass metaobject, and null-check it. // Side-effects region with the control path if the klass is null. Node* kls = load_klass_from_mirror(mirror, never_see_null, region, _prim_path); // If kls is null, we have a primitive mirror. phi->init_req(_prim_path, prim_return_value); if (stopped()) { set_result(region, phi); return true; } bool safe_for_replace = (region->in(_prim_path) == top()); Node* p; // handy temp Node* null_ctl; // Now that we have the non-null klass, we can perform the real query. // For constant classes, the query will constant-fold in LoadNode::Value. Node* query_value = top(); switch (id) { case vmIntrinsics::_isInstance: // nothing is an instance of a primitive type query_value = gen_instanceof(obj, kls, safe_for_replace); break; case vmIntrinsics::_getModifiers: p = basic_plus_adr(kls, in_bytes(Klass::modifier_flags_offset())); query_value = make_load(NULL, p, TypeInt::INT, T_INT, MemNode::unordered); break; case vmIntrinsics::_isInterface: // (To verify this code sequence, check the asserts in JVM_IsInterface.) if (generate_interface_guard(kls, region) != NULL) // A guard was added. If the guard is taken, it was an interface. phi->add_req(intcon(1)); // If we fall through, it's a plain class. query_value = intcon(0); break; case vmIntrinsics::_isArray: // (To verify this code sequence, check the asserts in JVM_IsArrayClass.) if (generate_array_guard(kls, region) != NULL) // A guard was added. If the guard is taken, it was an array. phi->add_req(intcon(1)); // If we fall through, it's a plain class. query_value = intcon(0); break; case vmIntrinsics::_isPrimitive: query_value = intcon(0); // "normal" path produces false break; case vmIntrinsics::_getSuperclass: // The rules here are somewhat unfortunate, but we can still do better // with random logic than with a JNI call. // Interfaces store null or Object as _super, but must report null. // Arrays store an intermediate super as _super, but must report Object. // Other types can report the actual _super. // (To verify this code sequence, check the asserts in JVM_IsInterface.) if (generate_interface_guard(kls, region) != NULL) // A guard was added. If the guard is taken, it was an interface. phi->add_req(null()); if (generate_array_guard(kls, region) != NULL) // A guard was added. If the guard is taken, it was an array. phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror()))); // If we fall through, it's a plain class. Get its _super. p = basic_plus_adr(kls, in_bytes(Klass::super_offset())); kls = _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeKlassPtr::OBJECT_OR_NULL)); null_ctl = top(); kls = null_check_oop(kls, &null_ctl); if (null_ctl != top()) { // If the guard is taken, Object.superClass is null (both klass and mirror). region->add_req(null_ctl); phi ->add_req(null()); } if (!stopped()) { query_value = load_mirror_from_klass(kls); } break; case vmIntrinsics::_getClassAccessFlags: p = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset())); query_value = make_load(NULL, p, TypeInt::INT, T_INT, MemNode::unordered); break; default: fatal_unexpected_iid(id); break; } // Fall-through is the normal case of a query to a real class. phi->init_req(1, query_value); region->init_req(1, control()); C->set_has_split_ifs(true); // Has chance for split-if optimization set_result(region, phi); return true; } //-------------------------inline_Class_cast------------------- bool LibraryCallKit::inline_Class_cast() { Node* mirror = argument(0); // Class Node* obj = argument(1); const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr(); if (mirror_con == NULL) { return false; // dead path (mirror->is_top()). } if (obj == NULL || obj->is_top()) { return false; // dead path } const TypeOopPtr* tp = _gvn.type(obj)->isa_oopptr(); // First, see if Class.cast() can be folded statically. // java_mirror_type() returns non-null for compile-time Class constants. ciType* tm = mirror_con->java_mirror_type(); if (tm != NULL && tm->is_klass() && tp != NULL && tp->klass() != NULL) { if (!tp->klass()->is_loaded()) { // Don't use intrinsic when class is not loaded. return false; } else { int static_res = C->static_subtype_check(tm->as_klass(), tp->klass()); if (static_res == Compile::SSC_always_true) { // isInstance() is true - fold the code. set_result(obj); return true; } else if (static_res == Compile::SSC_always_false) { // Don't use intrinsic, have to throw ClassCastException. // If the reference is null, the non-intrinsic bytecode will // be optimized appropriately. return false; } } } // Bailout intrinsic and do normal inlining if exception path is frequent. if (too_many_traps(Deoptimization::Reason_intrinsic)) { return false; } // Generate dynamic checks. // Class.cast() is java implementation of _checkcast bytecode. // Do checkcast (Parse::do_checkcast()) optimizations here. mirror = null_check(mirror); // If mirror is dead, only null-path is taken. if (stopped()) { return true; } // Not-subtype or the mirror's klass ptr is NULL (in case it is a primitive). enum { _bad_type_path = 1, _prim_path = 2, PATH_LIMIT }; RegionNode* region = new RegionNode(PATH_LIMIT); record_for_igvn(region); // Now load the mirror's klass metaobject, and null-check it. // If kls is null, we have a primitive mirror and // nothing is an instance of a primitive type. Node* kls = load_klass_from_mirror(mirror, false, region, _prim_path); Node* res = top(); if (!stopped()) { Node* bad_type_ctrl = top(); // Do checkcast optimizations. res = gen_checkcast(obj, kls, &bad_type_ctrl); region->init_req(_bad_type_path, bad_type_ctrl); } if (region->in(_prim_path) != top() || region->in(_bad_type_path) != top()) { // Let Interpreter throw ClassCastException. PreserveJVMState pjvms(this); set_control(_gvn.transform(region)); uncommon_trap(Deoptimization::Reason_intrinsic, Deoptimization::Action_maybe_recompile); } if (!stopped()) { set_result(res); } return true; } //--------------------------inline_native_subtype_check------------------------ // This intrinsic takes the JNI calls out of the heart of // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc. bool LibraryCallKit::inline_native_subtype_check() { // Pull both arguments off the stack. Node* args[2]; // two java.lang.Class mirrors: superc, subc args[0] = argument(0); args[1] = argument(1); Node* klasses[2]; // corresponding Klasses: superk, subk klasses[0] = klasses[1] = top(); enum { // A full decision tree on {superc is prim, subc is prim}: _prim_0_path = 1, // {P,N} => false // {P,P} & superc!=subc => false _prim_same_path, // {P,P} & superc==subc => true _prim_1_path, // {N,P} => false _ref_subtype_path, // {N,N} & subtype check wins => true _both_ref_path, // {N,N} & subtype check loses => false PATH_LIMIT }; RegionNode* region = new RegionNode(PATH_LIMIT); Node* phi = new PhiNode(region, TypeInt::BOOL); record_for_igvn(region); const TypePtr* adr_type = TypeRawPtr::BOTTOM; // memory type of loads const TypeKlassPtr* kls_type = TypeKlassPtr::OBJECT_OR_NULL; int class_klass_offset = java_lang_Class::klass_offset_in_bytes(); // First null-check both mirrors and load each mirror's klass metaobject. int which_arg; for (which_arg = 0; which_arg <= 1; which_arg++) { Node* arg = args[which_arg]; arg = null_check(arg); if (stopped()) break; args[which_arg] = arg; Node* p = basic_plus_adr(arg, class_klass_offset); Node* kls = LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, adr_type, kls_type); klasses[which_arg] = _gvn.transform(kls); } // Having loaded both klasses, test each for null. bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check); for (which_arg = 0; which_arg <= 1; which_arg++) { Node* kls = klasses[which_arg]; Node* null_ctl = top(); kls = null_check_oop(kls, &null_ctl, never_see_null); int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path); region->init_req(prim_path, null_ctl); if (stopped()) break; klasses[which_arg] = kls; } if (!stopped()) { // now we have two reference types, in klasses[0..1] Node* subk = klasses[1]; // the argument to isAssignableFrom Node* superk = klasses[0]; // the receiver region->set_req(_both_ref_path, gen_subtype_check(subk, superk)); // now we have a successful reference subtype check region->set_req(_ref_subtype_path, control()); } // If both operands are primitive (both klasses null), then // we must return true when they are identical primitives. // It is convenient to test this after the first null klass check. set_control(region->in(_prim_0_path)); // go back to first null check if (!stopped()) { // Since superc is primitive, make a guard for the superc==subc case. Node* cmp_eq = _gvn.transform(new CmpPNode(args[0], args[1])); Node* bol_eq = _gvn.transform(new BoolNode(cmp_eq, BoolTest::eq)); generate_guard(bol_eq, region, PROB_FAIR); if (region->req() == PATH_LIMIT+1) { // A guard was added. If the added guard is taken, superc==subc. region->swap_edges(PATH_LIMIT, _prim_same_path); region->del_req(PATH_LIMIT); } region->set_req(_prim_0_path, control()); // Not equal after all. } // these are the only paths that produce 'true': phi->set_req(_prim_same_path, intcon(1)); phi->set_req(_ref_subtype_path, intcon(1)); // pull together the cases: assert(region->req() == PATH_LIMIT, "sane region"); for (uint i = 1; i < region->req(); i++) { Node* ctl = region->in(i); if (ctl == NULL || ctl == top()) { region->set_req(i, top()); phi ->set_req(i, top()); } else if (phi->in(i) == NULL) { phi->set_req(i, intcon(0)); // all other paths produce 'false' } } set_control(_gvn.transform(region)); set_result(_gvn.transform(phi)); return true; } //---------------------generate_array_guard_common------------------------ Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region, bool obj_array, bool not_array) { if (stopped()) { return NULL; } // If obj_array/non_array==false/false: // Branch around if the given klass is in fact an array (either obj or prim). // If obj_array/non_array==false/true: // Branch around if the given klass is not an array klass of any kind. // If obj_array/non_array==true/true: // Branch around if the kls is not an oop array (kls is int[], String, etc.) // If obj_array/non_array==true/false: // Branch around if the kls is an oop array (Object[] or subtype) // // Like generate_guard, adds a new path onto the region. jint layout_con = 0; Node* layout_val = get_layout_helper(kls, layout_con); if (layout_val == NULL) { bool query = (obj_array ? Klass::layout_helper_is_objArray(layout_con) : Klass::layout_helper_is_array(layout_con)); if (query == not_array) { return NULL; // never a branch } else { // always a branch Node* always_branch = control(); if (region != NULL) region->add_req(always_branch); set_control(top()); return always_branch; } } // Now test the correct condition. jint nval = (obj_array ? ((jint)Klass::_lh_array_tag_type_value << Klass::_lh_array_tag_shift) : Klass::_lh_neutral_value); Node* cmp = _gvn.transform(new CmpINode(layout_val, intcon(nval))); BoolTest::mask btest = BoolTest::lt; // correct for testing is_[obj]array // invert the test if we are looking for a non-array if (not_array) btest = BoolTest(btest).negate(); Node* bol = _gvn.transform(new BoolNode(cmp, btest)); return generate_fair_guard(bol, region); } //-----------------------inline_native_newArray-------------------------- // private static native Object java.lang.reflect.newArray(Class componentType, int length); bool LibraryCallKit::inline_native_newArray() { Node* mirror = argument(0); Node* count_val = argument(1); mirror = null_check(mirror); // If mirror or obj is dead, only null-path is taken. if (stopped()) return true; enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT }; RegionNode* result_reg = new RegionNode(PATH_LIMIT); PhiNode* result_val = new PhiNode(result_reg, TypeInstPtr::NOTNULL); PhiNode* result_io = new PhiNode(result_reg, Type::ABIO); PhiNode* result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM); bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check); Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null, result_reg, _slow_path); Node* normal_ctl = control(); Node* no_array_ctl = result_reg->in(_slow_path); // Generate code for the slow case. We make a call to newArray(). set_control(no_array_ctl); if (!stopped()) { // Either the input type is void.class, or else the // array klass has not yet been cached. Either the // ensuing call will throw an exception, or else it // will cache the array klass for next time. PreserveJVMState pjvms(this); CallJavaNode* slow_call = generate_method_call_static(vmIntrinsics::_newArray); Node* slow_result = set_results_for_java_call(slow_call); // this->control() comes from set_results_for_java_call result_reg->set_req(_slow_path, control()); result_val->set_req(_slow_path, slow_result); result_io ->set_req(_slow_path, i_o()); result_mem->set_req(_slow_path, reset_memory()); } set_control(normal_ctl); if (!stopped()) { // Normal case: The array type has been cached in the java.lang.Class. // The following call works fine even if the array type is polymorphic. // It could be a dynamic mix of int[], boolean[], Object[], etc. Node* obj = new_array(klass_node, count_val, 0); // no arguments to push result_reg->init_req(_normal_path, control()); result_val->init_req(_normal_path, obj); result_io ->init_req(_normal_path, i_o()); result_mem->init_req(_normal_path, reset_memory()); } // Return the combined state. set_i_o( _gvn.transform(result_io) ); set_all_memory( _gvn.transform(result_mem)); C->set_has_split_ifs(true); // Has