/* * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ /* * This file is available under and governed by the GNU General Public * License version 2 only, as published by the Free Software Foundation. * However, the following notice accompanied the original version of this * file: * * Written by Doug Lea with assistance from members of JCP JSR-166 * Expert Group and released to the public domain, as explained at * http://creativecommons.org/publicdomain/zero/1.0/ */ /* * @test * @bug 6865571 * @summary Numerical Integration using fork/join * @run main Integrate reps=1 forkPolicy=dynamic * @run main Integrate reps=1 forkPolicy=serial * @run main Integrate reps=1 forkPolicy=fork */ import java.util.concurrent.ForkJoinPool; import java.util.concurrent.RecursiveAction; /** * Sample program using Gaussian Quadrature for numerical integration. * This version uses a simplified hardwired function. Inspired by a * * Filaments demo program. */ public final class Integrate { static final double errorTolerance = 1.0e-11; /** for time conversion */ static final long NPS = (1000L * 1000 * 1000); static final int SERIAL = -1; static final int DYNAMIC = 0; static final int FORK = 1; /** the function to integrate */ static double computeFunction(double x) { return (x * x + 1.0) * x; } static final double start = 0.0; static final double end = 1536.0; /** * The number of recursive calls for * integrate from start to end. * (Empirically determined) */ static final int calls = 263479047; static String keywordValue(String[] args, String keyword) { for (String arg : args) if (arg.startsWith(keyword)) return arg.substring(keyword.length() + 1); return null; } static int intArg(String[] args, String keyword, int defaultValue) { String val = keywordValue(args, keyword); return (val == null) ? defaultValue : Integer.parseInt(val); } static int policyArg(String[] args, String keyword, int defaultPolicy) { String val = keywordValue(args, keyword); if (val == null) return defaultPolicy; if (val.equals("dynamic")) return DYNAMIC; if (val.equals("serial")) return SERIAL; if (val.equals("fork")) return FORK; throw new Error(); } /** * Usage: Integrate [procs=N] [reps=N] forkPolicy=serial|dynamic|fork */ public static void main(String[] args) throws Exception { final int procs = intArg(args, "procs", Runtime.getRuntime().availableProcessors()); final int forkPolicy = policyArg(args, "forkPolicy", DYNAMIC); ForkJoinPool g = new ForkJoinPool(procs); System.out.println("Integrating from " + start + " to " + end + " forkPolicy = " + forkPolicy); long lastTime = System.nanoTime(); for (int reps = intArg(args, "reps", 10); reps > 0; reps--) { double a; if (forkPolicy == SERIAL) a = SQuad.computeArea(g, start, end); else if (forkPolicy == FORK) a = FQuad.computeArea(g, start, end); else a = DQuad.computeArea(g, start, end); long now = System.nanoTime(); double s = (double) (now - lastTime) / NPS; lastTime = now; System.out.printf("Calls/sec: %12d", (long) (calls / s)); System.out.printf(" Time: %7.3f", s); System.out.printf(" Area: %12.1f", a); System.out.println(); } System.out.println(g); g.shutdown(); } // Sequential version static final class SQuad extends RecursiveAction { static double computeArea(ForkJoinPool pool, double l, double r) { SQuad q = new SQuad(l, r, 0); pool.invoke(q); return q.area; } final double left; // lower bound final double right; // upper bound double area; SQuad(double l, double r, double a) { this.left = l; this.right = r; this.area = a; } public final void compute() { double l = left; double r = right; area = recEval(l, r, (l * l + 1.0) * l, (r * r + 1.0) * r, area); } static final double recEval(double l, double r, double fl, double fr, double a) { double h = (r - l) * 0.5; double c = l + h; double fc = (c * c + 1.0) * c; double hh = h * 0.5; double al = (fl + fc) * hh; double ar = (fr + fc) * hh; double alr = al + ar; if (Math.abs(alr - a) <= errorTolerance) return alr; else return recEval(c, r, fc, fr, ar) + recEval(l, c, fl, fc, al); } } //.................................... // ForkJoin version static final class FQuad extends RecursiveAction { static double computeArea(ForkJoinPool pool, double l, double r) { FQuad q = new FQuad(l, r, 0); pool.invoke(q); return q.area; } final double left; // lower bound final double right; // upper bound double area; FQuad(double l, double r, double a) { this.left = l; this.right = r; this.area = a; } public final void compute() { double l = left; double r = right; area = recEval(l, r, (l * l + 1.0) * l, (r * r + 1.0) * r, area); } static final double recEval(double l, double r, double fl, double fr, double a) { double h = (r - l) * 0.5; double c = l + h; double fc = (c * c + 1.0) * c; double hh = h * 0.5; double al = (fl + fc) * hh; double ar = (fr + fc) * hh; double alr = al + ar; if (Math.abs(alr - a) <= errorTolerance) return alr; FQuad q = new FQuad(l, c, al); q.fork(); ar = recEval(c, r, fc, fr, ar); if (!q.tryUnfork()) { q.quietlyJoin(); return ar + q.area; } return ar + recEval(l, c, fl, fc, al); } } // ........................... // Version using on-demand Fork static final class DQuad extends RecursiveAction { static double computeArea(ForkJoinPool pool, double l, double r) { DQuad q = new DQuad(l, r, 0); pool.invoke(q); return q.area; } final double left; // lower bound final double right; // upper bound double area; DQuad(double l, double r, double a) { this.left = l; this.right = r; this.area = a; } public final void compute() { double l = left; double r = right; area = recEval(l, r, (l * l + 1.0) * l, (r * r + 1.0) * r, area); } static final double recEval(double l, double r, double fl, double fr, double a) { double h = (r - l) * 0.5; double c = l + h; double fc = (c * c + 1.0) * c; double hh = h * 0.5; double al = (fl + fc) * hh; double ar = (fr + fc) * hh; double alr = al + ar; if (Math.abs(alr - a) <= errorTolerance) return alr; DQuad q = null; if (getSurplusQueuedTaskCount() <= 3) (q = new DQuad(l, c, al)).fork(); ar = recEval(c, r, fc, fr, ar); if (q != null && !q.tryUnfork()) { q.quietlyJoin(); return ar + q.area; } return ar + recEval(l, c, fl, fc, al); } } }