chance for split-if optimization set_result(result_reg, result_val); return true; } //----------------------inline_native_getLength-------------------------- // public static native int java.lang.reflect.Array.getLength(Object array); bool LibraryCallKit::inline_native_getLength() { if (too_many_traps(Deoptimization::Reason_intrinsic)) return false; Node* array = null_check(argument(0)); // If array is dead, only null-path is taken. if (stopped()) return true; // Deoptimize if it is a non-array. Node* non_array = generate_non_array_guard(load_object_klass(array), NULL); if (non_array != NULL) { PreserveJVMState pjvms(this); set_control(non_array); uncommon_trap(Deoptimization::Reason_intrinsic, Deoptimization::Action_maybe_recompile); } // If control is dead, only non-array-path is taken. if (stopped()) return true; // The works fine even if the array type is polymorphic. // It could be a dynamic mix of int[], boolean[], Object[], etc. Node* result = load_array_length(array); C->set_has_split_ifs(true); // Has chance for split-if optimization set_result(result); return true; } //------------------------inline_array_copyOf---------------------------- // public static T[] java.util.Arrays.copyOf( U[] original, int newLength, Class newType); // public static T[] java.util.Arrays.copyOfRange(U[] original, int from, int to, Class newType); bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) { if (too_many_traps(Deoptimization::Reason_intrinsic)) return false; // Get the arguments. Node* original = argument(0); Node* start = is_copyOfRange? argument(1): intcon(0); Node* end = is_copyOfRange? argument(2): argument(1); Node* array_type_mirror = is_copyOfRange? argument(3): argument(2); Node* newcopy; // Set the original stack and the reexecute bit for the interpreter to reexecute // the bytecode that invokes Arrays.copyOf if deoptimization happens. { PreserveReexecuteState preexecs(this); jvms()->set_should_reexecute(true); array_type_mirror = null_check(array_type_mirror); original = null_check(original); // Check if a null path was taken unconditionally. if (stopped()) return true; Node* orig_length = load_array_length(original); Node* klass_node = load_klass_from_mirror(array_type_mirror, false, NULL, 0); klass_node = null_check(klass_node); RegionNode* bailout = new RegionNode(1); record_for_igvn(bailout); // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc. // Bail out if that is so. Node* not_objArray = generate_non_objArray_guard(klass_node, bailout); if (not_objArray != NULL) { // Improve the klass node's type from the new optimistic assumption: ciKlass* ak = ciArrayKlass::make(env()->Object_klass()); const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/); Node* cast = new CastPPNode(klass_node, akls); cast->init_req(0, control()); klass_node = _gvn.transform(cast); } // Bail out if either start or end is negative. generate_negative_guard(start, bailout, &start); generate_negative_guard(end, bailout, &end); Node* length = end; if (_gvn.type(start) != TypeInt::ZERO) { length = _gvn.transform(new SubINode(end, start)); } // Bail out if length is negative. // Without this the new_array would throw // NegativeArraySizeException but IllegalArgumentException is what // should be thrown generate_negative_guard(length, bailout, &length); if (bailout->req() > 1) { PreserveJVMState pjvms(this); set_control(_gvn.transform(bailout)); uncommon_trap(Deoptimization::Reason_intrinsic, Deoptimization::Action_maybe_recompile); } if (!stopped()) { // How many elements will we copy from the original? // The answer is MinI(orig_length - start, length). Node* orig_tail = _gvn.transform(new SubINode(orig_length, start)); Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length); // Generate a direct call to the right arraycopy function(s). // We know the copy is disjoint but we might not know if the // oop stores need checking. // Extreme case: Arrays.copyOf((Integer[])x, 10, String[].class). // This will fail a store-check if x contains any non-nulls. // ArrayCopyNode:Ideal may transform the ArrayCopyNode to // loads/stores but it is legal only if we're sure the // Arrays.copyOf would succeed. So we need all input arguments // to the copyOf to be validated, including that the copy to the // new array won't trigger an ArrayStoreException. That subtype // check can be optimized if we know something on the type of // the input array from type speculation. if (_gvn.type(klass_node)->singleton()) { ciKlass* subk = _gvn.type(load_object_klass(original))->is_klassptr()->klass(); ciKlass* superk = _gvn.type(klass_node)->is_klassptr()->klass(); int test = C->static_subtype_check(superk, subk); if (test != Compile::SSC_always_true && test != Compile::SSC_always_false) { const TypeOopPtr* t_original = _gvn.type(original)->is_oopptr(); if (t_original->speculative_type() != NULL) { original = maybe_cast_profiled_obj(original, t_original->speculative_type(), true); } } } bool validated = false; // Reason_class_check rather than Reason_intrinsic because we // want to intrinsify even if this traps. if (!too_many_traps(Deoptimization::Reason_class_check)) { Node* not_subtype_ctrl = gen_subtype_check(load_object_klass(original), klass_node); if (not_subtype_ctrl != top()) { PreserveJVMState pjvms(this); set_control(not_subtype_ctrl); uncommon_trap(Deoptimization::Reason_class_check, Deoptimization::Action_make_not_entrant); assert(stopped(), "Should be stopped"); } validated = true; } if (!stopped()) { newcopy = new_array(klass_node, length, 0); // no arguments to push ArrayCopyNode* ac = ArrayCopyNode::make(this, true, original, start, newcopy, intcon(0), moved, true, load_object_klass(original), klass_node); if (!is_copyOfRange) { ac->set_copyof(validated); } else { ac->set_copyofrange(validated); } Node* n = _gvn.transform(ac); if (n == ac) { ac->connect_outputs(this); } else { assert(validated, "shouldn't transform if all arguments not validated"); set_all_memory(n); } } } } // original reexecute is set back here C->set_has_split_ifs(true); // Has chance for split-if optimization if (!stopped()) { set_result(newcopy); } return true; } //----------------------generate_virtual_guard--------------------------- // Helper for hashCode and clone. Peeks inside the vtable to avoid a call. Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass, RegionNode* slow_region) { ciMethod* method = callee(); int vtable_index = method->vtable_index(); assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index, err_msg_res("bad index %d", vtable_index)); // Get the Method* out of the appropriate vtable entry. int entry_offset = (InstanceKlass::vtable_start_offset() + vtable_index*vtableEntry::size()) * wordSize + vtableEntry::method_offset_in_bytes(); Node* entry_addr = basic_plus_adr(obj_klass, entry_offset); Node* target_call = make_load(NULL, entry_addr, TypePtr::NOTNULL, T_ADDRESS, MemNode::unordered); // Compare the target method with the expected method (e.g., Object.hashCode). const TypePtr* native_call_addr = TypeMetadataPtr::make(method); Node* native_call = makecon(native_call_addr); Node* chk_native = _gvn.transform(new CmpPNode(target_call, native_call)); Node* test_native = _gvn.transform(new BoolNode(chk_native, BoolTest::ne)); return generate_slow_guard(test_native, slow_region); } //-----------------------generate_method_call---------------------------- // Use generate_method_call to make a slow-call to the real // method if the fast path fails. An alternative would be to // use a stub like OptoRuntime::slow_arraycopy_Java. // This only works for expanding the current library call, // not another intrinsic. (E.g., don't use this for making an // arraycopy call inside of the copyOf intrinsic.) CallJavaNode* LibraryCallKit::generate_method_call(vmIntrinsics::ID method_id, bool is_virtual, bool is_static) { // When compiling the intrinsic method itself, do not use this technique. guarantee(callee() != C->method(), "cannot make slow-call to self"); ciMethod* method = callee(); // ensure the JVMS we have will be correct for this call guarantee(method_id == method->intrinsic_id(), "must match"); const TypeFunc* tf = TypeFunc::make(method); CallJavaNode* slow_call; if (is_static) { assert(!is_virtual, ""); slow_call = new CallStaticJavaNode(C, tf, SharedRuntime::get_resolve_static_call_stub(), method, bci()); } else if (is_virtual) { null_check_receiver(); int vtable_index = Method::invalid_vtable_index; if (UseInlineCaches) { // Suppress the vtable call } else { // hashCode and clone are not a miranda methods, // so the vtable index is fixed. // No need to use the linkResolver to get it. vtable_index = method->vtable_index(); assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index, err_msg_res("bad index %d", vtable_index)); } slow_call = new CallDynamicJavaNode(tf, SharedRuntime::get_resolve_virtual_call_stub(), method, vtable_index, bci()); } else { // neither virtual nor static: opt_virtual null_check_receiver(); slow_call = new CallStaticJavaNode(C, tf, SharedRuntime::get_resolve_opt_virtual_call_stub(), method, bci()); slow_call->set_optimized_virtual(true); } set_arguments_for_java_call(slow_call); set_edges_for_java_call(slow_call); return slow_call; } /** * Build special case code for calls to hashCode on an object. This call may * be virtual (invokevirtual) or bound (invokespecial). For each case we generate * slightly different code. */ bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) { assert(is_static == callee()->is_static(), "correct intrinsic selection"); assert(!(is_virtual && is_static), "either virtual, special, or static"); enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT }; RegionNode* result_reg = new RegionNode(PATH_LIMIT); PhiNode* result_val = new PhiNode(result_reg, TypeInt::INT); PhiNode* result_io = new PhiNode(result_reg, Type::ABIO); PhiNode* result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM); Node* obj = NULL; if (!is_static) { // Check for hashing null object obj = null_check_receiver(); if (stopped()) return true; // unconditionally null result_reg->init_req(_null_path, top()); result_val->init_req(_null_path, top()); } else { // Do a null check, and return zero if null. // System.identityHashCode(null) == 0 obj = argument(0); Node* null_ctl = top(); obj = null_check_oop(obj, &null_ctl); result_reg->init_req(_null_path, null_ctl); result_val->init_req(_null_path, _gvn.intcon(0)); } // Unconditionally null? Then return right away. if (stopped()) { set_control( result_reg->in(_null_path)); if (!stopped()) set_result(result_val->in(_null_path)); return true; } // We only go to the fast case code if we pass a number of guards. The // paths which do not pass are accumulated in the slow_region. RegionNode* slow_region = new RegionNode(1); record_for_igvn(slow_region); // If this is a virtual call, we generate a funny guard. We pull out // the vtable entry corresponding to hashCode() from the target object. // If the target method which we are calling happens to be the native // Object hashCode() method, we pass the guard. We do not need this // guard for non-virtual calls -- the caller is known to be the native // Object hashCode(). if (is_virtual) { // After null check, get the object's klass. Node* obj_klass = load_object_klass(obj); generate_virtual_guard(obj_klass, slow_region); } // Get the header out of the object, use LoadMarkNode when available Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes()); // The control of the load must be NULL. Otherwise, the load can move before // the null check after castPP removal. Node* no_ctrl = NULL; Node* header = make_load(no_ctrl, header_addr, TypeX_X, TypeX_X->basic_type(), MemNode::unordered); // Test the header to see if it is unlocked. Node *lock_mask = _gvn.MakeConX(markOopDesc::biased_lock_mask_in_place); Node *lmasked_header = _gvn.transform(new AndXNode(header, lock_mask)); Node *unlocked_val = _gvn.MakeConX(markOopDesc::unlocked_value); Node *chk_unlocked = _gvn.transform(new CmpXNode( lmasked_header, unlocked_val)); Node *test_unlocked = _gvn.transform(new BoolNode( chk_unlocked, BoolTest::ne)); generate_slow_guard(test_unlocked, slow_region); // Get the hash value and check to see that it has been properly assigned. // We depend on hash_mask being at most 32 bits and avoid the use of // hash_mask_in_place because it could be larger than 32 bits in a 64-bit // vm: see markOop.hpp. Node *hash_mask = _gvn.intcon(markOopDesc::hash_mask); Node *hash_shift = _gvn.intcon(markOopDesc::hash_shift); Node *hshifted_header= _gvn.transform(new URShiftXNode(header, hash_shift)); // This hack lets the hash bits live anywhere in the mark object now, as long // as the shift drops the relevant bits into the low 32 bits. Note that // Java spec says that HashCode is an int so there's no point in capturing // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build). hshifted_header = ConvX2I(hshifted_header); Node *hash_val = _gvn.transform(new AndINode(hshifted_header, hash_mask)); Node *no_hash_val = _gvn.intcon(markOopDesc::no_hash); Node *chk_assigned = _gvn.transform(new CmpINode( hash_val, no_hash_val)); Node *test_assigned = _gvn.transform(new BoolNode( chk_assigned, BoolTest::eq)); generate_slow_guard(test_assigned, slow_region); Node* init_mem = reset_memory(); // fill in the rest of the null path: result_io ->init_req(_null_path, i_o()); result_mem->init_req(_null_path, init_mem); result_val->init_req(_fast_path, hash_val); result_reg->init_req(_fast_path, control()); result_io ->init_req(_fast_path, i_o()); result_mem->init_req(_fast_path, init_mem); // Generate code for the slow case. We make a call to hashCode(). set_control(_gvn.transform(slow_region)); if (!stopped()) { // No need for PreserveJVMState, because we're using up the present state. set_all_memory(init_mem); vmIntrinsics::ID hashCode_id = is_static ? vmIntrinsics::_identityHashCode : vmIntrinsics::_hashCode; CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static); Node* slow_result = set_results_for_java_call(slow_call); // this->control() comes from set_results_for_java_call result_reg->init_req(_slow_path, control()); result_val->init_req(_slow_path, slow_result); result_io ->set_req(_slow_path, i_o()); result_mem ->set_req(_slow_path, reset_memory()); } // Return the combined state. set_i_o( _gvn.transform(result_io) ); set_all_memory( _gvn.transform(result_mem)); set_result(result_reg, result_val); return true; } //---------------------------inline_native_getClass---------------------------- // public final native Class java.lang.Object.getClass(); // // Build special case code for calls to getClass on an object. bool LibraryCallKit::inline_native_getClass() { Node* obj = null_check_receiver(); if (stopped()) return true; set_result(load_mirror_from_klass(load_object_klass(obj))); return true; } //-----------------inline_native_Reflection_getCallerClass--------------------- // public static native Class sun.reflect.Reflection.getCallerClass(); // // In the presence of deep enough inlining, getCallerClass() becomes a no-op. // // NOTE: This code must perform the same logic as JVM_GetCallerClass // in that it must skip particular security frames and checks for // caller sensitive methods. bool LibraryCallKit::inline_native_Reflection_getCallerClass() { #ifndef PRODUCT if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass"); } #endif if (!jvms()->has_method()) { #ifndef PRODUCT if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { tty->print_cr(" Bailing out because intrinsic was inlined at top level"); } #endif return false; } // Walk back up the JVM state to find the caller at the required // depth. JVMState* caller_jvms = jvms(); // Cf. JVM_GetCallerClass // NOTE: Start the loop at depth 1 because the current JVM state does // not include the Reflection.getCallerClass() frame. for (int n = 1; caller_jvms != NULL; caller_jvms = caller_jvms->caller(), n++) { ciMethod* m = caller_jvms->method(); switch (n) { case 0: fatal("current JVM state does not include the Reflection.getCallerClass frame"); break; case 1: // Frame 0 and 1 must be caller sensitive (see JVM_GetCallerClass). if (!m->caller_sensitive()) { #ifndef PRODUCT if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { tty->print_cr(" Bailing out: CallerSensitive annotation expected at frame %d", n); } #endif return false; // bail-out; let JVM_GetCallerClass do the work } break; default: if (!m->is_ignored_by_security_stack_walk()) { // We have reached the desired frame; return the holder class. // Acquire method holder as java.lang.Class and push as constant. ciInstanceKlass* caller_klass = caller_jvms->method()->holder(); ciInstance* caller_mirror = caller_klass->java_mirror(); set_result(makecon(TypeInstPtr::make(caller_mirror))); #ifndef PRODUCT if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { tty->print_cr(" Succeeded: caller = %d) %s.%s, JVMS depth = %d", n, caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), jvms()->depth()); tty->print_cr(" JVM state at this point:"); for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) { ciMethod* m = jvms()->of_depth(i)->method(); tty->print_cr(" %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8()); } } #endif return true; } break; } } #ifndef PRODUCT if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { tty->print_cr(" Bailing out because caller depth exceeded inlining depth = %d", jvms()->depth()); tty->print_cr(" JVM state at this point:"); for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) { ciMethod* m = jvms()->of_depth(i)->method(); tty->print_cr(" %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8()); } } #endif return false; // bail-out; let JVM_GetCallerClass do the work } bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) { Node* arg = argument(0); Node* result; switch (id) { case vmIntrinsics::_floatToRawIntBits: result = new MoveF2INode(arg); break; case vmIntrinsics::_intBitsToFloat: result = new MoveI2FNode(arg); break; case vmIntrinsics::_doubleToRawLongBits: result = new MoveD2LNode(arg); break; case vmIntrinsics::_longBitsToDouble: result = new MoveL2DNode(arg); break; case vmIntrinsics::_doubleToLongBits: { // two paths (plus control) merge in a wood RegionNode *r = new RegionNode(3); Node *phi = new PhiNode(r, TypeLong::LONG); Node *cmpisnan = _gvn.transform(new CmpDNode(arg, arg)); // Build the boolean node Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne)); // Branch either way. // NaN case is less traveled, which makes all the difference. IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN); Node *opt_isnan = _gvn.transform(ifisnan); assert( opt_isnan->is_If(), "Expect an IfNode"); IfNode *opt_ifisnan = (IfNode*)opt_isnan; Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan)); set_control(iftrue); static const jlong nan_bits = CONST64(0x7ff8000000000000); Node *slow_result = longcon(nan_bits); // return NaN phi->init_req(1, _gvn.transform( slow_result )); r->init_req(1, iftrue); // Else fall through Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan)); set_control(iffalse); phi->init_req(2, _gvn.transform(new MoveD2LNode(arg))); r->init_req(2, iffalse); // Post merge set_control(_gvn.transform(r)); record_for_igvn(r); C->set_has_split_ifs(true); // Has chance for split-if optimization result = phi; assert(result->bottom_type()->isa_long(), "must be"); break; } case vmIntrinsics::_floatToIntBits: { // two paths (plus control) merge in a wood RegionNode *r = new RegionNode(3); Node *phi = new PhiNode(r, TypeInt::INT); Node *cmpisnan = _gvn.transform(new CmpFNode(arg, arg)); // Build the boolean node Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne)); // Branch either way. // NaN case is less traveled, which makes all the difference. IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN); Node *opt_isnan = _gvn.transform(ifisnan); assert( opt_isnan->is_If(), "Expect an IfNode"); IfNode *opt_ifisnan = (IfNode*)opt_isnan; Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan)); set_control(iftrue); static const jint nan_bits = 0x7fc00000; Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN phi->init_req(1, _gvn.transform( slow_result )); r->init_req(1, iftrue); // Else fall through Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan)); set_control(iffalse); phi->init_req(2, _gvn.transform(new MoveF2INode(arg))); r->init_req(2, iffalse); // Post merge set_control(_gvn.transform(r)); record_for_igvn(r); C->set_has_split_ifs(true); // Has chance for split-if optimization result = phi; assert(result->bottom_type()->isa_int(), "must be"); break; } default: fatal_unexpected_iid(id); break; } set_result(_gvn.transform(result)); return true; } #ifdef _LP64 #define XTOP ,top() /*additional argument*/ #else //_LP64 #define XTOP /*no additional argument*/ #endif //_LP64 //----------------------inline_unsafe_copyMemory------------------------- // public native void sun.misc.Unsafe.copyMemory(Object srcBase, long srcOffset, Object destBase, long destOffset, long bytes); bool LibraryCallKit::inline_unsafe_copyMemory() { if (callee()->is_static()) return false; // caller must have the capability! null_check_receiver(); // null-check receiver if (stopped()) return true; C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe". Node* src_ptr = argument(1); // type: oop Node* src_off = ConvL2X(argument(2)); // type: long Node* dst_ptr = argument(4); // type: oop Node* dst_off = ConvL2X(argument(5)); // type: long Node* size = ConvL2X(argument(7)); // type: long assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled"); Node* src = make_unsafe_address(src_ptr, src_off); Node* dst = make_unsafe_address(dst_ptr, dst_off); // Conservatively insert a memory barrier on all memory slices. // Do not let writes of the copy source or destination float below the copy. insert_mem_bar(Op_MemBarCPUOrder); // Call it. Note that the length argument is not scaled. make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::fast_arraycopy_Type(), StubRoutines::unsafe_arraycopy(), "unsafe_arraycopy", TypeRawPtr::BOTTOM, src, dst, size XTOP); // Do not let reads of the copy destination float above the copy. insert_mem_bar(Op_MemBarCPUOrder); return true; } //------------------------clone_coping----------------------------------- // Helper function for inline_native_clone. void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark) { assert(obj_size != NULL, ""); Node* raw_obj = alloc_obj->in(1); assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), ""); AllocateNode* alloc = NULL; if (ReduceBulkZeroing) { // We will be completely responsible for initializing this object - // mark Initialize node as complete. alloc = AllocateNode::Ideal_allocation(alloc_obj, &_gvn); // The object was just allocated - there should be no any stores! guarantee(alloc != NULL && alloc->maybe_set_complete(&_gvn), ""); // Mark as complete_with_arraycopy so that on AllocateNode // expansion, we know this AllocateNode is initialized by an array // copy and a StoreStore barrier exists after the array copy. alloc->initialization()->set_complete_with_arraycopy(); } // Copy the fastest available way. // TODO: generate fields copies for small objects instead. Node* src = obj; Node* dest = alloc_obj; Node* size = _gvn.transform(obj_size); // Exclude the header but include array length to copy by 8 bytes words. // Can't use base_offset_in_bytes(bt) since basic type is unknown. int base_off = is_array ? arrayOopDesc::length_offset_in_bytes() : instanceOopDesc::base_offset_in_bytes(); // base_off: // 8 - 32-bit VM // 12 - 64-bit VM, compressed klass // 16 - 64-bit VM, normal klass if (base_off % BytesPerLong != 0) { assert(UseCompressedClassPointers, ""); if (is_array) { // Exclude length to copy by 8 bytes words. base_off += sizeof(int); } else { // Include klass to copy by 8 bytes words. base_off = instanceOopDesc::klass_offset_in_bytes(); } assert(base_off % BytesPerLong == 0, "expect 8 bytes alignment"); } src = basic_plus_adr(src, base_off); dest = basic_plus_adr(dest, base_off); // Compute the length also, if needed: Node* countx = size; countx = _gvn.transform(new SubXNode(countx, MakeConX(base_off))); countx = _gvn.transform(new URShiftXNode(countx, intcon(LogBytesPerLong) )); const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM; ArrayCopyNode* ac = ArrayCopyNode::make(this, false, src, NULL, dest, NULL, countx, false); ac->set_clonebasic(); Node* n = _gvn.transform(ac); if (n == ac) { set_predefined_output_for_runtime_call(ac, ac->in(TypeFunc::Memory), raw_adr_type); } else { set_all_memory(n); } // If necessary, emit some card marks afterwards. (Non-arrays only.) if (card_mark) { assert(!is_array, ""); // Put in store barrier for any and all oops we are sticking // into this object. (We could avoid this if we could prove // that the object type contains no oop fields at all.) Node* no_particular_value = NULL; Node* no_particular_field = NULL; int raw_adr_idx = Compile::AliasIdxRaw; post_barrier(control(), memory(raw_adr_type), alloc_obj, no_particular_field, raw_adr_idx, no_particular_value, T_OBJECT, false); } // Do not let reads from the cloned object float above the arraycopy. if (alloc != NULL) { // Do not let stores that initialize this object be reordered with // a subsequent store that would make this object accessible by // other threads. // Record what AllocateNode this StoreStore protects so that // escape analysis can go from the MemBarStoreStoreNode to the // AllocateNode and eliminate the MemBarStoreStoreNode if possible // based on the escape status of the AllocateNode. insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress)); } else { insert_mem_bar(Op_MemBarCPUOrder); } } //------------------------inline_native_clone---------------------------- // protected native Object java.lang.Object.clone(); // // Here are the simple edge cases: // null receiver => normal trap // virtual and clone was overridden => slow path to out-of-line clone // not cloneable or finalizer => slow path to out-of-line Object.clone // // The general case has two steps, allocation and copying. // Allocation has two cases, and uses GraphKit::new_instance or new_array. // // Copying also has two cases, oop arrays and everything else. // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy). // Everything else uses the tight inline loop supplied by CopyArrayNode. // // These steps fold up nicely if and when the cloned object's klass // can be sharply typed as an object array, a type array, or an instance. // bool LibraryCallKit::inline_native_clone(bool is_virtual) { PhiNode* result_val; // Set the reexecute bit for the interpreter to reexecute // the bytecode that invokes Object.clone if deoptimization happens. { PreserveReexecuteState preexecs(this); jvms()->set_should_reexecute(true); Node* obj = null_check_receiver(); if (stopped()) return true; const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr(); // If we are going to clone an instance, we need its exact type to // know the number and types of fields to convert the clone to // loads/stores. Maybe a speculative type can help us. if (!obj_type->klass_is_exact() && obj_type->speculative_type() != NULL && obj_type->speculative_type()->is_instance_klass()) { ciInstanceKlass* spec_ik = obj_type->speculative_type()->as_instance_klass(); if (spec_ik->nof_nonstatic_fields() <= ArrayCopyLoadStoreMaxElem && !spec_ik->has_injected_fields()) { ciKlass* k = obj_type->klass(); if (!k->is_instance_klass() || k->as_instance_klass()->is_interface() || k->as_instance_klass()->has_subklass()) { obj = maybe_cast_profiled_obj(obj, obj_type->speculative_type(), false); } } } Node* obj_klass = load_object_klass(obj); const TypeKlassPtr* tklass = _gvn.type(obj_klass)->isa_klassptr(); const TypeOopPtr* toop = ((tklass != NULL) ? tklass->as_instance_type() : TypeInstPtr::NOTNULL); // Conservatively insert a memory barrier on all memory slices. // Do not let writes into the original float below the clone. insert_mem_bar(Op_MemBarCPUOrder); // paths into result_reg: enum { _slow_path = 1, // out-of-line call to clone method (virtual or not) _objArray_path, // plain array allocation, plus arrayof_oop_arraycopy _array_path, // plain array allocation, plus arrayof_long_arraycopy _instance_path, // plain instance allocation, plus arrayof_long_arraycopy PATH_LIMIT }; RegionNode* result_reg = new RegionNode(PATH_LIMIT); result_val = new PhiNode(result_reg, TypeInstPtr::NOTNULL); PhiNode* result_i_o = new PhiNode(result_reg, Type::ABIO); PhiNode* result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM); record_for_igvn(result_reg); const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM; int raw_adr_idx = Compile::AliasIdxRaw; Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)NULL); if (array_ctl != NULL) { // It's an array. PreserveJVMState pjvms(this); set_control(array_ctl); Node* obj_length = load_array_length(obj); Node* obj_size = NULL; Node* alloc_obj = new_array(obj_klass, obj_length, 0, &obj_size); // no arguments to push if (!use_ReduceInitialCardMarks()) { // If it is an oop array, it requires very special treatment, // because card marking is required on each card of the array. Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)NULL); if (is_obja != NULL) { PreserveJVMState pjvms2(this); set_control(is_obja); // Generate a direct call to the right arraycopy function(s). Node* alloc = tightly_coupled_allocation(alloc_obj, NULL); ArrayCopyNode* ac = ArrayCopyNode::make(this, true, obj, intcon(0), alloc_obj, intcon(0), obj_length, alloc != NULL); ac->set_cloneoop(); Node* n = _gvn.transform(ac); assert(n == ac, "cannot disappear"); ac->connect_outputs(this); result_reg->init_req(_objArray_path, control()); result_val->init_req(_objArray_path, alloc_obj); result_i_o ->set_req(_objArray_path, i_o()); result_mem ->set_req(_objArray_path, reset_memory()); } } // Otherwise, there are no card marks to worry about. // (We can dispense with card marks if we know the allocation // comes out of eden (TLAB)... In fact, ReduceInitialCardMarks // causes the non-eden paths to take compensating steps to // simulate a fresh allocation, so that no further // card marks are required in compiled code to initialize // the object.) if (!stopped()) { copy_to_clone(obj, alloc_obj, obj_size, true, false); // Present the results of the copy. result_reg->init_req(_array_path, control()); result_val->init_req(_array_path, alloc_obj); result_i_o ->set_req(_array_path, i_o()); result_mem ->set_req(_array_path, reset_memory()); } } // We only go to the instance fast case code if we pass a number of guards. // The paths which do not pass are accumulated in the slow_region. RegionNode* slow_region = new RegionNode(1); record_for_igvn(slow_region); if (!stopped()) { // It's an instance (we did array above). Make the slow-path tests. // If this is a virtual call, we generate a funny guard. We grab // the vtable entry corresponding to clone() from the target object. // If the target method which we are calling happens to be the // Object clone() method, we pass the guard. We do not need this // guard for non-virtual calls; the caller is known to be the native // Object clone(). if (is_virtual) { generate_virtual_guard(obj_klass, slow_region); } // The object must be cloneable and must not have a finalizer. // Both of these conditions may be checked in a single test. // We could optimize the cloneable test further, but we don't care. generate_access_flags_guard(obj_klass, // Test both conditions: JVM_ACC_IS_CLONEABLE | JVM_ACC_HAS_FINALIZER, // Must be cloneable but not finalizer: JVM_ACC_IS_CLONEABLE, slow_region); } if (!stopped()) { // It's an instance, and it passed the slow-path tests. PreserveJVMState pjvms(this); Node* obj_size = NULL; // Need to deoptimize on exception from allocation since Object.clone intrinsic // is reexecuted if deoptimization occurs and there could be problems when merging // exception state between multiple Object.clone versions (reexecute=true vs reexecute=false). Node* alloc_obj = new_instance(obj_klass, NULL, &obj_size, /*deoptimize_on_exception=*/true); copy_to_clone(obj, alloc_obj, obj_size, false, !use_ReduceInitialCardMarks()); // Present the results of the slow call. result_reg->init_req(_instance_path, control()); result_val->init_req(_instance_path, alloc_obj); result_i_o ->set_req(_instance_path, i_o()); result_mem ->set_req(_instance_path, reset_memory()); } // Generate code for the slow case. We make a call to clone(). set_control(_gvn.transform(slow_region)); if (!stopped()) { PreserveJVMState pjvms(this); CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual); Node* slow_result = set_results_for_java_call(slow_call); // this->control() comes from set_results_for_java_call result_reg->init_req(_slow_path, control()); result_val->init_req(_slow_path, slow_result); result_i_o ->set_req(_slow_path, i_o()); result_mem ->set_req(_slow_path, reset_memory()); } // Return the combined state. set_control( _gvn.transform(result_reg)); set_i_o( _gvn.transform(result_i_o)); set_all_memory( _gvn.transform(result_mem)); } // original reexecute is set back here set_result(_gvn.transform(result_val)); return true; } // If we have a tighly coupled allocation, the arraycopy may take care // of the array initialization. If one of the guards we insert between // the allocation and the arraycopy causes a deoptimization, an // unitialized array will escape the compiled method. To prevent that // we set the JVM state for uncommon traps between the allocation and // the arraycopy to the state before the allocation so, in case of // deoptimization, we'll reexecute the allocation and the // initialization. JVMState* LibraryCallKit::arraycopy_restore_alloc_state(AllocateArrayNode* alloc, int& saved_reexecute_sp) { if (alloc != NULL) { ciMethod* trap_method = alloc->jvms()->method(); int trap_bci = alloc->jvms()->bci(); if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) & !C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_null_check)) { // Make sure there's no store between the allocation and the // arraycopy otherwise visible side effects could be rexecuted // in case of deoptimization and cause incorrect execution. bool no_interfering_store = true; Node* mem = alloc->in(TypeFunc::Memory); if (mem->is_MergeMem()) { for (MergeMemStream mms(merged_memory(), mem->as_MergeMem()); mms.next_non_empty2(); ) { Node* n = mms.memory(); if (n != mms.memory2() && !(n->is_Proj() && n->in(0) == alloc->initialization())) { assert(n->is_Store(), "what else?"); no_interfering_store = false; break; } } } else { for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) { Node* n = mms.memory(); if (n != mem && !(n->is_Proj() && n->in(0) == alloc->initialization())) { assert(n->is_Store(), "what else?"); no_interfering_store = false; break; } } } if (no_interfering_store) { JVMState* old_jvms = alloc->jvms()->clone_shallow(C); uint size = alloc->req(); SafePointNode* sfpt = new SafePointNode(size, old_jvms); old_jvms->set_map(sfpt); for (uint i = 0; i < size; i++) { sfpt->init_req(i, alloc->in(i)); } // re-push array length for deoptimization sfpt->ins_req(old_jvms->stkoff() + old_jvms->sp(), alloc->in(AllocateNode::ALength)); old_jvms->set_sp(old_jvms->sp()+1); old_jvms->set_monoff(old_jvms->monoff()+1); old_jvms->set_scloff(old_jvms->scloff()+1); old_jvms->set_endoff(old_jvms->endoff()+1); old_jvms->set_should_reexecute(true); sfpt->set_i_o(map()->i_o()); sfpt->set_memory(map()->memory()); sfpt->set_control(map()->control()); JVMState* saved_jvms = jvms(); saved_reexecute_sp = _reexecute_sp; set_jvms(sfpt->jvms()); _reexecute_sp = jvms()->sp(); return saved_jvms; } } } return NULL; } // In case of a deoptimization, we restart execution at the // allocation, allocating a new array. We would leave an uninitialized // array in the heap that GCs wouldn't expect. Move the allocation // after the traps so we don't allocate the array if we // deoptimize. This is possible because tightly_coupled_allocation() // guarantees there's no observer of the allocated array at this point // and the control flow is simple enough. void LibraryCallKit::arraycopy_move_allocation_here(AllocateArrayNode* alloc, Node* dest, JVMState* saved_jvms, int saved_reexecute_sp) { if (saved_jvms != NULL && !stopped()) { assert(alloc != NULL, "only with a tightly coupled allocation"); // restore JVM state to the state at the arraycopy saved_jvms->map()->set_control(map()->control()); assert(saved_jvms->map()->memory() == map()->memory(), "memory state changed?"); assert(saved_jvms->map()->i_o() == map()->i_o(), "IO state changed?"); // If we've improved the types of some nodes (null check) while // emitting the guards, propagate them to the current state map()->replaced_nodes().apply(saved_jvms->map()); set_jvms(saved_jvms); _reexecute_sp = saved_reexecute_sp; // Remove the allocation from above the guards CallProjections callprojs; alloc->extract_projections(&callprojs, true); InitializeNode* init = alloc->initialization(); Node* alloc_mem = alloc->in(TypeFunc::Memory); C->gvn_replace_by(callprojs.fallthrough_ioproj, alloc->in(TypeFunc::I_O)); C->gvn_replace_by(init->proj_out(TypeFunc::Memory), alloc_mem); C->gvn_replace_by(init->proj_out(TypeFunc::Control), alloc->in(0)); // move the allocation here (after the guards) _gvn.hash_delete(alloc); alloc->set_req(TypeFunc::Control, control()); alloc->set_req(TypeFunc::I_O, i_o()); Node *mem = reset_memory(); set_all_memory(mem); alloc->set_req(TypeFunc::Memory, mem); set_control(init->proj_out(TypeFunc::Control)); set_i_o(callprojs.fallthrough_ioproj); // Update memory as done in GraphKit::set_output_for_allocation() const TypeInt* length_type = _gvn.find_int_type(alloc->in(AllocateNode::ALength)); const TypeOopPtr* ary_type = _gvn.type(alloc->in(AllocateNode::KlassNode))->is_klassptr()->as_instance_type(); if (ary_type->isa_aryptr() && length_type != NULL) { ary_type = ary_type->is_aryptr()->cast_to_size(length_type); } const TypePtr* telemref = ary_type->add_offset(Type::OffsetBot); int elemidx = C->get_alias_index(telemref); set_memory(init->proj_out(TypeFunc::Memory), Compile::AliasIdxRaw); set_memory(init->proj_out(TypeFunc::Memory), elemidx); Node* allocx = _gvn.transform(alloc); assert(allocx == alloc, "where has the allocation gone?"); assert(dest->is_CheckCastPP(), "not an allocation result?"); _gvn.hash_delete(dest); dest->set_req(0, control()); Node* destx = _gvn.transform(dest); assert(destx == dest, "where has the allocation result gone?"); } } //------------------------------inline_arraycopy----------------------- // public static native void java.lang.System.arraycopy(Object src, int srcPos, // Object dest, int destPos, // int length); bool LibraryCallKit::inline_arraycopy() { // Get the arguments. Node* src = argument(0); // type: oop Node* src_offset = argument(1); // type: int Node* dest = argument(2); // type: oop Node* dest_offset = argument(3); // type: int Node* length = argument(4); // type: int // Check for allocation before we add nodes that would confuse // tightly_coupled_allocation() AllocateArrayNode* alloc = tightly_coupled_allocation(dest, NULL); int saved_reexecute_sp = -1; JVMState* saved_jvms = arraycopy_restore_alloc_state(alloc, saved_reexecute_sp); // See arraycopy_restore_alloc_state() comment // if alloc == NULL we don't have to worry about a tightly coupled allocation so we can emit all needed guards // if saved_jvms != NULL (then alloc != NULL) then we can handle guards and a tightly coupled allocation // if saved_jvms == NULL and alloc != NULL, we can’t emit any guards bool can_emit_guards = (alloc == NULL || saved_jvms != NULL); // The following tests must be performed // (1) src and dest are arrays. // (2) src and dest arrays must have elements of the same BasicType // (3) src and dest must not be null. // (4) src_offset must not be negative. // (5) dest_offset must not be negative. // (6) length must not be negative. // (7) src_offset + length must not exceed length of src. // (8) dest_offset + length must not exceed length of dest. // (9) each element of an oop array must be assignable // (3) src and dest must not be null. // always do this here because we need the JVM state for uncommon traps Node* null_ctl = top(); src = saved_jvms != NULL ? null_check_oop(src, &null_ctl, true, true) : null_check(src, T_ARRAY); assert(null_ctl->is_top(), "no null control here"); dest = null_check(dest, T_ARRAY); if (!can_emit_guards) { // if saved_jvms == NULL and alloc != NULL, we don't emit any // guards but the arraycopy node could still take advantage of a // tightly allocated allocation. tightly_coupled_allocation() is // called again to make sure it takes the null check above into // account: the null check is mandatory and if it caused an // uncommon trap to be emitted then the allocation can't be // considered tightly coupled in this context. alloc = tightly_coupled_allocation(dest, NULL); } bool validated = false; const Type* src_type = _gvn.type(src); const Type* dest_type = _gvn.type(dest); const TypeAryPtr* top_src = src_type->isa_aryptr(); const TypeAryPtr* top_dest = dest_type->isa_aryptr(); // Do we have the type of src? bool has_src = (top_src != NULL && top_src->klass() != NULL); // Do we have the type of dest? bool has_dest = (top_dest != NULL && top_dest->klass() != NULL); // Is the type for src from speculation? bool src_spec = false; // Is the type for dest from speculation? bool dest_spec = false; if ((!has_src || !has_dest) && can_emit_guards) { // We don't have sufficient type information, let's see if // speculative types can help. We need to have types for both src // and dest so that it pays off. // Do we already have or could we have type information for src bool could_have_src = has_src; // Do we already have or could we have type information for dest bool could_have_dest = has_dest; ciKlass* src_k = NULL; if (!has_src) { src_k = src_type->speculative_type_not_null(); if (src_k != NULL && src_k->is_array_klass()) { could_have_src = true; } } ciKlass* dest_k = NULL; if (!has_dest) { dest_k = dest_type->speculative_type_not_null(); if (dest_k != NULL && dest_k->is_array_klass()) { could_have_dest = true; } } if (could_have_src && could_have_dest) { // This is going to pay off so emit the required guards if (!has_src) { src = maybe_cast_profiled_obj(src, src_k, true); src_type = _gvn.type(src); top_src = src_type->isa_aryptr(); has_src = (top_src != NULL && top_src->klass() != NULL); src_spec = true; } if (!has_dest) { dest = maybe_cast_profiled_obj(dest, dest_k, true); dest_type = _gvn.type(dest); top_dest = dest_type->isa_aryptr(); has_dest = (top_dest != NULL && top_dest->klass() != NULL); dest_spec = true; } } } if (has_src && has_dest && can_emit_guards) { BasicType src_elem = top_src->klass()->as_array_klass()->element_type()->basic_type(); BasicType dest_elem = top_dest->klass()->as_array_klass()->element_type()->basic_type(); if (src_elem == T_ARRAY) src_elem = T_OBJECT; if (dest_elem == T_ARRAY) dest_elem = T_OBJECT; if (src_elem == dest_elem && src_elem == T_OBJECT) { // If both arrays are object arrays then having the exact types // for both will remove the need for a subtype check at runtime // before the call and may make it possible to pick a faster copy // routine (without a subtype check on every element) // Do we have the exact type of src? bool could_have_src = src_spec; // Do we have the exact type of dest? bool could_have_dest = dest_spec; ciKlass* src_k = top_src->klass(); ciKlass* dest_k = top_dest->klass(); if (!src_spec) { src_k = src_type->speculative_type_not_null(); if (src_k != NULL && src_k->is_array_klass()) { could_have_src = true; } } if (!dest_spec) { dest_k = dest_type->speculative_type_not_null(); if (dest_k != NULL && dest_k->is_array_klass()) { could_have_dest = true; } } if (could_have_src && could_have_dest) { // If we can have both exact types, emit the missing guards if (could_have_src && !src_spec) { src = maybe_cast_profiled_obj(src, src_k, true); } if (could_have_dest && !dest_spec) { dest = maybe_cast_profiled_obj(dest, dest_k, true); } } } } ciMethod* trap_method = method(); int trap_bci = bci(); if (saved_jvms != NULL) { trap_method = alloc->jvms()->method(); trap_bci = alloc->jvms()->bci(); } if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) && can_emit_guards && !src->is_top() && !dest->is_top()) { // validate arguments: enables transformation the ArrayCopyNode validated = true; RegionNode* slow_region = new RegionNode(1); record_for_igvn(slow_region); // (1) src and dest are arrays. generate_non_array_guard(load_object_klass(src), slow_region); generate_non_array_guard(load_object_klass(dest), slow_region); // (2) src and dest arrays must have elements of the same BasicType // done at macro expansion or at Ideal transformation time // (4) src_offset must not be negative. generate_negative_guard(src_offset, slow_region); // (5) dest_offset must not be negative. generate_negative_guard(dest_offset, slow_region); // (7) src_offset + length must not exceed length of src. generate_limit_guard(src_offset, length, load_array_length(src), slow_region); // (8) dest_offset + length must not exceed length of dest. generate_limit_guard(dest_offset, length, load_array_length(dest), slow_region); // (9) each element of an oop array must be assignable Node* src_klass = load_object_klass(src); Node* dest_klass = load_object_klass(dest); Node* not_subtype_ctrl = gen_subtype_check(src_klass, dest_klass); if (not_subtype_ctrl != top()) { PreserveJVMState pjvms(this); set_control(not_subtype_ctrl); uncommon_trap(Deoptimization::Reason_intrinsic, Deoptimization::Action_make_not_entrant); assert(stopped(), "Should be stopped"); } { PreserveJVMState pjvms(this); set_control(_gvn.transform(slow_region)); uncommon_trap(Deoptimization::Reason_intrinsic, Deoptimization::Action_make_not_entrant); assert(stopped(), "Should be stopped"); } } arraycopy_move_allocation_here(alloc, dest, saved_jvms, saved_reexecute_sp); if (stopped()) { return true; } ArrayCopyNode* ac = ArrayCopyNode::make(this, true, src, src_offset, dest, dest_offset, length, alloc != NULL, // Create LoadRange and LoadKlass nodes for use during macro expansion here // so the compiler has a chance to eliminate them: during macro expansion, // we have to set their control (CastPP nodes are eliminated). load_object_klass(src), load_object_klass(dest), load_array_length(src), load_array_length(dest)); ac->set_arraycopy(validated); Node* n = _gvn.transform(ac); if (n == ac) { ac->connect_outputs(this); } else { assert(validated, "shouldn't transform if all arguments not validated"); set_all_memory(n); } return true; } // Helper function which determines if an arraycopy immediately follows // an allocation, with no intervening tests or other escapes for the object. AllocateArrayNode* LibraryCallKit::tightly_coupled_allocation(Node* ptr, RegionNode* slow_region) { if (stopped()) return NULL; // no fast path if (C->AliasLevel() == 0) return NULL; // no MergeMems around AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr, &_gvn); if (alloc == NULL) return NULL; Node* rawmem = memory(Compile::AliasIdxRaw); // Is the allocation's memory state untouched? if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) { // Bail out if there have been raw-memory effects since the allocation. // (Example: There might have been a call or safepoint.) return NULL; } rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw); if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) { return NULL; } // There must be no unexpected observers of this allocation. for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) { Node* obs = ptr->fast_out(i); if (obs != this->map()) { return NULL; } } // This arraycopy must unconditionally follow the allocation of the ptr. Node* alloc_ctl = ptr->in(0); assert(just_allocated_object(alloc_ctl) == ptr, "most recent allo"); Node* ctl = control(); while (ctl != alloc_ctl) { // There may be guards which feed into the slow_region. // Any other control flow means that we might not get a chance // to finish initializing the allocated object. if ((ctl->is_IfFalse() || ctl->is_IfTrue()) && ctl->in(0)->is_If()) { IfNode* iff = ctl->in(0)->as_If(); Node* not_ctl = iff->proj_out(1 - ctl->as_Proj()->_con); assert(not_ctl != NULL && not_ctl != ctl, "found alternate"); if (slow_region != NULL && slow_region->find_edge(not_ctl) >= 1) { ctl = iff->in(0); // This test feeds the known slow_region. continue; } // One more try: Various low-level checks bottom out in // uncommon traps. If the debug-info of the trap omits // any reference to the allocation, as we've already // observed, then there can be no objection to the trap. bool found_trap = false; for (DUIterator_Fast jmax, j = not_ctl->fast_outs(jmax); j < jmax; j++) { Node* obs = not_ctl->fast_out(j); if (obs->in(0) == not_ctl && obs->is_Call() && (obs->as_Call()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point())) { found_trap = true; break; } } if (found_trap) { ctl = iff->in(0); // This test feeds a harmless uncommon trap. continue; } } return NULL; } // If we get this far, we have an allocation which immediately // precedes the arraycopy, and we can take over zeroing the new object. // The arraycopy will finish the initialization, and provide // a new control state to which we will anchor the destination pointer. return alloc; } //-------------inline_encodeISOArray----------------------------------- // encode char[] to byte[] in ISO_8859_1 bool LibraryCallKit::inline_encodeISOArray() { assert(callee()->signature()->size() == 5, "encodeISOArray has 5 parameters"); // no receiver since it is static method Node *src = argument(0); Node *src_offset = argument(1); Node *dst = argument(2); Node *dst_offset = argument(3); Node *length = argument(4); const Type* src_type = src->Value(&_gvn); const Type* dst_type = dst->Value(&_gvn); const TypeAryPtr* top_src = src_type->isa_aryptr(); const TypeAryPtr* top_dest = dst_type->isa_aryptr(); if (top_src == NULL || top_src->klass() == NULL || top_dest == NULL || top_dest->klass() == NULL) { // failed array check return false; } // Figure out the size and type of the elements we will be copying. BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type(); BasicType dst_elem = dst_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type(); if (src_elem != T_CHAR || dst_elem != T_BYTE) { return false; } Node* src_start = array_element_address(src, src_offset, src_elem); Node* dst_start = array_element_address(dst, dst_offset, dst_elem); // 'src_start' points to src array + scaled offset // 'dst_start' points to dst array + scaled offset const TypeAryPtr* mtype = TypeAryPtr::BYTES; Node* enc = new EncodeISOArrayNode(control(), memory(mtype), src_start, dst_start, length); enc = _gvn.transform(enc); Node* res_mem = _gvn.transform(new SCMemProjNode(enc)); set_memory(res_mem, mtype); set_result(enc); return true; } //-------------inline_multiplyToLen----------------------------------- bool LibraryCallKit::inline_multiplyToLen() { assert(UseMultiplyToLenIntrinsic, "not implemented on this platform"); address stubAddr = StubRoutines::multiplyToLen(); if (stubAddr == NULL) { return false; // Intrinsic's stub is not implemented on this platform } const char* stubName = "multiplyToLen"; assert(callee()->signature()->size() == 5, "multiplyToLen has 5 parameters"); // no receiver because it is a static method Node* x = argument(0); Node* xlen = argument(1); Node* y = argument(2); Node* ylen = argument(3); Node* z = argument(4); const Type* x_type = x->Value(&_gvn); const Type* y_type = y->Value(&_gvn); const TypeAryPtr* top_x = x_type->isa_aryptr(); const TypeAryPtr* top_y = y_type->isa_aryptr(); if (top_x == NULL || top_x->klass() == NULL || top_y == NULL || top_y->klass() == NULL) { // failed array check return false; } BasicType x_elem = x_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type(); BasicType y_elem = y_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type(); if (x_elem != T_INT || y_elem != T_INT) { return false; } // Set the original stack and the reexecute bit for the interpreter to reexecute // the bytecode that invokes BigInteger.multiplyToLen() if deoptimization happens // on the return from z array allocation in runtime. { PreserveReexecuteState preexecs(this); jvms()->set_should_reexecute(true); Node* x_start = array_element_address(x, intcon(0), x_elem); Node* y_start = array_element_address(y, intcon(0), y_elem); // 'x_start' points to x array + scaled xlen // 'y_start' points to y array + scaled ylen // Allocate the result array Node* zlen = _gvn.transform(new AddINode(xlen, ylen)); ciKlass* klass = ciTypeArrayKlass::make(T_INT); Node* klass_node = makecon(TypeKlassPtr::make(klass)); IdealKit ideal(this); #define __ ideal. Node* one = __ ConI(1); Node* zero = __ ConI(0); IdealVariable need_alloc(ideal), z_alloc(ideal); __ declarations_done(); __ set(need_alloc, zero); __ set(z_alloc, z); __ if_then(z, BoolTest::eq, null()); { __ increment (need_alloc, one); } __ else_(); { // Update graphKit memory and control from IdealKit. sync_kit(ideal); Node* zlen_arg = load_array_length(z); // Update IdealKit memory and control from graphKit. __ sync_kit(this); __ if_then(zlen_arg, BoolTest::lt, zlen); { __ increment (need_alloc, one); } __ end_if(); } __ end_if(); __ if_then(__ value(need_alloc), BoolTest::ne, zero); { // Update graphKit memory and control from IdealKit. sync_kit(ideal); Node * narr = new_array(klass_node, zlen, 1); // Update IdealKit memory and control from graphKit. __ sync_kit(this); __ set(z_alloc, narr); } __ end_if(); sync_kit(ideal); z = __ value(z_alloc); // Can't use TypeAryPtr::INTS which uses Bottom offset. _gvn.set_type(z, TypeOopPtr::make_from_klass(klass)); // Final sync IdealKit and GraphKit. final_sync(ideal); #undef __ Node* z_start = array_element_address(z, intcon(0), T_INT); Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::multiplyToLen_Type(), stubAddr, stubName, TypePtr::BOTTOM, x_start, xlen, y_start, ylen, z_start, zlen); } // original reexecute is set back here C->set_has_split_ifs(true); // Has chance for split-if optimization set_result(z); return true; } //-------------inline_squareToLen------------------------------------ bool LibraryCallKit::inline_squareToLen() { assert(UseSquareToLenIntrinsic, "not implementated on this platform"); address stubAddr = StubRoutines::squareToLen(); if (stubAddr == NULL) { return false; // Intrinsic's stub is not implemented on this platform } const char* stubName = "squareToLen"; assert(callee()->signature()->size() == 4, "implSquareToLen has 4 parameters"); Node* x = argument(0); Node* len = argument(1); Node* z = argument(2); Node* zlen = argument(3); const Type* x_type = x->Value(&_gvn); const Type* z_type = z->Value(&_gvn); const TypeAryPtr* top_x = x_type->isa_aryptr(); const TypeAryPtr* top_z = z_type->isa_aryptr(); if (top_x == NULL || top_x->klass() == NULL || top_z == NULL || top_z->klass() == NULL) { // failed array check return false; } BasicType x_elem = x_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type(); BasicType z_elem = z_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type(); if (x_elem != T_INT || z_elem != T_INT) { return false; } Node* x_start = array_element_address(x, intcon(0), x_elem); Node* z_start = array_element_address(z, intcon(0), z_elem); Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::squareToLen_Type(), stubAddr, stubName, TypePtr::BOTTOM, x_start, len, z_start, zlen); set_result(z); return true; } //-------------inline_mulAdd------------------------------------------ bool LibraryCallKit::inline_mulAdd() { assert(UseMulAddIntrinsic, "not implementated on this platform"); address stubAddr = StubRoutines::mulAdd(); if (stubAddr == NULL) { return false; // Intrinsic's stub is not implemented on this platform } const char* stubName = "mulAdd"; assert(callee()->signature()->size() == 5, "mulAdd has 5 parameters"); Node* out = argument(0); Node* in = argument(1); Node* offset = argument(2); Node* len = argument(3); Node* k = argument(4); const Type* out_type = out->Value(&_gvn); const Type* in_type = in->Value(&_gvn); const TypeAryPtr* top_out = out_type->isa_aryptr(); const TypeAryPtr* top_in = in_type->isa_aryptr(); if (top_out == NULL || top_out->klass() == NULL || top_in == NULL || top_in->klass() == NULL) { // failed array check return false; } BasicType out_elem = out_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type(); BasicType in_elem = in_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type(); if (out_elem != T_INT || in_elem != T_INT) { return false; } Node* outlen = load_array_length(out); Node* new_offset = _gvn.transform(new SubINode(outlen, offset)); Node* out_start = array_element_address(out, intcon(0), out_elem); Node* in_start = array_element_address(in, intcon(0), in_elem); Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::mulAdd_Type(), stubAddr, stubName, TypePtr::BOTTOM, out_start,in_start, new_offset, len, k); Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); set_result(result); return true; } //-------------inline_montgomeryMultiply----------------------------------- bool LibraryCallKit::inline_montgomeryMultiply() { address stubAddr = StubRoutines::montgomeryMultiply(); if (stubAddr == NULL) { return false; // Intrinsic's stub is not implemented on this platform } assert(UseMontgomeryMultiplyIntrinsic, "not implemented on this platform"); const char* stubName = "montgomery_square"; assert(callee()->signature()->size() == 7, "montgomeryMultiply has 7 parameters"); Node* a = argument(0); Node* b = argument(1); Node* n = argument(2); Node* len = argument(3); Node* inv = argument(4); Node* m = argument(6); const Type* a_type = a->Value(&_gvn); const TypeAryPtr* top_a = a_type->isa_aryptr(); const Type* b_type = b->Value(&_gvn); const TypeAryPtr* top_b = b_type->isa_aryptr(); const Type* n_type = a->Value(&_gvn); const TypeAryPtr* top_n = n_type->isa_aryptr(); const Type* m_type = a->Value(&_gvn); const TypeAryPtr* top_m = m_type->isa_aryptr(); if (top_a == NULL || top_a->klass() == NULL || top_b == NULL || top_b->klass() == NULL || top_n == NULL || top_n->klass() == NULL || top_m == NULL || top_m->klass() == NULL) { // failed array check return false; } BasicType a_elem = a_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type(); BasicType b_elem = b_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type(); BasicType n_elem = n_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type(); BasicType m_elem = m_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type(); if (a_elem != T_INT || b_elem != T_INT || n_elem != T_INT || m_elem != T_INT) { return false; } // Make the call { Node* a_start = array_element_address(a, intcon(0), a_elem); Node* b_start = array_element_address(b, intcon(0), b_elem); Node* n_start = array_element_address(n, intcon(0), n_elem); Node* m_start = array_element_address(m, intcon(0), m_elem); Node* call = make_runtime_call(RC_LEAF, OptoRuntime::montgomeryMultiply_Type(), stubAddr, stubName, TypePtr::BOTTOM, a_start, b_start, n_start, len, inv, top(), m_start); set_result(m); } return true; } bool LibraryCallKit::inline_montgomerySquare() { address stubAddr = StubRoutines::montgomerySquare(); if (stubAddr == NULL) { return false; // Intrinsic's stub is not implemented on this platform } assert(UseMontgomerySquareIntrinsic, "not implemented on this platform"); const char* stubName = "montgomery_square"; assert(callee()->signature()->size() == 6, "montgomerySquare has 6 parameters"); Node* a = argument(0); Node* n = argument(1); Node* len = argument(2); Node* inv = argument(3); Node* m = argument(5); const Type* a_type = a->Value(&_gvn); const TypeAryPtr* top_a = a_type->isa_aryptr(); const Type* n_type = a->Value(&_gvn); const TypeAryPtr* top_n = n_type->isa_aryptr(); const Type* m_type = a->Value(&_gvn); const TypeAryPtr* top_m = m_type->isa_aryptr(); if (top_a == NULL || top_a->klass() == NULL || top_n == NULL || top_n->klass() == NULL || top_m == NULL || top_m->klass() == NULL) { // failed array check return false; } BasicType a_elem = a_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type(); BasicType n_elem = n_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type(); BasicType m_elem = m_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type(); if (a_elem != T_INT || n_elem != T_INT || m_elem != T_INT) { return false; } // Make the call { Node* a_start = array_element_address(a, intcon(0), a_elem); Node* n_start = array_element_address(n, intcon(0), n_elem); Node* m_start = array_element_address(m, intcon(0), m_elem); Node* call = make_runtime_call(RC_LEAF, OptoRuntime::montgomerySquare_Type(), stubAddr, stubName, TypePtr::BOTTOM, a_start, n_start, len, inv, top(), m_start); set_result(m); } return true; } /** * Calculate CRC32 for byte. * int java.util.zip.CRC32.update(int crc, int b) */ bool LibraryCallKit::inline_updateCRC32() { assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support"); assert(callee()->signature()->size() == 2, "update has 2 parameters"); // no receiver since it is static method Node* crc = argument(0); // type: int Node* b = argument(1); // type: int /* * int c = ~ crc; * b = timesXtoThe32[(b ^ c) & 0xFF]; * b = b ^ (c >>> 8); * crc = ~b; */ Node* M1 = intcon(-1); crc = _gvn.transform(new XorINode(crc, M1)); Node* result = _gvn.transform(new XorINode(crc, b)); result = _gvn.transform(new AndINode(result, intcon(0xFF))); Node* base = makecon(TypeRawPtr::make(StubRoutines::crc_table_addr())); Node* offset = _gvn.transform(new LShiftINode(result, intcon(0x2))); Node* adr = basic_plus_adr(top(), base, ConvI2X(offset)); result = make_load(control(), adr, TypeInt::INT, T_INT, MemNode::unordered); crc = _gvn.transform(new URShiftINode(crc, intcon(8))); result = _gvn.transform(new XorINode(crc, result)); result = _gvn.transform(new XorINode(result, M1)); set_result(result); return true; } /** * Calculate CRC32 for byte[] array. * int java.util.zip.CRC32.updateBytes(int crc, byte[] buf, int off, int len) */ bool LibraryCallKit::inline_updateBytesCRC32() { assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support"); assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters"); // no receiver since it is static method Node* crc = argument(0); // type: int Node* src = argument(1); // type: oop Node* offset = argument(2); // type: int Node* length = argument(3); // type: int const Type* src_type = src->Value(&_gvn); const TypeAryPtr* top_src = src_type->isa_aryptr(); if (top_src == NULL || top_src->klass() == NULL) { // failed array check return false; } // Figure out the size and type of the elements we will be copying. BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type(); if (src_elem != T_BYTE) { return false; } // 'src_start' points to src array + scaled offset Node* src_start = array_element_address(src, offset, src_elem); // We assume that range check is done by caller. // TODO: generate range check (offset+length < src.length) in debug VM. // Call the stub. address stubAddr = StubRoutines::updateBytesCRC32(); const char *stubName = "updateBytesCRC32"; Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(), stubAddr, stubName, TypePtr::BOTTOM, crc, src_start, length); Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); set_result(result); return true; } /** * Calculate CRC32 for ByteBuffer. * int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len) */ bool LibraryCallKit::inline_updateByteBufferCRC32() { assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support"); assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long"); // no receiver since it is static method Node* crc = argument(0); // type: int Node* src = argument(1); // type: long Node* offset = argument(3); // type: int Node* length = argument(4); // type: int src = ConvL2X(src); // adjust Java long to machine word Node* base = _gvn.transform(new CastX2PNode(src)); offset = ConvI2X(offset); // 'src_start' points to src array + scaled offset Node* src_start = basic_plus_adr(top(), base, offset); // Call the stub. address stubAddr = StubRoutines::updateBytesCRC32(); const char *stubName = "updateBytesCRC32"; Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(), stubAddr, stubName, TypePtr::BOTTOM, crc, src_start, length); Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); set_result(result); return true; } //------------------------------get_table_from_crc32c_class----------------------- Node * LibraryCallKit::get_table_from_crc32c_class(ciInstanceKlass *crc32c_class) { Node* table = load_field_from_object(NULL, "byteTable", "[I", /*is_exact*/ false, /*is_static*/ true, crc32c_class); assert (table != NULL, "wrong version of java.util.zip.CRC32C"); return table; } //------------------------------inline_updateBytesCRC32C----------------------- // // Calculate CRC32C for byte[] array. // int java.util.zip.CRC32C.updateBytes(int crc, byte[] buf, int off, int end) // bool LibraryCallKit::inline_updateBytesCRC32C() { assert(UseCRC32CIntrinsics, "need CRC32C instruction support"); assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters"); assert(callee()->holder()->is_loaded(), "CRC32C class must be loaded"); // no receiver since it is a static method Node* crc = argument(0); // type: int Node* src = argument(1); // type: oop Node* offset = argument(2); // type: int Node* end = argument(3); // type: int Node* length = _gvn.transform(new SubINode(end, offset)); const Type* src_type = src->Value(&_gvn); const TypeAryPtr* top_src = src_type->isa_aryptr(); if (top_src == NULL || top_src->klass() == NULL) { // failed array check return false; } // Figure out the size and type of the elements we will be copying. BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type(); if (src_elem != T_BYTE) { return false; } // 'src_start' points to src array + scaled offset Node* src_start = array_element_address(src, offset, src_elem); // static final int[] byteTable in class CRC32C Node* table = get_table_from_crc32c_class(callee()->holder()); Node* table_start = array_element_address(table, intcon(0), T_INT); // We assume that range check is done by caller. // TODO: generate range check (offset+length < src.length) in debug VM. // Call the stub. address stubAddr = StubRoutines::updateBytesCRC32C(); const char *stubName = "updateBytesCRC32C"; Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesCRC32C_Type(), stubAddr, stubName, TypePtr::BOTTOM, crc, src_start, length, table_start); Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); set_result(result); return true; } //------------------------------inline_updateDirectByteBufferCRC32C----------------------- // // Calculate CRC32C for DirectByteBuffer. // int java.util.zip.CRC32C.updateDirectByteBuffer(int crc, long buf, int off, int end) // bool LibraryCallKit::inline_updateDirectByteBufferCRC32C() { assert(UseCRC32CIntrinsics, "need CRC32C instruction support"); assert(callee()->signature()->size() == 5, "updateDirectByteBuffer has 4 parameters and one is long"); assert(callee()->holder()->is_loaded(), "CRC32C class must be loaded"); // no receiver since it is a static method Node* crc = argument(0); // type: int Node* src = argument(1); // type: long Node* offset = argument(3); // type: int Node* end = argument(4); // type: int Node* length = _gvn.transform(new SubINode(end, offset)); src = ConvL2X(src); // adjust Java long to machine word Node* base = _gvn.transform(new CastX2PNode(src)); offset = ConvI2X(offset); // 'src_start' points to src array + scaled offset Node* src_start = basic_plus_adr(top(), base, offset); // static final int[] byteTable in class CRC32C Node* table = get_table_from_crc32c_class(callee()->holder()); Node* table_start = array_element_address(table, intcon(0), T_INT); // Call the stub. address stubAddr = StubRoutines::updateBytesCRC32C(); const char *stubName = "updateBytesCRC32C"; Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesCRC32C_Type(), stubAddr, stubName, TypePtr::BOTTOM, crc, src_start, length, table_start); Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); set_result(result); return true; } //----------------------------inline_reference_get---------------------------- // public T java.lang.ref.Reference.get(); bool LibraryCallKit::inline_reference_get() { const int referent_offset = java_lang_ref_Reference::referent_offset; guarantee(referent_offset > 0, "should have already been set"); // Get the argument: Node* reference_obj = null_check_receiver(); if (stopped()) return true; Node* adr = basic_plus_adr(reference_obj, reference_obj, referent_offset); ciInstanceKlass* klass = env()->Object_klass(); const TypeOopPtr* object_type = TypeOopPtr::make_from_klass(klass); Node* no_ctrl = NULL; Node* result = make_load(no_ctrl, adr, object_type, T_OBJECT, MemNode::unordered); // Use the pre-barrier to record the value in the referent field pre_barrier(false /* do_load */, control(), NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */, result /* pre_val */, T_OBJECT); // Add memory barrier to prevent commoning reads from this field // across safepoint since GC can change its value. insert_mem_bar(Op_MemBarCPUOrder); set_result(result); return true; } Node * LibraryCallKit::load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString, bool is_exact=true, bool is_static=false, ciInstanceKlass * fromKls=NULL) { if (fromKls == NULL) { const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr(); assert(tinst != NULL, "obj is null"); assert(tinst->klass()->is_loaded(), "obj is not loaded"); assert(!is_exact || tinst->klass_is_exact(), "klass not exact"); fromKls = tinst->klass()->as_instance_klass(); } else { assert(is_static, "only for static field access"); } ciField* field = fromKls->get_field_by_name(ciSymbol::make(fieldName), ciSymbol::make(fieldTypeString), is_static); assert (field != NULL, "undefined field"); if (field == NULL) return (Node *) NULL; if (is_static) { const TypeInstPtr* tip = TypeInstPtr::make(fromKls->java_mirror()); fromObj = makecon(tip); } // Next code copied from Parse::do_get_xxx(): // Compute address and memory type. int offset = field->offset_in_bytes(); bool is_vol = field->is_volatile(); ciType* field_klass = field->type(); assert(field_klass->is_loaded(), "should be loaded"); const TypePtr* adr_type = C->alias_type(field)->adr_type(); Node *adr = basic_plus_adr(fromObj, fromObj, offset); BasicType bt = field->layout_type(); // Build the resultant type of the load const Type *type; if (bt == T_OBJECT) { type = TypeOopPtr::make_from_klass(field_klass->as_klass()); } else { type = Type::get_const_basic_type(bt); } if (support_IRIW_for_not_multiple_copy_atomic_cpu && is_vol) { insert_mem_bar(Op_MemBarVolatile); // StoreLoad barrier } // Build the load. MemNode::MemOrd mo = is_vol ? MemNode::acquire : MemNode::unordered; Node* loadedField = make_load(NULL, adr, type, bt, adr_type, mo, LoadNode::DependsOnlyOnTest, is_vol); // If reference is volatile, prevent following memory ops from // floating up past the volatile read. Also prevents commoning // another volatile read. if (is_vol) { // Memory barrier includes bogus read of value to force load BEFORE membar insert_mem_bar(Op_MemBarAcquire, loadedField); } return loadedField; } //------------------------------inline_aescrypt_Block----------------------- bool LibraryCallKit::inline_aescrypt_Block(vmIntrinsics::ID id) { address stubAddr; const char *stubName; assert(UseAES, "need AES instruction support"); switch(id) { case vmIntrinsics::_aescrypt_encryptBlock: stubAddr = StubRoutines::aescrypt_encryptBlock(); stubName = "aescrypt_encryptBlock"; break; case vmIntrinsics::_aescrypt_decryptBlock: stubAddr = StubRoutines::aescrypt_decryptBlock(); stubName = "aescrypt_decryptBlock"; break; } if (stubAddr == NULL) return false; Node* aescrypt_object = argument(0); Node* src = argument(1); Node* src_offset = argument(2); Node* dest = argument(3); Node* dest_offset = argument(4); // (1) src and dest are arrays. const Type* src_type = src->Value(&_gvn); const Type* dest_type = dest->Value(&_gvn); const TypeAryPtr* top_src = src_type->isa_aryptr(); const TypeAryPtr* top_dest = dest_type->isa_aryptr(); assert (top_src != NULL && top_src->klass() != NULL && top_dest != NULL && top_dest->klass() != NULL, "args are strange"); // for the quick and dirty code we will skip all the checks. // we are just trying to get the call to be generated. Node* src_start = src; Node* dest_start = dest; if (src_offset != NULL || dest_offset != NULL) { assert(src_offset != NULL && dest_offset != NULL, ""); src_start = array_element_address(src, src_offset, T_BYTE); dest_start = array_element_address(dest, dest_offset, T_BYTE); } // now need to get the start of its expanded key array // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object); if (k_start == NULL) return false; if (Matcher::pass_original_key_for_aes()) { // on SPARC we need to pass the original key since key expansion needs to happen in intrinsics due to // compatibility issues between Java key expansion and SPARC crypto instructions Node* original_k_start = get_original_key_start_from_aescrypt_object(aescrypt_object); if (original_k_start == NULL) return false; // Call the stub. make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(), stubAddr, stubName, TypePtr::BOTTOM, src_start, dest_start, k_start, original_k_start); } else { // Call the stub. make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(), stubAddr, stubName, TypePtr::BOTTOM, src_start, dest_start, k_start); } return true; } //------------------------------inline_cipherBlockChaining_AESCrypt----------------------- bool LibraryCallKit::inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id) { address stubAddr; const char *stubName; assert(UseAES, "need AES instruction support"); switch(id) { case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt: stubAddr = StubRoutines::cipherBlockChaining_encryptAESCrypt(); stubName = "cipherBlockChaining_encryptAESCrypt"; break; case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt: stubAddr = StubRoutines::cipherBlockChaining_decryptAESCrypt(); stubName = "cipherBlockChaining_decryptAESCrypt"; break; } if (stubAddr == NULL) return false; Node* cipherBlockChaining_object = argument(0); Node* src = argument(1); Node* src_offset = argument(2); Node* len = argument(3); Node* dest = argument(4); Node* dest_offset = argument(5); // (1) src and dest are arrays. const Type* src_type = src->Value(&_gvn); const Type* dest_type = dest->Value(&_gvn); const TypeAryPtr* top_src = src_type->isa_aryptr(); const TypeAryPtr* top_dest = dest_type->isa_aryptr(); assert (top_src != NULL && top_src->klass() != NULL && top_dest != NULL && top_dest->klass() != NULL, "args are strange"); // checks are the responsibility of the caller Node* src_start = src; Node* dest_start = dest; if (src_offset != NULL || dest_offset != NULL) { assert(src_offset != NULL && dest_offset != NULL, ""); src_start = array_element_address(src, src_offset, T_BYTE); dest_start = array_element_address(dest, dest_offset, T_BYTE); } // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object // (because of the predicated logic executed earlier). // so we cast it here safely. // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java Node* embeddedCipherObj = load_field_from_object(cipherBlockChaining_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false); if (embeddedCipherObj == NULL) return false; // cast it to what we know it will be at runtime const TypeInstPtr* tinst = _gvn.type(cipherBlockChaining_object)->isa_instptr(); assert(tinst != NULL, "CBC obj is null"); assert(tinst->klass()->is_loaded(), "CBC obj is not loaded"); ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded"); ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt); const TypeOopPtr* xtype = aklass->as_instance_type(); Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype); aescrypt_object = _gvn.transform(aescrypt_object); // we need to get the start of the aescrypt_object's expanded key array Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object); if (k_start == NULL) return false; // similarly, get the start address of the r vector Node* objRvec = load_field_from_object(cipherBlockChaining_object, "r", "[B", /*is_exact*/ false); if (objRvec == NULL) return false; Node* r_start = array_element_address(objRvec, intcon(0), T_BYTE); Node* cbcCrypt; if (Matcher::pass_original_key_for_aes()) { // on SPARC we need to pass the original key since key expansion needs to happen in intrinsics due to // compatibility issues between Java key expansion and SPARC crypto instructions Node* original_k_start = get_original_key_start_from_aescrypt_object(aescrypt_object); if (original_k_start == NULL) return false; // Call the stub, passing src_start, dest_start, k_start, r_start, src_len and original_k_start cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::cipherBlockChaining_aescrypt_Type(), stubAddr, stubName, TypePtr::BOTTOM, src_start, dest_start, k_start, r_start, len, original_k_start); } else { // Call the stub, passing src_start, dest_start, k_start, r_start and src_len cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::cipherBlockChaining_aescrypt_Type(), stubAddr, stubName, TypePtr::BOTTOM, src_start, dest_start, k_start, r_start, len); } // return cipher length (int) Node* retvalue = _gvn.transform(new ProjNode(cbcCrypt, TypeFunc::Parms)); set_result(retvalue); return true; } //------------------------------get_key_start_from_aescrypt_object----------------------- Node * LibraryCallKit::get_key_start_from_aescrypt_object(Node *aescrypt_object) { Node* objAESCryptKey = load_field_from_object(aescrypt_object, "K", "[I", /*is_exact*/ false); assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt"); if (objAESCryptKey == NULL) return (Node *) NULL; // now have the array, need to get the start address of the K array Node* k_start = array_element_address(objAESCryptKey, intcon(0), T_INT); return k_start; } //------------------------------get_original_key_start_from_aescrypt_object----------------------- Node * LibraryCallKit::get_original_key_start_from_aescrypt_object(Node *aescrypt_object) { Node* objAESCryptKey = load_field_from_object(aescrypt_object, "lastKey", "[B", /*is_exact*/ false); assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt"); if (objAESCryptKey == NULL) return (Node *) NULL; // now have the array, need to get the start address of the lastKey array Node* original_k_start = array_element_address(objAESCryptKey, intcon(0), T_BYTE); return original_k_start; } //----------------------------inline_cipherBlockChaining_AESCrypt_predicate---------------------------- // Return node representing slow path of predicate check. // the pseudo code we want to emulate with this predicate is: // for encryption: // if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath // for decryption: // if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath // note cipher==plain is more conservative than the original java code but that's OK // Node* LibraryCallKit::inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting) { // The receiver was checked for NULL already. Node* objCBC = argument(0); // Load embeddedCipher field of CipherBlockChaining object. Node* embeddedCipherObj = load_field_from_object(objCBC, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false); // get AESCrypt klass for instanceOf check // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point // will have same classloader as CipherBlockChaining object const TypeInstPtr* tinst = _gvn.type(objCBC)->isa_instptr(); assert(tinst != NULL, "CBCobj is null"); assert(tinst->klass()->is_loaded(), "CBCobj is not loaded"); // we want to do an instanceof comparison against the AESCrypt class ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); if (!klass_AESCrypt->is_loaded()) { // if AESCrypt is not even loaded, we never take the intrinsic fast path Node* ctrl = control(); set_control(top()); // no regular fast path return ctrl; } ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt))); Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1))); Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne)); Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN); // for encryption, we are done if (!decrypting) return instof_false; // even if it is NULL // for decryption, we need to add a further check to avoid // taking the intrinsic path when cipher and plain are the same // see the original java code for why. RegionNode* region = new RegionNode(3); region->init_req(1, instof_false); Node* src = argument(1); Node* dest = argument(4); Node* cmp_src_dest = _gvn.transform(new CmpPNode(src, dest)); Node* bool_src_dest = _gvn.transform(new BoolNode(cmp_src_dest, BoolTest::eq)); Node* src_dest_conjoint = generate_guard(bool_src_dest, NULL, PROB_MIN); region->init_req(2, src_dest_conjoint); record_for_igvn(region); return _gvn.transform(region); } //------------------------------inline_ghash_processBlocks bool LibraryCallKit::inline_ghash_processBlocks() { address stubAddr; const char *stubName; assert(UseGHASHIntrinsics, "need GHASH intrinsics support"); stubAddr = StubRoutines::ghash_processBlocks(); stubName = "ghash_processBlocks"; Node* data = argument(0); Node* offset = argument(1); Node* len = argument(2); Node* state = argument(3); Node* subkeyH = argument(4); Node* state_start = array_element_address(state, intcon(0), T_LONG); assert(state_start, "state is NULL"); Node* subkeyH_start = array_element_address(subkeyH, intcon(0), T_LONG); assert(subkeyH_start, "subkeyH is NULL"); Node* data_start = array_element_address(data, offset, T_BYTE); assert(data_start, "data is NULL"); Node* ghash = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::ghash_processBlocks_Type(), stubAddr, stubName, TypePtr::BOTTOM, state_start, subkeyH_start, data_start, len); return true; } //------------------------------inline_sha_implCompress----------------------- // // Calculate SHA (i.e., SHA-1) for single-block byte[] array. // void com.sun.security.provider.SHA.implCompress(byte[] buf, int ofs) // // Calculate SHA2 (i.e., SHA-244 or SHA-256) for single-block byte[] array. // void com.sun.security.provider.SHA2.implCompress(byte[] buf, int ofs) // // Calculate SHA5 (i.e., SHA-384 or SHA-512) for single-block byte[] array. // void com.sun.security.provider.SHA5.implCompress(byte[] buf, int ofs) // bool LibraryCallKit::inline_sha_implCompress(vmIntrinsics::ID id) { assert(callee()->signature()->size() == 2, "sha_implCompress has 2 parameters"); Node* sha_obj = argument(0); Node* src = argument(1); // type oop Node* ofs = argument(2); // type int const Type* src_type = src->Value(&_gvn); const TypeAryPtr* top_src = src_type->isa_aryptr(); if (top_src == NULL || top_src->klass() == NULL) { // failed array check return false; } // Figure out the size and type of the elements we will be copying. BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type(); if (src_elem != T_BYTE) { return false; } // 'src_start' points to src array + offset Node* src_start = array_element_address(src, ofs, src_elem); Node* state = NULL; address stubAddr; const char *stubName; switch(id) { case vmIntrinsics::_sha_implCompress: assert(UseSHA1Intrinsics, "need SHA1 instruction support"); state = get_state_from_sha_object(sha_obj); stubAddr = StubRoutines::sha1_implCompress(); stubName = "sha1_implCompress"; break; case vmIntrinsics::_sha2_implCompress: assert(UseSHA256Intrinsics, "need SHA256 instruction support"); state = get_state_from_sha_object(sha_obj); stubAddr = StubRoutines::sha256_implCompress(); stubName = "sha256_implCompress"; break; case vmIntrinsics::_sha5_implCompress: assert(UseSHA512Intrinsics, "need SHA512 instruction support"); state = get_state_from_sha5_object(sha_obj); stubAddr = StubRoutines::sha512_implCompress(); stubName = "sha512_implCompress"; break; default: fatal_unexpected_iid(id); return false; } if (state == NULL) return false; // Call the stub. Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::sha_implCompress_Type(), stubAddr, stubName, TypePtr::BOTTOM, src_start, state); return true; } //------------------------------inline_digestBase_implCompressMB----------------------- // // Calculate SHA/SHA2/SHA5 for multi-block byte[] array. // int com.sun.security.provider.DigestBase.implCompressMultiBlock(byte[] b, int ofs, int limit) // bool LibraryCallKit::inline_digestBase_implCompressMB(int predicate) { assert(UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics, "need SHA1/SHA256/SHA512 instruction support"); assert((uint)predicate < 3, "sanity"); assert(callee()->signature()->size() == 3, "digestBase_implCompressMB has 3 parameters"); Node* digestBase_obj = argument(0); // The receiver was checked for NULL already. Node* src = argument(1); // byte[] array Node* ofs = argument(2); // type int Node* limit = argument(3); // type int const Type* src_type = src->Value(&_gvn); const TypeAryPtr* top_src = src_type->isa_aryptr(); if (top_src == NULL || top_src->klass() == NULL) { // failed array check return false; } // Figure out the size and type of the elements we will be copying. BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type(); if (src_elem != T_BYTE) { return false; } // 'src_start' points to src array + offset Node* src_start = array_element_address(src, ofs, src_elem); const char* klass_SHA_name = NULL; const char* stub_name = NULL; address stub_addr = NULL; bool long_state = false; switch (predicate) { case 0: if (UseSHA1Intrinsics) { klass_SHA_name = "sun/security/provider/SHA"; stub_name = "sha1_implCompressMB"; stub_addr = StubRoutines::sha1_implCompressMB(); } break; case 1: if (UseSHA256Intrinsics) { klass_SHA_name = "sun/security/provider/SHA2"; stub_name = "sha256_implCompressMB"; stub_addr = StubRoutines::sha256_implCompressMB(); } break; case 2: if (UseSHA512Intrinsics) { klass_SHA_name = "sun/security/provider/SHA5"; stub_name = "sha512_implCompressMB"; stub_addr = StubRoutines::sha512_implCompressMB(); long_state = true; } break; default: fatal(err_msg_res("unknown SHA intrinsic predicate: %d", predicate)); } if (klass_SHA_name != NULL) { // get DigestBase klass to lookup for SHA klass const TypeInstPtr* tinst = _gvn.type(digestBase_obj)->isa_instptr(); assert(tinst != NULL, "digestBase_obj is not instance???"); assert(tinst->klass()->is_loaded(), "DigestBase is not loaded"); ciKlass* klass_SHA = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make(klass_SHA_name)); assert(klass_SHA->is_loaded(), "predicate checks that this class is loaded"); ciInstanceKlass* instklass_SHA = klass_SHA->as_instance_klass(); return inline_sha_implCompressMB(digestBase_obj, instklass_SHA, long_state, stub_addr, stub_name, src_start, ofs, limit); } return false; } //------------------------------inline_sha_implCompressMB----------------------- bool LibraryCallKit::inline_sha_implCompressMB(Node* digestBase_obj, ciInstanceKlass* instklass_SHA, bool long_state, address stubAddr, const char *stubName, Node* src_start, Node* ofs, Node* limit) { const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_SHA); const TypeOopPtr* xtype = aklass->as_instance_type(); Node* sha_obj = new CheckCastPPNode(control(), digestBase_obj, xtype); sha_obj = _gvn.transform(sha_obj); Node* state; if (long_state) { state = get_state_from_sha5_object(sha_obj); } else { state = get_state_from_sha_object(sha_obj); } if (state == NULL) return false; // Call the stub. Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::digestBase_implCompressMB_Type(), stubAddr, stubName, TypePtr::BOTTOM, src_start, state, ofs, limit); // return ofs (int) Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); set_result(result); return true; } //------------------------------get_state_from_sha_object----------------------- Node * LibraryCallKit::get_state_from_sha_object(Node *sha_object) { Node* sha_state = load_field_from_object(sha_object, "state", "[I", /*is_exact*/ false); assert (sha_state != NULL, "wrong version of sun.security.provider.SHA/SHA2"); if (sha_state == NULL) return (Node *) NULL; // now have the array, need to get the start address of the state array Node* state = array_element_address(sha_state, intcon(0), T_INT); return state; } //------------------------------get_state_from_sha5_object----------------------- Node * LibraryCallKit::get_state_from_sha5_object(Node *sha_object) { Node* sha_state = load_field_from_object(sha_object, "state", "[J", /*is_exact*/ false); assert (sha_state != NULL, "wrong version of sun.security.provider.SHA5"); if (sha_state == NULL) return (Node *) NULL; // now have the array, need to get the start address of the state array Node* state = array_element_address(sha_state, intcon(0), T_LONG); return state; } //----------------------------inline_digestBase_implCompressMB_predicate---------------------------- // Return node representing slow path of predicate check. // the pseudo code we want to emulate with this predicate is: // if (digestBaseObj instanceof SHA/SHA2/SHA5) do_intrinsic, else do_javapath // Node* LibraryCallKit::inline_digestBase_implCompressMB_predicate(int predicate) { assert(UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics, "need SHA1/SHA256/SHA512 instruction support"); assert((uint)predicate < 3, "sanity"); // The receiver was checked for NULL already. Node* digestBaseObj = argument(0); // get DigestBase klass for instanceOf check const TypeInstPtr* tinst = _gvn.type(digestBaseObj)->isa_instptr(); assert(tinst != NULL, "digestBaseObj is null"); assert(tinst->klass()->is_loaded(), "DigestBase is not loaded"); const char* klass_SHA_name = NULL; switch (predicate) { case 0: if (UseSHA1Intrinsics) { // we want to do an instanceof comparison against the SHA class klass_SHA_name = "sun/security/provider/SHA"; } break; case 1: if (UseSHA256Intrinsics) { // we want to do an instanceof comparison against the SHA2 class klass_SHA_name = "sun/security/provider/SHA2"; } break; case 2: if (UseSHA512Intrinsics) { // we want to do an instanceof comparison against the SHA5 class klass_SHA_name = "sun/security/provider/SHA5"; } break; default: fatal(err_msg_res("unknown SHA intrinsic predicate: %d", predicate)); } ciKlass* klass_SHA = NULL; if (klass_SHA_name != NULL) { klass_SHA = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make(klass_SHA_name)); } if ((klass_SHA == NULL) || !klass_SHA->is_loaded()) { // if none of SHA/SHA2/SHA5 is loaded, we never take the intrinsic fast path Node* ctrl = control(); set_control(top()); // no intrinsic path return ctrl; } ciInstanceKlass* instklass_SHA = klass_SHA->as_instance_klass(); Node* instofSHA = gen_instanceof(digestBaseObj, makecon(TypeKlassPtr::make(instklass_SHA))); Node* cmp_instof = _gvn.transform(new CmpINode(instofSHA, intcon(1))); Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne)); Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN); return instof_false; // even if it is NULL } bool LibraryCallKit::inline_profileBoolean() { Node* counts = argument(1); const TypeAryPtr* ary = NULL; ciArray* aobj = NULL; if (counts->is_Con() && (ary = counts->bottom_type()->isa_aryptr()) != NULL && (aobj = ary->const_oop()->as_array()) != NULL && (aobj->length() == 2)) { // Profile is int[2] where [0] and [1] correspond to false and true value occurrences respectively. jint false_cnt = aobj->element_value(0).as_int(); jint true_cnt = aobj->element_value(1).as_int(); if (C->log() != NULL) { C->log()->elem("observe source='profileBoolean' false='%d' true='%d'", false_cnt, true_cnt); } if (false_cnt + true_cnt == 0) { // According to profile, never executed. uncommon_trap_exact(Deoptimization::Reason_intrinsic, Deoptimization::Action_reinterpret); return true; } // result is a boolean (0 or 1) and its profile (false_cnt & true_cnt) // is a number of each value occurrences. Node* result = argument(0); if (false_cnt == 0 || true_cnt == 0) { // According to profile, one value has been never seen. int expected_val = (false_cnt == 0) ? 1 : 0; Node* cmp = _gvn.transform(new CmpINode(result, intcon(expected_val))); Node* test = _gvn.transform(new BoolNode(cmp, BoolTest::eq)); IfNode* check = create_and_map_if(control(), test, PROB_ALWAYS, COUNT_UNKNOWN); Node* fast_path = _gvn.transform(new IfTrueNode(check)); Node* slow_path = _gvn.transform(new IfFalseNode(check)); { // Slow path: uncommon trap for never seen value and then reexecute // MethodHandleImpl::profileBoolean() to bump the count, so JIT knows // the value has been seen at least once. PreserveJVMState pjvms(this); PreserveReexecuteState preexecs(this); jvms()->set_should_reexecute(true); set_control(slow_path); set_i_o(i_o()); uncommon_trap_exact(Deoptimization::Reason_intrinsic, Deoptimization::Action_reinterpret); } // The guard for never seen value enables sharpening of the result and // returning a constant. It allows to eliminate branches on the same value // later on. set_control(fast_path); result = intcon(expected_val); } // Stop profiling. // MethodHandleImpl::profileBoolean() has profiling logic in its bytecode. // By replacing method body with profile data (represented as ProfileBooleanNode // on IR level) we effectively disable profiling. // It enables full speed execution once optimized code is generated. Node* profile = _gvn.transform(new ProfileBooleanNode(result, false_cnt, true_cnt)); C->record_for_igvn(profile); set_result(profile); return true; } else { // Continue profiling. // Profile data isn't available at the moment. So, execute method's bytecode version. // Usually, when GWT LambdaForms are profiled it means that a stand-alone nmethod // is compiled and counters aren't available since corresponding MethodHandle // isn't a compile-time constant. return false; } } bool LibraryCallKit::inline_isCompileConstant() { Node* n = argument(0); set_result(n->is_Con() ? intcon(1) : intcon(0)); return true; }